
Vol.:(0123456789)

Machine Learning (2022) 111:3359–3392
https://doi.org/10.1007/s10994-022-06192-x

1 3

Stabilize deep ResNet with a sharp scaling factor �

Huishuai Zhang1 · Da Yu2 · Mingyang Yi3 · Wei Chen4 · Tie‑Yan Liu1

Received: 26 November 2020 / Revised: 10 May 2021 / Accepted: 24 August 2021 /
Published online: 1 August 2022
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022

Abstract
We study the stability and convergence of training deep ResNets with gradient descent.
Specifically, we show that the parametric branch in the residual block should be scaled
down by a factor � = O(1∕

√

L) to guarantee stable forward/backward process, where L is
the number of residual blocks. Moreover, we establish a converse result that the forward
process is unbounded when 𝜏 > L

−
1

2
+c , for any positive constant c. The above two results

together establish a sharp value of the scaling factor in determining the stability of deep
ResNet. Based on the stability result, we further show that gradient descent finds the global
minima if the ResNet is properly over-parameterized, which significantly improves over
the previous work with a much larger range of � that admits global convergence. Moreover,
we show that the convergence rate is independent of the depth, theoretically justifying the
advantage of ResNet over vanilla feedforward network. Empirically, with such a factor � ,
one can train deep ResNet without normalization layer. Moreover for ResNets with nor-
malization layer, adding such a factor � also stabilizes the training and obtains significant
performance gain for deep ResNet.

Editor: Paolo Frasconi.

 * Huishuai Zhang
 huzhang@microsoft.com

 * Wei Chen
 chenwei2022@ict.ac.cn

 Da Yu
 yuda3@mail2.sysu.edu.cn

 Mingyang Yi
 yimingyang17@mails.ucas.edu.cn

 Tie-Yan Liu
 tyliu@microsoft.com

1 Microsoft Research Asia, Beijing, China
2 Sun Yat-sen University, Guangzhou, China
3 University of Chinese Academy of Sciences, Beijing, China
4 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

http://orcid.org/0000-0003-2711-7295
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06192-x&domain=pdf

3360 Machine Learning (2022) 111:3359–3392

1 3

1 Introduction

Residual Network (ResNet) has achieved great success in computer vision tasks since the
seminal paper (He et al., 2016). The ResNet structure has also been extended to natural
language processing and achieved the state-of-the-art performance (Vaswani et al., 2017;
Devlin et al., 2018). In this paper, we study the forward/backward stability and conver-
gence of training deep ResNet with gradient descent.

Specifically, we consider the following residual block (He et al., 2016),

where �(⋅) is the point-wise activation function, hl and hl−1 are the output and input of the
residual block l, Fl(⋅) is the parametric branch, e.g., Fl(hl−1) = Wlhl−1 and Wl is the train-
able parameter, and � is a scaling factor on the parametric branch.

We note that standard initialization schemes, e.g., the Kaiming initialization or the Glo-
rot initialization, are designed to keep the forward and backward variance constant when
passing through one layer. However, things become different for ResNet because of the
existence of the identity mapping. If Wl adopts the standard initialization, a small � is nec-
essary for a stable forward process of deep ResNet, because the output magnitude quickly
explodes for � = 1 as L gets large. On the other side, a limit form of Euler’s constant indi-
cates that � = O(1∕L) is sufficient for the forward/backward stability, which is assumed in
previous work (Allen-Zhu et al., 2018; Du et al., 2019b). We ask

“Are there other values of � that can guarantee the stability of ResNet with arbitrary
depth?”

We answer the above question affirmatively by establishing a non-asymptotic anal-
ysis that the stability is guaranteed for deep ResNet with arbitrary depth as long as
� = O(1∕

√

L) . Moreover conversely, for any positive constant c, if � = L
−

1

2
+c , the network

output norm grows at least with rate Lc in expectation, which implies the forward/backward
process is unbounded as L gets large.

One step further, based on the stability result, we show that if the network is prop-
erly over-parameterized, gradient descent finds global minima for training ResNet with
𝜏 ≤ Õ(1∕

√

L)1. This is essentially different from previous work that assumes 𝜏 ≤ Õ(1∕L)
(Allen-Zhu et al., 2018; Du et al., 2019a; Frei et al., 2019).

Our contribution is summarized as follows.

• We establish a non-asymptotic analysis showing that � = 1∕
√

L is sharp in the order
sense to guarantee the stability of deep ResNet.

• For 𝜏 ≤ Õ(1∕
√

L) , we establish the convergence of gradient descent to global minima
for training over-parameterized ResNet with a depth-independent rate.

The key step to prove our first claim is a new bound of the spectral norm of the forward pro-
cess for ResNet with � = O(1∕

√

L) . We find that, although the natural bound (1 + 1∕
√

L)L
explodes, the randomness of the trainable parameter in the parametric branch helps to con-
trol the output norm growth. Specifically, we bound the mean and the variance about the
largest possible change after deep residual mappings when � = O(1∕

√

L).

(1)residual block: hl = �(hl−1 + �Fl(hl−1)),

1 We use Õ(⋅) to hide logarithmic factors.

3361Machine Learning (2022) 111:3359–3392

1 3

We also argue the advantage of adding � over other stabilization methods, such as batch
normalization (BN) (Ioffe & Szegedy, 2015) and Fixup (Zhang et al., 2018a). First, it has
advantage over BN to guarantee stability. BN is architecture-agnostic and the output norm
of ResNet with BN still grows unbounded as the depth increases. In practice, it has to to
employ a learning rate warm-up stage to train very deep ResNet even with BN (He et al.,
2016). In comparison, we prove that ResNet with � is stable over all depths and hence
does not require any learning rate warm-up stage. Second, it is also more stable than the
approach of scaling down initialization that is adopted in Fixup. Scaling down initial resid-
ual weight does not scale down the gradient properly and Fixup could explode after gradi-
ent descent updates for deep ResNet.

At last, we corroborate the theoretical findings with extensive experiments. First, we
demonstrate that with � = 1∕

√

L , ResNet can be effectively trained without the normali-
zation layers. It is more stable and achieves better performance than Fixup. Second, we
demonstrate that adding � = 1∕

√

L on top of the normalization layer can obtain even better
performance.

1.1 Related works

There is a large volume of literature studying ResNet. We can only give a partial list.
To argue the benefit of skip connection, (Veit et al., 2016) interpret ResNet as an ensem-

ble of shallower networks, (Zhang et al., 2018) study the local Hessian of residual blocks,
(Hardt & Ma, 2016) show that deep linear residual networks have no spurious local optima,
(Orhan & Pitkow, 2018) observe that skip connection eliminates the singularity, and (Bal-
duzzi et al., 2017) find that ResNet is more resistant to the gradient shattering problem than
the feedforward network. However, these results mainly rely on empirical observation or
strong model assumption.

There are also several papers studying ResNet from the stability perspective (Arpit
et al., 2019; Zhang et al., 2018a, b; Yang & Schoenholz, 2017; Haber & Ruthotto, 2017). In
comparison, we study the model closest to the original ResNet and provide a rigorous non-
asymptotic analysis for the stability when � = O(1∕

√

L) and a converse result showing the
sharpness of � . We also demonstrate the empirical advantage of learning ResNet with �.

Our work is also related to recent literature on the theory of learning deep neural net-
work with gradient descent in the over-parameterized regime. Many works (Jacot et al.,
2018; Allen-Zhu et al., 2018; Du et al., 2019a; Chizat & Bach, 2018a; Zou et al., 2018;
Zou & Gu, 2019; Arora et al., 2019a; Oymak & Soltanolkotabi, 2019; Chen et al., 2019;
Ji & Telgarsky, 2019) use Neural Tangent Kernel (NTK) or similar technique to argue the
global convergence of gradient descent for training over-parameterized deep neural net-
work. Some (Brutzkus et al., 2017; Li & Liang, 2018; Allen-Zhu et al., 2019a; Arora et al.,
2019b; Cao & Gu, 2019; Neyshabur et al., 2019) study the generalization properties of
over-parameterized neural network. On the other side, there are papers (Ghorbani et al.,
2019; Chizat et al., 2019; Yehudai & Shamir, 2019; Allen-Zhu & Li, 2019) discussing the
limitation of the NTK approach in characterizing the behavior of neural network. Addi-
tionally, several papers (Chizat & Bach, 2018b; Mei et al., 2018, 2019; Nguyen, 2019;
Fang et al., 2019a, a) study the convergence of the weight distribution in the probabilis-
tic space via gradient flow for two or multiple layers network. To the best of our knowl-
edge, we are the first to provide the global convergence of learning ResNet in the regime of
� ≤ O(1∕

√

L)

3362 Machine Learning (2022) 111:3359–3392

1 3

2 Preliminaries

There are many residual network models since the seminal paper (He et al., 2016). Here
we study a simplified ResNet that shares the same structure as He et al. (2016)2, which is
described as follows,

• Input layer: h0 = �(Ax) , where x ∈ ℝ
p and A ∈ ℝ

m×p;
• L − 1 residual blocks: hl = �(hl−1 + �Wlhl−1) , where Wl ∈ ℝ

m×m;
• A fully-connected layer: hL = �(WLhL−1) , where WL ∈ ℝ

m×m;
• Output layer: y = BhL , where B ∈ ℝ

d×m;
• Initialization: The entries of A,Wl for l ∈ [L − 1] , WL and B are independently sampled

from N(0,
2

m
) , N(0,

1

m
) , N(0,

2

m
) and N(0,

1

d
) , respectively;

where �(⋅) ∶= max{0, ⋅} is the ReLU activation function. We assume the input dimension
is p, the intermediate layers have the same width m and the output has dimension d. For
a positive integer L, we use [L] to denote the set {1, 2, ...,L} . We denote the values before
activation by g0 = Ax, gl = hl−1 + �Wlhl−1 for l = [L − 1] and gL = WLhL−1 . We use hi,l and
gi,l to denote the value of hl and gl , respectively, when the input vector is xi , and Di,l the
diagonal activation matrix where [Di,l]k,k = 1{(gi,l)k≥0}

 . We use superscript (0) to denote the
value at initialization, e.g., W(0)

l
 , h(0)

i,l
 , g(0)

i,l
 and D(0)

i,l
 . We may omit the subscript i and the

superscript (0) when they are clear from the context for simplifying the notations.
We introduce a notation ���⃗W ∶= (W1,W2,… ,WL) to represent all the trainable param-

eters. We note that A and B are fixed after initialization. Throughout the paper, we use
‖ ⋅ ‖ to denote the l2 norm of a vector. We further use ‖ ⋅ ‖ and ‖ ⋅ ‖F to denote the spectral
norm and the Frobenius norm of a matrix, respectively. Denote ‖���⃗W‖ ∶= maxl∈[L] ‖Wl‖ and
‖W[L−1]‖ ∶= maxl∈[L−1] ‖Wl‖.

The training data set is {(xi, y∗i)}
n
i=1

 , where xi is the feature vector and y∗
i
 is the target

signal for i = 1, ..., n . We consider the objective function is F(���⃗W) ∶=
∑n

i=1
Fi(

���⃗W) where
Fi(

���⃗W) ∶= �(Bhi,L, y
∗
i
) and 𝓁(⋅) is the loss function. The model is trained by running the

gradient descent algorithm. Though ReLU is nonsmooth, we abuse the word “gradient" to
represent the value computed through back-propagation.

3 Forward and backward stability of ResNet

In this section, we establish the stability of training ResNet. We show that when
� = O(1∕

√

L) the forward and backward pass is bounded at the initialization and after
small perturbation. On the converse side, for an arbitrary positive constant c, if 𝜏 > L−0.5+c ,
the output magnitude grows at least polynomial with depth at the initialization. We also
argue the advantage of using a factor � over other stabilization methods, such as BN and
Fixup. The stability result forms the basis to establish the global convergence in Sect. 4.

2 In (He et al., 2016), there is a ReLU after the building block y = x + F(x) (please refer to Figure 2 in
He et al. (2016)), and hence a whole residual block is hl = �(hl−1 + F(hl−1)) (if using the notations in our
paper).

3363Machine Learning (2022) 111:3359–3392

1 3

3.1 Forward process is bounded if � = O(1∕
√

L)

We first give a non-asymptotic bound on the forward process at initialization.

Theorem 1 Suppose that ���⃗W(0) , A are randomly generated as in the initialization step, and
D

(0)

i,0
,… ,D

(0)

i,L
 are diagonal activation matrices for i ∈ [n] . Suppose that c and � are arbi-

trary positive constants with 0 < 𝜖 < 1 . If � satisfies �2L ≤ min{
1

2
log(1 + c),

log2(1+c)

16(1+log(1+2∕�))
} ,

then with probability at least 1 − 3nL2 ⋅ exp (−m) over the initialization randomness, we
have for any two integers a, b ∈ [L − 1] with b > a and for all i ∈ [n],

The proof is based on Markov’s inequality with recursively conditioning. The full
proof is deferred to Appendix B. Here we give an outline.

Proof Outline We omit the subscript i and the superscript (0) for simplicity. Suppose that
‖ha−1‖ = 1 . Let gl = hl−1 + �Wlhl−1 and hl = Dlgl for l = {a, ..., b} . We have

where the inequality is due to that ‖Dl‖ ≤ 1 . Taking logarithm at both side, we have

If let h̃l−1 ∶=
hl−1

‖hl−1‖
 , then we obtain that

 where the inequality is because log(1 + x) < x for x > −1 . Let 𝜉l ∶= 2𝜏
⟨

h̃l−1,Wlh̃l−1
⟩

 and
𝜁l ∶= 𝜏

2
‖Wlh̃l−1‖

2 . Then given h̃l−1 , we have �l ∼ N

(

0,
4�2

m

)

 , �l ∼
�
2

m
�
2
m
.

We can argue that
∑b

l=a
�l ∼ N

�

0,
4(b−a)�2

m

�

 and
∑b

l=a
�l ∼

(b−a)�2

m
�
2
m
 . Hence for arbitrary

positive constant c1 , if �2L ≤ c1∕4 then
∑b

l=a
logΔl ≤ c1 with probability at least

1 − 3 exp(−
mc2

1

64�2L
) . We then convert the condition on c1 to that on c in the theorem. Taking �

-net argument, we can establish the spectral norm bound for all vector ha−1 . Let a and b
vary from 1 to L − 1 and taking the union bound gives the claim. The full proof is pre-
sented in Appendix B. ◻

We note that the constant c and � can be chosen arbitrarily small such that
(1 + c)∕(1 − �) is arbitrarily close to 1 given stronger assumption on �2L . Theorem 1
indicates that the norm of every residual block output is upper bounded by
(1 + c)∕(1 − �) if the input vector has norm 1, which demonstrates that the the forward
process is stable. This result is a bit surprising since for � = O(1∕

√

L) a natural bound
on the spectral norm ‖(I + �W

(0)

L
)⋯ (I + �W

(0)

1
)‖ ≤ (1 +

1
√

L
)L explodes. Here the intui-

(2)
‖

‖

‖

‖

D
(0)

i,b

(

I + �W
(0)

b

)

⋯D
(0)

i,a

(

I + �W
(0)
a

)‖

‖

‖

‖

≤
1 + c

1 − �

.

‖hb‖
2 =

‖hb‖
2

‖hb−1‖
2
⋯

‖ha‖
2

‖ha−1‖
2
‖ha−1‖

2 ≤
‖gb‖

2

‖hb−1‖
2
⋯

‖ga‖
2

‖ha−1‖
2
‖ha−1‖

2,

log ‖hb‖
2 ≤

b
�

l=a

logΔl, where Δl ∶=
‖gl‖

2

‖hl−1‖
2
.

logΔl = log
�

1 + 2𝜏
�

h̃l−1,Wlh̃l−1
�

+ 𝜏
2
‖Wlh̃l−1‖

2
�

≤ 2𝜏
�

h̃l−1,Wlh̃l−1
�

+ 𝜏
2
‖Wlh̃l−1‖

2,

3364 Machine Learning (2022) 111:3359–3392

1 3

tion is that the cross-product term concentrates on the mean 0 because of the independ-
ent randomness of matrices W(0)

l
 and the variance can be bounded at the same time.

Moreover, we can also establish a lower bound on the output norm of each residual
block as follows.

Theorem 2 Suppose that c is an arbitrary constant with 0 < c < 1 . If �2L ≤
1

4
log(1 − c)−1 ,

then with probability at least 1 − 2nL2 ⋅ exp
(

−
1

32
m log(1 − c)−1

)

 over the randomness of
A ∈ ℝ

m×p and ���⃗W(0) ∈ (ℝm×m)L the following holds

Proof The proof is similar to that of Theorem 1 but harder. The high level idea is to control
the mean and the variance of the mapping of the intermediate residual blocks simultane-
ously by utilizing the Markov’s inequality with the recursive conditioning. The full proof is
deferred to Appendix C.1. ◻

Combining these two theorems, we can conclude that the norm of each residual block
output concentrates around 1 with high probability 1 − O(nL2) exp(−Ω(m)) . Moreover
these two theorems also holds for ���⃗W that is within the neighborhood of ���⃗W(0) , which is
presented in Appendix C.2.

3.2 Backward process is bounded for � ≤ O(1∕
√

L)

For ResNet, the gradient with respect to the parameter is computed through back-propa-
gation. For any input sample i, we denote 𝜕hi,l ∶=

𝜕Fi(��⃗W)

𝜕hi,l
 and

∇
Wl
Fi(

���⃗W) ∶=
𝜕Fi(��⃗W)

𝜕Wl

=
(

𝜏Di,l𝜕hi,l
)

⋅ hT
i,l−1

 . Therefore, the gradient upper bound is guaran-
teed if hi,l and �hi,l are bounded for all blocks. We next show that the backward process
is bounded for each individual sample at the initialization stage.

Theorem 3 For every input sample i ∈ [n] and for any positive constants c and � with
0 < 𝜖 < 1 , if � satisfies �2L ≤ min{

1

2
log(1 + c),

log2(1+c)

16(1+log(1+2∕�))
} , then with probability at

least 1 − 3nL2 ⋅ exp
(

−
1

4
mc2

)

 over the randomness of A,B and ���⃗W(0) , the following holds
∀l ∈ [L − 1]

The full proof is is deferred to Appendix 6. Here we give an outline.

Proof Outline The argument is based on the back-propagation formula and Theorem 1. We
omit the superscript (0) for notation simplicity. For each i ∈ [n] and l ∈ [L − 1] , i.e., the
residual layers, we have

(3)∀i ∈ [n], l ∈ [L − 1] ∶
‖

‖

‖

h
(0)

i,l

‖

‖

‖

≥ 1 − c.

(4)

‖∇
Wl
Fi(

���⃗W
(0))‖F ≤

(1 + c)2

(1 − 𝜖)2
(2
√

2 + c)𝜏‖𝜕hi,L‖, ‖∇
WL

Fi(
���⃗W

(0))‖F ≤
(1 + c)

(1 − 𝜖)
‖𝜕hi,L‖.

3365Machine Learning (2022) 111:3359–3392

1 3

 where the last inequality is due to Theorem 1 and the spectral norm bound of WL given in
Appendix A. The full proof is deferred to Appendix 6. ◻

This theorem indicates that the gradient of residual layers could be � times smaller than
the usual feedforward layer. Moreover, for ResNet with � = 1∕

√

L , the norm of all layer
gradient is independent of the depth, which allows us to use a depth independent learning
rate to train ResNets of all depths. This is essentially different from the feedforward case
(Allen-Zhu et al., 2018; Zou & Gu, 2019). We note that the gradient upper bound also
holds for ���⃗W within the neighborhood of ���⃗W(0) (see details in Appendix C.2 and 6).

3.3 A converse result for � > L
−

1

2
+c

We have built the stability of the forward/backward process for � = O(1∕
√

L) . We next
establish a converse result showing that if � is slightly larger than L−

1

2 in the order sense,
the network output norm grows uncontrollably as the depth L increases. This justifies the
sharpness of the value � = 1∕

√

L . Without loss of generality, we assume ‖h0‖ = 1.

Theorem 4 Suppose that c is an arbitrary positive constant and the ResNet is defined and
initialized as in Sect. 2. If � ≥ L

−
1

2
+c , then we have

Proof The proof is based on a new inequality (hl)k ≥ �

�

∑l

a=1

�

�Waha−1
�

k

�

 for l ∈ [L − 1]
and for k ∈ [m] . By the symmetry of Gaussian variables and the recursive conditioning, we
can compute the expectation of ‖hL‖2 exactly. The whole proof is relegated to Appendix G.
 ◻

This indicates that � = O(1∕
√

L) is sharp to guarantee the forward stability of deep
ResNet. We note that Theorems 1 and 3 hold with high probability when m > Ω(log L) and
Theorem 2 holds with high probability when m > Ω(log(nL)) . These are very mild condi-
tions on the width m, which are satisfied by practical networks.

3.4 Comparison with other approaches for stability

Up to now, we have provided a sharp value of � in terms of determining the stability of
deep ResNet. In practice, two other approaches are used in residual networks to provide
the stability: adding normalization layers, e.g., batch normalization (BN) (Ioffe & Szegedy,
2015), and scaling down the initial residual weights, e.g., Fixup (Zhang et al., 2018a).
Next, we discuss BN and Fixup from the stability perspective, respectively, and make com-
parison with adding � = 1∕

√

L.

‖∇
Wl
Fi(

���⃗W)‖F =
�

�

�

𝜏

�

Di,l(I + 𝜏Wl+1)
T
⋯Di,L−1W

T
L
Di,L𝜕hi,L

�

hT
i,l−1

�

�

�F

≤ 𝜏‖Di,l(I + 𝜏Wl+1)
T
⋯Di,L−1‖ ⋅ ‖W

T
L
Di,L‖ ⋅ ‖𝜕hi,L‖ ⋅ ‖hi,l−1‖,

≤
(1 + c)2

(1 − 𝜖)2
(2
√

2 + c)𝜏‖𝜕hi,L‖,

(5)�‖hL‖
2 ≥

1

2
L2c.

3366 Machine Learning (2022) 111:3359–3392

1 3

Batch normalization is placed right after each convolutional layer in (He et al., 2016).
Here for the ResNet model defined in Sect. 2, we put BN after each parametric branch and
the residual block becomes hl = 𝜙(hl−1 + z̃l) , where (z̃i,l)k ∶= BN

�

(zi,l)k
�

=
(zi,l)k−�[(z⋅,l)k]
√

Var[(z
⋅,l)k]

 and
(zi,l)k ∶=

(

Wlhi,l−1
)

k
 for k = [m] and l = [L − 1] , and the expectation and the variance are

taken over samples in a mini-batch. Then we have �(z̃
⋅,l)k = 0 and Var[(z̃

⋅,l)k] = 1 . We use
the following proposition to estimate the norm of each residual block output for the ResNet
with BN.

Proposition 1 Assume that (z̃l)k are independent random variable over l, k with �(z̃l)k = 0
and Var[(z̃l)k] = 1 . The output norm of the residual block l satisfies �‖hl‖2 ≥

1

2
ml , for

l ∈ [L − 1].

Proof The proof is adapted from the proof of Theorem 4, and is presented in Appendix G.
 ◻

This indicates that the block output norm of ResNet with BN grows roughly at the
rate

√

l at the initialization stage, where l is the block index and the larger l the closer to
the output. To verify this, we plot how the output norm of each residual block grows for
ResNet1202 (with/without BN)3 in Fig. 1. We see that at epoch 0 (initialization stage), the
output norm grows almost with the rate

√

l as predicted in Proposition 1. After training,
the estimation in Proposition 1 is not as accurate as the initialization because the independ-
ence assumption does not hold after training. Besides the output norm growth, in prac-
tice, (He et al., 2016) have to use warm-up learning rates to train very deep ResNets, e.g.,
ResNet1202+BN. In contrast, it is proved that the approach of adding � = 1∕

√

L is stable
over all depths and hence does not require any learning rate warm-up stage.

Recently, Zhang et al. (2018a) propose Fixup to train residual networks without the nor-
malization layer. Essentially for each residual block, Fixup sets the weight matrix near the
output to be 0 at the initialization stage, and then scales down the all other weight matrices

Fig. 1 The l
2
 norm of residual block output of the first stage of ResNet1202 at epoch 0 and epoch 50. The X

axis is the block index and the Y axis is the output norm ratio compared to the first block

3 Throughout the paper, the naming rule of ResNet is as follows.“ResNet" is referred to the model defined
in Sect. 2, “ResNet#" is referred to the models in He et al. (2016) with removing all the BN layers, e.g.,
ResNet1202, “ResNet#+BN" corresponds to the original model in He et al. (2016), “+Fixup" corresponds
to initializing the model with Fixup, and “ +� " is referred to adding � on the output of the parametric branch
in each residual block.

3367Machine Learning (2022) 111:3359–3392

1 3

by a factor that is determined by the network structure. However, in practice Fixup does not
always converge for training very deep residual networks as shown in Sect. 5.2. Moreover,
for the ResNet model defined in Sect. 2, Fixup could be unstable after gradient updates.
The residual block is given by hl = �(hl−1 +Wlhl−1) , and following Fixup, W(0)

l
 is initial-

ized to be 0 for l ∈ [L − 1] . At the initial stage for input sample i, hi,l = hi,0 and hence
∇

Wl
Fi = �hi,L−1 ⋅ h

T
i,0

 , the same for all l ∈ [L − 1] . Then after one gradient update the resid-
ual blocks mapping

∏L−1

l=1
Di,l(I + � ⋅ ∇

Wl
Fi) could behave like (D(I + � ⋅ �hi,L−1 ⋅ h

T
i,0
))L−1

when Di,l = D for all l, which grows exponentially. Empirically, such explosion is observed
for deep ResNet with Fixup (see Fig. 2). In contrast, the ResNet with � is stable for varying
depths (see Fig. 3), as guaranteed by our theory.

4 Global convergence for over‑parameterized ResNet

In this section, we establish that gradient descent converges to global minima for learning
an over-parameterized ResNet with 𝜏 ≤ Õ(1∕

√

L) . Compared to the recent work (Allen-
Zhu et al., 2018), our result significantly enlarges the region of � that admits the global
convergence of gradient descent. Moreover, our result also theoretically justifies the advan-
tage of ResNet over vanilla feedforward network in terms of facilitating the convergence
of gradient descent. Before stating the theorem, we introduce common assumptions on the
training data and the loss function (Allen-Zhu et al., 2018; Zou & Gu, 2019; Oymak &
Soltanolkotabi, 2019).

Fig. 2 Training curves of
ResNets with Fixup: MNIST
classification, width m = 128 and
learning rate � = 0.01

(a) (b) (c) (d)

Fig. 3 Training curves for PlainNet, ResNet with � =
1

L
 , � =

1
√

L

 and � =
1

L1∕4
 (from left to right). We use

markers to denote the training encounters numerical overflow

3368 Machine Learning (2022) 111:3359–3392

1 3

Assumption 1 (training data) For any xi , it holds that ‖xi‖ = 1 and (xi)p = 1∕
√

2 . There
exists 𝛿 > 0 , such that ∀i, j ∈ [n], i ≠ j, ‖xi − xj‖ ≥ �.

The loss function 𝓁(⋅, ⋅) is quadratic and the individual objective is
Fi(

���⃗W) ∶=
1

2
‖Bhi,L − y∗

i
‖

2 . We note that the assumption (xi)p = 1∕
√

2 means that the last
coordinate of every xi is 1∕

√

2 . This gives a random bias term after the first layer A(⋅) , which
makes the proof of Lemma 6 for the gradient lower bound easier. This assumption is because
of the proof convenience rather than something that should be satisfied in practice.

Theorem 5 Suppose that the ResNet is defined and initialized as in Sect. 2 with
� ≤ O(1∕(

√

L logm)) and the training data satisfy Assumption 1. If the network width
m ≥ Ω(n8L7�−4d log2 m) , then with probability at least 1 − exp(−Ω(log2 m)) , gradient
descent with learning rate � = Θ(

d

nm
) finds a point F(���⃗W) ≤ 𝜀 in T = Ω(n2�−1 log

n log2 m

�
)

iterations.

Proof The full proof is deferred to Appendix F. ◻

This theorem establishes the linear convergence of gradient descent for learning ResNet for
the range � ≤ O(1∕(

√

L logm)) . Combined with the unstable case of 𝜏 > 1∕
√

L in Sect. 3.3,
we give a nearly full characterization of the convergence in terms of the range of � . Moreover,
our result indicates that the learning rate and the total number of iterations are depth-independ-
ent. We note that a recent paper Frei et al. (2019) also achieves a depth-independent rate but
only for the case � ≤ O(1∕(L logm)) , whose proof critically relies on the choice of � = 1∕L .
The overparameterization dependence and the number of iterations are not directly compara-
ble as we are studying the regression problem while Frei et al. (2019) is for the classification
problem with different data assumption. Other previous results (Allen-Zhu et al., 2018; Du
et al., 2019a) characterize the convergence guarantee only for the case � ≤ O(1∕(L logm)) ,
and their total number of iterations scales with the order L2 . Our depth-independent results are
achieved by a tighter smoothness and gradient upper bound.

In the analysis with the feedforward case (Allen-Zhu et al., 2018; Zou & Gu, 2019, the
learning rate has to scale with 1∕L2 and the total number of iterations scales with L2 for the
convergence of learning feedforward network. Therefore, our result theoretically justifies the
advantage of ResNet over vanilla feedforward network in terms of facilitating the convergence
of gradient descent.

Finally, we add a remark on the width requirement in Theorem 5. The width grows poly-
nomially with the number of training examples. Such dependence is because we need to more
neurons to distinguish each data point sufficiently with more examples, which is common for
the regression task (Allen-Zhu et al., 2019b; Zou & Gu, 2019). This dependence could be
avoid by assuming the training data follows specific distributions for the classification task
(Cao & Gu, 2020). However this is orthogonal to our main claim that ResNet converges with
a depth-dependent rate.

5 Empirical study

In this section, we present experiments to verify our theory and show the practical value of
ResNet with � . We first compare the performance of ResNet with different � ’s and demon-
strate that � =

1
√

L
 is a sharp value in determining the trainability of deep ResNet. We then

3369Machine Learning (2022) 111:3359–3392

1 3

compare the performance of adding the factor � and using Fixup initialization when train-
ing the popular residual networks without normalization layers. We finally show that with
normalization layer, adding � also significantly improve the performance for both CIFAR
and ImageNet tasks. Source code available online https://github.com/dayu11/tau-ResNet.

5.1 Theoretical verification

We train feedforward fully-connected neural networks (PlainNet), ResNets with different
values of � , and compare their convergence behaviors. Specifically, for ResNets, we adopts
the exactly the same residual architecture as described in Eq. (1) and Sect. 2. The PlainNet
adopts the same architecture as the ResNets without the skip connection. The models are
generated with width m = 128 and depth L ∈ {10, 100, 1000} . For ResNets with � , we
choose � =

1

L
,

1
√

L
,

1

L1∕4
 to show the sharpness of the value 1

√

L
 . We conduct classification on

the MNIST dataset (LeCun et al., 1998). We train the model with SGD4 and the size of
minibatch is 256. The learning rate is set to � = 0.01 for all networks without tuning.

We plot the training curves in Fig. 3. For ResNets with � , we see that both � =
1

L
 and

� =
1
√

L
 are able to train very deep ResNets successfully and � =

1
√

L
 achieves lower training

loss than � =
1

L
 . For � =

1

L1∕4
 , the training loss explodes for models with depth 100 and

1000. This indicates that the bound � =
1
√

L
 is sharp for learning deep ResNets. Moreover,

the convergence of ResNets with � =
1
√

L
 does not depend on the depth while training feed-

forward network becomes harder as the depth increases, corroborating our theory nicely.
To clearly see the benefit of � =

1
√

L
 over � =

1

L
 , we conduct the classification task on the

CIFAR10 dataset (Krizhevsky & Hinton, 2009) with the residual networks from He et al.
(2016). A bit different from the model described in Sect. 2, here one residual block is com-
posed of two stacked convolution layers. We argue that our theoretical analysis still applies
if treating the number of channels in convolution layer as width in Sect. 2. We plot the
training/validation curves in Fig. 4. We can see that with � =

1
√

L
 , both ResNet110 and

ResNet1202 can be trained to good accuracy without BN. In contrast, with � =
1

L
 , the per-

formance of ResNet110 and ResNet1202 drops a lot.
In the sequel, we use “adding �∗ " or “ +�∗ " to denote residual network with � =

1
√

L
.

Fig. 4 Training/validation curves of ResNet110/1202 with � = 1∕
√

L and � = 1∕L for CIFAR10 classifica-
tion task. We use the models in He et al. (2016) and remove all BN layers

4 GD exhibits the same phenomenon. We use SGD due to the expensive per-iteration cost of GD.

3370 Machine Learning (2022) 111:3359–3392

1 3

5.2 Comparison of adding �∗ and using Fixup

In this section we compare our approach of adding �∗ and the approach of using Fixup for
training residual networks without BN. We conduct the classification task on the CIFAR10
dataset. We use the residual models in (He et al., 2016) with removing all the normaliza-
tion layers. For the approach of Fixup, we use the code from their github website with the
same hyperparameter setting. We note that Fixup has a learnable scalar with initial value 1
on the output of the parametric branch in each residual block, which is equivalent to set
� = 1 . For our approach, we use the same model as Fixup with setting � =

1
√

L
 and using the

Kaiming initialization instead of Fixup initialization.
The results are presented in Table 1. We can see that our approach achieves much better

performance than the Fixup approach over all depths. Moreover, the Fixup approach fails
to converge 2 out of 5 runs for training ResNet1202 and hence the standard deviation is not
presented in Table 1.

5.3 Add �∗ on top of normalization

In this section, we empirically show that adding �∗ in the residual block with batch nor-
malization can also help to achieve better performance. We conduct experiments on stand-
ard classification datasets: CIFAR10/100 and ImageNet. The baseline models are the resid-
ual networks in He et al. (2016). We note that the residual block here is with batch
normalization, which is discussed in Sect. 3.4 but not precisely covered by the theoretical
model (Sect. 2). For our approach, the only modification is adding a fixed � =

1
√

L
 at the

output of each residual block (right before the residual addition). We also tried to use learn-
able � but did not observe gain, which may be due to that the BN layers have learnable

Fig. 5 Validation error bar charts for CIFAR classification tasks. Numbers are average of 5 runs with stand-
ard deviations. The deeper network, the larger benefit of �∗

Table 1 Validation errors of
ResNets+Fixup and ResNets+�∗
on CIFAR10. Numbers are
average of 5 runs with standard
deviations

The relatively better error rates are in bold

Model + Fixup + �∗

ResNet20 8.72(±0.26) 8.39 (±0.11)
ResNet32 7.99(±0.24) 7.68 (±0.10)
ResNet110 7.24(±0.12) 6.52 (±0.20)
ResNet1202 7.83(N/A) 6.08 (±0.21)

3371Machine Learning (2022) 111:3359–3392

1 3

scaling factors. The validation errors on CIFAR10/100 are illustrated in Fig. 5, where all
numbers are averaged over five runs. The performance of adding �∗ is much better than the
baseline models and especially the benefit of adding �∗ becomes larger when the network is
deeper. We note that one needs warm-up learning rate to successfully train
ResNet1202+BN, while with �∗ we use the same learning rate schedule for all depths.

As the models for ImageNet classification has different numbers of residual blocks in
each stage, we choose �∗ = 1

√

L
 where L is the average number of blocks over all stages. We

take average instead of sum because there exists a BN layer on the output of each stage. All
models are trained for 200 epochs with learning rate divided by 10 every 60 epochs. The
other hyperparameters are the same as in He et al. (2016). Table 2 shows the top 1 valida-
tion error results on ImageNet. We can see that just by adding �∗ on top of BN we can
achieve significant performance gain.

6 Conclusion

In this paper, we provide a non-asymptotic analysis on the forward/backward stability for
ResNet, which unveils that � = 1∕

√

L is a sharp value in terms of characterizing the stabil-
ity. We also bridge theoretical understanding and practical guide of ResNet structure. We
empirically verify the efficacy of adding � for ResNet with/without batch normalization. As
the residual block is also widely used in the Transformer model (Vaswani et al., 2017), it is
interesting to study the effect of � and layer normalization there.

A Useful Lemmas

First we list several useful bounds on Gaussian distribution.

Lemma 1 Suppose X ∼ N(0, �2) , then

(6)
ℙ{|X| ≤ x} ≥ 1 − exp

(

−
x2

2�2

)

,

ℙ{|X| ≤ x} ≤

√

2

�

x

�

.

Table 2 Top1 validation error
on ImageNet. The models are
adapted from He et al. (2016)

The relatively better error rates are in bold

Model Method Error

ResNet50 +BN 23.6
+BN+�∗ 22.7

ResNet101 +BN 22.0
+BN+�∗ 21.4

ResNet152 +BN 21.7
+BN+�∗ 20.9

3372 Machine Learning (2022) 111:3359–3392

1 3

Another bound is on the spectral norm of random matrix ((Vershynin, 2012), Corollary
5.35).

Lemma 2 Let A ∈ ℝ
N×n , and entries of A are independent standard Gaussian random var-

iables. Then for every t ≥ 0 , with probability at least 1 − exp(−t2∕2) one has

where smax(A) are the largest singular value of A.

B Spectral norm bound at initialization

Next we present a spectral norm bound related to the forward process of ResNet with �.

Proof Without introducing ambiguity, we drop the superscript (0) for notation simplicity.
We first build the claim for one fixed sample i ∈ [n] and drop the subscript i, for conveni-
ence. Let gl = hl−1 + �Wlhl−1 and hl = Dlgl for l = {a, ..., b} . We will show for a vector ha−1
with ‖ha−1‖ = 1 , we have ‖hb‖ ≤ 1 + c with high probability, where

Then we have ‖gl‖ ≥ ‖hl‖ due to the assumption ‖Dl‖ ≤ 1 . Hence we have

Taking logarithm at both side, we have

If letting h̃l−1 ∶=
hl−1

‖hl−1‖
 , then we obtain that

 where the inequality is due to the fact log(1 + x) ≤ x for all x > −1 . Let
𝜉l ∶= 2𝜏

⟨

h̃l−1,Wlh̃l−1
⟩

 and 𝜁l ∶= 𝜏
2
‖W

(0)

l
h̃l−1‖

2 , then given hl−1 we have �l ∼ N

(

0,
4�2

m

)

 ,
�l ∼

�
2

m
�
2
m
 because of the random initialization of Wl . We see that

Next we bound the two terms on the right hand side one by one. For the first term we have

(7)smax(A) ≤
√

N +
√

n + t,

(8)hb = Db(I + �Wb)Db−1 ⋯Da(I + �Wa)ha−1.

‖hb‖
2 =

‖hb‖
2

‖hb−1‖
2
⋯

‖ha‖
2

‖ha−1‖
2
‖ha−1‖

2 ≤
‖gb‖

2

‖hb−1‖
2
⋯

‖ga‖
2

‖ha−1‖
2
‖ha−1‖

2.

(9)log ‖hb‖
2 ≤

b
�

l=a

logΔl, where Δl ∶=
‖gl‖

2

‖hl−1‖
2
.

logΔl = log
�

1 + 2𝜏
�

h̃l−1,Wlh̃l−1
�

+ 𝜏
2
‖Wlh̃l−1‖

2
�

≤ 2𝜏
�

h̃l−1,Wlh̃l−1
�

+ 𝜏
2
‖Wlh̃l−1‖

2,

(10)ℙ

(

b
∑

l=a

logΔl ≥ c1

)

≤ ℙ

(

b
∑

l=a

�l ≥
c1

2

)

+ ℙ

(

b
∑

l=a

�l ≥
c1

2

)

.

3373Machine Learning (2022) 111:3359–3392

1 3

where � is any positive number and the last inequality uses the Markov’s inequality.
Moreover,

Hence we obtain

by choosing � =
mc1

16�2L
 and using b − a + 1 ≤ L . Due to the symmetry of

∑b

l=a
�l , the con-

clusion can be generalized to the quantity �
∑b

l=a
�l� that ℙ

�

�

�

�

�

�

b
∑

l=a

�l

�

�

�

�

�

≥
c1

2

�

≤ 2 exp
�

−
mc2

1

64�2L

�

.
Then, for the second term, we follow the above procedure but for a �2

m
 variable. We

note that the generate moment function of �2
m
 is (1 − 2t)−m∕2 for t < 1∕2 . We will use an

inequality that (1 − x

m
)−m ≤ ex for x ≥ 0 . By using the Markov’s inequality, we first have

for any 𝜆 > 0,

Then we have

Hence we obtain

(11)

ℙ

(

b
∑

l=a

�l ≥
c1

2

)

= ℙ

(

exp

(

�

b
∑

l=a

�l

)

≥ exp

(

�c1

2

)

)

≤ 𝔼

[

exp

(

�

b
∑

l=a

�l −
�c1

2

)]

,

(12)

�

[

exp

(

�

b
∑

l=a

�l

)]

= �

[

exp

(

�

b−1
∑

l=a

�l

)

�
[

exp
(

��b

)]

|

|

|

Fb−1

]

= exp

(

4�2�2

m

)

�

[

exp

(

�

b−1
∑

l=a

�l

)]

= ⋯ = exp

(

4�2�2(b − a + 1)

m

)

.

(13)ℙ

(

b
∑

l=a

�l ≥
c1

2

)

≤ exp

(

4m2c2
1
�
2(b − a + 1)

256m�4L2
−

mc2
1

32�2L

)

= exp

(

−
mc2

1

64�2L

)

,

(14)

ℙ

(

b
∑

l=a

�l ≥
c1

2

)

= ℙ

(

exp

(

�

b
∑

l=a

�l

)

≥ exp

(

�c1

2

)

)

≤ 𝔼

[

exp

(

�

b
∑

l=a

�l −
�c1

2

)]

.

(15)

�

[

exp

(

�

b
∑

l=a

�l

)]

= �

[

exp

(

�

b−1
∑

l=a

�l

)

�
[

exp
(

��b

)]

|

|

|

Fb−1

]

=

(

1 −
��

2

m∕2

)−m∕2

�

[

exp

(

�

b−1
∑

l=a

�l

)]

≤ exp(��2)�

[

exp

(

�

b−1
∑

l=a

�l

)]

≤ ⋯ ≤ exp
(

��
2(b − a + 1)

)

.

3374 Machine Learning (2022) 111:3359–3392

1 3

by choosing � =
mc1

�2L
 and using b − a + 1 ≤ L . If further setting � such that �2L ≤

c1

4
 , we

have

Combining (13) and (17), we obtain ℙ

�

b
∑

l=a

logΔl ≥ c1

�

≤ 3 exp
�

−
mc2

1

64�2L

�

 under the con-

dition �
2L ≤

c1

4
 . Hence we have

ℙ
�

‖hb‖ ≥ 1 + c
�

≤ ℙ

�

b
∑

l=a

logΔl ≥ 2 log(1 + c)

�

≤ 3 exp
�

−
m log2(1+c)

16�2L

�

 under the condi-

tion that �2L ≤
1

2
log(1 + c) . We next use �-net argument to prove the claim for all

m-dimensional vectors of ha−1 . Let N
�
 be an �-net over the unit ball in ℝm with 𝜖 < 1 , then

we have the cardinality |N
�
| ≤ (1 + 2∕�)m . Taking the union bound over all vectors ha−1 in

the net N
�
 , we obtain

where the last equality is obtained by choosing � appropriately to make
log2(1+c)

16𝜏2L
− log(1 + 2∕𝜖) > 1 . Then we have the spectral norm bound

This is because of the following argument. For a matrix M , vi is a vector in the net which is
closest to a unit vector v, then ‖Mv‖ ≤ ‖Mvi‖ + ‖M(v − vi)‖ ≤ ‖Mvi‖ + �‖M‖ , and hence
taking the supremum over v, one obtains (1 − �)‖M‖ ≤ maxi ‖Mvi‖.

Finally taking a union bound over a and b with 1 ≤ a ≤ b < L and a union bound over
all samples i ∈ [n] , we have the claimed result. ◻

C Bounded forward/backward process

C.1 Proof at initialization

Proof We ignore the subscript (0) for simplicity. First we have

(16)

ℙ

(

b
∑

l=a

�l ≥
c1

2

)

≤ exp

(

��
2(b − a + 1) −

�c1

2

)

≤ exp

(

−
mc2

1

2�2L

(

1 −
2�2L

c1

)

)

,

(17)ℙ

(

b
∑

l=a

�l ≥
c1

2

)

≤ exp

(

−
mc2

1

4�2L

)

.

ℙ

�

max
ha−1∈N𝜖

‖hb‖ > 1 + c

�

≤ (1 + 2∕𝜖)m ⋅ 3 exp

�

−
m log2(1 + c)

16𝜏2L

�

= 3 exp

�

−m

�

log2(1 + c)

16𝜏2L
− log(1 + 2∕𝜖)

��

≤ 3 exp (−m),

�

�

�

�

Db

�

I + �W
(0)

b

�

Db−1 ⋯Da

�

I + �W
(0)
a

��

�

�

�

≤ (1 − �)−1 max
ha−1∈N�

‖hb‖.

(18)‖hi,l‖ = ‖hi,0‖
‖hi,1‖

‖hi,0‖
⋯

‖hi,l‖

‖hi,l−1‖
.

3375Machine Learning (2022) 111:3359–3392

1 3

Then we see

We introduce notation Δa ∶=
‖hi,a‖

2−‖hi,a−1‖
2

‖hi,a−1‖
2

 . We next give a lower bound on Δa . Let S be the
set {k ∶ k ∈ [m] and (hi,a−1)k + 𝜏(Wahi,a−1)k > 0} . We have that

where the inequality is due to the fact that for k ∉ S , |(hi,a−1)k| < |(𝜏Wahi,a−1)k| and
(hi,a−1)k(Wahi,a−1)k ≤ 0 . Let �a ∶=

2�
⟨
hi,a−1,Wahi,a−1⟩

‖hi,a−1‖
2

 and �a ∶=
‖�Wahi,a−1‖

2

‖hi,a−1‖
2

 , then Δa ≥ �a − �a .

We note that given hi,a−1 , �a ∼ N

(

0,
4�2

m

)

 and �a ∼
�
2

m
�
2
m
 . We use a tail bound for a �2

m
 vari-

able X (see Lemma 1 in Laurent and Massart (2000))

By applying the tail bound on Gaussian and Chi-square variables, for a constant c0 such
that 4�2 ≤ c0 we have

Thus, by choosing c0 = 0.5 , we have ℙ
(

Δa ≥ −0.5,∀a ∈ [L − 1]
)

≥ 1 − L exp
(

−
m

128�2

)

 .
On the event {Δa ≥ −0.5,∀a ∈ [L − 1]} , we can use the relation log(1 + x) ≥ x − x2 for
x ≥ −0.5 and have

Due to (13) and (17), we have for any c1 > 0 , and �2L ≤ c1∕4,

(19)

log ‖hi,l‖
2 = log ‖hi,0‖

2 +

l
�

a=1

log
‖hi,a‖

2

‖hi,a−1‖
2
= log ‖hi,0‖

2 +

l
�

a=1

log

�

1 +
‖hi,a‖

2 − ‖hi,a−1‖
2

‖hi,a−1‖
2

�

.

(20)

Δa =
1

‖hi,a−1‖
2

�

k∈S

�

(hi,a−1)
2
k
+ 2�(hi,a−1)k(Wahi,a−1)k + (�Wahi,a−1)

2
k

�

−
1

‖hi,a−1‖
2

m
�

k=1

(hi,a−1)
2
k

= −
1

‖hi,a−1‖
2

�

k∉S

(hi,a−1)
2
k
+

1

‖hi,a−1‖
2

�

k∈S

�
2(Wahi,a−1)

2
k
+

2

‖hi,a−1‖
2

�

k∈S

�(hi,a−1)k(Wahi,a−1)k

≥ −
1

‖hi,a−1‖
2

m
�

k=1

(�Wahi,a−1)
2 +

2

‖hi,a−1‖
2
�

m
�

k=1

(hi,a−1)k(Wahi,a−1)k

= −
‖�Wahi,a−1‖

2

‖hi,a−1‖
2

+
2�

�

hi,a−1,Wahi,a−1
�

‖hi,a−1‖
2

,

(21)ℙ(|X − m| ≥ u) ≤ e
−

u2

4m .

(22)

ℙ
(

Δa < −c0
)

= ℙ

(

Δa < −c0 and 𝜉a < −
c0

2

)

+ ℙ

(

Δa < −c0 and 𝜉a ≥ −
c0

2

)

≤ ℙ

(

𝜉a < −
c0

2

)

+ ℙ

(

𝜁a >
c0

2

)

=
1

2
exp

(

−
mc2

0

32𝜏2

)

+ exp

(

−
mc2

0

16𝜏4

)

< exp

(

−
mc2

0

32𝜏2

)

.

(23)equation19 ≥ log ‖hi,0‖
2 +

l
�

a=1

�

Δa − Δ2
a

�

.

3376 Machine Learning (2022) 111:3359–3392

1 3

Thus we have for any c1 > 0 , and �2L ≤ c1∕4,

We can derive a similar result that ℙ
�

∑l

a=1
Δa ≥ c1

�

≤ ℙ

�

∑l

a=1
�a ≥ c1

�

≤ exp
�

−
mc2

1

16�2L

�

 .
Let a = b in (24), we have obtained that for a single Δa , for a constant c1 such that 4�2 ≤ c1,

In addition, we see that for any 16�4L ≤ c1

Thus, similar to the (25), we obtain for any c1 > 0 and 8𝜏2L < c1,

Thus on the event of {Δa ≥ −0.5,∀a ∈ [L − 1]} , we have for any c1 > 0 and 8𝜏2L < c1,

Then we get the conclusion ℙ
(

‖hi,l‖ < 1 − c
)

= ℙ
(

log ‖hi,l‖2 ≤ −2 log(1 − c)−1
)

≤ 2L exp
(

− 1
32
m log(1 − c)−1

)

 . Taking union bound over i ∈ [n] and l ∈ [L − 1] , we get the claimed

result with probability 1 − 2nL2 exp
(

−
1

32
m log(1 − c)−1

)

 under the condition
�
2L ≤

1

4
log(1 − c)−1 . ◻

(24)

ℙ

(

b
∑

l=a

𝜉l ≥
c1

2

)

≤ exp

(

−
mc2

1

64𝜏2L

)

, ℙ

(

b
∑

l=a

𝜉l < −
c1

2

)

≤ exp

(

−
mc2

1

64𝜏2L

)

,

ℙ

(

b
∑

l=a

𝜁l ≥
c1

2

)

≤ exp

(

−
mc2

1

4𝜏2L

)

.

(25)

ℙ

(

l
∑

a=1

Δa ≤ −c1

)

= ℙ

(

l
∑

a=1

Δa ≤ −c1,

l
∑

a=1

�a ≥ −
c1

2

)

+ ℙ

(

l
∑

a=1

Δa ≤ −c1,

l
∑

a=1

�a ≤ −
c1

2

)

≤ ℙ

(

l
∑

a=1

�a ≥
c1

2

)

+ ℙ

(

l
∑

a=1

�a ≤ −
c1

2

)

= 2 exp

(

−
mc2

1

64�2L

)

.

(26)ℙ
(

|

|

Δa
|

|

≥ c1
)

≤ 2 exp

(

−
mc2

1

32�2

)

.

(27)

ℙ

(

l
∑

a=1

Δ2
a
≥ c1

)

≤

l
∑

a=1

ℙ

(

Δ2
a
≥

c1

l

)

=

l
∑

a=1

ℙ

(

|Δa| ≥

√

c1

l

)

≤ 2l exp
(

−
mc1

32

)

.

(28)

ℙ

(

l
∑

a=1

(

Δa − Δ2
a

)

≤ −c1

)

≤ ℙ

(

l
∑

a=1

Δa ≤ −
c1

2

)

+ ℙ

(

l
∑

a=1

Δ2
a
≥

c1

2

)

≤ 2 exp

(

−
mc2

1

256�2L

)

+ 2(L − 1) exp
(

−
mc1

64

)

≤ 2L exp
(

−
mc1

64

)

(29)

ℙ
�

log ‖hi,l‖
2 ≤ −c1

�

≤ ℙ

�

log ‖hi,0‖
2 +

l
�

a=1

�

Δa − Δ2
a

�

≤ −c1

�

≤ 2L exp
�

−
mc1

64

�

.

3377Machine Learning (2022) 111:3359–3392

1 3

C.2 Lemmas and proofs after perturbation

We use ���⃗W(0) to denote the weight matrices at initialization and use ���⃗W′ to denote the per-
turbation matrices. Let ���⃗W = ���⃗W

(0) + ���⃗W� . We define h
(0)

i,l
= �((I + �W

(0)

l
)h

(0)

i,l−1
) and

hi,l = �((I + �Wl)hi,l−1) for l ∈ [L − 1] , and h(0)
i,L

= �(W
(0)

L
h
(0)

i,L−1
) and hi,L = �(WLhi,L−1) .

Furthermore, let h�
i,l
∶= hi,l − h

(0)

i,l
 and D�

i,l
∶= Di,l − D

(0)

i,l
 . We note that ‖ ⋅ ‖0 is the number of

nonzero entries in ⋅ . In the sequel, we will use notation O and Ω to simplify the presentation.
Then the spectral norm bound after perturbation is as follows.

Lemma 3 Suppose that ���⃗W(0) , A are randomly generated as in the initialization step, and
W

�
1
,… ,W�

L−1
∈ ℝ

m×m are perturbation matrices with ‖W′
l
‖ < 𝜏𝜔 for all l ∈ [L − 1] for

some 𝜔 < 1 . Suppose Di,0,… ,Di,L are diagonal matrices representing the activation status
of sample i. If �2L ≤ O(1) , then with probability at least 1 − 3nL2 ⋅ exp(−Ω(m)) over the
initialization randomness we have

Proof This proof is similar to the proof of Theorem 1. We first build the claim for one fixed
sample i ∈ [n] and drop the subscript i, for convenience. We will show for a vector ha−1
with ‖ha−1‖ = 1 , we have ‖hb‖ ≤ 1 + c with high probability, where

Let gl = hl−1 + �W
(0)

l
hl−1 + �W

�
l
hl−1 and hl = Dlgl for l = {a, ..., b} . Then we have

‖gl‖ ≥ ‖hl‖ due to the fact ‖Dl‖ ≤ 1 . Hence we have

Taking logarithm at both side, we have

If letting h̃l−1 ∶=
hl−1

‖hl−1‖
 , then we obtain that

 where the inequality is due to the fact log(1 + x) ≤ x for all x > −1 . We can bound the sum
over layers of the first two terms as in the proof of Theorem 1. Next we control the last two
terms related with W′

l
 , on a high probability event {‖W(0)

l
‖ ≤ 4, for all l ∈ [L − 1]}

(30)‖(I + �W
(0)

b
+ �W

�
b
)Di,b−1 ⋯Di,a(I + �W

(0)
a

+ �W
�
a
)‖ ≤ O(1).

(31)hb = Db(I + �W
(0)

b
+ �W

�
b
)Db−1 ⋯Da(I + �W

(0)
a

+ �W
�
a
)ha−1.

‖hb‖
2 =

‖hb‖
2

‖hb−1‖
2
⋯

‖ha‖
2

‖ha−1‖
2
‖ha−1‖

2 ≤
‖gb‖

2

‖hb−1‖
2
⋯

‖ga‖
2

‖ha−1‖
2
‖ha−1‖

2.

(32)log ‖hb‖
2 ≤

b
�

l=a

logΔl, where Δl ∶=
‖gl‖

2

‖hl−1‖
2
.

logΔl = log
�

1 + 2𝜏
�

h̃l−1,W
(0)

l
h̃l−1

�

+ 𝜏
2
‖W

(0)

l
h̃l−1‖

2 + 2𝜏
�

(I + 𝜏W
(0)

l
)h̃l−1,W

�
l
h̃l−1

�

+ 𝜏
2
‖W

�
l
h̃l−1‖

2
�

≤ 2𝜏
�

h̃l−1,W
(0)

l
h̃l−1

�

+ 𝜏
2
‖W

(0)

l
h̃l−1‖

2 + 2𝜏
�

(I + 𝜏W
(0)

l
)h̃l−1,W

�
l
h̃l−1

�

+ 𝜏
2
‖W

�
l
h̃l−1‖

2,

(33)

b
�

l=a

2𝜏
�

(I + 𝜏W
(0)

l
)h̃l−1,W

�
l
h̃l−1

�

≤

b
�

l=a

2𝜏‖I + 𝜏W
(0)

l
‖‖W

�
l
‖‖h̃l−1‖

2 ≤

b
�

l=a

2𝜏2𝜔(1 + 4𝜏),

b
�

l=a

𝜏
2
‖W

�
l
h̃l−1‖

2 ≤

b
�

l=a

2𝜏4𝜔2.

3378 Machine Learning (2022) 111:3359–3392

1 3

Hence given �2L ≤ c1∕4 as in proof of Theorem 1 and � being a small constant, the above
two sum are well controlled. We can obtain a spectral norm bound as claimed. Here the
theorem is built for one W′

l
 . At the end of the whole proof, we will see the number of itera-

tions is Ω(n2) . If we take union bound over all the W′
l
 s running into in the optimization

trajectory, the overall probability is still as high as 1 − Ω(n3L2) exp(−Ω(m)) . ◻

We also have small changes on the output vector of each layer after perturbation.

Lemma 4 Suppose that � ≤ O(1) and �2L ≤ O(1) . If ‖W′
L
‖ ≤ � and ‖W′

l
‖ ≤ �� for

l ∈ [L − 1] , then with probability at least 1 − exp(−Ω(m�
2

3)) , the following bounds on h′
i,l

and D′

i,l
 hold for all i ∈ [n] and all l ∈ [L − 1],

Proof Fixing i and ignoring the subscript in i, by Claim 8.2 in Allen-Zhu et al. (2018), for
l ∈ [L − 1] , there exists D′′

l
 such that |(D��

l
)k,k| ≤ 1 and

We claim that

due to the fact ‖D′′
l
‖ ≤ 1 and the assumption ‖W′

l
‖ ≤ �� for l ∈ [L − 1] . This implies

that ‖h�
i,l
‖, ‖g�

i,l
‖ ≤ O(�2L�) for all l ∈ [L − 1] and for all i with probability at least

1 − O(nL) ⋅ exp(−Ω(m)) . One step further, we have ‖h�
L
‖, ‖g�

L
‖ ≤ O(�).

As for the sparsity ‖D′
l
‖0 , we have ‖D�

l
‖0 ≤ O(m(��L)

2

3) for every l = [L − 1] and
‖D

�
L
‖0 ≤ O(m�

2

3).
The argument is as follows (adapt from the Claim 5.3 in Allen-Zhu et al. (2018)).
We first study the case l ∈ [L − 1] . We see that if (D�

l
)j,j ≠ 0 one must have

|(g�
l
)j| > |(g

(0)

l
)j|.

We note that (g(0)
l
)j = (h

(0)

l−1
+ �W

(0)

l
h
(0)

l−1
)j ∼ N

�

(h
(0)

l−1
)j,

�
2
‖h

(0)

l−1
‖

2

m

�

 . Let � ≤
1

√

m
 be a

parameter to be chosen later. Let S1 ⊆ [m] be a index set satisfying S1 ∶= {j ∶ |(g
(0)

l
)j| ≤ ��} .

We have ℙ{�(g(0)
l
)j� ≤ ��} ≤ O(�

√

m) for each j ∈ [m] . By Chernoff bound, with probabil-
ity at least 1 − exp(−Ω(m3∕2

�)) we have

Let S2 ∶= {j ∶ j ∉ S1, and (D�
l
)j,j ≠ 0} . Then for j ∈ S2 , we have |(g�

l
)j| > 𝜉𝜏 . As we have

proved that ‖g�
l
‖ ≤ O(�2L�) , we have

‖h�
i,l
‖ ≤ O(�2L�), ‖D

�
i,l
‖0 ≤ O

�

m(��L)
2

3

�

, ‖h�
i,L
‖ ≤ O(�), ‖D

�
i,L
‖0 ≤ O

�

m�
2

3

�

.

(34)

h�
l
= D

��
l

(

(I + �W
(0)

l
+ �W

�
l
)hl−1 − (I + �W

(0)

l
)h

(0)

l−1

)

= D
��
l

(

(I + �W
(0)

l
+ �W

�
l
)h�

l−1
+ �W

�
l
h
(0)

l−1

)

= D
��
l
(I + �W

(0)

l
+ �W

�
l
)D��

l−1
(I + �Wl−1 + �W

�
l−1

)h�
l−2

+ �D
��
l
(I + �W

(0)

l
+ �W

�
l
)D��

l−1
W

�
l−1

h
(0)

l−2
+ �D

��
l
W

�
l
h
(0)

l−1

= ⋯

=

l
∑

a=1

�D
��
l
(I + �W

(0)

l
+ �W

�
l
)⋯D

��
a+1

(I + �Wa+1 + �W
�
a+1

)D��
a
W

�
a
h(0)
a
.

(35)‖h�
l
‖ ≤ O(�2L�)

|S1| ≤ O(�m3∕2).

3379Machine Learning (2022) 111:3359–3392

1 3

Choosing � to minimize |S1| + |S2| , we have � = (��L)
2

3 ∕
√

m and consequently,
‖D

�
l
‖0 ≤ O(m(��L)

2

3) . Similarly, we have ‖D�
L
‖0 ≤ O(m�

2

3) . ◻

We next prove that the norm of a sparse vector after the ResNet mapping.

Lemma 5 Suppose that s ≥ Ω(d∕ logm), �2L ≤ O(1) . If Wl for l ∈ [L] satisfy the condition
as in Lemma 3, then for all i ∈ [n] and a ∈ [L] and for all s-sparse vectors u ∈ ℝ

m and for
all v ∈ ℝ

d , the following bound holds with probability at least 1 − (nL) ⋅ exp(−Ω(s logm))

where Di,a is diagonal activation matrix for sample i.

Proof For any fixed vector u ∈ ℝ
m , ‖Di,LWLDi,L−1(I + �WL−1)⋯Di,a(I + �Wa)u‖ ≤ 1.1‖u‖

holds with probability at least 1 − exp(−Ω(m)) because of Lemma 3.
On the above event, for a fixed vector v ∈ ℝ

d and any fixed Wl for l ∈ [L] , the random-
ness only comes from B , then vTBDi,LWLDi,L−1(I + �WL−1)⋯Di,a(I + �Wa)u is a Gauss-
ian variable with mean 0 and variance no larger than 1.12‖u‖2 ⋅ ‖v‖2∕d . Hence

Take �-net over all s-sparse vectors of u and all d-dimensional vectors of v, if
s ≥ Ω(d∕ logm) then with probability 1 − exp(−Ω(s logm)) the claim holds for all s-sparse
vectors of u and all d-dimensional vectors of v. Further taking the union bound over all
i ∈ [n] and a ∈ [L] , the lemma is proved. ◻

D Gradient lower/upper bounds and their proofs

Because the gradient is pathological and data-dependent, in order to build bound on
the gradient, we need to consider all possible point and all cases of data. Hence we first
introduce an arbitrary loss vector and then the gradient bound can be obtained by taking
a union bound.

We define the ��
��⃗W,i

(v, ⋅) operator. It back-propagates a vector v to the ⋅ which could
be the intermediate output hl or the parameter Wl at the specific layer l using the for-
ward propagation state of input i through the network with parameter ���⃗W . Specifically,

�S2� ≤
‖g�

l
‖

2

(��)2
= O((��L)2∕�2).

(36)�vTBDi,LWLDi,L−1(I + �WL−1)⋯Di,a(I + �Wa)u� ≤ O

�
√

s logm
√

d
‖u‖‖v‖

�

,

ℙ
�

�vTBDi,LWLDi,L−1(I + �WL−1)⋯Di,a(I + �Wa)u� ≥
√

s logm ⋅Ω(‖u‖‖v‖∕
√

d)
�

= erfc(Ω(
√

s logm)) ≤ exp(−Ω(s logm)).

��
��⃗W,i

(v, hl) ∶= (I + 𝜏Wl+1)
T
Di,l+1 ⋯ (I + 𝜏WL−1)

T
Di,L−1W

T
L
Di,LB

Tv,

��
��⃗W,i

(v,Wl) ∶= 𝜏

(

Di,l(I + 𝜏Wl+1)
T
⋯ (I + 𝜏WL−1)

T
Di,L−1W

T
L
Di,LB

Tv
)

hT
i,l−1

∀l ∈ [L − 1],

��
��⃗W,i

(v,WL) ∶=
(

Di,LB
Tv
)

hT
i,L−1

.

3380 Machine Learning (2022) 111:3359–3392

1 3

Moreover, we introduce

where �⃗v is composed of n vectors vi for i ∈ [n] . If vi is the error signal of input i, then
∇

Wl
Fi(

���⃗W) = ��
��⃗W,i

(Bhi,L − y∗
i
,Wl).

D.1 Gradient upper bound

Proof We ignore the superscript (0) for simplicity. Then for an i ∈ [n] we have

because of Theorem 1. Similarly, we have for l ∈ [L − 1],

because of Theorem 1 and Lemma 2. ◻

The above upper bounds hold for the initialization ���⃗W(0) because of Theorem 1 and
Theorem 2. They also hold for all the ���⃗W such that ‖���⃗W − ���⃗W(0)

‖ ≤ 𝜔 due to Lemma 3.
For the quadratic loss function, we have ‖𝜕hi,L‖2 = ‖B

T (Bhi,L − y∗
i
)‖2 = O(m∕d)Fi(

���⃗W) .
We have the gradient upper bound as follows.

Theorem 6 Suppose � = O(1) . For every input sample i ∈ [n] and for every l ∈ [L − 1] and
for every ���⃗W such that ‖WL −W

(0)

L
‖ ≤ � and ‖Wl −W

(0)

l
‖ ≤ �� , the following holds with

probability at least 1 − O(nL2) ⋅ exp(−Ω(m)) over the randomness of A,B and ���⃗W(0)

D.2 Gradient lower bound

For the quadratic loss function, we have the following gradient lower bound.

Theorem 7 Let � = O
(

�
3∕2

n3 log3 m

)

 . With probability at least 1 − exp(−Ω(m�
2

3)) over the ran-
domness of ���⃗W(0),A,B , it satisfies for every ���⃗W with ‖���⃗W − ���⃗W(0)

‖ ≤ 𝜔,

��
��⃗W
(�⃗v,Wl) ∶=

n
∑

i=1

��
��⃗W,i

(vi,Wl) ∀l ∈ [L],

�

�

�

∇
WL

Fi(
���⃗W)

�

�

�F
=
�

�

�

�

Di,L𝜕hi,L
�

hT
i,L−1

�

�

�F
=
�

�

�

�

Di,L𝜕hi,L
�

�

�

�

�

�

�

hT
i,L−1

�

�

�

≤
1 + c

1 − 𝜖

‖𝜕hi,L‖,

�

�

�

∇
Wl
Fi(

���⃗W)
�

�

�F
=
�

�

�

𝜏

�

Di,l(I + 𝜏Wl+1)
T
⋯ (I + 𝜏WL−1)

T
Di,L−1W

T
L
Di,L𝜕hi,L

�

hT
i,l−1

�

�

�F

≤ 𝜏‖Di,l(I + 𝜏Wl+1)
T
⋯Di,L−1‖ ⋅ ‖W

T
L
Di,L‖ ⋅ ‖𝜕hi,L‖ ⋅ ‖hi,l−1‖

≤
(1 + c)2

(1 − 𝜖)2
(2
√

2 + c)𝜏‖𝜕hi,L‖,

(37)
‖∇

Wl
Fi(

���⃗W)‖2
F
≤O

�

𝜏
2m

d
Fi(

���⃗W)

�

,

‖∇
WL

Fi(
���⃗W)‖2

F
≤O

�

m

d
Fi(

���⃗W)
�

.

3381Machine Learning (2022) 111:3359–3392

1 3

This gradient lower bound on ‖∇
WL

F(���⃗W)‖2
F
 acts like the gradient dominance condition

(Zou and Gu, 2019; Allen-Zhu et al., 2018) except that our range on � does not depend on
the depth L.

Proof The gradient lower-bound at the initialization is given by the Section 6.2 in (Allen-
Zhu et al., 2018) and the Lemma 4.1 in (Zou and Gu, 2019) via the smoothed analysis
(Spielman and Teng, 2004): with high probability the gradient is lower-bounded, although
the worst case it might be 0. We adopt the same proof for the Lemma 4.1 in Zou and Gu
(2019) based on two preconditioned results Theorem 2 and Lemma 6. We shall not repeat
it here.

Now suppose that we have ‖∇
WL

F(���⃗W(0))‖2
F
≥ Ω

�

F(��⃗W(0))

dn∕𝛿
× m

�

 . We next bound the

change of the gradient after perturbing the parameter. Recall that

By Lemma 4 and Lemma 5, we know,

Furthermore, we know

By Theorem 2 and Lemma 4, we have

Combing the above bounds together, we have

Hence the gradient lower bound still holds for ���⃗W given 𝜔 < O
(

𝛿
3∕2

n3

)

.
Finally, taking �−net over all possible vectors �⃗v = (v1,… , vn) ∈ (ℝd)n , we prove that the

above gradient lower bound holds for all �⃗v . In particular, we can now plug in the choice of
vi = Bhi,L − y∗

i
 and it implies our desired bounds on the true gradients. ◻

The gradient lower bound requires the following property.

Lemma 6 For any � and any pair (xi, xj) satisfying ‖xi − xj‖ ≥ � , then ‖hi,l − hj,l‖ ≥ Ω(�)
holds for all l ∈ [L] with probability at least 1 − O(n2L) ⋅ exp(−Ω(log2 m)) given that
� ≤ O(1∕(

√

L logm)) and m ≥ Ω(�2L2�−2).

The proof of Lemma 6 follows the Appendix C in Allen-Zhu et al. (2018).

(38)‖∇
WL

F(���⃗W)‖2
F
≥ Ω

�

F(���⃗W)

dn∕𝛿
× m

�

.

��
��⃗W(0)

(�⃗v,WL) − ��
��⃗W
(�⃗v,WL) =

n
∑

i=1

(

(vT
i
BD

(0)

i,L
)T (h

(0)

i,L−1
)T − (vT

i
BDi,L)

T (hi,L−1)
T
)

‖vT
i
BD

(0)

i,L
− vT

i
BDi,L‖ ≤ O(

�

m�
2

3 ∕
√

d) ⋅ ‖vi‖.

‖vT
i
BDi,L‖ ≤ O(

√

m∕d) ⋅ ‖vi‖.

‖h
(0)

i,L−1
‖ ≤ 1.1 and ‖hi,L−1 − h

(0)

i,L−1
‖ ≤ O(�).

‖��
��⃗W(0)

(�⃗v,WL) − ��
��⃗W
(�⃗v,WL)‖

2
F
≤ n‖�⃗v‖2 ⋅ O(

�

m𝜔
2

3 ∕d + 𝜔

√

m∕d)2 ≤ n‖�⃗v‖2 ⋅ O
�

m

d
𝜔

2

3

�

3382 Machine Learning (2022) 111:3359–3392

1 3

E Semi‑smoothness for � ≤ O(1∕
√

L)

With the help of Theorem 6 and several other improvements, we can obtain a tighter
bound on the semi-smoothness condition of the objective function.

Theorem 8 Let � = O
(

�
3∕2

n3L7∕2

)

 and �2L ≤ 1 . With high probability, we have for every
̆
���⃗W ∈ (ℝm×m)L with

‖

‖

‖

‖

̆
���⃗W − ���⃗W

(0)
‖

‖

‖

‖

≤ 𝜔 and for every ���⃗W� ∈ (ℝm×m)L with ‖���⃗W′
‖ ≤ 𝜔 , we have

We will show the semi-smoothness theorem for a more general
� ∈

[

Ω
(

(d∕(m logm))
3

2

)

,O(1)
]

 and the above high probability is at least
1 − exp(−Ω(m�

2

3)) over the randomness of ���⃗W(0),A,B.
Before going to the proof of the theorem, we introduce a lemma.

Lemma 7 There exist diagonal matrices D��
i,l
∈ ℝ

m×m with entries in [-1,1] such that
∀i ∈ [n],∀l ∈ [L − 1],

and

Furthermore, we then have ∀l ∈ [L − 1], ‖hi,l − h̆i,l‖ ≤ O(𝜏2L𝜔) , ‖D��
i,l
‖0 ≤ O(m(��L)

2

3) ,
and ‖hi,L − h̆i,L‖ ≤ O((1 + 𝜏

√

L)‖W�
‖F) , ‖D

��
i,L
‖0 ≤ O(m�

2

3) and

hold with probability 1 − exp(−Ω(m�
2

3)) given ‖W′
L
‖ ≤ �, ‖W′

l
‖ ≤ �� for l ∈ [L − 1] and

� ≤ O(1), �
√

L ≤ 1.

Proof of Theorem 8 First of all, we know that ̆lossi ∶= Bh̆i,L − y∗
i

and

F(
̆
���⃗W + ���⃗W

�) ≤F(
̆
���⃗W) + ⟨∇F(

̆
���⃗W), ���⃗W�

⟩ + O(
nm

d
)‖���⃗W�

‖

2
F
+ O

��

m

nd
𝜔

1

3 L
7

6

�

‖

���⃗W
�
‖F

�

F(
̆
���⃗W).

(39)hi,l − h̆i,l =

l
∑

a=1

(D̆i,l + D
��
i,l
)(I + 𝜏W̆l)⋯ (I + 𝜏W̆a+1)(D̆i,a + D

��
i,a
)𝜏W�

a
hi,a−1,

(40)

hi,L − h̆i,L =(D̆i,L + D
��
i,L
)W�

L
hi,L−1

+

L−1
∑

a=1

(D̆i,L + D
��
i,L
)W̆L ⋯ (I + 𝜏W̆a+1)(D̆i,a + D

��
i,a
)𝜏W�

a
hi,a−1.

‖Bhi,L − Bh̆i,L‖ ≤ O(
√

m∕d)‖W�
‖F

(41)

1

2
‖Bhi,L − y∗

i
‖

2 =
1

2
‖

̆lossi + B(hi,L − h̆i,L)‖
2

=
1

2
‖

̆lossi‖
2 + ̆loss

T

i
B(hi,L − h̆i,L) +

1

2
‖B(hi,L − h̆i,L)‖

2,

3383Machine Learning (2022) 111:3359–3392

1 3

We use the relation that for two matrices A, B, ⟨A,B⟩ = tr(ATB) . Then, we can write

Then further by Lemma 7, we have

where (a) is due to Lemma 7.
We next bound the RHS of (45). We first use Lemma 7 to get

Next we calculate that for l = L,

For the first term, by Lemma 5 and Lemma 7, we have

(42)

∇
Wl
F(���⃗W) =

n
∑

i=1

(lossT
i
BDi,LWL ⋯Di,l+1(I + 𝜏Wl+1)Di,l)

T (𝜏hi,l−1)
T .

∇
WL

F(���⃗W) =

n
∑

i=1

(lossT
i
BDi,L)

T (hi,l−1)
T .

(43)⟨∇
Wl
F(

̆
���⃗W),W�

l
⟩ =

n
�

i=1

(̆loss
T

i
BD̆i,LW̆L ⋯ (I + 𝜏W̆l+1)D̆i,lW

�
l
(𝜏h̆i,l−1).

(44)

F(
̆
���⃗W + ���⃗W

�) − F(
̆
���⃗W) − ⟨∇F(

̆
���⃗W), ���⃗W�

⟩

= −⟨∇F(
̆
���⃗W), ���⃗W�

⟩ +
1

2

n
�

i=1

‖Bhi,L − y∗
i
‖

2 − ‖Bh̆i,L − y∗
i
‖

2

= −

L
�

l=1

⟨∇
Wl
F(

̆
���⃗W),W�

l
⟩ +

n
�

i=1

̆loss
T

i
B(hi,L − h̆i,L) +

1

2
‖B(hi,L − h̆i,L)‖

2

(a)
=
1

2

n
�

i=1

‖B(hi,L − h̆i,L)‖
2 +

n
�

i=1

̆loss
T

i
B

�

(D̆i,L + D
��
i,L
)W�

L
hi,L−1 − (D̆i,L)W

�
L
h̆i,L−1

�

+

n
�

i=1

L−1
�

l=1

̆loss
T

i
B

�

(D̆i,L + D
��
i,L
)W̆L ⋯ (I + 𝜏W̆l+1)(D̆i,l + D

��
i,l
)𝜏W�

l
hi,l−1

− D̆i,LW̆L ⋯ (I + 𝜏W̆l+1)D̆i,lW
�
l
(𝜏h̆i,l−1)

�

,

(45)‖B(hi,L − h̆i,L)‖ ≤ O(
√

m∕d)‖W�
‖F .

(46)

|

|

|

̆loss
T

i
B

(

(D̆i,L + D
��
i,L
)W�

L
hi,L−1 − (D̆i,L)W

�
L
h̆i,L−1

)

|

|

|

≤
|

|

|

̆loss
T

i
B

(

D
��
i,L
W

�
L
hi,L−1

)

|

|

|

+
|

|

|

̆loss
T

i
B

(

D̆i,LW
�
L
(hi,L−1 − h̆i,L−1)

)

|

|

|

.

3384 Machine Learning (2022) 111:3359–3392

1 3

where the last inequality is due to ‖hi,L−1‖ ≤ O(1) . For the second term, by Lemma 7 we
have

where the last inequality is due to the assumption ‖W′
L
‖ ≤ � . Similarly for l ∈ [L − 1] , we

ignore the index i for simplicity.

We next bound the terms in (50) one by one. For the first term, by Lemma 5 and Lemma 7,
we have

(47)

�

�

�

�

̆loss
T

i
B

�

D
��
i,L
W

�
L
hi,L−1

�

�

�

�

�

≤ O

⎛

⎜

⎜

⎜

⎝

�

m𝜔
2

3

√

d

⎞

⎟

⎟

⎟

⎠

‖

̆lossi‖ ⋅ ‖W
�
L
hi,L−1‖

≤ O

⎛

⎜

⎜

⎜

⎝

�

m𝜔
2

3

√

d

⎞

⎟

⎟

⎟

⎠

‖

̆lossi‖ ⋅ ‖W
�
L
‖,

(48)

�

�

�

�

̆loss
T

i
B

�

D̆i,LW
�
L
(hi,L−1 − h̆i,L−1)

�

�

�

�

�

≤ ‖

̆lossi‖ ⋅
�

�

�

BD̆i,L
�

�

�2
⋅ ‖W

�
L
‖‖hi,L−1 − h̆i,L−1‖

≤ ‖

̆lossi‖ ⋅ O

�

𝜔

√

m
√

d

�

⋅ ‖W
�
L
‖,

(49)

|

|

|

L−1
∑

l=1

̆loss
T
(

B(D̆L + D
��
L
)W̆L ⋯ (I + 𝜏W̆l+1)(D̆l + D

��
l
) − BD̆LW̆L ⋯ (I + 𝜏W̆l+1)D̆l

)

W
�
l
(𝜏hl−1)

|

|

|

=
|

|

|

L−1
∑

l=1

̆loss
T
BD

��
L
W̆L(DL−1 + D

��
L−1

)(I + 𝜏W̆L−1)⋯ (Dl + D
��
l
)(𝜏W�

l
hl−1)

|

|

|

+
|

|

|

L−1
∑

l=1

L−1
∑

a=l

̆loss
T
BD̆LW̆L ⋯ (I + 𝜏W̆a+1)D

��
a
(I + 𝜏W̆a)⋯ (Dl + D

��
l
)(𝜏W�

l
hl−1)

|

|

|

+
|

|

|

L−1
∑

l=1

̆loss
T
BD̆LW̆L ⋯ (I + 𝜏W̆l+1)D̆lW

�
l
𝜏(hl−1 − h̆l−1)

|

|

|

(50)

�

�

�

�

�

�

L−1
�

l=1

̆loss
T
BD

��
L
W̆L(DL−1 + D

��
L−1

)(I + 𝜏W̆L−1)⋯ (Dl + D
��
l
)(𝜏W�

l
hl−1)

�

�

�

�

�

�

≤ O

⎛

⎜

⎜

⎜

⎝

�

m𝜔
2

3

√

d

⎞

⎟

⎟

⎟

⎠

�

�

�

̆loss
�

�

�

⋅

�

�

�

�

�

�

L−1
�

l=1

W̆L(DL−1 + D
��
L−1

)(I + 𝜏W̆L−1)⋯ (Dl + D
��
l
)(𝜏W�

l
hl−1)

�

�

�

�

�

�

(a)

≤O

⎛

⎜

⎜

⎜

⎝

�

m𝜔
2

3

√

d

⎞

⎟

⎟

⎟

⎠

⋅ ‖ ̆loss‖ ⋅ 𝜏
√

L‖W�
L−1∶1

‖F ,

3385Machine Learning (2022) 111:3359–3392

1 3

where ‖W�
L−1∶1

‖F =

�

∑L−1

l=1
‖W

�
l
‖

2
F

 and (a) is due to the similar argument (56) in the proof
Lemma 7 and the fact ‖

‖

‖

W̆L(DL−1 + D
��
L−1

)(I + 𝜏W̆L−1)⋯ (Dl + D
��
l
)
‖

‖

‖

= O(1) and
‖hl−1‖ = O(1) holds with high probability. We note that the inequality (a) helps us save a
√

L factor in our main theorem.
We have similar bound for the second term of (50)

For the last term in (50), we have

where is the last inequality is due to the bound on ‖hl−1 − h̆l−1‖ in Lemma 7. Hence

Having all the above together and using triangle inequality, we have the result. ◻

Proof of Lemma 7 The proof relies on the following lemma.

Lemma 8 (Proposition 8.3 in in Allen-Zhu et al. (2018)) Given vectors a, b ∈ ℝ
m and

D ∈ ℝ
m×m the diagonal matrix where Dk,k = 1ak≥0

 . Then, there exists a diagonal matrix
D

�� ∈ ℝ
m×m with

(51)

�

�

�

�

�

�

L−1
�

l=1

L−1
�

a=l

̆loss
T
BD̆LW̆L ⋯ (I + 𝜏W̆a+1)D

��
a
(I + 𝜏W̆a)⋯ (Dl + D

��
l
)(𝜏W�

l
hl−1)

�

�

�

�

�

�

≤ O

⎛

⎜

⎜

⎜

⎝

�

m(𝜔𝜏L)
2

3

√

d

⎞

⎟

⎟

⎟

⎠

⋅ ‖ ̆loss‖ ⋅ 𝜏

L−1
�

a=1

√

a‖W�
a∶1

‖F

≤ O

⎛

⎜

⎜

⎜

⎝

�

m(𝜔𝜏L)
2

3

√

d

⎞

⎟

⎟

⎟

⎠

⋅ ‖ ̆loss‖ ⋅ 𝜏L3∕2‖W�
L−1∶1

‖F .

(52)

�

�

�

�

�

�

L−1
�

l=1

̆loss
T
BD̆LW̆L ⋯ (I + 𝜏W̆l+1)D̆lW

�
l
𝜏(hl−1 − h̆l−1)

�

�

�

�

�

�

≤ ‖

̆loss‖ ⋅ O
�

√

m∕d
�

⋅

L−1
�

l=1

‖W
�
l
‖ ⋅ 𝜏

3L𝜔

≤ ‖

̆loss‖ ⋅ O
�

√

m∕d
�

⋅ ‖W
�
L−1∶1

‖F ⋅ (𝜏2L)3∕2,

(53)

equation50 ≤ O

⎛

⎜

⎜

⎜

⎝

�

m(𝜔𝜏L)
2

3

√

d

⎞

⎟

⎟

⎟

⎠

⋅ ‖ ̆loss‖ ⋅ 𝜏L3∕2‖WL−1∶1‖F

≤ O

⎛

⎜

⎜

⎜

⎝

(𝜏L)
4

3

�

mL𝜔
2

3

√

d

⎞

⎟

⎟

⎟

⎠

⋅ ‖ ̆loss‖ ⋅ ‖W�
L−1∶1

‖F .

3386 Machine Learning (2022) 111:3359–3392

1 3

• |Dk,k + D
��
k,k
| ≤ 1 and |D′′

k,k
| ≤ 1 for every k ∈ [m],

• D
′′
k,k

≠ 0 only when 1ak≥0 ≠ 1bk≥0
,

• �(a) − �(b) = (D + D
��)(a − b).

Fixing index i and ignoring the subscript in i for simplicity, by Lemma 8, for each
l ∈ [L − 1] there exists a D′′

l
 such that |(D��

l
)k,k| ≤ 1 and

Then we have following properties. For l ∈ [L − 1] , ‖hl − h̆l‖ ≤ O(𝜏2L𝜔) . This is because
‖(D̆l + D

��
l
)(I + 𝜏W̆l)⋯ (I + 𝜏W̆a+1)(D̆a + D

��
a
)‖ ≤ 1.1 from Lemma 3; ‖ha−1‖ ≤ O(1) from

Theorem 2; and the assumption ‖W′
l
‖ ≤ �� for l ∈ [L − 1].

To have a tighter bound on ‖hL − h̆L‖ , let us introduce
W

��
b
∶=

∑l

a=b
(D̆l + D

��
l
)(I + 𝜏W̆l)⋯ (I + 𝜏W̆a+1)(D̆a + D

��
a
)W�

a
 , for b = 1, ..., l . Then we

have

It is easy to get

where the inequality is because of ‖ha−1‖ ≤ O(1) from Theorem 2. Next, we have

where the second inequality is from the definition of spectral norm, the third inequality is
because of ‖(D̆l + D

��
l
)(I + 𝜏W̆l)⋯ (I + 𝜏W̆a+1)(D̆a + D

��
a
)‖ ≤ 1.1 from Lemma 3.

Hence we have ‖hL − h̆L‖ ≤ O
�

(1 + 𝜏

√

L)‖W�
‖F

�

= O
�

‖W
�
‖F

�

 because of the
assumption �

√

L ≤ 1.
For l ∈ [L] , ‖D��

l
‖0 ≤ O(m�

2

3) . This is because (D��
l
)k,k is non-zero only at coordinates

k where (ğl)k and (gl)k have opposite signs, where it holds either (D(0)

l
)k,k ≠ (D̆l)k,k or

(D
(0)

l
)k,k ≠ (Dl)k,k . Therefore by Lemma 4, we have ‖D��

l
‖0 ≤ O(m(��L)

2

3) if ‖W′
l
‖ ≤ �� .

 ◻

(54)

hl − h̆l = 𝜙((I + 𝜏W̆l + 𝜏W
�
l
)hl−1) − 𝜙((I + 𝜏W̆l)h̆l−1)

= (D̆l + D
��
l
)
(

(I + 𝜏W̆l + 𝜏W
�
l
)hl−1 − (I + 𝜏W̆l)h̆l−1

)

= (D̆l + D
��
l
)(I + 𝜏W̆l)(hl−1 − h̆l−1) + (D̆l + D

��
l
)𝜏W�

l
hl−1

=

l
∑

a=1

(D̆l + D
��
l
)(I + 𝜏W̆l)⋯ (I + 𝜏W̆a+1)(D̆a + D

��
a
)𝜏W�

a
ha−1

(55)hL − h̆L =
[

W
��
L
,W��

L−1
, ...,W��

1

]

[hT
L−1

, 𝜏hT
L−2

, ..., 𝜏hT
0
]T .

‖[�hT
l−1

, �hT
l−2

, ..., �hT
0
]T‖ =

�

�

�

�

�2

l−1
�

a=0

‖ha‖
2 ≤ �

√

L ⋅ O(1),

(56)

�

�

�

�

W
��
l
,W

��
l−1

, ...,W
��
1

�

�

�

�

=
�

�

�

�

W
��
l
,W

��
l−1

, ...,W
��
1

�T�
�

�

≤

�

�

�

�

l
�

a=1

‖(W��
l
)T‖2 ≤ 1.1

�

�

�

�

l
�

a=1

‖(W�
l
)T‖2 ≤ 1.1‖W

�
l∶1

‖F ,

3387Machine Learning (2022) 111:3359–3392

1 3

F Proof for Theorem 5

F.1 Convergence result for GD

Proof Using Theorem 2 we have ‖h(0)
i,L
‖ ≤ 1.1 and then using the randomness of B , it is

easy to show that ‖Bh(0)
i,L

− y∗
i
‖

2 ≤ O(log2 m) with probability at least 1 − exp(−Ω(log2 m)) ,
and therefore

Assume that for every t = 0, 1,… , T − 1 , the following holds,

We shall prove the convergence of GD under the assumption (58) holds, so that previous
statements can be applied. At the end, we shall verify that (58) is indeed satisfied.

Letting ∇t = ∇F(���⃗W(t)) , we calculate that

where the first inequality uses Theorem 4, the second inequality uses the gradient upper
bound in Theorem 6 and the last inequality uses the gradient lower bound in Theorem 7
and the choice of � = O(d∕(mn)) and the assumption on � (58). That is, after
T = Ω(

dn

��m
) log

n log2 m

�
 iterations F(���⃗W(T)) ≤ 𝜖.

We need to verify for each t, (58) holds. Here we use a result from the Lemma 4.2 in
Zou and Gu (2019) that states ‖W(t)

L
−W

(0)

L
‖F ≤ O(

�

n2d logm

m�
).

To guarantee the iterates fall into the region given by � (58), we obtain a bound
m ≥ n8�−4dL7 log2 m . ◻

F.2 Convergence result for SGD

Theorem 9 For the ResNet defined and initialized as in Sect. 2, the network width
m ≥ Ω(n17L7b−4�−8d log2 m) . Suppose we do stochastic gradient descent update starting
from ���⃗W(0) and

(57)F(���⃗W(0)) ≤ O(n log2 m).

(58)‖W
(t)

L
−W

(0)

L
‖F ≤ �

Δ
=O

�

�
3∕2

n3L7∕2

�

(59)‖W
(t)

l
−W

(0)

l
‖F ≤ ��.

(60)

F(���⃗W(t+1)) ≤ F(���⃗W(t)) − 𝜂‖∇t‖
2
F
+ O(𝜂2nm∕d)‖∇t‖

2
F
+ 𝜂

�

F(���⃗W(t)) ⋅ O

⎛

⎜

⎜

⎝

�

mnL𝜔
2

3

d
(𝜏L)

4

3

⎞

⎟

⎟

⎠

⋅ ‖∇t‖F

≤

�

1 − Ω

�

𝜂𝛿m

dn

��

F(���⃗W(t)),

(61)
���⃗W

(t+1) = ���⃗W
(t) − 𝜂

n

|St|

∑

i∈St

∇Fi(
���⃗W

(t)),

3388 Machine Learning (2022) 111:3359–3392

1 3

where St is a random subset of [n] with |St| = b . Then with probability at least
1 − exp(−Ω(log2 m)) , stochastic gradient descent (61) with learning rate � = Θ(

db�

n3m logm
)

finds a point F(���⃗W) ≤ 𝜖 in T = Ω(n5b−1�−2 logm log2
1

�
) iterations.

Proof The proof of the case of SGD can be adapted from the proof of Theorem 3.8 in Zou
and Gu (2019). ◻

G Proofs of Theorem 4 and Proposition 1

Proof By induction we can show for any k ∈ [m] and l ∈ [L − 1],

It is easy to verify (h1)k = �

(

(h0)k + (�W1h0)k
)

≥ �

(

(�W1h0)k
)

 because of (h0)k ≥ 0.
Then assume (hl)k ≥ �

�

∑l

a=1

�

�Waha−1
�

k

�

 , we show it holds for l + 1.

 where the last inequality can be shown by case study.
Next we can compute the mean and variance of

∑l

a=1

�

�Waha−1
�

k
 by taking iterative

conditioning. We have

Moreover, (�Waha−1)k are jointly Gaussian for all a with mean 0 because Wa ’s are drawn
from independent Gaussian distributions. We use l = 2 as an example to illustrate the con-
clusion, it can be generalized to other l. Assume that h0 is fixed. First it is easy to verify
that (�W1h0)k is Gaussian variable with mean 0 and (�W2h1)k

|

|

W1 is also Gaussian vari-
able with mean 0. Hence [(�W1h0)k, (�W2h1)k] follows jointly Gaussian with mean vec-
tor [0, 0]. Thus (�W1h0)k + (�W2h1)k is Gaussian with mean 0. By induction, we have
∑l

a=1
(�Waha−1)k is Gaussian with mean 0. Then we have

where the first step is due to (62), the second step is due to the symmetry of Gaussian
distribution and the third step is due to (66). Since (hl)k = �

(

(hl−1)k +
(

Wlhl−1
)

k

)

 , we
can show �(hl)2k ≥ (hl−1)

2
k
 given hl−1 by numerical integral of Gaussian variable over

an interval. Hence we have �‖hl‖2 ≥ �‖hl−1‖
2 ≥ ⋯ ≥ �‖h0‖

2 = 1 by iteratively tak-
ing conditional expectation. Then combined with (64) and the choice of � = L

−
1

2
+c , we

(62)(hl)k ≥ �

(

l
∑

a=1

(

�Waha−1
)

k

)

.

(hl+1)k = �

(

(hl)k + (�Wl+1hl)k
)

≥ �

(

�

(

l
∑

a=1

(

�Waha−1
)

k

)

+ (�Wl+1hl)k

)

≥ �

(

l+1
∑

a=1

(

�Waha−1
)

k

)

,

(63)�

l
�

a=1

�

�Waha−1
�

k
= 0, �

�

l
�

a=1

�

�Waha−1
�

k

�2

=
�
2

m

l
�

a=1

�‖ha−1‖
2.

(64)

�‖hl‖
2 ≥

m
�

k=1

�

�

�

�

l
�

a=1

�

�Waha−1
�

k

��2

=

m
�

k=1

1

2
�

�

l
�

a=1

�

�Waha−1
�

k

�2

=
1

2

m
�

k=1

�
2
∑l

a=1
�
�

‖ha−1‖
2
�

m
=

�
2

2

l
�

a=1

�‖ha−1‖
2,

3389Machine Learning (2022) 111:3359–3392

1 3

have �‖hL−1‖2 ≥
1

2
L2c . Because (WL)i,j ∼ N(0, 2∕m) and hL = �(WLhL−1) , we have

�‖hL‖
2 = ‖hL−1‖

2 . Thus, the claim is proved. ◻

Proof From the inequality (62) in the previous proof, we know for any k ∈ [m] and
l ∈ [L − 1],

Next we can compute the mean and variance of
∑l

a=1

�

z̃a
�

k
 by taking iterative conditioning.

We have

Then we have

where the first step is due to (62), the second step is due to the symmetry of random vari-
able (z̃a)k and the third step is due to (66). The proposition is proved. ◻

(65)(hl)k ≥ 𝜙

(

l
∑

a=1

(

z̃a
)

k

)

.

(66)�

l
∑

a=1

(

z̃a
)

k
= 0, �

(

l
∑

a=1

(

z̃a
)

k

)2

=

l
∑

a=1

�((z̃a)k)
2 = l.

(67)�‖hl‖
2 ≥

m
�

k=1

�

�

𝜙

�

l
�

a=1

�

z̃a
�

k

��2

=
1

2

m
�

k=1

�

�

l
�

a=1

�

z̃a
�

k

�2

=
1

2
ml,

Fig. 6 Validation accuracy on CIFAR10 of ResNets with different choices of � (� = 1∕L , � = 1∕
√

L ,
� = 1∕L1∕4)

Table 3 Validation accuracy
of ResNet110+� with different
learning rates

The best accuracy of each column is in bold

Lr � = 1∕L
� = 1∕

√

L

0.1 82.7 92.2
0.2 85.6 92.5
0.4 86.8 92.2
0.8 86.3 90.7
1.6 84.4 10.0

3390 Machine Learning (2022) 111:3359–3392

1 3

H More empirical studies

We do more experiments to demonstrate the points in Sect. 5.
Besides the basic feedforward structure in Sect. 5.1, we do another experiment to dem-

onstrate that � = 1∕
√

L is sharp with practical structures (see Fig. 6). We can see that for
ResNet110 and ResNet1202, � = 1∕L1∕4 cannot train the network effectively.

One may wonder if we can tune the learning rate for the case of � = 1∕L to achieve vali-
dation accuracy as well as the case of � = 1∕

√

L . We do a new experiment to verify this
(see Table 3). Specifically, for ResNet110 with fixed � = 1∕L and � = 1∕

√

L on CIFAR10
classification task, we tune the learning rate from 0.1 to 1.6 and record the validation accu-
racy in Table 3. We can see that ResNet110 with � = 1∕L performs inferior to that with
� = 1∕

√

L even with grid search of learning rates. It is possible that we can achieve a bit
better performance by adjusting the learning rate for � = 1∕L . But this requires tuning for
each depth. In contrast, we have shown that with � = 1∕

√

L , one learning rate fits for all
nets with different depths.

References

Allen-Zhu, Z., & Li, Y. (2019). What can ResNet learn efficiently, going beyond kernels? Advances in Neu-
ral Information Processing Systems.

Allen-Zhu, Z., Li, Y., & Song, Z. (2018). A convergence theory for deep learning via over-parameterization.
arXiv preprint arXiv: 1811. 03962.

Allen-Zhu, Z., Li, Y., & Liang, Y. (2019a). Learning and generalization in overparameterized neural net-
works, going beyond two layers. Advances in Neural Information Processing Systems, pp.6155–6166.

Allen-Zhu, Z., Li, Y., & Song, Z. (2019b). On the convergence rate of training recurrent neural networks.
Advances in Neural Information Processing Systems.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R., & Wang, R. (2019a). On exact computation with an
infinitely wide neural net. Advances in Neural Information Processing Systems.

Arora, S., Du, S. S., Hu, W., Li, Z., & Wang, R. (2019b). Fine-grained analysis of optimization and generali-
zation for overparameterized two-layer neural networks. International Conference on Machine Learn-
ing (ICML).

Arpit, D., Campos, V., & Bengio, Y. (2019). How to initialize your network? robust initialization for weight-
norm & resnets. Advances in Neural Information Processing Systems.

Balduzzi, D., Frean, M., Leary, L., Lewis, J. P., Wan-Duo Ma, K., & McWilliams, B. (2017). The shattered
gradients problem: If resnets are the answer, then what is the question? In International Conference on
Machine Learning (ICML), pp. 342–350.

Brutzkus, A., Globerson, A., Malach, E., & Shalev-Shwartz, S. (2018). SGD learns over-parameterized net-
works that provably generalize on linearly separable data. In Proceedings of the 6th international con-
ference on learning representations (ICLR 2018).

Cao, Y., & Gu, Q. (2019). A generalization theory of gradient descent for learning over-parameterized deep
ReLU networks. arXiv preprint arXiv: 1902. 01384.

Cao, Y., & Gu, Q. (2020). Generalization bounds of stochastic gradient descent for wide and deep neural
networks. Advances in Neural Information Processing Systems (NeurIPS).

Chen, Z., Cao, Y., Zou, D., & Gu, Q. (2021). How much over-parameterization is sufficient to learn deep
ReLU networks? In Proceedings of the international conference on learning representations (ICLR
2021).

Chizat, L., & Bach, F. (2018a). On the global convergence of gradient descent for over-parameterized mod-
els using optimal transport. Advances in Neural Information Processing Systems 31.

Chizat, L., & Bach, F. (2018b). A note on lazy training in supervised differentiable programming. arXiv
preprint arXiv: 1812. 07956, 8.

Chizat, L., Oyallon, E., & Bach, F. (2019). On lazy training in differentiable programming. Advances in
Neural Information Processing Systems.

http://arxiv.org/abs/1811.03962
http://arxiv.org/abs/1902.01384
http://arxiv.org/abs/1812.07956

3391Machine Learning (2022) 111:3359–3392

1 3

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of NAACL-HLT.

Du, S. S., Lee, J. D., Li, H., Wang, L., & Zhai, X. (2019a). Gradient descent finds global minima of deep
neural networks. In: International Conference on Machine Learning (ICML).

Du, S. S., Zhai, X., Poczos, B., & Singh, A. (2019b). Gradient descent provably optimizes over-parameter-
ized neural networks. In: International Conference on Learning Representations (ICLR).

Fang, C., Dong, H., & Zhang, T. (2019a). Over parameterized two-level neural networks can learn near opti-
mal feature representations. arXiv preprint arXiv: 1910. 11508.

Fang, C., Gu, Y., Zhang, W., & Zhang, T. (2019b). Convex formulation of overparameterized deep neural
networks. arXiv preprint arXiv: 1911. 07626.

Frei, S., Cao, Y., & Gu, Q. (2019). Algorithm-dependent generalization bounds for overparameterized deep
residual networks. Advances in Neural Information Processing Systems, pages 14769–14779.

Ghorbani, B., Mei, S., Misiakiewicz, T., Montanari, A. (2019). Limitations of lazy training of two-layers
neural networks. Advances in Neural Information Processing Systems.

Haber, E., & Ruthotto, L. (2017). Stable architectures for deep neural networks. Inverse Problems, 34(1),
014004.

Hardt, M., & Ma, T. (2016). Identity matters in deep learning. In: International Conference on Learning
Representations (ICLR).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Ioffe, S., & Szegedy, C. (2015). Batch normalization: accelerating deep network training by reducing inter-
nal covariate shift. In: International Conference on Machine Learning (ICML), pp. 448–456.

Jacot, A., Gabriel, F, & Hongler, C. (2018). Neural tangent kernel: Convergence and generalization in neural
networks. Advances in Neural Information Processing Systems, pp. 8571–8580.

Ji, Z., & Telgarsky, M. (2020). Polylogarithmic width suffices for gradient descent to achieve arbitrarily
small test error with shallow ReLU networks. In Proceedings of the international conference on learn-
ing representations (ICLR 2020).

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images.
Laurent, B., & Massart, P. (2000). Adaptive estimation of a quadratic functional by model selection. Annals

of Statistics, pp. 1302–1338.
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document rec-

ognition. Proceedings of the IEEE, 86(11), 2278–2324.
Li, Y., & Liang, Y. (2018). Learning overparameterized neural networks via stochastic gradient descent on

structured data. Advances in Neural Information Processing Systems, pp. 8168–8177.
Mei, S., Montanari, A., & Nguyen, P.-M. (2018). A mean field view of the landscape of two-layer neural

networks. Proceedings of the National Academy of Sciences, 115(33), E7665–E7671.
Mei, S., Misiakiewicz, T., & Montanari, A. (2019). Mean-field theory of two-layers neural networks: dimen-

sion-free bounds and kernel limit. In Proceedings of the thirty-second conference on learning theory
(pp. 2388–2464).

Neyshabur, B., Li, Z., Bhojanapalli, S., LeCun, Y., & Srebro, N. (2019). The role of over-parametrization in
generalization of neural networks. In: International Conference on Learning Representations (ICLR).

Nguyen. P.-M. (2019). Mean field limit of the learning dynamics of multilayer neural networks. arXiv pre-
print arXiv: 1902. 02880.

Orhan, A. E., & Pitkow, X. (2018). Skip connections eliminate singularities. In: International Conference
on Learning Representations (ICLR).

Oymak, S., & Soltanolkotabi, M. (2019). Overparameterized nonlinear learning: Gradient descent takes the
shortest path? In: International Conference on Machine Learning (ICML).

Spielman, D. A., & Teng, S-H. (2004). Smoothed analysis of algorithms: Why the simplex algorithm usu-
ally takes polynomial time. Journal of the ACM (JACM), 51(3):385–463.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I.
(2017). Attention is all you need. Advances in Neural Information Processing Systems.

Veit, A., Wilber, M. J., & Belongie, S. (2016). Residual networks behave like ensembles of relatively shal-
low networks. Advances in Neural Information Processing Systems, pp 550–558.

Vershynin, R. (2012). Introduction to the non-asymptotic analysis of random matrices (pp. 210–268). The-
ory and Applications: Compressed Sensing.

Yang, G., and Schoenholz, S. (2017). Mean field residual networks: On the edge of chaos. Advances in Neu-
ral Information Processing Systems, pp 7103–7114.

Yehudai, G., & Shamir, O. (2019). On the power and limitations of random features for understanding neu-
ral networks. Advances in Neural Information Processing Systems.

http://arxiv.org/abs/1910.11508
http://arxiv.org/abs/1911.07626
http://arxiv.org/abs/1902.02880

3392 Machine Learning (2022) 111:3359–3392

1 3

Zhang, H., Dauphin, Y. N., & Ma, T. (2019a). Fixup initialization: Residual learning without normalization.
In: International Conference on Learning Representations (ICLR).

Zhang, H., Chen, W., & Liu, T.-Y. (2018). On the local hessian in back-propagation. In Advances in Neural
Information Processing Systems, pp. 6521–6531.

Zhang, J., Han, B., Wynter, L., Low, K. H., & Kankanhalli, M. (2019b). Towards robust resnet: A small step
but a giant leap. In: International Joint Conferences on Artificial Intelligence (IJCAI).

Zou, D., & Gu, Q. (2019). An improved analysis of training over-parameterized deep neural networks.
Advances in Neural Information Processing Systems.

Zou, D., Cao, Y., Zhou, D., & Gu, Q. (2020). Stochastic gradient descent optimizes over-parameterized deep
ReLU networks. Machine Learning, 109(3), 467–492.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Stabilize deep ResNet with a sharp scaling factor
	Abstract
	1 Introduction
	1.1 Related works

	2 Preliminaries
	3 Forward and backward stability of ResNet
	3.1 Forward process is bounded if
	3.2 Backward process is bounded for
	3.3 A converse result for
	3.4 Comparison with other approaches for stability

	4 Global convergence for over-parameterized ResNet
	5 Empirical study
	5.1 Theoretical verification
	5.2 Comparison of adding and using Fixup
	5.3 Add on top of normalization

	6 Conclusion
	References

