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Abstract
We propose a simulation framework for generating instance-dependent noisy labels via a 
pseudo-labeling paradigm. We show that the distribution of the synthetic noisy labels gen-
erated with our framework is closer to human labels compared to independent and class-
conditional random flipping. Equipped with controllable label noise, we study the nega-
tive impact of noisy labels across a few practical settings to understand when label noise 
is more problematic. We also benchmark several existing algorithms for learning with 
noisy labels and compare their behavior on our synthetic datasets and on the datasets with 
independent random label noise. Additionally, with the availability of annotator informa-
tion from our simulation framework, we propose a new technique, Label Quality Model 
(LQM), that leverages annotator features to predict and correct against noisy labels. We 
show that by adding LQM as a label correction step before applying existing noisy label 
techniques, we can further improve the models’ performance. The synthetic datasets that 
we generated in this work are released at https:// github. com/ deepm ind/ deepm ind- resea rch/ 
tree/ master/ noisy_ label.

Editors: Bo Han, Tongliang Liu, Quanming Yao, Mingming Gong, Gang Niu, Ivor W. Tsang, Masashi 
Sugiyama.
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1 Introduction

In many applications, training machine learning models requires labeled data. In practice, 
the training data labeled by human raters are often noisy, leading to inferior model per-
formance. The study of learning in the presence of label noise dates back to the eighties 
(Angluin & Laird, 1988), and still receives significant attention in recent years (Han et al., 
2018; Li et al., 2020a; Malach & Shalev-Shwartz, 2017; Natarajan et al., 2013; Reed et al., 
2014).

In the research community, some datasets with real noisy human ratings are available, 
such as Clothing 1M (Xiao et al., 2015), Food 101-N (Lee et al., 2018) (only a small subset 
has clean labels), WebVision (Li et al., 2017a), and CivilComments (Borkan et al., 2019), 
which allow testing approaches that address label noise. However, since the level and type 
of label noise in these datesets cannot be controlled, it becomes hard to conduct ablation 
study to understand the impact of noisy labels. As a result, the majority of research work 
in this area uses benchmark datasets generated by simulations. For example, many prior 
works simulate noisy labels by flipping the labels according to certain transition matrix 
(Han et  al., 2018; Hendrycks et  al., 2018; Khetan et  al., 2017; Natarajan et  al., 2013; 
Patrini et al., 2017), independently from the model inputs, e.g., the raw images. However, 
this type of random label noise may not be an ideal way to simulate noisy labels, since the 
errors in human ratings are often instance-dependent, i.e., harder examples are easier to 
get wrong labels, whereas the noisy labels generated by random flipping do not have this 
type of dependency, even if the transition matrix is asymmetric, i.e., class-conditional. In 
addition, in many applications, we often have additional features of the raters, such as ten-
ure, historical biases, and expertise level (Cabitza et al., 2020). Leveraging these features 
properly can potentially lead to better model performance. However, neither the commonly 
used public datasets with human ratings nor the synthetic datasets created by random label 
noise have such rater features available.

In this work, we focus on creating simulation benchmarks for the research on label 
noise. We propose a method that is instance-dependent, easy to implement, and can con-
vert any commonly used public dataset with clean labels into a noisy label dataset with 
additional rater features. More specifically, we propose a simulation method based on a 
pseudo-labeling paradigm: given a dataset with clean labels, we use a subset of it to train 
a set of models (rater models), and use them to label the rest of the data. In this way, we 
obtain a dataset whose size is smaller than the original one with clean labels, but with mul-
tiple instance-dependent noisy labels. Moreover, some characteristics of the rater models, 
such as the number of training epochs, the number of samples used, the validation perfor-
mance metrics, and the number of parameters in the model can be used as a proxy for the 
rater features.

We note that this simulation approach is very similar to self-training in semi-supervised 
learning (Chapelle et al., 2006). In the research on label noise, methods inspired by semi-
supervised learning have been adopted in several prior works for training robust mod-
els (Han et al., 2018; Li et al., 2020a) or generate synthetic noisy label dataset (Lee et al., 
2019; Robinson et al., 2020). We intend to exploit this approach for both providing a com-
prehensive study of how practical label noise affects the performance of machine learning 
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models, and the research of better training algorithm in the presence of label noise. Our 
main contributions are summarized as follows:

• We propose a pseudo-labeling simulation framework for learning with label noise. We 
provide detailed description, including the generation of rater features. We also evalu-
ate the synthetic datasets generated by our framework and show that the distribution 
of noise labels in our datasets is closer to human labels compared to independent and 
class-conditional random flipping (Sect. 2).

• We study the negative impact of label noise on deep learning models using our syn-
thetic datasets. We find that noisy labels are more detrimental under class imbalanced 
settings, when pretraining is not used, and on tasks that are easier to learn with clean 
labels (Sect. 3).

• We benchmark existing approaches to tackling label noise using our synthetic datasets. 
We find that the behavior of these techniques on our synthetic datasets is different from 
the datasets generated by independent random label flipping. With the same fraction of 
mislabeled data, our datasets tend to be harder than datasets with random label noise 
for binary classification tasks; however, we observe the opposite trend for multi-class 
tasks (Sect. 4).

• We propose a label correction approach, named Label Quality Model (LQM), that lev-
erages rater features to significantly improve model performance. We also show that 
LQM can be combined with other existing noisy label techniques to further improve the 
performance (Sect. 5).

Here, we would like to mentioned that while preparing for the initial draft of this paper, 
we noticed that a series of papers that focuses on tackling instance-dependent label noise 
appeared in the literature (Berthon et al., 2021; Chen et al., 2020; Wang et al., 2021; Yao 
et al., 2021; Zhang et al., 2021b; Zhu et al., 2021). While these works focuses on develop-
ing algorithms to tackle instance-dependent label noise, our paper serves a different pur-
pose. In fact, we focus on understanding the negative impact of label noise, comparing the 
performance of existing algorithms on synthetic datasets generated with different methods, 
and designing methods that can leverage rater features, which are new insights in this area.

2  Generating synthetic datasets with instance‑dependent label noise

In this section, we discuss the formulation of generating synthetic noisy labels, and provide 
details for the dataset generation procedure and the methods we use to evaluate whether the 
synthetic datasets share certain characteristics of real human labeled data.

2.1  Formulation

We consider a K-class classification problem with input space X  and label space 
Y = {1,… ,K} . In addition, we assume that there is a rater space R , with each element 
being the feature of a rater who can label any element in X  . Suppose that there is an 
unknown distribution over X × Y ×R × Y , and each tuple (x, y∗, r, y) in this space corre-
sponds to the input feature of an example x, clean label of the example y∗ , a rater r, and the 
label y provided by the rater.
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The problem of generating synthetic noisy labels can be modeled as generating a noisy 
label y given a pair of input feature and clean label y∗ . Ideally, the probability distribution 
of the noisy label y should depend on all of x, y∗ , and r, i.e., we should generate y according 
to p(y ∣ x, y∗, r) . This means that the label noise should depend on the input—harder and 
more nuanced examples such as blurred images are more likely to have incorrect labels, as 
well as the rater—raters with higher expertise level are less likely to make mistakes.

However, many prior studies on generating synthetic noisy labels ignore such depend-
ency on x and r and only generate y according to y∗ . Here, we specify three approaches for 
generating noisy labels.

• Independent random flipping In this method, with probability � , the label of each exam-
ple is flipped to an incorrect one, uniformly chosen from all the other K − 1 labels (Han 
et al., 2018; Rolnick et al., 2017; Zhang et al., 2021a). The method is sometimes called 
symmetric label noise. More specifically, we have 

• Class-conditional random flipping In this method, we assume that there is a stochastic 
matrix T ∈ ℝ

K×K . The i-th row of T corresponds to the probability distribution of the 
noisy label y given that the clean label y∗ = i , i.e., 

 This method is sometimes called the asymmetric label noise, and is usually considered 
more practical than symmetric noise, since classes that are semantically close are more 
likely to be confused than classes that have clearer decision boundaries. As mentioned 
in Sect. 1, this method has been used in many prior works (Angluin & Laird, 1988; Han 
et al., 2018; Jiang et al., 2018; Wang et al., 2019; Zhang et al., 2017); the matrix can be 
designed with human knowledge or estimated from a small subset of clean data (Hen-
drycks et al., 2018; Patrini et al., 2017). Here, we emphasize that the noisy labels in 
class-conditional label flipping still do not depend on the input feature x and the rater r.

• Instance-dependent, i.e., generating noisy labels according to p(y ∣ x, y∗, r) . The method 
that we propose in this paper satisfies this criterion. Similar problems have been consid-
ered in several very recent works (Berthon et al., 2021; Chen et al., 2020; Wang et al., 
2021; Yao et al., 2021; Zhang et al., 2021b;  Zhu et al., 2021).

2.2  Dataset generation

In our framework, we first identify a public dataset that we would like to generate noisy 
labels for, e.g., CIFAR10 (Krizhevsky & Hinton, 2009) for image classification. We 
observe that many public datasets already have default training, validation, and test splits. 
For those without a validation split, we can randomly partition the training data into train-
ing and validation splits. We note that in our paper we assume that public datasets have 
“clean” labels. We acknowledge that many widely used public datasets such as CIFAR10 
or ImageNet (Deng et al., 2009) may have mislabeled data points (Northcutt et al., 2021b); 
however, the amount of label noise in these public datasets is significantly smaller than 
what the noisy label research community usually consider  (Han et  al., 2018; Lee et  al., 
2019), including our work. Therefore, we believe it is reasonable to consider the labels in 

p(y = k ∣ y∗) = (1 − �)�(k = y∗) +
�

K − 1
�(k ≠ y∗).

p(y = j ∣ y∗ = i) = Ti,j.
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public datasets as clean, i.e., less noisy, labels, and we do not expect the label noise in pub-
lic datasets changes the conclusions in our paper.

We further split the training and validation splits into two disjoint sets, respectively. 
More specifically, we partition the training set into CleanLabelTrain  and NoisyLabelT-
rain, and the validation set into CleanLabelValid and NoisyLabelValid. We use the data in 
CleanLabelTrain with clean labels to train a set of rater models, which can be any stand-
ard models for the problem domain. The data in the CleanLabelValid split can be used to 
evaluate the rater models. For example, the test accuracy with respect to the clean labels on 
the CleanLabelValid split can be used as a feature of a rater model. We can obtain a pool 
of rater models by choosing different architectures, training epochs, and other training con-
figurations, which can all be used as rater features. Then we use all or a subset of models 
from the rater pool to run inference on the data in the NoisyLabelTrain and NoisyLabel-
Valid splits. In this way we obtain multiple noisy labels for every data in these two splits, 
and we replace the clean labels with these noisy labels. We note that in this paper, when 
we run inference using a rater model, we use the “hard predictions”, i.e., each example is 
labeled according to the largest logit of the rater model’s prediction. It is also valid to treat 
the output of the rater models as a distribution over the classes and sample a noisy label 
from it. We find that in order to control the amount of label noise in these two splits, it is 
important to train a diverse set of rater models using different combinations of architec-
tures, training steps, learning rate, and batch size. The details for the rater models that we 
use throughout this paper are provided in “Appendix A”. To perform label noise research, 
we can use the NoisyLabelTrain split to train models and use the NoisyLabelValid split for 
hyperparameter tuning.1 For the Test split, we use the original clean labels. We illustrate 
our framework in Fig. 1, and make a comparison between the rater features on our frame-
work and those in real human-labeled datasets in Table 1. To summarize, we split the data-
set into 5 disjoint sets:

• CleanLabelTrain: a set of data with clean labels, used for training rater models.
• CleanLabelValid: a set of data with clean labels, used for evaluating rater models.

Fig. 1  Pseudo-labeling paradigm 
for simulating instance-depend-
ent noisy labels

1 The NoisyLabelValid  split also contains noisy labels, which may affect the hyperparameters that we 
select. Understanding the impact of label noise in the validation set is beyond the scope of this paper and 
will be a future direction.
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• NoisyLabelTrain: a set of data with multiple noisy labels (prediction of rater models), 
used for model training with noisy labels.

• NoisyLabelValid: a set of data with multiple noisy labels (prediction of rater models), 
used for hyperparameter tuning when training on the NoisyLabelTrain split.

• Test: a set of data with clean labels for final evaluation of the model trained on NoisyLa-
belTrain.

In most of our experiments, the sizes of the CleanLabelTrain and NoisyLabelTrain splits 
are around 50% of the original training and validation splits. However, this ratio can be 
adjusted depending on the problem of interest. For a synthetic dataset with multiple noisy 
labels, i.e., the NoisyLabelTrain and NoisyLabelValid splits, we use the following two met-
rics to measure the amount of noise in the dataset: (1) overall rater error rate, which is 
defined as the fraction of the incorrect labels among all the labels given by all the raters, 
and (2) Krippendorff’s alpha (k-alpha) (Hayes & Krippendorff, 2007), which measures the 
agreement between the raters. We note that the computation of Krippendorff’s alpha does 
not require the clean labels. Usually, datasets with higher k-alpha are less noisy. All model 
training in this and the following sections are performed on TPUs in our internal cluster.

2.3  Dataset evaluation

Once we have the synthetic datasets, the next step is to compare them with other simulation 
methods. More specifically, we make comparison with independent random flipping and 
class-conditional random flipping, and show that the distribution of the noisy labels that 
we generate is closer to real human labels. We use the following metric named mean total 
variation distance to measure the difference between the distribution of noisy labels in dif-
ferent datasets.

Let D1 = {(xi, y
1

i
)}n

i=1
 and D2 = {(xi, y

2

i
)}n

i=1
 be two noisy label datasets with the same 

set of input features. We consider soft labels, i.e., y1
i
, y2

i
∈ ℝ

K are probability distributions 
over {1,… ,K} . The mean total variation distance between datasets D1 and D2 is defined as 
dTV (D1,D2) ∶=

1

2n

∑n

i=1
‖y1

i
− y2

i
‖1.

We use the CIFAR10-H dataset  (Peterson et al., 2019) as the real human labels. This 
dataset contains the 10K data points from the CIFAR10 test split with around 50 labels for 
each data. To create the synthetic noisy label datasets using our framework in Sect. 2.2, we 
train rater models using the CleanLabelTrain  split and run inference on the CIFAR10 test 
data.2 We create three synthetic datasets with low, medium and high amount of noise. We 

Table 1  Rater features in our 
framework and real human-
labeled datasets

Our framework Human-labeled datasets

Model architecture, training steps Tenure, historical biases,
accuracy and loss on CleanLabelValid, expertise level,
. time spent on labeling 

each example, .

2 Notice that this is slightly different from Sect. 2.2 since the noisy labels are not generated on the NoisyLa-
belTrain or NoisyLabelValid splits, but on the test split. However, this is our only choice since CIFAR10-H 
only has human labels for the test split.
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train 10 rater models for each dataset and thus each example has 10 noisy labels. The rater 
error rates—defined as the ratio of the number of incorrect labels to the total number of 
labels in the dataset—of the three datasets are 13.0%, 21.7%, and 52.4%, respectively. In 
the following, we call these three rater error rates the targeted error rates. Note that when 
we compute the rater error rates, we corrected the mislabels data in the original CIFAR10 
test split according to Northcutt et al. (2021b). Details for the rater models are presented 
in “Appendix A”. With the three synthetic datasets, we then create other datasets for com-
parison. For real human labels, we notice that the CIFAR10-H dataset has a rater error 
rate around 4.8%, much lower than the amount of noise in our synthetic datasets. Since 
the goal of our framework is to create controllable noise level, we do not enforce the rate 
error rate of our datasets to match CIFAR10-H; instead, we upsample the incorrect labels 
in CIFAR10-H to match the rater error rates of our three datasets. The method of upsam-
pling incorrect labels to create datasets with controllable amount of noise has been studied 
in Northcutt et al. (2021a, 2021b). Thus, we create noise-controlled human label datasets 
with the three targeted error rates. For independent random flipping, we generate three 
datasets by choosing � to be each of the three targeted error rates and sampling 10 noisy 
labels for each data. For class-conditional random flipping, for each synthetic dataset, we 
first compute its class confusion matrix, and then use it as the probability transition matrix 
T for the class-conditional setup and then sample 10 noisy labels for each data. Then, for 
each targeted error rate, we compute the mean total variation distance between the real 
human labels and datasets with independent random flipping, class-conditional random 
flipping, and our synthetic dataset, respectively. The results are provided in Table 2. As 
we can see, for every noise level, the mean total variation distance between our synthetic 
dataset and the noise-controlled human labels is smaller than that of independent and class-
conditional random flipping. Thus, we conclude that the distribution of noisy labels that 
our framework generates is closer to human labels compared to independent and class-
conditional random flipping.

3  Impact of label noise on deep learning models

With the instance-dependent synthetic datasets with noisy labels, our next step is to study 
the impact of noisy labels on deep learning models. Interestingly, there exist different views 
for the impact of noisy labels to deep neural networks. While most of the recent research 

Table 2  Dataset evaluation

The numbers in the table are the 95% confidence intervals of the mean 
total variation distance between the synthetic datasets generated by 
different methods and the noise-controlled human labeled datasets. 
Our datasets are closer to the human labels compared to independent 
and class-conditional random flipping
Bold values are the smallest numbers which shows that the distribu-
tion of our noisy labels is closest to human noisy labels

Noise level Low Medium High

Independent flipping 0.207 ± 0.005 0.335 ± 0.008 0.787 ± 0.019

Class-conditional 0.196 ± 0.005 0.320 ± 0.008 0.766 ± 0.019

Ours 0.180 ± 0.005 0.301 ± 0.008 0.742 ± 0.019
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works on noisy labels try to design algorithms that can tackle the negative impact of label 
noise, some other works claim that deep learning models are robust to independent random 
label noise (Li et al., 2020b; Rolnick et al., 2017) without using sophisticated algorithms. 
A prominent example is the weak supervision paradigm (Ratner et al., 2016, 2017), where 
massive training datasets are generated by weak raters and labeling functions. Other lines 
research indicate that large neural network can easily fit all the noisy labels in the training 
data (Zhang et al., 2021a), while smaller models may be more robust against label noise 
due to the regularization effect (Advani et al., 2020; Belkin et al., 2019; Northcutt et al., 
2021b).

We hypothesize that the negative impact of noisy labels is problem-dependent. While 
in most cases the incorrect labels can impair models’ performance, the impact may depend 
on factors related to the data distribution and the model. In this section, we choose the 
following factors to measure the impact of label noise: the class imbalance, the inductive 
bias of the model (in particular, pretraining vs random initialization), and the difficulty of 
the task (test accuracy that models can achieve when clean labels are accessible). Note 
that for better understanding, we decouple these factors with algorithm design: In this sec-
tion, we choose simple SGD-style training algorithms with cross-entropy loss and focus 
on analyzing the impact of label noise; the discussion on more sophisticated algorithms to 
tackle label noise is presented in Sects. 4 and 5. We do not aim to study label aggregation 
methods either. Instead, in this and the following sections, given a synthetic dataset with 
multiple noisy labels, we generate a dataset with a single noisy label by independently and 
uniformly selecting a random noisy label for every data point. This is a simulation of the 
practical setting where we have a pool of raters and for each data, we choose a random rater 
from the pool and request a label.

3.1  Label noise has higher impact on more imbalanced datasets

One of the important characteristics of many real world datasets is that the classes are usu-
ally imbalanced. When the classes are more imbalanced, the impact of noisy labels may 
become more pronounced since the number of data in the minority classes is already 
small, and noisy labels can further corrupt these data, making the learning procedure 
more difficult. We validate this hypothesis in this section. We use two binary classifica-
tion tasks, PatchCamelyon (PCam) (Bejnordi et al., 2017; Veeling et al., 2018) and Cats vs 
Dogs (CvD) (Elson et al., 2007). We generate synthetic noisy label datasets with different 
k-alpha s, and for each of these datasets, we subsample the two classes to create several 
smaller datasets with different class imbalance but the same total number of data. We note 
that here we control the class imbalance to be the same for all of the NoisyLabelTrain, 
NoisyLabelValid, and Test splits. We train models with clean and noisy labels and use the 
difference in mean average precision (mAP)  (Zhang & Zhang, 2009) and area under the 
precision-recall curve (AUCPR)  (Raghavan et  al., 1989) as the indicators for the impact 
of label noise. The results are shown in Fig. 2. As we can see, the impact of label noise 
becomes more significant as the classes become more imbalanced.

3.2  Pretraining improves robustness to label noise

One model training technique that is often used in practice, especially for computer 
vision and natural language tasks, is to pretrain the models on some large benchmark 
datasets and then fine-tune them using the data for specific tasks. It has been observed 
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that model pretraining can improve robustness to independent random label noise 
(Hendrycks et  al., 2019) and the web label noise considered by Jiang et  al. (2020). 
Here we show that this can still be observed in our synthetic framework. A simple 
explanation is that model pretraining adds strong inductive bias to the models and thus 
they are less sensitive to a fraction of noisy labels during fine-tuning.

We validate this hypothesis using two datasets, Cats vs Dogs (CvD) and CIFAR10. 
For both datasets, we generate three synthetic noisy label datasets using our framework 
with different rater error rates. We compare the test accuracy on the Test  split (with 
clean labels) between the models that are trained from random initialization and those 
that are fine-tuned from models pretrained on ImageNet (Deng et al., 2009). We exper-
iment with three different architectures, including Inception-v4 (Szegedy et al., 2017), 
ResNet152, and ResNet50 (He et al., 2016). As we can see in Fig. 3, models that are 
pretrained on ImageNet achieve better test accuracy. In addition, for pretrained models, 
the test accuracy tends to drop more slowly compared to models that are trained from 
random initialization as we increase the amount of noise (rater error rate).

Meanwhile, we also observe that ImageNet pretraining does not improve the test 
accuracy under noisy labels for the PatchCamelyon dataset. This can be explained by 
the fact that the PatchCamelyon dataset consists of histopathologic scans of lymph 
node sections, and these medical images have very different distribution from the data 
in ImageNet. Therefore, the inductive bias that the model learned from ImageNet pre-
training may not be helpful on PCam.

Fig. 2  Impact of label noise for tasks with different class imbalance. The x-axis represents class imbal-
ance, measured by the fraction of the majority class. For PCam, we use MobileNet-v1 (Howard et al., 2017) 
model, and for Cats vs Dogs, we use ResNet50 (He et al., 2016). The k-alpha s correspond to the synthetic 
datasets before subsampling

Fig. 3  Pretrained models achieve better test accuracy on CvD and CIFAR10. Moreover, as the amount of 
label noise increases, the amount of test accuracy drop is smaller for pretraining (e.g. the slope is smaller) 
than training from random initialization
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3.3  Easier tasks are more sensitive to label noise

We also study the impact of label noise on tasks with different difficulty levels (the test 
accuracy models can achieve when clean labels are accessible). Our hypothesis here 
is that when a task is already hard to learn even given clean labels, then the impact 
of label noise is smaller. The reason can be that when a classification task is hard, 
the data distributions of different classes are relatively close such that even if some 
data are mislabeled, the final performance may not be heavily impacted. On the con-
trary, label noise may be more detrimental to easier tasks as the data distribution can 
significantly change when well-separated data points get mislabeled. We validate this 
hypothesis with two experiments.

Setup Our first experiment involves two binary classification tasks, i.e., PatchCame-
lyon (PCam) with MobileNet-v1 (Howard et  al., 2017) and Cats vs Dogs with 
ResNet50  (He et  al., 2016). We generate synthetic noisy label datasets with differ-
ent k-alpha s using our framework, and compare the accuracies when the models are 
trained with clean and noisy labels. We observe that CvD is easier than PCam (clean 
label accuracy 97.8 ± 0.1 % vs 87.7 ± 0.4%). In our second experiment, we design three 
20-way classification tasks with the same number of data but different difficulty levels 
by subsampling different classes from the CIFAR100 dataset. We call the three tasks 
the easy, medium, and hard tasks. Details for the design of the three tasks are provided 
in “Appendix B”, and we observe that with clean labels, we can obtain test accuracies 
of 79.9 ± 1.4 %, 65.2 ± 2.4 %, and 55.4 ± 2.6 % for the three tasks, respectively. We gen-
erate synthetic datasets with different amounts of noise, measured by k-alpha and use 
the MobileNet-v2 model (Sandler et al., 2018).

Results We study the impact of label by measuring the absolute difference in test 
accuracy when training with clean and noisy labels. The results are shown in Fig. 4. As 
we can see, the impact of noisy labels is higher on the easy task: On CvD, the drop in 
test accuracy grows faster as we increase the amount of label noise (indicated by 1.0− 
k-alpha) compared to PCam, and similar phenomenon can be observed on the three 
CIFAR100-based tasks.

Fig. 4  Impact of label noise on tasks with different difficulty levels. The numbers in the legend correspond 
to test accuracies when training with clean labels for every task. The x-axis represents the amount of noise, 
measured by 1.0− k-alpha. The y-axis represents the negative impact of label noise, measured by the differ-
ence in test accuracy when training with clean and noisy labels. Scattered points represent the pairs of noise 
level and the accuracy drop, and solid lines show the linear fit of the scattered points in the same color
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4  Benchmarking noisy label algorithms

With our instance-dependent synthetic noisy label datasets, a natural follow-up question 
is how existing techniques for mitigating the impact of label noise perform on our bench-
marks. In particular, we are interested in the difference of the algorithms’ performance 
when using our synthetic datasets and using noisy label datasets with independent random 
label noise. In this and the next section, when we mention a dataset uses random label 
noise, we mean with certain probability (rater error rate), the label of each data point is 
flipped to an incorrect label that is uniformly selected. This flipping event is independent of 
other data points and the image itself.

4.1  Experiment setup

We compare the following 5 algorithms: vanilla training with cross-entropy loss (Base-
line), Bootstrap (Reed et al., 2014), Co-Teaching (Han et al., 2018), cross-entropy loss with 
Monte Carlo sampling (MCSoftMax) (Collier et al., 2020), and MentorMix (Jiang et al., 
2020)3 on 4 tasks: CIFAR10, CIFAR100, PatchCamelyon, and Cats vs Dogs.4 For each 
task, we generate 3 synthetic noisy label datasets with different amount of noise using our 
framework. According to the rater error rate, the noisy label datasets are marked as “low”, 
“medium”, and “high” in Figs. 5 and 6. Details for these datasets can be found in “Appen-
dix A”. For each of our synthetic dataset, we generate another dataset that uses random 

Fig. 5  Benchmarking noisy label algorithms using our synthetic dataset and random label noise. Each pair 
of adjacent bars shows test accuracy on two datasets: our synthetic dataset (darker color) and random label 
noise (lighter color) with the same rater error rate. On CIFAR100, our datasets are easier than random 
noise, while on binary classification tasks (PCam and CvD), our datasets are harder

3 We also experimented with F-Correction  (Patrini et  al., 2017) and RoG  (Lee et  al., 2019) but did not 
observe significant improvement over the baseline on our synthetic datasets. Thus, we choose to not report 
the results of these two algorithms.
4 We also generated synthetic datasets using ImageNet. However, none of the noisy label techniques per-
forms significantly better than vanilla training with cross entropy loss, thus we do not present the results 
here.
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label noise and has the same rater error rate. We compare the performance of the 5 algo-
rithms on these paired datasets, and aim to measure the difficulty of noisy label datasets 
when the label errors are generated using our framework or independent random flipping. 
All the experiments use the ResNet50 architecture.

4.2  Results

Interestingly, we find different behavior for tasks with different number of classes. For tasks 
with a large number of classes such as CIFAR100, we find that most algorithms achieve 
better test accuracy on our synthetic datasets compared to random label noise. On binary 
classification problems such as PatchCamelyon and Cats vs Dogs, however, the trend is 
opposite, i.e., most algorithms perform worse on our synthetic datasets. On CIFAR10, 
we observe mixed behavior: depending on the amount of noise and the algorithm, the test 
accuracy can be higher either on our synthetic datasets or those with random label noise. 
The results are shown in Fig. 5, and exact numbers are provided in “Appendix C”.

This phenomenon can be explained as follows. For binary classification problems, in 
our synthetic framework, the mislabeled data are usually the ambiguous ones that located 
around the decision boundary. This label noise can hurt the models’ performance more 
since the important information around the decision boundary is corrupted. On the con-
trary, for tasks with a large number of classes, especially those with tree-structured classes 
involving a relatively small number of high level super classes and low level fine-grained 
classes, such as CIFAR100, in our instance-dependent simulation framework, the label 
mistakes are usually among similar classes. For example, an image of a certain type of 
mammal may be mislabeled as another mammal, but it is unlikely to be labeled as a type of 
vehicles. In other words, the corruption of decision boundary only happens to similar fine-
grained classes in our framework. Thus, given the same fractions of incorrect labels are the 
same, our synthetic label noise hurts the models’ performance less compared to random 
noise.

Another observation is that on CIFAR10 and CIFAR100, the performance improvement 
obtained by noisy label algorithms when compared with the baseline is usually smaller 
with our synthetic datasets. The performance improvement is presented in Fig. 6.

We emphasize that our results demonstrate the importance of using instance-dependent 
synthetic benchmarks in the research on label noise: existing algorithms exhibit differ-
ent behavior on our synthetic framework and random label noise, even if the fraction of 

Fig. 6  Improvement in test accuracy using noisy label techniques. Each pair of adjacent bars shows test 
accuracy improvement compared to the baseline on two datasets: our synthetic dataset (darker color) and 
random label noise (lighter color) with the same rater error rate. In most cases, the accuracy improvement 
tends to be smaller under our synthetic framework
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mislabeled data is kept the same, and the performance gain observed using random label 
noise may not directly translate to the setting that we tested.

5  Leveraging rater features: label quality model

Existing work in the noisy label literature commonly assumes that training labels are the 
only output of the data curation process. In practice however, the data curation process 
often produces a myriad of additional features that can be leveraged in downstream train-
ing, e.g., which rater is responsible for a given label, as well as that rater’s tenure, his-
torical errors, and time spent on a given task. With our proposed method of simulating 
instance-dependent noisy labels via rater models, we can additionally simulate these rater 
features by extracting metadata from the rater models, e.g., the number of epochs used to 
train the rater models is a proxy for rater tenure. Another common practice in label cura-
tion is assigning multiple raters for a single example. This is commonly used to reduce the 
label noise via aggregation, or to evaluate the performance of individual raters against the 
pool. This practice assumes that agreement among multiple raters are more accurate than 
individual responses.

With understanding of practical data collection setup, we introduce a technique for train-
ing with noisy labels, which we coin Label Quality Model (LQM). LQM is an intermediate 
supervised task aimed at predicting the clean labels from noisy labels by leveraging rater 
features and a paired subset for supervision. The LQM technique assumes the existence 
of rater features and a subset of training data with both noisy and clean labels, which we 
call paired-subset. We expect that in real world scenarios some level of label noise may 
be unavoidable. LQM approach still works as long as the clean(er) label is less noisy than 
a label from a rater that is randomly selected from the pool, e.g., clean labels can be from 
either expert raters or aggregation of multiple raters. LQM is trained on the paired-subset 
using rater features and noisy label as input, and inferred on the entire training corpus. The 
output of LQM is used during model training as a more accurate alternative to the noisy 
labels.

The intuition for LQM is to correct the labels in a rater-dependent manner. This means 
that by learning the patterns from the paired-subset, we can conduct rater-dependent label 
correction. For example, LQM can potentially learn that raters with a certain feature often 
mislabel two breeds of dogs, then it can possibly correct these two labels from similar 
raters for the rest of the data. Below we formally present the details of LQM.

5.1  Algorithm design

Formally, let D ∶= {(xi, yi, ri)}
N
i=1

 be a noisy label dataset, e.g., the NoisyLabelTrain split,5 
where xi is the input, yi is the one-hot encoded noisy label, and ri is the rater feature corre-
sponding to yi . Let Dps = {(xj, yj, rj, y

∗
j
)}M

j=1
 be the paired-subset, and y∗

j
 be a more accurate 

label than yj . We usually have M ≪ N . We propose to optimize a parameterized model 
���(�;x, r, y) to approximate the conditional probability P(y∗ ∣ x, r, y) using Dps . We note 

5 As mentioned in Sect. 2.2, the size of the NoisyLabelTrain split is around 50% of the training split of the 
original dataset.
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that LQM leverages all the information from the input x, rater features r, and the noisy 
label y.

Once we have the LQM, we proceed to tackle the main task using the noisy label dataset 
D. Instead of trying to predict P(yi ∣ xi) , we replace the noisy labels yi with the outputs of 
LQM and train a model to predict P(���(�;xi, ri, yi) ∣ xi) . From experimentation, we find 
that by interpolating between noisy label yi and the output of LQM produces even stronger 
results. Therefore, we recommend training with target ỹi = 𝛾���(𝜃;xi, ri, yi) + (1 − 𝛾)yi , 
where � is a hyperparameter between 0 and 1 and can be selected using the validation set. 
This is particularly helpful for datasets with a large number of classes such as CIFAR100, 
since it prevents the training target from getting too far from the original labels yi . Moreo-
ver, since ỹi specifies a distribution over the labels, we can also sample a single one-hot 
label according to the distribution ỹi as the target.

We use a small set of rater features in the simulated framework, such as the accuracy of 
the rater model on CleanLabelValid, the number of epochs trained, and the type of archi-
tecture. In addition, we also use the paired-subset to empirically calculate the confusion 
matrix for each rater and use it as a feature for the rater. Instead of training LQM with raw 
input x, we first train an auxiliary image classifier f(x) and train LQM using the output 
logits of f(x). The auxiliary classifier can be trained over either the full noisy dataset D or 
the paired-subset Dps . We find that the better option depends on the task and the amount of 
noise present. In our experimentation, we train f(x) on both dataset options and select the 
better one. Given that LQM has fewer training examples, using an auxiliary image classi-
fier significantly simplifies training.

5.2  Experiment setup and results

For uniformity, we assume M = 0.1N  , i.e. 10% of training data has access to a 
clean label in all of our following experiments. For the main prediction model, i.e., 
P(���(�;xi, ri, yi) ∣ xi) , we use the ResNet50 architecture. For the auxiliary model f(x), 
we use MobileNet-v2. The LQM itself is trained using a one-hidden-layer MLP archi-
tecture with cross-entropy loss. The number of hidden units in the MLP is chosen in 
{8, 16, 32} as a hyperparameter. We conduct the following two experiments, and the 
exact numbers for the results are provided in “Appendix C”.

LQM vs Baseline First, we compare the performance of models trained with LQM 
and the baseline models that are trained using vanilla cross-entropy loss without lever-
aging rater features. Since LQM has access to clean labels of 10% of the data, for fair 
comparison, we ensure that the baseline models also have access to the same number 
of clean labels. The comparison is presented in Fig. 7. As we can see, with rater fea-
tures and the label correction step, in many cases, especially in the medium and high 
noise settings, LQM outperforms the baseline.

Combining LQM with other techniques In the second experiment, we investigate the 
conjunction of LQM with other noisy labels techniques. We hypothesize that, depend-
ing on the technique, LQM may be correcting a different kind of noise from exist-
ing techniques, and thus can potentially lead to further performance improvement. To 
combine LQM with another technique, we sample a hard label from the soft distribu-
tion specified by ỹi , and apply other noisy labels techniques on top of the sampled hard 
label. We consider the same set of noisy labels techniques as the previous section. We 
find that on CIFAR10 and CIFAR100, combining LQM with other techniques usually 
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lead to further performance improvement. The improvement can also be observed in 
the high noise setting for CvD. The results are illustrated in Fig. 8.

As a final note, since LQM assumes access to a subset of data with clean labels, 
and also uses an auxiliary classifier f(x), it has some similarity with semi-supervised 
learning (SSL). We notice that several state-of-the-art SSL techniques such as Fix-
Match (Sohn et al., 2020), UDA (Xie et al., 2019), self-training with noisy student (Xie 
et  al., 2020) use specifically designed data augmentations that are only suitable for 
specific types of data, whereas LQM can be applied to any type of data as long as we 
have rater features. We also expect that combining certain SSL techniques (e.g., data 
augmentation and consistency training) can further improve the results; however, these 
extensions are beyond the scope of this paper.

Fig. 7  Training with LQM adjusted labels outperforms baselines across all datasets. The improvement from 
LQM is more prominent in medium and high noise settings. LQM models are trained by stochastically sam-
pling a one-hot label from LQM output distribution, and tuning the � hyperparameter

Fig. 8  Accuracy improvement of LQM and the combinations of LQM and other techniques compared to 
the baseline. In many settings (CIFAR10, CIFAR100 and high noise setting in CvD), combining other 
techniques with LQM further improves the test accuracy. In other cases (PCam and low/medium noise for 
CvD), the performance gain is less significant
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6  Additional related work

There is a large body of literature on learning with noisy labels. We mentioned several 
related work in the previous sections and it is certainly not an exhaustive list. Since we 
focus on simulation frameworks for noisy label research, we first review prior works that 
try to simulate noisy labels using methods beyond random label flipping or permutation. 
As mentioned in previous sections, we are aware that several prior works (Berthon et al., 
2021; Lee et al., 2019; Robinson et al., 2020; Zhang et al., 2021b; Zhu et al., 2021) also 
use similar pseudo-labeling paradigm to generate synthetic datasets with noisy labels. Seo 
et  al. (2019) use a similar idea of nearest neighbor search in the feature space of a pre-
trained model with clean labels to generate noisy labels. Compared with these works, our 
study is much more comprehensive with a diverse set of tasks and model architectures. 
We conduct a series of analysis on the impact of noisy labels, and propose a method to 
generate synthetic rater features and use them for improving robustness. These points were 
not considered in these prior works. Other approaches to simulating label noise have also 
been studied in the literature. Jiang et  al. (2020) proposes a framework to generate con-
trolled web label noise, in which case new images with noisy labels are crawled from the 
web and then inserted to an existing dataset with clean labels. The framework differs from 
our approach and both of the two frameworks can be useful depending on the settings. In 
particular, the method by Jiang et al. (2020) is more suitable for web-based data collec-
tion, e.g., WebVision (Li et al., 2017a) whereas ours is more suitable for simulating human 
raters. Moreover, Wang et al. (2018) and Seo et al. (2019) consider open-set noisy labels, 
where the mislabeled data may not belong to any class of the dataset, similar to Jiang et al. 
(2020). Another approach to generating datasets with controllable about of label noise is to 
first identify a dataset with noisy labels (potentially some public datasets (Northcutt et al., 
2021a, b)) and then use the confident learning (CL) method  (Northcutt et  al., 2021a) to 
increase or decrease the amount of label noise proportionally to the distribution of real-
world label noise in the dataset. The idea is to model the joint distribution of noisy and true 
labels and then generate the noisy labels based on the noise-increased or noise-decreased 
joint distribution of noisy and true labels. This differs from our method since we use rater 
models, which are trained neural networks to generate noisy labels for each instance.

Tackling noisy labels using a small subset of data with clean labels has been considered in 
a few prior works. Common approaches include pretraining or fine-tuning the network using 
clean labels (Krause et al., 2016; Xiao et al., 2015), and distillation (Li et al., 2017b). In loss 
correction approaches, a subset of clean labels are often used for estimating the confusion 
matrix (Hendrycks et al., 2018; Patrini et al., 2017). Veit et al. (2017) propose a method that 
estimates the residuals between the noisy and clean labels. Ren et  al. (2018) use the clean 
label dataset to learn to reweight the examples. Tsai et al. (2019) combine clean data with self-
supervision to learn robust representations. Our approach differs from these prior works since 
we leverage the additional rater features to learn an auxiliary model that corrects noisy labels 
in a rater-dependent manner, and can be combined with other techniques to further improve 
the performance as shown in Sect. 5. Learning from multiple annotators has been a longstand-
ing research topic. The seminal work by Dawid and Skene (1979) uses the EM algorithm to 
estimate rater reliability, and much progress has been made since then (Lakshminarayanan & 
Teh, 2013; Raykar et al., 2010; Zhang et al., 2014). Rater features is commonly available in 
many human annotation process. In crowdsourcing, several prior work focus on estimating 
the reliability of raters (Moayedikia et al., 2019; Raykar et al., 2010; Tarasov et al., 2014), and 
rater aggregation (Chen et al., 2013; Vargo et al., 2003). Item response theory (Embretson & 
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Reise, 2013) from the psychometrics literature uses a latent-trait model to estimate the profi-
ciency of raters and the difficulty of examples, and has a similar underlying principle to our 
work.

Our method is also broadly related to several other lines of research. Training a pool of rater 
models is similar to ensemble method (Dietterich, 2000), which is usually used to boost test 
accuracy  (Freund & Schapire, 1997) or improve uncertainty estimation  (Lakshminarayanan 
et al., 2017). Training new models using noisy labels provided by the rater models is simi-
lar to knowledge distillation (Buciluǎ et al., 2006; Hinton et al., 2015). Designing instance-
dependent noisy label generation framework can be considered as reducing underspecifica-
tion (D’Amour et al., 2020) in generating label noise.

7  Conclusions and limitations

In this paper, we propose framework for simulating instance-dependent label noise. Our 
method is based on the pseudo-labeling paradigm. We show that the distribution of noisy 
labels in our synthetic datasets is closer to human labels compared to independent random 
label noise. With our synthetic datasets, we evaluate the negative impact of label noise on 
deep learning models, and demonstrate that label noise is more detrimental under class imbal-
anced settings, when pretraining is not used, and on easier tasks. We observe that existing 
algorithms for learning with noisy labels exhibit different behavior on our synthetic datasets 
and the datasets with random label noise. Using the rater features from our simulation frame-
work, we propose a new technique, Label Quality Model, that leverages annotator features to 
predict and correct against noisy labels. We show that our technique can be combined with 
existing approaches to further improve model performance.

Our work demonstrates the importance of using instance-dependent datasets for noisy 
label research. As noted above, the performance gain of noisy label techniques on a dataset 
with independent random label flipping may not directly transfer to our synthetic datasets. We 
expect that the patterns learned from our synthetic datasets can be transferred to many real-
world data with human label noise, in particular, the datasets where more ambiguous exam-
ples are more likely to have wrong labels and raters with higher expertise level are more likely 
to produce correct labels. We hope our framework can serve as an option for the noisy label 
research community to develop more efficient methods for practical challenges.

Several limitations of our framework: (1) As discussed in Sect. 6, it focuses more on simu-
lating human errors, whereas there might be other types of label noise in practical settings (e.g. 
adversarially corrupted labels and the web label noise) that need other simulation methods; (2) 
Controlling the amount of label noise in the datasets requires careful archtecture selection and 
hyperparameter tuning, thus is harder compared to random flipping methods; (3) LQM requires 
rater features, which may not always be available in practice; however, our results show that 
whenever they are available, LQM is helpful; (4) LQM requires the paired-subset containing 
both clean and noisy labels. This requirement may not be satisfied in some applications.

Appendix A: Details of synthetic datasets

In this section, we provide more details of the synthetic data generation process. In particu-
lar, we provide the architectures and hyperparameters of the rater models in these datasets. 
All the models use standard cosine learning rate decay schedule, as well as the standard 
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flipping and cropping data augmentation. In the following, for rater models that use the 
same architecture, they are randomly initialized independently.

CIFAR10 datasets in Sect. 2.3. We use 10 rater models for the low, medium, and high 
noise datasets, respectively. Low noise: 3 Inception-v1 (Szegedy et al., 2015), 1 Inception-
v3  (Szegedy et  al., 2016), 2 Inception-ResNet-v2  (Szegedy et  al., 2017), 2 MobileNet-
v1 (Howard et al., 2017), 2 VGG16 (Simonyan & Zisserman, 2014) models. The models 
are trained with batch size 256, 80,000 steps, and initial learning rate 0.01. Medium noise: 
2 Inception-v4, 2 MobileNet-v1, 2 MobileNet-v2, 1 NASNetMobile  (Zoph et  al., 2018), 
1 ResNet50, 1 ResNet101, 1 VGG16. All models are trained with batch size 256, initial 
learning rate 0.01 and 17,000 steps. High noise: 2 Inception-v2, 1 Inception-ResNet-v2, 2 
MobileNet-v1, 1 MobileNet-v2, 2 ResNet50, 1 ResNet101, 1 ResNet152. All models are 
trained with batch size 256, initial learning rate 0.01 and 5000 steps.

For the PCam dataset in Sect. 3.3, we use 20 rater models involving 10 architectures: 
Inception-v1, Inception-v2  (Szegedy et  al., 2016), Inception-v3, Inception-v4  (Sze-
gedy et  al., 2017), MobileNet-v1, MobileNet-v2  (Sandler et  al., 2018), ResNet50, 
ResNet152  (He et al., 2016), VGG16, VGG19. For each architecture, we use two differ-
ent initial learning rates: 0.01 and 0.001 to train two different models. All the models are 
trained with batch size 256 and 10,000 steps.

For the CvD dataset in Sect. 3.3, we use 10 rater models, involving the same 10 archi-
tectures in the PCam dataset mentioned above. All the models are trained with batch size 
128, initial learning rate 0.001, and 10,000 steps.

For the Easy task based on CIFAR100 in Sect.  3.3, we use 10 rater models with the 
following architectures: Inception-v1, Inception-v2, Inception-v3, Inception-v4, Inception-
ResNet-v2, MobileNet-v1, MobileNet-v2, ResNet50, ResNet101, ResNet152. We use 
batch size 128, initial learning rate 3 × 10−5 , and 5000 training steps. For the Medium task, 
we use 11 rater models, each using its own architecture. The 11 architectures include the 
10 architectures for the PCam dataset in Sect. 3.3 with an additional ResNet101. We use 
batch size 128, initial learning rate 0.003, and 40,000 steps. The Hard task uses 11 rater 
models with the same architectures as the Medium task, with batch size 128, initial learn-
ing rate 0.01 and 2 × 105 steps.

For the 3 CvD datasets in Sect.  3.1, we use 10 rater models with the same architec-
tures as the PCam dataset in Sect.  3.3. All models are trained with batch size 128. For 
the three datasets, the (initial learning rate, number of steps) pairs are (1 × 10−2, 5 × 104) , 
(1 × 10−3, 2.5 × 104) , (1 × 10−3, 1 × 105) , respectively.

For each of the 4 PCam datasets in Sect. 3.1, we use 20 raters models, which uses the 
same combinations of the 10 architectures and 2 initial learning rates as in the PCam data-
set in Sect. 3.3. They all use batch size 256. The 4 datasets are generated by varying the 
number of training steps among {1, 2, 5, 8} × 104.

In Sect. 3.2, we use 3 CvD datasets and 3 CIFAR10 datasets. All the CvD datasets use 
10 rater models with the same set of architectures as the CvD dataset in Sect. 3.3. All rater 
models are trained with batch size 128. The (initial learning rate, number of steps) pairs are 
(1 × 10−3, 1 × 105) , (1 × 10−3, 2.5 × 104) , (1 × 10−2, 1 × 104) , respectively. The CIFAR10 
dataset with rater error rate 0.11 is the same as the dataset in Sect.  2.3. The CIFAR10 
dataset with rater error rate 0.19 uses the same rater models as the medium noise dataset in 
Sect. 2.3. The CIFAR10 dataset with rater error rate 0.33 uses the same rater models as the 
high noise dataset in Sect. 2.3 with the only difference being that the number of training 
steps is 12,000.
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In Sects. 4 and 5, we use 3 datasets for each of the 4 tasks. The rater error raters of these 
datasets are provided in the tables in “Appendix C”. Here, we provide details of the rater 
models in the synthetic datasets.

CIFAR10 The same as Sect. 2.3.
CIFAR100 For all the 3 CIFAR100 datasets, we use 11 raters, with the same set of archi-

tectures as the Medium and Hard tasks in Sect. 3.3. The (batch size, learning rate, number 
of steps) tuples for the low, medium, and high noise datasets are (128, 1 × 10−3, 1 × 104) , 
(256, 0.01, 2 × 105) , and (256, 0.01, 8 × 104) , respectively.

PCam For all the 3 PCam datasets, we use 20 raters models (for the medium noise data-
set, one of the Inception-v1 models failed due to system error, so we only have 19 noisy 
labels for this dataset), which uses the same combinations of the 10 architectures and 2 
initial learning rates as in the PCam dataset in Sect. 3.3. They all use batch size 256 and 
initial learning rate 0.01. The number of steps are 3.5 × 104 , 1.5 × 104 , and 1 × 104 , for the 
low, medium, and high noise datasets, respectively.

CvD For all the 3 CvD datasets, we use 10 rater models with the same set of architec-
tures as the CvD dataset in Sect. 3.3. All rater models are trained with batch size 128. The 
(initial learning rate, number of steps) pairs are (1 × 10−3, 5 × 104) , (1 × 10−2, 1 × 104) , 
(1 × 10−3, 1 × 104) , for low, medium, and high noise, respectively.

Appendix B: Details for three CIFAR100‑based datasets in Sect. 3.3

As we know, the CIFAR100 dataset contains 20 super classes, each of which contains 5 
fine-grained classes. We create the easy, medium, and hard tasks in the following way.

• For the easy task, we select one fine-grained class from each of the 20 super classes, 
and form a 20-way classification task.

• For the medium task, we select 4 super classes that are semantically similar, i.e., large 
carnivores, large omnivores and herbivores, small mammals, and medium-sized mam-
mals. We use all the fine-grained classes from these 4 super classes to form a 20-way 
classification task.

• For the hard task, we simply classify the 20 super classes, and we randomly subsample the 
data in order to match the total number of data points in the other two tasks. We note that 
this task is harder since the data in each super class is a mixture of 5 fine-grained classes.

Table 3  Test accuracy ± std (%) of noisy label algorithms on CIFAR10

Noise Low (err = 0.11) Medium (err = 0.19) High (err = 0.48)

Dataset Synthetic Random Synthetic Random Synthetic Random

Baseline 83.6 ± 0.5 78.7 ± 0.3 78.4 ± 0.1 72.9 ± 0.7 60.1 ± 0.2 61.9 ± 0.6
Bootstrap 83.2 ± 0.8 78.8 ± 0.6 77.6 ± 0.1 74.8 ± 0.7 61.5 ± 1.2 63.5 ± 0.7
Co-Teaching 85.9 ± 0.2 87.2 ± 0.6 81.6 ± 0.5 86.2 ± 0.2 63.4 ± 1.6 66.1 ± 0.9
MCSoftMax 85.9 ± 0.1 82.2 ± 0.3 79.8 ± 0.2 75.5 ± 1.1 65.2 ± 0.4 60.4 ± 0.8
MentorMix 85.5 ± 1.9 87.7 ± 0.2 83.4 ± 0.7 86.9 ± 0.3 69.4 ± 1.5 78.9 ± 0.9
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Appendix C: Benchmarking results

We provide exact numbers for the experimental results in Sect. 4 (Tables 3, 4, 5, and 6) and 
Sect. 5 in the main paper (Tables 7, 8, 9, and 10).

Table 4  Test accuracy ± std (%) of noisy label algorithms on CIFAR100

Noise Low (err = 0.25) Medium (err = 0.38) High (err = 0.43)

Dataset Synthetic Random Synthetic Random Synthetic Random

Baseline 58.8 ± 0.5 42.3 ± 0.3 51.1 ± 0.5 34.4 ± 1.1 46.7 ± 1.2 29.9 ± 0.6
Bootstrap 58.4 ± 0.6 43.3 ± 0.3 51.5 ± 0.8 35.9 ± 0.9 46.6 ± 0.9 29.6 ± 0.7
Co-Teaching 60.1 ± 0.6 55.2 ± 0.7 52.7 ± 0.5 44.6 ± 1.2 49.2 ± 1.2 39.2 ± 1.4
MCSoftMax 60.7 ± 0.4 47.8 ± 0.5 53.0 ± 0.4 41.2 ± 1.2 48.5 ± 0.3 38.8 ± 0.8
MentorMix 62.2 ± 0.1 59.6 ± 0.6 56.4 ± 0.3 53.9 ± 0.4 50.0 ± 0.8 49.0 ± 0.5

Table 5  Test accuracy ± std (%) of noisy label algorithms on PatchCamelyon

Noise Low (err = 0.10) Medium (err = 0.18) High (err = 0.23)

Dataset Synthetic Random Synthetic Random Synthetic Random

Baseline 82.1 ± 1.3 82.6 ± 1.0 78.9 ± 0.2 82.2 ± 1.0 75.7 ± 0.7 81.6 ± 0.6
Bootstrap 82.9 ± 1.4 82.8 ± 1.6 78.6 ± 0.9 81.4 ± 0.5 76.4 ± 0.7 80.3 ± 1.3
Co-Teaching 82.0 ± 0.8 82.7 ± 0.6 80.1 ± 1.4 81.4 ± 1.2 77.5 ± 1.5 80.9 ± 0.8
MCSoftMax 81.9 ± 1.5 83.4 ± 1.6 79.4 ± 1.2 83.7 ± 0.5 72.3 ± 6.7 82.3 ± 1.8
MentorMix 83.2 ± 1.1 81.7 ± 0.6 76.2 ± 1.9 83.0 ± 0.3 73.6 ± 1.6 79.7 ± 1.0

Table 6  Test accuracy ± std (%) of noisy label algorithms on Cats vs Dogs

Noise Low (err = 0.09) Medium (err = 0.20) High (err = 0.29)

Dataset Synthetic Random Synthetic Random Synthetic Random

Baseline 92.0 ± 0.4 92.3 ± 0.2 85.4 ± 0.7 88.8 ± 0.5 82.0 ± 0.7 82.7 ± 2.1
Bootstrap 92.1 ± 0.6 93.8 ± 0.6 87.3 ± 1.0 89.0 ± 0.8 82.4 ± 0.6 85.8 ± 0.4
Co-Teaching 93.4 ± 0.2 96.2 ± 0.2 89.7 ± 0.5 92.6 ± 0.2 84.0 ± 0.6 86.7 ± 1.3
MCSoftMax 92.0 ± 0.3 93.7 ± 0.3 87.6 ± 0.5 90.4 ± 0.5 81.2 ± 0.4 85.1 ± 1.2
MentorMix 94.0 ± 0.6 94.2 ± 0.4 90.0 ± 0.7 92.0 ± 0.4 84.8 ± 0.6 89.6 ± 0.8
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Table 7  Training with LQM outputs with various techniques

Test accuracy ± std (%) on CIFAR10

Algorithm Low (err = 0.11) Medium (err = 0.19) High (err = 0.48)

Baseline 84.1 ± 0.2 78.8 ± 0.2 62.4 ± 1.1
LQM 85.6 ± 0.4 81.9 ± 0.3 73.4 ± 0.3
LQM + Bootstrap 82.8 ± 0.9 79.8 ± 0.2 73.5 ± 0.3
LQM + Co-Teaching 86.3 ± 0.2 80.9 ± 0.1 74.2 ± 0.4
LQM + MCSoftMax 85.7 ± 0.2 81.6 ± 0.1 74.2 ± 0.2
LQM + MentorMix 86.3 ± 0.1 84.2 ± 0.3 78.4 ± 0.2

Table 8  Training with LQM outputs with various techniques

Test accuracy ± std (%) on CIFAR100

Algorithm Low (err = 0.25) Medium (err = 0.38) High (err = 0.43)

Baseline 59.2 ± 1.2 52.9 ± 0.6 47.3 ± 1.0
LQM 59.4 ± 1.7 53.9 ± 0.6 51.3 ± 0.9
LQM + Bootstrap 59.8 ± 1.1 52.8 ± 0.8 49.8 ± 1.4
LQM + Co-Teaching 61.0 ± 1.3 56.8 ± 0.6 50.4 ± 0.7
LQM + MCSoftMax 63.0 ± 0.2 57.0 ± 0.4 55.2 ± 0.7
LQM + MentorMix 62.4 ± 0.5 58.5 ± 0.2 53.7 ± 0.4

Table 9  Training with LQM outputs with various techniques

Test accuracy ± std (%) on PatchCamelyon

Algorithm Low (err = 0.1) Medium (err = 0.18) High (err = 0.23)

Baseline 78.1 ± 1.8 75.1 ± 0.9 72.9 ± 0.3
LQM 80.0 ± 0.1 79.1 ± 0.9 77.6 ± 0.7
LQM + Bootstrap 80.7 ± 0.7 80.7 ± 0.9 78.2 ± 1.1
LQM + Co-Teaching 78.9 ± 0.1 78.2 ± 1.7 76.9 ± 0.3
LQM + MCSoftMax 80.3 ± 0.4 80.0 ± 0.7 78.2 ± 0.9
LQM + MentorMix 79.5 ± 0.5 77.0 ± 0.4 75.8 ± 0.2



1892 Machine Learning (2023) 112:1871–1896

1 3

Author contributions KG: overall leading the project, including designing the simulation framework and 
LQM, implementation, running experiments, and part of the writing. XM: experiments in Sects. 3,4,5. Van-
dana Bachani: experiments in Sects. 3,4,5. Balaji Lakshminarayanan: design of LQM, part of the writing. 
JN: design of LQM and the overall framework, part of the implementation. DY: design of the simulation 
framework and hypothesis analysis, experiments in Sect. 2.3, writing majority of the content, dataset release 
and paper submission.

Funding This research project is supported by DeepMind and Google.

Availability of data and material The synthetic datasets that we generated in this work are released at 
(https:// github. com/ deepm ind/ deepm ind- resea rch/ tree/ master/ noisy_ label).

Code availability In the aforementioned github repository, we have a python notebook that demonstrates 
how to load the synthetic datasets that we generated.

Declarations 

 Conflict of interest Not applicable.  We are not aware of any conflicts of interest.

 Ethical approval Not applicable. We do not believe our paper has any ethical issues.

 Consent to participate We declare that all the authors have agreed on the submission of this paper to 
Machine Learning journal.

 Consent for publication Not applicable. We do not use any individual’s data or image. All the datasets that 
we use in this project are public.

References

Advani, M. S., Saxe, A. M., & Sompolinsky, H. (2020). High-dimensional dynamics of generalization error 
in neural networks. Neural Networks, 132, 428–446.

Angluin, D., & Laird, P. (1988). Learning from noisy examples. Machine Learning, 2(4), 343–370.
Bejnordi, B. E., Veta, M., Van Diest, P. J., et al. (2017). Diagnostic assessment of deep learning algorithms 

for detection of lymph node metastases in women with breast cancer. Jama, 318(22), 2199–2210.
Belkin, M., Hsu, D., Ma, S., et al. (2019). Reconciling modern machine-learning practice and the classical 

bias—variance trade-off. Proceedings of the National Academy of Sciences, 116(32), 15849–15854.
Berthon, A., Han, B., Niu, G., Liu, T., & Sugiyama, M. (2021). Confidence scores make instance-depend-

ent label-noise learning possible. In International conference on machine learning (pp. pp 825–836). 
PMLR.

Table 10  Training with LQM outputs with various techniques

Test accuracy ± std (%) on Cats vs Dogs

Algorithm Low (err = 0.09) Medium (err = 0.20) High (err = 0.29)

Baseline 91.9 ± 0.3 87.6 ± 0.5 82.0 ± 0.5
LQM 94.9 ± 0.4 92.3 ± 0.4 85.8 ± 0.4
LQM + Bootstrap 92.0 ± 0.4 90.5 ± 0.3 89.5 ± 0.8
LQM + Co-Teaching 94.1 ± 0.8 91.5 ± 0.5 90.9 ± 0.5
LQM + MCSoftMax 93.5 ± 0.2 91.3 ± 0.2 89.1 ± 0.1
LQM + MentorMix 94.6 ± 0.6 92.1 ± 0.5 91.1 ± 0.3

https://github.com/deepmind/deepmind-research/tree/master/noisy_label


1893Machine Learning (2023) 112:1871–1896 

1 3

Borkan, D., Dixon, L., Sorensen, J., Thain, N., & Vasserman, L. (2019). Nuanced metrics for measuring 
unintended bias with real data for text classification. In Companion proceedings of the 2019 world 
wide web conference (pp. 491–500).

Buciluǎ, C., Caruana, R., & Niculescu-Mizil, A. (2006) Model compression. In Proceedings of the 12th 
ACM SIGKDD international conference on knowledge discovery and data mining (pp. 535–541).

Cabitza, F., Campagner, A., Albano, D., Aliprandi, A., Bruno, A., Chianca, V., Corazza, A., Di Pietto, F., 
Gambino, A., Gitto, S., & Messina, C. (2020). The elephant in the machine: Proposing a new metric 
of data reliability and its application to a medical case to assess classification reliability. Applied Sci-
ences, 10(11), 4014.

Chapelle, O., Schölkopf, B., & Zien, A. (2006). Semi-supervised learning. The MIT Press.
Chen, P., Ye, J., Chen, G., Zhao, J., & Heng, P. A. (2020). Beyond class-conditional assumption: A primary 

attempt to combat instance-dependent label noise. arXiv preprint arXiv:2012.05458
Chen, X., Bennett, P. N., Collins-Thompson, K., & Horvitz, E. (2013). Pairwise ranking aggregation in a 

crowdsourced setting. In Proceedings of the sixth ACM international conference on web search and 
data mining (pp. 193–202).

Collier, M., Mustafa, B., Kokiopoulou, E., Jenatton, R., & Berent, J. (2020). A simple probabilistic method 
for deep classification under input-dependent label noise. arXiv preprint arXiv:2003.06778

D’Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., Chen, C., Deaton, J., Eisen-
stein, J., Hoffman, M.D., & Hormozdiari, F. (2020). Underspecification presents challenges for cred-
ibility in modern machine learning. arXiv preprint arXiv:2011.03395

Dawid, A. P., & Skene, A. M. (1979). Maximum likelihood estimation of observer error-rates using the EM 
algorithm. Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(1), 20–28.

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical 
image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248–255). 
IEEE.

Dietterich, T. G. (2000). Ensemble methods in machine learning. In International workshop on multiple 
classifier systems (pp. 1–15). Springer.

Elson, J., Douceur, J. R., Howell, J., & Saul, J. (2007). Asirra: A CAPTCHA that exploits interest-aligned 
manual image categorization. In ACM conference on computer and communications security (pp. 
366–374).

Embretson, S. E., & Reise, S. P. (2013). Item response theory. Psychology Press.
Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an applica-

tion to boosting. Journal of Computer and System Sciences, 55(1), 119–139.
Han, B., Yao, Q., Yu, X., Niu, G., Xu, M., Hu, W., Tsang, I. & Sugiyama, M. (2018). Co-Teaching: Robust 

training of deep neural networks with extremely noisy labels. arXiv preprint arXiv:1804.06872
Hayes, A. F., & Krippendorff, K. (2007). Answering the call for a standard reliability measure for coding 

data. Communication Methods and Measures, 1(1), 77–89.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings 

of the IEEE conference on computer vision and pattern recognition (pp. 770–778).
Hendrycks, D., Lee, K., & Mazeika, M. (2019). Using pre-training can improve model robustness and 

uncertainty. In International conference on machine learning (pp. 2712–2721). PMLR.
Hendrycks, D., Mazeika, M., Wilson, D., & Gimpel, K. (2018) Using trusted data to train deep networks on 

labels corrupted by severe noise. arXiv preprint arXiv:1802.05300
Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. arXiv preprint 

arXiv:1503.02531
Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. 

(2017). MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv pre-
print arXiv:1704.04861

Jiang, L., Huang, D., Liu, M., & Yang, W. (2020). Beyond synthetic noise: Deep learning on controlled 
noisy labels. In International conference on machine learning (pp. 4804–4815). PMLR.

Jiang, L., Zhou, Z., Leung, T., Li, L. J., & Fei-Fei, L. (2018). MentorNet: Learning data-driven curriculum 
for very deep neural networks on corrupted labels. In International conference on machine learning 
(pp. 2304–2313). PMLR.

Khetan, A., Lipton, Z. C., & Anandkumar, A. (2017). Learning from noisy singly-labeled data. arXiv pre-
print arXiv:1712.04577

Krause, J., Sapp, B., Howard, A., Zhou, H., Toshev, A., Duerig, T., Philbin, J., & Fei-Fei, L. (2016). The 
unreasonable effectiveness of noisy data for fine-grained recognition. In European conference on com-
puter vision (pp. 301–320). Springer

Krizhevsky, A., & Hinton, G. (2009) Learning multiple layers of features from tiny images. Technical 
Report



1894 Machine Learning (2023) 112:1871–1896

1 3

Lakshminarayanan, B., & Teh, Y. W. (2013). Inferring ground truth from multi-annotator ordinal data: A 
probabilistic approach. arXiv preprint arXiv:1305.0015

Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable predictive uncertainty esti-
mation using deep ensembles. Advances in Neural Information Processing Systems, 30.

Lee, K., Yun, S., Lee, K., Lee, H., Li, B., & Shin, J. (2019). Robust inference via generative classifiers for 
handling noisy labels. In International conference on machine learning (pp. 3763–3772). PMLR.

Lee, K. H., He, X., Zhang, L., & Yang, L. (2018). CleanNet: Transfer learning for scalable image classifier 
training with label noise. In Proceedings of the IEEE conference on computer vision and pattern rec-
ognition (pp. 5447–5456).

Li, J., Socher, R., & Hoi, S. C. (2020a) DivideMix: Learning with noisy labels as semi-supervised learning. 
arXiv preprint arXiv:2002.07394

Li, M., Soltanolkotabi, M., & Oymak, S. (2020b) Gradient descent with early stopping is provably robust 
to label noise for overparameterized neural networks. In International conference on artificial intel-
ligence and statistics (pp. 4313–4324). PMLR.

Li, W., Wang, L., Li, W., Agustsson, E., & Van Gool, L. (2017a) WebVision database: Visual learning 
and understanding from web data. arXiv preprint arXiv:1708.02862

Li, Y., Yang, J., Song, Y., Cao, L., Luo, J., & Li, L. J. (2017b). Learning from noisy labels with distil-
lation. In Proceedings of the IEEE international conference on computer vision (pp. 1910–1918).

Malach, E., & Shalev-Shwartz, S. (2017). Decoupling “when to update” from “how to update”. arXiv 
preprint arXiv:1706.02613

Moayedikia, A., Yeoh, W., Ong, K. L., & Boo, Y. L. (2019). Improving accuracy and lowering cost in 
crowdsourcing through an unsupervised expertise estimation approach. Decision Support Systems, 
122(113), 065.

Natarajan, N., Dhillon, I. S., Ravikumar, P. K., & Tewari, A. (2013). Learning with noisy labels. In Neu-
ral information processing systems (pp. 1196–1204).

Northcutt, C., Jiang, L., & Chuang, I. (2021a). Confident learning: Estimating uncertainty in dataset 
labels. Journal of Artificial Intelligence Research, 70, 1373–1411.

Northcutt, C. G., Athalye, A., & Mueller, J. (2021b). Pervasive label errors in test sets destabilize 
machine learning benchmarks. arXiv preprint arXiv:2103.14749

Patrini, G., Rozza, A., Krishna Menon, A., Nock, R., & Qu, L. (2017). Making deep neural networks 
robust to label noise: A loss correction approach. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition (pp. 1944–1952).

Peterson, J. C., Battleday, R. M., Griffiths, T. L., & Russakovsky, O. (2019). Human uncertainty makes 
classification more robust. In Proceedings of the IEEE/CVF international conference on computer 
vision (pp. 9617–9626).

Raghavan, V., Bollmann, P., & Jung, G. S. (1989). A critical investigation of recall and precision as 
measures of retrieval system performance. ACM Transactions on Information Systems (TOIS), 7(3), 
205–229.

Ratner, A., Bach, S. H., Ehrenberg, H., Fries, J., Wu, S., & Ré, C. (2017). Snorkel: Rapid training data 
creation with weak supervision. In Proceedings of the VLDB endowment. International conference 
on very large data bases (p. 269). NIH Public Access.

Ratner, A. J., De Sa, C. M., Wu, S., Selsam, D., & Ré, C. (2016). Data programming: Creating large 
training sets, quickly. Advances in Neural Information Processing Systems, 29, 3567.

Raykar, V. C., Yu, S., Zhao, L. H., Valadez, G. H., Florin, C., Bogoni, L., & Moy, L. (2010). Learning 
from crowds. Journal of Machine Learning Research, 11(4).

Reed, S., Lee, H., Anguelov, D., Szegedy, C., Erhan, D., & Rabinovich, A. (2014). Training deep neural 
networks on noisy labels with bootstrapping. arXiv preprint arXiv:1412.6596

Ren, M., Zeng, W., Yang, B., & Urtasun, R. (2018). Learning to reweight examples for robust deep 
learning. In International conference on machine learning (pp. 4334–4343). PMLR.

Robinson. J., Jegelka, S., & Sra, S. (2020). Strength from weakness: Fast learning using weak supervi-
sion. In International conference on machine learning (pp. 8127–8136). PMLR.

Rolnick, D., Veit, A., Belongie, S., & Shavit, N. (2017). Deep learning is robust to massive label noise. 
arXiv preprint arXiv:1705.10694

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). MobileNetv2: Inverted residu-
als and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern 
recognition (pp. 4510–4520).

Seo, P. H., Kim, G., & Han, B. (2019). Combinatorial inference against label noise. In Advances in neu-
ral information processing systems.



1895Machine Learning (2023) 112:1871–1896 

1 3

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556

Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C. A., Cubuk, E. D., Kurakin, A. & 
Li, C. L. (2020). FixMatch: Simplifying semi-supervised learning with consistency and confidence. 
arXiv preprint arXiv:2001.07685

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, Inception-Resnet and the 
impact of residual connections on learning. In Proceedings of the AAAI conference on artificial 
intelligence.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabi-
novich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition (pp. 1–9)

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architec-
ture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern 
recognition (pp. 2818–2826).

Tarasov, A., Delany, S. J., & Mac Namee, B. (2014). Dynamic estimation of worker reliability in crowd-
sourcing for regression tasks: Making it work. Expert Systems with Applications, 41(14), 6190–6210.

Tsai, T. W., Li, C., & Zhu, J. (2019). Countering noisy labels by learning from auxiliary clean labels. arXiv 
preprint arXiv:1905.13305

Vargo, J., Nesbit, J. C., Belfer, K., & Archambault, A. (2003). Learning object evaluation: Computer-medi-
ated collaboration and inter-rater reliability. International Journal of Computers and Applications, 
25(3), 198–205.

Veeling, B. S., Linmans, J., Winkens, J., Cohen, T., & Welling, M. (2018). Rotation equivariant CNNs for 
digital pathology. In International conference on medical image computing and computer-assisted 
intervention (pp. 210–218). Springer.

Veit, A., Alldrin, N., Chechik, G., Krasin, I., Gupta, A., & Belongie, S. (2017). Learning from noisy large-
scale datasets with minimal supervision. In Proceedings of the IEEE conference on computer vision 
and pattern recognition (pp. 839–847).

Wang, Q., Han, B., Liu, T., Niu, G., Yang, J., & Gong, C. (2021). Tackling instance-dependent label noise 
via a universal probabilistic model. arXiv preprint arXiv:2101.05467

Wang, Y., Liu, W., Ma, X., Bailey, J., Zha, H., Song, L., & Xia, S. T. (2018). Iterative learning with open-set 
noisy labels. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 
8688–8696).

Wang, Y., Ma, X., Chen, Z., Luo, Y., Yi, J., & Bailey, J. (2019). Symmetric cross entropy for robust learning 
with noisy labels. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 
322–330).

Xiao, T., Xia, T., Yang, Y., Huang, C., & Wang, X. (2015). Learning from massive noisy labeled data for 
image classification. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion (pp. 2691–2699).

Xie, Q., Dai, Z., Hovy, E., Luong, T., & Le, Q. (2019). Unsupervised data augmentation for consistency 
training. arXiv preprint arXiv:1904.12848

Xie, Q., Luong, M. T., Hovy, E., & Le, Q. V. (2020). Self-training with noisy student improves ImageNet 
classification. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 
(pp. 10687–10698).

Yao, Y., Liu, T., Gong, M., Han, B., Niu, G., & Zhang, K. (2021). Instance-dependent label-noise learning 
under a structural causal model. Advances in Neural Information Processing Systems, 34.

Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2021a). Understanding deep learning (still) 
requires rethinking generalization. Communications of the ACM, 64(3), 107–115.

Zhang, E., & Zhang, Y. (2009). Average precision. Encyclopedia of Database Systems, 192–193
Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2017). mixup: Beyond empirical risk minimization. 

arXiv preprint arXiv:1710.09412
Zhang, Y., Chen, X., Zhou, D., & Jordan, M. I. (2014). Spectral methods meet EM: A provably optimal 

algorithm for crowdsourcing. Advances in Neural Information Processing Systems, 27, 1260–1268.
Zhang, Y., Zheng, S., Wu, P., Goswami, M., & Chen, C. (2021b). Learning with feature-dependent label 

noise: A progressive approach. arXiv preprint arXiv:2103.07756
Zhu, Z., Liu, T., & Liu, Y. (2021). A second-order approach to learning with instance-dependent label 

noise. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 
10113–10123).



1896 Machine Learning (2023) 112:1871–1896

1 3

Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning transferable architectures for scalable 
image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition 
(pp. 8697–8710).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	An instance-dependent simulation framework for learning with label noise
	Abstract
	1 Introduction
	2 Generating synthetic datasets with instance-dependent label noise
	2.1 Formulation
	2.2 Dataset generation
	2.3 Dataset evaluation

	3 Impact of label noise on deep learning models
	3.1 Label noise has higher impact on more imbalanced datasets
	3.2 Pretraining improves robustness to label noise
	3.3 Easier tasks are more sensitive to label noise

	4 Benchmarking noisy label algorithms
	4.1 Experiment setup
	4.2 Results

	5 Leveraging rater features: label quality model
	5.1 Algorithm design
	5.2 Experiment setup and results

	6 Additional related work
	7 Conclusions and limitations
	Appendix A: Details of synthetic datasets
	Appendix B: Details for three CIFAR100-based datasets in Sect. 3.3
	Appendix C: Benchmarking results
	Acknowledgements 
	References




