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Abstract
The objective of this article is to introduce a fairness interpretability framework for meas-
uring and explaining the bias in classification and regression models at the level of a distri-
bution. In our work, we measure the model bias across sub-population distributions in the 
model output using the Wasserstein metric. To properly quantify the contributions of pre-
dictors, we take into account favorability of both the model and predictors with respect to 
the non-protected class. The quantification is accomplished by the use of transport theory, 
which gives rise to the decomposition of the model bias and bias explanations to positive 
and negative contributions. To gain more insight into the role of favorability and allow for 
additivity of bias explanations, we adapt techniques from cooperative game theory.

Keywords Optimal transport · ML fairness · ML interpretability · Cooperative game

Mathematics subject classification 49Q22 · 91A12 · 68T01

1 Introduction

Contemporary machine learning (ML) techniques surpass traditional statistical meth-
ods in terms of their higher predictive power and their capability of processing a larger 
number of attributes. However, these novel ML algorithms generate models that have a 
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complex structure which makes it difficult for their outputs to be interpreted with high 
precision. Another important issue is that a highly accurate predictive model might lack 
fairness by generating outputs that may result in discriminatory outcomes for protected 
subgroups. Thus, it is imperative to design predictive systems that are not only accurate 
but also achieve the desired fairness level.

When used in certain contexts, predictive models, and strategies that rely on such 
models, are subject to laws and regulations that ensure fairness. For instance, a hiring 
process in the United States (US) must comply with the Equal Employment Opportunity 
Act (EEOA 1972). Similarly, financial institutions (FI) in the US that are in the business 
of extending credit to applicants are subject to the Equal Credit Opportunity Act (ECOA 
1974), the Fair Housing Act (FHA 1968), and other fair lending laws. These laws often 
specify protected attributes that FIs must consider when maintaining fairness in lending 
decisions.

Examples of protected attributes include race, gender, age, ethnicity, national origin, 
marital status, and others. Under the ECOA, for example, it is unlawful for a creditor to dis-
criminate against an applicant for a loan on the basis of race, gender or age. Even though 
direct usage of protected attributes in building a model is often prohibited by law (e.g. overt 
discrimination), some otherwise benign attributes can serve as “proxies” because they may 
share dependencies with a protected attribute. For this reason, it is crucial for data scien-
tists to conduct a fairness review of their trained models in consultation with compliance 
professionals in order to evaluate the predictive modeling system for potential unfairness. 
In this paper, we develop a fairness interpretability framework to aid in this important task.

At an algorithmic level, bias can be viewed as an ability to differentiate between two 
subpopulations at the level of data or outcomes. Regardless of its definition, if bias is pre-
sent in data when training an ML model, the ability to differentiate between subgroups 
might potentially lead to discriminatory outcomes. For this reason, the model bias can be 
viewed as a measure of unfairness and hence its measurement is central to the model fair-
ness assessment.

There is a comprehensive body of research on ML fairness that discusses bias meas-
urements and mitigation methodologies. Kamiran et al. (2009) introduced a classification 
scheme for learning unbiased models by modifying the biased data sets without direct 
knowledge of the protected attribute. Kamishima et  al. (2012) proposed a regularization 
approach for discriminative probabilistic models. Zemel et  al. (2013) designed an opti-
mization problem that incorporates fairness constraints. Feldman et al. (2015) proposed a 
geometric repair scheme to remove disparate impact in classifiers by making data sets unbi-
ased. Hardt et al. (2015) indtroduced post-processing techniques removing discrimination 
in classifiers based on equalized odds and equal opportunity fairness criteria. Woodworth 
et al. (2017) designed a framework for nearly-optimal learning predictors with equalized 
odds fairness constraint. Zhang et al. (2018) proposed to use adversarial learning to miti-
gate bias, and Jiang (2020) suggested a bias correction technique via re-weighting the data.

The work of Dwork et al. (2012) studies Lipschitz randomized classifiers and their sta-
tistical parity bias. It establishes a bound on that bias by a transport-like distance between 
the input subpopulation distributions. The bound aids in constructing an optimal Lipschitz 
classifier with control over the statistical parity bias by transporting one of the subpopula-
tion input datasets into the other. The work of Gordaliza et al. (2019) establishes a similar 
bound for non-randomized classifiers by the total variance distance between input sub-
population distributions. Guided by the bound and utilizing optimal transport theory, their 
method focuses on repairing input datasets in a way that allows for control of the total vari-
ance distance, and hence the statistical parity bias.
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Though the bounds in the aforementioned works are of theoretical and practical impor-
tance, they provide little information on how each component of the input contributes to 
the bias in the output. The main reason for that is that the bias from the inputs propagates 
through the model structure in a non-trivial way. For this reason, in our work, we focus on 
designing a fairness interpretability framework that evaluates how each predictor contrib-
utes to the model bias, incorporating the predictor’s favorability with respect to protected 
(or minority) class into the framework. The construction is carried out by employing opti-
mal transport theory and game-theoretic techniques.

Another issue regarding the ML fairness literature is that it mainly focuses on classifi-
ers. Specifically, given the data (X, G, Y), where X ∈ ℝ

n are predictors, G ∈ {0, 1} is a pro-
tected attribute and Y ∈ {0, 1} is a binary output variable, with favorable outcome Y = 1 , 
the bias measurements are often based on fairness criteria such as statistical parity, which 
reads ℙ(Ŷ = 1|G = 0) = ℙ(Ŷ = 1|G = 1) , or alternative criteria such as equalized odds and 
equal opportunity (Feldman et al. 2015; Hardt et al. 2015).

Many models in the financial industry, however, are regressors f = �[Y|X] . In turn, 
classification models are usually obtained by thresholding the regressor, Yt(X) = 1{f (X)>t} , 
but the thresholds are in general not chosen during the model development stage. Thus, 
data scientists select the classification score f (X) = ℙ̂(Y = 1|X) based on the overall per-
formance across all thresholds. The same is true for fairness assessment, which is con-
ducted at the level of the whole classification score. The main reason for this is that the 
strategies and decision-making procedures in FIs may rely on the classification score or its 
distribution, not a single classifier with a fixed threshold. This motivates us to measure and 
explain the bias exclusively in the regressor model.

Our interpretability framework in principle can be applied to a wide range of predictive 
ML systems. For instance, it can provide insight into predictor attributions for models that 
appear in economics, social sciences, medicine, and other fields.

Another application of the framework is for bias mitigation under regulatory con-
straints. In FIs, bias mitigation methodologies that require explicit consideration of pro-
tected class status in the training or prediction stages are not acceptable in view of ECOA. 
Consequently, bias mitigation methods such as those in Dwork et al. (2012); Feldman et al. 
(2015); Gordaliza et al. (2019) are not feasible. However, a probabilistic proxy model for 
a protected attribute G such as the Bayesian Improved Surname and Geocoding (BISG) is 
allowed to be used for fairness assessment and subsequent post-processing1 (Elliot et  al. 
2009; Hall et al. 2021); for an alternative proxy model, see Chen et al. (2019). This setup 
allows for the use of our framework in the following regulatory-compliant fashion: 

 (S1) Given a model f and the proxy protected attribute G̃ , perform a fairness assessment 
by measuring the bias across the subpopulation distributions f (X)|G̃ = k , k ∈ {0, 1}.

 (S2) If the model bias exceeds a certain threshold, determine the main drivers for the bias, 
that is, determine the list of predictors Xi1

,Xi2
,… ,Xir

 contributing the most to that 
bias.

 (S3) Mitigate the bias by constructing a post-processed model f̃ (X;f ) utilizing the informa-
tion on the most biased predictors {Xi1

,Xi2
,… ,Xir

} and without the direct use of G̃ or 
any information on the joint distribution (X, G̃).

1 Compliance departments employ the proxy model for compliance purposes only.
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In this article, the interpretability framework we develop addresses steps (S1) and (S2). 
The post-processing methods (S3) are investigated in our companion paper Miroshnikov 
et al. (2021b). In what follows, we provide a summary of the key ideas and main results.

Problem setup We consider the joint distribution (X, G, Y), where X ∈ ℝ
n are predictors, 

G ∈ {0, 1} is the protected attribute, with the non-protected class G = 0 , and Y is either a 
response variable with values in ℝ (not necessarily a continuous random variable) or binary 
one with values in {0, 1} . We denote a trained model by f (x) = �̂[Y|X = x] , assumed to be 
trained on (X, Y) without access to G. We assume that there is a predetermined favorable 
model direction, denoted by ↑ and ↓ ; if the favorable direction is ↑ then the relationship 
f (x) > f (y) favors the input x, and if it is ↓ the input y. In the case of binary Y ∈ {0, 1} , the 
favorable direction ↑ is equivalent to Y = 1 being a favorable outcome, and ↓ to Y = 0 . To 
simplify the exposition, the main text focuses on the case of a binary protected attribute G. 
However, the framework and all of the results in the article have a natural extension to the 
multi-labeled case.

Key components of the framework

• Motivated by optimal transport theory, we focus on the bias measurement in the model 
output via the Wasserstein metric W1

 which measures the minimal cost of transporting one distribution into another; see 
Santambrogio (2015). More importantly, we introduce the model bias decomposition 
into the sum of the positive and negative model biases, Bias±

W1
(f |G) , which measure the 

transport effort for moving points of the unprotected subpopulation distribution 
f (X)|G = 0 in the non-favorable and favorable directions, respectively. This allows us 
to obtain a more informed perspective on the predictor’s impact; see Sects. 3.2 and 3.3.

• We establish the connection of the model bias with that of a classifier. We show that 
the positive and negative model bias can be viewed as the integrated statistical parity 
bias over the family of classifiers induced by the regressor. This integral relationship is 
then used to construct an extended family of transport metrics for regressor bias. Via 
integration, these metrics incorporate generic group parity fairness criteria for classi-
fiers induced by the given regressor. Furthermore, we prove a more general version of 
(Dwork et al. 2012, Theorem 3.3) that establishes the connection between the Wasser-
stein-based bias and the randomized classifier-based bias; see Sects. 3.3 and 3.4.

• We introduce bias predictor attributions called bias explanations in order to understand 
how predictors contribute to the model bias. The bias explanation �i of predictor Xi is 
computed as the cost of transporting the distribution of Ei|G = 0 to that of Ei|G = 1 , 
where Ei(X;f ) quantifies the contribution of Xi to the model value. The transport the-
ory gives rise to the decomposition �i = �+

i
+ �−

i
 into the sum of positive and negative 

model bias explanations. Roughly speaking, �+
i

 quantifies the combined predictor con-
tribution to the increase of the positive model bias and decrease in the negative model 
bias, and vice versa for �−

i
 ; see Sect. 4.3.

• The bias explanations are in general not additive, even if the predictor explanations are. 
To construct additive bias explanations and to better capture the interactions at the dis-
tribution level, we employ a cooperative game theory approach motivated by the ideas of 

BiasW1
(f |G) = inf

�∈�(ℝ2)

{

∫ℝ2
|x1 − x2| d�(x1, x2), with marginals Pf (X)|G=0,Pf (X)|G=1

}

,
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Štrumbelj and Kononenko (2010). We design a cooperative bias game vbias which evalu-
ates the bias in the model attributed to coalitions XS , S ⊂ {1,… , n} , and define bias expla-
nations via the Shapley value �[vbias] , which yields additivity. Similar approach is applied 
to construct additive positive and negative bias explanations; see Sect. 4.5.

• We choose to design the bias explanations based upon model explainers Ei that are either 
conditional or marginal expectations, or game-theoretic explainers in the form of the Shap-
ley value �[v] where v is either a conditional game vCE or a marginal game vME . For each 
v ∈ {vCE, vME} we perform the stability analysis of non-additive and additive bias explana-
tions. By adapting the grouping techniques from Miroshnikov et al. (2021a), we reduce 
the complexity of game-theoretic bias explanations and unite marginal and conditional 
approaches; see Sects. 4.4, 4.5 and 4.6.

Structure of the paper. In Sect. 2, we introduce the requisite notation and fairness criteria 
for classifiers, and discuss ML fairness literature related to our work. In Sect. 3, we introduce 
the Wasserstein-based regressor bias and investigate its properties. In addition, we discuss a 
wide class of transport metrics that could be used for fairness assessment. In Sect. 4, we pro-
vide a theoretical characterization of the bias explanations and investigate their properties. In 
Sect. 5 we discuss some regulatory aspects of bias mitigation, and present an application of 
the framework to a UCI dataset. In Appendix A, we discuss the Kantorovich transport prob-
lem. In Appendix B, we state and prove auxiliary lemmas.

2  Preliminaries

2.1  Notation and hypotheses

We consider the joint distribution (X, G, Y), where X = (X1,X2,… ,Xn) ∈ ℝ
n are the predic-

tors, G ∈ {0, 1,… ,K − 1} is the protected attribute and Y is either a response variable with 
values in ℝ (not necessarily a continuous random variable) or a binary one with values in 
{0, 1} . We encode the non-protected class as G = 0 and assume that all random variables are 
defined on the common probability space (Ω,F,ℙ) , where Ω is a sample space, ℙ a probabil-
ity measure, and F  a �-algebra of sets.

The true model and a trained one, which is assumed to be trained without access to G, are 
denoted by

respectively. In the case of binary Y they read f (X) = ℙ(Y = 1|X) and f̂ (X) = �ℙ(Y = 1|X) . 
We denote a classifier based on the trained model by

The subpopulation cumulative distribution function (CDF) of f̂ (X)|G = k is denoted by

and the corresponding generalized inverse (or quantile function) F[−1]

k
 is defined by:

f (X) = �[Y|X] and f̂ (X) = ��[Y|X],

�Yt = �Yt(X;f̂ ) = 1{f̂ (X)>t}, t ∈ ℝ.

Fk(t) = Ff̂ (X)|G=k(t) = ℙ(f̂ (X) ≤ t|G = k)

F
[−1]

k
(p) = F

[−1]

f̂ (X)|G=k
(p) = inf

x∈ℝ

{
p ≤ Fk(x)

}
.
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We assume that there is a predetermined favorable model direction, denoted by either ↑ or 
↓ . If the favorable direction is ↑ then the relationship f (x) > f (z) favors the input x, and if it 
is ↓ the input z. The sign of the favorable direction of f is denoted by �f  and satisfies

In the case of binary Y, the favorable direction ↑ is equivalent to Y = 1 being a favorable 
outcome, and ↓ to Y = 0 ; see Sect. 2.4.

In what follows we first develop the framework in the context of the binary pro-
tected attribute G ∈ {0, 1} and then extend it to the case of the multi-labeled protected 
attribute; see Sect. 3.4.

2.2  Fairness criteria for classifiers

When undesired biases concerning demographic groups (or protected attributes) are in 
the training data, well-trained models will reflect those biases. There have been numer-
ous articles devoted to ML systems that lead to fair decisions. In these works, various 
measurements for fairness have been suggested. In what follows, we describe several 
well-known definitions which help measure fairness of classifiers.

Definition 1 Suppose that Y is binary with values in {0, 1} and Y = 1 is the favorable out-
come. Let Ŷ  be a classifier.

• Ŷ  satisfies statistical parity (Feldman et al. 2015) if 

• Ŷ  satisfies equalized odds (Hardt et al. 2015) if 

• Ŷ  satisfies equal opportunity (Hardt et al. 2015) if 

• The balanced error rate (BER) of Ŷ  (Feldman et al. 2015) is given by 

The statistical parity requires that the proportions of people in the favorable class 
Ŷ = 1 within each group G = k, k ∈ {0, 1} are the same. The equalized odds constraint 
requires the classifier to have the same misclassification error rates for each class of 
the protected attribute G and the label Y. Equal opportunity constraint requires the 
misclassification rates to be the same for each class G = k only for the individuals 
labeled as Y = 1 . The BER is the average class-conditioned error rate of Ŷ .

�f =

{
1, if the favorable direction off is ↑

−1, if the favorable direction off is ↓ .

ℙ(Ŷ = 1|G = 0) = ℙ(Ŷ = 1|G = 1).

ℙ(Ŷ = 1|Y = y,G = 0) = ℙ(Ŷ = 1|Y = y,G = 1), y ∈ {0, 1}.

ℙ(Ŷ = 1|Y = 1,G = 0) = ℙ(Ŷ = 1|Y = 1,G = 1).

BER(Ŷ ,G) =
1

2
(ℙ(Ŷ = 1|G = 0) + ℙ(Ŷ = 0|G = 1)).
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2.3  Group classifier fairness example

There are numerous reasons why a trained classifier may lead to unfair outcomes. To 
illustrate, we provide an instructive example that shows how predictors and labels, as 
well as their relationship with the protected attribute, affect classifier fairness.

Consider a data set (X, Y, G) where the predictor X depends on G ∈ {0, 1} , Y ∈ {0, 1} 
is binary, with favorable outcome Y = 0 , and the classification score f depends explicitly 
on X only:

The data set is constructed in such a way that the proportions of Y = 0|G = k in the two 
groups are different: ℙ(Y = 0|G = 0) = 0.5 , ℙ(Y = 0|G = 1) = 0.36 . The predictor X 
serves as a good proxy for G, which can be seen in Fig. 1a. The plot depicts the density 
of X and the conditional densities of X given G = 0 and G = 1 , respectively. The shifted 
conditional densities clearly show the dependence of X on G. Though the true score f(X) 
does not depend explicitly on G, a classifier trained on X will learn that the higher the value 
of X the more likely it is that Y = 0 . Using the logistic regression model f̂  we observe that 
for any threshold t ∈ (0, 1) the classifier Ŷt satisfies neither the statistical parity, nor the 
equal opportunity, nor the equalized odds criterion. Furthermore, since both classes of G 
are equally likely, BER(�Yt,G) < 0.5 implies that one can potentially infer G from X; see 
Fig. 1b. The vertical axis in the plot represents the difference between the probabilities for 
each of the first three fairness metrics described in Definition 1 as well as the value of the 
balanced error rate. Notice how only in the trivial cases where t ∈ {0, 1} are all metrics sat-
isfied and the balanced error rate is equal to 0.5, since Ŷ0 = 1, Ŷ1 = 0 for all X.

X ∼ N(� − a ⋅ G,
√
�), � = 5, a = 1

Y ∼ Bernoulli(f (X)), f (X) = ℙ(Y = 1�X) = logistic(� − X). (M1)

Fig. 1  Predictor distributions and fairness for the model (M1), �f = −1
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2.4  Classifier bias based on statistical parity

In this section we provide a definition for classifier bias based on the statistical par-
ity fairness criterion and establish some basic properties of the classifier bias. In what 
follows, we suppress the symbol ̂ , using it only when it is necessary to differentiate 
between the true model and the trained one. The same rule applies to classifiers.

Definition 2 Let f be a model, X ∈ ℝ
n predictors, G ∈ {0, 1} protected attribute, G = 0 

non-protected class, �f  the sign of the favorable direction, and Fk the CDF of f (X)|G = k.

• The signed classifier (or statistical parity) bias for a threshold t ∈ ℝ is defined by 

• The classifier bias at t ∈ ℝ is defined by 

We say that Yt favors the non-protected class G = 0 if the signed bias is positive. 
Respectively, Yt favors the protected class G = 1 if the signed bias is negative.

Remark 1 Suppose that Y ∈ {0, 1} is binary and that the favorable direction is ↑ , which 
implies that 1{�f=1}

= 1 . Then Yt favors the non-protected class G = 0 if and only if there is 
a larger proportion of individuals from class G = 0 for which Yt = 1 compared to the class 
G = 1 . This, from a statistical parity perspective, describes the outcome Y = 1 as favorable. 
Similar remarks apply to the case when the favorable direction is ↓ . Thus, the favorable 
direction is ↑ ( ↓ ) is equivalent to the favorable outcome Y = 1 ( Y = 0).

2.5  Quantile bias and geometric parity

Given a model f and a threshold t ∈ ℝ , the classifier bias based on statistical parity 
measures the difference in population sizes corresponding to groups G = {0, 1} for 
which Yt = 0 . This measurement however does not take into account the geometry of the 
model distribution, that is, the score values themselves.

For example, when measuring the bias in incomes among ‘females’ and ‘males’ one 
can view the difference of expected incomes in the two groups as ‘bias’. Alternatively, 
one can measure an income bias by evaluating the absolute difference of the ‘female’ 
median income and ‘male’ median income, which is often done in various social stud-
ies. This motivates us to take into account the geometry of the score distribution when 
defining bias. For this reason, we propose the notion of the quantile bias which operates 
on the domain of the score rather than the sample space.

Definition 3 Let f ,X,G, �f  and Fk be as in Definition 2. Let p ∈ (0, 1).

b̃ias
C

t
(f |X,G) =

(
ℙ(Yt = 1{�f=1}

|G = 0) − ℙ(Yt = 1{�f=1}
|G = 1)

)

=
(
F1(t) − F0(t)

)
⋅ �f .

biasC
t
(f |X,G) = |b̃ias

C

t
(f |X,G)|.
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• The signed p-th quantile is defined by 

• The p-th quantile bias is defined by 

As a counterpart to statistical parity, we also introduce quantile (geometric) parity.

Definition 4 (geometric parity) Let f be a model and G ∈ {0, 1} the protected attribute.

• We say that the model f satisfies p-th quantile (or geometric) parity if 

• Let t ∈ ℝ . The classifier Yt satisfies quantile (or geometric) parity if 

Given a score f, the quantile bias measures the difference between subpopulation 
quantile values. For a given threshold t, the p0-quantile signed bias, with p0 = F0(t) , 
measures by how much the corresponding score values of the protected class G = 1 
differ from that of G = 0 or equivalently by how much the threshold for the protected 
group should be shifted to achieve the quantile parity (and in some cases statistical par-
ity) between the two populations.

Lemma 1 Let f be a model, G ∈ {0, 1} the protected attribute, and G = 0 the non-protected 
class. Suppose that t0 ∈ ℝ is a point at which the CDFs F0 and F1 are continuous and 
strictly increasing. Then Yt0 satisfies statistical parity if and only if it satisfies geometric 
parity.

Proof The result follows from Definitions 2 and 3, and the fact that F0 and F1 are locally 
invertible at t0 .   ◻

To better understand the classifier and quantile biases and their connection, see 
Fig.  2a. The conditional CDFs of the model scores are plotted given the protected 
attribute G. The blue line (corresponding to the scores given G = 0 ) is above the red 
line (scores given G = 1 ) for all values of t. Thus, for a given threshold t0 we have that 
F0(t0) − F1(t0) > 0 , which means that if the favorable direction is ↑ ( ↓ ) then the classi-
fier favors the class G = 1 ( G = 0 ). In view of the quantile bias, the green horizontal 
line segment represents the amount we would have to shift the threshold for one of the 
classes in order to achieve geometric parity. Since the CDFs are shown to be continuous 
and strictly increasing, the above lemma implies that doing so would achieve statistical 
parity as well.

b̃ias
Q

p
(f |X,G) =

(
F
[−1]

0
(p) − F

[−1]

1
(p)

)
⋅ �f

biasQ
p
(f |X,G) = |b̃ias

Q

p
(f |X,G)|.

biasQ
p
(f |X,G) = 0.

biasQ
p0
(f |X,G) = 0, p0 = F0(t).
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2.6  Optimal transport use in ML classifier fairness

2.6.1  Classifier bias mitigation via repaired datasets

Two notable works that utilize optimal transport theory to reduce statistical parity bias are 
Feldman et al. (2015) and Gordaliza et al. (2019).

The approach in Feldman et al. (2015) seeks to create an unbiased dataset by transform-
ing predictors and then training a classifier on it. The authors propose a geometric repair 
scheme, which partially moves the two subpopulation distributions �i,0 and �i,1 of predictor 
Xi along the Wasserstein geodesic towards their (unidimensional) Wasserstein barycenter 
�i,B , a distribution minimizing the variance of the collection {�i,0,�i,1} ; see Appendix A. 
The transformed dataset is then used to train a model that reduces disparate impact.

Gordaliza et  al. (2019) proposes a method for transforming the multivariate distribu-
tion of predictors called random repair. Given two subpopulation distributions of predic-
tors �k = PX|G=k , with k ∈ {0, 1} , and a repair parameter � ∈ [0, 1] , the algorithm randomly 
chooses between the Wasserstein barycenter �B of {�0,�1} and the original subpopulation 
distribution �k , with � determining the probability of selecting �B.

The authors establish the upper bound on the disparate impact (DI) and balanced error 
rate (BER) of classifiers with respect to (X, G) using the total variance distance between 
the subpopulation distributions of predictors,

and show that the TV-distance between repaired subpopulation distributions �̃�0,𝜆,�̃�1,𝜆 is 
bounded by 1 − � . This, in turn, allows to control the bound on the DI and BER, and hence 
the closely related statistical parity bias on the repaired dataset is bounded by

The random repair algorithm allows for a tight control of TV-distance between repaired 
subpopulations unlike the geometric repair approach. They also establish bounds on the 

min
h

BER(h,X,G) =
1

2
(1 − dTV (�0,�1)),

max
h

biasC(h|G, X̃𝜆) = dTV (�̃�0,𝜆, �̃�1,𝜆) ≤ 1 − 𝜆.

Fig. 2  Classifier and quantile bias, and model bias for the model (M1)
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loss in performance due to modifying the data by the Wasserstein distance between the two 
subpopulation distributions of predictors. The performance loss is expressed as the differ-
ence in classification risk between the repaired and original data on (X, G).

Remark 2 Given the regulatory constraints, the approaches of Feldman et  al. (2015) and 
Gordaliza et al. (2019) would not be permitted in financial institutions that extend credit 
because a) the protected attribute cannot be used in training or prediction, and b) introduc-
ing randomness into the input dataset is prohibited; for details see (Hall et al. 2021). To 
take into account the regulatory constraints and practical applications, in our companion 
paper (Miroshnikov et al. 2021b) we propose a post-processing approach that relies on the 
fairness interpretability framework presented in the current article.

2.6.2  Individual fairness

The work of Dwork et al. (2012) studies individual fairness of randomized classifiers. To 
understand the main results of the article, we first provide relevant definitions.

Definition 5 Let (X, d) be a metric space and D a distance on P({0, 1}) . 

(i)  A map M ∶ X → P({0, 1}) is called a randomized classifier.
(ii)  Lip1(X,P({0, 1});d,D) = {M ∶ X → P({0, 1}), D(M(x),M(y)) ≤ d(x, y)}.
(iii)  Given � ∈ P(X) the averaged M� is defined by M�(a) = �x∼�[M(x)(a)] , a ⊂ {0, 1}.
(iv)  The distance Drc between �, � ∈ P(X) is defined by 

Individual fairness is defined by imposing a Lipschitz property on the map 
x → M(x) ∈ P({0, 1}) , x ∈ X  . As in Gordaliza et  al. (2019), the work of Dwork et  al. 
(2012) relates the bias in the output to the bias in the input. In particular, the paper estab-
lishes the upper bound DTV (MP0

,MP1
) ≤ Drc(P0,P1) for the statistical parity bias of Lip-

schitz randomized classifiers. Roughly speaking, the above bound means that when two 
subpopulations P0,P1 are “similar” in the sense of the Drc metric, then the Lipschitz condi-
tion ensures that the statistical parity bias is small.

The Drc metric has transport-like properties and is related to the Wasserstein metric; see 
(Dwork et al. 2012, Theorem 3.3) and Theorem 3 in Sect. 3.5.

3  Model bias metric

In our work we shift the focus from measuring the bias in classifiers to the bias in regressor 
outputs. This is motivated by the fact that many strategies and decisions in the real-world 
make use of the regressor values or the classification scores of the trained ML models. 
Furthermore, in the case of classification scores, the bias assessment in FIs is carried out 
before any classifier threshold is determined.

In this section, we discuss how to measure the regressor bias using optimal transport. 
We also establish the connection between the regressor bias and the bias in the collection 

Drc(�, �;D, d) ∶= sup
{
M�({0}) −M�({0}), M ∈ Lip1(X,P({0, 1});d,D)

}
∈ [0, 1].
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of classifiers induced by thresholding the regressor, and make use of this integral relation-
ship to design generic regressor fairness metrics that incorporate group-based parity crite-
ria, such as equalized odds (Hardt et al. 2015), into the transport formulation.

Definition 6 (D-model bias) Let X ∈ ℝ
n be predictors, f be a model, and G ∈ {0, 1} the 

protected attribute. Let D(⋅, ⋅) be a metric on the space of probability measures Pq(ℝ) , 
with q ≥ 0 . Provided �[|f (X)|q] is finite, the D-based model bias is defined as the distance 
between the subpopulation distributions of the model:

where Pf (X)|G=k is the pushforward probability measure of f (X)|G = k . We say that the 
model (X, f) is fair up to the D-based bias � ≥ 0 if BiasD(f |X,G) ≤ �.

Figure 2b illustrates the model bias for two choices of D: the 1-Wasserstein metric W1 
and the Kolmogorov-Smirnov distance KS. Notice the stark difference between the two 
model biases. This raises the general question on which metric should one use to evaluate 
the bias. We discuss this issue in the following section.

In what follows we suppress the explicit dependence of the model bias on X.

3.1  Wasserstein distance

To determine an appropriate metric D to be used in (1) is not a trivial task. The choice 
depends on the context in which the model bias is measured. We argue that it is desirable 
for the metric to have the following properties: 

 (P1) It should be continuous with respect to the change in the geometry of the distribution.
 (P2) It should be non-invariant with respect to monotone transformations of the distribu-

tions.

The property (P1) makes sure that the metric keeps track of changes in the geometry. For 
instance, suppose an “income” of the group {G = 0} is x0 and that of {G = 1} is x1 . A 
metric that measures income inequality should be able to sense the distance between x0 
and x0 + � . That is, having two delta measures �x0 and �x0+� the metric must ensure that as 
� → 0 the distance D(�x0 , �x0+�) approaches zero. The property (P1) also makes sure that 
slight changes in the subpopulation distributions lead to a slight change in bias measure-
ments, which is important for stability with respect to changes in the dataset X.

The property (P2) makes sure that the metric is non-invariant with respect to monotone 
transformations. That is, given two random variables X0 and X1 and a continuous, strictly 
increasing transformation T ∶ ℝ → ℝ , one would expect the change in distance between 
T(X0) and T(X1) whenever T is not a shift. For example, if T(x) = �x , we would expect the 
distance between T(X0) = �X0 and T(X1) = �X1 depend continuously on �.

In what follows, we consider the Wasserstein distance Wq as a potential candidate for 
fairness interpretability; for use cases in the ML fairness community see Dwork et  al. 
(2012); Feldman et al. (2015); Gordaliza et al. (2019).

To introduce the metric and investigate its properties we switch our focus to probabil-
ity measures; recall that any random variable Z gives rise to the pushforward probability 
measure PZ(A) = ℙ(Z ∈ A) on ℝ , and the reverse is true, for any � ∈ P(ℝ) with the CDF 

(1)BiasD(f |X,G) ∶= D(Pf (X)|G=0,Pf (X)|G=1),
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F�(a) = �((−∞, a]) there is a random variable Z such that PZ = � . Similar remarks apply 
for random vectors; see Shiryaev (1980). Given T ∶ ℝ

k → ℝ
m and � ∈ P(ℝk) , we denote 

by T#� a measure such that T#�(B) = �
(
T−1(B)).

The Wasserstein distance Wq is connected to the concept of optimal mass transport. 
Given two probability measures �1,�2 ∈ Pq(ℝ) with finite q-th moment and the cost func-
tion c(x1, x2) = |x1 − x2|q , the Wasserstein distance Wq is defined by

where

is the minimal cost of transporting the distribution �1 into �2 , and vice versa in view of the 
symmetry of the cost function. A joint probability measure � ∈ P(ℝ2) with marginals �1 
and �2 is called a transport plan. It specifies how each point x1 from supp(μ1) gets distrib-
uted in the course of the transportation; specifically, the transport of x1 is described by the 
conditional probability measure �x2|x1.

It can be shown that the Wasserstein metric for probability measures on ℝ can be 
expressed in terms of the quantile functions

which makes the computation straightforward; see Theorem 7.
To get an understanding of the behavior of Wq , consider two delta measures located at x0 

and x0 + � , respectively. By definition of the metric it follows that

Thus, Wq is continuous with respect to a shift of a point mass. Furthermore, for any two 
random variables X0 and X1 and 𝛼 > 0

which implies that a multiplicative map T(x) = �x affects the Wasserstein distance.
To formally show that properties (P1) and (P2) are satisfied by the Wasserstein metric, 

we provide the following theorem.

Theorem 1 The distance Wq satisfies: 

(a) Wq on Pq(ℝ) is continuous with respect to the geometry of the distribution.
(b) Let T ∶ ℝ → ℝ be a continuous, strictly increasing map. Wq is non-invariant under T, 

provided, T(x) ≠ x + C and T#� ∈ Pq(ℝ) , � ∈ Pq(ℝ) .

Proof See Appendix B.   ◻

Wq(�1,�2) ∶= T
1∕q

|x1−x2|q
(�1,�2)

T|x1−x2|q (�1,�2) = inf
�∈P(ℝ2)

{

∫
ℝ2

|x1 − x2|q d�(x1, x2), with marginals �1,�2

}

(2)Wq(�1,�2) =

(

∫
1

0

|F[−1]
�1

(p) − F[−1]
�2

(p)|q dp
)1∕q

,

Wq(�x0 , �x0+�) = �.

Wq(P�X0
,P�X1

) = �Wq(PX0
,PX1

)
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Theorem 1 states that the Wasserstein metric relies on the geometry of the distribution. 
In particular, the distance is affected in a continuous way by the change in the geometry 
of the distribution. This, in turn, provides the desired sensitivity of the Wasserstein metric 
with respect to slight changes in the dataset distribution, including shifts, which is relevant 
for ML models with ragged CDFs, which makes the Wasserstein metric an appropriate 
candidate for the model bias measurement. In addition, as we will see, the Wasserstein 
distance enables us to assess the favorability at the level of the model, which is useful for 
applications in financial institutions.

3.2  Negative and positive flows under order preserving optimal transport plan

We now provide several properties of the Wasserstein metric, which we employ in the fol-
lowing sections.

Given two probability measures �1,�2 ∈ Pq(ℝ) , it can be shown that the joint prob-
ability measure �∗ ∈ P(ℝ2) with the CDF

is an optimal transport plan for transporting �1 into �2 with the cost function 
c(x1, x2) = |x1 − x2|q , and thus,

Most importantly, �∗ is the only monotone (order preserving) transport plan such that

In a special case, when �1 is atomless, �∗ is determined by the monotone map

(3)F�∗ (a, b) = min(F�1
(a),F�2

(b))

(4)Wq
q
(�1,�2) = T|x1−x2|q (�1,�2) = ∫

ℝ2

|x1 − x2|qd�∗(x1, x2).

(x1, x2), (x
�
1
, x�

2
) ∈ supp(𝜋∗), x1 < x�

1
⇒ x2 ≤ x�

2
.

(5)T∗ = F[−1]
�2

◦F�1
,

Fig. 3  Transporting �1 to �2 under the monotone transport plan �∗
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called an optimal transport map. Specifically, each point x1 of the distribution �1 is trans-
ported to the point x2 = T∗(x1) ; see Fig. 3a for an illustration. Thus, �2 = T∗

#
�1 , and the 

conditional probability measure �∗
x2|x1

= �T∗(x1)
 for x1 ∈ supp(�1) . In this case, (4) reads

The results (3)-(6) follow from Theorem 7 for the cost function c(x1, x2) = |x1 − x2|q.
In a general case, under the transport plan �∗ , points x1 ∈ supp(μ1) for which 

�1({x1}) = 0 are transported as a whole, while the “atoms”, points x1 for which 
𝜇1({x1}) > 0 , are allowed to be split or spread along ℝ ; see Fig. 3b that illustrates the 
transport flow under �∗ in the general case. The plot also provides a depiction of the 
order preservation; notice how the arrows do not intersect.

To compute the portion of the transport cost used for moving points of �1 to the 
right or left, it is necessary to restrict the attention to the regions x1 < x2 and x1 > x2 , 
respectively.

Lemma 2 Let �1,�2 ∈ Pq(ℝ) , q ∈ [1,∞) . Under the monotone plan �∗ the transport 
efforts to the left and right for the cost function c(x1, x2) = |x1 − x2|q are given by:

Hence, the Wasserstein distance Wq can be expressed as

Furthermore, if �1 is atomless, (7) reads

Proof By (3) the monotone plan can be expressed as

where �|[0,1] denotes the Lebesgue measure restricted to [0, 1]. Then, by Proposition 6, for 
any Borel set B ⊂ ℝ

2 we have

Then (7) follows from the above identity with B = {(x1, x2) ∶ ±(x1 − x2) > 0} . Next, by (4) 
and (7), we obtain (8).

Finally, if �1 is atomless, by Theorem 7 the monotone plan �∗ = (I,T∗)#�1 , where T∗ is 
the optimal transport map given by (5). Then using Proposition 6 we obtain (9).   ◻

(6)Wq
q
(�1,�2) = T|x1−x2|q (�1,�2) = ∫

ℝ

|x1 − T∗(x1)|qd�1(x1).

(7)

(8)Wq(�1,�2) =
(

� ←
|x1−x2|q

(�1,�2) +� →
|x1−x2|q

(�1,�2)
)1∕q.

(9)

�∗ = (F−1
�1
,F−1

�2
)#�|[0,1] ∈ P(ℝ2)

∫B

|x1 − x2|qd�∗(x1, x2) = ∫{p∈(0,1)∶ (F
[−1]
�1

(p),F
[−1]
�2

)(p))∈B}

|F[−1]
�1

(p) − F[−1]
�2

(p)|qdp.
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3.3  W
1
‑based model bias and its components

For q = 1 the Wasserstein distance W1 is known as the Earth Mover distance. Since 
the distance is symmetric, BiasW1

(f |X,G) is the cost of transporting the distribution of 
f (X)|G = 0 into that of f (X)|G = 1 or vice versa.

It can be shown that the W1-based model bias formulation is consistent with both 
statistical parity fairness criterion as well as quantile parity criterion, which is shown by 
the following theorem.

Lemma 3 Let f be a model and G ∈ {0, 1} the protected attribute. Then

Proof By assumption �|f (X)| < ∞ and hence �[|f (X)|G = k|] < ∞ for k ∈ {0, 1} . Then, 
we have (Shorack and Wellner (1986))

Hence, the result follows from Definitions 2 and 3, and the above equality.   ◻

Remark 3 The above lemma establishes the representation of the model bias as an inte-
gration over the statistical parity bias of classifiers obtained by considering all thresholds. 
Here, the consistency of the model bias with statistical parity is understood in the sense of 
the equality in the above lemma. In comparison, Dwork et al. (2012) establishes a connec-
tion of statistical parity of Lipschitz randomized classifiers and subpopulations in a dataset 
upon which the models are built.

While the results in Dwork et al. (2012) do not imply the above lemma, it is appealing 
to provide a connection between the two. For example, consider the triplet (X, G, Y) with 
Y ∈ {0, 1} and a smooth regressor f (X) = P(Y = 1|X) . Consider a randomized classifier 
z → �z where z = (x, g, y) , and �z(1) = f (x) . Let Pg = PZ|G=g . Then, the upper bound on 
statistical parity bias of �z provided by Dwork et al. (2012) reads

which illustrates the difference between Lemma 3.1 of Dwork et al. (2012) and our lemma.

Positive and negative model bias. According to Lemma 2, the cost of transporting a 
distribution is the sum of the transport effort to the left and the transport effort to the 
right. This motivates us to define the positive bias as the transport effort for moving the 
particles of f (X)|G = 0 in the non-favorable direction and the negative bias as the trans-
port effort in the favorable one; equivalently the latter is the transport effort for moving 
the particles of f (X)|G = 1 into the favorable direction and the former is the transport 
effort into the non-favorable one.

Motivated by Lemma 2 we define positive and negative model biases as follows:

BiasW1
(f |G) = ∫

1

0

biasQ
p
(f |G) dp = ∫

ℝ

biasC
t
(f |G) dt.

W1

(
f (X)|G = 0, f (X)|G = 1

)
= ∫

1

0

|F[−1]

f (X)|G=0(p) − F
[−1]

f (X)|G=1(p)| dp

= ∫
ℝ

|Ff (X)|G=0(t) − Ff (X)|G=1(t)| dt < ∞.

DTV (�P0
,�P1

) = |�[f (X)|G = 0] − �[f (X)|G = 1]| ≤ W1(P0,P1),
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Definition 7 Let f ,G, �f  and Fk be as in Definition 2.

• The positive and negative W1 based model biases are defined by 

 where 

 In this case, the model bias is disaggregated as follows: 

• The net model bias is defined by 

We next establish that the positive and negative W1 model biases can be expressed 
in terms of classifier biases. To establish this, we first prove the following auxiliary 
lemma.

Lemma 4 Let X0,X1 be random variables with �|Xi| < ∞ , i ∈ {0, 1} . Let Fi denote the 
CDF of Xi and let

Then

Proof See Appendix B.   ◻

Theorem 2 Let f ,G, �f  , P
± and Fk be as in Definition 7. Then

where

The net bias satisfies

Bias±
W1
(f |G) = ∫

P±

±(F
[−1]

0
(p) − F

[−1]

1
(p)) ⋅ �f dp

P± =
{
p ∈ (0, 1) ∶ ±�bias

Q

p
(f |G) = ±(F−1

0
(p) − F−1

1
(p)) ⋅ 𝜍f > 0

}
.

BiasW1
(f |G) = Bias+

W1
(f |G) + Bias−

W1
(f |G).

Biasnet
W1
(f |G) = Bias+

W1
(f |G) − Bias−

W1
(f |G).

T0 = {t ∈ ℝ ∶ F1(t) < F0(t)}, T1 = {t ∈ ℝ ∶ F0(t) < F1(t)}

P0 = {p ∈ (0, 1) ∶ F
[−1]

1
(p) < F

[−1]

0
(p)}, P1 = {p ∈ (0, 1) ∶ F

[−1]

0
(p) < F

[−1]

1
(p)}.

0 ≤ �
T0

F0(t) − F1(t) dt = �
P1

F
[−1]

1
(p) − F

[−1]

0
(p) dp < ∞

0 ≤ �
T1

F1(t) − F0(t) dt = �
P0

F
[−1]

0
(p) − F

[−1]

1
(p) dp < ∞.

(10)Bias±
W1
(f |G) = ∫

P±

biasQ
p
(f |G) dp = ∫

T±

biasC
t
(f |G) dt

T± =
{
t ∈ ℝ ∶ ±�bias

C

t
(f |G) = ±(F1(t) − F0(t)) ⋅ 𝜍f > 0

}
.
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Proof Suppose first that favorable direction is ↑ . Since �|f (X)| < ∞ , we have 
�[|f (X)||G = k] < ∞ for k ∈ {0, 1} . Then by Lemma 4

Hence (10) follows from Definitions 2 and 3, and the above equality.
Next, by (10) and Lemma 17 we have

This proves (11). If the favorable direction is ↓ , the proof of (10) and (11) is similar.   ◻

In the context of classification, Theorem  2 states that the positive W1-based model 
bias is the integrated classifier bias over the set of thresholds t ∈ T+ where the classifiers 
Yt = 1{f (X>t} favor the non-protected class G = 0 . Similar remark holds for the negative 
model.

Furthermore, the property (10) of Bias±
W1

 allow one to use thresholds and quantiles 
interchangeably, which is beneficial in classification problems. For this reason, we 
choose W1 as our primary metric.

(11)
Biasnet

W1
(f |G) = ∫

1

0

b̃ias
Q

p
(f |G)dp = ∫

ℝ

b̃ias
C

t
(f |G) dt

=
(
𝔼[f (X)|G = 0] − 𝔼[f (X)|G = 1]

)
⋅ �f

Bias±
(
f |G

)
= ±∫

P
±

F
[−1]

f |G=0(p) − F
[−1]

f |G=1(p) dp = ±∫
T
±

Ff |G=1(t) − Ff |G=0(t) dt < ∞.

Biasnet(f |G) = Bias+(f |G) − Bias−(f |G)

= ∫
T
+

(
Ff |G=1(t) − Ff (X)|G=0(t)

)
dt − ∫

T
−

(
Ff |G=0(t) − Ff |G=1(t)

)
dt

= ∫
0

−∞

(
Ff |G=1(t) − Ff |G=0(t)

)
dt + ∫

∞

0

(
(1 − Ff |G=0(t)) − (1 − Ff |G=1(t))

)
dt

= �[f (X)|G = 0] − �[f (X)|G = 1].

Fig. 4  Positive and negative 
model biases for the trained 
XGBoost model (M2), �f = −1
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Example To understand the statement of Theorem 2 consider the following classification 
risk model ( �f = −1 ) with a predictor whose variance depends on the attribute G:

which leads to the presence of both positive and negative bias components in the score dis-
tribution. Figure 4 depicts the subpopulation score CDFs of the trained GBM classifier and 
illustrates the fact that the integrated positive quantile and classifier biases yield the posi-
tive model bias (green region), and a similar relationship holds for the negative model bias 
(purple region). The monotone transport flows are also depicted, showing the connection 
between the signed model bias and the favorability. Since �f = −1 , in the green region the 
non-protected class is transported towards the non-favorable direction, while in the purple 
region it is transported towards the favorable one.

On renormalization of model bias If f(X) is a classification score then 
BiasW1

(f |G) ∈ [0, 1] , which makes it easy to interpret the amount of the bias in the model 
distribution.

For regressors, however, the model bias can take any value in [0,∞) . One approach is 
to normalize the model bias as follows. First, pick an appropriate reference scale L > 0 
corresponding to the response variable. Given the scale L one can define a generalized 
Wasserstein-based model bias as follows:

where the link function g is strictly increasing and satisfies

Having this setup yields Biasg,W1
(f |G) = 1

L
BiasW1

(f |G) whenever the transport effort is 
within the scale of interest L, that is, when BiasW1

(f |G) ≤ L

2
 . In practice, for bounded dis-

tributions, one can pick L = suppPf (X) , while for unbounded distributions one can pick 
L = 2�(f (X)).

In our work, we develop the bias explanation methods to explain the actual amount of 
transport effort between subpopulations. The generalization to (12) is trivial.

3.4  Generalized group‑based parity model bias

In this section, we will generalize the notions of the Wasserstein-based bias to the case of 
generic group-based parity for protected attributes with multiple classes. We then apply the 
generalization to the equalized odds and the equal opportunity parity conditions.

Definition 8 Let f be a model, X ∈ ℝ
n predictors, G ∈ {0, 1,… ,K − 1} protected 

attribute, G = 0 non-protected class, and �f  the sign of the favorable direction of f. Let 
A = {A1,… ,AM} be a collection of disjoint subsets of the sample space Ω . Define events

X ∼ N(�, (1 + G)
√
�), � = 5

Y ∼ Bernoulli(f (X)), f (X) = ℙ(Y = 1�X) = �(� − X). (M2)

(12)Biasg,W1
(f |G) = g

(
1

L
BiasW1

(f |G)
)

g(x) =

{
x, x ∈ [0, 0.5]

gincreases to1.

Akm = {G = k} ∩ Am, k ∈ {0, 1,… ,K − 1}, m ∈ {1,… ,M}.
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 (i) We say that Yt = 1{f (X)>t} satisfies A group-based parity if 

 (ii) (W1,A)-based (weighted) model bias is defined by 

 where the weights satisfy 
∑K−1

k=1

∑M

m=1
wkm = 1.

 (iii) The positive and negative (W1,A) weighted model biases are defined by 

Lemma 5 Let G and A be as in Definition 8. The (W1,A) model bias is consistent with the 
generic parity criterion (13) as given by the following:

Similarly, the signed model biases can be expressed

where

Proof The claim follows directly from Theorem 4.   ◻

Example Suppose that the favorable direction is ↑ . Suppose that G ∈ {0, 1} and that the 
response variable Y ∈ {0, 1} . Let A = {{Y = 0}, {Y = 1}} . In that case, the group-based 
parity condition (13) reads

which is the equalized odds criterion; Hardt et al. (2015). Then apply the above Lemma.

(13)
ℙ(Yt = 1{�f=1}

|Akm) = ℙ(Yt = 1{�f=1}
|A0m), k ∈ {1,… ,K − 1}, m ∈ {1,… ,M}.

Bias
(w)

W1,A
(f |G) =

K−1∑

k=1

M∑

m=1

wkmBiasW1
(f |{A0m,Akm}), wkm ≥ 0,

Bias
(w)±

W1,A
(f |G) =

∑

k,m

wkmBias
±
W1
(f |{A0m,Akm}).

BiasW1,A
(f |G) =

∑

k,m

wkm ∫
1

0

|F[−1]

f |A0m
− F

[−1]

f |Akm

| dt

=
∑

k,m

wkm ∫
ℝ

|ℙ(Yt = 1{�f=1}
|Akm) − ℙ(Yt = 1{�f=1}

|A0m)| dt.

Bias
(w)±

W1,A
(f |G) ∶=

∑

k,m

wkm ∫
Pkm±

±
(
F
[−1]

f |A0m
(p) − F

[−1]

f |Akm

(p)
)
⋅ �f dp

=
∑

k,m

wkm ∫
Tkm±

|ℙ(Yt = 1{�f=1}
|Akm) − ℙ(Yt = 1{�f=1}

|A0m)| dt,

Pkm± =
{
p ∈ [0, 1] ∶ ±

(
F
[−1]

f |A0m
(p) − F

[−1]

f |Akm

(p)
)
⋅ 𝜍f > 0

}

Tkm± =
{
t ∈ ℝ ∶ ±

(
Ff |Akm

(t) − Ff |A0m
(t)
)
⋅ 𝜍f > 0

}
.

ℙ(Yt = 1|G = 0, Y = m) = ℙ(Yt = 1|G = 1, Y = m), m = 0, 1,
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3.5  Integral probability metrics for fairness assessment

When assessing fairness of model regressors, it is crucial to pick an appropriate metric 
because the model output is often used to make decisions. A wide class of candidate 
metrics could be integral probability metrics (IPMs). These provide a notion of “dis-
tance” between probability distributions and are designed as generalizations of the Kan-
torovich-Rubinstein variational formula. They can be defined directly using variational 
formulas (Müller 1997; Sriperumbudur et al. 2009). Specifically, IPMs can be defined 
by maximizing the difference of expected values over a function space A,

where �0, �1 ∈ P(X) and (X, d) is a metric space. For example, the Wasserstein metric can 
be obtained by taking A = {� ∶ [�]Lip ≤ 1} in (14), where [�]Lip is the Lipschitz constant 
of the function � ; The Dudley metric is obtained by taking A = {� ∶ [�]Lip + ‖�‖∞ ≤ 1} . 
Dropping the regularity of test functions leads to a discontinuous response to shifting of 
delta masses. For example, by setting A = {� ∶ ‖�‖∞ ≤ 1} , one obtains the total variation 
metric DTV . An interesting aspect of the above variational formula is that it can be gener-
alized to include a broader family of distances between probability distributions, namely 
divergences such as the Kullback-Leibler divergence; see Birrell et  al. (2020) for more 
information.

Thus, IPMs with regular test functions serve as good candidates for assessing the 
fairness of the regressor via formula (1). One of the interesting contenders is WA

∗ 
where A∗ ∶= {� ∶ ‖�‖∞ ≤ 1

2
, [�]Lip ≤ 1} , which is an equivalent metric to the Dudley 

metric and has the appealing property that its values are in the unit interval. WA
∗ pro-

vides meaning in fairness assessment, as it could be expressed via a supremum over 
all “agents” in the form of regular randomized classifiers that detect the differences 
between two probability subpopulations. Specifically, it can be shown that WA

∗ coin-
cides with the Drc metric introduced in Dwork et al. (2012) and discussed in Sect. 2.6.

Lemma 6 Let (X, d) be a metric space. Then Drc(�, �;DTV , d) = WA
∗ (�, �).

Proof See Appendix B.   ◻

Recall that Dwork et  al. (2012) established that the statistical parity bias of a ran-
domized classifier is bounded by the Drc distance between subpopulation input distri-
butions. In contrast, we focus on measuring and explaining the bias in the output of 
non-randomized regressors, including classification scores, for which the notion of sta-
tistical parity is not, in general, applicable. In particular, we assess the distance between 
regressor output subpopulations via the W1 metric. In general, any transport metric can 
be considered for this task, such as WA

∗ . Furthermore, we propose a framework that 
quantifies the contribution of predictors to that distance, which serves as a mechanism 
that pinpoints the main drivers to the regressor bias.

The lemma below illustrates the different behavior of the two metrics under scaling.

Lemma 7 Let d(x, y) be a norm on ℝn . Let T(x) = cx + x0 with c > 0 . Then

(14)WA(�0, �1) ∶= sup
�∈A

{

∫ �(x) �0(dx) − ∫ �(x) �1(dx)

}
,
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where �, � ∈ P1(ℝ
n;d) and dc(x, y) = cd(x, y).

Proof See Appendix B.   ◻

Notice that for large c the values of Drc with the dc norm saturate and approximate 
one, which is an upper bound for the metric. However, W1 is unbounded and the distance 
between the pushforward measures T#�, T#� scales linearly by c, which is an appealing 
property.

Dwork et al. (2012) establishes the connection between Drc and W1 under the assump-
tion that the subpopulation distributions are discrete and d ≤ 1 . In what follows, we 
prove a more general version of (Dwork et al. 2012, Theorem 3.3) that connects the two 
metrics and holds for all probability measures with bounded support.

Theorem 3 Let �, � ∈ P1(ℝ
n;d) have bounded supports and d(x, y) be a norm. Then

for any L > 0 such that supp(𝜇), supp(𝜈) ⊂ B(x∗,
L

2
;d) = {x ∶ d(x, x∗) ≤ L

2
}.

Proof See Appendix B.   ◻

When using Drc for fairness, the above theorem implies that saturation can be par-
tially avoided via scaling. For example, the rescaling factor can be chosen as the second 
moment of the two probability measures. However, in our paper we focus on the Was-
serstein metric because of its appealing scaling property.

4  Bias explanations

4.1  Relationship between model fairness and predictors

It is shown in Gordaliza et al. (2019) that the statistical parity bias of (non-randomized) 
classifiers can be bounded by the total variance distance between predictors subpopula-
tions, while the Wasserstein metric, in general, does not allow for such control (in the 
sense of a bound). In contrast to the bound in Gordaliza et al. (2019), W1-bias in predic-
tors can control the statistical parity bias of Lipschitz randomized classifiers as shown in 
Dwork et al. (2012), as well as the W1-regressor bias as shown by the following lemma.

Lemma 8 Let X, G, f be as in Definition 8. If f is Lipschitz continuous then

Proof The proof follows directly from the Kantorovich-Rubinstein variational formula.  
 ◻

Drc(T#�, T#�;DTV , d) = Drc(�, �;DTV , dc),
1

c
W1(T#�, T#�;d) = W1(�, �;d)

(15)
1

L
W1(�, � ;d) = Drc(�, �;DTV , d(1∕L))

(16)BiasW1
(f |X,G) ≤ [f ]LipBiasW1

(X|G).
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While the fairness of predictors as a bound is of theoretical importance, it provides little 
information on the contribution of each predictor to the model unfairness. This is because 
fairness of predictors is a sufficient requirement for fairness of the model, but not a neces-
sary one. In particular, a model can be slightly unfair while having wildly biased predic-
tors. For example, consider the data generating model

Note that BiasW1
(X|G) → ∞ as � → ∞ , while BiasW1

(f |X,G) = � for any 𝜏 > 0.
This pedagogical example motivates us to directly assess the contribution of predic-

tors to the model bias. To accomplish this, we design an interpretability framework that 
employs optimal transport theory in order to pinpoint the main drivers of the model bias. 
Information from these drivers can then be used for policy decision-making, regulatory-
compliant bias mitigation (Miroshnikov et al. 2021b), as well as in other settings.

4.2  Model interpretability

The bias explanations we develop in the next section make use of model explainers, whose 
objective is to quantify the contribution of each predictor to the value of f(x). Several meth-
ods of interpreting ML model outputs have been designed and used over the years. Some 
notable ones are Partial Dependence Plots (PDP) (Friedman 2001) and SHAP values (Lun-
dberg and Lee 2017).

Partial dependence plots PDP marginalizes out the variables whose impacts to the out-
put are not of interest, quantifying an overall impact of the values of the remaining features.

Let X ∈ ℝ
n be predictors, XS with S ⊆ {1, 2,… , n} a subvector of X, and −S the comple-

ment set. Given a model f, the partial dependence plot of f on XS is defined by

where we abuse the notation and ignore the variable ordering in f.
Shapley additive explanations In its original form the Shapley values appear in the 

context of cooperative games; see Shapley (1953); Young (1985). A cooperative game 
with n players is a super-additive set function v that acts on N = {1, 2,… , n} and satis-
fies v(∅) = 0 . Shapley was interested in determining the contribution by each player to the 
game value v(N). It turns out that under certain symmetry assumptions the contributions 
are unique and they are called Shapley values; furthermore, the super-additivity assump-
tion can in principle be dropped (uniqueness and existence still hold).

It is shown in Shapley (1953) that there exists a unique collection of values {�i}
n
i=1

 sat-
isfying the axioms of symmetry, efficiency, and law of aggregation, ((A1)-(A3) in Shapley 
(1953)), it is given by

The values provide a disaggregation of the value v(N) of the game into n parts that repre-
sent a contribution to the worth by each player: 

∑n

i=1
�i[v] = v(N).

The explanation techniques explored in Štrumbelj and Kononenko (2010) and Lun-
dberg and Lee (2017) utilize cooperative game theory to compute the contribution of 

(17)X1 ∼ N(�G, �), X2 ∼ N(0, �), Y = f (X) =
�

�
X1 + X2.

(18)PDPS(x;f ) = �[f (xS,X−S)] ≈
1

N

N∑

j=1

f (xS,X
(j)

−S
),

(19)𝜑i[v] =
∑

S⊆N�{i}

s!(n − s − 1)!

n!
[v(S ∪ {i}) − v(S)], s = |S|, n = |N|.
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each predictor to the model value. In particular, given a model f, Lundberg and Lee 
(2017) consider the games

with

The games defined in (20) are not cooperative since they do not satisfy the condition 
v(∅) = 0 . However, by setting �0 = �[f (X)] , the values satisfy the additivity property:

Throughout the text when the context is clear we suppress the explicit dependence of 
v(S; X, f) on X and f. Furthermore, we will refer to values �i[v

ME] and �i[v
CE] as SHAP val-

ues and abusing the notation we write

Conditional and marginal games In our work, we refer to the games vCE and vME as 
conditional and marginal, respectively. If predictors X are independent, the two games 
coincide. In the presence of dependencies, however, the games are very different. Roughly 
speaking, the conditional game explores the data by taking into account dependen-
cies, while the marginal game explores the model f in the space of its inputs, ignoring 
the dependencies. Strictly speaking, the conditional game is determined by the probability 
measure PX , while the marginal game is determined by the product probability measures 
PXS

⊗ PX−S
 , S ⊂ N as stated below.

Lemma 9 (stability) The SHAP explanations have the following properties: 

 (i) ‖�(X;f , vCE)‖L2(ℙ) ≤ ‖f‖L2(PX )
.

 (ii) ‖�(X;f , vME)‖L2(ℙ) ≤ C‖f‖
L2(P̃X )

 , with �PX =
1

2n

∑
S⊂N PXS

⊗ PX−S
.

Proof By the properties of the conditional expectation and (19) we have

Since � is linear, the map in (i) is a bounded, linear operator with the unit norm. This 
proves (i).

By (19) and (20) we have

where C = C(n) is a constant that depends on n. This proves (ii).   ◻

To clarify the notation, we let L2(P̃X) denote the space of functions defined on ℝn such 
that

(20)vCE(S;X, f ) = �[f |XS], vME(S;X, f ) = �[f (XS,X−S)]|xS=XS

vCE(∅;X, f ) = vME(∅;X, f ) = �[f (X)].

n∑

i=0

�i[v(⋅ ;X, f )] = f (X), v ∈ {vCE, vME}.

�i(X;f , v) = �i[v(S;X, f )], v ∈ {vCE, vME}.

‖𝜑i(X;f , v
CE)‖L2(Ω) ≤

�

S⊂N�{i}

s!(n − s − 1)!

n!
‖�[f (X)�XS]‖L2(Ω) ≤ ‖f‖L2(PX )

.

‖�i(X;f , vME)‖L2(Ω) ≤ maxs∈{0,…,n−1}
s!(n − s − 1)!

n!
∑

S⊂N∖{i}
‖f‖L2(PXS⊗PX−S )

≤ C‖f‖L2(P̃X ).
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where as before we ignore the variable ordering in f, and for S = ∅ we assign 
PX∅

⊗ PX = PX.
We should point out that under dependencies the marginal explanation map (ii) in 

Lemma 9 is in general not continuous in L2(PX) . Hence the algorithm that produces mar-
ginal explanations may fail to satisfy the stability bounds in the sense discussed in Kearns 
and Ron (1999); Bousquet and Elisseeff (2002). For a more general version of the above 
proposition see Miroshnikov et al. (2021a).

In general, SHAPs are computationally intensive to evaluate due to the different com-
binations of predictors that need to be considered; in addition, computing �[vCE] is chal-
lenging when the predictor’s dimension is large in light of the curse of dimensionality; see 
Hastie et al. (2016). Lundberg et al. (2019) created a fast method called TreeSHAP but it 
can only be applied to ML algorithms that incorporate tree-based techniques. The algo-
rithm evaluates �[�] for the game � that can be chosen as either one that is based upon tree 
paths and resembles vCE , or the marginal game vME . To understand the difference between 
the two games, see Janzing et  al. (2019); Sundararajan and Najmi (2019); Chen et  al. 
(2020); Miroshnikov et al. (2021a).

4.3  Bias explanations of predictors

In this section, given a model, we define the bias explanation (or contribution) of each pre-
dictor. An extension to groups of predictors maybe found in Sect. 4.6.

In what follows we will be using the following notation. Given predictors 
X = (X1,X2,… ,Xn) and a model f, a generic single feature explainer of f that quantifies the 
attribution of each predictor Xi to the model value f(X) is denoted by

For example, a simple way of setting up an explainer Ei is by specifying each component 
via a conditional or marginal expectation Ei(X;f ) = v({i};X, f ) , v ∈ {vCE, vME}.

A more advanced way of computing single feature explanations is via the Shapley value 
E(X;f ) = �[v(⋅;X, f )] , v ∈ {vCE, vME} . For more details on appropriate game values and 
their properties see Miroshnikov et al. (2021a).

Definition 9 Let X ∈ ℝ
n be predictors, f a model, G ∈ {0, 1} the protected attribute, G = 0 

the non-protected class, and �f  the sign of the favorable direction of f. Let E(X;  f) be an 
explainer of f that satisfies �

[
|E(X;f )|

]
< ∞.

• The bias explanation of the predictor Xi is defined by 

• The positive bias and negative bias explanations of the predictor Xi are defined by 

∫ f 2(x)�PX(dx) ∶=
1

2n

∑

S⊂N
∫ f 2(xS, x−S)[PXS

⊗ PX−S
](xS, x−S) < ∞,

E(X;f ) = (E1(X;f ),E2(X;f ),… ,En(X;f )).

�i(f |X,G;Ei) = W1(Ei(X;f )|G = 0,Ei(X;f )|G = 1) = ∫
1

0

|F[−1]

Ei|G=0
− F

[−1]

Ei|G=1
| dp.
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 where 

 In this case the Xi bias explanation is disaggregated as follows: 

• The Xi net bias explanation is defined by 

• The classifier (or statistical parity) bias of the explainer Ei for a threshold t ∈ ℝ is 
defined by 

By design the contribution �+
i

 measures the positive contribution to the total model 
bias, not the positive one. In particular, it measures the contribution to the increase in the 
positive flow and the decrease to the negative one. The meaning of �−

i
 is similar. To better 

understand their meaning, consider the following data generating model:

where X1,X2 are independent. Note that BiasW1
(f |X,G) = 0 , while the bias explanations 

are �+
1
= � , �−

1
= 0 , �+

2
= 0 , �−

2
= � for either model explainer discussed in this section. 

Note also that both positive and negative model biases are zero. The positive contribution 
�+
1
= � measures how much in total is added to the positive model bias and subtracted from 

the negative one. A similar discussion holds for �−
i

 . Thus, the amount that X1 contributes 
to the positive bias is offset by the amount that X2 resists to its increase. This leads to zero 
positive model bias. A similar discussion applies to the negative model bias.

Lemma 10 Let X, f, G, Ei(X;f ) , and �f  be as in the definition 9. Then

Proof Similar to the proof of Theorem 2 with the assumption �Ei
= �f  .   ◻

Observe that the bias explanations for a classification score always lie in the unit 
interval.

Lemma 11 Let f be a classification score and G ∈ {0, 1} the protected attribute. 
Let the explainer Ei be either v({i};X, f ) or �i[v(⋅;X, f )] , where v ∈ {vCE, vME} . Then 
�i, �

−
i
, �+

i
∈ [0, 1].

Proof The lemma follows from the fact that f ∈ [0, 1] and the definition of explainer val-
ues.   ◻

�±
i
(f |X,G;Ei) = ∫

Pi±

(F
[−1]

Ei|G=0
− F

[−1]

Ei|G=1
) ⋅ �f dp

Pi± = {p ∈ [0, 1] ∶ ±(F
[−1]

Ei|G=0
− F

[−1]

Ei|G=1
) ⋅ 𝜍f > 0}.

�i(f |X,G;Ei) = �+
i
(f |X,G;Ei) + �−

i
(f |X,G;Ei).

�net
i
(f |X,G;Ei) = �+

i
(f |X,G;Ei) − �−

i
(f |X,G;Ei).

b̃ias
C

t
(Ei|G) =

(
FEi|G=1(t) − FEi|G=0(t)

)
⋅ �f .

(21)f (X) = X1 + X2, X1 = N(� + �G, �), X2 = N(� − �G, �)

(22)�net(f |X,G;Ei) =
(
�[Ei(X;f )|G = 0] − �[Ei(X;f )|G = 1]

)
⋅ �f .
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The explainer Ei that appears in Definition 9 is a generic one. In the examples that fol-
low we chose to work with explainers based on marginal SHAPs because of the ease of 
computation. Note that when predictors are independent then the two types of explanations 
coincide; for the case when dependencies are present see the discussion at the end of the 
section.

Intuition. For a given model f and the explainer Ei the explanation �i quantifies the W1 
distance between the distributions of the explainer Ei|G = 0 and Ei|G = 1 , that is, this 
value is an assessment of the bias introduced by the predictor Xi . The value �i is the area 
between the corresponding subpopulation explainer CDFs FEi|G=k , k ∈ {0, 1} , similar to the 
area depicted in Fig. 4. The value �+

i
 represents the bias across quantiles of the explainer Ei 

for which the predictor Xi favors the non-protected class G = 0 and �−
i

 represents the bias 
across quantiles for which Xi favors the protected class G = 1 . The �net

i
 assesses the net con-

tribution across different quantiles and represents an explanation that allows one to assess 
whether on average the predictor Xi favors class G = 0 or class G = 1 ; see Lemma 10.

In what follows we consider several simple examples to get more intuition behind the 
bias explanation values as well as discuss their additivity or the lack thereof. To avoid com-
plex notation when the context is clear we suppress the dependence of the bias explana-
tions on X and the explainer E.

Definition 10 Let f, X, G, and Ei be as in Definition 9.

• We say that Ei strictly favors class G = 0 (G = 1) if �−
i
(f |G;Ei) = 0 ( �+

i
(f |G;Ei) = 0).

• We say that Xi has mixed bias explanations if 𝛽±
i
(f |G;Ei) > 0.

Offsetting. Since each predictor may favor one class or the other, the predictors may 
offset each other in terms of the bias contributions to the model bias. To understand the 
offsetting effect consider a binary classification risk model ( �f = −1 ) with two predictors:

where � = 5 , and {Xi|G = k}i,k are independent and ℙ(G = 0) = ℙ(G = 1) . We next train 
logistic regression score f̂ (X) , with 𝜍f̂ = −1 , and choose the explainer to be Ei = PDPi . By 
construction the explanation E1 of the predictor X1 strictly favors class G = 0 , while that of 
X2 strictly favors class G = 1 . Moreover,

X1 ∼ N(� + G, 1), X2 ∼ N(� − G, 1)

Y ∼ Bernoulli(f (X)), f (X) = ℙ(Y = 1|X) = logistic(2� − X1 − X2) (M3)

Fig. 5  Model and PDP biases for the model (M3), 𝜍f̂ = −1
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Combining the two predictors at the model level leads to bias offsetting. By construction 
the resulting model bias is BiasW1

(f |G) = 0 . Figure  5 displays the CDFs for the trained 
score subpopulations f̂ |G = k and the corresponding explainers Ei|G = k , which illustrates 
the offsetting phenomena numerically.

Another important point we need to make is that the equality �net
i

= 0 does not in gen-
eral imply that the predictor Xi has no effect on the model bias. This is a consequence of 
(22). Moreover, predictors with mixed bias might amplify the model bias as well as offset 
it. To understand how mixed bias predictors interact at the level of the model bias consider 
the following risk classification model ( �f = −1).

where � = 5 , and {Xi|G = k}i,k are independent and ℙ(G = 0) = ℙ(G = 1) . As before we 
train a logistic regression score f̂  , with 𝜍f̂ = −1 , and choose Ei = PDPi . By construction, 
the true classification score f satisfies �net

i
(f |G) = 0 for each predictor Xi . Furthermore, the 

CDFs of explainers satisfy

for any threshold t ≠ 0.5 . Combining the two predictors at the level of the model leads to 
amplifying the positive and negative model biases and hence the model bias itself. Figure 6 
displays the CDFs for the trained score subpopulations f̂ |G = k and the corresponding 

𝛽1(f̂ |G;E1) = 𝛽+
1
(f̂ |G;E1) = 𝛽−

2
(f |G;E2) = 𝛽1(f̂ |G;E2) ≈ 0.17.

X1 ∼ N(�, 1 + G), X2 ∼ N(�, 1 + G)

Y ∼ Bernoulli(f (X)), f (X) = ℙ(Y = 1|X) = logistic(2� − X1 − X2). (M4)

(FEi(X,f )|G=0(t) − FEi(X,f )|G=1(t)) ⋅ sgn(t − 0.5) > 0

Fig. 6  Model and PDP biases for the model (M4), 𝜍f̂ = −1

Fig. 7  Model and PDP biases for the model (M5), 𝜍f̂ = −1
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explainers Ei(f̂ )|G = k . The numerics illustrate that as long as the regions for positive and 
negative bias of mixed predictors agree, when combined they will increase the model bias.

If the regions of positive and negative bias for two predictors do not agree, then offsetting 
will happen. To see this, let us modify the above example as follows:

By construction, �net
i
(f |G) = 0 for each predictor. However, the region of thresholds where 

the explainer E1(f ) favors class G = 0 coincides with the region where E2(f ) favors class 
G = 1 , and the same holds for the two complimentary regions. This leads to bias offsetting 
so that BiasW1

(f |G) = 0 . The numerical results for this example are displayed in Fig. 7.
Bias explanation plots. Given a machine learning model f, predictors X ∈ ℝ

n , protected 
attribute G, and the explainers Ei , the corresponding bias explanations

are sorted according to any desired entry in the 4-tuple and then displayed in that order. 
This plot is called Bias Explanation Plot (BEP).

To showcase how BEP works, consider a classification risk model ( �f = −1):

X1 ∼ N(�, 2 − G),X2 ∼ N(�, 1 + G)

Y ∼ Bernoulli(f (X)), f (X) = ℙ(Y = 1|X) = logistic(2� − X1 − X2). (M5)

{
(�i, �

+
i
, �−

i
, �net

i
)(f |G;Ei)

}n

i=1

� = 5, a =
1

20
(10,−4, 16, 1,−3)

X1 ∼ N(� − a1(1 − G), 0.5 + G), X2 ∼ N(� − a2(1 − G), 1)

X3 ∼ N(� − a3(1 − G), 1), X4 ∼ N(� − a4(1 − G), 1 − 0.5G)

X5 ∼ N(� − a5(1 − G), 1 − 0.75G)

Y ∼ Bernoulli(f (X)), f (X) = ℙ(Y = 1�X) = logistic(
∑

iXi − 24.5). (M6)

Fig. 8  Model bias and SHAP explainer biases for trained XGBoost (M6), 𝜍f̂ = −1
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where {Xi|G = k}i,k are independent and ℙ(G = 0) = ℙ(G = 1) . We next generate 20, 000 
samples from the distribution (X, Y) and train a regularized XGBoost model which pro-
duces the score f̂  . Figure 8 displays the CDFs of the subpopulation scores f̂ |G = k (top 
left), and those of the explainers Ei = 𝜑i(f̂ , v

ME) . We see that there is positive model bias in 
the plot showing the CDFs, thus class G = 0 is favored. For the predictors, the bias expla-
nation plots show that X1,X4 and X5 have mixed biases that arise due to differences in sub-
population variances of predictors, while the bias in X2 strictly favors class G = 1 and the 
bias in X3 favors G = 0.

The numerically computed model bias and its disaggregation are given by

The bias explanations are then computed as the Earth Mover distance, and its disaggrega-
tion, between the distributions of subpopulation explainers Ei(f̂ )|G = k . The bias explana-
tions are given by

Figure 9 displays the above bias explanations for each predictor in increasing order by total 
bias (left), positive bias (middle), and ranked net bias (right), respectively. Clearer informa-
tion can be obtained from these plots compared to Fig. 8. For example, one can now see 
how mixed X1,X4,X5 are and how the positive and negative parts compare.

Relationship with model bias The positive and negative bias explanations provide an 
informative way to determine the main drivers for positive and negative bias among predic-
tors, which can be done by ranking the bias attributions. However, though informative, the 
positive and negative bias explanations are not additive. That is, in general

The main reason for lack of additivity is the presence of bias interactions which happen at 
the level of quantiles, or thresholds. The bias explanations by design compute the contri-
bution to the cost of transport but do not track how mass is transported; see Figs. 6, 7. To 

(BiasW1
,Bias+

W1
,Bias−

W1
,Biasnet

W1
)(f̂ |G) = (0.1533, 0.1533, 0, 0.1533)

(�1, �
+
1
, �−

1
, �net

1
) = (0.0860, 0.0799, 0.0061, 0.0738)

(�2, �
+
2
, �−

2
, �net

2
) = (0.0328, 0, 0.0328,−0.0328)

(�3, �
+
3
, �−

3
, �net

3
) = (0.1100, 0.1100, 0, 0.1100)

(�4, �
+
4
, �−

4
, �net

4
) = (0.0289, 0.0169, 0.0119, 0.0050)

(�5, �
+
5
, �−

5
, �net

5
) = (0.0584, 0.0127, 0.0457,−0.0330)

Bias±
W1
(f̂ �G) ≠ ∑n

i=1
𝛽±
i
(f̂ �G;Ei).

Fig. 9  Bias explanations ranked by �i and �+
i

 and ranked �net
i

 for the model (M6), 𝜍f̂ = −1



3337Machine Learning (2022) 111:3307–3357 

1 3

better understand the bias interactions, motivated by Štrumbelj and Kononenko (2010), we 
introduce a game theoretic approach in Sect. 4.5 that yields additive bias explanations.

For additive models with independent predictors, however, we have the following result.

Lemma 12 Let X ∈ ℝ
n be predictors. Let the model f be additive, that is, f (X) =

∑n

i=1
fi(Xi) . 

Let an explainer Ei be either vME({i};X, f ) or �i[v
ME(⋅;X, f )] . Let {�i, �+i , �

−
i
, �net

i
}i be the 

bias explanations of (X, f). Then

If X are independent then the lemma holds for Ei in the form vCE({i};X, f ) or 
�i[v

CE(⋅;X, f )].

Proof Suppose that Ei(X;f ) = vME({i};X, f ) . Then, in view of the additivity of f, we have

and hence by Lemma 10 we have

Summing up the net bias explanations gives

Suppose that Ei(X;f ) = �i(X;f , v
ME) . Since {Xi}

n
i=1

 are independent and f is additive,

Since a shift in the distribution does not affect the bias, the bias explanation based on 
�i[v

ME] coincide with that of vME . This together with (23) and the independence assumption 
proves the lemma.   ◻

Example Let f be as in Lemma 12. Suppose that f is either positively biased or negatively 
biased, that is, BiasW1

(f |G) = (1 − �) ⋅ Bias+
W1
(f |G) + � ⋅ Bias−

W1
(f |G) with � ∈ {0, 1} . Then

4.4  Stability of marginal and conditional bias explanations

Under dependencies the marginal and conditional bias explanations differ in their 
description. The conditional bias explanations rely on the joint distribution (X, Y) and 
encapsulate the interaction between the bias in predictors and the response variable, 
while the marginal explanations encapsulate the interaction between bias in predictors 

Biasnet
W1
(f |G) = Bias+

W1
(f |G) − Bias−

W1
(f |G) =

n∑

i=1

(
�+
i
− �−

i

)
=

n∑

i=1

�net
i
.

vME({i};X, f ) = fi(Xi) − �[fi(Xi)] + �[f (X)]

�net
i
(f |G;vME) =

(
�[fi(Xi)|G = 0] − �[fi(Xi)|G = 1]

)
⋅ �f .

(23)

∑

i

�net
i
(f |G;vME) =

∑

i

(
�[fi(Xi)|G = 0] − �[fi(Xi)|G = 1]

)
⋅ �f

=
(
�[f (X)|G = 0] − �[f (X)|G = 1]

)
⋅ �f = Biasnet

W1
(f |G).

�i(X;f , v
ME) = �i(X;f , v

CE) = fi(Xi) − �[fi(Xi)] = vME({i};X, f ) + �[f (X)].

BiasW1
(f |G) = (−1)�

n∑

i=1

(�+
i
− �−

i
).
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and the structure of the model, that is, the map x → f (x) ; for details see Miroshnikov 
et al. (2021a). In particular, we have the following result.

Theorem  4 (stability) Let X ∈ ℝ
n be predictors. Let Ei = �i[v] , v ∈ {vCE, vME} . The bias 

explanations based on the marginal and conditional Shapley values satisfy the following: 

 (i) For all f , g ∈ L2(PX) , we have 

 (ii) For all f , g ∈ L2(P̃X) , we have 

Proof Take f , g ∈ L2(PX) . Take i ∈ {1, 2,… , n} and set

Let �k = PA|G=k , �k = PB|G=k , and � = P(A,B)|G=k for k ∈ {0, 1} . By construction 
�k ∈ Π(�k, �k) and hence

where C = maxk∈{0,1}
{

1

ℙ(G=k)

}
 and the last inequality follows from Lemma 9(i).

Then, using the triangle inequality and the inequality above, we obtain

We next establish the bounds for the net-bias explanations. Assuming �f = �g and using 
Lemma 10 we obtain

Combining the above inequalities and using the fact that �± =
1

2
(� ± �net) gives (i). To 

prove (ii), we follow the same steps as above and use Lemma 9(ii).   ◻

��±
i
(f �X,G,�i[v

CE]) − �±
i
(g�X,G,�i[v

CE])� ≤ C‖f − g‖L2(PX )
.

��±
i
(f �X,G,�i[v

ME]) − �±
i
(g�X,G,�i[v

ME])� ≤ C‖f − g‖L2(P̃X )
.

A = �i[v
CE(⋅;X, f )], B = �i[v

CE(⋅;X, g)].

�

k∈{0,1}

W1(�k, �k) ≤
�

k∈{0,1}
� �x1 − x2�P(A,B)�G=k(dx1, dx2)

≤ �

k∈{0,1}

𝔼[�A − B�G = k]

≤ C‖A − B‖L2(ℙ) ≤ C‖f − g‖L2(PX )

��i(f �X,G,�i[v
CE]) − �i(g�X,G,�i[v

CE])� = �W1(�1,�2) −W1(�1, �2)�
≤ W1(�1, �1) +W1(�2,�2)

≤ C‖f − g‖L2(PX )
.

��net
i
(f �X,G,�i[v

CE]) − �net
i
(g�X,G,�i[v

CE])�
= ��[A�G = 0] − �[A�G = 1] − �[B�G = 0] + �[B�G = 1]�

≤ �

k∈{0,1}

�[�A − B��G = k]

≤ C‖A − B‖L2(P) ≤ C‖f − g‖L2(PX )
.
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Remark 4 Proposition 4 implies that the map f → �±
i
(f |X,G,�i[v

CE]) is continuous in 
L2(PX) and the map f → �±

i
(f |X,G,�i[v

ME]) is continuous in L2(P̃X).

4.5  Shapley‑bias explanations

As discussed in Sect.  4.2, the non-additive bias explanations measure the positive and 
negative contributions to the model bias, but not to each flow. To this end, we measure 
signed contributions to each positive and negative model bias by employing a game-theo-
retic approach, which has been explored in numerous works in the area of machine learn-
ing interpretability; see Lipovetsky and Conklin (2001); Štrumbelj and Kononenko (2010); 
Lundberg and Lee (2017). In the spirit of Štrumbelj and Kononenko (2010), we define a 
cooperative game in which the players are predictors and the payoff is their bias contribu-
tions and then compute corresponding additive Shapley values.

Group explainers. Let X ∈ ℝ
n be predictors and f a model. A generic group explainer of 

f is denoted by

We assume that E(S;  X,  f) quantifies the attribution of each predictor XS with 
S ⊂ {1, 2,… , n} to the model value f(X) and satisfies

Relatively straightforward group explainers can be constructed using conditional and mar-
ginal game or game value. In particular, for a nonempty S ⊂ {1, 2,… , n} one can set a 
trivial group explainer as

Definition 11 Let X,G, f , �f  be as in Definition 9. Let E(⋅ ;X, f ) be a group explainer.

• Cooperative bias-game vbias associated with X, G, f and E is defined by 

vbias(S) is the minimal cost of transporting E(S)|G = 0 to E(S)|G = 1 and vice versa.
• Under optimal transport the positive bias-game and negative bias-game, respectively, 

are defined by: 

vbias+(S) is the effort of transporting E(S)|G = 0 in the non-favorable direction.
vbias−(S) is the effort of transporting E(S)|G = 0 in the favorable direction.

  The above values are specified in Lemma 2 for q = 1.
• Net bias-game is defined by 

• The Shapley-bias explanations of (X, f) based on the group explainer E are defined by 

E(S;X, f ), S ⊂ {1, 2,… , n}.

E(∅,X, f ) = �[f (X)], E({1, 2,… , n};X, f ) = f (X).

(24)v(S;X, f ) or �S[v] = �S(X;f , v) =
∑

i∈S

�i(X;f , v) where v ∈ {vCE, vME}.

vbias(S;G,E(⋅;X, f )) = W1(E(S;X, f )|G = 0,E(S;X, f )|G = 1), S ⊂ {1, 2,… , n}.

vbias,net = vbias+ − vbias+.
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 where � denotes the Shapley value (19) and where we suppressed the dependence on 
X and E.

Unlike the regular bias explanations which by construction are always non-negative, the 
Shapley-bias explanations are signed, that is, they can be both positive and negative.

Lemma 13 Given (X, f) and the explainer E, the Shapley bias-explanations defined in (25) 
satisfy

and, thus,

Proof The result follows from Shapley (1953) and the properties of the W1-based model 
bias.   ◻

For Shapley-bias explanations based on the conditional and marginal games we have the 
following.

Theorem 5 Given (X, f), let the conditional and marginal bias games be defined by

The conditional and marginal Shapley-bias explanations have the following properties: 

 (i) ��bias±
i

(f �G,�S[v
CE]) − �bias±

i
(g�G,�S[v

CE])� ≤ C‖f − g‖L2(PX )
.

 (ii) ��bias±
i

(f �G,�S[v
ME]) − �bias±

i
(g�G,�S[v

ME])� ≤ C‖f − g‖
L2(P̃X )

.

Proof The proof follows the same steps as in Theorem 4.   ◻

(25)�bias(f |G) = �[vbias], �bias±(f |G) = �[vbias±], �bias,net(f |G) = �[vbias,net]

n∑

i=1

�bias
i

= BiasW1
(f |G),

n∑

i=1

�bias±
i

= Bias±
W1
(f |G),

n∑

i=1

�bias,net

i
= Biasnet

W1
(f |G)

�[vbias] = �[vbias+] + �[vbias−]

�[vbias,net] = �[vbias+] − �[vbias−].

vbias,CE(S;X, f ) = vbias(S ;�S[v
CE(⋅;X, f )])

vbias,ME(S;X, f ) = vbias(S ;�S[v
ME(⋅;X, f )])

Fig. 10  Additive Shapley-bias explanations based on the game vbias,ME for the model (M6)
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Example Applying the above methodology to f̂  and G of the model (M6) we compute 
the Shapley-bias explanations of predictors Xi , i ∈ {1, 2,… , 5} using the group explainer 
E(S) = �S[v

ME] defined in (24) for the construction of the bias-game.
The results are displayed in Fig. 10. On the left, the explanations are plotted in increas-

ing order of the positive bias, and in the middle plot by the total bias, while the right plot 
contains the information on all four types of biases. By comparing these to the non-addi-
tive bias explanation plots in Fig. 9 we see how the signed values provide further informa-
tion on how the predictors contribute to the model bias.

For example, from (M6) we have that X3 , as a contributor to the model f̂  , favors the 
class G = 0 since 𝛽+

3
> 0 and �−

3
= 0 . Recall that �+

3
 captures the total contribution to the 

increase of the positive model bias plus the decrease (or resistance) to the negative model 
bias. The Shapley-bias explanations, however, allow one to estimate separately the (signed) 
contributions to both positive and negative model bias.

In particular, the left plot of Fig. 10 informs us that X3 in f̂  contributes to the increase 
of the positive model bias (green), measuring the contribution to pushing the subpopula-
tion of the non-protected class towards the favorable direction, while its contribution to the 
negative model bias (blue) is negative, which indicates the resistance towards the subpopu-
lation’s pull in the non-favorable direction.

4.6  Group Shapley‑bias explanations

It might be important for a practitioner to understand the main factors within the data itself 
that contribute to the bias in the response variable and not how the model structure contributes 
to it. To do this, one needs to generate bias explanations based on the conditional game vCE . 
The conditional game, when predictors are independent, coincides with the marginal game 
and the conditional expectations �[f (X)|XS] can be computed through averaging with error 
control. However, under dependencies, the conditional expectations and corresponding Shap-
ley-bias explanations are difficult to compute in light of the curse of dimensionality.

Another important aspect to consider is that highly dependent predictors carry similar 
information. For instance, in the case where a group of predictors is represented via a smaller 
collection of latent variables, the latent variable explanations are spread out among the pre-
dictors in that group; see Chen et al. (2020). Under dependencies, for practical and business 
purposes, one may want to explain the information carried by the entire group rather than the 
predictors themselves.

The two issues mentioned above can be addressed simultaneously by adapting the ideas 
from Aas et al. (2020); Miroshnikov et al. (2021a). In particular, grouping predictors based on 
dependencies and utilizing specially-designed group explainers to compute the contribution 
of the group help unite the marginal and conditional approaches. Therefore, applying similar 
techniques, one can approximate the conditional Shapley-bias explanations of weakly inde-
pendent groups using the marginal approach, which only requires averaging over a small data-
set. Furthermore, grouping allows one to reduce complexity.

In what follows we adapt the techniques from Miroshnikov et al. (2021a) to construct group 
Shapley-bias explanations. To this end, we first introduce required notation. Let X ∈ ℝ

n and 
{Sj}

m
j=1

 be disjoint sets that partition the set of the predictors’ indexes,

(26)N = {1, 2,… , n} =
⋃m

j=1
Sj, P = {S1, S2,… , Sm},
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so that XS1
,XS2

,… ,XSm
 form weakly independent groups such that within each group the 

predictors share significant amount of mutual information. Given a cooperative game v on 
N, we define the quotient game by

By design, vP(A) is played by the groups, viewing the elements of the partition as players.

Definition 12 Given X, f, G as in Definition (9), and the partition P as in 26.

• The conditional and marginal group bias-games are defined by 

• The corresponding Shapley-bias explanations of {XSj
}m
j=1

 are then defined by 

Lemma 14 Given X, f ,G,P as in Definition 12. If {XSj
}m
j=1

 are independent, then

Consequently,

Proof By independence, we have vME,P = vCE,P . Hence by (27) we obtain

and this yields (28). The stability argument can be carried out similarly to Lemma 4.   ◻

Similar construction is used to compute positive and negative bias explanations �bias+,P

Sj
 

and �bias−,P

Sj
 , respectively.

Remark 5 The importance of equality (28) is that the expression on the right-hand side can 
be computed via averaging using a dataset with O(�−2) samples for a given error tolerance 
� . This makes the computation of the conditional explanation feasible. Furthermore, the 
complexity of computations becomes O(2m) where m is the number of independent groups. 
For example, given a classification score and X ∈ ℝ

100 , having 100 predictors split into 10 
independent groups, it is sufficient to use a dataset with 10000 samples in order to compute 
conditional group Shapley-bias explanations of a classification score with error tolerance 
� = 0.01 and complexity O(210 ⋅ 100002) , which is feasible and easily parallelizable. If the 
number of independent groups is still large the above technique can modified to incorpo-
rate recursive groupings.

vP(A) = v
�⋃

j∈U Sj
�
, A ⊂ M = {1, 2,… ,m}.

(27)vbias
P

(A;X,G, f , v) = W1

(
vP(A)|G = 0, vP(A)|G = 1

)
, v ∈ {vCE, vME}.

�bias,P

Sj
(f |X,G;v) = �j[v

bias
P

(⋅ ;v)], v ∈ {vCE, vME}.

(28)�bias,P

Sj
(f |X,G;vCE) = �bias,P

Sj
(f |X,G;vME), Sj ∈ P.

��bias,P

Sj
(f �X,G;v) − �bias,P

Sj
(g�X,G;v)� ≤ C‖f − g‖L2(PX )

, v ∈ {vCE, vME}.

vbias
P

(A;vCE) = vbias
P

(A;vME), A ⊂ M
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5  On the application of the framework

5.1  Bias mitigation under regulatory constraints

In this section, we will discuss how the fairness interpretability framework can be 
used for real-world applications in financial institutions that work under regulatory 
constraints.

An operational flow for model development in many FIs may consists of the follow-
ing stages: (1) Model training, (2) Fair Lending Compliance governance review, and (3) 
Production, which includes model prediction and decision-making steps. Steps 1 and 3 are 
carried out by quantitative departments, while step 2 by the dedicated Compliance Office 
(CO), a department separate from business. The CO provides oversight to the company’s 
compliance with federal and state regulations.

FIs are explicitly prohibited from collecting some protected information on customers 
such as race and ethnicity (apart from mortgage lending), as stated by the ECOA. Further-
more, protected attributes cannot be used in training or inference. However, proxy informa-
tion on the protected attribute such as the one derived from Bayesian Improved Surname 
and Geocoding (BISG) is allowed to be used by the compliance office solely for fairness 
analysis (Elliot et al. 2009). Proxy information, however, must remain within the compli-
ance office and the business does not (and should not) have access to the proxy data.

For fairness assessment, the CO carries out the bias assessment step. The CO can deter-
mine the main drivers contributing to model bias using our method and subsequently uti-
lize bias mitigation methods. The bias mitigation step can include model postprocessing. 
However, in order to adhere to regulations, a post-processed model must not utilize the 
proxy attribute G̃ or any information on the joint distribution (X, G̃) , such as probabilities 
ℙ(G̃|X) . The reasons for that are a) in the production step one can only have access to X, 
and b) a post-processed model is shared with business units that should be prevented from 
inferring the protected attribute from X.

Some rudimentary techniques for bias mitigation include recommendations on which 
predictors to drop from training or model post-processing via nullifying a given predic-
tor by fixing its value. A more efficient technique has been proposed in our companion 
paper Miroshnikov et al. (2021b). There we construct an efficient frontier over a family of 
compliant post-processed models utilizing the interpretability framework developed in the 
current article. Other examples of compliant methods include those that vary hyper-param-
eters to get an efficient frontier, such as those in Schmidt et al. (2021).

5.2  Pedagogical example on bias mitigation

In this section we provide a pedagogical example that showcases how to properly utilize 
the information on the positive and negative bias explanations when it comes to bias miti-
gation. A rudimentary mitigation technique one can employ is to construct a regulatory-
compliant post-processed model by neutralizing an appropriate collection of predictors XS . 
This is accomplished by fixing their values in the model to some reference values x∗

S
 and 

setting f̃ (x;S, x∗) = f (x∗
S
, x−S).

Often the objective of the bias mitigation in FIs is the reduction of the positive model 
bias which quantifies how much the model favors the majority class. In practice, regressor 
models are usually positively-biased, meaning Bias+

W1
(f |G) > 0 and Bias−

W1
(f |G) = 0.
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Taking into account the above discussion, let us assume for the sake of explanation 
that f (X) =

∑n

i=1
fi(Xi) is an additive and positively-biased model. Let �+

i
 , �−

i
 , where 

i ∈ N = {1,… , n} , be the positive and negative marginal bias explanations, respectively. 
Finally, let us decompose the predictor index set as follows: N = N+ ∪ N− ∪ N0 where

In this case, by Lemma 12 the model bias is given by

which illustrates the bias offsetting mechanism.
Note that neutralizing the predictor i0 ∈ N− would cause the model bias, which is equal 

to the positive model bias, to increase, while neutralizing i1 ∈ N+would cause the model 
bias to decrease.

Thus, one approach to reduce the model bias is to rank order the predictors in N+ by 
their net-bias explanations and, subsequently, neutralize them one by one in that order. This 
will incrementally reduce the positive model bias until the point where neutralizing the 
next predictor causes the model bias to become equal to the negative model bias (with the 
positive model bias being zero), which operates as a stopping criterion of the approach. 
This simple and rather naÃ¯ve strategy illustrates that a) the decomposition of explanations 
is useful for bias mitigation and that b) neutralization of biased predictors ranked by total 
bias contribution is not always the optimal strategy.

5.3  Example on census income dataset

In this section, we showcase the application of the framework to the 1994 Census Income 
dataset from the UCI Machine Learning Repository (Dheeru et al. 2017).

This dataset contains fourteen predictors and a dependent variable Y that indicates if 
an individual earns more or less than $50K annually. After investigating the predictors, 
we removed the protected attributes ‘sex’, ‘race’, ‘age’, and ‘native-country’. We also 
excluded ‘fnlwght’ and ‘relationship’, the latter due to its high dependence with ‘sex’ 
since in the dataset the categorical values ‘Husband’ and ‘Wife’ correspond to ‘Male’ and 
‘Female’, respectively. The remaining seven predictors used for model training are ‘work-
class’, ‘education-num’, ‘occupation’, ‘marital-status’, ‘capital-gain’, ‘capital-loss’, and 
‘hours-per-week’.

N+ = {i ∶ 𝛽+
i
> 𝛽−

i
}, N− = {i ∶ 𝛽−

i
> 𝛽+

i
}, N0 = {i ∶ 𝛽+

i
= 𝛽−

i
}.

BiasW1
(f |X,G) = Bias+

W1
(f |X,G) =

∑

i∈N+

(𝛽+
i
− 𝛽−

i
) −

∑

i∈N−

(𝛽−
i
− 𝛽+

i
) > 0
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For the model training, we use the training dataset Dtrain with 32561 samples to build 
a classification score

using Gradient Boosting. For training we use the following parameters: n_estima-
tors=200, min_samples_split=5, subsample=0.8, learning_rate=0.1. 
The feature importance of each predictor can be seen in Fig. 11a, with the most significant 
predictors being ‘marital-status’, ‘capital-gain’, and ‘education-num’.

Performance metrics for the GBM model on the trained dataset, and test dataset 
with 16251 samples, were evaluated. Specifically, the mean logloss on the train and 
test set is approximately 0.288 and 0.292 respectively, and the AUC is 0.922 and 0.918 
respectively.

The focus of the application is to evaluate and explain the model bias with respect to 
the protected attribute G =‘sex’, with values ‘Female’ and ‘Male’, where ‘Female’ is the 
protected class. To this end, following the steps in Algorithm 1, we form the dataset S con-
taining the classification scores

f̂ (x) = �ℙ(Y = } > 50K’|X = x),

Fig. 11  Model training and protected attribute analysis
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and partition it based on each class of G. This yields the sets SM and SF containing the 
classification scores for ‘Female’ and ‘Male’ respectively, which we use to construct the 
empirical CDFs of the subpopulation scores, F̂Female and F̂Male , using the ECDF class from 
the statsmodels library.

Figure 11b depicts the empirical CDFs, where we see that the model has almost exclu-
sively positive bias, and the positive direction is assumed to be 𝜍f̂ = 1 . To confirm this 
observation, we subsequently compute the positive and negative model biases by integrat-
ing the difference of the two CDFs over the sets where F̂Female > F̂Male and F̂Female < F̂Male , 
respectively, as indicated in Definition 7. This yields the following values:

To understand the contributions of the predictors to the model bias, we next construct the 
bias explanations based on the marginal model explainer. To accomplish this, we subsam-
ple the predictors from the training set, and obtain a background dataset DX with m = 4000 
samples. Next, we compute the model explanations for each predictor Xi yielding the sets

Similar to obtaining the model bias, we then partition SEi
 based on each class of G and 

obtain the empirical CDFs of Ei(X)|G = g, g ∈ {‘Female’, ‘Male’} , which are then used to 
compute the bias explanations �±

i
 according to Definition 9. These are depicted in Fig. 12a 

and are ranked in ascending order of the positive bias. All the values for the negative bias 
explanations are close to zero, which further indicates the positively biased nature of the 
predictors. Observe that the most positively contributing predictor to the model bias is 
‘marital-status’ by far with value ≈ 0.12.

Since ‘marital-status’ is the most impactful, it merits further investigation into its effect 
on the model bias. To this end, we group the different values of ‘marital-status’ into three 
categories: M1 =‘never-married’, M2 =‘married’, and M3 =‘was-married’. Then, we segment 

S =
{
f̂ (x(i)) ∶ (x(i), y(i)) ∈ Dtrain

}
,

Bias+
W1
(f̂ |X,G) ≈ 0.19, Bias−

W1
(f̂ |X,G) ≈ 0.00.

SEi
=
{

1

m

∑

x∈DX

f̂ (x∗
i
, x−i), x

∗ ∈ DX

}
.

Fig. 12  Model bias explanations
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the dataset S of classification scores into three subsets SMi
, i ∈ {1, 2, 3} , that correspond to 

the aforementioned categories. To gain further understanding on how each of these catego-
ries contributes to the model bias, we compute the model bias on each segment. The negative 
model bias on each segment turns out to be zero, while the positive model biases are plotted in 
Fig. 12b. The plot indicates that the category ‘never-married’ exhibits an insignificant level of 
bias, while there is some substantial positive bias in ‘married’ and ‘was-married’.

Given the above analysis, one can attempt to reduce the model bias either by applying the 
postprocessing technique discussed in Sect. 5.2, or, alternatively, retrain the model by drop-
ping some of the biased predictors. We showcase the latter approach by dropping ‘marital-sta-
tus’ and retraining the model with the same parameters. We check the performance of the new 
model on the train and test sets. The mean logloss is 0.358 and 0.363 respectively, and AUC 
is 0.862 and 0.855 respectively. We then compute the model bias and bias explanations; see 
Fig. 13. The positive model bias has been reduced to approximately 0.10, while the negative 
stays zero. The trade-off is a drop in performance, as seen by the performance metric values 
above. The bias explanations in the retrained model have slightly increased since ‘marital-
status’ was dropped and the importance of the remaining predictors increased.

We would like to point out that the technique used above might not lead to bias reduction 
under the presence of strong dependencies, since other predictors could be used as proxies 
for the dropped predictor. However, the postprocessing technique outlined in Sect. 5.2 mod-
ifies the model score directly and the dependencies do not play a significant role. Keep in 
mind that this technique is rather crude and one may opt to employ the postprocessing meth-
ods described in Miroshnikov et al. (2021b) which apply to numerical predictors, but can be 
adjusted for categorical ones.

6  Conclusion

In this paper, we presented a novel bias interpretability framework for measuring and 
explaining bias in classification and regression models at the level of a distribution that 
utilizes the Wasserstein metric and the theory of optimal mass transport. We introduced 
and theoretically characterized bias predictor attributions to the model bias and constructed 

Fig. 13  Bias explanations for the re-trained model without ‘marital-status’ predictor
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additive bias explanations utilizing cooperative game theory. To our knowledge, bias inter-
pretability methods at the level of a regressor distribution have not been addressed in the 
literature before.

At a higher level, the model bias is a non-trivial superposition of predictor bias attribu-
tions. The bias explanations we introduced determine the contribution of a given predic-
tor to the model bias. However, any two or more predictors will interact in the context of 
the bias explanations. For example, if one predictor favors the non-protected class and the 
other favors the protected class, it might be possible that when both predictors are utilized 
by the model the total effect on model bias is zero. This phenomenon opens up numer-
ous avenues for future research to investigate the interactions of predictors across subpopu-
lation distributions in the context of bias explanations. This is where ML interpretability 
techniques can come into play and aid with the study of predictor interactions in the model 
bias.

To make bias explanations additive we utilized cooperative game theory which lead to 
additive Shapley-bias explanations. These explanations rely on the Shapley formula, which 
makes them computationally expensive. The intractability of such calculations can be miti-
gated by grouping predictors based on dependencies and then computing the Shapley bias 
attributions for each group (via a quotient game) which reduces the dimensionality. How-
ever, if the number of groups is large, the issue of computational intensity remains. Thus, 
a possible research direction is to investigate methods that allow for approximation of the 
additive bias explanations and their fast computations.

In this paper, we formulated a methodology that computes the model bias and quantifies 
the contribution of predictors to that bias. However, an important application of the bias 
explanation methodology lies in bias mitigation, which will be useful in regulatory settings 
such as the financial industry, and may utilize information about the main drivers of the 
model bias. This will be investigated in our upcoming paper. The framework is generic and 
in principle can be applied to a wide range of predictive ML systems. For instance, it might 
be insightful to understand the predictor attributions to probabilistic differences of popula-
tions studied in physics, biology, medicine, economics, etc.

Appendix

A. Kantorovich transport problem

To formulate the transport problem we need to introduce the following notation. Let B(ℝk) 
denote the �-algebra of Borel sets. The space of all Borel probability measures on ℝk is 
denoted by P(ℝk) . The space of probability measure with finite q-th moment is denoted by

Definition 13 (push-forward) 

(a) Let ℙ be a probability measure on a measurable space (Ω,F) . Let X ∈ ℝ
p be a random 

vector defined on Ω . The push-forward probability distribution of ℙ by X is defined by 

Pq(ℝ
k) = {𝜇 ∈ P(ℝk) ∶ ∫

ℝk

|x|qd𝜇(x) < ∞}.
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(b) Let � ∈ P(ℝk) and T ∶ ℝ
k → ℝ

m be Borel measurable, the pushforward of � by T, 
which we denote by T#� is the measure that satisfies 

(c) Given measure � = �(dx1, dx2, ..., dxk) ∈ P(ℝk) we denote its marginals onto the direc-
tion xj by (�xj )#� and the cumulative distribution function by 

Theorem  6 (change of variable) Let T ∶ ℝ
k → ℝ

m be Borel measurable map and 
� ∈ P(ℝ) . Let g ∈ L1(ℝm, T#�) . Then

Proof See (Shiryaev 1980, p. 196).   ◻

Definition 14 (Kantorovich problem on ℝ ) Let �1,�2 ∈ P(ℝ) and c(x1, x2) ≥ 0 be a cost 
function. Consider the problem

where Π(�1,�2) = {� ∈ P(ℝ2) ∶ (�xj )#� = �j} denotes the set of transport plans between 
�1 and �2 , and Tc(�1,�2) denotes the minimal cost of transporting �1 into �2.

Definition 15 Let q ≥ 1 and let d be a metric on ℝ . Let the set 
Pq(ℝ

n;d) = {𝜇 ∈ P(ℝn) ∶ ∫ d(x, x0)
qd𝜇(x) < ∞} where x0 is any fixed point. The Was-

serstein distance Wq on Pq(ℝ
n;d) is defined by

where

We drop the dependence on d in the notation of the Wasserstein metric when 
d(x, y) = |x − y|.

The following theorem contains well-known facts established in the texts such as 
Shorack and Wellner (1986); Villani (2003); Santambrogio (2015).

Theorem 7 Let �1,�2 ∈ P(ℝ) . Let c(x1, x2) = h(x − y) ≥ 0 with h convex and let

PX(A) ∶= ℙ
(
{� ∈ Ω ∶ X(�) ∈ A}

)
.

(T#𝜇)(B) = 𝜇
(
T−1(B)

)
, B ⊂ B(ℝk).

F�(a1, a2,… , ak) = �((−∞, a1] × (−∞, a2]… , (−∞, ak])

∫
ℝm

g(y)T#�(dy) = ∫
ℝk

g(T(x))�(dx).

inf
�∈Π(�1,�2)

{

∫
ℝ2

c(x1, x2)�(dx1, dx2)

}
=∶ Tc(�1,�2)

Wq(�1,�2;d) ∶= T
1∕q

d(x1,x2)
q (�1,�2), �1,�2 ∈ Pq(ℝ

n;d)

Td(x1,x2)
q (�1,�2) = inf

�∈P(ℝ2)

{

∫
ℝ2

d(x1, x2)
qd� , � ∈ Π(�1,�2)

}
.

�∗ ∶= (F−1
�1
,F−1

�2
)#�|[0,1] ∈ P(ℝ2)
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where �|[0,1] denotes the Lebesgue measure restricted to [0,  1]. Suppose that 
Tc(𝜇1,𝜇2) < ∞ . Then 

(1) �∗ ∈ Π(�1,�2) and F�∗ = min(F(a),F(b)).
(2) �∗ is an optimal transport plan that is 

(3) �∗ is the only monotone transport plan, that is, it is the only plan that satisfies the 
property 

(4) If h is strictly convex then �∗ is the only optimal transport plan.
(5) If �1 is atomless, then �∗ is determined by the monotone map T∗ = F[−1]

�2
◦F�1

 , called an 
optimal transport map. Specifically, �2 = T∗

#
�1 and hence �∗ = (I,T∗)#�1 , where I is 

the identity map. Consequently, 

(6) For q ∈ [1,∞) , we have 

Definition 16 Given a set of probability measures {𝜇j}
J
j=1

⊂ P2(ℝ
n) , with J ≥ 1 , with 

finite second moments, and weights {�j}
J
j=1

 , the Wasserstein barycenter is the minimizer of 
the map � →

∑
j∈J �jW

2
2
(�,�j).

B. Proofs and auxiliary lemmas

Definition 17 (geometric continuity) Let D(⋅, ⋅) be a metric on Pk(ℝ
n) , with k ≥ 0 . We say 

that D is continuous with respect to the geometry of the distribution if for any � ∈ Pk(ℝ
n) 

lim�→0+ D(�, T�#�) = 0 , for any family {T𝜀}𝜀>0 of continuously differentiable maps from 
ℝ

n to ℝn that satisfy 

(i)  det∇T𝜀 > 0.
(ii)  The family {T� − I}� has a common compact support.
(iii)  T� → I uniformly on ℝn as � → 0 , where I is the identity map.

Tc(�1,�2) = ∫
ℝ2

h(x1 − x2) d�
∗(x1, x2).

(x1, x2), (x
�
1
, x�

2
) ∈ supp(π∗) ⊂ ℝ

2 x1 < x�
1

⇒ x2 ≤ x�
2
.

∫
ℝ2

h(x1 − x2) d�
∗(x1, x2) = ∫

ℝ

h(x1 − T∗(x1))d�1(x1) = 𝔼[X1 − T∗(X1)], �1 = PX1
.

Wq
q(𝜇1,𝜇2) = T|x1−x2|q (𝜇1,𝜇2) = ∫

ℝ2

|x1 − x2|qd𝜋∗(x1, x2)

= ∫
1

0

|F[−1]
𝜇1

(p) − F[−1]
𝜇2

(p)|qdp < ∞.
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Definition 18 (invariance) Let D(⋅, ⋅) a metric on Pk(ℝ
n) . Let T ∶ ℝ

n → ℝ
n be a map such 

that T#� ∈ Pk(ℝ
n) for every � ∈ Pk(ℝ

n) . We say that D is invariant under the transforma-
tion T if D(�1,�2) = D

(
T#�1, T#�2

)
.

Proof of Theorem 1 Let q ∈ [1,∞) . Let T� be a family of maps from ℝ to ℝ as in Definition 
17. Take � ∈ Pq(ℝ) . Since T� − I has compact support, there is a bounded B ⊂ ℝ such 
that T�(x) = x for all x ∈ Bc . Thus,

and hence T�#� ∈ Pq(ℝ).
Next, consider a probability measure � = (I,T�)#� . By construction, its marginals are � 

and T�#� and hence � is a transport plan. Then, Lemma 6 and the definition of the distance 
DWq

 imply

Sending � → 0 in the above inequality, and using the assumption that I − T� → 0 uniformly 
in ℝ , we conclude that Dq

Wq
(�,T�#�) → 0 . This proves the statement (a).

Let T ∶ ℝ → ℝ be continuous and strictly increasing. Let q ∈ [1,∞) . Suppose that DWq
 

on Pq(ℝ) is invariant under T. Let �1 = �a and �2 = �b for a < b . Then by invariance we 
obtain

Since a, b are arbitrarily chosen, we conclude that T(x) = x + C . This proves (b).   ◻

Proof of Lemma 6 First, take any M ∈ Lip1(X,P({0, 1})) and set �(x) = [M(x)]({0}) . 
Then

and hence �̃� = 𝜑 −
1

2
∈ A

∗.
Next, take �̃� ∈ A

∗ . Let 𝜑 = �̃� +
1

2
 . Take x ∈ X  and pick M(x) to be a probability meas-

ure such that [M(x)]({0}) = �(x) . Then M ∈ Lip1(X,P({0, 1});DTV , d)

The lemma follows from the above and the fact that 
M𝜇({0}) −M𝜈({0}) = ∫ �̃�d[𝜇 − 𝜈] .   ◻

Lemma 15 Let d(x, y) = ‖x − y‖ be a norm on ℝn . Let T(x) = cx + x0 with c > 0 . Then

where dc(x, y) = cd(x, y).

Proof 
  ◻

Lemma 16 Let d(x, y) = ‖x − y‖ be a norm on ℝn and �, � ∈ P1(ℝ
n;d) . Let c > 0 . Then 

∫
ℝ

|x|qdT𝜀#𝜇(x) = ∫
ℝ

|T𝜀(x)|qd𝜇(x) = ∫B

|T𝜀(x)|qd𝜇(x) + ∫Bc

|x|qd𝜇(x) < ∞

D
q

Wq
(��, T�#�) ≤ �

ℝ2

|x1 − x2|d�(x1, x2) = �
ℝ

|x1 − T�(x1)|d�(x1).

(T(b) − T(a))q = D
q

Wq
(T#�1, T#�2) = D

q

Wq
(�1,�2) = (b − a)q.

d(x, y) ≥ DTV (M(x),M(y)) =
1

2

∑

a∈{0,1}

||[M(x)](a) − [M(y)](a)|| = |�(x) − �(y)|

Drc(T#�, T#�;DTV , d) = Drc(�, �;DTV , dc), �, � ∈ P1(ℝ
n;d),
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 (i) W1(�, �;dc) = cW1(�, �;d) , dc(x, y) = cd(x, y).

 (ii) For any T(x) = cx + x0

Proof The lemma follows directly from the definition of W1 and the fact that d is a norm.  
 ◻

Proof of Lemma 7 The proof follows from Lemmas 15 and 16.   ◻

Proof of Theorem 3 Take any L > 0 and x∗ such that the supports of � and � are contained 
in B(x∗,

L

2
;d) . By the Kantorovich-Rubinstein duality theorem (Kantorovich 1958; Dudley 

1976), we have

Since Lip1(ℝn, [0, L];d) ⊂ Lip1(ℝ
n;d) we have

Next, take any u ∈ Lip1(ℝ
n;d) . Observe that

Define

Note that ũ ∈ Lip1(ℝ
n, [0, L];d) . Furthermore,

and hence ũ = u(x) − u0 for x ∈ B(x∗,
L

2
) . Then, since � and � have support in B(x∗,

L

2
) , we 

have

and hence

W1(T#�, T#�;d) = cW1(�, �;d).

W1(�, �;d) = sup
{
∫ u(x)[� − �](dx), u ∈ Lip1(ℝ

n;d)
}
.

sup
{
� ũ(x)[𝜇 − 𝜈](dx), ũ ∈ Lip1(ℝ

n, [0, L];d)
} ≤ W1(𝜇1,𝜇2;d).

u0 ∶= inf
x∈B(x∗ ,L∕2)

u(x) =
(
u(x∗) + inf

x∈B(x∗ ,L∕2)
(u(x) − u(x∗))

)
∈ [u(x∗) −

L

2
, u(x∗) +

L

2
].

ũ(x) = min(max(u(x) − u0, 0), L).

0 ≤ u(x) − u0 ≤ sup
z∈B(x∗ ,

L

2
)

d(x, z) ≤ L, x ∈ B(x∗,
L

2
)

∫ u(x)[𝜇 − 𝜈](dx) = ∫ ũ(x)[𝜇 − 𝜈](dx)

Drc(T#𝜇, T#𝜈;DTV , d) = sup
𝜑∈Lip1(ℝ

n ,[0,1];d)∫ 𝜑(x)[�̃� − �̃�](dx)

= sup
𝜑∈Lip1(ℝ

n ,[0,1];d)∫ 𝜑(cx + x0)[𝜇 − 𝜈](dx)

= sup
u∈Lip1(ℝ

n ,[0,1];dc)
∫ u(x)[𝜇 − 𝜈](dx)

= Drc(𝜇, 𝜈;DTV , dc).
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Thus, we conclude

for any norm d and any ball B(x∗,
L

2
;d) containing the supports of � and �.

Let d(1∕L)(x, y) =
1

L
‖x − y‖ =

1

L
d(x, y) . Then B(x∗,

1

2
;d(1∕L)) = B(x∗,

L

2
;d) and hence using 

(29) and Lemma 16, we obtain

which proves the equality.   ◻

Proof of Lemma 4 Define the set

Note (p, t) ∈ A0 implies t ∈ T0 . Hence, applying Lemma 18, we obtain

where the finiteness of the right-hand side follows from the fact that �|Xi| < ∞ and Lemma 
30.

Observe next that the definition of the generalized inverse implies that

and hence

Note by above (p, t) ∈ A0 implies that p ∈ P1 . Hence, Lemma 18 imply

and this proves (4)1 . The proof of (4)2 is similar.   ◻

Lemma 17 Let X be a random variable with �|X| < ∞ . Let X+ = max(0,X) , 
X− = max(0,−X) . Then

where F is the CDF of X.

sup
{
� ũ(x)[𝜇 − 𝜈](dx), ũ ∈ Lip1(ℝ

n, [0, L];d)
} ≥ W1(𝜇, 𝜈;d).

(29)W1(𝜇, 𝜈;d) = sup
{
∫ ũ(x)[𝜇 − 𝜈](dx), ũ ∈ Lip1(ℝ

n, [0, L];d)
}

1

L
W1(𝜇, 𝜈;d) = W1(𝜇, 𝜈;d(1∕L))

= sup
{
∫ ũ(x)[𝜇 − 𝜈](dx), ũ ∈ Lip1(ℝ

n, [0, 1];d(1∕L))
}
= Drc(𝜇, 𝜈;DTV , d(1∕L))

A0 = {(p, t) ∈ (0, 1) ×ℝ ∶ F1(t) < p ≤ F0(t)}.

𝜆2(A0) = ∫
T0

F0(t) − F1(t) dp < ∞

F
[−1]

i
(p) ≤ t ⇔ p ≤ Fi(t), F

[−1]

i
(p) > t ⇔ p > Fi(t)

A0 = {(p, t) ∈ (0, 1) ×ℝ ∶ F
[−1]

0
(p) ≤ t < F

[−1]

1
(p)}.

�2(A0) = ∫
P1

F
[−1]

1
(p) − F

[−1]

0
(p) dp

(30)�[X] = �[X+] − �[X−], �[X+] = ∫
∞

0

(1 − F(t)) dt, �[X−] = ∫
0

−∞

F(t)dt
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Proof Note that |X(�)| ≥ X+(�),X−(�) ≥ 0 and hence �[X+] and �[X−] are finite. Recall-
ing that X = X+ − X− , we obtain (30)1.

Next, by definition of the expectation, we have

where we applied the Tonelli’s theorem to exchange the order of integration. This proves 
(30)2 . The proof for (30)3 is similar.   ◻

Lemma 18 Let � denote the Lebesgue measure on ℝ . Let f, g be �-measurable functions 
such that g ≤ f  . 

 (i) If f − g ∈ L1(ℝ) , then 

 (ii) If 𝜆 ⊗ 𝜆
({

(x, y) ∶ g(x) < y < f (x)
})

< ∞ , then f − g ∈ L1(ℝ) and (31) holds.

Proof Suppose that f − g ∈ L1(ℝ) . Since f and g are measurable, the set 
{(x, y) ∶ g(x) < y < f (x)

}
 is measurable with respect to the product measure 𝜆2 = 𝜆 ⊗ 𝜆 . 

Then by the Tonelli’s theorem we obtain

which proves the first equality in (31). The second equality (31) is proved similarly. This 
gives (i).

Suppose that 𝜆2
(
{(x, y) ∶ g(x) < y < f (x)}

)
< ∞ . Following the calculations above in 

the reverse order we conclude that f − g ∈ L1(ℝ) and hence (31) holds. This proves (ii).  
 ◻
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∞ > 𝔼[X+] = �Ω

X+(𝜔)ℙ(d𝜔) = �Ω

(

�
ℝ

1{0≤x≤X+(𝜔)}dx

)
ℙ(d𝜔)

= �
ℝ

1{0≤x}
(

�Ω

1{x≤X+(𝜔)}ℙ(d𝜔)

)
dx = �

∞

0

(1 − F(x)) dx

(31)
𝜆 ⊗ 𝜆

({
(x, y) ∶ g(x) < y < f (x)

})
= �

ℝ

(f − g) d𝜆

= 𝜆 ⊗ 𝜆
({

(x, y) ∶ g(x) ≤ y ≤ f (x)
})

< ∞.

∞ > ∫
ℝ

(f (x) − g(x)) d𝜆(x) = ∫
ℝ

(
∫
ℝ

1{y∶g(x)<y<f (x)} d𝜆(y)
)
d𝜆(x)

= ∫
ℝ2

1{(x,y)∶g(x)<y<f (x)} d(𝜆 ⊗ 𝜆) = 𝜆2
(
{(x, y) ∶ g(x) < y < f (x)}

)
,
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