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Abstract
This paper investigates the theory of robustness against adversarial attacks. We focus on 
randomized classifiers (i.e. classifiers that output random variables) and provide a thorough 
analysis of their behavior through the lens of statistical learning theory and information 
theory. To this aim, we introduce a new notion of robustness for randomized classifiers, 
enforcing local Lipschitzness using probability metrics. Equipped with this definition, we 
make two new contributions. The first one consists in devising a new upper bound on the 
adversarial generalization gap of randomized classifiers. More precisely, we devise bounds 
on the generalization gap and the adversarial gap i.e. the gap between the risk and the 
worst-case risk under attack) of randomized classifiers. The second contribution presents 
a yet simple but efficient noise injection method to design robust randomized classifiers. 
We show that our results are applicable to a wide range of machine learning models under 
mild hypotheses. We further corroborate our findings with experimental results using deep 
neural networks on standard image datasets, namely CIFAR-10 and CIFAR-100. On these 
tasks, we manage to design robust models that simultaneously achieve state-of-the-art 
accuracy (over 0.82 clean accuracy on CIFAR-10) and enjoy guaranteed robust accuracy 
bounds (0.45 against �

2
 adversaries with magnitude 0.5 on CIFAR-10).
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1 Introduction

In the last few years, there has been a growing concern on adversarial example attacks 
in machine learning. An adversarial attack refers to a small (humanly imperceptible) 
change of an input specifically designed to fool a machine learning model. These attacks 
have recently come to light thanks to works by Biggio et al. (2013) and Szegedy et al. 
(2014) studying deep neural networks for image classification, although it was an exist-
ing topic in spam filter analysis (Dalvi et al., 2004; Lowd & Meek, 2005; Globerson & 
Roweis, 2006). The vulnerability of state-of-the-art classifiers to these attacks has genu-
ine security implications especially for deep neural networks used in AI-driven tech-
nologies such as self-driving cars, as repetitively demonstrated by Sharif et al. (2016), 
Sitawarin et  al. (2018) and Yao et  al. (2020). Besides security issues, this shows how 
little we know about the worst-case behaviors of models the industry uses daily. It is 
essential for the community to understand the very nature of this phenomenon in order 
to mitigate the threat.

Accordingly, a large body of works has been trying to design new models that would 
be less vulnerable to the adversarial setting (Goodfellow et al., 2015; Metzen et al., 2017; 
Xie et al., 2018; Hu et al., 2019; Verma & Swami, 2019) but most of them were proven (in 
time) to offer only limited protection against more sophisticated attacks (Carlini & Wag-
ner, 2017; He et al., 2017; Athalye et al., 2018; Croce & Hein, 2020; Tramer et al., 2020). 
Among the defense strategies, randomization has proven effective in some contexts (Xie 
et al., 2018; Dhillon et al., 2018; Liu et al., 2018; He et al., 2019). Albeit these significant 
efforts, randomization techniques lack theoretical arguments. In this paper, we generalize 
the prior results from Pinot et al. (2019) by studying a general class of randomized classi-
fiers, including randomized neural networks, for which we demonstrate adversarial robust-
ness guarantees and analyze their generalization properties (see Sect. 2.3 for more details).

1.1  Supervised learning for image classification

Let us consider the supervised classification problem with an input space X  and an 
output space Y . In the following, w.l.o.g. we will consider X ⊂ [−1, 1]d to be a set of 
images, and Y ∶= [K] ∶= {1,… ,K} a set of labels describing them. The goal of a super-
vised machine learning algorithm is to design classifier that maps any image x ∈ X  to 
a label y ∈ Y . To do so, the learner has access to a training sample of n image-label 
pairs S ∶= {(x

1
, y1),… , (xn, yn)} . Each training pair (xi, yi) is assumed to be drawn i.i.d. 

from a ground-truth distribution D . To build a classifier, the usual strategy is to select a 
hypothesis function h ∶ X → Y from a pre-defined hypothesis class H to minimize the 
risk with respect to D . This risk minimization problem writes

where L0∕1 , the 0∕1 loss, outputs 1 when h(x) ≠ y , and zero otherwise.
In practice, the learner does not have access to the ground-truth distribution; hence 

it cannot estimate the risk R(h) . To find an approximate solution for Problem  (1), a 
learning algorithm solves the empirical risk minimization problem instead. In this 
case, we simply replace the risk by its empirical counterpart over the training sample 
S ∶= {(x

1
, y1),… , (xn, yn)} . The empirical risk minimization problem writes

(1)inf
h∈H

R(h) ∶= �(x,y)∼D

[
L0∕1(h(x), y)

]
,
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Then, to evaluate how far the selected hypothesis is from the optimum, one wants to upper 
bound the difference between the risk and the empirical risk of any h ∈ H . This difference 
is known as the generalization gap.

1.2  Classification in the presence of an adversary

Given a hypothesis h ∈ H and a sample (x, y) ∼ D , the goal of an adversary is to find a 
perturbation � ∈ X  such that the following assertions both hold. First, the perturbation is 
imperceptible to humans. This means that a human cannot visually distinguish the stand-
ard example x from the adversarial example x + � . Second, the perturbation modifies x 
enough to make the classifier misclassify. More formally, the adversary seeks a perturba-
tion � ∈ X  such that h(x + �) ≠ y.

Although the notion of imperceptible modification is very natural for humans, it is 
genuinely hard to formalize. Despite these difficulties, in the image classification setting, 
a sufficient condition to ensure that the attack will remain undetected is to constrain the 
perturbation � to have a small �p norm. This means that for any p ∈ [1,∞] , there exists a 
threshold 𝛼p > 0 for which any perturbation � is imperceptible as soon as ‖�‖p ≤ �p . It is 
worth noting that �p norms are only surrogates for the perception distance, for which it is 
still an open question to give a formal definition. In this paper, we only focus on robust-
ness on �p norms. The literature on adversarial attacks for image classification usually uses 
either an �∞ norm akin (Madry et al., 2018) or an �2 norm akin (Carlini & Wagner, 2017) 
as a surrogate for imperceptibility. Other authors such as Chen et al. (2018) and Papernot 
et al. (2016) also used an �1 norm or an �0 semi-norm.

To account for adversaries possibly manipulating the input images, one needs to revisit 
the standard risk minimization by incorporating the adversary in the problem. The goal 
becomes to minimize the worst-case risk under �p-bounded manipulations. We call this 
problem the adversarial risk minimization. It writes

where Bp(�p) ∶= {� ∈ X s.t. ‖�‖p ≤ �p} . In this new formulation, the adversary focuses 
on optimizing the inner maximization, while the learner tries to get the best hypothesis 
from H “under attack”. By analogy with the standard setting, given n training examples 
S ∶= {(x

1
, y1),… , (xn, yn)} , we want to find an approximate solution to the adversarial risk 

minimization by studying its empirical counterpart, the empirical adversarial risk minimi-
zation. This optimization problem writes

In the presence of an adversary, two major issues appear in the empirical risk mini-
mization. First, as recently pointed out by Madry et  al. (2018), the adversarial generali-
zation error (i.e. the gap between the empirical adversarial risk and the adversarial risk) 
can be much larger than in the standard setting. Indeed, the adversary makes the problem 

(2)inf
h∈H

RS(h) ∶=
1

n

n∑
i=1

L0∕1

(
h(xi), yi

)
.

(3)inf
h∈H

Radv(h;�p) ∶= �(x,y)∼D

[
sup

�∈Bp(�p)

L0∕1(h(x + �), y)

]
,

(4)inf
h∈H

Radv
S

(h;�p) ∶=
1

n

n∑
i=1

sup
�∈Bp(�p)

L0∕1

(
h(xi + �), yi

)
.
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dependent on the dimension of X  . Hence, in high-dimension (e.g. for images) one needs 
much more samples to classify correctly as pointed out by Schmidt et al. (2018) as well as 
Simon-Gabriel et al. (2019). Moreover, finding an approximate solution to the adversarial 
risk minimization is not always sufficient. Indeed, recent works by Tsipras et al. (2019) and 
Zhang et al. (2019) gave theoretical evidence that training a robust model may lead to an 
increase of its standard risk. Hence finding a good approximation for Problem (3) may lead 
to a poor solution for Problem (1). Accordingly, it is natural to wonder whether we can find 
a class of models H for which we can control both the standard and adversarial risks?

In this paper, we provide answers to the above question by conducting an in depth anal-
ysis of a special class of models called randomized classifiers, i.e. classifiers that output 
random variables instead of labels. Our main contributions summarize as follows.

1.3  Contributions

Our first contribution consists in studying randomized classifiers. By analogy with the 
deterministic case, we define a notion of robustness for randomized classifiers. This defini-
tion amounts to making the classifier locally Lipschitz with respect to the �p norm on X  , 
and a probability metric on Y (e.g. the total variation distance or the Renyi divergence). 
More precisely, if we denote D the probability metric at hand, a randomized classifier m is 
called (�p, �)-robust w.r.t. D if for any x, x� ∈ X

Denoting MD(�p, �) the class of randomized classifiers that respect this local Lipschitz 
condition, we present the following results. 

1. If D is either the total variation distance or the Renyi divergence, we show that for 
any m ∈ MD(�p, �) , we can upper-bound the gap between the risk and the adversarial 
risk of m . Notably, if D is the total variation distance, for any m ∈ MD(�p, �) we have 
Radv(m;�p) −R(m) ≤ � . Hence, � controls the maximal trade-off between robust and 
standard accuracy for locally Lipschitz randomized classifier. We demonstrate similar 
results when D is the Renyi divergence showing that Radv(m;�p) −R(m) ≤ 1 − O(e−�) . 
This means that, for the class of locally Lipschitz randomized classifiers, solving the risk 
minimization problem, i.e. Problem (1), gives an approximate solution to the adversarial 
risk minimization problem, i.e. Problem (3), up to an additive factor that depends on the 
robustness parameter �.

2. We devise an upper-bound on the generalization gap of any m in MD(�p, �) . In particu-
lar, when D is the total variation distance, we demonstrate that for any m ∈ MD(�p, �) 
we have 

 where N is the external �p-covering number of the input samples. This means that, 
when N∕n →

n→∞
0 , solving the empirical risk minimization problem, i.e. Problem (2), 

on MD(�p, �) provides an approximate solution to the risk minimization problem, 
i.e.  Problem  (1). Since we can also bound the gap between the adversarial and the 
standard risk, we can combine the two results to bound the adversarial generalization 

‖x − x�‖p ≤ �p ⟹ D(m(x),m(x�)) ≤ �.

R(m) −RS(m) ≤ O

(√
N × K

n

)
+ �,
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gap on MD(�p, �) . Note however, that this result relies on a strong assumption on X  
that does not always avoid dimensionality issues. The problem of finding a subclass of 
MD(�p, �) that provides tighter generalization bounds is an open question.

For our second contribution, we present a practical way to design this class M(�p, �) by 
using a simple yet efficient noise injection scheme. This allows us to build randomized 
classifiers from state-of-the-art machine learning models, including deep neural networks. 
More precisely our contribution is as follows. 

1. Based on information-theoretic properties of the total variation distance and the Renyi 
divergence (e.g. the data processing inequality) we design a noise injection scheme to 
turn a state-of-the-art machine learning model into a robust randomized classifier. More 
formally, let us denote � the c.d.f. of a standard Gaussian distribution. Let us consider 
h a deterministic hypothesis, we show that the randomized classifier m ∶ x ↦ h(x + n) 
with n ∼ N(0, �2Id) is both (�2,

(�2)
2

2�
)-robust w.r.t.  the Renyi divergence and 

(�2, 2�
(

�2

2�

)
− 1)-robust w.r.t. the total variation distance. Our results on randomized 

classifiers are applicable to a wide range of machine learning models including deep 
neural networks.

2. We further corroborate our theoretical results with experiments using deep neural net-
works on standard image datasets, namely CIFAR-10 and CIFAR-100 (Krizhevsky & 
Hinton, 2009). These models can simultaneously provide accurate prediction (over 0.82 
clean accuracy on CIFAR-10) and reasonable robustness against �2 adversarial examples 
(0.45 against �2 adversaries with magnitude 0.5 on CIFAR-10).

2  Related work

Contrary to other notions such as training corruption, a.k.a. poisoning attacks (Kearns & 
Li, 1993; Kearns et al., 1994), the theoretical study of adversarial robustness is still in its 
infancy. So far, empirical observations tend to show that (1) adversarial examples on state-
of-the-art models are hard to mitigate and (2) robust training methods give poor gener-
alization performances. Some recent works started to study the problem through the lens 
of learning theory either to understand the links between robustness and accuracy or to 
provide bounds on the generalization gap of current learning procedures in the adversarial 
setting.

2.1  Accuracy versus robustness trade‑off

A first line of research (Su et al., 2018; Jetley et al., 2018; Tsipras et al., 2019) suggests that 
designing robust models might be inconsistent with standard accuracy. These works argue 
with experiments and toy examples that robust and standard classification are two concur-
rent problems. Following this line, Zhang et al. (2019) observed that the adversarial risk of 
any hypothesis h decomposes as follows,

where Radv
>0

(m;𝛼p) is the amount of risk that the adversary gets with non-null perturbations. 
Looking at Eq. (5), we realize that minimizing the adversarial risk is not enough to control 
standard accuracy, as one could only optimize over the second term. This indicates that 

(5)Radv(h;𝛼p) = R(h) +Radv
>0

(h;𝛼p),
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adversarial risk minimization, i.e.  Problem  (3), is harder to solve than the standard risk 
minimization, i.e. Problem (1).

While this indicates that both goals may be difficult be achieve simultaneously, Eq. (5), 
along with the empirical studies from the literature do not highlight any fundamental trade-
off between robustness and accuracy. Moreover, no upper-bound on Radv

>0
(h;𝛼p) has been 

demonstrated yet. Hence the questions whether this trade-off exists and can be controlled 
remain open. In this paper, we provide a rigorous answer to these questions by identify-
ing classes MD(�p, �) of randomized classifiers for which we can upper bound the trade-
off term Radv

>0
(m;𝛼p) for any m ∈ MD(�p, �) . Hence, we can control the maximum loss of 

accuracy that the model can suffer in the adversarial setting. It also challenges the intuitions 
developed by previous works (Su et al., 2018; Jetley et al., 2018; Tsipras et al., 2019) and 
argues in favor of using randomized mechanisms as a defense against adversarial attacks.

2.2  Studying adversarial generalization

To further compare the hardness of the two problems, a recent line of research began to 
explore the notion of adversarial generalization gap. In this line, Schmidt et al. (2018) pre-
sented some first intuitions by studying a simplified binary classification framework where 
D is a mixture of multi-dimensional Gaussian distributions. In this framework the authors 
show that without attacks, we only need O(1) training samples to have a small generaliza-
tion gap. But against an �∞ adversary, we need O(

√
d) training samples instead. In the dis-

cussion of their work, the authors present the problem of obtaining similar results without 
making any assumption about the distribution as an open problem.

This issue was recently studied using the Rademacher complexity by Khim and Loh 
(2018), Yin et  al. (2019) and Awasthi et  al. (2020). These papers relate the adversarial 
generalization error of linear classifiers and one-hidden layer neural networks with the 
dimension of the problem. They show that the adversarial generalization depends on the 
dimension of the problem. At a first glance, the difficulty of adversarial generalization 
seems to contradict previous conclusions on the link between robustness and generalization 
presented by Xu and Mannor (2012). But, as we will discuss in the sequel, these results 
assume that the input space X  can be partitioned in O(1) sub-space in which the classifi-
cation function has small variations. This assumption may not always hold when dealing 
with high dimensional input spaces (e.g. images) and very sophisticated classification algo-
rithms (e.g. deep neural networks).

Going further, it should be noted that the generalization gap measures only the differ-
ence between empirical and theoretical risks. In practice, the empirical adversarial risk is 
hard to estimate, since we cannot compute the exact solution to the inner maximization 
problem. The following question therefore remains open: even if we can set up a learning 
procedure with a controlled generalization gap, can we give guarantees on the standard and 
adversarial risks? In this paper, we start answering this question by providing techniques 
that provably offer both small standard risk and reasonable robustness against adversarial 
examples (see Sect. 1.3 for more details).

2.3  Defense against adversarial examples based on noise injection

Injecting noise into algorithms to improve train time robustness has been used for ages 
in detection and signal processing tasks  (Zozor & Amblard, 1999; Chapeau-Blondeau 
& Rousseau, 2004; Mitaim & Kosko, 1998; Grandvalet et  al., 1997). It has also been 
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extensively studied in several machine learning and optimization fields, e.g.  robust opti-
mization (Ben-Tal et al., 2009) and data augmentation techniques (Perez & Wang, 2017). 
Concurrently to our work, noise injection techniques have been adopted by the adver-
sarial defense community under the randomized smoothing name. The idea of provable 
defense through noise injection was first proposed by Lecuyer et  al. (2019) and refined 
by Li et al. (2019), Cohen et al. (2019), Salman et al. (2019) and Yang et al. (2020). The 
rational behind randomized smoothing is very simple: smooth h after training by convolu-
tion with a Gaussian measure to build a more stable classifier. Our work belongs to the 
same line of research, but the nature of our results is different. Randomized smoothing is 
an ensemble method that builds a deterministic classifier by smoothing a pre-trained model 
with a Gaussian kernel. This scheme requires to compute a Monte-Carlo estimation of the 
smoothed classifier; hence requiring many rounds of evaluations to output a deterministic 
label. Our method is based on randomization and only requires one evaluation round for 
inferring a label, making the prediction randomized and computationally efficient. While 
randomized smoothing focuses on the construction of certified defenses, we study the gen-
eralization properties of randomized mechanisms both in the standard and the adversarial 
setting. Our analysis presents the fundamental properties of randomized defenses, includ-
ing (but not limited to) randomized smoothing (c.f. Sect. 7).

This paper is an extended version of a work by Pinot et al. (2019). Since then, we con-
siderably consolidated our theoretical results as follows. 

1. Pinot et al. (2019) only studied neural networks defended with noise injection tech-
niques, here we study the much more general class of randomized classifiers which 
includes, but is not limited to neural networks.

2. We provide a much more detailed analysis of our notion of distributional robustness by 
presenting an in depth analysis based on the Total variation distance that was missing 
from (Pinot et al., 2019) (Theorems 1, 5 and 7).

3. Pinot et al. did not analyze the generalization of randomized classifiers. Here, we study 
the generalization of these classifiers according to the notion of robustness they respect 
(Theorem 5 and Corollary 1).

4. Last but not least, we added an in-depth discussion on the fundamental properties of 
randomized classifiers, and how they relate to the notion of randomized smoothing 
(Sect. 7).

3  Definition of risk and robustness for randomized classifiers

In this work, the goal is to analyze how randomized classifiers can solve the problem of 
classification in the presence of an adversary. Let us start by defining what we mean by 
randomized classifiers.

Remark 1 (Note on measurability) Through the paper, we assume every spaces Z to be 
associated with a �-algebra denoted A(Z) . Furthermore, we denote P(Z) the set of prob-
ability distributions defined on the measurable space (Z,A(Z)) . In the following, for sim-
plicity, we refer to A(Z) only when necessary.

Definition 1 (Probabilistic mapping) Let Z and Z′ be two arbitrary spaces. A proba-
bilistic mapping from Z to Z′ is a mapping m ∶ Z → P

(
Z�

)
 , where P

(
Z′

)
 is the space of 
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probability measures on Z′ . When Z = X  and Z� = Y , m is called a randomized classifier. 
To get a numerical answer for an input x , we sample ŷ ∼ m(x).

Any mapping can be considered as a probabilistic mapping, whether it explicitly consid-
ers randomization or not. In fact, any deterministic classifier can be considered as a rand-
omized one, since it can be characterized by a Dirac measure. Accordingly, the definition 
of a randomized classifier is fully general and equally consider classifiers with or without 
randomization scheme.

3.1  Risk and adversarial risk for randomized classifiers

To analyze this new hypothesis class, we can adapt the concepts of risk and adversarial 
risk for a randomized classifier. The loss function we use is the natural extension of the 0∕1 
loss to the randomized regime. Given a randomized classifier m and a sample (x, y) ∼ D it 
writes

This loss function evaluates the probability of misclassification of m on a data sample 
(x, y) ∼ D . Accordingly, the risk of m with respect to D writes

Finally, given m and (x, y) ∼ D , the adversary seeks a perturbation � ∈ Bp(�p) that maxi-
mizes the expected error of the classifier on x (i.e. �ŷ∼m(x+�)

[
1{ŷ ≠ y}

]
 ). Therefore, the 

adversarial risk of m under �p-bounded perturbations writes

By analogy with the deterministic setting, we denote

the empirical risks of m for a given training sample S ∶= {(x
1
, y1),… , (xn, yn)}.

3.2  Robustness for randomized classifiers

We could define the notion of robustness for a randomized classifier depending on whether 
it misclassifies any test sample (x, y) ∼ D . But in practice, neither the adversary nor the 
model provider have access to the ground-truth distribution D . Furthermore, in real-world 
scenarios, one wants to check before its deployment that the model is robust. Therefore, 
it is required for the classifier to be stable on the regions of the space where it already 

(6)L0∕1(m(x), y) ∶= �ŷ∼m(x)

[
1{ŷ ≠ y}

]
.

(7)R(m) ∶= �(x,y)∼D

[
L0∕1(m(x), y)

]
.

(8)Radv(m;�p) ∶= �(x,y)∼D

[
sup

�∈Bp(�p)

L0∕1(m(x + �), y)

]
.

(9)RS(m) ∶=
1

n

n∑
i=1

L0∕1

(
m(xi), yi

)
, and

(10)Radv
S

(
m;�p

)
∶=

1

n

n∑
i=1

sup
�∈Bp(�p)

L0∕1

(
m(xi + �), yi

)
,
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classifies correctly. Formally a (deterministic) classifier c ∶ X → Y is called robust if for 
any (x, y) ∼ D such that c(x) = y , and for any � ∈ X  one has

By analogy with this, we define robustness for a randomized classifier below.

Definition 2 (Robustness for a randomized classifier) A randomized classifier 
m ∶ X → P(Y) is called (�p, �)-robust w.r.t. D if for any x, � ∈ X  , one has

Where D is a metric/divergence between two probability measures. Given such a metric/
divergence D, we denote MD(�p, �) the set of all randomized classifiers that are (�p, �)
-robust w.r.t.  D.

Note that we did not add the constraint that m classifies well on (x, y) ∼ D , since it is 
already encompassed in the probability distribution itself. If the two probabilities m(x) and 
m(x + �) are close, and if m(x) outputs y with high probability, then it will be the same 
for m(x + �) . This formulation naturally raises the question of the choice of the metric D. 
Any choice of metric/divergence will instantiate a notion of adversarial robustness, and 
it should be carefully selected. In the present work, we focus our study on the total vari-
ation distance and the Renyi divergence. The question whether these metrics/divergences 
are more appropriate than others remains open but these two divergences are sufficiently 
general to cover a wide range of other definitions (see “Appendix 2” for more details). Fur-
thermore, these notions of distance comply with both a theoretical analysis (Sect. 5) and 
practical considerations (Sect. 8).

3.3  Divergence and probability metrics

Let us now recall the definition of total variation distance and Renyi divergence. Let Z 
be an arbitrary space, and � , �′ be two measures in P(Z).1 The total variation distance 
between � and �′ is

where A(Z) is the �-algebra associated with the set of measures P(Z) . The total varia-
tion distance is one of the most commonly used probability metrics. It admits several very 
simple interpretations, and is a very useful tool in many mathematical fields such as prob-
ability theory, Bayesian statistics or optimal transport (Villani, 2003; Robert, 2007; Peyré 
& Cuturi, 2019). In optimal transport, it can be rewritten as the solution of the Monge-
Kantorovich problem with the cost function cost(z, z�) = 1

{
z ≠ z�

}
,

(11)‖�‖p ≤ �p ⟹ c(x) = c(x + �).

‖�‖p ≤ �p ⟹ D(m(x),m(x + �)) ≤ �.

(12)DTV

(
𝜌, 𝜌�

)
∶= sup

Z⊂A(Z)

|𝜌(Z) − 𝜌�(Z)|,

(13)DTV (�, �
�) = inf�Z2

1
{
z ≠ z�

}
d�(z, z�),

1 Recall from Definition 1 that P(Z) is the set of probability measures on Z.
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where the infimum is taken over all joint probability measures � in P(Z × Z) with margin-
als � and �′ . According to this interpretation, it seems quite natural to consider the total var-
iation distance as a relaxation of the trivial distance on [0, 1] (for deterministic classifiers).

Let us now suppose that � and �′ admit probability density functions g and g′ accord-
ing to a third measure � . Then the Renyi divergence of order � between � and �′ writes

The Renyi divergence (Rényi, 1961) is a generalized divergence defined for any � on the 
interval [1,∞] . It equals the Kullback–Leibler divergence when � → 1 , and the maximum 
divergence when � → ∞ . It also has the property of being non-decreasing with respect to 
� . This divergence is very common in machine learning and Information theory (van Erven 
& Harremos, 2014), especially in its Kullback-Leibler form as it is widely used as the 
loss function, i.e. cross entropy, of classification algorithms. In the remaining, we denote 
M�

(
�p, �

)
 the set of (�p, �)-robust classifiers w.r.t. D�.

Let us now give some properties of these divergences that will be useful for our anal-
ysis. First we recall the probability preservation property of the Renyi divergence, first 
presented by Langlois et al. (2014).

Proposition 1 (Langlois et al., 2014) Let � and �′ be two measures in P(Z) . Then for any 
Z ∈ A(Z) , the following holds,

Now thanks to previous works by Gilardoni (2010) and Vajda (1970), we also get the 
following results relating the total variation distance and the Renyi divergence.

Proposition 2 (Inequality between total variation and Renyi divergence) Let � and �′ be 
two measures in P(Z) , and � ≥ 1 . Then the following holds,

Proof Thanks to Gilardoni (2010), one has

From which it follows that

Moreover, using inequality from Vajda (1970), one gets

(14)D�

(
�, ��

)
∶=

1

� − 1
log∫Y

g�(y)

(
g(y)

g�(y)

)�

d�(y).

�(Z) ≤ (
exp

(
D�(�, �

�)
)
��(Z)

) �−1

� .

DTV (�, �
�) ≤ min

⎛
⎜⎜⎜⎝
3

2

⎛⎜⎜⎝

�
1 +

4D�(�, �
�)

9
− 1

⎞⎟⎟⎠

1∕2

,
exp

�
D�(�, �

�) + 1
�
− 1

exp
�
D�(�, �

�) + 1
�
+ 1

⎞
⎟⎟⎟⎠
.

D1(�, �
�) ≥ 2DTV (�, �

�)2 +
4DTV (�, �

�)4

9
.

DTV (�, �
�) ≤ 3

2

(√
1 +

4D1(�, �
�)

9
− 1

)1∕2

.
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This inequality leads to the following

By combining the above inequalities and by monotony of Renyi divergence regarding � , 
one obtains the expected result.   ◻

From now on, we denote MTV (�, �) and M�(�, �) the set of (�, �)-robust classifiers 
respectively for DTV and D� . The next section gives bounds on the generalization gap in the 
standard and the adversarial settings for these specific hypothesis classes.

4  Risks’ gap and generalization gap for robust randomized classifiers

As discussed in Sect.  2.1, we can always decompose the adversarial risk of a classifier 
Radv(m;�p) in two terms. First the standard risk R(m) and second the amount of risk the 
adversary creates with non-zero perturbations Radv

>0
(m;𝛼p) . Hence minimizing R(m) can 

give poor values for Radv(m;�p) and vice-versa. In this section, we upper-bound the risks’ 
gap Radv

>0
(m;𝛼p) , i.e. the gap between the risk and the adversarial risk of a robust classifier.

4.1  Risks’ gap for robust classifiers w.r.t. D
TV

First, let us consider m ∈ MTV

(
�p, �

)
 . We can control the loss of accuracy under attack of 

this classifier with the robustness parameter �.

Theorem 3 (Risk’s gap for robust classifiers w.r.t DTV ) Let m ∈ MTV

(
�p, �

)
 . Then we 

have

Proof Let m be an (�p, �)-robust classifier w.r.t.  DTV , (x, y) ∼ D and � ∈ X  such that 
‖�‖p ≤ �p . By definition of the 0∕1 loss we have

Furthermore, by definition of the total variation distance we have

Since m ∈ MTV

(
�p, �

)
 , the above amounts to write

Finally, this holds for any (x, y) ∼ D and any �p bounded perturbation � , then we get

D1(�, �
�) + 1 ≥ log

(
1 + DTV (�, �

�)

1 − DTV (�, �
�)

)
.

exp(D1(�, �
�) + 1) − 1

exp(D1(�, �
�) + 1) + 1

≥ DTV (�, �
�).

Radv(m;�p) ≤ R(m) + �.

L0∕1(m(x + �), y) = �ŷ∼m(x+�)

[
1{ŷ ≠ y}

]
.

�ŷ∼m(x+�)

[
1{ŷ ≠ y}

]
− �ŷ∼m(x)

[
1{ŷ ≠ y}

] ≤ DTV (m(x),m(x + �)).

L0∕1(m(x + �), y) − L0∕1(m(x), y) ≤ �.
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The above inequality concludes the proof.   ◻

This result means that if we can design a class MTV

(
�p, �

)
 with small enough � , then mini-

mizing the risk of m ∈ MTV

(
�p, �

)
 is also sufficient to control the adversarial risk. It is rela-

tively easy to obtain, but it has an interesting consequence on the understanding we have of 
the trade-off between robustness and accuracy. It says that there exists some classes of rand-
omized classifiers for which robustness and standard accuracy may not be at odds, since we 
can upper-bound the maximal loss of accuracy the model may suffer under attack. This ques-
tions previous intuitions developed on deterministic classifiers by Su et al. (2018), Jetley et al. 
(2018), Tsipras et al. (2019) and Zhang et al. (2019) and advocates for the use of randomiza-
tion schemes as defenses against adversarial attacks. Note, however, that we did not evade 
the trade-off between robustness and accuracy, we only showed that with certain hypothesis 
classes it can be controlled.

4.2  Risks’ gap for robust classifiers w.r.t. Dˇ

We now extend the previous results the Renyi divergence. We show that, for any randomized 
classifier in M�

(
�p, �

)
 , we can bound the gap between the risk and the adversarial risk of 

m . Using the Renyi divergence, the factor that controls the classifier’s loss of accuracy under 
attack can be either multiplicative or additive, and depends both on the robustness parameter � 
and on the divergence parameter �.

Theorem  4 (Multiplicative risks’ gap for Renyi-robust classifiers) Let m ∈ M�

(
�p, �

)
 . 

Then we have

Proof Let m be an (�p, �)-robust classifier w.r.t.  D� , (x, y) ∼ D and � ∈ X  such that 
‖�‖p ≤ �p . With the same reasoning as above, and with Proposition 1, we get

Since this holds for any (x, y) ∼ D and any �p bounded perturbation � , we get

�(x,y)∼D

[
sup

�∈Bp(�p)

L0∕1(m(x + �), y)

]
− �(x,y)∼D

[
L0∕1(m(x), y)

] ≤ �.

Radv(m;�p) ≤ (e�R(m))
�−1

� .

L0∕1(m(x + �), y) = 𝔼ŷ∼m(x+�)

[
1{ŷ ≠ y}

]

= ℙŷ∼m(x+�)

[
ŷ ≠ y

]

≤ (
eD𝛽 (m(x+�),m(x))

ℙŷ∼m(x)

[
ŷ ≠ y

]) 𝛽−1

𝛽 (Prop. 1)

=
(
eD𝛽 (m(x+�),m(x))

𝔼ŷ∼m(x)

[
1{ŷ ≠ y}

]) 𝛽−1

𝛽

≤ (
e𝜖L0∕1(m(x), y)

) 𝛽−1

𝛽 .
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Finally, using the Jensen inequality, one gets

The above inequality concludes the proof.   ◻

This first result gives a multiplicative bound on the gap between the standard and 
adversarial risks. This means that if we can design a class M�

(
�p, �

)
 with small enough 

� , and big enough � , then minimizing the risk of any m ∈ M�

(
�p, �

)
 is sufficient to also 

minimize the adversarial risk of m . Nevertheless, multiplicative factors are not easy to 
analyze.

Remark 2 More general bounds can be computed if we assume that for every ran-
domized classifier m there exists a convex function � such that for all x and � with 
‖�‖p ≤ �p , we have m(x)(Z) ≤ � (m(x + �)(Z)) for all measurable sets Z. In this case, we 
get Radv(m;�p) ≤ � (R(m)) . This has a close link with randomized smoothing (Cohen et al., 
2019) and f-differential privacy (Bu et al., 2020) where both try to fit the best possible � 
using Neyman–Pearson lemma.

The following result provides an additive counterpart to Theorem 4. It gives a control 
over the loss of accuracy under attack with respect to the robustness parameter � and the 
Shannon entropy of m.

Theorem 5 (Additive risks’ gap for Renyi-robust classifiers) Let m ∈ M�

(
�p, �

)
 , then we 

have

where H is the Shannon entropy (i.e. for any � ∈ P(Y),H(�) = −
∑

k∈Y �k log(�k)) and D∣X 
is the marginal distribution of D for X .

Proof Let m ∈ M�

(
�p, �

)
 , then

By definition of the 0∕1 loss, this amounts to write

Radv(m;�p) = �(x,y)∼D

[
sup

�∈Bp(�p)

L0∕1(m(x + �), y)

]

≤ �(x,y)∼D

[
e

�−1

�
�
L0∕1(m(x), y)

�−1

�

]

≤ e
�−1

�
�
�(x,y)∼D

[
L0∕1(m(x), y)

�−1

�

]
.

≤ e
�−1

�
�
�(x,y)∼D

[
L0∕1(m(x), y)

] �−1

� = (e�R(m))
�−1

� .

Radv(m;�p) −R(m) ≤ 1 − e−��x∼D∣X

[
e−H(m(x))

]

Radv(m;�p) −R(m)

= �(x,y)∼D

[
sup

�∈Bp(�p)

L0∕1(m(x + �), y) − L0∕1(m(x), y)

]
.
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Now, note that for any (x, y) ∼ D and � ∈ X  , by definition of a probability vector in P(Y) , 
and thanks to Jensen inequality we can write

Then by definition of the entropy and the Kullback Leibler divergence we have

Finally, by combining the above inequalities and since m ∈ M�

(
�p, �

)
 we get

The above inequality concludes the proof.   ◻

This result is interesting because it relates the accuracy of m with the bound we 
obtain. In words, when m(x) has large entropy (i.e. H(m(x)) → log(K) ) the output dis-
tribution tends towards the uniform distribution; hence � → 0 . This means that the 
classifier is very robust but also completely inaccurate, since it outputs classes uni-
formly at random. On the opposite, if H(m(x)) → 0 , then � → ∞ . The classifier may be 
accurate, but it is not robust anymore (at least according to our definition). Hence we 
need to find a classifier that achieves a trade-off between robustness and accuracy.

= 𝔼(x,y)∼D

[
sup

�∈Bp(𝛼p)

𝔼ŷadv∼m(x+�),ŷ∼m(x)

[
1
(
ŷadv ≠ y

)
− 1(ŷ ≠ y)

]]

≤ 𝔼(x,y)∼D

[
sup

�∈Bp(𝛼p)

𝔼ŷadv∼m(x+�),ŷ∼m(x)

[
1
(
ŷadv ≠ ŷ

)]]

= 𝔼(x,y)∼D

[
sup

�∈Bp(𝛼p)

ℙŷadv∼m(x+�),ŷ∼m(x)

[
ŷadv ≠ ŷ

]]

= 𝔼(x,y)∼D

[
sup

�∈Bp(𝛼p)

1 − ℙŷadv∼m(x+�),ŷ∼m(x)

[
ŷadv = ŷ

]]

= 𝔼(x,y)∼D

[
sup

�∈Bp(𝛼p)

1 −

K∑
i=1

m(x)i × m(x + �)i

]
.

K∑
i=1

m(x)i × m(x + �)i ≥ exp

(
K∑
i=1

m(x)i logm(x + �)i

)
.

exp

(
K∑
i=1

m(x)i logm(x + �)i

)
= exp

(
− D1(m(x),m(x + �)) − H(m(x))

)
.

𝔼(x,y)∼D

[
sup

�∈Bp(𝛼p)

ℙŷadv∼m(x+�),ŷ∼m(x)(ŷadv ≠ ŷ)

]

≤ 𝔼(x,y)∼D

[
sup

�∈Bp(𝛼p)

1 − e−D1(m(x),m(x+�))−H(m(x))

]

≤ 𝔼(x,y)∼D

[
1 − e−𝜖−H(m(x))

]
= 1 − e−𝜖𝔼x∼D∣X

[
e−H(m(x))

]
.
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5  Standard generalization gap

In this section we devise generalization gap bounds for randomized classifiers when 
they are robust according either to the total variation distance or the Renyi divergence. 
To do so, we upper-bound the Rademacher complexity of the loss space for TV-robust 
classifiers

The empirical Rademacher complexity, first introduced by Bartlett and Mendelson (2002), 
is one of the standard measures of generalization gap. It is particularly useful to obtain 
quality bounds for complex classes such as neural networks since it does not depend on 
the number of parameters in the network contrary to combinatorial notions such as the VC 
dimension.

Definition 3 (Rademacher complexity) For any class of real-valued functions 
F ∶= {(x, y) ↦ ℝ} , given a training sample S = {(x

1
, y1),… , (xn, yn)} , the empirical 

Rademacher complexity of F  is defined as

whith ri i.i.d. drawn from a Rademacher measure, i.e. ℙ(ri = 1) = ℙ(ri = −1) =
1

2
.

The empirical Rademacher complexity measures the uniform convergence rate of the 
empirical risk towards the risk on the function class F  as demonstrated by Mohri et al. 
(2018). Thanks to this notion of complexity, we can bound with high probability the 
generalization gap of any hypothesis m in a class M.

Theorem 6 (Mohri et al., 2018) Let M be a class of possibly randomized classifiers and 
LM ∶= {Lm ∶ (x, y) ↦ L0∕1(m(x), y) ∣ m ∈ M} . Then for any � ∈ (0, 1) , with probability 
at least 1 − � , the following holds for any m ∈ MTV

(
�p, �

)
,

5.1  Generalization error for robust classifiers

Accordingly, we want to upper bound the empirical Rademacher complexity of LMTV(�p ,�) , 
which motivates the following definition.

Definition 4 (�-covering and external covering number) Let us consider (X, ‖.‖p) a vector 
space equipped with the �p norm, B ⊂ X  and � ≥ 0 . Then

• C = {c
1
,… , cm} is an �-covering of B for the �p norm if for any x ∈ B there exists 

ci ∈ C such that ‖x − ci‖p ≤ �.

LMTV(�p ,�) ∶= {(x, y) ↦ L0∕1(h(x), y) ∣ m ∈ MTV

(
�p, �

)
}.

ℜS(F) ∶=
1

n
�ri

[
sup
f∈F

n∑
i=1

rif (xi, yi)

]
,

R(m) −RS(m) ≤ 2ℜS(LM) + 3

√
ln(2∕�)

2n
.
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• The external covering number of B writes N
�
B, ‖.‖p, �

�
 . It is the minimal number of 

points one needs to build an �-covering of B for the �p norm.

The covering number is a well-known measure that is often used in statistical learning 
theory  (Shalev-Shwartz & Ben-David, 2014) and asymptotic statistics  (Van der Vaart, 
2000) to evaluate the complexity of a set of functions. Here we use it to evaluate the num-
ber of �p balls we need to cover the training samples, which gives us the following bound 
on the Rademacher complexity of LMTV(�p ,�).

Theorem 7 (Rademacher complexity for TV-robust classifiers) Let LMTV(�p ,�) be the loss 
function class associated with MTV

(
�p, �

)
 . Then, for any S ∶= {(x

1
, y1),… , (xn, yn)} , the 

following holds,

where N = N
�
{x

1
,… , xn}, ‖.‖p, �p

�
 is the �p-external covering number of the inputs 

{x
1
,… , xn} for the �p norm and K = |Y| is the number of labels in the classification task.

Proof We denote S ∶= {(x
1
, y1),… , (xn, yn)} and N = N

�
{x

1
,… , xn}, ‖.‖p, �p

�
 . By defini-

tion of a covering number, there exists C = {c
1
,… , cN} an �p-covering of {x

1
,… xn} for 

the �p norm. Furthermore, for j ∈ {1,… ,N} and y ∈ {1,… ,K} , we define

We also denote Ej = ∪y∈[K] Ey,j . Finally, we denote Lm ∶ (x, y) ↦ L0∕1(m(x), y) . Then, by 
definition of the empirical Rademacher complexity, we can write

Then we can use Ej to write

Furthermore for any m ∈ MTV

(
�p, �

)
 and i ∈ Ej , there exists �i ∈ [−�, �] such that: 

Lm(xi, yi) = Lm(cj, yi) + �i . Then we have

Let us start by studying the second term. We have

ℜS

(
LMTV(�p,�)

) ≤
√

N × K

n
+ �.

Ey,j =

�
i ∈ {1,… , n} s.t. yi = y and argmin

l∈{1,…,N}

‖xi − cl‖ = j

�
.

ℜS

(
LMTV(�p ,�)

)
=

1

n
�ri

[
sup

m∈MTV(�p ,�)

n∑
i=1

riLm(xi, yi)

]
.

ℜS

�
LMTV(�p,�)

�
=
1

n
�ri

⎡⎢⎢⎣
sup

m∈MTV(�p ,�)

N�
j=1

�
i∈Ej

riLm(xi, yi)

⎤⎥⎥⎦
.

ℜS

�
LMTV(�p,�)

� ≤ 1

n
�ri

⎡
⎢⎢⎣

sup
m∈MTV(�p ,�)

N�
j=1

�
i∈Ej

riLm(cj, yi)

⎤⎥⎥⎦

+
1

n
�ri

⎡⎢⎢⎣
sup

�i∈[−�,�]

N�
j=1

�
i∈Ej

ri�i

⎤⎥⎥⎦
.
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Now looking at the first term. Since Lm(x, y) ∈ [0, 1] for all (x, y) we have

Finally using the Khintchine inequality and the Cauchy Schartz inequality we get

By combining the upper-bounds we have for each term, we get the expected result,

  ◻

Remark 3 Usually, generalization bounds are involving covering numbers on the hypoth-
esis space using Dudley’s entropy integral (Shalev-Shwartz & Ben-David, 2014). In the 
proposed bound in previous Theorem, it is worth noting that the involved covering number 
is on the hypothesis space of TV-robust classifiers. This makes a fundamental different 
between these bounds. Some works (Xu & Mannor, 2012; Petzka et al., 2021) proposed to 
study the generalization of slowly varying classifiers. The bound they derive are similar to 
ours, even though they do not apply to the same objects.

The above result means that, if we can cover the n training samples with O(1) balls, 
then we can bound the generalization gap of any randomized classifier m ∈ MTV

(
�p, �

)
 

by O
�

1√
n

�
+ � . Furthermore, a natural corollary of Theorem 7 bounds the Rademacher 

complexity of the class LM�(�p ,�).

1

n
�ri

⎡
⎢⎢⎣

sup
�i∈[−�,�]

N�
j=1

�
i∈Ej

ri�i

⎤
⎥⎥⎦
=

1

n
�ri

�
sup

�i∈[−�,�]

n�
i=1

ri�i

�
=

1

n

n�
i=1

� = �.

1

n
�ri

⎡
⎢⎢⎣

sup
m∈MTV(�p,�)

N�
j=1

�
i∈Ej

riLm(cj, yi)

⎤
⎥⎥⎦

=
1

n
�ri

⎡⎢⎢⎣
sup

m∈MTV(�p,�)

N�
j=1

K�
y=1

Lm(cj, y)
�
i∈Ey,j

ri

⎤⎥⎥⎦

≤ 1

n
�ri

⎡⎢⎢⎣

N�
j=1

K�
y=1

������
�
i∈Ey,j

ri

������

⎤⎥⎥⎦
.

1

n
�ri

⎡
⎢⎢⎣

N�
j=1

K�
y=1

������
�
i∈Ey,j

ri

������

⎤
⎥⎥⎦
≤ 1

n

N�
j=1

K�
y=1

���Ey,j
�� (Khintchine)

≤ 1

n

√
N × K

���� N�
j=1

K�
y=1

��Ey,j
�� (Cauchy)

=

�
N × K

n
.

ℜS

(
LMTV(�p,�)

) ≤
√

N × K

n
+ �.
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Corollary 1 Let LM�(�p ,�) be the loss function class associated with M�

(
�p, �

)
 . Then, for 

any S ∶= {(x
1
, y1),… , (xn, yn)} , the following holds,

where N = N
�
{x

1
,… , xn}, ‖.‖p, �p

�
 is the �p-external covering number of the inputs 

{x
1
,… , xn} for the �p norm.

Proof This corollary is an immediate consequence of Theorem 7 and Proposition 2.   ◻

Thanks to Theorems 6 and 7 and Corollary 1, one can easily bound the generalization 
gap of robust randomized classifiers.

5.2  Discussion and dimensionality issues

Xu and Mannor (2012) previously studied generalization bounds for learning algorithms 
based on their robustness. Although we use very different proof techniques, their results 
and ours are similar. More precisely, both analyses conclude that robust models general-
ize well if the training samples have a small covering number. Note, however, that we 
base our formulation on an adaptive partition of the samples, while the initial paper 
from Xu and Mannor (2012) only focuses on a fixed partition of the input space. We 
refer the reader to the discussion section in Xu and Mannor (2012) for more details.

These findings seem to contradict the current line of works on the hardness of gener-
alization in the adversarial setting. In fact, if the ground truth distribution is sufficiently 
concentrated (e.g. lies in a low dimensional subspace of x ), a small number of balls can 
cover S with high probability; hence N = O(1) . This means that we can learn robust 
classifiers with the same sample complexity as in the standard setting. But if the ground 
truth distribution is not concentrated enough, the training samples will be far one from 
another; hence forcing the covering number to be large. In the worse case scenario, we 
need to cover the whole space [0, 1]d giving a covering number N = O

(
1

(�p)
d

)
 which is 

exponential in the dimension of the problem.

Therefore, in the worst-case scenario, our bound is in O
�

1

(�p)
d
√
n

�
+ � . When �p is 

small and the dimension of the problem is high, this bound is too large to give any 
meaningful insight on the generalization gap of the problem. Therefore, we still need to 
tighten our analysis to show that robust learning for randomized classifiers is possible in 
high dimensional spaces.

Remark 4 Note that, we provided a very general result for randomized classifiers under the 
only assumption that they are robust w.r.t. the total variation distance. Our result applies to 
any class of classifiers and not only linear classifiers or one-hidden layer neural networks. 
To build a finer analysis, and to evade the curse of dimensionality, we should consider 
designing specific sub-classes M ⊂ MTV

(
𝛼p, 𝜖

)
 and adapt the proofs to make the term N 

smaller in the worst-case scenario.

ℜS

�
LM�(�p ,�)

� ≤
�

N × K

n
+min

⎛
⎜⎜⎝
3

2

��
1 +

4�

9
− 1

�1∕2

,
e�+1 − 1

e�+1 + 1

⎞
⎟⎟⎠
.
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6  Building robust randomized classifiers

In this section we present a simple yet efficient way to transform a non-robust, non-ran-
domized classifier into a robust randomized classifier. To do so, we use a key property 
of both the Renyi divergence and the total variation distance called the Data processing 
inequality. It is a well-known result from information theory which states that “post-
processing cannot increase information”. The data processing inequality is as follows.

Theorem  8 (Cover & Thomas, 2012) Let us consider two arbitrary spaces Z,Z′ , 
�, �� ∈ P(Z) and D ∈ {DTV ,D�} . Then for any � ∶ Z → Z� we have

where �#� denotes the pushforward of distribution � by �.

In the context of robustness to adversarial examples, we use the data processing ine-
quality to ease the design of robust randomized classifiers. In particular, let us suppose 
that we can build a randomized pre-processing � ∶ X → P(X) such that for any x ∈ X  
and any �p-bounded perturbation � , we have

Then, thanks to the data processing inequality, we can take any deterministic classifier 
h to build an (�p, �) robust classifier w.r.t D defined as m ∶ x ↦ h#�(x) . This consider-
ably simplifies the problem of building a class of robust models. Therefore, we want to 
build � a randomized pre-processing for which we can control the Renyi divergence and/
or total variation distance between two inputs. To do this, we analyze the simple procedure 
of injecting random noise directly on the image before sending it to a classifier. Since the 
Renyi divergence and the total variation distances are particularly well suited to the study 
of Gaussian distributions, we first use this type of noise injection. More precisely, in this 
section, we focus on a mapping that writes as follows.

for some given non-degenerate covariance matrix � ∈ Md×d(ℝ) . We refer the interested 
reader to Pinot et al. (2019) for more general classes of noise, namely exponential families. 
Let us now evaluate the maximal variation of Gaussian pre-processing � when applied to 
an image x ∈ X  with and without perturbation.

Lemma 1 Let 𝛽 > 1 , x, � ∈ X  and � ∈ Md×d(ℝ) a non-degenerate covariance matrix. 
Let � = N(x,�) and �� = N(x + � ,�) , then D�(�, �

�) =
�

2
‖�‖2

�−1
.

Thanks to the above lemma, we know how to evaluate the level of Renyi-robustness 
that a Gaussian noise pre-processing brings to a classifier. Now that we have this result, 
thanks to Proposition 2, we can also upper-bound the total variation distance between 
N(x,�) and N(x + � ,�) . But this bound is not always tight. Besides, we can directly 
evaluate the total variation distance between two Gaussian distributions as follows.

D
(
�#�,�#�′

) ≤ D
(
�, �′

)
,

(15)D(�(x),�(x + �)) ≤ �, with D ∈ {DTV ,D�}.

(16)� ∶ x ↦ N(x,�),
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Lemma 2 Let x, x� ∈ X  and � ∈ Md×d(ℝ) a non-degenerate covariance matrix. Let 
� = N(x,�) and �� = N(x + � ,�) , then DTV (�, �

�) = 2�
�‖�‖

�−1

2

�
− 1 with � the cumula-

tive density function of the standard Gaussian distribution.

Note that both bounds increase with the Mahalanobis norm of � . Furthermore, we 
see that the greater the entropy of the Gaussian noise we inject, the smaller the dis-
tance between distributions. If we simplify the covariance matrix by setting � = �2Id , 
it means that we can build more or less robust randomized classifiers against �2 adver-
saries, depending on �.

Theorem 9 (Robustness of Gaussian pre-processing) Let us consider c ∶ X → Y a deter-
ministic classifier, 𝜎 > 0 and � ∶ x ↦ N(x, �2Id) a pre-processing probabilistic mapping. 
Then the randomized classifier m ∶= c#� is

• (�2,
(�2)

2�

2�
)-robust w.r.t. D� against �2 adversaries.

• (�2, 2�
(

�2

2�

)
− 1)-robust w.r.t. DTV against �2 adversaries.

Proof Let x, � ∈ X  such that ‖�‖2 ≤ �2 . Thanks to Lemma 1 we have

Similarly, thanks to Lemma 2, we get

Finally, from the data processing inequality, i.e.  Theorem 8, we get both

and

The above inequalities conclude the proof.   ◻

Theorem 9 means that we can build simple noise injection schemes as pre-process-
ing of state-of-the-art image classification models and keep track of the maximal loss 
of accuracy under attack of the resulting randomized classifier. These results also high-
light the profound link between randomized classifiers and randomized smoothing as 
presented by Cohen et al. (2019). Even though our findings are of different nature, both 
techniques use the same base mechanism (Gaussian noise injection). Therefore, Gauss-
ian pre-processing is a principled defense method that can be analyzed through several 
standpoints, including certified robustness and statistical learning theory.

D�(�(x), �(x + �)) =
�

2
‖�‖2

�−1 =
�

2�2
‖�‖2

2
≤ �(�2)

2

2�2
.

DTV (�(x), �(x + �)) = 2�

�‖�‖�−1

2

�
− 1 ≤ 2�

� �2

2�

�
− 1.

D�(m(x),m(x + �)) ≤ �(�2)
2

2�2
,

DTV (m(x),m(x + �)) ≤ 2�
( �2

2�

)
− 1.
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7  Discussion: mode preservation property and randomized smoothing

Even though randomized classifiers have some interesting properties regarding generali-
zation error, we can also study them through the prism of deterministic robustness. Let 
us for example consider the classifier that outputs the class with the highest probability 
for m(x) , a.k.a. the mode of m(x) . It writes

Then checking whether hrob is robust boils down to demonstrating that the mode of m(x) 
does not change under perturbation. It turns out that DTV robust classifiers have this prop-
erty. We call it the mode preservation property of MTV (�p, �).

Proposition 10 (Mode preservation for DTV-robust classifiers) Let m ∈ MTV

(
�p, �

)
 be 

a robust randomized classifier and x ∈ X  such that m(x)(1) ≥ m(x)(2) + 2� . Then, for any 
� ∈ X  , the following holds,

Proof Let x, � ∈ X  such that ‖�‖p ≤ �p and m ∈ MTV

(
�p, �

)
 such that

By definition of MTV

(
�p, �

)
 , we have that

Then, for all k ∈ {1,… ,K} we have

Let us denote k∗ the index of the biggest value in m(x) , i.e. m(x)k∗ = m(x)(1) . For any 
k ∈ {1,… ,K} with k ≠ k∗ , we have m(x)k∗ ≥ m(x)k + 2� . Finally, for any k ≠ k∗ , we get

Then, argmaxk∈[K] m(x)k = argmaxk∈[K] m(x + �)k . This concludes the proof.   ◻

Similarly, we can demonstrate a mode preservation property for robust classifiers 
w.r.t. the Renyi divergence.

Proposition 11 (Mode preservation for Renyi-robust classifiers) Let m ∈ M�

(
�p, �

)
 be 

a robust randomized classifier and x ∈ X  such that

Then, for any � ∈ X  , the following holds,

where hrob(x) ∶= argmaxk∈[K] m(x)k.

(17)hrob ∶ x ↦ argmax
k∈[K]

m(x)k

‖�‖p ≤ �p ⟹ hrob(x) = hrob(x + �).

m(x)(1) ≥ m(x)(2) + 2�.

DTV (m(x),m(x + �)) ≤ �.

m(x)k − � ≤ m(x + �)k ≤ m(x)k + �.

m(x + �)k∗ ≥ m(x)k∗ − � ≥ m(x)k + � ≥ m(x + �)k.

(
m(x)(1)

) �

�−1 ≥ exp

(
(2 −

1

�
)�

)(
m(x)(2)

) �−1

� .

‖�‖p ≤ �p ⟹ hrob(x) = hrob(x + �),
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Proof Let x, � ∈ X  such that ‖�‖p ≤ �p and m ∈ M�

(
�p, �

)
 such that

Then by definition of M�

(
�p, �

)
 , we have

Furthermore, by using Proposition 1, for any k ∈ {1,… ,K} we have

Let us denote k∗ the index such that m(x)k∗ = m(x)(1) . Then using (∗) we get

Furthermore for any k ∈ {1,… ,K} where k ≠ k∗ , we can use the assumption we made on 
m to get

Finally, using (∗∗) we have

The above gives us argmaxk∈[K] m(x)k = argmaxk∈[K] m(x + �)k . This concludes the proof.  
 ◻

Coming back to the decomposition in Eq.  (5), with the above result, we can bound 
the risk the adversary induces with non-zero perturbations by the mass of points on 
which the classifier hrob gives the good response but based on a low probability of suc-
cess, i.e. with small confidence

This means that the only points on which the adversary may induce misclassification are 
the points on which m already has a high risk. Once more, this says something fundamen-
tal about the behavior of robust randomized classifiers. On undefended models, the adver-
sary could change the decision on any point it wanted; now it is limited to changing points 
on which the classifier is already inaccurate. This considerably mitigates the threat model 
we should consider. Furthermore, for any deterministic classifier designed as in Eq. (17), 
we can also bound the maximal loss of accuracy under attack the classifier may suffer. 
This bound may, however, be harder to evaluate since it now depends on both the classifier 
and the dataset distribution. The classifier we define in Eq. (17) and the mode preservation 
property of m are closely related to provable defenses based on randomized smoothing. 
The core idea of randomized smoothing is to take a hypothesis h and to build a robust clas-
sifier that writes

(
m(x)(1)

) �

�−1 ≥ exp

((
2 −

1

�

)
�

)(
m(x)(2)

) �−1

� .

D�(m(x),m(x + �)) ≤ �.

(∗)m(x)k ≤ (
exp(�)m(x + �)k

) �−1

� and (∗∗)m(x + �)k ≤ (
exp(�)m(x)k

) �−1

� .

m(x + �)k∗ ≥ exp(−�)(m(x)k∗ )
�

�−1 .

exp(−�)(m(x)k∗ )
�

�−1 ≥ exp

(
� − 1

�
�

)
(m(x)k)

�−1

� .

exp

(
� − 1

�
�

)
(m(x)k)

�−1

� ≥ m(x + �)k.

(18)Radv
>0

(m) ≤ ℙ(x,y)∼D

[
hrob(x) = yandm(x)(1) < m(x)(2) + 2𝜖

]
.



3447Machine Learning (2022) 111:3425–3457 

1 3

From a probabilistic point of view, for any input x , randomized smoothing amounts to out-
put the most probable class of the probability measure m(x) ∶= h#N

(
x, �2I

)
 . Hence, ran-

domized smoothing uses the mode preservation property of m to build a provably robust 
(deterministic) classifier. Therefore, the above results (Proposition 10 and Eq. 18) also hold 
for provable defenses based on randomized smoothing. Studying randomized smoothing 
from our point of view could give an interesting new perspective on that method. So far no 
results have been published on the generalisation gap of this defense in the adversarial set-
ting. We could devise generalization bounds by similarity with our analysis. Furthermore, 
the probabilistic interpretation stresses that randomized smoothing is somewhat restrictive 
since it only considers probability measures which are the expectation on a simple noise 
injection scheme. The mode preservation property explains the behavior of randomized 
smoothing, but also presents fundamental properties of randomized defenses that could be 
used to construct more general defense schemes.

8  Numerical validations against �
2
 adversary

To illustrate our findings, we train randomized neural networks with Gaussian pre-process-
ing during training and inference on CIFAR-10 and CIFAR-100. Based on this randomized 
classifier, we study the impact of randomization on the standard accuracy of the network, 
and observe the theoretical trade-off between accuracy and robustness.

8.1  Architecture and training procedure

All the neural networks we use in this section are WideResNets (Zagoruyko & Komodakis, 
2016) with 28 layers, a widen factor of 10, a dropout factor of 0.3 and LeakyRelu acti-
vation with a 0.1 slope. To train an undefended standard classifier we use the following 
hyper-parameters.2

• Number of Epochs: 200
• Batch size: 400
• Loss function: Cross Entropy Loss
• Optimizer: Stochastic gradient descent algorithm with momentum 0.9, weight decay of 

2 × 10−4 and a learning rate that decreases during the training as follows: 

To transform these standard networks into randomized classifiers, we inject noise drawn 
from Gaussian distributions, each with various standard deviations directly on the image 

(19)crob ∶ x ↦ argmax
k∈[K]

ℙz∼N(0,�2I)[h(x + z) = k].

lr =

⎧
⎪⎨⎪⎩

0.1 if 0 ≤ epoch < 60

0.02 if 60 ≤ epoch < 120

0.004 if 120 ≤ epoch < 160

0.0008 if 160 ≤ epoch < 200.

2 Reusable code can be found in the following repository: https:// github. com/ MILES- PSL/ Adver sarial- 
Robus tness- Throu gh- Rando mizat ion.

https://github.com/MILES-PSL/Adversarial-Robustness-Through-Randomization
https://github.com/MILES-PSL/Adversarial-Robustness-Through-Randomization


3448 Machine Learning (2022) 111:3425–3457

1 3

before passing it through the network. Both during training and test, for computational effi-
ciency, we evaluate the performance of the algorithm over a single run for every images; 
hence no Monte Carlo estimator is used. However, in practice, the test-time accuracy is 
stable when evaluated over the entire test dataset.

8.2  Results

Figures 1 and 2 show the accuracy and the minimum level of accuracy under attack of our 
randomized neural network for several levels of injected noise. We can see (Fig. 1) that the 
precision decreases as the noise intensity grows. In that sense, the noise must be calibrated 
to preserve both accuracy and robustness against adversarial attacks. This is to be expected, 
because the greater the entropy of the classifier, the less precise it gets.

Fig. 1  Impact of the standard 
deviation of the Gausian noise on 
accuracy in a randomized model 
on CIFAR-10 and CIFAR-100 
dataset

Fig. 2  Guaranteed accuracy of different randomized models with Gaussian noise given the �
2
 norm of the 

adversarial perturbations
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Furthermore, when injecting Gaussian noise as a defense mechanism, the resulting ran-
domized network m is both (�2,

(�2)
2

2�
)-robust w.r.t.  D1 and (�2, 2�

(
�2

2�

)
− 1)-robust 

w.r.t. DTV against �2 adversaries. Therefore thanks to Theorems 3 and 5 we have that

Figure 2 illustrates the theoretical lower bound on accuracy under attack [based on the 
minimum gap between Eqs.  (20) and (21)] for different standard deviations. The term in 
entropy has been estimated using a Monte Carlo method with 104 simulations. The trade-
off between accuracy and robustness appears with respect to the noise intensity. With small 
noises, the accuracy is high, but the guaranteed accuracy drops fast with respect to the 
magnitude of the adversarial perturbation. Conversely, with bigger noises, the accuracy 
is lower but decreases slowly with respect to the magnitude of the adversarial perturba-
tion. Overall, we get strong accuracy guarantees against small adversarial perturbations, 
but when the perturbation is bigger than 0.5 on CIFAR-10 (resp. 0.3 on CIFAR-100, the 
guarantees are still not sufficient).

9  Lesson learned and future work

This paper brings new contributions to the theory of robustness to adversarial attacks. 
We provided an in depth analysis of randomized classifier, demonstrating their interest to 
defend against adversarial attacks. We first defined a notion of robustness for randomized 
classifiers using probability metrics/divergences, namely the total variation distance and 
the Renyi divergence. Second, we demonstrated that when a randomized classifier com-
plies with this definition of robustness, we can bound their loss of accuracy under attack. 
We also studied the generalization properties of this class of functions and gave results 
indicating that robust randomized classifiers can generalize. Finally, we showed that ran-
domized classifiers have a mode preservation property. This presents a fundamental prop-
erty of randomized defenses that can be used to explain randomized smoothing from a 
probabilistic point of view. To support our theoretical findings we presented a simple yet 
efficient scheme for building robust randomized classifiers. We show that Gaussian noise 
injection can provide principled robustness against �2 adversarial attacks. We ran a set of 
experiments on CIFAR-10 and CIFAR-100 using Gaussian noise injection with advanced 
neural network architectures to build accurate models with controlled loss of accuracy 
under attack.

Future work will focus on studying the combination of randomization with more sophis-
ticated defenses and on devising new tight bounds on the adversarial generalization and the 
adversarial risk gap of randomized classifiers. Based on the connections we established we 
randomized smoothing in Sect. 7, we will also aim at devising bounds on the gap between 
the standard and adversarial risks for this defense. Another interesting direction would be 
to show that the classifiers based on randomized smoothing have a generalization gap simi-
lar to the classes of randomized classifiers we studied.

(20)Radv(m;�2) −R(m) ≤ 2�
( �2

2�

)
− 1, and

(21)Radv(m;�2) −R(m) ≤ 1 − e
−

(�2 )
2

2� �x∼D∣X

[
e−H(m(x))

]
.
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Appendix 1: Proof of technical lemmas

Appendix 1.1: Proof of Lemma 1

Proof Let 𝛽 > 1 . Let us denote g and g′ respectively the probability density functions of � 
and �′ with respect to the Lebesgue measure. We also set x� = x + � for readability. Then 
we have

By change of variable we get

Furthermore, for any z ∈ ℝ
d , we have

Then we can rewrite the Renyi divergence as follows

This concludes the proof.   ◻

Appendix 1.2: Proof of Lemma 2

Proof Let us denote g and g′ respectively the probability density functions of � and �′ with 
respect to the Lebesgue measure. Furthermore, we denote x� = x + � . Then by definition of 

D�(�, �
�) =

1

� − 1
log�z∼��

[(
g(z)

g�(z)

)�
]

=
1

� − 1
log�z∼��

[
exp

(
�

2

(
(z − x�)⊺�−1(z − x�) − (z − x)⊺�−1(z − x)

))]
.

=
1

� − 1
log𝔼z∼N(0,�)

�
exp

�
�

2

�
z⊺�−1z − (z + �)⊺�−1(z + �)

���

=
1

� − 1
log𝔼z∼N(0,�)

�
exp

�
�

2

�
−2z⊺�−1

� − ‖�‖2
�−1

���

=
1

� − 1
log∫

ℝd

exp
�
−

1

2
z⊺�−1z −

�

2
2z⊺�−1

� −
�

2
‖�‖2

�−1

�

(2�)d det(�)d∕2
dz.

−
1

2
z⊺�−1z −

�

2
2z⊺�−1

� −
�

2
‖�‖2

�−1

= −
1

2
(z + ��)⊺�−1(z + ��) +

�2 − �

2
‖�‖2

�−1 .

D�(�, �
�) =

1

� − 1
log�z∼N(−�� ,�)

�
exp

�
�2 − �

2
‖�‖2

�−1

��

=
1

� − 1
log

�
exp

�
�2 − �

2
‖�‖2

�−1

��

=
�

2
‖�‖2

�−1 .
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the total variation distance, we have DTV (�, �) = �(Z) − ��(Z) with Z = {z s.t. g(z) ≥ g�(z)} . 
In our case g(z) ≥ g�(z) is equivalent to

Then with the same simplification as above, we have

 Furthermore, if z ∼ N(0, Id) then z⊺�−1∕2
� ∼ N(0, ‖�‖2

�−1
) ; hence we also have 

z⊺�−1∕2
�

‖�‖
�−1

∼ N(0, 1) . Accordingly we get

By symmetry we get that ��(A) = 1 − �(A) = 1 −�

�
1

2
‖�‖�−1

�
 . We then get

which concludes the proof.   ◻

Appendix 2: Discussion on probability metrics

As mentioned earlier in this paper, the choice of the metric/divergence is crucial as it char-
acterizes the notion of adversarial robustness we are examining. We focus on the total vari-
ation distance and Renyi divergence, but the question of whether these metrics/divergences 
are more appropriate than others remains open. It should be noted, however, that our defi-
nition of robustness is monotonous depending on the metric/divergence we use.

Proposition 12 (Monotonicity of the robustness) Let m be a randomized classifier, and 
let D and D′ be two divergences/metrics on P(Y) . If there exists a non decreasing function 
f ∶ ℝ ↦ ℝ such that ∀�, �� ∈ P(Y) , D(�, ��) ≤ f (D�(�, ��)) , then the following assertion 
holds.

The proof straightforwardly comes from the definition of robustness.

Proof Let us consider m a randomized classifier (�p, �)-robust w.r.t.  D′ . Then for any 
x ∼ D , and � s.t. ‖�‖p ≤ �p , since f is non decreasing, we have

Then m is (�p, f (�))-robust w.r.t. D which concludes the proof.   ◻

(z − x�)⊺�−1(z − x�) − (z − x)⊺�−1(z − x) ≥ 0.

�(Z) = ℙz∼N(x,�)

�
(z − x�)⊺�−1(z − x�) − (z − x)⊺�−1(z − x) ≥ 0

�

= ℙz∼N(0,�)

�
(z − �)⊺�−1(z − �) − z⊺�−1z ≥ 0

�

= ℙz∼N(0,�)

�
−2z⊺�−1

� + ‖�‖2
�−1 ≥ 0

�

= ℙz∼N(0,Id)

�
z⊺�−1∕2

� ≤ 1

2
‖�‖2

�−1

�
.

�(Z) = ℙz∼N(0,1)

�
z ≤ 1

2
‖�‖�−1

�
= �

�
1

2
‖�‖�−1

�
.

DTV (�, �) = 2�

�‖�‖�−1

2

�
− 1

m is (�p, �)-robust w.r.t. D
�
⟹ m is (�p, f (�))-robust w.r.t. D.

D(m(x),m(x + �)) ≤ f
(
D�(m(x),m(x + �))

) ≤ f (�).
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The above result suggests that the different notions of robustness we might conceive 
are more related than they appear. Here are some of the most classical divergences used in 
machine learning. Let �, �′, � three measures in P(Y) . We denotes g and g′ the probability 
density functions of � and �′ with respect to � . Then we can define the Wasserstein distance 
as follows

where dist is some ground distance on Y , and the infimum is taken over all joint distribu-
tions � in P(Y × Y) with marginals � and �′.

Remark 5 In transportation theory, the Wasserstein distance is solution of the Monge-
Kantorovich problem with the cost function c(y, y�) = dist(y, y�) . Then, the defini-
tions of total variation and Wasserstein distance match when we use the trivial distance 
dist(y, y�) = 1{y ≠ y�}.

We also define respectively the Hellinger distance and the Separation distance as 
follows.

If we take any of the above metrics/divergences to instantiate a notion of adversarial 
robustness we might get very different semantics for them. However, we can show that any 
of these definitions can be covered—with respect to Proposition 12—either by the Renyi 
or the total variation robustness. Figure 3 summarizes the links we can make between all 
these different definitions of robustness, and Propositions 13 and 14 present the associated 

(22)DW (�, �
�) ∶= inf∫Y2

dist
(
y, y�

)
d�(y, y�),

(23)DH(�, �
�) ∶=

�
∫Y

�√
g −

√
g�
�2

d�

�1∕2
.

(24)DS(�, �
�) ∶= sup

y∈Y

(
1 −

g(y)

g�(y)

)
.

Fig. 3  Summary of the relations between the different robustness notions from Propositions 13 and 14
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results. We can see that the total variation distance and the Renyi divergence are both cen-
tral since they can cover any of the other robustness notions. This does not mean that they 
are more appropriate than the others, but at least they are general enough to cover a wide 
range of possible definitions.

Proposition 13 Let m be a randomized classifier. If m is (�p, �)-robust w.r.t. DTV then the 
following assertions hold.

• m is 
(
�p, � × diam(Y)

)
-robust w.r.t. DW , where diam(Y) ∶= max

y,y�∈Y
dist(y, y�).

• m is 
�
�p,

√
2�
�
-robust w.r.t. DH.

Proof Let us consider � and �� ∈ P(Y) . Thanks to Gibbs and Su (2002) we have

• DW (�, �
�) ≤ diam(Y)DTV (�, �

�).
• DH(�, �

�) ≤ √
2DTV (�, �

�).

Hence, by using Proposition 12 respectively with f ∶ x ↦ diam(Y)x and f ∶ x ↦
√
2x we 

get the expected results.   ◻

Proposition 14 Let m be a randomized classifier. If m is (�p, �)-robust w.r.t. D� then the 
following assertions hold.

• m is (�p, ��)-robust w.r.t. DTV with �� = min

(
3

2

(√
1 +

4�

9
− 1

)1∕2

,
exp(�+1)−1

exp(�+1)+1

)
.

• m is (�p,
√
�)-robust w.r.t. DH.

• If � = ∞ , then m is (�p, �) robust w.r.t. DS.

Proof (1) First, let us suppose that � ≥ 1 . Thanks to Proposition 2 and to  (Gibbs & Su, 
2002), for any �, �� ∈ P(Y) we have

• DH(�, �
�) ≤ √

D1(�, �
�) ≤ √

D�(�, �
�)    (see Gibbs & Su, 2002).

• DTV (�, �
�) ≤ min

(
3

2

(√
1 +

4D� (�,�
�)

9
− 1

)1∕2

,
exp(D� (�,�

�)+1)−1

exp(D� (�,�
�)+1)+1

)
 (Proposition 2).

Hence, by using Proposition 12, as above, we get the expected results.
(2) Now let us suppose that � = ∞ . By definition of the supremum divergence, we have

Furthermore, note that the function x ↦ 1 − x − |ln(x)| is negative on ℝ , therefore for any 
y ∈ Y one has

Since the above inequality is true for any y ∈ Y , we have

D∞(𝜌, 𝜌
�) = sup

B⊂Y

||||ln
𝜌(B)

𝜌�(B)

||||.

1 −
�(y)

��(y)
≤ ||||ln

�(y)

��(y)

||||.
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Finally, by using Proposition 12 with f ∶ x ↦ x we get the expected results.   ◻
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