
Vol.:(0123456789)

Machine Learning (2023) 112:817–858
https://doi.org/10.1007/s10994-022-06201-z

1 3

Explicit Explore, Exploit, or Escape (E4): near‑optimal
safety‑constrained reinforcement learning in polynomial
time

David M. Bossens1 · Nicholas Bishop1

Received: 17 November 2021 / Revised: 8 April 2022 / Accepted: 26 May 2022 /
Published online: 22 June 2022
© The Author(s) 2022

Abstract
In reinforcement learning (RL), an agent must explore an initially unknown environment
in order to learn a desired behaviour. When RL agents are deployed in real world environ-
ments, safety is of primary concern. Constrained Markov decision processes (CMDPs) can
provide long-term safety constraints; however, the agent may violate the constraints in an
effort to explore its environment. This paper proposes a model-based RL algorithm called
Explicit Explore, Exploit, or Escape (E4), which extends the Explicit Explore or Exploit
(E3) algorithm to a robust CMDP setting. E4 explicitly separates exploitation, explora-
tion, and escape CMDPs, allowing targeted policies for policy improvement across known
states, discovery of unknown states, as well as safe return to known states. E4 robustly
optimises these policies on the worst-case CMDP from a set of CMDP models consistent
with the empirical observations of the deployment environment. Theoretical results show
that E4 finds a near-optimal constraint-satisfying policy in polynomial time whilst satisfy-
ing safety constraints throughout the learning process. We then discuss E4 as a practical
algorithmic framework, including robust-constrained offline optimisation algorithms, the
design of uncertainty sets for the transition dynamics of unknown states, and how to fur-
ther leverage empirical observations and prior knowledge to relax some of the worst-case
assumptions underlying the theory.

Keywords Safe artificial intelligence · Safe exploration · Model-based reinforcement
learning · Constrained Markov decision processes · Robust Markov decision processes

Editors: Dana Drachsler Cohen, Javier Garcia, Mohammad Ghavamzadeh, Marek Petrik, Philip S.
Thomas.

 * David M. Bossens
 d.m.bossens@soton.ac.uk

 Nicholas Bishop
 nb8g13@soton.ac.uk

1 School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ,
UK

http://orcid.org/0000-0003-1924-5756
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06201-z&domain=pdf

818 Machine Learning (2023) 112:817–858

1 3

1 Introduction

As machine learning methods are increasingly deployed in real-world applications, their
safety is of foremost importance. Reinforcement learning (RL) is a particularly relevant
example since in RL, an agent explores an initially unknown environment through observa-
tion, action, and reward. Among the various challenges to safe artificial intelligence [(see
(Everitt et al., 2018; Amodei et al., 2016)], safe exploration and robustness to mismatches
between training and application environment are of particular importance when apply-
ing RL algorithms in safety-critical missions. Unsafe exploration may occur when an RL
system explores a new region of the state space, and in doing so performs actions with dis-
astrous consequences. A mismatch between training and application environment may hap-
pen when the model within a model-based RL system is incorrect on some states, which
can result in the system learning behaviours that are safe in simulation but dangerous in
the real world. More generally, desirable behaviour in a complex world comes with various
safety constraints such as avoiding damage or long-term wear-and-tear or following legal
and social norms to avoid harm.

RL research has traditionally been studied from two angles, namely model-free and
model-based RL, within the framework of Markov decision processes (MDPs). In model-
free RL [(e.g. (Watkins and Dayan, 1992; Rummery and Niranjan, 1994)], the RL agent
has no model of the environment and only learns the long-term cumulative reward associ-
ated with the action taken in a given state. Deep model-free RL [e.g. (Mnih et al., 2015;
Schulman et al., 2017)] additionally incorporates the expressive power of deep neural net-
works for high performance across a variety of simulation environments. Such methods do
not consider safety throughout the exploration process, and therefore are likely to violate
safety criteria. In model-based RL [e.g. (Kearns and Singh, 2002; Brafman and Tennen-
holtz, 2002; Strehl et al., 2006)], the RL agent learns a model of the environment, includ-
ing the transitions between states and the reward function, which can then be used to com-
pute the long-term cumulative reward. Since learning in the real world may come with
high-cost failures, a key benefit of model-based RL is the use of offline optimisation, which
can sample trajectories from the environment model without requiring too many real world
samples and therefore, failures. Consequently, model-based RL provides improved sample
complexity and may also be beneficial for safety. Before model-based RL can be used in
long-term safety-critical applications, at least four requirements must be satisfied, namely
constraint-satisfaction, safe exploration, robustness to model errors, and applicability in
non-episodic environments.

Constraint-satisfaction means that the agent must not violate any of the safety con-
straints defined by the user. The main framework for dealing with such constraints in
this general manner is constrained Markov decision processes (CMDPs) (Altman, 1999),
which aims to optimise the long-term reward subject to constraints over a long-term con-
straint-cost function; in particular, the RL agent is given a maximum budget of cumulative
constraint-cost which cannot be exceeded. Traditionally, CMDPs are solved by linear pro-
gramming, and more recently by policy optimisation methods for high-dimensional control
problems (Achiam et al., 2017).

Safe exploration means that the agent must not venture too far into unknown or dan-
gerous states and ensure a timely return to safe known states. Within CMDPs, there are
a variety of approaches to safe return based on a few additional assumptions. For control
problems where the aim is to stay stable in a particular goal state, Lyapunov functions can
be used with additional assumption of continuity on the policy and environment dynamics

819Machine Learning (2023) 112:817–858

1 3

(Chow et al., 2018; Berkenkamp et al., 2017). An approach for general CMDPs is to define
a supervising agent which can return the agent safely (Turchetta et al., 2020). However,
this defers the problem of safe exploration to the supervising agent, which needs to be
trained on realistic data. A model-free approach for safe exploration involves imposing an
entropy constraint on policies to ensure exploration (Yang et al., 2021). As an alternative
to the CMDP framework, one can also consider safety in terms of ensuring performance
improves on a known policy (Thomas et al., 2015; Garcelon et al., 2020); in this case safe
exploration can be ensured using off-policy evaluation (Thomas et al., 2015), which sam-
ples only from a known baseline policy, or by ensuring the online exploration is monotoni-
cally improving the performance (Garcelon et al., 2020).

Robustness to model errors means that the agent must be prepared for the worst-case
when its model is inaccurate. This approach has been considered primarily by the frame-
work of robust Markov decision processes, which accounts for uncertainty on the transi-
tion dynamics model (Iyengar, 2005; Nilim & Ghaoui, 2005; Wiesemann et al., 2013) and
which has been integrated in CMDPs by Russel et al. (2020). Others additionally incorpo-
rate uncertainty over the reward model with applications to non-stationary MDPs (Jaksch
et al., 2010; Lecarpentier & Rachelson, 2019), although these approaches are in the uncon-
strained setting and the optimistic bias in Jaksch et al. (2010) is likely to be unsafe. A
setting with both reward and constraint-cost uncertainty has also been considered but this
assumes known transition dynamics (Zheng & Ratliff, 2020).

Applicability in non-episodic (also called “continuing”) environments means that the
agent will be embedded in a long-term environment with no resets. The potential of contin-
ued sequential dependencies makes non-episodic environments challenging; it is therefore
no surprise that non-episodic environments became a topic for recent benchmark formula-
tions [(see (Naik et al., 2021; Platanios et al., 2020)]. In safety-critical settings, the con-
tinued lifetime means that any failure is unforgiving—unlike in the episodic video games.
Therefore, the above-mentioned challenge of returnability becomes critically important in
such environments. Somewhat similar to Turchetta et al. (2020), Eysenbach et al. (2018)
defines a separate policy for resetting, with the main aim to abort and return to an initial
state, mimicking the episodic setting without manual resets being required. Similar princi-
ples may be applied to the safety-constrained setting as well, where one could potentially
target return to a larger set of safe and known states.

With respect to the above requirements, Explicit Explore or Exploit (E3) (Kearns &
Singh, 2002), a model-based RL algorithm for near-optimal RL with polynomial sample
and time complexity guarantees, provides a unique starting point for safe model-based RL.
E3 approximates the MDP with which the agent is interacting and the algorithm accounts
for model errors and the resulting value estimate errors by distinguishing between known
states, which haven been estimated correctly, and unknown states, which have not been
estimated correctly. E3 also provides a natural way to deal with exploration and exploita-
tion in a non-episodic environment, namely by alternating limited-step trajectories, each of
which is long enough to assess value function statistics correctly, and then explicitly choos-
ing either an exploration policy or an exploitation policy. The exploitation policy is cho-
sen when an optimal policy is available from the given starting state of the trajectory, and
an exploration policy is chosen otherwise, in an attempt to find an unknown state. Recent
work (Henaff, 2019) has also shown the practical feasibility of the approach for continuous
state spaces, comparing favourably to state-of-the-art deep RL.

What is currently missing from E3 is a suitable way to deal with constraint-satisfac-
tion across the known and unknown states, as well as a suitable method for providing a
safe return, or “escape”, from the unknown states back to the known states. Considering

820 Machine Learning (2023) 112:817–858

1 3

an additional “escape” policy in addition to an exploration and exploitation policy, this
paper formulates an algorithm, called Explicit Explore, Exploit, or Escape (E4 ; see Fig. 1).
E4 extends the E3 algorithm to satisfy safety constraints throughout the lifetime of the RL
agent through the following algorithmic contributions.

• Using the CMDP rather than an MDP framework, E4 additionally models another
stream of reinforcement signals called constraint-costs, which are constrained to a long-
term budget and which represent the cost of state-action pairs.

• A correction is formulated for the constraint-cost budget in offline optimisation to
account for the potential model errors in known states.

• Using a specialised “escape policy”, optimised to return to the known states as quickly
as possible, E4 halts the balanced wandering behaviour of E3 as soon as there is a risk
of exceeding the budgetary constraint in unknown states.

• Analytical formulas are derived to determine an allowed pseudo-budget in known and
unknown states to ensure the budget over the full CMDP is not exceeded.

• To ensure the escape policy returns without exceeding the pseudo-budget in unknown
states, even under worst-case assumptions, we propose four possible approaches, mak-
ing modifications to existing robust and constrained optimisation algorithms:

• using the robust CMDP policy gradient (Russel et al., 2020) as is in unknown states
and optionally in known states;

(a) (b)

(c) (d)

Fig. 1 Diagram illustrating E4 . E4 repeatedly takes limited-step trajectories in either known or unknown
states. a The “exploitation policy” has the aim of solving the CMDP within the known states. If from a
known state it has near-optimal constrained limited-step performance, then this policy is applied. b From
another state, the exploitation policy may not be near-optimal; in this case an “exploration policy” aims
to reach the unknown states, in an attempt to make them known. c Once in the unknown states, a balanced
wandering behaviour ensures that actions are equally often taken for each unknown state, thereby yield-
ing reliable statistics for different actions. Once there is an observed future risk of constraint-violation, an
“escape policy” goes back to the known states as quickly as possible. d At the final stages of the E4 algo-
rithm, nearly all states have been frequently visited with balanced action-visitations, making them known.
This then allows finding a near-optimal exploitation policy for the full CMDP

821Machine Learning (2023) 112:817–858

1 3

• using the robust linear programming technique by Zheng and Ratliff (2020), which is
applicable to episodic and undiscounted CMDPs with known transition dynamics, in
the known states, by accounting for the discount factor and by considering a limited-
step trajectory within the full lifetime of the E4 agent;

• incorporating an uncertainty over transition dynamics into the constraints of con-
strained DP (Altman, 1998); and

• incorporating constraints into robust DP (Nilim & Ghaoui, 2005; Iyengar, 2005) by
reformulating the CMDP as a Lagrangian MDP (Taleghan & Dietterich, 2018).

Applying these algorithmic principles, we demonstrate that E4 finds a near-optimal policy
within the set of policies that satisifies the budgetary constraints. Doing so yields similar sam-
ple complexity as E3 but adds time complexity due to robust optimisation. Compared to the
works mentioned above, the key distinctive features of E4 are 1) safety-constraint satisfaction
throughout the lifetime; 2) the explicit explore, exploit, or escape structure; 3) modelling the
transition dynamics, reward function, constraint-cost function, and their uncertainty for robust
offline optimisation; and 4) the aim to find a near-optimal constrained policy, rather than to
improve on a known policy.

2 Preliminaries and definitions

The framework for E4 is based on the CMDP task-modelling framework. In CMDPs, at each
time step, an agent receives a state, performs an action, receives a reward, and a constraint-cost;
the goal of the agent is to maximise the long-term cumulative reward whilst not exceeding a
pre-defined budget of constraint-cost. Formally, a CMDP is a tuple ⟨S,A,P∗, r, c, d, �⟩ , where
S is the finite state space of size S; A is the finite action space of size A; P∗ ∶ S ×A → ΔS
is the true transition dynamics of the environment with ΔS = {p ∈ ℝ

S ∶ pT� = 1} being the
probability simplex in S ; r(s, a) is the average reward obtained for performing action a ∈ A
in state s ∈ S ; c(s, a) is the average constraint-cost for performing action a ∈ A state s ∈ S ;
d is the budget on the expected asymptotic constraint-cost (see below); and � ∈ [0, 1) is the
discount factor used for computing the long-term value and constraint-cost function based on
the expected cumulative reward and constraint-cost, respectively. When at time t the RL agent
is presented with a state st , its objective within the CMDP is to find a policy � ∶ S → A that
maximises the expected asymptotic value,

while the expected asymptotic constraint-cost, defined as

must satisfy C�(st) ≤ d . Moreover, assumptions on the CMDP are three-fold. First, the
reward distribution for a state-action pair (s, a) ∈ S ×A has mean r(s, a) ∈ [0, rmax] and
variance Var(s) ≤ Varr

max
 . Second, the constraint-cost distribution for a state-action pair

(s, a) ∈ S ×A has a mean c(s, a) ∈ [0, cmax] and variance Varc(s) ≤ Varc
max

 . Third, a gen-
eral upper-bound for the expected T-step value is denoted by Gr

max
(T) =

∑∞

t=0
� trmax =

rmax

1−�

while analogously the general upper-bound for the expected T-step constraint-cost is

(1)V�(st) = ��,P∗

[
∞∑

k=0

�kr(st+k, at+k)

]
,

(2)C�(st) = ��,P∗

[
∞∑

k=0

�kc(st+k, at+k)

]
,

822 Machine Learning (2023) 112:817–858

1 3

denoted by Gc
max

(T) =
∑∞

t=0
� tcmax =

cmax

1−�
 . In practice, the above-mentioned maximal vari-

ance, reward, value, etc. do not need to be known exactly; any upper bound suffices,
although tighter bounds improve the results. Knowledge of rmax and cmax are a basic
requirement since the other maxima can be upper-bounded from them. To give a few exam-
ples of when rmax and cmax can be known exactly or upper-bounded, one can consider appli-
cations where rewards or constraint-costs represent a limited resource, such as energy,
food, or money, or a physical force, such as friction or torque. A further property of the
CMDP being studied is that it has a limited “diameter”. Completely analogous to the diam-
eter (Jaksch et al., 2010) for MDPs, we define the diameter of a CMDP M as the maximal
expected number of actions from one arbitrary state s ∈ S to any other s� ∈ S under the
best possible stationary deterministic policy � ∶ S → A for the choice of (s, s�) , or

where W(s�|s,M,�) is the number of actions from s to s′ given the model M and policy �.
While the above functions span over an infinite horizon, it is often of inter-

est to compute their T- step approximation to make decisions based on limited data.
The corresponding T-step approximations instead sum over T steps and are denoted
by V�(st, T) and C�(st, T) , respectively. From the class of policies Π , the class of con-
strained policies for any state s ∈ S , a budget d, a number of time steps T, is denoted
as Πc(s, d, T) = {� ∈ Π ∶ C�(s,T) ≤ d} . Denoting Πc(s, d) for T → ∞ , Πc(s, d) ≠ � is
non-empty by assumption, and therefore any other choice of T yields Πc(s, d, T) ≠ � .
An optimal constrained policy for a T-step trajectory in M is then defined as
�∗ = argmax �∈Π(s,d,T)V�(s, T) where for the asymptotic case of course T → ∞ . In addi-
tion to the expected asymptotic constraint-cost, which computes the expectation over
different possible trajectories, the analysis also uses a path-based constraint-cost and
value, which computes the average cost for a particular state-action trajectory and is
denoted for a T-step path p as C(p) =

∑T−1

t=0
� tc(st, at) and V(p) =

∑T−1

t=0
� tr(st, at) ,

respectively.
With M being the CMDP to be solved, this paper takes a model-based approach in

which an approximate model M̂ = ⟨S,A, P̂, r̂, ĉ, d�, 𝛾⟩ is continually improved by sam-
pling from M, with hat-notations emphasising the model and its components are esti-
mated by the sample mean, and where a potentially lower budget d′ , cmax ≤ d′ ≤ d , is
used when the model is induced over a subset of the full CMDP (see Sect. 3.2), where
the relation with cmax is an assumption of the algorithmic approach to ensure at least
one action can be performed before potentially exceeding d′ . For states that have not yet
been visited frequently, we formulate an uncertainty set (or ambiguity set), P , as the set
of transition dynamics models consistent with the samples from (or prior knowledge on)
the true but unknown transition dynamics, P∗ . For example, one can define a confidence
interval around P̂s,a , the estimated (also called “nominal”) transition dynamics model,
with a budget �s,a for state-action pair (s, a):

Within the states that have not been frequently visited yet, the uncertainty set is then used
to optimise the constraints robustly, that is, with maxP∈P Ĉ𝜋(st) ≤ d , where Ĉ𝜋 indicates
the estimate of the expected asymptotic constraint-cost, with more precise definitions and
notations to follow.

(3)D(M) ∶= max
s≠s�

min
�

�
[
W(s�|s,M,�)

]
,

(4)Ps,a = {P ∈ ΔS ∶ ||P − P̂s,a||1 ≤ 𝜓s,a} .

823Machine Learning (2023) 112:817–858

1 3

3 Main theorem

With the preliminary definitions in mind, this section states and proves the main theorem,
which postulates the existence of an algorithm, namely E4 , which explores a CMDP safely
within the constraint-cost budget and which finds a near-optimal constrained policy within
polynomial time.

Theorem 1 There exists an algorithm (E4) that outputs with probability 1 − � a near-opti-
mal constrained policy � for s with V�(s) ≥ V�∗ (s) − � and C�(s) ≤ d with sample complex-
ity and time complexity that is polynomial in 1∕� , 1∕� , S, the horizon time 1∕(1 − �) , rmax ,
and cmax . Moreover, the non-stationary policy �n = {�i}

∞
i=1

 induced by the exploration pro-
cess of E4 yields expected asymptotic constraint-cost C�n (st) ≤ d with probability at least
1 − (UA�� + �).

The E4 algorithm is based on the model-based CMDP framework presented in the previ-
ous section. The Constrained Simulation Lemma (Sect. 3.1) shows that a sufficiently accu-
rate CMDP model of the reward function, constraint-cost function, and transition dynam-
ics allow, with high probability, an �-correct value function and constraint-cost function
approximation. Moreover, it is sufficient to visit each state-action pair a number of times
that is polynomial in S, T, 1∕(1 − �) , rmax,1∕� , and 1∕� to obtain such an accurate CMDP
model. This leads to a natural definition of “known states”, which have been visited often
with high frequency for each action and thereby have accurate models, and “unknown
states”, which have not been visited often enough. Each of the two cases can then be
treated as a different Induced CMDP (see Sect. 3.2). Therefore when starting a limited
T-step trajectory from a state s ∈ S , its strategy for known states differs from that in the
unknown states.

Starting from a known state, the agent may already have a near-optimal policy available.
If so, then this policy is best exploited for the following T-step trajectory. If not, then the
model must be further improved by exploring unknown states. This is formalised by the
l-safe Explore-or-Exploit Lemma (Sect. 3.3). This lemma shows that for policies satisfy-
ing a given a constraint-budget within the known states, there either exists a “exploitation
policy” which is a near-optimal constrained policy or there exists an “exploration policy”
which with high probability finds an unknown state. The l-safe Explore-or-Exploit Lemma
then shows how to define a correction to the original budget to account for the approxi-
mation error of the model, resulting in a high-probability guarantee for satisfaction of the
original constraint across the known states.

When exploring unknown states, the agent must attempt to make these states known by
performing many state-action visitations. A key challenge is that this risks exceeding the
constraint-cost budget because the agent has little knowledge of the unkown states. With
worst-case assumptions on the transition dynamics and constraint-costs, the Safe Escape
Lemma (Sect. 3.4) provides a high-probability guarantee for an optimised “escape policy”
to find a path from the unknown states to the known states whilst satisfying the constraint-
cost budget defined in the unknown states. Since the escape policy will not select each
action equally frequently from a given state, the escape policy provides no guarantee on
making states known. To safely gain as much knowledge on the unknown states as pos-
sible, E4 performs a balanced wandering behaviour, which selects the least-taken action for
a given state, as long as timely escape is ensured by the escape policy, as formalised by the
Safe Balanced Wandering Lemma (Sect. 3.5).

824 Machine Learning (2023) 112:817–858

1 3

To integrate the results for the known and unknown states, the Escape Budget Lemma
(Sect. 3.6) shows how to set the budget for the unknown states, d′ , to satisfy the budget on
the full CMDP (d) given a budget within the known states d′′ ; this also helps to define the
conditions for constraint-satisfiability. The remainder of the section (Sect. 3.8) then puts all
the lemmas together and demonstrates the validity of Theorem 1.

3.1 Constrained simulation lemma

Since the model is estimated based on the sample mean, repeatedly visiting the same state
allows estimating the transition dynamics, the reward function, and the constraint-cost
function. Therefore, the true CMDP M can be approximated by simulation model M̂ with a
sufficient number of samples. If the simulation model is sufficient, the expected asymptotic
value and constraint-cost of the CMDP can be approximated with high accuracy, a find-
ing formalised by the Constrained Simulation Lemma (Sect. 2). The set of “known states”
is then defined as those states which have sufficient visitations and are therefore approxi-
mated correctly.

The Constrained Simulation Lemma relies on the relation between the expected asymp-
totic and T-step value and constraint-cost. Specifically, the following Lemma shows that for
sufficiently large T, the expected asymptotic value and constraint-costs are �-close to their
T-step counterparts.

Lemma 1 Constrained T-step Estimation Lemma: Let M be the CMDP, � be a policy in
M, and T ≥

1

1−�
ln

(
max(rmax,cmax)

�(1−�)

)
. Then for any state s ∈ S we have

(a) V�(s,T) ≤ V�(s) ≤ V�(s,T) + � ; and
(b) C�(s,T) ≤ C�(s) ≤ C�(s,T) + �.

For these reasons, we call 1

1−�
ln

(
max(rmax,cmax)

�(1−�)

)
 the �-horizon time of the CMDP M.

Proof of (a): Define MDP M− = ⟨S,A, r, � ,P⟩ with the same states, action space,
reward function, discount factor, and transition dynamics as M. Let � be any policy in M− .
The result follows directly from the original T-step estimation Lemma (see Lemma 2 in
Kearns and Singh (2002)) as this holds for any policy in any MDP. In short, the first ine-
quality V�(s,T) ≤ V�(s) follows from rewards being non-negative and the expected asymp-
totic value additionally considering time steps t = T + 1,… ,∞ ; the second inequality fol-
lows after requiring � ≤ �T

rmax

1−�
 (the maximal remaining reward not accounted for after time

step T) and then solving for T.
Proof of (b): The proof is completely analogous as the transition dynamics and policy

are the same while the constraint-cost function is analogously bounded in [0, cmax] . ◻

The basic reasoning behind the Constrained Simulation Lemma is that, if an estimator
M̂ of the true CMDP M is sufficiently accurate, then M̂ can be used as a simulation model
to simulate realistic trajectories of M; with offline optimisation algorithms, this can then
yield nearly correct estimates of the expected asymptotic value and the expected asymp-
totic constraint-cost. To develop this reasoning, a suitable definition for the accuracy of
such a simulation model is formalised below.

Definition 1 CMDP M̂ is an �-approximation of CMDP M if and only if:

825Machine Learning (2023) 112:817–858

1 3

1) for all state-action-pairs (s, a) ∈ S ×A and : r(s, a) − 𝛼 ≤ r̂(s, a) ≤ r(s, a) + 𝛼;
2) for all transitions (s, a, s�) ∈ S ×A × S : P∗

s,a
(s�) − 𝜖 ≤ P̂s,a(s

�) ≤ P∗
s,a
(s�) + 𝜖.

3) for all state-action-pairs (s, a) ∈ S ×A : c(s, a) − 𝛼 ≤ ĉ(s, a) ≤ c(s, a) + 𝛼.

With this definition in mind, the Constrained Simulation Lemma states that as long as T
is chosen according to the �-horizon time of M and the simulation M̂ is �-correct, the simu-
lated value and constraint-costs are �-correct with respect to the true expected asymptotic
value and constraint-cost.

Lemma 2 Constrained Simulation Lemma. Let T ≥
1

1−�
ln(

max(rmax,cmax)

�(1−�)
), let CMDP M̂ be

an �-approximation of CMDP M with � = O
(
(�∕(STG))2

)
 where

G = max(Gr
max

(T),Gc
max

(T)), and let � be a policy in M. Then for any state s,

(a) V𝜋(s) − 𝜖 ≤ V̂𝜋(s) ≤ V𝜋(s) + 𝜖; and
(b) C𝜋(s) − 𝜖 ≤ Ĉ𝜋(s) ≤ C𝜋(s) + 𝜖.

The proof extends the original Simulation Lemma (see Lemma 4 in Kearns and Singh
(2002)) to include the constraint-costs. As it is extensive and otherwise analogous, it is
provided in the appendix.

Having established the relation between the expected asymptotic constraint-cost and
value on the one hand and the �-approximation on the other hand, the following lemma
provides the number of samples for an accurate estimate of the expected asymptotic con-
straint-cost and value with error of at most �.

Lemma 3 Known State Lemma. Given state s has been visited

times, where G = max(Gr
max

(T),Gc
max

(T)) and Varmax = max(Varr
max

, Varc
max

), and from s
each action has been executed at least ⌊m∕A⌋ times, then with probability of at least 1 − �
we have

a) |P∗
s,a
(s�) − P̂s,a(s

�)| = O(𝜖∕(STG))2) for any (s, a, s�) ∈ S ×A × S;
b) |r(s, a) − r̂(s, a)| = O((𝜖∕(STG))2) for any (s, a) ∈ S ×A ; and
c) |c(s, a) − ĉ(s, a)| = O((𝜖∕(STG))2) for any (s, a) ∈ S ×A.

Proof The proof is based on Hoeffding’s inequality and Chernoff bounds (see Appendix A
for details). ◻

Following the above lemma, the notion of “known states” can now be defined directly
from Eq. 5. Intuitively, contrasting known versus unknown states allows to distinguish
regions for which expected asymptotic value and constraint-cost is estimated correctly, and
regions for which they are not. This contrast between known and unknown states will be
critical to provide safety guarantees for the RL algorithm later on.

Definition 2 Known states K and unknown states U : a state s ∈ S is called known if
∀a ∈ A ∶ n(s, a) ≥ mknown where mknown ∈ ℕ is O((STG∕�)4Varmax ln(1∕�)) following

(5)m = O((STG∕�)4Varmax ln(1∕�))

826 Machine Learning (2023) 112:817–858

1 3

Eq. 5. Alternatively, s ∈ S is called unknown if ∃a ∈ A ∶ n(s, a) < mknown . Known states
are collectively referred to as K = {s ∈ S|∀a ∈ A ∶ n(s, a) ≥ mknown} while unknown
states are referred to as U = {s ∈ S|∃a ∈ A ∶ n(s, a) < mknown}.

3.2 Induced CMDPs

Since only known states are modelled to a sufficient accuracy, it is useful to consider
CMDP simulations over the known states only. The following defines the notion of an
“induced CMDP”, which limits the original CMDP to a subset of the original state space
(e.g., the known states). The induced CMDPs allow two useful results. First, since the
induced CMDP is also a CMDP like in the Constrained Simulation Lemma, an analogous
result holds for induced CMDPs over the set of known states (see Lemma 4); that is, an
estimated induced CMDP is �-correct with probability at least 1 − � when compared to the
true induced CMDP. Second, the expected T-step value and constraint-cost within induced
CMDPs provide lower bounds for the expected T-step value and constraint-cost, respec-
tively, in the original CMDP (see Lemma 5).

Definition 3 Given a CMDP M, define for a subset of states S ⊂ S an induced CMDP
MS , which is equal in all but the following respects:

• its state space is S ∪ s0 where s0 is a terminal state of the CMDP.
• transitions to states in s ∉ S are redirected to a terminal state s0 , which terminates the

episode and yields terminal reward r(s0) = 0 and terminal constraint-cost c(s0) = 0.
• for each (s, a) ∈ S , rewards and constraint-costs always yield their mean r(s, a) and

c(s, a) deterministically, with zero variance.

When a CMDP is induced over the known states K (see Definition 2), the resulting CMDP
is denoted as MK and is called the known-state CMDP of M.

In the following, whenever a value function, constraint-cost, or other quantity is com-
puted in an induced CMDP MS , this will be denoted by the conditioning operator |MS ; for
example, V�(s|MK) denotes the expected asymptotic value of � in the known state CMDP.
For brevity and consistency with the earlier sections, when the conditioning is on the full
CMDP of interest, M, the conditioning is omitted; for example, V�(s) denotes the expected
asymptotic value of � in the full CMDP of interest.

Now the so-called Induced Simulation Lemma applies the Constrained Simulation
Lemma to known-state CMDPs.

Lemma 4 Induced Simulation Lemma Let M be the CMDP of interest and let MK be its
known state CMDP, and let T ≥

1

1−�
ln

(
max(rmax,cmax)

�(1−�)

)
. Then, for any policy � and any state

s ∈ S, with probability 1 − �, we have

and

V𝜋(s|MK) − 𝜖 ≤ V̂𝜋(s|M̂K) ≤ V𝜋(s|MK) + 𝜖

C𝜋(s|MK) − 𝜖 ≤ Ĉ𝜋(s|M̂K) ≤ C𝜋(s|MK) + 𝜖 .

827Machine Learning (2023) 112:817–858

1 3

Proof The proof follows directly from the Constrained Simulation Lemma (see Lemma 2)
and the Known State Lemma (see Lemma 3).□

As one is interested in what happens in the “real world”, the below lemma relates the
induced CMDP to the original CMDP M.

Lemma 5 Induced underestimation lemma: Let S ⊂ S. For any s ∈ S , and any policy �
in M, we have

and

Proof Let � be a policy in M and let s ∈ S . Then we have, analogous to the original
lemma, the following results because � stops at time Tstop ≤ T and rewards and constraint-
costs are positive. To illustrate, for the value function, we have:

due to rewards being positive and the paths being terminated earlier at a time Tstop ≤ T at
terminal state sTstop ∈ S ⧵S . The result for the constraint-cost is completely analogous.□

3.3 l‑safe Explore‑or‑Exploit lemma

Following the definition of induced CMDPs, this section provides results for exploration
and exploitation within the known states. For any induced CMDP which has satisfiable
constraint-cost budget, the Constrained Explore-or-Exploit lemma (Lemma 6) proves the
existence of either an exploitation policy, which solves the CMDP within the known states
near-optimally, and an exploration policy, which gives a high-probability guarantee of vis-
iting an “unknown state”. This allows the l-safe Explore-or-Exploit Lemma (Lemma 7),
which provides safety, i.e. guarantees on constraint-satisfaction, within the known states
by defining a lower budget l that accounts for worst-case modelling errors (hence the term
l-safe). The budget l subtracts the model errors from Lemmas 1 and 4 to the Constrained
Explore-or-Exploit Lemma.

Based on defining an induced CMDP over a subset of states S (e.g. the known states, in
which case S = K), the Constrained Explore-or-Exploit Lemma proves either the exist-
ence of an optimal constrained policy on the full CMDP or a constrained policy that finds a
state not in S in T-steps with high probability.

Lemma 6 Constrained Explore-or-Exploit LemmaLet Mbe any CMDP, let S be any sub-
set of states S ⊂ S, and let MS be the induced CMDP over S with a given budget d. For
any s ∈ S , for any T, and any � ≥ 0, we have either a) there exists a policy � ∈ MS for
which V�(s,T|MS) ≥ V�∗ (s, T) − �, where �∗ = argmax �∈Πc(s,d,T)

V�(s,T) is the optimal
constrained T-step policy, and which satisfies C�(s,T|MS) ≤ d ; or b) there exists a policy

V�(s, T|MS) ≤ V�(s, T)

C�(s, T|MS) ≤ C�(s, T) .

V�(s, T|MS) =
∑

p

ℙ�,P∗ [p]

Tstop−1∑

t=0

� trt ≤ V�(s, T)

828 Machine Learning (2023) 112:817–858

1 3

� in MS which reaches the terminal state s0 in S ⧵S in at most T steps with probability
p > 𝜖∕Gr

max
(T), and C�(s,T|MS) ≤ d.

Proof The proof and lemma is analogous to the original Explore-or-Exploit Lemma,
except that the optimal constrained policy rather than the optimal policy is considered (see
Appendix B). ◻

Now by integrating the Constrained Simulation Lemma and the Constrained Explore-or-
Exploit Lemma, a characterisation of the safety can be provided in terms of the probabil-
ity of constraint-satisfaction during exploitation or exploitation in the known-state CMDP.
This safety guarantee, based on the estimated known-state CMDP, is provided by the l-safe
Explore-or-Exploit Lemma below.

Lemma 7 l-safe Explore-or-Exploit Lemma: Let � ∈ [0, d∕2) , l ≤ d − 2� , � ∈ [0, 1] , K ,
and T ≥ ln

(
max(rmax,cmax)

�(1−�)

)
1

1−�
 (i.e. at least the �-horizon time). Furthermore, let MK be the

known-state CMDP and M̂K its estimate. Then with probability 1 − � , a policy � that satis-
fies Ĉ𝜋(s,T|M̂K) ≤ l for s ∈ K will satisfy C�(s|MK) ≤ d.

Proof Due to the Induced Simulation Lemma and the Constrained T-step Estimation
Lemma, we have for any state s ∈ S with probability 1 − �:

 ◻

3.4 Safe escape lemma

Contrasting to the known states, any model based on the unknown states is inaccurate,
making it difficult to guarantee safe return to the known states before exceeding the
constraint-cost budget. To overcome the challenge, we construct a “Worst-case Escape
CMDP”, a CMDP induced over the unknown states that rewards escaping back to the
known states before exceeding a constraint-cost budget and makes worst-case assumptions
on the constraint-cost. Additionally incorporating worst-case transition dynamics through
the use of an uncertainty set, the resulting robust CMDP provides a probabilistic guarantee
for safety within the unknown states. The proof relies on robust constraint-satisfiability, a
condition that is further discussed in Sect. 4.3.

Definition 4 Worst-case Escape CMDP Given a CMDP M, the Worst-case Escape CMDP
MU induced on U is equivalent to the Induced CMDP on U except that c(s) = cmax for all
s ∈ U .

Intuitively, the policy that optimises a Worst-case Escape CMDP escapes to the known
states before violating the constraint-cost budget under worst-case assumptions.

The following result shows that a policy that is optimised robustly on an estimated
Worst-case Escape CMDP will be able to escape the unknown states with high probability
while also satisfying the constraint-cost budget within both the (non-estimated) Worst-case
Escape CMDP and the full CMDP.

C𝜋(s|MK) ≤ Ĉ𝜋(s|M̂K) + 𝜖 ≤Ĉ𝜋(s, T|M̂K) + 2𝜖 ≤ l + 2𝜖 ≤ d .

829Machine Learning (2023) 112:817–858

1 3

Lemma 8 Worst-case Escape Lemma Let M be the full CMDP, and MU be the Worst-case
Escape CMDP on U , and M̂U its estimate. Let d′ be the constraint-cost budget within the
Worst-case Escape CMDP MU . Let T � = inf{T ∈ ℕ ∶

∑T−1

t=0
� tcmax ≥ d�} , and T ≥ T ′ .

Moreover, let P ∶ S ×A → ΔS be an uncertainty set, such that for each state-action pair
(s, a) ∈ S ×A , the true transition dynamics model P∗

s,a
 is contained in Ps,a with probability

at least 1 − ��.1 If � is a policy in M̂U that satisfies the constraint of the Worst-case Escape
CMDP robustly, that is,

for the initial state s ∈ U , then with probability at least 1 − UA�� , � in MU meets the con-
straint-cost budget CP∗,�(s|MU) ≤ d� and takes at most T ′ steps in U .

Proof Let � be a policy in M̂U that satisfies the constraint on a state s ∈ U robustly, i.e.
maxP∈P ĈP,𝜋(s, T|M̂U) ≤ d� . Due to union bound, we have with probability at least
1 − UA�� that P∗ ∈ P (i.e. the true transition dynamics model is contained in the uncer-
tainty set) where U = |U| . Therefore, with constraint-cost estimates equal to their true
values cmax for all steps taken in the worst-case CMDP, we have with probability at least
1 − UA��,

Since the budget is not exceeded and T ′ is the infimum of the set
{T ∈ ℕ ∶

∑T−1

t=0
� tcmax ≥ d�} , the number of steps taken in U (with ct = cmax) is at most T ′

.□

3.5 Balanced wandering

To be able to make an unknown state known, each action must be performed often enough,
following the Known State Lemma (Lemma 3). In E3 , this is achieved through balanced
wandering.

Definition 5 For a given state s ∈ S , balanced wandering takes the action that has been
performed the least,

In E4 , taking many arbitrary actions with balanced wandering may exceed the con-
straint-cost budget. How can the agent perform balanced wandering while achieving a safe
escape? The answer is to perform balanced wandering as long as the predicted constraint-
cost following the escape policy allows doing so, as formalised by the Safe Balanced Wan-
dering Lemma.

max
P∈P

ĈP,𝜋(s,T|M̂U) ≤ d�

CP∗,𝜋(s,T|MU) ≤ max
P∈P

ĈP,𝜋(s,T|M̂U) ≤ d� .

(6)a∗ = argmin a∈An(s, a) .

1 Note that the proof only applies the uncertainty set on the unknown states, U , since after visiting a state
in K , the Worst-case Escape CMDP is terminated. Therefore, for the sake of the lemma, one might equally
define the uncertainty set on the unknown states only, i.e. in the form P ∶ U ×A → ΔS . However, using the
full state space is a convenience data structure in case one desires to also construct an uncertainty set for the
known states (see Algorithm 1).

830 Machine Learning (2023) 112:817–858

1 3

Lemma 9 Safe Balanced Wandering Lemma Let MU be the Worst-case Escape CMDP on
U , and M̂U its estimate. Let d′ be the constraint-cost budget within the Worst-case Escape
CMDP MU . Let T � = inf{T ∈ ℕ ∶

∑T−1

t=0
� tcmax ≥ d�} , and T ≥ T ′ . Let P ∶ S ×A → ΔS be

an uncertainty set, such that for each state-action pair (s, a) ∈ S ×A , the true transition
dynamics model P∗

s,a
 is contained in Ps,a with probability at least 1 − �� . Let � be a policy

in M̂U that satisfies the constraint of the Worst-case CMDP robustly, that is,

for the initial state s ∈ U . Let � be a strategy that performs balanced wandering but
switches to policy � at time t when

where pt = {s, s1,… , st−1} is the t-step path taken so far from s. Then with probability at
least 1 − UA�� , � is safe, in the sense that

Proof Let t ∈ {0,… , T � − 1} be the first step for which

Since one step expends at most cmax , this implies

and therefore, by Lemma 8, with probability 1 − UA�� that

Since this holds for any path pt from s, it also holds on expectation over t-step paths from s,
such that with probability 1 − UA��

 ◻

3.6 Escape budget lemma

Having introduced how to use induced CMDPs for safety within known and unknown
states, this section now turns to the full CMDP M: that is, when following T-step policies
on induced CMDPs MK and MU , does this still guarantee safety across the entire CMDP?
To resolve this question, the following lemma, called the Escape Budget Lemma, formu-
lates an “escape budget” d′ ≤ d , the highest constraint-cost in MU that still provides a
probabilistic safety guarantee over the entire CMDP M.

max
P∈P

ĈP,𝜋(s,T|M̂U) ≤ d�

C(pt) + 𝛾 t max
P∈P

max
at∈A

∑

st+1∈S

Pst ,at
(st+1)ĈP,𝜋(st+1, T|M̂U) ≥ d� − cmax ,

CP∗,�(s,T|MU) ≤ d� .

C(pt) + 𝛾 t max
P∈P

max
at∈A

∑

st∈S

Pst ,at
(st+1)ĈP,𝜋(st+1, T|M̂U) ≥ d� − cmax .

C(pt) + 𝛾 t max
P∈P

ĈP,𝜋(s,T|M̂U) ≤ C(pt)

+ 𝛾 t max
P∈P

max
at∈A

∑

st+1∈S

Pst ,at
(st+1)ĈP,𝜋(st+1, T|M̂U) ≤ d�

C(pt) + � tCP∗ ,�(st, T|MU) ≤ d� .

CP∗,�(s,T|MU) ≤ d� .

831Machine Learning (2023) 112:817–858

1 3

First follows a definition of safe return states, which indicate states from which a T-step
trajectory is known to stay in K following some policy � and which satisifes a much lower
budget but has no requirements on the value (so typically yields a poor value).

Definition 6 A ds-safe return state is a known state s ∈ K for which there exists a station-
ary policy �ds ∶ S → A that takes at least T steps from s in K with probability 1 − � and
that satisfies C�ds

(s,T|� = 1) ≤ ds − � . This policy � is called a ds-safe return policy and
the set of such states is denoted by Kds

.

While the CMDP of interest, M, has � ∈ [0, 1) , the above definition is based on � = 1 to
ensure accounting for the worst-case impact of safe return on future constraint-satisfaction.
Since T is the �-horizon time, this implies any non-stationary policy �n which first applies
�ds for T steps and then any policy in M will yield C�n

(s) ≤ ds for any starting state s ∈ Kds
.

The Escape Budget Lemma takes place in a setting where there is an cycle alternating
between three policies:

• an exploration policy in MK , which aims to find an unknown state;
• a safe balanced wandering policy in MU , which performs balanced wandering followed

by an escape back to the known states, in an attempt to make states known; and
• a safe return policy in MK , which acts T steps within K with low expected T-step

constraint-cost, to ensure long-term constraint-satisfaction despite the constraint-costs
of exploration attempts.

This alternation defines a non-stationary policy � = {�i}
∞
i=0

 , where i indicates the particu-
lar policy being used, where i = 0, 3, 6,… index exploration policies, i = 1, 4, 7,… index
safe balanced wandering policies, and i = 2, 5, 8,… index safe return policies. Within this
setting, the lemma determines the available escape budget based on the initial path cost in
the known states, the worst-case expected cost in the unknown states (d′), and the worst-
case expected asymptotic constraint-cost of the safe return policy (d′′).

Lemma 10 Escape Budget Lemma Let M be the full CMDP, MK be the known-state
CMDP, MU be the Worst-case Escape CMDP, and let Kds

= K for some level ds ≤ d . Let
p be a path from s ∈ K to a starting state s� ∈ U . Let d�� ≤ d − � be the budget in MK
and d′

i
 be the “escape” budget in MU at the i’th visitation to MU . Let � = {�i}

∞
i=0

 be a non-
stationary policy, defined on MK with expected asymptotic cost C�i

(s|MK) ≤ d�� for
i = 0, 3, 6,… , on MU with expected asymptotic cost C�i

(s|MK) ≤ d�
i∕∕3

2 for i = 1, 4, 7,… ,
and on MK as a ds-safe return policy for i = 2, 5, 8,… . Further, let Π(s, d��) ≠ � . Let
d�
min

= d − d�� − 2ds + � and Tmin = inf{T ∈ ℕ ∶
∑T−1

t=0
� tcmax ≥ d�

min
} . Finally, define

D+ ∶= D(M) + 1 , where D(M) is the diameter of M. Define the following requirements:

(a) Diameter requirement: the diameter satisfies D+ ≤ Tmin ≤ T �
i∕∕3

;
(b) Known-state requirements: for any recent path p from MK to unknown state s0 ∈ U ,

require d�
i
≤

1

�Tk

(
d − �Tk+1ds − C(pk)

)
;

2 The notation // indicates integer division

832 Machine Learning (2023) 112:817–858

1 3

(c) Unknown-state requirement: d�
i
≤ d − �ds ; and

(d) Safe return requirement: ds ≤
1

2

(
d + � − d�� − D+cmax

)
.

Then these requirements are not conflicting and imply C�(st) ≤ d for all st ∈ S at all
times t. Moreover, the budget allows at least one time step of balanced wandering before
escape.
Proof The proof will first show that the requirements (a), (b), (c), and (d) are not con-
flicting with each other. Then, the proof selects an arbitrary known state st at any time t
and shows how the requirements yield C�(st) ≤ d . Then, the proof analogously selects an
unknown state st at any time t and shows how the requirements yield C�(st) ≤ d . Finally,
the proof shows that at least one time step of balanced wandering is allowed due to the
definition of D+.

0) Requirements are not conlicting Requirements (b) and (c) are not conflicting with
each other: since they are both upper bounds, one can set
d�
i∕∕3

= min

(
1

�Tk

(
d − �

Tk+T
�
i∕∕3ds − C(pk)

)
, d − �

T �
i∕∕3d��

)
 . Now it is required to show that (a)

does not conflict with this setting of d�
i∕∕3

 . First, note that the worst case, where the discount
factor is � = 1 and where ds − � + d�� is expended in the known states and ds is expended
from a safe return state, yields the lower bound for d�

i∕∕3
,

and therefore Tmin ≤ d�
i∕∕3

 . Filling in ds according to requirement (d) yields

and therefore

which is consistent with requirement (a).
1) Known states Let s ∈ K . If the agent is at the starting state of its ds-safe return

then the proof is finished by definition of ds ≤ d . Otherwise, the agent is either somewhere
along the trajectory of the ds-safe return policy or it is along the trajectory of the explora-
tion policy. In both cases, the agent forms a path pk from s to a starting unknown state
su ∈ U , then follows a safe balanced wandering policy that escapes to a ds-safe return state
sk with probability 1 − UA�� , and then from sk takes T steps using a ds-safe return policy.
Denoting the length of the path pk as Tk , the cost of the path in the known states as C(pk) ,
the cost of the path in the unknown states as C(pu) , and the expected asymptotic constraint-
cost from the safe return states as C�(sk) , the statement to prove is

By definition of the diameter, requirement (a) ensures that there exists an escape policy �′
which satisfies C�� (s|MU) ≤ d�

i∕∕3
 from any s ∈ U . Therefore, setting �i = � , where � is a

safe balanced wandering policy for the budget d�
i∕∕3

 , we have �
[
C(pu)

]
≤ d�

i∕∕3
 and Tu ≥ 1 .

Moreover, the safe return policy ensures that C�(s) ≤ ds such that

d − d�� + � − 2ds = dmin ≤ d�
i∕∕3

,

d�
i∕∕3

≥ d − d�� + � − 2ds

≥ d − d�� + � − 2(
1

2
(d − d�� + � − D+cmax)) = D+cmax ,

T �
i∕∕3

≥ d�
i∕∕3

∕cmax ≥ D+ ,

C�(s) = �P∗,�

[
C(pk) + �TkC(pu) + �Tk+TuC�(sk)

]
≤ d .

833Machine Learning (2023) 112:817–858

1 3

where the last line follows from requirement (b). Since the inequality holds for any path pk ,
it also holds on expectation over paths.

2) Unknown states Let s ∈ U . The agent forms a path pu from s to a starting unknown
state sk ∈ K . Denoting the length of the path as Tu , based on the cost of the path C(pu) and
the expected asymptotic cost over the terminal state in K , the statement to prove is

Note that Tu ≥ 1 , and via requirement (a) and (b), C�(s|MU) = C�i
(s|MU) ≤ d�

i∕∕3
 for some

stationary policy �i , and C�(sk) ≤ ds . Further filling in requirement (c) yields the statement
to prove,

3) At least one step of balanced wandering Let j ∈ {0, 1,…} . As shown in part 0) of the
proof, T �

j
≥ D+ = D(M) + 1 . By definition of the diameter, an escape policy can return to

the known states within at most D(M) time steps. Therefore, at least one step of balanced
wandering can be performed without exceeding the budget d′

j
 . ◻

For the C�(st) ≤ d for all t in the current trajectory, it is required to perform computa-
tion b) over all known states recently visited and take the minimum, and then again the
minimum between the result and the quantity in c). For such a computation, one can take
the last T steps within K and subtract � for the computation of d′ . Note that for unknown
states, one only needs to perform c) on starting states because it assumes the worst-case
cmax for all coming T ′ steps whereas intermediate unknown states will only yield cmax for a
lower number of steps.

The Escape Budget Lemma hereby provides a general strategy for determining a
desired escape budget. Below is an example of a high constraint-cost trajectory in K and
the resulting budget d′ . The below trajectory is shorter than usual purely for demonstra-
tion purposes; any trajectory (except the initial i = 0 trajectory) would involve at least T
steps from the known states due to the ds-safe policy taking T steps prior to the exploration
policy.

Example 1 Let cmax = 1 , � = 0.98 , and � = 1.0 . The setting yields an �-horizon time
T = ⌈ 1

1−�
ln
�

cmax

�(1−�)

�
⌉ = 196 . Further, d = 25 , and safe return policies exist for all s ∈ K

with ds = 5.0 , both of which are well below the general upper bound Gc
max

(T) + � = 49.05 .
The diameter of the full CMDP is known to be D(M) = 3 and therefore set D+ = 4 . Com-
pute the known-state budget as d�� = d − 2ds − D+ + � = 12.0 . Computing
Tmin = inf{T ∈ ℕ ∶

∑T−1

t=0
� tcmax ≥ d − d�� − 2ds + �} = 3 , D+ = Tmin implies the con-

straint on the unknown states is certainly satisfiable for any trajectory. The current trajec-
tory of constraint-cost yields [0, cmax, 0, 0, cmax, cmax∕2, cmax, cmax, cmax] , resulting in a list
of path-based constraint-costs to check, Cp = [3.29, 3.66, 2.95, 3.28, 3.65, 2.94, 2.71, 1.9, 1.0]
for t = 0,… , 8 . For condition (b), looping over C ∈ Cp and computing

C(pk) + �Tk�
[
C(pu) + �TuC�(sk)

]

≤ C(pk) + �Tkd�
i∕∕3

+ �Tk+1ds

≤ d ,

C�(s) = �P∗,�

[
C(pu) + �TuC�(sk)

]
≤ d .

C�(s) ≤ d�
i∕∕3

+ �ds

≤ d − �ds + �ds = d .

834 Machine Learning (2023) 112:817–858

1 3

d� ←
1

�Tk

(
d − �Tk+1ds − C(p)

)
 , d′ is minimal for t = 4 , namely d� = 17.53 . Condition (c)

does not require any adjustment to d′ . This setting of d′ leaves T � = 21 steps from which at
least T � − D(M) = 18 steps of balanced wandering can be allocated. Following escape, the
safe return policy will take T steps in the known states, where it yields
C�(s,T|� = 1) ≤ ds − � = 4.0 , before an exploration policy starts an exploration attempt.

3.7 Simulated budget satisfaction lemma

Previously, the l-safe Explore-or-Exploit Lemma (Lemma 7) showed that, if a policy yields
d − 2�-safety for the expected T-step constraint-cost in a simulation of the Known-state
CMDP, then it also yields d-safety for the expected asymptotic constraint-cost in the real
Known-state CMDP. The converse does not follow automatically; if a policy � yields
d-safety for the expected asymptotic constraint-cost in a real Known-state CMDP, then
d − 2�-safety is not guaranteed for the T-step expected constraint-cost in a simulation of
the Known-state CMDP – making it possible that the constraint cannot be satisfied. The
following lemma provides the conditions on the real-world CMDP under which the d − 2�

-safety constraint can be satisfied in simulation.

Lemma 11 Simulated Budget Satisfaction Lemma Let M be a full CMDP, MK be a known-
state CMDP induced over a set of known states K in M, s ∈ K , � be a policy that satisfies
� ∈ Πc(s, l − �) over M, where l = d − 2� . Further, let M̂K be an estimation of MK . Then
� will satisfy Ĉ𝜋(s,T|M̂K) ≤ l.

Proof Note that C�(s|MK) ≤ C�(s) due to constraint-costs being positive. Therefore, by the
Constrained T-step Estimation Lemma (Lemma 1) and the Constrained Simulation Lemma
(Lemma 2),

Thereby, Ĉ𝜋(s,T|M̂K) ≤ l . ◻

3.8 Proof of Theorem 1

With all the lemmas in place, the following presents the step-by-step proof of Theorem 1.
(a) Returning a near-optimal constrained policy within polynomial time First, we

prove the statement that for � ≥ 0 , E4 outputs with probability at least 1 − � a near-optimal
constrained policy � for s with V�(s) ≥ V�∗ (s) − � and C�(s) ≤ d with sample complexity
and time complexity that is polynomial in 1∕� , 1∕� , S, the horizon time 1∕(1 − �) , rmax , and
cmax.

Select s ∈ S and � ≥ 0 arbitrarily. Let mknown be O((STG∕�)4Varmax ln(1∕�
�)) ,

where �� = �∕4 . Define T as the �∕4-horizon time. If s ∈ K , then by assumption
Πc(s, d, T) = {� ∈ Π ∶ C�(s,T) ≤ d} ≠ � . By Lemma 6, either there exists a near-optimal
constraint-satisfying policy � ∈ Πc(s, d, T) from s with V�(s,T|MK) ≥ V�∗ (s, T) − �∕2 or
there exists a policy �� ∈ Πc(s, d,T) that finds an unknown state with probability at least
�∕(2Gr

max
(T)) , regardless of the choice of T and � . If V̂𝜋(s,T|M̂K) ≥ V𝜋∗ (s) − 𝜖∕2 , then due

to Lemmas 5, 1, and 2, it follows with probability 1 − �� that

Ĉ𝜋(s,T|M̂K) ≤ Ĉ𝜋(s|M̂K) ≤ C𝜋(s|MK) + 𝜖 ≤ C𝜋(s) + 𝜖 ≤ l − 𝜖 + 𝜖 = l .

835Machine Learning (2023) 112:817–858

1 3

and that

which implies offline optimisation will find an �-optimal exploitation policy � , and the
proof is finished in this case. Otherwise, if V̂𝜋� (s, T|M̂K) < V𝜋∗ (s) − 𝜖∕2 this implies there
exists an exploration policy that can be found by E4 since

E4 starts an exploration attempt using �′ , which takes a T-step trajectory to find an
unknown state, based on the exploration known-state CMDP. Such attempts may fail
repeatedly but have a success probability of at least �∕(2Gr

max
(T)) . Upon success, the algo-

rithm performs balanced wandering in MU . This cycle of attempted explorations is
repeated and due to the repeated visitation, states will become known after a number of
visitations mknown = O((STG∕�)4Varmax log(1∕�

�)) . In the worst case, the algorithm must
make all the states known before finding a near-optimal constrained exploitation policy for
s, requiring up to Smknown steps of balanced wandering. In the worst case, due to
T � ≥ D(M) + 1 following the requirements of Lemma 10, there is only one step of balanced
wandering per successful exploration attempt. With this in mind, Chernoff bound analysis
(see Appendix C) shows that with probability 1 − �� , the total number of exploration
attempts before making all states known is bounded by O

(
Gr

max
(T)

�
Smknown ln(S∕�

�)
)
 . Since

each T-step trajectory takes at most T actions, the number of actions taken by E4 before a
near-optimal policy can be returned will be bounded by

Therefore, with T ≥ ln
(

max(rmax,cmax)

�(1−�)

)
1

1−�
 and mknown = O((STG∕�)4Varmax log(1∕�

�)) , the
sample complexity to output a near-optimal constrained policy for state s ∈ S is polyno-
mial in 1∕� , 1∕� , S, the horizon time 1∕(1 − �) , rmax and cmax.3 Since offline optimisation is
repeated at every attempted exploration, the time complexity of E4 is

where Opt refers to the time complexity of the offline optimisation. Given the above, all
that remains to be shown is that 1) Opt is polynomial-time; and 2) offline optimisation
converges to the global optimum. These statements are demonstrated for different offline
optimisation algorithms in Sect. 4.1. Summing the three observed failure probabilities, the
above results hold with probability at least 1 − � . ◻

(b) Safe exploration Here, we prove the statement that at any time t, the non-stationary
policy �n = {�i}

∞
i=1

 induced by the exploration process of E4 yields C�n (st) ≤ d , as speci-
fied in the CMDP objective, with probability at least 1 − (UA�� + �).

V𝜋∗ (s) − 𝜖∕2 ≤ V̂𝜋(s,T|M̂K) ≤ V̂𝜋(s,T) ≤ V̂𝜋(s) ≤ V𝜋(s) + 𝜖∕4

V𝜋(s,T|MK) ≥ V̂𝜋(s,T|M̂K) − 𝜖∕4 ≥ V𝜋∗ (s) − 3𝜖∕4 ≥ V𝜋∗ (s, T) − 3𝜖∕4 ,

V𝜋� (s,T|MK) ≤ V̂𝜋� (s,T|M̂K) + 𝜖∕4 < V𝜋∗ (s) − 3𝜖∕4 ≤ V𝜋∗ (s,T) − 𝜖∕2 .

(7)O

(
T
Gr

max
(T)

�
Smknown log(S∕�

�)

)
.

(8)O

(
���T

Gr
max

(T)

�
Smknown log(S∕�

�)

)
,

3 The dependencies on rmax and cmax follow from the factors Gr

max
(T) , G4 , and Varmax ≤ max(cmax, rmax)

2∕4.

836 Machine Learning (2023) 112:817–858

1 3

Select an arbitrary time point t in the RL agent’s lifetime and observe the state
st , let 𝜖 > 0 , and let d′′ be the known-state budget, and let l = d�� − 2� . Moreo-
ver, it is assumed that Πc(st, l − �, T) = {� ∈ Π ∶ C�(st, T) ≤ l − �} ≠ � ,
Πc(st, ds − �, T) = {� ∈ Π ∶ C�(st, T) ≤ ds − �} ≠ � and that the optimal value within
Πc(st, l − �, T) is �-close to that of the optimal value within Πc(st, d, T).4

If st ∈ K , then either the agent is performing ds-safe return or the agent is doing explo-
ration/exploitation. If the agent is at the starting state of its ds-safe return then the proof is
finished by definition of ds (see Definition 6). If not, the exploration or exploitation policy
will be activated after fewer than T steps of ds-safe return. The setting Πc(st, l − �, T) = �
implies that the offline optimisation constraints are satisfiable on level l in M̂K with prob-
ability 1 − �� . By Lemma 7, any policy � with Ĉ𝜋(st, T|M̂K) ≤ l yields C�(st|MK) ≤ d�� as
required. By Lemma 6 either the exploitation policy �� ∈ Πc(st, d

��, T) exists or the explo-
ration policy ��� ∈ Πc(st, d

��, T) exists (or both). By assumption, the optimal value within
Πc(st, d, T) is �-close to that of the optimal value within Πc(st, l − �, T) and consequently
that in Πc(st, d

��, T) as well. Combining the above, either a) E4 will be able to find a pol-
icy �� ∈ Πc(st, d

��, T) that is near-optimal from st , or b) E4 finds a policy �′′ which has
C��� (st, T|MK) ≤ d�� and which with probability p > 𝜖∕Gr

max
(T) reaches un unknown state

in T steps. If the agent stays within K , then the proof for the known states is complete since
then C�(st) = C�(st|MK) ≤ d�� ≤ d . Otherwise, by Lemma 10, the setting of d′ implies that
the non-stationary policy �n , which alternates between l-safe exploration/exploration, d′
-safe balanced wandering, and ds-safe return, yields C�n (st) ≤ d – provided that the agent
does not exceed the budget d′ in the unknown states (see following paragraph).

If st ∈ U , then the E4 agent will use the safe balanced wandering policy � until return-
ing to the known states. Let P be an uncertainty set such that 1) for all (s, a) ∈ S ×A ,
Ps,a contains P∗

s,a
 with probability at least 1 − �� , and 2) its worst-transition diameter is at

most T � − 1 (see Eq. 20). From the definition of T � = inf{T ∈ ℕ ∶
∑T−1

t=0
� tcmax ≥ d�} , there

exists a policy �′′ (the escape policy) that satisfies

By Lemma 8, the above implies CP∗,𝜋�� (s, T|MU) ≤ maxP∈P ĈP,𝜋�� (s, T|M̂U) ≤ d�
with probability at least 1 − UA�� . Now consider the trajectory within the
unknown states. � first performs steps of balanced wandering until taking one
more step would not allow the escape policy �′′ to return safely, i.e. as soon as
C(pt) + 𝛾 t maxP∈P maxat∈A

∑
st+1∈S

Pst ,at
(st+1)ĈP,𝜋�� (st+1, T�M̂U) ≥ d� − cmax . By the proof

of Lemma 9, the total cost within the unknown states is

with probability at least 1 − UA��.
This constraint-satisfaction implies that C�n (st) ≤ d when exploring or exploiting

from st ∈ K . Similarly, due to requirement (c) in Lemma 10, it follows that for st ∈ U ,

max
P∈P

ĈP,𝜋�� (s, T|M̂U) ≤ d� .

c(st) + � tCP∗,�(s,T|MU) ≤ c(st) + � tC�(st, T|MU)

≤ C(pt) + � tC�(st, T|MU) ≤ d�

4 Note that the last assumption is not needed for safety throughout exploration; instead its purpose is to be
able to return an �-optimal exploitation policy despite the difference between d′′ and d. If the assumption
does not hold on the initial known-state budget d′′ , one potential way to realise the assumption practically
is to reset d′′ to be close to d after most states have been made known, thereby returning the exploitation
policy only when the known-state budget is sufficiently close to d.

837Machine Learning (2023) 112:817–858

1 3

C�n (st) ≤ d . Further, the safe return policy may fail to stay within K with probabil-
ity �′ . Therefore, combining all the previous yields C�n (st) ≤ d with probability at least
1 − (UA�� + �) . ◻

4 Explicit Explore, Exploit, or Escape algorithm

With the above theory in mind, E4 is now further developed as a practical algorithmic
framework, with a discussion of different prototype implementations. Within the main loop
of the algorithm, three different policies are optimised: an exploration policy, an exploi-
tation policy, and an escape policy. We discuss a range of offline methods to optimise
these policies, including policy gradient, linear programming and dynamic programming
approaches (Sect. 4.1). The general flow of how these policies fit together is then discussed
in Sect. 4.2, with the complete algorithm being summarised in Algorithm 1. The algo-
rithm and theory relies on two conditions for robust constraint-satisfiability, namely that
the diameter of the CMDP must be limited and the availability of tight uncertainty sets
that still capture the true transition dynamics with high probability. These conditions are
discussed along with a variety of example uncertainty sets (Sect. 4.3).

4.1 Offline optimisation

The algorithm starts by performing offline optimisation of three different policies, the
exploration policy, the exploitation policy, and the escape policy, each of which are defined
over a different induced CMDP. The remainder of this subsection provides four possible
approaches for offline optimisation in E4 , comparing their time complexity, applicability,
and scalability. Using one of these algorithms allows fulfilling the two remaining condi-
tions on offline optimisation in Sect. 3, namely 1) the algorithm is polynomial-time; and 2)
the algorithm converges to the global optimum. Therefore, using these algorithms for E4
yields near-optimal constrained policies in polynomial time.

4.1.1 Robust‑constrained policy gradient

A first proposed approach to optimising these policies is based on an existing solution,
namely the RCMDP policy gradient (Russel et al., 2020), where distributional robustness is
integrated into CMDPs. This is proposed for the Worst-case Escape CMDP but can option-
ally also be used for the Known-state CMDPs (see Algorithm 1). As Russel et al. (2020)
note, one can incorporate the argmax over either the value function or the constraint-cost
and they choose the value function; in E4 , safety is the main concern, and therefore robust-
ness is incorporated by an argmax over the constraint-cost. The robust CMDP objective is
solved by computing the saddle point of the Lagrangian for a given budget d,

where M̂S is an induced CMDP over S ⊂ S , P is the uncertainty set, and
P = argmax P�∈PĈ𝜋𝜃 ,P

� (s, T|M̂S) . Substituting f (𝜃) = V̂𝜋𝜃 ,P
(s|M̂S) and

g(𝜃) = d − Ĉ𝜋𝜃 ,P
(s, T|M̂S) , the aim is to find the policy �� such that the gradient is a null-

vector; that is,

(9)min
𝜆≥0

max
𝜋𝜃

L(𝜆, 𝜋𝜃) = V̂𝜋𝜃 ,P
(s,T|M̂S) − 𝜆

(
d − Ĉ𝜋𝜃 ,P

(s, T|M̂S)
)
,

838 Machine Learning (2023) 112:817–858

1 3

and

To optimise the above objective, sampling of limited-step trajectories is repeated for a large
number of independent iterations starting from a randomly selected state in the subset of
the state space over which the CMDP is induced (see Algorithm 2). Based on the large
number of trajectories collected, one then performs gradient descent in � and gradient
ascent in � . A benefit of this approach is scalability to a high number of parameters.

A common wisdom is that gradient descent methods do not perform well in multi-modal
and non-convex landscapes, where they may get stuck in local optima. Similarly, the theory
behind the RCMDP policy gradient only provides a convergence result for a local optimum
(Russel et al., 2021, 2020). However, with sufficient over-parametrisation – and more pre-
cisely, with a number of neurons nh polynomial in the number of samples n� , number of
hidden layers l, and the (inverse of) the maximal distance between data points �−1 – a neu-
ral network can learn the global optimum to arbitrary accuracy within polynomial number
of samples (Allen-Zhu et al., 2019). In addition to general results for the L2-norm, Allen-
Zhu et al. (2019) provides similar results for arbitrary Lipschitz-continuous loss functions;
one such result states that if the loss function is �-gradient dominant (see Zhou and Liang
(2017) for its definition), then gradient descent finds with probability 1 − e−Ω(ln

2(n�)) an �
-optimal parameter vector within a number of iterations I polynomial in nh , l, �−1 , �−1 , and
�−1 . Per iteration, all operations have polynomial time complexity: look-ups, list appending,
random number generation, gradient computation, division, and the forward pass of a neu-
ral network. Therefore, the resulting algorithm has overall polynomial time complexity and
converges with high probability to the global optimum.

4.1.2 Robust linear programming

A second and novel approach is a robust variant of linear programming (LP) for RCMDPs,
extending the traditional LP framework of Altman (1998). Note that Zheng and Ratliff
(2020) have previously used a “robust” version of LP in the context of UCRL, which esti-
mates an upper confidence bound on the cost. This section proposes a similar variant of
robust linear programming, with the key difference that 1) our version is discounted, non-
episodic for an extension of E3 whereas their version is based on an undiscounted, episodic
framework for an extension of UCRL; 2) separate exploration, exploitation, and escape
policies are optimised; and 3) the error term in the budget (right hand side) as opposed
to the constraint-cost, although this is merely a superficial difference. A downside of this
approach is that similar to Zheng and Ratliff (2020), this formulation does not account
for uncertainty in the transition dynamics. The agent may therefore get stuck in unknown
states longer than anticipated.

The approach uses the occupation measure (Altman, 1999), which can be interpreted as
the total proportion of discounted time spent in a particular state-action pair. The occupa-
tion measure allows to formulate the asymptotic constraint-cost as a simple weighted sum
of its immediate cost. For a CMDP M̂S , a policy � , and a state-action pair (s, a), the T-step
estimate of the occupation measure is defined as

(10)∇�L(�, ��) =
df (�)

d�
− �

dg(�)

d�
= �

(11)∇�L(�,��) = g(�) = � .

839Machine Learning (2023) 112:817–858

1 3

leading to the definition of a policy as

Now the state-action value and constraint-cost functions can be expressed in terms of f� ,
namely

and

For the exploitation and exploration policies in E4 , this yields the linear programming
problem

where f T ∈ ℝ
SA and r̂ ∈ ℝ

SA . For a Worst-case Escape CMDP, the robust LP is not recom-
mended due to requiring known transition dynamics but if the constraint-cost estimate is
set to cmax , one may optimise the linear programming problem

Various general polynomial-time algorithms exist for linear programming, including the
ellipsoid method (Khachiyan, 1979) and the projective method (Karamarkar, 1984), which
have O(n6L) and O(n3.5L) on O(L) digit numbers. Following Karamarkar (1984), interior
point methods have been further developed, providing �-optimal guarantees with much
improved time complexity (see Potra and Wright (2000) for a variety of algorithms).

4.1.3 Dynamic programming approaches

Dynamic programming (DP) as used in the original E3 provides convergence to the opti-
mal value and a time complexity of O(S2T) . In E4 , DP cannot be directly applied due to
the robust constrained setting. There is currently no suitable algorithm for constrained-
robust DP. We propose two possible approaches but leave a full analysis for further
research. The first approach starts with constrained DP (Altman, 1998) and then incor-
porates the uncertainty set while the second approach starts with robust DP (Nilim &
Ghaoui, 2005; Iyengar, 2005) and incorporates constraints by reformulating the CMDP
as a Lagrangian MDP (Taleghan & Dietterich, 2018).

Dual linear program The technique by Altman (1998) goes as follows when applied
to a CMDP M̂S , which has transition dynamics P̂ , constraint-cost function ĉ , and
reward function r̂ . Note that the solution to the unconstrained DP problem

(12)f (s, a) = (1 − 𝛾)

T∑

t=0

𝛾 tℙ𝜋(s, a|M̂S) ,

(13)�(a�s) = f (s, a)
∑

a�∈A f (s, a�)
.

V̂𝜋(s, a, T|M̂S) = f (s, a) r̂(s, a|M̂S)

Ĉ𝜋(s, a, T|M̂S) = f (s, a|M̂S) ĉ(s, a|M̂S) .

(14)max
f

f T r̂ s.t. f T ĉ ≤ l ,

(15)max
f

f T r̂ s.t. f Tcmax ≤ d′ .

840 Machine Learning (2023) 112:817–858

1 3

can be rewritten as an LP of the form

For constrained DP, the value can be defined based on the min-max of the Lagrangian

where min and max can be interchanged as strong duality holds without requiring Slater’s
condition. Representing L(�,��) in terms of the immediate rewards and constraint-cost
results in the LP

In E4 , the transition dynamics are uncertain. Adding the constraints for all transition
dynamics in the uncertainty set and using the estimators yields the LP

Robust dynamic programming with Lagrangian MDP Another proposed approach for
dynamic programming in E4 is to apply robust DP (Nilim & Ghaoui, 2005; Iyengar, 2005)
to a Lagrangian MDP (Taleghan & Dietterich, 2018). Robust DP models the value as

for worst-case transition P ∈ ΔS and the values for each following state V̂(⋅,T|M̂S) ∈ ℝ
S .

To solve the “inner problem”, maxP∈Ps,a
PTV̂(⋅, T|M̂S) , one uses a bisection algorithm,

yielding time complexity O(S log(G∕�s)) , where G is an upper bound to the value func-
tion and �s is the desired accuracy of the approximation. The overall problem (Eq. 19)
gives �-optimal guarantees in polynomial time complexity O(TS2 log(1∕�)2) , adding only
O(log(1∕�)2) time cost compared to traditional DP.

To make robust DP work for E4 , one can then construct a Lagrangian MDP which
redefines the reward function as a linear combination of the original reward function and
the constraint-cost function, such that the value is similar to the Lagrangian in Eq. 9.

A downside of using robust DP is the requirement of (s, a)-rectangular uncer-
tainty sets (see Sect. 4.3.2). More general uncertainty sets can be converted into

𝜙(s) = max
a∈A

[
(1 − 𝛾)r̂(s, a) + 𝛾

∑

s�∈S

P̂s,a(s
�)𝜙(s�)

]
∀s ∈ S .

(16)
max𝜙(s)

s.t. 𝜙(s) ≥ (1 − 𝛾)r̂(s, a) + 𝛾
∑

s�∈S

P̂s,a(s
�)𝜙(s�) ∀s ∈ S ∀a ∈ A .

V̂𝜋𝜃
(s,T|M̂S) = min

𝜆≥0
max
𝜋𝜃

L(𝜆, 𝜋𝜃) ,

(17)

V̂𝜋𝜃
(s, T|M̂S) = max

𝜆,𝜙
𝜙(s) − 𝜆d

s.t. 𝜙(s) ≥ (1 − 𝛾)(r̂(s, a) + 𝜆ĉ(s, a)) + 𝛾
∑

s�∈S

P̂s,a(s
�)𝜙(s�) ∀s ∈ S ∀a ∈ A .

(18)

V̂𝜋𝜃 ,P
(s,T|M̂S) = max

𝜆,𝜙
𝜙(s) − 𝜆d

s.t. 𝜙(s) ≥ (1 − 𝛾)(r̂(s, a) + 𝜆ĉ(s, a)) + 𝛾
∑

s�∈S

Ps,a(s
�)𝜙(s�) ∀s ∈ S ∀a ∈ A

∀P ∈ P .

(19)V̂(s, T|M̂S) = max
a∈A

r̂(s, a) + 𝛾 max
P∈Ps,a

PTV̂(⋅, T|M̂S) ,

841Machine Learning (2023) 112:817–858

1 3

(s, a)-rectangular format by projection onto a larger rectangular subspace (Nilim
& Ghaoui, 2005) but this will result in a higher upper bound on the worst-case
constraint-cost.

4.2 Exploration, exploitation and escape policies

The three different kinds of policies are optimised over different CMDPs introduced earlier
in Sect. 3. This section discusses how these policies are used, what they represent, and
when they are activated.

Due to the Constrained Exploit-or-Exploit Lemma (Lemma 6), for any satisfiable
budget l and any � ≥ 0 , from a starting state s, either a) there exists a policy � ∈ MS
for which V�(s,T|MK) ≥ V�∗ (s, T) − � , where �∗ = argmax �V�(s) s.t.C�(s) ≤ l for all
s ∈ S ; or b) there exists a policy � in MK which reaches the terminal state s0 in S ⧵K
in at most T steps with probability p > 𝜖∕Gr

max
(T) . The estimated exploitation and explo-

ration policies represent case a) and b), respectively, performing l-safe exploitation and
l-safe exploration. The exploitation policy is ideally activated whenever it is known that
V̂�̂�(s|M̂K) ≥ V𝜋∗ (s) − 𝜖 . In practice, this knowledge is often not available. However, one
may use a strategy similar to what has been proposed for the exploitation and exploration
policy in E3 (Kearns & Singh, 2002); that is, one activates the exploration policy first and
continues it as long as p > 𝜖∕Gr

max
(T) remains likely, and then, as soon as p < 𝜖∕Gr

max
(T)

with high probability, one activates the exploitation policy which is then guaranteed to
exist by Lemma 6.

With the above in mind, the different policies and their corresponding induced CMDPs
can now be discussed. First, the l-safe exploitation policy has the aim of solving a CMDP
induced over the known states MK , differing from M only in the sense that: 1) it terminates
with r(s0) = 0 and c(s0) = 0 as soon as it reaches the terminal state s0 , which is when an
unknown state in U is entered; and 2) the allowed constraint-cost budget is more limited,
namely it is set to l = d�� − 2� following Lemma 7. Second, the l-safe exploration policy
has the aim of solving a CMDP induced over the known states M′

K
 . M′

K
 differs from MK

in the sense that it terminates with r(s0) = rmax as soon as it reaches the terminal state
s0 , which is when an unknown state in U is entered, and that it receives r(s) = 0 for all
s ∈ K . Third, the d′-safe escape policy has the aim of solving a CMDP induced over the
unknown states MU . It differs from M in the sense that: a) it terminates with r(s0) = 0 and
c(s0) = 0 as soon as it reaches the terminal state s0 , which is when a known state in K is
entered; and b) the allowed constraint-cost budget d′ is set according to Lemma 10. Finally,
to ensure constraint-satisfaction, Lemma 10 requires an additional T-step trajectory of safe
return within the known states, a trajectory which yields a cumulative constraint-cost of
at most ds − � . Such a safe return policy can be similarly formulated as a CMDP (e.g. by
rewarding 1 for known states and 0 for unknown states) but is often readily available from
domain knowledge; for example, domains such as those in Example 2 include an action
which makes the agent stay in a particular state or set of states for extended periods of time.

Before the main loop, 𝜖 > 0 is chosen and the �-horizon time T ←
1

1−�
ln(

max(rmax,cmax)

�(1−�)
)

and safety budget l ← d�� − 2� are chosen accordingly. At the start of each iteration of the
main loop, exploration and exploitation policies are optimised. Via Lemma 7, l-safe explo-
ration or exploitation policies will with high probability be constraint-satisfying despite the
T-step estimated constraint-cost in M̂K differing from the asymptotic true constraint-cost
in MK . Once an unknown state is visted, d′ and T ′ are set according to Lemma 10. As long
as the different policies satisfy their respective constraint-cost budget within their induced

842 Machine Learning (2023) 112:817–858

1 3

CMDP, l for the exploration and exploitation policies and d′ for the escape policy, then the
overall non-stationary policy applying these policies sequentially will satisfy the con-
straint-cost in the full CMDP M.

843Machine Learning (2023) 112:817–858

1 3

4.3 Robust constraint‑satisfiability

For E4 to work as intended, the Worst-case Escape CMDP must have robust constraint-satisfi-
ability. That is, when selecting the worst-case transitions from an uncertainty set P , there must
be a policy � that satisfies maxP∈P ĈP,𝜋(s, T|M̂U) ≤ d� . This depends critically on two factors.
First, constraint-satisfiability depends on the CMDP of interest. The parameter of the CMDP
that we analyse here is the diameter; if this parameter is limited, then the constraints are satisfi-
able; this holds true in simulation as well as in the real world CMDP. Second, when perform-
ing offline optimisation, robust constraint-satisfiability further depends on the uncertainty set.
If the uncertainty set is too broad or does not include the true transition dynamics, then con-
straint-satisfiability cannot be guaranteed unless for trivial constraints (e.g. where every path
goes to the known states before the budget d′ is exceeded). Because the transition dynamics

844 Machine Learning (2023) 112:817–858

1 3

model is not known in the unknown states, we discuss how the uncertainty set can be formed
based on prior knowledge and statistical inference.

4.3.1 The diameter of the CMDP

For constraint-satisfiability in the Worst-case Escape CMDP MU , the diameter must satisfy
D(MU) ≤ T � = inf{T ∈ ℕ ∶

∑T

t=1
� t−1cmax ≥ d�} . In this case, the policy can escape back to

K within at most T ′ steps, before potentially exceeding the budget (on expectation). To ensure
that at least one step of balanced wandering can be taken per attempted exploration, in line
with the theory in Sect. 3 and Algorithm 1, the diameter must satisfy D(MU) ≤ T � − 1 . The
robust optimisation further implies that the worst-case diameter in the uncertainty set must
also be at most D(MU) ≤ T � − 1 . This worst-case assumption therefore can be written in terms
of the uncertainty set (which may be restricted to the entries with Ps,a where s ∈ U for mak-
ing the assumption weaker):

Note that this “worst-transition diameter” differs from the worst-case diameter of Garce-
lon et al. (2020) in that the worst-case is over the uncertain transition dynamics rather the
policy and that the best policy is taken rather than the worst-case policy.

The assumptions on the diameter provide a worst-case guarantee. In practice, many
domains (e.g. Example 2) have properties related to reversibility, such that the number of steps
taken in unknown steps relates to the number of steps to escape back to the known states. In
such cases, the diameter assumption can be significantly relaxed. In addition, more informa-
tive metrics than the diameter could potentially improve the budgetary requirements specified
in Sect. 10.

4.3.2 Uncertainty sets

For unknown states, no samples are given at the start of the algorithm, implying that uncer-
tainty sets constructed from their state-action visitations are too large to provide safety guaran-
tees and to make efficient use of exploration attempts. This section discusses how to construct
narrow uncertainty sets to obtain safe and efficient behaviour within the unknown states. We
present existing uncertainty sets, including the (s, a)-rectangular uncertainty sets [(see e.g.,
(Wiesemann et al., 2013; Russel et al., 2020)], and the factor matrix representation (Goyal
& Grand-Clement, 2018), as well as the use of expert knowledge to provide tight uncertainty
sets. A gridworld example is then given as an illustration (see Example 2).

(s,a)-rectangular sets The most well-studied class of uncertainty set is the (s,a)-rectan-
gular set, which defines a plausible interval for each (s, a) ∈ S ×A . An advantage of (s,a)-
rectangular set is that they provide various polynomial-time results for robust optimisation
(Wiesemann et al., 2013; Nilim & Ghaoui, 2005). A simple example is the set based on the
L1-norm (Russel et al., 2020), which defines

for all (s, a) ∈ S ×A . Traditionally, (s,a)-rectangular uncertainty sets are formed based on
Hoeffding’s inequality, defining the budget �s,a =

√
2

n(s,a)
ln(

SA2S

1−��
) based on the number of

visitations of the state-action pairs for failure rate �� . This will unfortunately not work

(20)D(P) ∶= max
s≠s�

min
�

max
P∈P

�
[
W(s�|s,P,�)

]
≤ T � − 1 .

(21)Ps,a = {P ∈ ΔS ∶ ||P − P̂s,a||1 ≤ 𝜓s,a} ,

845Machine Learning (2023) 112:817–858

1 3

when the number of visitations is small (or even zero) in unknown states, since then the
uncertainty set is prohibitively broad. However, a useful alternative for the unknown states
is the Bayesian Credible Region (Russel & Petrik, 2019), which defines the uncertainty set
by finding the tightest budget with low posterior belief of failure,

The posterior P allows injecting prior knowledge via posterior sampling, either analyti-
cally (e.g. via Dirichlet prior) or alternatively, via simulation methods (e.g. Monte Carlo
Markov Chain sampling methods).

r-rectangular sets based on factor matrix More efficient than (s,a)-rectangular sets
are r-rectangular sets based on a factor matrix representation, which allows to efficiently
treat different state-action pairs as being correlated. An uncertainty set P ⊂ ℝ

S×A×S is
generated using a factor matrix W = {�1,… ,�r} , a convex, compact subset of ℝr×S , and
a fixed set of coefficients �i

s,a
 for all i ∈ {1,… , r} and all (s, a) ∈ S ×A . Specifically, one

has

for all (s, a) ∈ S ×A.
The resulting representation is flexible; for example, if r = SA and ui

sa
 for all i = 1,… , r

one has the (s,a)-rectangular case. The factor matrix can be estimated via non-negative
matrix factorisation (Xu & Yin, 2013) although currently this requires a relatively accurate
estimate P̂s,a (Goyal & Grand-Clement, 2018). In addition, factorisation has been used to
provide E3 with scalability to large or continuous state spaces (Henaff, 2019); as a result,
factorisation methods seem promising for improving the scalability of E4.

Sets based on expert knowledge: action models and local inference When a domain
expert has a high-precision model for the transition dynamics of unknown states, much
tighter uncertainty sets can be formed, which is especially useful in the early stages of the
E4 algorithm, when the visitations are too few to provide reliable statistics. As an illustra-
tion, we consider the case where an agent is located in a discrete state space organised
along Cartesian coordinates and its available actions are moving within a local neighbour-
hood, as is typical in many robotics applications. The expert then formulates a set of proba-
bilistic models, each of which is valid locally in a subset of the state space (e.g. due to the
position in the landscape).

The expert first formulates n action models gi(s, a) , i = 1,… , n , which output the “typ-
ical” next state following action a in state s. Then, for each i a probability distribution
Pgi,�,N

 is formed by assigning high probability 1 − � to s� = gi(s, a) and probability �∕N to
a local neighbourhood N(s�|s, a) (e.g. all states se ∈ S with ||se − s�||2 ≤ 2 , representing
plausible action outcomes), where N is the size of the neighbourhood. One may addition-
ally iterate the definition of Pg,�,N(s, a, s

�) over different neighbourhoods and different error
rates if these are uncertain. For simplicity, we illustrate this only the error rate in Exam-
ple 2, i.e. we fix the neighbourhood and define Pgi

= {Pgi,�,N
∶ � ≤ 0.1}.

The resulting uncertainty set, {Pg1
,… ,Pgn

} , is typically small when significant
domain knowledge exists. However, the size of this uncertainty set can be even further
reduced by eliminating models with low probability. For this purpose, one can con-
sider the probability of the recent path p under model gi , ℙPgi

(p) . Alternatively, the
expert defines a transfer probability �(gj|s, a, gi) , reflecting the probability of model gj

(22)𝜓 = min
𝜓 �

{𝜓 � ∈ ℝ
+ ∶ P

(
||P∗

s,a
− P̂s,a||1 > 𝜓 �

s,a

)
< 𝛿𝜓} .

(23)Ps,a =

r∑

i=1

ui
sa
�i

846 Machine Learning (2023) 112:817–858

1 3

after taking action a in state s for which gi was valid. Note that the dependencies on s,
a, and/or gi can be dropped in the case of statistical independence.

Example 2 Let S be a discrete set of Cartesian xy-coordinates in a 10-by-10 gridworld
(S = 100). Let A be the set of moves within a Von Neumann neighbourhood, with
actions {north,west,south,east} moving one step in the corresponding direction
and the action stay remaining in the same cell (A = 5). The optimal constrained pol-
icy is to cycle around the bounds of the gridworld, without hitting the wall. If any wall
is hit, the constraint-cost is 1 and the agent remains in the same state; otherwise the con-
straint-cost is 0. Hitting the wall repeatedly in quick succession, for an asymptotic con-
straint-cost significantly larger than d = 10 (assuming � = 0.99), is known to risk dam-
aging the agent. Actions fail stochastically with a probability � = 0.05 . Initially, we have
K = {(1, 1), (2, 1),… , (9, 1)} and U = S ⧵K as known and unknown states, respectively.
The agent is aware of being initialised in the south-west wall.

The expert knows there are walls but only knows opposite ends are at least 5 steps
away from each other. For the interior of the gridworld, g1(s, a) ∶= ��(s) + ��(a)
where �� defines the coordinates for the state and for the action (e.g. one step north is
given by (0, 1)). For the north, west, south, and east bounds of the gridworld, respec-
tively, the action models i = 2,… , 5 make the corresponding action a null move (e.g.,
g2(s, �����) ∶= ��(s)). Each model is error-free, i.e. � = 0 . For hitting the wall, the
activation of the partial uncertainty set depends on the action and the previously
valid �i . For example, if a = ���� , then �(g5|a) = 1 (east bound) except when g3 (west
bound) was previously active.

The uncertainty set constructed from the uncertainty subsets, {Pg1
,… ,Pg5

} ,
where Pgi

= {Pgi,�,N
∶ � ≤ 0.1} . These subsets are sufficient to model hitting the wall

from the different bounds of the gridworld with the given error rate. For example, if
s = (10, 1) ∈ U and taking the next action east, the worst-case transition within the
uncertainty set is hitting the wall with 100% probability (� = 0), a scenario considered
by action model g5 . For other actions, the worst-case transition within the uncertainty
set is hitting the wall with 10% probability (� = 0.10). These worst-cases over-estimate
the constraint-cost when compared to � = 0.05 , which would yield only 5% probability.

The current budget for unknown states is d� = 5 , allowing for 5 steps in unknown
states with cmax = 1 . Although the diameter is significantly higher, From the first
unknown state (10, 1), the agent will behave as follows. Given the recent trajectory, the
agent has the south and east bounds as active models {g4, g5} due to taking more than 5
actions east from the known south-west walls. After offline optimisation iterations on
the Worst-case Escape CMDP with uncertainty set {Pg4

,Pg5
} , the agent performs bal-

anced wandering for a few steps and then escapes to (10, 1). The agent then performs T
actions of ���� to ensure safe return.

After much exploration of the gridworld, eventually the agent makes all states
known save for a few in the north bound. Now the uncertainty set is narrowed down to
Pg2

= {Pg2,�,N
∶ � ≤ 0.1} and moreover, there are different routes to escape. Therefore,

once the agent is optimised for this uncertainty set, the agent can make much quicker
progress with balanced wandering. Therefore, these remaining states will quickly
become known. Once the bounds are known, a near-optimal exploitation policy can
now be found for the entire CMDP.

847Machine Learning (2023) 112:817–858

1 3

4.4 Practical considerations

Setting mknown in practice In general, the required number of samples for a state to be known
is mknown = O

(
(STG∕�)4Varmax ln

1

�

)
 . In practice, mknown needs to be set to a fixed value,

which requires uncovering constants hidden by the big O notation as well as replacing asymp-
totic or other unpractical assumptions with practical assumptions. First, in the Constrained
Simulation Lemma, obtaining the constant K1 in � = K1(�∕(STG))

2 requires solving exactly
for the two conditions specified in addition to the big O notation � = O(�) , plugging in exact
values of � , T, Gr

max
(T) , and Gc

max
(T) . G will be equal to Gr

max
(T) or Gc

max
(T) ; since these have

analogous requirements, let G = Gr
max

(T) . To obtain the first requirement, first note that for
most practical settings, � ≤ 1 . Then, set K1 ≤ 1∕144 to obtain

Additionally assuming S ≥ 4 yields the second requirement,

Then, note that combining the three conditions following from Hoeffding’s inequality in
the Known State Lemma while plugging in K1 and summing over actions, which are mod-
elled as a constant with relatively low value, and substituting M = max({rmax, cmax, 1})
appropriately instead of Varmax (as � → 0 does not hold in practice), yields a general for-
mula for mknown:

Note that Eq. 24 implies E4 is particularly suitable for domains with limited state space.
Naturally, the failure rate � should at all times be very limited but for reducing mknown one
can dynamically change the other parameters, starting with relatively high � and decreasing
� later on in the lifetime. This would also decrease T and G, allowing the algorithm to reach
“satisfactory” performance levels across a large set of states more quickly.

Given certain assumptions, one may be able to significantly reduce mknown by using a dif-
ferent concentration inequality. For example, one may use Bernstein’s inequality if the vari-
ance of rewards and costs are known, and relatively low compared to both rmax or cmax . For
the reward function, define the random variable X = |r(s, a) − rt|∕m , where rt is the observed
reward at time t provided st = s and at = a . Then, note that

∑m

i=1
Xi = �r(s, a) − r̂(s, a)� . Then,

if Varmax ≤ � , we have

The requirement for the constraint-cost is completely analogous, defining
Y = |c(s, a) − ct|∕m . For the transition dynamics one can define a Bernoulli variable
Y which is 1 if (s, a) results in s′ and 0 otherwise. Then, defining the random variable
Z = |P∗

s,a
(s�) − Y|∕m , we have the analogous result

Therefore, defining V = max(Var(Z), Varmax) and summing over actions, we have

(� + 2�)TSGr
max

(T) ≤ 3
√
�TSGr

max
(T) ≤ �∕4 .

Δ = �∕� =
√
� ≤ �∕(4TGr

max
(T)) .

(24)mknown ≥
1

2
A ln

(
2

�

)
M2K−2

1
(STG∕�)4 .

ℙ(|r(s, a) − r̂(s, a)| ≥ 𝛼) ≤ 2e
−

m𝛼2

2(Varmax+𝛼∕3) = 𝛿

m = 2𝛼−2(Varmax + 𝛼∕3) ln(2∕𝛿)

m = 2�−2(Var(Z) + �∕3) ln(2∕�) .

848 Machine Learning (2023) 112:817–858

1 3

which provides a decrease of a factor 1
4
�2M2∕(V + �∕3) . As an example, plugging in

M = max(rmax, cmax) = 100 , V = 1 , � = 0.10 , a 24-fold improvement can be observed.
Finally, it is worth noting that in many settings, the reward and constraint-cost function

are a deterministic, rather than stochastic, function of the state-action pair. In such cases,
a single sample suffices to know the average reward and constraint-cost for a given state-
action pair, and therefore the number of samples for a state to be known depends only on
the result from the transition dynamics, that is,

From worst-case to practical assumptions In deriving the number of actions that need to
be taken to reach a near-optimal policy for the entire CMDP, many worst-case assumptions
were made. With more practical assumptions, one can get improved results for the sample
complexity. First, the worst-case number of exploration attempts is
N = O(Gr

max
(T)∕� ln(S∕�)Smknown) can be improved by noting that one does not always

need to make all states known before having the �-optimal solution, yielding some S′ < S .
Second, both the number of exploration attempts and mknown can be improved by estimating
Gr

max
(T) and Gc

max
(T) via empirical trajectories instead of using a generic upper bound.

Third, the cost of cmax at all time steps in the Worst-case Escape CMDP could be improved
to ĉ(s, a) + 𝛼u(s, a) , where �u(s, a) is the approximation error for state-action pairs that have
been visited already (but are not yet known). For example, one could set �u(s, a) based on

the standard error �u(s, a) =
√

Varc
max

n(s,a)
 such that more balanced wandering steps could be

taken. Note that such changes to the Worst-case Escape MDP would also allow for the
application of E4 to CMDPs with larger diameter. Fourth, using a separate � (and/or �u) for
the reward, constraint-cost, and transition dynamics functions may account for the range
and variance of these different random variables. Fifth, in practice, there will be an initial
set of known states; this further reduces the number of states that need to be made known
to a number S′′ < S′ < S . Sixth, many of the settings from Lemma 10 can be significantly
optimised in practice: (a) the diameter requirement can be relaxed in domains such as
Example 2; (b) the current path as well as predictions of future constraint-cost may indicate
when the T-step safe return trajectory is not needed; (c) the bounds on the budget can be
improved by using the specific setting of � of the target CMDP instead of the worst-case
setting of � = 1 ; and (d) the known-state and unknown-state budgets can take further infor-
mation into account, such as the current number of known and unknown states. Finally, the
use of adaptive sampling, which has been used in prior work on E3 (Domingo, 1999), may
also be beneficial for practical E4 implementations.

Can one use E4 for constraints on individual paths? A particular trajectory p starting
on a state s ∈ S may yield C(p) > d , even if C�(s) ≤ d , since C� is formulated on expecta-
tion over paths. While E4 has not been designed for constraints on individual paths, if the
user desires probabilistic guarantees on the constraint-cost of paths with the same level d,
one can form a confidence interval based on the standard deviation SC , which if unknown
can be upper-bounded by SC ≤

∑∞

t=0
� t
√
Varc

max
=

1

1−�

√
Varc

max
 . Then the budget can be

reformulated as dp ← d − 3SC such that the budget of interest d is rarely exceeded. For
example, if the asymptotic constraint-cost of paths is normally distributed with mean dp
and standard deviation SC , then there is at most a 0.1% probability that any such path p has

(25)mknown ≥ 2A�−2(V + �∕3) ln(2�)K−2
1
(STG∕�)4 ,

(26)mknown =
1

2
A ln

(
2

�

)
K−2
1
(STG

/
�)4 .

849Machine Learning (2023) 112:817–858

1 3

constraint-cost C(p) > d . More generally, if one has no information on the distribution, one
may use concentration equalities to provide upper bounds on failure probabilities. For
example, with the Chebyshev-Cantelli inequality (Cantelli, 1928), the same example yields

When it is not the case that d − 3SC is positive (and greater than 2cmax), an alternative
safe exploration algorithm would be required, one which is explicitly formulated to handle
probability of individual failures. In E4 , the reasoning is that having C(p) > d is dangerous
but usually not catastrophic, while in the above setting C(p) > d is always catastrophic. To
the authors’ best knowledge, handling individual failures in this manner has not been done
before as this requirement is too strict, but solving this exciting challenge would often be
useful in safety-critical settings.

5 Conclusion

Safety is of critical concern in real world applications, and especially in RL, where an
agent interacts with an initially unknown environment. Unlike game environments, fail-
ures in real world safety-critical applications will finish the lifetime of the RL agent with
serious cost to the owner of the agent, and potentially, society at large. Therefore, instead
of the model-free RL algorithms which are formulated with this trial-and-error setting in
mind, a model-based RL approach may be more suitable for safety-critical applications.
Model-based RL algorithms such as E3 learn near-optimal policies with polynomial sample
and time complexity, making them an attractive option for learning in the real world as
the model can be used to perform offline computations without requiring too much real
world trial-and-error. This paper integrates E3 into a constrained Markov decision process
framework to show that – as long as the constraints are satisfiable due to a limited diam-
eter of the CMDP – there exists an algorithm (E4) which with high probability finds a
near-optimal constrained policy within polynomial time. The E4 algorithm combines the
use of an explicit exploration and an explicit exploitation policy with an additional escape
policy that provides a safe return for states not reliably known by the model. The algorithm
is attractive for safety-critical settings, not only due to the offline computations, but also
because of the non-episodic setting in which there is only a single lifetime. The simulation
model allows anticipating constraint-satisfaction failures and where there is uncertainty
about the true environment, distributional robustness is used to ensure the worst-case sce-
nario does not violate the constraints. Beyond theoretical results supporting the framework,
a discussion highlights offline optimisation algorithms and shows how to formulate uncer-
tainty sets for unknown states based on prior knowledge, empirical inference, or a combi-
nation thereof. Further practical considerations discussed include relaxing the worst-case
assumptions that underlie the theory, aspects of the domain and the implementation that
affect sample efficiency, and the practical interpretation of the various components of the
algorithm.

A few exciting research directions emerge from this paper, including the development
of scalable methods for constrained robust offline optimisation, defining uncertainty sets
for unknown states, as well as the explicit use of exploration, exploitation, and escape poli-
cies within other model-based or even model-free RL algorithms. Given that the explicit

ℙ(C(p) − d > 0) = ℙ(C(p) − dp > 3SC) <
S2
C

S2
C
+ 9S2

C

=
1

10
.

850 Machine Learning (2023) 112:817–858

1 3

separation of exploration and exploitation that characterised E3 has been taken up by recent
works in different learning settings, including hard-exploration (Ecoffet et al., 2021) and
meta-learning (Liu et al., 2020), E4 may provide unique perspectives on how to solve such
problems safely.

Appendix A: constrained simulation lemma

Below is the proof of the Constrained Simulation Lemma and the Known State Lemma.

Constrained Simulation Lemma Let T ≥
1

1−�
ln

(
max(rmax,cmax)

�

2
(1−�)

)
,5 let CMDP M̂ be an �

-approximation of CMDP M with � = O
(
(�∕(STG))2

)
 where G = max(Gr

max
(T),Gc

max
(T)) ,

and let � be a policy in M. Then for any state s,

(a) V𝜋(s) − 𝜖 ≤ V̂𝜋(s) ≤ V𝜋(s) + 𝜖;
(b) C𝜋(s) − 𝜖 ≤ Ĉ𝜋(s) ≤ C𝜋(s) + 𝜖.

Proof Let � be any policy in M. Define �-small transition as a transition for which
P∗
s,a
(s�) ≤ � . After T time steps, there is a probability of at most T ∗ S ∗ � that a �-small

transition is crossed (since at any one time step at most S ∗ �). The proof distinguishes
between case A) the path traversed includes at least one �-small transition; and B) the path
does not include any �-small transition.

Case 1: at least one �-small transition
If we do have �-small transitions then:

1) T-step walks of � from s that cross at least one �-small transition contribute at most
TS�Gr

max
(T) (on expectation) to V�(s,T) and at most TS�Gc

max
(T) (on expectation) to

C�(s,T).
2) Since M̂ is an �-approximation of M, this means that �-small transitions satisfy

P∗
s,a
(s�) ≤ � + � . Therefore, T-step walks of � from s that cross at least one �-small

transition contribute at most TS(� + �)Gr
max

(T) (on expectation) to V̂𝜋(s,T) and at most
TS(� + �)Gc

max
(T) (on expectation) to Ĉ𝜋(s,T) . These also give the upper bounds to the

contribution to the discrepancy of M̂ to M. So, the remainder of the proof consists of
choosing an appropriate � and then solving for � to bound the discrepancy to the desired
� in the following equation:

 In the general case, we will then solve the approximation for paths with no �-small
transitions and then adding the above-mentioned �∕4 to account for the maximal con-
tribution of such �-small transitions.

(27)(� + 2�)TSGr
max

(T) ≤ �∕4

(28)(� + 2�)TSGc
max

(T) ≤ �∕4 .

5 The �∕2 - and �-horizon times are linearly dependent and therefore their difference vanishes in the big O
notation for � (Kearns & Singh, 2002).

851Machine Learning (2023) 112:817–858

1 3

Case 2: no �-small transitions
For T-step trajectories with no �-small transitions, we can convert the additive

approximation

into a multiplicative approximation

where Δ = �∕� because P > 𝛽 . To illustrate, if P > 𝛽 then if X ≤ P + � , this means that
X ≤ 𝛼 + 𝛽 < (1 + Δ) ∗ P . Therefore, for any T-step path p without �-small transitions, we
have

A similar argument follows for the value function. For all state-actions (s, a) ∈ S ×A , we
have r(s, a) − 𝛼 ≤ r̂(s, a) ≤ r(s, a) + 𝛼 and therefore

holds for any path p. Then, since we took any arbitrary path without �-small transitions,
taking the expectation over such paths will yield the same inequality, while we can further
additional account for �∕4 as the added contribution of T-step walks with �-small transi-
tions. Then converting it to a multiplicative approximation over the expected T-step value
yields

Then provide an upper bound for Δ based on a Taylor expansion:

Requiring that

we need both conditions to hold:

1) (1 + Δ)TV�(s, T) ≤ V�(s, T) + �∕8.
2) (1 + Δ)TT� ≤ �∕8.

Solving for Δ in condition 1) yields

Line 2 and 4 of the above imply together that (1 + Δ)T is a constant such that �T = O(�).

P∗
s,a
(s�) − 𝛼 ≤ P̂(s, a, s�) ≤ P∗

s,a
(s�) + 𝛼

(1 − Δ)P∗
s,a
(s�) ≤ P̂s,a(s

�) ≤ (1 + Δ)P∗
s,a
(s�) ,

(1 − Δ)TℙP,𝜋(p) ≤ ℙP̂,𝜋(p) ≤ (1 + Δ)TℙP,𝜋(p) .

V(p) − T𝛼 ≤ V̂𝜋(p) ≤ V(p) + T𝛼

(1 − Δ)T (V𝜋(s, T) − T𝛼) − 𝜖∕4 ≤ V̂𝜋(s,T) ≤ (1 + Δ)T (V𝜋(s,T) + T𝛼) + 𝜖∕4 .

ln
(
(1 + Δ)T

)
= T ln(1 + Δ) = T(Δ − Δ2∕2 + Δ3∕3 −…) ≥ TΔ∕2

(29)(1 + Δ)T (V�(s, T) + T�) + �∕4 ≤ V�(s,T) + �∕2

(1 + Δ)T (V�(s,T)) ≤ V�(s, T) + �∕8

(1 + Δ)T ≤ (1 + �∕(8Gr
max

(T)))

TΔ∕2 ≤ T ln(1 + Δ) ≤ ln
(
1 + �∕(8Gr

max
(T))

)
≈ �∕(8Gr

max
(T))

Δ ≤ �∕(4TGr
max

(T)) .

852 Machine Learning (2023) 112:817–858

1 3

The requirement for the constraint-cost is completely analogous. For all (s, a) ∈ S ×A ,
we have c(s) − 𝛼 ≤ ĉ(s) ≤ c(s) + 𝛼 and therefore

holds. Requiring that

we need both conditions to hold:

1) (1 + Δ)TC�(s,T) ≤ C�(s, T) + �∕8.
2) (1 + Δ)TT� ≤ �∕8.

Analogous to the value function, this yields

and �T = O(�).
Solving for �
From the requirements for the value function (see Eq. 27), we have

(� + 2�)TSGr
max

(T) ≤ �∕4 . Choosing � =
√
� , we require

and

and �T = O(�) . The choice of � = O
(
(�∕(STGr

max
(T)))2

)
 provides these results.

Similarly, we require for the constraint-cost function (see Eq. 27) that
(� + 2�)TSGc

max
(T) ≤ �∕4 . Analogously, requiring

and

and �T = O(�) . The choice of � = O
(
(�∕(STGc

max
(T)))2

)
 provides these results.

Therefore, to meet the requirements for both the value function and the constraint-cost
function, selecting � = O

(
(�∕(STG))2

)
 , where G = max(Gr

max
(T),Gc

max
(T)) , yields the

above requirements.
Taking the expectation over the T-step paths in Eq. 29 and Eq. 30, we have

and applying the Constrained T-step estimation Lemma (Lemma 1) to V̂ and Ĉ , we have:

Similarly, we have

(30)C(p) − T𝛼 ≤ Ĉ𝜋(p) ≤ C(p) + T𝛼

(31)(1 + Δ)T (C�(s, T) + T�) + �∕4 ≤ C�(s, T) + �∕2

(32)Δ ≤ �∕(4TGc
max

(T)) ,

(� + 2�)TSGr
max

(T) ≤ 3
√
�TSGr

max
(T) ≤ �∕4 ,

Δ = �∕� =
√
� ≤ �∕(4TGr

max
(T)) ,

(� + 2�)TSGc
max

(T) ≤ 3
√
�TSGc

max
(T) ≤ �∕4 ,

Δ = �∕� =
√
� ≤ �∕(4TGc

max
(T)) ,

V𝜋(s,T) − 𝜖∕2 ≤ V̂𝜋(s,T) ≤ V𝜋(s,T) + 𝜖∕2

V̂𝜋(s, T) ≤ V̂𝜋(s) ≤ V̂𝜋(s, T) + 𝜖∕2 .

853Machine Learning (2023) 112:817–858

1 3

Therefore, we have

and

Analogous results follow for the constraint-cost, concluding the proof. ◻

Known State Lemma Given state s has been visited

times, where G = max(Gr
max

(T),Gc
max

(T)) and Varmax = max(Varr
max

, Varc
max

) , and from s
each action has been executed at least ⌊m∕A⌋ times, then with probability of at least 1 − �
we have

a) |P∗
s,a
(s�) − P̂s,a(s

�)| = O((𝜖∕(STG))2) for any (s, a, s�) ∈ S ×A × S;
b) |r(s, a) − r̂(s, a)| = O((𝜖∕(STG))2) for any (s, a) ∈ S ×A ; and
c) |c(s, a) − ĉ(s, a)| = O((𝜖∕(STG))2) for any (s, a) ∈ S ×A.

Proof

a) Transition dynamics: Note that P∗
s,a
(s�) ∈ [0, 1] . Therefore, applying Hoeffding’s ine-

quality (Hoeffding, 1963), and setting � equal to the resulting upper bound, we have

 Setting t = (�∕(STG))2 , we see that

 Thus O
(
(STG∕�)4 ln

1

�

)
 samples are needed to obtain O

(
(�∕(STG))2

)
- accurate esti-

mates of each transition probability.
b) Rewards: Note that G2 ≥ r2

max
 and that (STG∕�)4 grows as � → 0 so restrict-

ing �2 ∈ [0, 2Varr
max

] includes the worst-case asymptotic behaviour of
(STG∕�)4Varr

max
ln(1∕�) . For any � ∈ [0, 2Varr

max
] and t = (�∕(STG))2 ∈ [0, 2Varr

max
∕r2

max
] ,

we have (Phillips, 2012):

V�(s, T) ≤ V�(s) ≤ V�(s, T) + �∕2 .

V̂𝜋(s) ≤ V̂𝜋(s,T) + 𝜖∕2 ≤ V𝜋(s,T) + 𝜖 ≤ V𝜋(s) + 𝜖

V𝜋(s) − 𝜖 ≤ V𝜋(s, T) − 𝜖∕2 ≤ V̂𝜋(s, T) ≤ V̂𝜋(s) .

m = O((STG∕�)4Varmax ln(1∕�))

ℙ

(
|P∗

s,a
(s�) − P̂s,a(s

�)| ≥ t
)
≤ 2e−2mt

2

= 𝛿

− mt2 =
1

2
ln
(
𝛿

2

)

m =

1

2
ln
(

2

𝛿

)

t2
.

m =

1

2
ln
(

2

�

)

(�∕(STG))4
=

1

2
ln
(
2

�

)
(STG

/
�)4 .

854 Machine Learning (2023) 112:817–858

1 3

 Therefore, O
(
(STG∕�)4Varr

max
ln

1

�

)
 samples are needed to obtain O

(
(�∕(STG))2

)

- accurate estimates of the average reward for a given state.
c) Constraint-costs: Analogously, with t = (�∕(STG))2 ∈ [0, 2Varc

max
∕c2

max
] , we have:

 Therefore, O
(
(STG∕�)4Varc

max
ln

1

�

)
 samples are needed to obtain O

(
(�∕(STG))2

)

- accurate estimates of the average constraint-cost for a given state.
Combining worst-cases: Taking the worst case of the three conditions on m, and setting
Varmax = max(Varr

max
, Varc

max
) , we have

 ◻

Appendix B: explore‑or‑exploit lemma

Constrained Explore‑or‑Exploit Lemma Let M be any CMDP, let S be any subset of
states S ⊂ S , and let MS be the induced CMDP over S with a given budget d. For any
s ∈ S , for any T, and any � ≥ 0 , we have either a) there exists a policy � ∈ MS for which
V�(s,T|MS) ≥ V�∗ (s, T) − � , where �∗ = argmax �∈Πc(s,d,T)

V�(s,T) is the optimal con-
strained T-step policy, and which satisfies C�(s,T|MS) ≤ d ; or b) there exists a policy �
in MS which reaches the terminal state s0 in S ⧵S in at most T steps with probability
p > 𝜖∕Gr

max
(T) , and C�(s,T|MS) ≤ d.

Proof Case a) V�(s,T|MS) ≥ V�∗ (s, T) − �:
In this case, condition a) is satisfied.
Case b) V𝜋(s,T|MS) < V𝜋∗ (s, T) − 𝜖:
For some set of policies Π∗ in M, we have V�(s,T|MS) = V�∗ (s, T) for all � ∈ Π∗.6 Since

�∗ ∈ Πc(s, d, T) , this implies via the Induced Underestimation Lemma that for a subset
Π∗

S
⊆ Π∗ , we have additionally C�(s,T|MS) ≤ C�∗ (s, T) ≤ d for all � ∈ Π∗

S
 . Now select

ℙ(|r(s, a) − r̂(s, a)| ≥ t) ≤ 2e
−

mt2

4Varrmax = 𝛿

mt2

4Varr
max

= ln(2∕𝛿)

m = 4 ln(2∕𝛿)Varr
max

t−2 .

ℙ(|c(s, a) − ĉ(s, a)| ≥ t) ≤ 2e
−

mt2

4Varcmax = 𝛿

mt2

4Varc
max

= ln(2∕𝛿)

m = 4 ln(2∕𝛿)Varc
max

t−2 .

m = O
(
(STG∕�)4Varmax ln

1

�

)
.

6 � may not be the optimal constrained policy; since the T-step value only approximates the asymptotic
value V(s) = lim

T �
→∞ V(s, T �) , there may be many such policies.

855Machine Learning (2023) 112:817–858

1 3

� ∈ Π∗
S

 . Decompose T-paths starting from s into T-paths that only contain states in S (pk -
type paths) and T-paths that also contain states s ∉ S (pu-type paths):

For any pk-type path, we have ℙ�,P[pk] = ℙ�,PMS [pk] and V(pk) = V(pk|MS) ≤ V(s, T|MS) ,
where equalities follow from the paths all containing the known set only (since for the
induced model the transition dynamics are the same and rewards outside S are not being
considered) and the inequality follows from positive rewards and V(s, T|MS) considering
additionally pu-type paths if any. Therefore,

Therefore, since V�∗ (s, T) = V�(s,T) =
∑

pk
ℙ�,P[pk]V�(pk) +

∑
pu
ℙ�,P[pu]V�(pu) , this

implies that:

Since V�(p) ≤ Gr
max

(T) for any T-step path, it follows that

Therefore, condition b) is satisfied. ◻

Appendix C: Chernoff bound for number of attempted explorations

For any state s ∈ S , allocate at most �
S
 probability to the state failing to become known

(i.e. the state receives fewer than mknown visits). Let p = �∕Gr
max

(T) , let N be the number
of exploration attempts, and let mknown = (1 − Δ)Np and Δ =

Np−mknown

Np
 . Then, by Cher-

noff bounds, the probability of the number of successful exploration attempts being
smaller than mknown is bounded by

which leads to a total number of exploration attempts

V�(s, T) =
∑

p

ℙ�,P[p]V�(p)

=
∑

pk

ℙ�,P[pk]V�(pk) +
∑

pu

ℙ�,P[pu]V�(pu) .

∑

pk

ℙ𝜋,P[pk]V𝜋(pk) =
∑

pk

ℙ𝜋,PMS [pk]V𝜋(pk|MS)

≤ V𝜋(s,T|MS)

< V𝜋∗ (s,T) − 𝜖

∑

pu

ℙ𝜋,P[pu]V𝜋(pu) > 𝜖 .

∑

pu

ℙ𝜋,P[pu] > 𝜖∕Gr
max

(T)

ℙ[X ≤ (1 − Δ)Np] ≤

(
e−Δ

(1 − Δ)1−Δ

)Np

=
�

S
,

856 Machine Learning (2023) 112:817–858

1 3

Filling in p = �∕Gr
max

(T) and repeating over all s ∈ S , the desired result is obtained

Author Contributions David M. Bossens: Conceptualization, Formal analysis, Methodology, Writing -
Original Draft, Project administration. Nicholas Bishop: Conceptualization, Writing - Review & Editing.

Funding David M. Bossens was supported by the UKRI Trustworthy Autonomous Systems Hub, EP/
V00784X/1. Nicholas Bishop was supported by the UK Engineering and Physical Sciences Research Coun-
cil (EPSRC) Doctoral Training Partnership grant.

Availability of data and material Not applicable.

Code Availability Not applicable.

Declarations

Conflict of interest None.

Ethical approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Achiam, J., Held, D., Tamar, A., & Abbeel, P. (2017). Constrained policy optimization. 34th International
Conference on Machine Learning, ICML 2017, 1:30–47. arXiv: 1705. 10528

Np(Δ + (1 − Δ) ln(1 − Δ)) = ln
(
S

�

)

NpΔ = ln
(
S

�

)
N is maximal for Δ → 1 and lim

x→0+
x ln(x) = 0

Np − mknown = ln
(
�

S

)

N = p−1
(
ln
(
S

�

)
+ mknown

)

N = O
(
p−1 ln

(
S

�

)
mknown

)
.

N = O

(
Gr

max
(T)

�
ln
(
S

�

)
Smknown

)
.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1705.10528

857Machine Learning (2023) 112:817–858

1 3

Allen-Zhu, Z., Li, Y., & Song, Z. (2019). A convergence theory for deep learning via over-parameterization.
36th International Conference on Machine Learning, ICML 2019, 2019:362–372. arXiv: 1811. 03962

Altman, E. (1998). Constrained Markov decision processes with total cost criteria: Lagrangian approach and
dual linear program. Mathematical Methods of Operations Research, 48(3), 387–417. https:// doi. org/
10. 1007/ s0018 60050 035

Altman, E. (1999). Constrained Markov decision processes. Cambridge: CRC Press. https:// doi. org/ 10.
1109/ CDC. 2012. 64265 96.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., & Mané, D. (2016). Concrete problems in
AI safety. pp. 1–29. arXiv: 1606. 06565

Berkenkamp, F., Turchetta, M., Schoellig, A. P., & Krause, A. (2017). Safe model-based reinforce-
ment learning with stability guarantees. Advances in Neural Information Processing Systems,
2017(Nips):909–919. arXiv: 1705. 08551

Brafman, R. I., & Tennenholtz, M. (2002). R-MAX—a general polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learning Research, 3, 213–231.

Cantelli, F. P. (1928). Sui confini della probabilita. In Atti del Congresso Internazional del Matematici 6, pp.
47–60, Bologna. https:// doi. org/ 10. 1162/ 15324 43037 65208 377

Chow, Y., Nachum, O., Duenez-Guzman, E., & Ghavamzadeh, M. (2018). A lyapunov-based approach
to safe reinforcement learning. Advances in Neural Information Processing Systems, 2018(Neu-
rIPS):8092–8101. arXiv: 1805. 07708

Domingo, C. (1999). Faster near-optimal reinforcement learning: Adding adaptiveness to the e3 algorithm.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 1720, 241–251. https:// doi. org/ 10. 1007/3- 540- 46769-6_ 20

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., & Clune, J. (2021). First return, then explore. Nature,
590(7847), 580–586. https:// doi. org/ 10. 1038/ s41586- 020- 03157-9arXiv: 2004. 12919.

Everitt, T., Lea, G., & Hutter, M. (2018). AGI safety literature review. IJCAI International Joint Conference
on Artificial Intelligence, 2018:5441–5449. https:// doi. org/ 10. 24963/ ijcai. 2018/ 768, arXiv: 1805. 01109

Eysenbach, B., Gu, S., Ibarz, J., & Levine, S. (2018). Leave no trace: Learning to reset for safe and autono-
mous reinforcement learning. 6th International Conference on Learning Representations, ICLR 2018
- Conference Track Proceedings. arXiv: 1711. 06782

Garcelon, E., Ghavamzadeh, M., Lazaric, A., & Pirotta, M. (2020). Conservative Exploration in Reinforce-
ment Learning. In Proceedings of the International Conference on Artificial Intelligence and Statistics
(AISTATS 2020).

Goyal, V., & Grand-Clement, J. (2018). Robust Markov Decision Process: Beyond Rectangularity. pp. 1–27.
arXiv: 1811. 00215

Henaff, M. (2019). Explicit explore-exploit algorithms in continuous state spaces. Advances in Neural Infor-
mation Processing Systems, 32(NeurIPS). arXiv: 1911. 00617

Hoeffding, W. (1963). Probability Inequalities for Sums of Bounded Random Variables. Journal of the
American Statistical Association, 58(301), 13–30.

Iyengar, G. N. (2005). Robust dynamic programming. Mathematics of Operations Research, 30(2), 257–
280. https:// doi. org/ 10. 1287/ moor. 1040. 0129

Jaksch, T., Ortner, R., & Auer, P. (2010). Near-optimal regret bounds for reinforcement learning. Journal of
Machine Learning Research, 11, 1563–1600.

Karamarkar, N. (1984). A new polynomial-time algorithm for linear programming. Combinatorica,
4(April), 373–395.

Kearns, M., & Singh, S. (2002). Near-optimal reinforcement learning in polynomial time. Machine Learn-
ing, 49(2–3), 209–232. https:// doi. org/ 10. 1023/A: 10179 84413 808

Khachiyan, L. G. (1979). A polynomial algorithm in linear programming. Dokl. Akad. Nauk SSSR,
244(5):1093–1096. https:// doi. org/ 10. 18287/ 0134- 2452- 2015- 39-4- 459- 461.

Lecarpentier, E., & Rachelson, E. (2019). Non-stationary markov decision processes a worst-case approach
using model-based reinforcement learning. Advances in Neural Information Processing Systems,
32(NeurIPS). arXiv: 1904. 10090 v4

Liu, E. Z., Raghunathan, A., Liang, P., & Finn, C. (2020). Decoupling Exploration and Exploitation for
Meta-Reinforcement Learning without Sacrifices.Retrieved from arXiv: 2008. 02790

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al. (2015). Human-level
control through deep reinforcement learning. Nature, 518(7540), 529–533. https:// doi. org/ 10. 1038/
natur e14236arXiv: 1604. 03986.

Naik, A., Abbas, Z., White, A., & Sutton, R. S. (2021). 2021. In NERL Workshop at ICLR: Towards Rein-
forcement Learning in the Continuing Setting.

Nilim, A., & Ghaoui, L. E. (2005). Robust control of Markov decision processes with uncertain transition
matrices. Operations Research, 53(5), 780–798. https:// doi. org/ 10. 1287/ opre. 1050. 0216

http://arxiv.org/abs/1811.03962
https://doi.org/10.1007/s001860050035
https://doi.org/10.1007/s001860050035
https://doi.org/10.1109/CDC.2012.6426596
https://doi.org/10.1109/CDC.2012.6426596
http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1705.08551
https://doi.org/10.1162/153244303765208377
http://arxiv.org/abs/1805.07708
https://doi.org/10.1007/3-540-46769-6_20
https://doi.org/10.1038/s41586-020-03157-9
http://arxiv.org/abs/2004.12919
https://doi.org/10.24963/ijcai.2018/768
http://arxiv.org/abs/1805.01109
http://arxiv.org/abs/1711.06782
http://arxiv.org/abs/1811.00215
http://arxiv.org/abs/1911.00617
https://doi.org/10.1287/moor.1040.0129
https://doi.org/10.1023/A:1017984413808
https://doi.org/10.18287/0134-2452-2015-39-4-459-461
http://arxiv.org/abs/1904.10090v4
http://arxiv.org/abs/2008.02790
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
http://arxiv.org/abs/1604.03986
https://doi.org/10.1287/opre.1050.0216

858 Machine Learning (2023) 112:817–858

1 3

Phillips, J. M. (2012). Chernoff-Hoeffding Inequality and Applications., 1, 1–6. arXiv: 1209. 6396.
Platanios, E. A., Saparov, A., & Mitchell, T. (2020). Jelly Bean World: A Testbed for Never-Ending Learn-

ing. In ICLR, 2020, 1–17.
Potra, F. A., & Wright, S. J. (2000). Interior point methods. Journal of Computational and Applied Math-

ematics, 124, 281–302. https:// doi. org/ 10. 1007/ 978-3- 319- 58356-3_ 17
Rummery, G. A., & Niranjan, M. (1994). Online Q-learning Using Connectionist Sytems. Technical report,

Cambridge University Engineering Department.
Russel, R. H., Benosman, M., & Van Baar, J. (2020). Robust Constrained-MDPs: Soft-Constrained Robust

Policy Optimization under Model Uncertainty. Retrieved from arXiv: 2010. 04870
Russel, R. H., Benosman, M., Van Baar, J., & Corcodel, R. (2021). Lyapunov Robust Constrained-MDPs:

Soft-Constrained Robustly Stable Policy Optimization under Model Uncertainty. Retrieved from
arXiv: 2108. 02701

Russel, R. H., & Petrik, M. (2019). Beyond confidence regions: Tight Bayesian ambiguity sets for robust
MDPs. Advances in Neural Information Processing Systems, 32(NeurIPS). arXiv: 1902. 07605

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal Policy Optimization
Algorithms. arXiv preprint, pages 1–12. Retrieved from arXiv: 1707. 06347https:// doi. org/ 10. 1016/j.
jdeve co. 2016. 04. 001

Strehl, A. L., Li, L., & Littman, M. L. (2006). Incremental model-based learners with formal learning-time
guarantees. Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence, UAI 2006,
pp. 485–493. arxiv. org/ abs/ 1206. 6870

Taleghan, M. A., & Dietterich, T. G. (2018). Efficient exploration for constrained MDPs. AAAI Spring Sym-
posium - Technical Report, 2018:313–319.

Thomas, P. S., Theocharous, G., & Ghavamzadeh, M. (2015). High confidence policy improvement. 32nd
International Conference on Machine Learning, ICML 2015, 3(2002):2370–2378.

Turchetta, M., Kolobov, A., Shah, S., Krause, A., & Agarwal, A. (2020). Safe Reinforcement Learning via
Curriculum Induction. (NeurIPS). Retrieved from arXiv: 2006. 12136

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3–4), 279–292. https:// doi. org/
10. 1007/ BF009 92698

Wiesemann, W., Kuhn, D., & Rustem, B. (2013). Robust Markov decision processes. Mathematics of Oper-
ations Research, 38(1), 153–183. https:// doi. org/ 10. 1287/ moor. 1120. 0566.

Xu, Y., & Yin, W. (2013). A block coordinate descent method for regularized multiconvex optimization with
applications to nonnegative tensor factorization and completion. SIAM Journal on Imaging Sciences,
6(3), 1758–1789. https:// doi. org/ 10. 1137/ 12088 7795

Yang, Q., Simao, T. D., Tindemans, S. H., & Spaan, M. T. J. (2021). WCSAC: Worst-case soft actor critic
for safety-constrained reinforcement learning. Proceedings of the Thirty-Fifth AAAI Conference on
Artificial Intelligence.

Zheng, L., & Ratliff, L. J. (2020). Constrained Upper Confidence Reinforcement Learning with Known
Dynamics. In Proceedings of Machine Learning Research, 120, 1–10.

Zhou, Y., & Liang, Y. (2017). Characterization of gradient dominance and regularity conditions for neural
networks. (1965). Retrieved from arXiv: 1710. 06910

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1209.6396
https://doi.org/10.1007/978-3-319-58356-3_17
http://arxiv.org/abs/2010.04870
http://arxiv.org/abs/2108.02701
http://arxiv.org/abs/1902.07605
http://arxiv.org/abs/1707.06347
https://doi.org/10.1016/j.jdeveco.2016.04.001
https://doi.org/10.1016/j.jdeveco.2016.04.001
http://arxiv.org/1206.6870
http://arxiv.org/abs/2006.12136
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1287/moor.1120.0566
https://doi.org/10.1137/120887795
http://arxiv.org/abs/1710.06910

	Explicit Explore, Exploit, or Escape (  ): near-optimal safety-constrained reinforcement learning in polynomial time
	Abstract
	1 Introduction
	2 Preliminaries and definitions
	3 Main theorem
	3.1 Constrained simulation lemma
	3.2 Induced CMDPs
	3.3 l-safe Explore-or-Exploit lemma
	3.4 Safe escape lemma
	3.5 Balanced wandering
	3.6 Escape budget lemma
	3.7 Simulated budget satisfaction lemma
	3.8 Proof of Theorem 1

	4 Explicit Explore, Exploit, or Escape algorithm
	4.1 Offline optimisation
	4.1.1 Robust-constrained policy gradient
	4.1.2 Robust linear programming
	4.1.3 Dynamic programming approaches

	4.2 Exploration, exploitation and escape policies
	4.3 Robust constraint-satisfiability
	4.3.1 The diameter of the CMDP
	4.3.2 Uncertainty sets

	4.4 Practical considerations

	5 Conclusion
	References

