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Abstract
Deep learning has brought the most profound contribution towards biomedical image seg-
mentation to automate the process of delineation in medical imaging. To accomplish such 
task, the models are required to be trained using huge amount of annotated or labelled data 
that highlights the region of interest with a binary mask. However, efficient generation of 
the annotations for such huge data requires expert biomedical analysts and extensive man-
ual effort. It is a tedious and expensive task, while also being vulnerable to human error. 
To address this problem, a self-supervised learning framework, BT-Unet is proposed that 
uses the Barlow Twins approach to pre-train the encoder of a U-Net model via redundancy 
reduction in an unsupervised manner to learn data representation. Later, complete network 
is fine-tuned to perform actual segmentation. The BT-Unet framework can be trained with 
a limited number of annotated samples while having high number of unannotated samples, 
which is mostly the case in real-world problems. This framework is validated over mul-
tiple U-Net models over diverse datasets by generating scenarios of a limited number of 
labelled samples using standard evaluation metrics. With exhaustive experiment trials, it is 
observed that the BT-Unet framework enhances the performance of the U-Net models with 
significant margin under such circumstances.
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1  Introduction

With the advent of advancements in deep learning technologies, there is a significant 
gain in the momentum of its applications in biomedical image analysis such as classifica-
tion, localization, segmentation, etc. (Ker et al., 2017). Most medical applications require 
segregating the objects or regions (damaged tissues, cells, nuclei, organs, etc.) with fine 
boundaries using medical imaging such as CAT scans, X-Rays, Ultrasound, etc. for diagno-
sis, monitoring and treatment. This delineation is generally performed by expert clinicians 
or radiologists which is a complex and tedious task. With biomedical image segmenta-
tion being a precursor to computer-aided classification/localization, various deep learning 
based approaches are developed to automate the segmentation process for faster diagnosis 
and better treatment  (Haque and Neubert 2020). Among these approaches, U-Net  (Ron-
neberger et al., 2015) based segmentation models gained significant popularity due to its 
mutable and modular structure that would result in the state-of-the-art diagnosis system. 
Following this context, several U-Net variants have been introduced to address vivid chal-
lenges associated with biomedical image segmentation applications  (Punn and Agarwal 
2021a). For instance, in light of such challenges, Isensee et  al. (2021) proposed a self-
adapting framework no-newU-Net (nnU-Net) that dynamically tunes the U-Net based seg-
mentation pipeline covering data pre-processing, data augmentation and post-processing 
required for different applications such as tumor segmentation, nuclei segmentation, etc. 
Without manual tuning, nnU-Net achieved state-of-the-art performance in the majority of 
segmentation tasks.

However, such potential of deep learning segmentation models is only unlocked by 
training the models with a large amount of annotated data i.e., a fully supervised approach. 
Moreover, efficient generation of the annotations for such huge data requires expert bio-
medical analysts and extensive manual effort. It is a tedious and expensive task, while also 
being vulnerable to human error. To address this issue, various strategies are adopted to 
efficiently train the model with limited labelled data samples such as data augmentation, 
transfer learning, self-supervised learning, etc. In image data augmentation (Shorten and 
Khoshgoftaar 2019) the aim is to increase the number of labelled data by geometric trans-
formations, feature space augmentation, generative adversarial networks, etc. However, the 
diversity of the augmented samples is limited by the available annotated samples which 
could cause an overfitting problem in the model. Several attempts are also made towards 
transfer learning to alleviate the performance of model with limited annotated data sam-
ples. Though this strategy works very well with natural images, but is ineffectual in bio-
medical image analysis (Alzubaidi et al., 2020; Raghu et al., 2019) due to large variation 
in the associated complex patterns of biomedical imaging as compared to natural images.

Self-supervised learning (Jing and Tian 2020) is an emerging technology that is effec-
tively closing the gap with fully supervised methods on large computer vision benchmarks. 
It provides an effective solution to the limited availability of annotated data. Here, the aim 
is to perform pre-training with an unsupervised strategy for learning useful and better 
representations of the data samples. The pre-trained model is then fine-tuned with lim-
ited annotated samples to adopt the actual task such as segmentation, classification, etc. 
The recent development in self-supervised learning methods can be categorized as con-
trastive learning (MoCo (He et al., 2020), PIRL (Misra & Maaten, 2020), SimCLR (Chen 
et  al., 2020)), clustering (DeepCluster  (Caron et  al., 2018), SeLA  (Asano et  al., 2019), 
SwAV (Caron et al., 2020)), distillation (BYOL (Grill et al., 2020), SimSiam (Chen and He 
2021)) and redundancy reduction (Barlow Twins (Zbontar et al., 2021)). The approaches 
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categorized under contrastive learning, clustering and distillations work based on the simi-
larity maximization that requires efficient generation of the positive (related images) and 
negative (unrelated images) samples for pre-training. However, in biomedical image analy-
sis identifying the negative samples is a tedious and complex task (Zeng et al., 2021) due 
to similarities and dissimilarities at low and high level feature representations respectively, 
whereas in Barlow Twins there is no such requirement; therefore, more suitable for bio-
medical image segmentation. With this motivation, in the present work a self-supervised 
learning framework called BT-Unet is proposed for biomedical image segmentation, where 
Barlow Twins strategy is integrated with U-Net segmentation models. The main contribu-
tions of the present research work are highlighted below:

•	 The challenge of limited biomedical annotated data availability is addressed by inte-
grating redundancy reduction based self-supervised learning approach with U-Net seg-
mentation models.

•	 The pre-training of the U-Net encoder is performed with the Barlow Twins strategy to 
learn feature representations in an unsupervised manner (without data annotations).

•	 The effect of pre-training on biomedical image segmentation performance is analyzed 
with multiple U-Net models over diverse datasets.

The rest of the paper is divided into several sections, where Sect. 2 presents the literature 
review of the recent developments in the self-supervised segmentation approaches, fol-
lowed by the methods adopted in the proposed framework in Sects. 3 and 4. Sections 5 and 
6 present the experimental setup and the obtained results respectively. Finally, concluding 
remarks are presented in Sect. 7.

2 � Related work

In recent years, due to developments in deep learning technologies, the researchers have 
developed a keen interest in computer-aided diagnosis systems to promote better healthcare 
services with a variety of applications (Lei et al., 2020) such as classification, detection, 
segmentation, etc. With segmentation being one of the critical aspects of diagnosis and fol-
low up treatment plans, various deep learning based segmentation models are developed. 
However, the use of self-supervised learning strategies to improve the segmentation perfor-
mance is relatively least explored.

In the context of biomedical image segmentation, most of these approaches can be grouped 
into pretext based and contrastive learning based strategies. In pretext based self-supervised 
learning, a proxy task is performed to learn the feature representations. There are variety of 
pretext or proxy tasks that can be used for pre-training such as inpainting (Pathak et al., 2016), 
jigsaw puzzles (Noroozi and Favaro 2016), predicting the position of image patches (Doersch 
et al., 2015), predicting rotations (Gidaris et al., 2018), etc. However, there is a huge gap or 
variation between these tasks and the actual or downstream tasks due to which these strategies 
achieved limited success in deep learning applications. In contrastive learning based strate-
gies, the feature representations are learned by effectively distinguishing the positive (similar) 
and negative (dissimilar) pairs. Recently, contrastive learning based unsupervised feature rep-
resentations have gained significant interest. Following this context, Chaitanya et al., (2020) 
proposed a contrastive learning framework that adapts global and local features using unanno-
tated samples during pre-training in a stage-wise manner for biomedical image segmentation. 
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Similarly, Zheng et al., (2021) proposed a hierarchical self-supervised framework, where mul-
tiple heterogenous datasets across multiple modalities are utilized for multi-level contrastive 
pre-training to adapt the multiple segmentation tasks by fine-tuning. Dhere and Sivaswamy 
(2021) performed kidney segmentation with a self-supervision strategy where contrastive 
learning is used with pretext task defined as the classification of the pair of kidneys belonging 
to the same side, where the pre-training is performed using a siamese network and the pre-
trained encoder is fine-tuned in the U-Net model for final segmentation.

However, these contrastive approaches require generating effective positive and negative 
pairs which is not feasible in every task such as nuclei segmentation or skin lesion segmen-
tation, where the input samples are almost related and it is relatively hard to generate nega-
tive pairs of the samples (Li et al., 2021). Following this context, a redundancy reduction 
based strategy is adopted that does not require generation of positive and negative pairs for 
pre-training. Here, the aim is to obtain invariant and independent feature representations 
for every neuron of a model by minimizing the true and observed cross-correlation matri-
ces which is the opposite of mutual information between the representations.

3 � Methods

In this section, the background knowledge of the redundancy reduction based Barlow 
Twins approach for self-supervised learning along with U-Net based models are presented 
that are integrated with Barlow Twins for biomedical image segmentation.

3.1 � Barlow twins

Inspired by Horace Barlow’s efficient coding hypothesis, where neurons communicate via 
spiking codes which aim to reduce the redundancy between neurons, Zbontar et al., (2021) 
proposed a redundancy reduction based Barlow Twins (BT) framework for self-supervised 
learning. Here, the objective is to make each neuron satisfy two conditions that are pro-
ducing feature representations: (1) Invariance - invariant under different augmentations, 
and (2) Reduce redundancy - independent of other neurons. The overall BT framework 
is presented in Fig. 1. In this, two identical encoders ( f

�
 , siamese net), sharing the same 

parameters and weights, generates feature representations ( ZA and ZB ) of the augmented or 
corrupted images ( YA and YB ). Later, a cross-correlation matrix ( C ) is generated from batch 
normalized feature representations: ZA and ZB . Finally, to satisfy the above two proper-
ties, the model is fine-tuned to make the matrix C fairly similar to an identity matrix with 
a loss function, LBT defined as shown in Eq. 1. In the BT-Unet framework, the encoder of 
the U-Net models is pre-trained with the BT strategy and later fine-tuned to perform actual 
segmentation.
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where 
∑

i(1 − Cii)
2 is an invariance term (diagonal or identity term) to direct neurons to 

produce same output under different augmentations, and 
∑

i

∑

j≠i Cij
2 is a redundancy 

reduction term (off-diagonal term) to make each neuron produce different output. The term 
� is used to balance the contribution of invariance and redundancy reduction terms, which 
however is kept equal to 0.2 (Zbontar et al., 2021).

3.2 � U‑net models

U-Net  (Ronneberger et  al., 2015) is the most widely used model for biomedical image 
segmentation. As shown in Fig. 2, it follows symmetric encoder-decoder design to extract 
and reconstruct the feature maps respectively. The encoder phase uses the stack of ReLU 
activated convolution and pooling operations for feature extraction and later these feature 
maps are concatenated with the corresponding decoder block using the skip connections 
for feature up-sampling operation. Finally, 1 × 1 convolution is used in the output layer to 
generate a segmentation mask and categorize each pixel of an input image. The model was 
trained with the pixel-wise weighted cross-entropy function as defined in the Eq. 3. The 
U-Net model achieved state-of-the-art results in the ISBI cell tracking challenge. With this 
potential of the U-Net model, various U-Net based models are developed for different bio-
medical image segmentation applications (Punn and Agarwal 2021a).

where pk(x) is the output softmax function, d1 and d2 indicate the distances to the nearest 
and second nearest boundary points, wc represents weight map, wo and � are constants.

In the present article, U-Net, attention U-Net (AU-Net)  (Oktay et  al., 2018), incep-
tion U-Net (I-Unet) (Punn and Agarwal 2020) and residual cross spatial attention guided 
inception U-Net (RCA-IUnet) (Punn and Agarwal 2021b) are considered to establish better 
comparative analysis of the segmentation performance. In contrast to the U-Net model, 
A-Unet adds attention filters in the skip connection to suppress irrelevant features of an 
input image, while following a similar encoder-decoder structure. Later, to efficiently cap-
ture the varied shape, size and location of the target structure, I-Unet introduces inception 

(3)E =
∑

x∈Ω

(

wc(x) + w0 ⋅ exp

(

−
(d1(x) + d2(x))

2

2�2

))

log(p
𝓁(x)(x))

Fig. 1   Schematic representation of Barlow twins (Zbontar et al., 2021)
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convolution layers where multi-scale features are extracted at the same layer, thereby form-
ing a wider network. Moreover, a hybrid pooling layer is proposed that exploits the fea-
tures of spatial max pooling and spectral pooling. Inspired from the potential of A-Unet 
and I-Unet, the RCA-IUnet model advances the attention filter to capture multi-scale fea-
ture maps and generate better attention descriptors for target regions, while also using the 
hybrid pooling and inception convolution layers by reducing the cost of computation and 
training parameters with the help of depthwise separable convolution (Chollet 2017).

4 � Proposed framework

In the present article, the state-of-the-art potential of U-Net models is expanded by inte-
grating redundancy reduction based Barlow Twins self-supervised learning for better per-
formance in the segmentation with limited annotated data samples. The schematic repre-
sentation of the proposed framework is shown in Fig. 3.

The BT-Unet framework is divided into two phases: 1) Pre-training, and 2) Fine-tuning. 
In pre-training, the aim is to learn the complex feature representations using unannotated 
data samples. Here, the encoder network of the U-Net model is pre-trained using BT self-
supervised learning strategy. Initially, the input image is augmented or corrupted with 
certain distortions such as random crop and rotations to generate two distorted images. 
This type of distortion follows from the results acquired by Zbontar et  al., (2021) while 
analyzing the effect of applying augmentations on pre-training performance. Each aug-
mented image is analyzed with a U-Net encoder followed by a projection network to gener-
ate encoded feature representations in desired dimensions. The projection network follows 
from the feature maps produced by the encoder network with global average pooling and 
blocks of fully connected layers, ReLU activation and batch normalization (FC + ReLU 
+ BN), and final encoded feature representations are generated by another FC layer. Fol-
lowing from the empirical observations, the number of neurons in each fully connected 
layer is kept half of the spatial dimension of an input image for efficient pre-training, e.g., 

Fig. 2   U-net architecture (Ronneberger et al., 2015)
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if input, I ∈ ℝ
s×s×c then the number of neurons are s/2, where s is a spatial dimension of 

an image. The number of neurons could be further increased but at the cost of heavy com-
putation. However, no significant improvement was observed with increased dimensions. 
Since, in later layers, the network learns task specific features that are not aligned with the 
downstream segmentation task, hence the weights learned by the projection network can 
be neglected, whereas the weights of the entire encoder network can be transferred to the 
U-Net model. In the second phase, the weights of the encoder network in the U-Net model 
are initialized with pre-trained weights (from the first phase), whereas the rest of the net-
work is initialized with default weights. Finally, the U-Net model is fine-tuned with limited 
annotated samples for the biomedical image segmentation.

5 � Experiment configuration

This section covers the details concerning the training and testing environment of the BT-
Unet framework along with the datasets and modifications in U-Net models that are used 
for the comparative analysis. To establish robust results with the BT-Unet framework vari-
ous state-of-the-art U-Net models are considered for experiments such as vanilla U-Net, 
attention U-Net (A-Unet), inception U-Net (I-Unet) and residual cross-spatial attention 
guided inception U-Net (RCA-IUnet). Inspired by the RCA-IUnet model, the following 
minor modifications for U-Net, A-Unet and I-Unet architectures are performed:

•	 Standard 2D convolution operations are replaced with 2D depthwise separable convo-
lution to reduce the number of training parameters and multiplication operations with-
out affecting performance.

•	 Batch normalization is performed after every convolution operation for stable training.
•	 Each encoder layer is equipped with residual skip connection (mini-skip connection) to 

avoid the vanishing gradient problem.
•	 Encoding and decoding phases are divided into four stages. With each stage in the 

encoding phase, the number of channels increases by a factor of 2 (starting with 16 in 
the first layer) and spatial resolution decreases by a factor 2 (starting with 256×256).

Fig. 3   BT-Unet framework. a Pre-training U-Net encoder network, and b Fine-tuning U-Net model that is 
initialized with pre-trained encoder weights
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5.1 � Dataset description and setup

The performance of the BT-Unet framework is validated using four datasets with different 
segmentation tasks as shown in Table 1. The dataset comprises images of organs, cells and 
lesions acquired under different imaging protocols.

The Kaggle data science bowl 2018 (KDSB18) challenge is developed for automated 
nuclei segmentation. It contains annotated histopathological images with varying nuclei 
shapes, cell types, magnification and modalities (fluorescence/brightfield). Breast ultra-
sound image segmentation (BUSIS) benchmark dataset comprises breast ultrasound scans 
annotated with a binary mask of the tumor regions. The dataset covers a wide diversity 
of samples collected from various medical institutes and organizations. In another data-
set ISIC18, skin lesion segmentation is performed with the help of annotated dermoscopy 
images. To add more diversity in the datasets, brain tumor segmentation 2018 (BraTS18) 
challenge is considered, which comprises of 3D volumes of MRI modalities with high-
grade gliomas (HGG) and low-grade gliomas (LGG) to highlight different tumor regions: 
whole tumor (WT), tumor core (TC), and emerging tumor (ET). This task is simplified by 
extracting 4,200 2D slices from the 3D volumes of FLAIR modality and analyzing the seg-
mentation mask associated with the WT region.

5.2 � Training and testing

The overall framework is developed using the TensorFlow v2.6 library on Nvidia RTX 
2070 Max-Q GPU system. For all experiments, images from KDSB18, BUSI, ISIC18 and 
BraTS18 datasets are resized to 256×256. The datasets are split into 70% training data and 
30% testing data. The pre-training is performed with complete training data without con-
sidering annotations. To simulate the scenario of limited annotated data availability, 20% 
of KDSB18 and BUSI training data and 10% of ISIC18 and BraTS18 training data are con-
sidered for fine-tuning the segmentation models with 5-fold and 10-fold cross-validation 
respectively. Moreover, Adam optimizer with learning rate initialized at 1e − 3 is used for 
all the experiments that decay by a factor of 0.1 once the learning stagnates for better seg-
mentation results. The training phase is also assisted with the early-stopping strategy to 
avoid the overfitting problem by terminating the training process when the loss function 
stops decreasing. The pre-training is performed by minimizing the cross-correlation loss 
function defined in Eq.  1, whereas U-Net models are fine-tuned with segmentation loss 
function, L defined as the average of binary cross-entropy loss, LBC and dice coefficient 
loss, LDC as shown in Eq. 4.

Table 1   Summary of biomedical datasets used in our experiment

Dataset Description Images Size

KDSB18 Kaggle (2018) Nuclei segmentation using histopathological cell 
images.

670 256×256

BUSIS Xian et al., (2018) Breast tumor segmentation using ultrasound scans. 562 Variable
ISIC18  ISIC   (2018) Skin lesion segmentation using dermoscopy images. 2596 Variable
BraTS18  MICCAI  (2018) Brain tumor segmentation using MRI modalities (T1, 

T1C, T2, FLAIR).
285 240×240×155
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where y is the ground truth label of a pixel, p(y) is the predicted label of a pixel and N is 
the total number of pixels.

The performance of trained U-Net models is validated on the test sets by using various 
evaluation metrics such as precision (Pr.) (Eq. 7), dice coefficient (DC) (Eq. 8) and mean 
intersection-over-union (mIoU) (Eq. 9).

where, TP - true positive, TN - true negative, FP - false positive, FN - false negative and 
t - prediction threshold.

6 � Results and discussion

The proposed framework generates a segmentation mask for given medical imaging. The 
quantitative results of the U-Net models with and without the Barlow Twins based pre-
training on four different biomedical imaging datasets is presented in Table 2 along with 
the percentage change in the segmentation performance of the models with Fig. 4. Moreo-
ver, Fig. 5 presents the qualitative comparison of the segmentation performance. Following 
are the observations made for each dataset:

•	 KDSB18 In the cell nuclei segmentation task of KDSB18, the performance of the BT 
enabled U-Net models exceeds as compared to the models without BT (as shown in 
Table 2). It is also observed that as the architecture design becomes more complex then 
pre-training exhibits positive influence on the segmentation performance (as shown in 
Fig. 4, RCA-IUnet model achieves maximum gain in the performance as compared to 
other models). Moreover, the minimum change in the performance of the vanilla U-Net 
model indicates that a simpler encoder structure (close to vanilla U-Net, e.g. A-Unet) 
face difficulty in extracting feature maps with limited annotated samples. A similar pat-
tern can also be observed with qualitative results in Fig. 5.
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1
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•	 BUSIS The automated segmentation of breast tumor using ultrasound imaging achieves 
promising results with BT pre-training (as shown in Table 2). It is observed that U-Net 
and A-Unet models are not able to learn and extract feature maps concerning tumor 
regions (achieved 0 precision, DC and mIoU), however with pre-training, these models 
achieved noticeable improvement (as shown in Fig.  5). In case of I-Unet and RCA-
IUnet models, considerable improvements are observed with pre-training, where dice 
coefficient increases by 5% and precision increases by 11% respectively (as shown in 
Fig. 4).

•	 ISIC18 Skin lesion segmentation is another challenging task, where U-Net models 
with BT achieved satisfactory improvements in segmentation. The I-Unet and RCA-
IUnet models are the most influenced networks that achieved 5.1% and 2.2% increase 
in precision respectively. However, a slight decline in performance is observed with 
vanilla U-Net and A-Unet (as shown in Fig. 4) while using BT pre-training. In con-
trast to I-Unet and RCA-IUnet, these models have simpler encoder structures due to 
which in pre-training the model fails to learn efficient feature representation about 

Fig. 4   Impact of BT pre-training on segmentation performance of the U-Net models

Fig. 5   Qualitative comparative analysis of the segmentation performance
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complex lesion regions. Furthermore, as observed from Fig. 5, the BT+RCA-IUnet 
model achieved best skin lesion segmentation results with smoother boundaries.

•	 BraTS18 In this challenge of brain tumor segmentation, the models performed simi-
larly as with the ISIC18 dataset. I-Unet and RCA-IUnet models achieved significant 
gain in the segmentation performance while using the BT-Unet framework, whereas 
the same behaviour is not observed with vanilla U-Net and A-Unet models because 
of their inability to effectively capture tumor feature representations during pre-
training. As observed from Fig.  4, the RCA-IUnet model achieved gains of 5.3% , 
6.1% and 6.7% , while I-Unet achieved gains of 4.4% , 4.7% and 4.6% in precision, dice 
coefficient and mIoU respectively.

Furthermore, the performance of U-Net variants with and without the pre-training is 
analysed with multiple fractions of training datasets as shown in Table 3. For all data-
sets with training fractions less than 50% , similar change in performance is observed 
among the models as discussed in Table 2. Besides, in the case of without pre-training 
for U-Net and A-Unet, the increased fraction of BUSIS training samples improved the 
performance as compared to zero values (observed in Table 2) and the corresponding 
performance gain is also achieved with pre-training. However, for the fractions greater 
than 50% , the performance gap is narrowed i.e. results produced by the models with and 
without pre-training are not significantly different. This indicates that it is beneficial to 
utilize the pre-training strategy when there are limited annotations within the large pool 
of data samples.

7 � Conclusion

In this research work, self-supervised learning assisted biomedical image segmentation 
framework BT-Unet, is proposed to address one of the major challenges of limited anno-
tated data availability. The BT-Unet framework uses redundancy reduction based Barlow 
Twins strategy for pre-training the encoder network of the U-Net model with feature rep-
resentations of the data in an unsupervised manner, followed by fine-tuning of the U-Net 
model for downstream biomedical image segmentation task with limited annotated data 
samples. With exhaustive experimental trials, it is evident that BT-Unet tends to improve 
the segmentation performance of U-Net models in such situations. Moreover, this improve-
ment is also influenced by the underlying encoder structure and nature of biomedical image 
segmentation task. In future, more experiments can be conducted by modifying or explor-
ing different pre-training strategies to generate better feature representations and ensure 
finer biomedical image segmentation.
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