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Abstract
Several clustering methods (e.g., Normalized Cut and Ratio Cut) divide the Min Cut cost 
function by a cluster dependent factor (e.g., the size or the degree of the clusters), in order 
to yield a more balanced partitioning. We, instead, investigate adding such regularizations 
to the original cost function. We first consider the case where the regularization term is 
the sum of the squared size of the clusters, and then generalize it to adaptive regulariza-
tion of the pairwise similarities. This leads to shifting (adaptively) the pairwise similarities 
which might make some of them negative. We then study the connection of this method to 
Correlation Clustering and then propose an efficient local search optimization algorithm 
with fast theoretical convergence rate to solve the new clustering problem. In the following, 
we investigate the shift of pairwise similarities on some common clustering methods, and 
finally, we demonstrate the superior performance of the method by extensive experiments 
on different datasets.

Keywords Unsupervised learning · Clustering · Shift of pairwise similarities · Local search 
optimization · Correlation clustering

1 Introduction

Given a set of objects, clustering is concerned with grouping them in such a way that 
objects of the same group are more similar to each other (according to a predefined similar-
ity measure), compared to those in different groups. This task plays a fundamental role in 
several data analytics applications. Examples are image segmentation (to detect the items 
in images), document clustering (for the purpose of document organization, topic identifi-
cation or efficient information retrieval), data compression, and analysis of (e.g., transpor-
tation) networks and graphs. Clustering itself is not a specific method, rather is a general 
machine learning task to be addressed. The task can be solved via several methods that 
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differ significantly in the way they define the notion of clusters and the way they extract 
them. The concept of clustering is originated from anthropology and then was used in psy-
chology (Tryon, 1939; Bailey, 1994), in particular for trait theory classification in personal-
ity psychology (Cattell, 1943).

A wide range of clustering methods introduce a cost function whose minimal solution 
provides a clustering solution. K-means is a common cost function which is defined by the 
within-cluster sum of squared distances from the means (Macqueen, 1967). The data can 
be demonstrated by a graph, whose nodes represent the objects and the edge weights are 
the pairwise similarities between the objects. Then, a wide range of different graph parti-
tioning methods can be applied to produce the clusters. Arguably, the most basic graph-
based method is the Min Cut (Minimum K-Cut) cost function (Leighton & Rao, 1999; Wu 
& Leahy, 1993), in which the goal is to partition the graph into exactly K connected com-
ponents (clusters) such that the sum of the inter-clusters edge weights is minimal. As we 
will see, the Min Cut cost function often yields separating singleton clusters, in particu-
lar when the clusters have diverse densities. To overcome such problem, several clustering 
methods normalize the Min Cut clusters to render more balanced clusters. For example, 
they propose to normalize the Min Cut clusters by the size of the clusters (Ratio Assoc 
(Hofmann & Buhmann, 1997) and Ratio Cut (Chan et al., 1994)) or the degree of the clus-
ters (Normalized Cut (Shi & Malik, 2000)).

We note that balanced clustering has been studied for featured-based (vectorial) data 
as well, in particular with the K-means method. The method in Malinen & Fränti (2014) 
develops balanced clustering via formulating it as a assignment problem by the Hungarian 
algorithm, which suffers from a high runtime (cubic w.r.t. the number of objects). Another 
work models this problem as a least square linear regression with a balance constraints and 
uses the method of augmented Lagrange multipliers to solve it (Liu et al., 2017). The work 
in Liu et al. (2018) considers K-means as the main clustering method and the respective 
cluster variances as the penalty term. Then, Lin et  al. (2019) yields balanced clustering 
with convex regularization which makes the optimization more efficient. In the following, 
Ding (2020) studies balanced K-center, K-median, and K-means in high dimensions with 
theoretical approximate algorithms. Finally, Han et al. (2019) proposes a balanced cluster-
ing framework that utilizes both local and global information. However, in this paper, we 
consider the ‘graph-based’ balanced clustering variant, where we assume the clustering is 
applied to a given graph, instead of data features.

While most of graph clustering cost functions assume a nonnegative matrix of pairwise 
similarities as input, Correlation Clustering assumes that the similarities can be negative 
as well. This cost function was first introduced on graphs with only +1 and −1 edge weights 
(Bansal et al., 2004), and then it was generalized to graphs with arbitrary positive and neg-
ative edge weights (Demaine et al., 2006).

Such graph clustering cost functions are often NP-hard (Shi & Malik, 2000; Bansal 
et  al., 2004; Demaine et  al., 2006). However, the respective optimal solution can be 
approximated in some way. A category of methods work based on eigenvector analysis 
of the Laplacian matrix. Spectral Clustering (Shi & Malik, 2000; Ng et al., 2001) was the 
first method which exploits the information from eigenvectors. It forms a low-dimensional 
embedding by the bottom eigenvectors of the Laplacian of the similarity matrix and then 
applies K-means to produce the final clusters. A more recent method, called Power Itera-
tion Clustering (PIC) (Lin & Cohen, 2010), instead of embedding the data into a K-dimen-
sional space, approximates an eigenvalue-weighted linear combination of all the eigenvec-
tors of the normalized similarity matrix via early stopping of the power iteration method. 
P-Spectral Clustering (PSC) (Bühler & Hein, 2009) is another spectral approach that 



2027Machine Learning (2023) 112:2025–2051 

1 3

proposes a non-linear generalization of the Laplacian and then performs an iterative split-
ting method based on its second eigenvector.

An alternative graph-based clustering approach has been developed in the context of 
discrete time dynamical systems and evolutionary game theory which is based on perform-
ing replicator dynamics (Pavan & Pelillo, 2007; Ng et al., 2012; Liu et al., 2013). Domi-
nant Set Clustering (DSC) (Pavan & Pelillo, 2007) is an iterative method which at each 
iteration, peels off a cluster by performing a replicator dynamics until its convergence. The 
method in Liu et  al. (2013) proposes an iterative clustering algorithm in two shrink and 
expansion steps, which helps to extract many small and dense clusters in large datasets. 
The method in Bulò et al. (2011), called InImDyn, instead of replicator dynamics, suggests 
to use a population dynamics motivated from the analogy with infection and immunization 
processes within a population of players.

In this paper, we investigate adding the regularization terms to the Min Cut cost func-
tion, in order to avoid creation of small singleton sets of clusters. We first consider the 
case where the regularization is the sum of the squared size of the clusters, weighted by 
the parameter � . This regularization leads to a simple shift transformation of the input, 
i.e., subtracting the pairwise similarities by � , which provides a straightforward quadratic 
cost function. We further extend the regularization to the pairwise similarities and employ 
an adaptive shift of the pairwise similarities which does not require fixing a regularization 
parameter in advance. The size constrained Min Cut then constitutes a special case of the 
latter form. Such a shift might render some pairwise similarities to be negative. We then 
study the connection to Correlation Clustering, another cost function which performs on 
both positive and negative similarities, and conclude the equivalence of these two meth-
ods given the shifted (regularized) pairwise similarities in a direct and straightforward 
way (beyond the argument based on algorithmic reduction proposed in Demaine et  al. 
(2006)). However, our method, called Shifted Min Cut, provides a principled way to deduce 
such negative edge weights (adaptively). Thereafter, we develop an efficient optimization 
method based on local search to solve the new optimization problem. We further discuss 
the fast theoretical convergence rate of this local search algorithm. In the following, we 
study the impact of shifting the pairwise similarities on some common flat and hierarchi-
cal clustering methods where they often exhibit an invariant behaviour with respect to the 
shift of pairwise similarities, unlike the basic Min Cut cost function. Finally, we perform 
extensive experiments on several real-world datasets to study the performance of Shifted 
Min Cut compared to the alternatives.

This work is an extension of our previous work (Chehreghani, 2017) wherein we addi-
tionally, (i) provide an argument on the theoretical convergence rate of the local search 
algorithm based on the connection to an optimized variant of Frank-Wolfe algorithm, (ii) 
discuss the shift of pairwise similarities on several other clustering methods, and (iii) elab-
orate further the existing experimental results and perform extra studies on real-world data-
sets. We have later found out that the work in Chen et al. (2005) suggests a similar idea for 
regularization of Min Cut in order to yield balanced clusters. However, there are several 
fundamental differences between Chen et al. (2005) and our work: (i) they study size con-
strained Min Cut for bi-partitioning (i.e., for only two clusters), whereas we model it for 
arbitrary K clusters. Then, to generate more clusters than two, they propose an iterative 
(sequential) bi-partitioning which might cause the re-scaling problem. (ii) Their method 
requires fixing critical hyperparameters often in a heuristic way, whereas our method does 
not include such hyperparameters. (iii) Beyond size constrained Min Cut, we extend the 
method to refined regularization of the pairwise similarities that yields an adaptive reg-
ularization (shift) of the cost function. This adaptive regularization, not only provides 
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adaptivity with respect to the type of the relations, but also obviates the need for fixing 
critical hyperparameters. (iv) We consider that the regularization renders some of the 
pairwise similarities to be negative, and thereby, we study the connection between such 
a regularized (Shifted) Min Cut method and Correlation Clustering. However, Chen et al. 
(2005) does not study such a connection. (v) To optimize the respective cost function, we 
employ integration of the regularizations into shifting the pairwise similarities and develop 
an efficient local search algorithm that enjoys a linear convergence rate. Chen et al. (2005), 
instead, develops approximate spectral solutions. (vi) We demonstrate the performance 
of the method on several real-world datasets with respect to different evaluation criteria, 
whereas Chen et al. (2005) only studies the mutual information evaluation criterion on two 
datasets. In particular, we investigate both the cost function and its optimization separately.

The rest of the paper is organized as following. In Sect. 2, we introduce the notations 
and the definitions. Then, in Sect. 3, we describe the regularization and the connection to 
shifting the pairwise similarities. In this section, we extend the method to adaptive regu-
larization (shift) of the pairwise similarities. In Sect. 4, we study the connection between 
Shifted Min Cut and Correlation Clustering, and, in Sect. 5, we develop an efficient local 
search optimization method for the cost function. In Sect.  6, we study the consequence 
of shifting pairwise relations in some other (flat and hierarchical) clustering methods. In 
Sect. 7, we experimentally investigate the different aspects of the method on several real-
world datasets, and finally, in Sect. 8, we conclude the paper.

2  Notations and definitions

The data is given by a set of n objects � = {1, ..., n} and the corresponding matrix of pair-
wise similarities � = {�ij},∀i, j ∈ � . Thus, the data can be represented by (an undirected) 
graph G(�,�) , where the objects � constitute the nodes of the graph and �ij represents the 
weight of the edge between i and j. Then, the goal is to partition the objects (the graph) into 
K coherent groups which are distinguishable from each other. The clustering solution is 
encoded in � ∈ {1, ...,K}n , i.e., �i indicates the cluster label of the ith object. The vector � 
can be also represented via the co-clustering matrix � ∈ {0, 1}n×n.

C denotes the space of all different clustering solutions.
Moreover, we assume �k ⊂ � includes the members of the kth cluster, i.e.,

|�k| refers to the size of the kth cluster.

3  Shift of pairwise similarities for clustering

Different graph-based clustering methods often consider the Min Cut cost function as a 
base method which is defined by

(1)�ij =

{
1 iff �i = �j
0, otherwise.

(2)�k ∶= {i ∈ � ∶ �i = k} .
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This cost function has a tendency to split small sets of objects, since the cost increases 
with the number of inter-cluster edge weights, i.e., the edges connecting the different clus-
ters. Figure 1 illustrates such a situation for two clusters (Shi & Malik, 2000). We assume 
that the edge weights are inversely proportional to the distances between the objects. It is 
observed that Min Cut favors splitting objects i or j, instead of performing a more balanced 
split. In fact, any cut that splits one of the objects on the right half will yield a smaller 
cost than the cut that partitions the objects into the left and right halves. This issue is par-
ticularly problematic when the intra-cluster edge weights are heterogeneous among differ-
ent clusters. Thus, several methods propose to normalize the Min Cut clusters by a cluster 
depending factor, e.g., the size of clusters (Ratio Assoc (Hofmann & Buhmann, 1997) and 
Ratio Cut (Chan et  al., 1994)) or the degree of clusters (Normalized Cut (Shi & Malik, 
2000)).

We investigate an alternative approach to yield the occurrence of more balanced clus-
ters. Instead of normalizing (dividing) the Min Cut cost function by a cluster-dependent 
function, we consider adding such a regularization to the original cost function, i.e.,

where r(�,�) indicates the regularization. Note that this formulation involves the two free 
choices � and r(�,�) , thereby, it yields a richer family of alternative methods. We first 
focus on the case where r(�,�) is the sum of the squared size of the clusters,1 i.e.,

Thereby, 

1. If 𝛼 < 0 , then the term �
∑K

k=1
��k�2 is minimal when only the singleton clusters (objects) 

are separated. Thus, this choice does not help to avoid occurrence of singleton clusters, 
rather, it accelerates.

(3)
RMC(c,�) =

K∑
k=1

K∑
k� = 1,

k� ≠ k

∑
i∈�k

∑
j∈�k�

�ij ,

(4)Rnew(�,�, �) = RMC(�,�) + � . r(�,�),

(5)Rnew(�,�) = RMC(�,�) + �

K∑
k=1

|�k|2 .

Fig. 1  The Min Cut cost function 
has a bias to split small (single-
ton) sets of objects. Any cut that 
splits one of the objects on the 
right half will have smaller cost 
than the cut that splits the objects 
into the left and right halves. The 
figure has been adapted from Shi 
and Malik (2000)

1 The Min Cut cost function is quadratic with respect to the number of edges, therefore, to be consistent, 
we use the squared form of the cluster cardinalities.
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2. If 𝛼 > 0 , then �
∑K

k=1
��k�2 is minimal for balanced clusters, i.e., when 

|�k| ≈ n∕K ,∀k ∈ {1, ...,K} . This leads to equalize the size of clusters. We note that 
|�k| ’s are integer numbers, but n/K is not necessarily an integer. Thus, we may arbitrarily 
set some of the |�k| ’s to ⌈n∕K⌉ and some others to ⌊n∕K⌋ such that 

∑K

k=1
��k� = n . The 

order would not change the minimum.

The cost function in Eq. (5) can be further written as

Therefore, we define

Thus, we employ a shifted variant of Min Cut cost function (called Shifted Min Cut), 
wherein all pairwise similarities are subtracted by a positive parameter � , such that some of 
the pairwise similarities might become negative. It makes sense that the regularization on 
the size of the clusters becomes connected to the pairwise similarities, as, at the end, pair-
wise relations are responsible for creating the clusters. Thus, by tuning them properly, one 
should be able to obtain the desired balanced clusters. Thereby, the cluster level regulariza-
tion is effectively applied to the representation space, where, as will be discussed, it yields 
modelling and computational advantages.

(6)

Rnew(�,�, �) = RMC(�,�) + �

K∑
k=1

|�k|2

=

K∑
k=1

K∑
k�≠k

∑
i∈�k

∑
j∈�k�

�ij + �

K∑
k=1

|�k|2

=

K∑
k=1

K∑
k�≠k

∑
i∈�k

∑
j∈�k�

�ij +

K∑
k=1

∑
i,j∈�k

�ij −

K∑
k=1

∑
i,j∈�k

�ij +

K∑
k=1

∑
i,j∈�k

�

=

K∑
k=1

K∑
k�=1

∑
i∈�k

∑
j∈�k�

�ij −

K∑
k=1

∑
i,j∈�k

(�ij − �)

=
∑
i,j∈�

�ij

⏟⏟⏟
constant

−

K∑
k=1

∑
i,j∈�k

(�ij − �)

= −

K∑
k=1

∑
i,j∈�k

(�ij − �) + constant .

RSMC(�,�, �) = −
∑K

k=1

∑
i,j∈�k

(�ij − �)

Fig. 2  The impact of the shift 
parameter � on the results of the 
Shifted Min Cut cost function. A 
very large � might yield splitting 
large clusters, instead of separat-
ing true small clusters
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This formulation provides a rich family of alternative clustering methods where dif-
ferent regularizations are induced by different values of � . However, choosing a very 
large � can lead to equalizing the size of the clusters that are inherently very unbalanced 
in size. For example, consider the dataset shown in Fig.  2. We assume that the edge 
weights are inversely proportional to the pairwise distances. Then, we subtract all pair-
wise similarities by a very large number. Therefore, the pairwise similarities become 
very large but negative numbers which renders Shifted Min Cut to produce equal-size 
clusters, even though a correct cut should separate only the object i from the rest. Thus, 
in practice one needs to examine different values of � , and choose the one that yields the 
best results, or is preferred by the user. However, this procedure might be computation-
ally expensive, and, moreover, the user might not be able to validate the correct solution 
among many different alternatives, due to lack of enough prior knowledge, supervision 
or side information. For this reason, we employ a particular shift of pairwise similarities 
which takes the connectivity of the objects into account and does not need fixing any 
free parameter.

Adaptive shift of pairwise similarities Different pairwise similarities might need dif-
ferent shifts, depending on the type and the density of the clusters that the respective 
objects belong to. Therefore, we relax the constraints of the formulation in Eq. (6) and 
consider a separate shift parameter for every pairwise similarity �ij.

The formulation in Eq. (7) already involves the formulation in Eq. (6) as a special case 
where all �ij ’s are fixed by a constat. To determine �ij ’s properly, a reasonable approach is 
to shift the pairwise similarity �ij between i and j adaptively with respect to the similarities 
between i and all the other objects and as well as the similarities between j and the other 
objects. For this purpose, we shift �ij such that the sum of the pairwise similarities between 
i and all the other objects becomes zero, and the same holds for j too. In this way, we have

Summing up the regularizations for all pairs of objects, we have (we assume � is 
symmetric):

where deg(k) is the degree of cluster k, i.e., deg(k) =
∑

i∈�k

∑n

p=1
�ip , and constant � is 

the sum of the given pairwise similarities, i.e., � =
∑n

p=1

∑n

q=1
�pq . Therefore, the adap-

tive regularization yields a tradeoff between the size of the clusters and the degree of the 
clusters. The former is used in Ratio Assoc and the latter in Normalized Cut, both in the 
denominator. However, here a combination of these two is assumed, but as additive terms.

Therefore, the new shifted similarity �ij is obtained by

(7)RSMC(�,�, {�ij}) = −

K∑
k=1

∑
i,j∈�k

(�ij − �ij), �ij = �ji .

(8)�ij =
1

n

n∑
p=1

�ip +
1

n

n∑
p=1

�pj −
1

n2

n∑
p=1

n∑
q=1

�pq .

(9)

K∑
k=1

∑
i,j∈�k

�ij =

K∑
k=1

∑
i,j∈�k

(
1

n

n∑
p=1

�ip +
1

n

n∑
p=1

�pj −
1

n2

n∑
p=1

n∑
q=1

�pq

)

=
2

n

K∑
k=1

|�k|deg(k) − �

n2

K∑
k=1

|�k|2 ,
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It is easy to check that � is symmetric, provided that � is symmetric. It can be shown that 
sum of the rows and the columns of � are equal to zero. For example, for a fixed row i we 
have

The adaptive shift in Eq. (10) can be written in matrix form as

where the n × n matrix � is defined by

� is an n × n matrix whose all elements are 1.2
Thus, according to Eqs. (6) and (7), the new cost function is written by

As an alternative to the adaptive shift, a proper shift can be obtained by investigating few 
pairwise relations by a user (i.e., a kind of weak supervision). In this setting, the user 
tells us how the actual pairwise relations should look like for a small subset of them, i.e., 
weather they are in the same cluster (positive shift) or different clusters (negative shift). 
Then, given this feedback, we can generalize them to all the pairwise relations. We may 
train a model, e.g. a neural network, which learns the shift depending on the specifica-
tions of the respective edge and objects. Such an approach can be even combined with our 
method for adaptive shift of pairwise similarities, where the later is used as an initial guess 
for the shifted pairwise relations and then they are fine tuned further using the user feed-
backs if needed. This formulation also provides a convenient way to encode constraints and 
prior knowledge such as ‘objects x and y must be together’, and ’objects p and q must be in 
different clusters’.

(10)�ij = �ij −
1

n

n∑
p=1

�ip −
1

n

n∑
p=1

�pj +
1

n2

n∑
p=1

n∑
q=1

�pq .

(11)

∑n

j=1
�ij =

n∑
j=1

�ij −
1

n

n∑
j=1

n∑
p=1

�ip −
1

n

n∑
j=1

n∑
p=1

�pj +
1

n2

n∑
j=1

n∑
p=1

n∑
q=1

�pq

=

n∑
j=1

�ij −
n

n

n∑
p=1

�ip −
1

n

n∑
j=1

n∑
p=1

�pj +
n

n2

n∑
p=1

n∑
q=1

�pq

= 0 + 0 .

(12)� = ��� ,

(13)� = �n −
1

n
� .

(14)RSMC(�, �) = −

K∑
k=1

∑
i,j∈�k

�ij

(15)≡

K∑
k=1

K∑
k�≠k

∑
i∈�k

∑
j∈�k�

�ij .

2 Due to shift invariance of Ratio Assoc, a similar shift is used in Roth et al. (2003) to render the respective 
eigenvalues non-negative and thus obtain an embedding for the pairwise relations. However, here, the shift 
is used for a totally different purpose and it yields changing the size of clusters.
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4  Relation to correlation clustering

Correlation Clustering is a clustering cost function that partitions a graph with positive and 
negative edge weights. The cost function sums the disagreements, i.e., the sum of negative 
intra-cluster edge weights plus the sum of positive inter-cluster edge weights. The respective 
cost function on general graphs is defined by Demaine et al. (2006)

where E<−> and E<+> respectively indicate the set of the edges with negative and with 
positive weights. The approximation scheme in Demaine et  al. (2006) reduces Min Cut 
to Correlation Clustering in order to obtain a logarithmic approximation factor for Cor-
relation Clustering. It also develops a reduction from Correlation Clustering to Min Cut 
to conclude the equivalence of these two cost functions. Here, we elaborate that these two 
cost functions are identical and represent the same objective (given the shifted pairwise 
similarities) in a direct and straightforward way without using the more complicated reduc-
tion argument. In addition, Demaine et al. (2006) assumes that the number of clusters is 
hidden in the cost function (as defined in Eq. (16)). However, we study the equivalence 
for any arbitrary number of clusters K. As shown in Chehreghani et al. (2012), Frank et al. 
(2011), optimizing Correlation Clustering without a constraint on the number of clusters 
can lead to overfitting and unrobust solutions, whereas fixing the number of clusters may 
avoid these issues. Therefore, we consider the setting where the number of clusters K is 
explicitly specified in the cost function and the user has the possibility to fix it in advance. 
Finally, the reduction-based argument in Demaine et  al. (2006) yields the equivalence 
of the optimal solutions between Min Cut and Correlation Clustering and the respective 
approximation and hardness results. We, in addition, conclude the equivalence of any local 
optimal solution for the two cost functions, which is important when using local search 
algorithms to optimize the cost functions.

For a fixed K, the Correlation Clustering cost function can be written as Chehreghani 
et al. (2012), Frank et al. (2011)

The first term (called a) sums the intra-cluster negative edge weights, whereas the second 
term (called b) sums the inter-cluster positive edge weights. We separately expand each 
term.

(16)RCC(c,�) =
∑

(i,j)∈E<+>

�ij(1 −�ij) −
∑

(i,j)∈E<−>

�ij�ij ,

(17)

RCC(c,�) =
1

2

K∑
k=1

∑
i,j∈�k

(|�ij| − �ij)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
a

+
1

2

K∑
k=1

K∑
k� = 1,

k� ≠ k

∑
i∈�k

∑
j∈�k�

(|�ij| + �ij)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
b

.

(18)

a =
1

2

K∑
k=1

∑
i,j∈�k

|�ij| − 1

2

K∑
k=1

∑
i,j∈�k

�ij

=
1

2

K∑
k=1

∑
i,j∈�k

|�ij| − 1

2

K∑
k=1

K∑
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∑
j∈�k�
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Similarly, we expand term b.

Then, by summing a and b we obtain

Thus, Correlation Clustering and Min Cut are equivalent cost functions, i.e., 

1. T h e  c o s t  f u n c t i o n s  s h a r e  t h e  s a m e  o p t i m a l  s o l u t i o n ,  i . e . , 
argmin� R

MC(�,�) = argmin� R
CC(�,�).

2. T h e  c o s t s  d i f f e r e n c e s  a r e  t h e  s a m e ,  i . e . , 
∀� ∈ C ∶ RMC(�,�) −min� R

MC(�,�) = RCC(�,�) −min� R
CC(�,�). This is in particu-

lar relevant when defining for example a Boltzmann distribution over the solution space 
C.

Thus, Correlation Clustering, similar to Shifted Min Cut, is an extension of Min Cut which 
deals with both negative and positive edge weights. However, there are fundamental differ-
ences between these two methods: 

1. Correlation Clustering assumes that the matrix of pairwise positive and negative simi-
larities is given (which might be nontrivial), whereas Shifted Min Cut proposes a princi-
pled way to yield clustering of positive and negative similarities via regularizing the base 
Min Cut cost function. Thus, Shifted Min Cut provides an explicit and straightforward 
interpretation of the clustering problem.

2. The form of the Shifted Min Cut cost function expressed in Eq. (14) provides efficient 
function evaluations (e.g., for optimization) compared to the Correlation Clustering cost 
function in Eq. (17) or the base Min Cut cost function in Eq. (3). The cost functions in 
Eqs. (3) and (17) are quadratic with respect to K, the number of clusters, whereas the 
cost function in Eq. (14) is linear.

5  Optimization of the shifted min cut cost function

Finding the optimal solution of the standard Min Cut with non-negative edge weights, i.e., 
when �ij ≥ 0,∀i, j , is well-studied, for which there exist several polynomial time algo-
rithms, e.g., O(n4) (Goldschmidt & Hochbaum, 1994) and O(n2 log3 n) (Karger & Stein, 
1996). However, finding the optimal solution of the Shifted Min Cut cost function, wherein 
some edge weights are negative, is NP-hard (Bansal et al., 2004; Demaine et al., 2006) and 

(19)
b =

1

2

K∑
k=1

K∑
k� = 1,

k� ≠ k

∑
i∈�k

∑
j∈�k�

|�ij| + 1

2

K∑
k=1

K∑
k� = 1,

k� ≠ k

∑
i∈�k

∑
j∈�k�

�ij .
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RCC(c,�) = constant
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|�ij| + 1

2
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K∑
k� = 1,
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i∈�k

∑
j∈�k�

|�ij|
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RMC(�,�)
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even is APX-hard (Demaine et  al., 2006). Therefore, we develop a local search method 
which computes a local minimum of the cost function in Eq.  (14). The effectiveness of 
such a greedy strategy is well studied for different clustering cost functions, e.g., K-means 
(Macqueen, 1967), kernel K-means (Schölkopf et al., 1998) and in particular several graph 
partitioning methods (Dhillon et al., 2004, 2005).3 In this approach, we start with a random 
clustering solution and then we iteratively assign each object to the cluster that yields a 
maximal reduction in the cost function. We repeat this procedure until no further change of 
assignments is achieved during a complete round of investigation of the objects, i.e., then a 
local optimal solution is attained.

At each iteration of the aforementioned procedure, one needs to evaluate the cost of 
assigning every object to each of the clusters. The cost function is quadratic, thus a single 
evaluation might take O(Kn2) runtime. Thereby, if the local search converges after t itera-
tions, then, the total runtime will be O(tKn3) for n objects, which might be computationally 
expensive.

However, we do not need to recalculate the cost function for every individual evalu-
ation. Let RSMC(�o→l, �) denote the cost of the clustering solution � wherein object o is 
assigned to cluster l. At each step of the local search algorithm, we need to evaluate the 
cost RSMC(�o→l� , �), l

� ≠ l given RSMC(�o→l, �).
The cost RSMC(�o→l, �) is written by

Similarly, the cost RSMC(�o→l� , �), l
� ≠ l is obtained by

Thus, given RSMC(�o→l, �) the runtime of a new evaluation of the cost function 
RSMC(�o→l� , �) is O(n) . Hence, the total runtime of the local search method will be O(tn2) . 
Therefore, at the beginning, we compute a random initial solution, wherein each object is 
assigned randomly to one of K clusters, and compute the respective cost. At each iteration, 
we use Eq. (22) to investigate the cost of assigning an object to the other clusters than the 
current one. Then, we assign the object to the cluster that yields a maximal reduction in the 
cost. We might repeat the local search algorithm with several random initializations and 
at end, choose a solution with a minimal cost. Note that even the efficient evaluation and 

(21)
RSMC(�o→l, �) = −

K∑
k=1

∑
i, j ∈ �k

i, j ≠ o

�ij −
∑

i ∈ �l

i ≠ o

(�io + �oi) − �oo .

(22)

RSMC(�o→l� , �) = −

K∑
k=1

∑
i, j ∈ �k

i, j ≠ o

�ij −
∑

i ∈ �l�

i ≠ o

(�io + �oi) − �oo

= RSMC(�o→l, �) +
∑

i ∈ �l

i ≠ o

(�io + �oi) −
∑

i ∈ �l�

i ≠ o

(�io + �oi) .

3 Consistently, with Correlation Clustering we observe a significantly better performance of the local 
search algorithm compared to approximation schemes such as those proposed in Bansal et  al. (2004), 
Demaine et al. (2006).
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optimization of the variants in Eqs. (3) and (17) would yield O(tKn2) total runtime, i.e., K 
times slower than the variant expressed in Eq. (14).

We note that this technique can be employed with other optimization or inference meth-
ods as well, such as MCMC methods and simulated annealing.

On the convergence rate of the local search optimization With the co-authors, we have 
shown in Thiel et al. (2019) that for Correlation Clustering, Frank-Wolfe optimization with 
line search for the update parameter (to find the optimal learning rate) is equivalent to the 
local search algorithm. On the other hand, we have established convergence rate of O(

1

t
) 

for Frank-Wolfe optimization applied to Correlation Clustering (Thiel et al., 2019) (t indi-
cates the optimization step). As discussed before, given the shifted pairwise similarities, 
Shifted Min Cut is equivalent to Correlation Clustering. Thus, the same argument holds for 
the aforementioned local search algorithm for Shifted Min Cut, i.e., Shifted Min Cut enjoys 
the convergence rate of O(

1

t
) . This convergence rate should be compared with the conver-

gence rate of O(
1√
t
) for general non-convex (non-concave) functions (Reddi et al., 2016) 

that applies to many other clustering objectives such Ratio Assoc, Normalized Cut and 
Dominant Set Clustering, i.e., optimizing Shifted Min Cut yields a faster theoretical conver-
gence rate compared to many other alternatives.

6  Shift analysis of other clustering methods

In this section, we investigate the impact of shifting the pairwise similarities on some com-
mon flat and hierarchical clustering methods.

Shift of pairwise similarities for flat clustering It is obvious that K-means and Gaussian 
Mixture Models (GMMs) are invariant with respect to the shift of data features. Since these 
methods perform directly on the data features, shifting refers to adding constant � to all the 
features. Under this shift, the centroids (in K-means) and the means (in GMM) are shifted 
by � as well, but their proportional distances stay the same. The other parameters, i.e., the 
clustering assignments (in K-means), and the assignment probabilities, covariance matrices 
and weights (in GMM) do not change. One might assume that by shift only the location 
of the clusters is affected without modifying the cluster memberships. A similar argument 
applies to a density-based clustering method such as DBSCAN (Ester et al., 1996) wherein 
shifting data features does not modify the clustering solution, except a consistent shift of 
the geographical locations of the clusters together.

As discussed in Roth et  al. (2003), when shifting the pairwise similarities by � , the 
Ratio Assoc and Ratio Cut cost functions stay invariant, i.e., their optimal solutions stay the 
same. By shifting the pairwise similarities by � , the Ratio Assoc cost function is written as
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Therefore, the Ratio Assoc cost function is invariant under shifting the pairwise similari-
ties. Similar to Ratio Assoc, the Shifted Ratio Cut cost function can be written as

Thereby, both Ratio Assoc and Ratio Cut cost functions are invariant under shifting the 
pairwise similarities. One can show that this holds in general for every clustering cost func-
tion that normalizes the clusters by the size of the clusters, i.e., size-normalized (divided) 
clustering cost functions stay invariant with respect to the shift of pairwise similarities.

On the other hand, the Normalized Cut cost function when the pairwise similarities are 
shifted is written by

It turns out that this cost function is not shift invariant in general, contrary to the two 
previous alternatives. However, for the special case of almost balanced clusters, i.e., 
|�k| ≈ n∕K, ∀1 ≤ k ≤ K,4 and similar intra-cluster similarity distribution among all clus-
ters, all the row-sums of the similarity matrix � tend to be close to each other. The objects 
then share the same degree, i.e., 

∑n

j=1
�ij ≈ constant . In this case, the Normalized Cut cost 

(23)

RSRA(�,�, �) = −

K∑
k=1

∑
i,j∈�k

�ij + �

|�k|

= −

K∑
k=1

∑
i,j∈�k

�ij

|�k| −
K∑
k=1

∑
i,j∈�k

�

|�k|

= −

K∑
k=1

∑
i,j∈�k

�ij

|�k| −
K∑
k=1

�|�k|2
|�k|

= −

K∑
k=1

∑
i,j∈�k

�ij

|�k|
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

RRA(�,�)

− �n
⏟⏟⏟
constant

.
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(25)RSNC(�,�, �) =

K�
k=1

∑
i∈�k

∑
j∈�⧵�k

�ij + �
∑

i∈�k

∑
j∈� �ij + �

.

4 Similar to Shifted Min Cut, n/K might not be an integer number. Then, we consider ⌈n∕K⌉ and ⌊n∕K⌋ 
instead of n/K.
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functions becomes equivalent to the Ratio Assoc cost function (Roth et  al., 2003). This 
analysis explains the similar performance of such graph partitioning methods in large-scale 
comparison studies, e.g., for image segmentation, where clusters have balanced and similar 
structures (Soundararajan & Sarkar, 2001; Roth et al., 2003).

Ratio Cut, despite normalizing the cut by the size of clusters, intends to separate small clus-
ters, as demonstrated in Shi and Malik (2000), Chehreghani (2013). For this reason, Normal-
ized Cut has proposed to normalize the cut by the degree of the clusters, rather than the size of 
the clusters. An alternative way to overcome this problem is to apply a stronger constraint on 
the size of the clusters. Using this idea, P-Spectral Clustering (Bühler & Hein, 2009) proposes 
a nonlinear generalization of spectral clustering based on the second eigenvector of the graph 
p-Laplacian which is then interpreted as a generalization of graph clustering models such as 
Ratio Cut. P-Spectral Clustering is an iterative clustering procedure that at each step performs 
a bi-partitioning of one of the existing clusters until K clusters are constructed using a nonlin-
ear spectral method. The underlying respective cost function for bi-partitioning into two sets 
�a and �b is given by ( p > 1)

In Chehreghani (2013), we have introduced Adaptive Ratio Cut (ARC) as a generalization 
of the cost function to yield K clusters:

For the special case of p = 2 , Adaptive Ratio Cut is equivalent to the standard Ratio Cut 
cost function. However, unlike Ratio Cut, it is easy to see that Adaptive Ratio Cut is not 
shift invariant, as the shift parameter � cannot be factored out from the cost function.

Shifted Dominant Set Clustering. This clustering method computes the clusters via per-
forming replicator dynamics. It has been shown that the solutions of a replicator dynamics 
correspond to the solutions of the following quadratic program (Schuster & Sigmund, 1983; 
Weibull, 1997).

where the n-dimensional characteristic vector � determines the participation of the objects 
to the solution.

Thus, to study the impact of the shift on DSC, we consider the shifted variant of the quad-
ratic program. In Chehreghani (2016) we have elaborated the impact of such a shift based on 
the off-diagonal shift argument in Pavan and Pelillo (2003). It yields

(26)RPSC(c,�) =
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where � = (1, 1, ...1)� is a vector of ones.
Therefore, Dominant Set Clustering is invariant under shifting the pairwise similarities.
However, it has been proposed in Pavan and Pelillo (2003) to shift the diagonal entries 

of the similarity matrix by a negative value, in order to obtain coarser clusters, which 
yields computing a hierarchy of clusters. The clusters obtained from the unshifted simi-
larity matrix appear at the lowest level of the hierarchy. The larger the negative shift is 
the coarser the clusters are. Performing a negative shift is equivalent to adding the same 
shift but with a positive sign to the off-diagonal pairwise similarities. Thereby, the shifted 
matrix is still non-negative and has a null diagonal, i.e. satisfies the conditions of Dominant 
Set Clustering.

One can think of performing a negative shift on the off-diagonal pairwise similarities to 
compute a finer representation of the clusters. However, this type of shift might violate the 
non-negativity and null diagonal constraints. On the other hand, according to our experi-
ments, a negative shift is effectively equivalent to applying a larger cut-off threshold when 
peeling off the clusters. In Chehreghani (2016) we have proposed such a shift to accelerate 
the appearance of clusters for DSC.

Shift of pairwise similarities for hierarchical clustering. Hierarchical clustering meth-
ods, unlike flat clustering, produce clusters at multiple levels. A main category of such 
methods first consider each object in a separate cluster, and then at each step, combine the 
two clusters with a minimal distance according to some criterion until only one cluster is 
left at the highest level.

A cluster at an arbitrary level is represented by a set of objects belong to that, e.g., by � 
or � . A hierarchical clustering solution can be represented by a dendrogram (tree) T such 
that,

(i) each node � in T consists of a non-empty subset of the objects that belong to cluster 
� , and (ii) the overlapping clusters have a parent-child relation, i.e., one is the (grand) par-
ent of the other.

We use dist(�, �) to refer to the inter-cluster distance between clusters � and � . It can 
be defined according to different criteria. Three common criteria for hierarchical cluster-
ing are single linkage, complete linkage and average linkage. Given the matrix of (inter-
object) pairwise dissimilarities � = {�ij}, i, j ∈ � , the single linkage criterion (Sneath, 
1957) defines the distance between every two clusters as the distance between their nearest 
members:

On the other hand, complete linkage (Lance & Williams, 1967) considers the distance 
between their farthest members:

(29)

f (�, �) =��(� + � ���)�

=���� + ��� ����

=���� + � (���)
⏟⏟⏟

=1

(���)
⏟⏟⏟

=1

=���� + � ,

(30)dist(�, �) = min
i∈�,j∈�

�ij .

(31)dist(�, �) = max
i∈�,j∈�

�ij .
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Finally, average linkage (Sokal & Michener, 1958) uses the average of the inter-cluster dis-
tances as the distance between the two clusters:

In the following we show that these methods, which perform based on pairwise inter-clus-
ter distances, are shift-invariant (Proposition 1).

Proposition 1 Single linkage, complete linkage and average linkage methods are invariant 
with respect to the shift of the pairwise dissimilarities � by constant �.

Proof Let us show the shifted pairwise dissimilarities by �� , i.e., ��
ij
= �ij + �,∀i, j ∈ �.

– With shifting all the pairwise dissimilarities by � , the dist(�, �) function for single 
linkage is defined as 

 Thus, if dist(�, �) ≤ dist(�,�) holds with respect to � , then it would also hold with 
respect to �� and vice versa, as they differ only by a constant in both sides of the ine-
quality. Thus, shifting the pairwise dissimilarities by � does not change the order of 
merging the intermediate clusters and hence the final dendrogram will remain the same.

– With shifting all the pairwise dissimilarities by � , the dist(�, �) function for complete 
linkage is defined as 

 Thus, with the same argument as with single linkage, shifting the pairwise dissimilari-
ties by � does not change the final complete linkage dendrogram.

– With shifting all the pairwise dissimilarities by � , the dist(�, �) function in average 
linkage is defined as 

 Thus, we use the same argument as in with single linkage and complete linkage, and 
conclude that shifting the pairwise dissimilarities by � does not change the final aver-
age linkage dendrogram.

  ◻

Another category of hierarchical clustering methods such as centroid linkage and 
Ward linkage perform directly on data features, instead of pairwise dissimilarities. Cen-
troid linkage computes a representative for each cluster and defines the inter-cluster 
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distances according to those representatives. Similar to the case of K-means, shifting 
the data features by a constant does not change the pairwise inter-cluster distances. The 
Ward linkage (Ward, 1963) aims at minimizing the within-cluster variance at each step, 
i.e., the dist(�, �) is defined as

where �� denotes the centroid vector of cluster � . Therefore, due to shift invariance of vari-
ance, the Ward linkage is also invariant with respect to the shift of data features. Thereby, 
we can state Proposition 2 as following.

Proposition 2 Centroid linkage and Ward linkage are invariant with respect to the shift of 
data features.

Finally, it is notable that some of the improvements proposed for hierarchical clustering 
still preserve the invariance property with respect to the shift of pairwise distances. For 
example, in order to improve the robustness of hierarchical clustering, it is suggested in 
Chehreghani et al. (2008) to first apply K-means with many centroids (of order of n) and 
then apply the aforementioned hierarchical methods. Since both steps, i.e., K-means clus-
tering and hierarchical clustering, are invariant with respect to the shift, thus one can con-
clude that the entire procedure remains invariant as well. The work in Chehreghani (2021) 
studies extracting all mutual linkages at every step of hierarchical clustering, instead of the 
smallest one, in order to provide adaptivity to diverse shapes of clusters. Since this contri-
bution is independent of the way the inter-cluster distances are defined, then this strategy 
yields invariant clustering with respect to the shift of pairwise distances for methods such 
as single linkage, complete linkage and average linkage.

7  Experiments

We empirically investigate the performance of Shifted Min Cut and compare the results 
against several alternatives. We perform the experiments under identical computational set-
tings on a core i7-4600U Intel machine with 2.7 GHz CPU and 8.00 GB internal memory.

Data We first perform our experiments on several UCI datasets (Lichman, 2013), cho-
sen from different domains and contexts with different type of features. 

 1. Breast Tissue contains 106 electrical impedance measurements of the breast tissue 
samples in 6 types (clusters) each with 10 features. The types or clusters are ‘car’ 
(carcinoma, 21 measurements), ‘fad’ (fibro-adenoma, 15 measurements), ‘mas’ (mas-
topathy 18 measurements), ‘gla’ (glandular, 16 measurements), ‘con’ (connective, 12 
measurements) and ‘adi’ (adipose 22 measurements). The features are real valued with 
no missing value.

 2. Cloud consists of 2048 vectors, where each vector includes 10 parameters in two types 
(each of size 1024) representing AVHRR images. The vectors (attributes) are real-
valued and there are no missing values. The target clusters are balanced.

 3. Ecoli a biological dataset on the cellular localization sites of 7 types (clusters) of 
proteins which includes 336 samples. The samples are represented by 8 real-valued 
features. The size of the clusters are: 143, 77, 3, 7, 35, 20 and 52,

(36)dist(�, �) =
|�||�|

|�| + |�| ||�� − ��||2 ,
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 4. Forest Type Mapping a remote sensing dataset of 523 samples with 27 real-valued 
attributes collected from forests in Japan and grouped in 4 different forest types (clus-
ters). The clusters are: ‘s’ (‘Sugi’ forest, 159 samples), ‘h’ (‘Hinoki’ forest, 86 sam-
ples), ‘d’ (‘Mixed deciduous’ forest, 195 samples), ‘o’ (‘Other’ non-forest land, 83 
samples).

 5. Heart dataset of heart disease that involves 303 instances each with 75 attributes. The 
attributes are diverse: categorical, integer and real where the categorical attributes are 
treated using one-hot encoding. The missing values are estimated by the median of the 
respective feature. Cluster distributions are: 164, 55, 36, 35 and 13.

 6. Lung Cancer high-dimensional lung cancer data with 32 instances (with distribution 
9 and 23) and 56 integer features. There are few missing values estimated using the 
median of the respective feature.

 7. Parkinsons contains 197 biomedical voice measurements from 31 people each repre-
sented by 23 real-valued attributes that correspond to voice recordings. In the dataset, 
there are 48 healthy samples and 147 other samples that belong to one of 23 people 
with Parkinson’s disease.

 8. Pima Indians Diabetes the data of 768 female patients from Pima Indian heritage with 
8 attributes. The attributes include the number of pregnancies of the patient, their BMI, 
insulin level, age, and so on, and they are either real numbers or integers. 268 samples 
out of 768 haze the outcome 1 and the others (500 samples) have the outcome 0.

 9. SPECTF describes diagnosing of cardiac Single Proton Emission Computed Tomog-
raphy (SPECT) images with 44 integer attributes (values from the 0 to 100) about 
the heart of 267 patients. The diagnosis is binary with the distribution of 55 and 212 
samples.

 10. Statlog ACA (Australian Credit Approval) contains information of 690 credit card 
applications each described with 14 features (with cluster size 383 and 307). The 
features are categorical and numerical where for categorical features we use one-hot 
encoding. The few missing values are estimated using the median of the respective 
feature.

 11. Teaching Assistant consists of evaluations of teaching performance over 5 semesters of 
151 teaching assistant assignments. The scores are divided into 3 roughly equal-sized 
categories (‘low’, ‘medium’ and ‘high’) to form the target variables which are used 
as the cluster labels. The attributes are categorical and integer, where we use one-hot 
encoding for categorical attributes. There are no missing values.

 12. User Knowledge Modeling contains the 403 students’ knowledge status on Electrical 
DC Machines with 5 integer attributes grouped in 4 categories. The labels and the 
cluster distributions are: ‘very Low’: 50, ‘low’: 129, ‘middle’: 122 and ‘high’: 130. 
There are no missing values.

In these datasets, the objects are represented by vectors. Thus, to obtain the pairwise 
similarity matrix � , we first compute the pairwise squared Euclidean distances between 
the vectors and obtain matrix � . Then, as proposed in Chehreghani (2016), we convert 
the pairwise distances � to the similarity matrix � via �ij = max(�) − �ij +min(�) , 
where the max(.) and min(.) operations respectively give the maximum and the min-
imum of the elements in � . An alternative transformation is an exponential function 
in the form of �ij = exp(−

�ij

�2
) , which requires fixing the free parameter � in advance. 

However, this task is nontrivial in unsupervised learning and the appropriate values of 
� coincide in a very narrow range (Luxburg, 2007). The other alternative is the cosine 
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similarity, which suits better to textual and document datasets. On our datasets, we con-
sistently obtain better results with the aforementioned transformation.

Methods We compare Shifted Min Cut against several alternative methods developed 
for clustering. We consider the following methods: (i) Dominant Set Clustering (DSC), 
(ii) InImDyn, (iii) P-Spectral Clustering (PSC), (iv) Gaussian Mixture Model (GMM), (v) 
K-means, (vi) Power Iteration Clustering (PIC), and vii) Spectral Clustering (SC).

The chosen baselines belong to different clustering approaches which cover a wide 
range of alternative viewpoints for clustering, e.g., those based on a cost function, proba-
bilistic methods, game-theoretic methods and spectral methods. With the GMM method, 
we obtain the probabilistic assignment of the objects to the clusters. Then, we assign each 
object to the most probable cluster. The developed clustering perspective can potentially 
be combined with the recent developments proposed in particular for cost-based clustering 
methods. For example, a category of recent clustering methods aim to combine deep rep-
resentation learning methods with clustering (Demetriou et al., 2020; Yang et al., 2019), or 
develop approximate and distributed clustering methods. Such contributions are orthogo-
nal to our contribution and, in principle, can be combined with Shifted Min Cut as well. On 
the other hand, considering the relation between Shifted Min Cut and Correlation Cluster-
ing, with the co-authors, we have recently (Thiel et al., 2019) studied the performance of 
the local search optimization compared to a wide range of approximate methods developed 
for Correlation Clustering and have demonstrated both efficiency and effectiveness for the 
local search method.

Evaluation criteria We have access to the ground truth solutions for the datasets. These 
labels may play the role of an expert (reference) that tells us the desired clustering solution. 
Thus, we can use them to evaluate the results of different methods. We note that we do 
not employ them to infer the clustering solution, they are only used for evaluation. There-
fore, we are still in unsupervised setting which assumes no data label is used to obtain 
the results. This evaluation procedure is recommended in Manning (2008) consistent with 
several studies, e.g., (Dhillon et al., 2004; Lin & Cohen, 2010; Liu et al., 2013; Thiel et al., 
2019; Yang et al., 2019). Thereby, we compare the true (given) clustering labels and the 
estimated solutions to investigate quantitatively the performance of each method. For this 
purpose, we consider three criteria: 

1. Adjusted Mutual Information (Vinh et al., 2010): the mutual information between the 
two estimated and true clustering solutions,

2. Adjusted Rand score (Hubert & Arabie, 1985): the similarity between the solutions, and
3. V-measure (Rosenberg & Hirschberg, 2007): the harmonic mean of homogeneity and 

completeness.

We compute the adjusted variant of these criteria such that they give zero scores for ran-
dom solutions.

Results We study the performance of different methods from two perspectives in order 
to distinguish between the quality of a method/costs function and its optimization. The for-
mer implies how good a particular method/cost function is (given that it can be optimized 
in a proper way) while the later focuses on the optimization aspects of the method/cost 
function. We run each method 100 times with different random initializations. In the first 
type of study, we choose the best solution in terms of the cost or likelihood among the 100 
different runs for each method. We note that we do not choose the best results in terms of 
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the evaluation criteria. This helps to gain a sense that the optimization is done properly, 
and we may not suffer from very poor local optima, and therefore, we can investigate the 
performance of the method or the cost function regardless of its optimization.

Tables 1, 2 and 3 show the results of the first type of study for different clustering meth-
ods on the UCI datasets respectively with respect to the Mutual Information criterion, the 
Rand score and the V-measure. We observe that on most of the datasets, Shifted Min Cut 
yields the best scores. In the cases that the method is not the best, it is usually among top 

Table 1  Performance of different methods with respect to the adjusted Mutual Information criterion

The best result among different methods are shown in bold
Shifted Min Cut yields the best results in most of the cases

Dataset ShiftedMinCut DSC InImDyn PSC GMM K-means PIC SP

Breast tissue 0.4196 0.4305 0.4196 0.3606 0.3276 0.1809 0.4123 0.4507
Cloud 1.0000 0.3812 0.3543 0.3098 0.8511 0.3056 0.8597 0.8406
Ecoli 0.5414 0.4731 0.4368 0.5074 0.5800 0.5685 0.0542 0.4743
Forest type 0.4352 0.2960 0.3109 0.2704 0.3877 0.5197 0.3875 0.3163
Heart 0.1570 0.0698 0.0602 0.0594 0.0813 0.0813 0.0509 0.1078
Lung cancer 0.2362 0.0850 0.0859 0.0713 0.1684 0.1997 0.0380 0.2473
Parkinsons 0.1957 0.0738 0.0761 0.0511 0.0484 0.0136 0.0153 0.1631
Pima Indians diabetes 0.1178 0.0561 0.0533 0.0368 0.0003 0.0257 0.1226 0.1200
SPECTF 0.1570 0.0698 0.0602 0.0419 0.0813 0.0813 0.0509 0.1078
Statlog ACA 0.3907 0.1607 0.1498 0.1392 0.0038 0.0038 0.3570 0.3683
Teaching assistant 0.1041 0.0268 0.0357 0.0123 0.0353 0.0130 0.0470 0.0123
User knowledge mod-

eling
0.2926 0.1107 0.1198 0.0441 0.6100 0.2139 0.2454 0.1169

Table 2  Performance of different methods with respect to the adjusted Rand score

The best result among different methods are shown in bold
Shifted Min Cut leads to better clustering solutions on most of the datasets

Dataset ShiftedMinCut DSC InImDyn PSC GMM K-means PIC SP

Breast tissue 0.3546 0.2929 0.2907 0.3100 0.2085 0.0943 0.3125 0.3037
Cloud 1.0000 0.3573 0.3117 0.2926 0.8991 0.2429 0.9065 0.8899
Ecoli 0.6801 0.4068 0.3299 0.5145 0.5574 0.4944 0.0378 0.4132
Forest type 0.3983 0.2225 0.2426 0.2027 0.3285 0.4987 0.3560 0.2454
Heart 0.0917 0.0608 0.0449 0.0578 0.0467 0.0337 0.0721 0.0588
Lung cancer 0.2962 0.0689 0.0664 0.0215 0.1698 0.2294 0.0949 0.4201
Parkinsons 0.1275 0.0129 0.0360 0.0234 0.0123 0.0162 0.0178 0.0419
Pima Indians diabetes 0.1535 0.0454 0.0460 0.0381 0.0010 0.0744 0.1617 0.1200
SPECTF 0.0917 0.0608 0.0429 0.0570 0.0617 0.0617 0.0434 0.0898
Statlog ACA 0.4913 0.1485 0.1307 0.1332 0.0022 0.0022 0.4550 0.4710
Teaching assistant 0.1170 0.0112 0.0127 0.0129 0.0220 0.0089 0.0322 0.0129
User knowledge mod-

eling
0.2912 0.0713 0.0778 0.0503 0.5680 0.1675 0.1449 0.1053
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choices. DSC and InImDyn perform very similarly, consistent to the results in Bulò et al. 
(2011). PIC works well only when there are few clusters in the dataset. The reason is that it 
computes an one-dimensional embedding of the data and then applies K-means. However, 
such an embedding might confuse some clusters when there exist many of them in the 
dataset (Chehreghani, 2016). PSC is significantly slower than the other methods and also 

Table 3  Performance of different methods with respect to the adjusted V-measure

The best result among different methods are shown in bold
In a consistent way to the two previous evaluation criteria, the Shifted Min Cut method provides the best 
clustering results on most of the datasets

Dataset ShiftedMinCut DSC InImDyn PSC GMM K-means PIC SP

Breast tissue 0.5563 0.4914 0.4999 0.4756 0.4389 0.2895 0.5230 0.5142
Cloud 1.0000 0.5525 0.5239 0.5116 0.8520 0.3388 0.8605 0.8417
Ecoli 0.6396 0.5339 0.5169 0.5203 0.6192 0.6321 0.1139 0.5364
Forest type 0.4835 0.3591 0.3866 0.2729 0.3937 0.5279 0.3982 0.3244
Heart 0.1788 0.1186 0.1061 0.0689 0.0896 0.0896 0.0644 0.1131
Lung cancer 0.2730 0.2175 0.2310 0.1038 0.2030 0.2356 0.1117 0.2987
Parkinsons 0.2196 0.1255 0.1327 0.0814 0.0130 0.0105 0.0291 0.1798
Pima Indians diabetes 0.1227 0.0867 0.0838 0.0693 0.0013 0.0295 0.1276 0.1200
SPECTF 0.1788 0.1186 0.1061 0.0819 0.0896 0.0896 0.0644 0.1131
Statlog ACA 0.3927 0.2396 0.2267 0.2068 0.0099 0.0099 0.3632 0.3720
Teaching assistant 0.1156 0.0615 0.0770 0.0253 0.0583 0.0263 0.0606 0.0253
User knowledge mod-

eling
0.3384 0.1527 0.1697 0.0573 0.6191 0.2278 0.2603 0.1325

Table 4  Average performance (and the standard deviation shown in brackets) for different methods over 
100 runs with respect to adjusted Mutual Information, where Shifted Min Cut  often yields the most promis-
ing results

The best result among different methods are shown in bold

Dataset ShiftedMinCut GMM K-means PIC SP

Breast tissue 0.4191(0.0031) 0.3031(0.0365) 0.1794(0.0371) 0.3883(0.0470) �.����(�.����)

Cloud �.����(�.����) 0.8510(0.0152) 0.3019(0.0141) 0.8588(0.0060) 0.8392(0.0071)
Ecoli 0.5304(0.0119) �.����(�.����) 0.5673 (0.0294) 0.0493(0.0177) 0.4728(0.0032)
Forest type 0.4085(0.0416) 0.3542(0.0290) �.����(�.����) 0.3881(0.0147) 0.3124(0.0010)
Heart �.����(�.����) 0.0817(0.0025) 0.0832(0.0019) 0.0528(0.0133) 0.0820(0.0304)
Lung cancer 0.2174(0.0684) 0.1678(0.0719) 0.1720(0.0455) 0.0460(0.0397) �.����(�.����)

Parkinsons �.����(�.����) 0.0380(0.0241) 0.0256(0.0305) 0.0169(0.0134) 0.1443(0.0251)
Pima Indians 

diabetes
0.0972(0.0329) 0.0003(0.0008) 0.0285(0.0020) �.����(�.����) 0.1186(0.0049)

SPECTF �.����(�.����) 0.0821(0.0020) 0.0806(0.0031) 0.0503(0.0155) 0.1019(0.0229)
Statlog ACA �.����(�.����) 0.0116(0.0031) 0.0087(0.0033) 0.3521(0.0045) 0.3648(0.0037)
Teaching assistant �.����(�.����) 0.0346(0.0123) 0.0045(0.0085) 0.0412(0.0124) 0.0106(0.0073)
User knowledge 

modeling
0.2735(0.0601) �.����(�.����) 0.2026(0.0648) 0.2470(0.0131) 0.1043(0.0239)



2046 Machine Learning (2023) 112:2025–2051

1 3

yields suboptimal results, as reported by several previous studies as well. Other methods 
are efficient and perform within few seconds.

Table 5  Average performance (and the standard deviation) for different methods with respect to adjusted 
Rand score

The best result among different methods are shown in bold
Consistent with adjusted Mutual Information, Shifted Min Cut  yields the best results on most of the data-
sets

Dataset ShiftedMinCut GMM K-means PIC SP

Breast tissue �.����(�.����) 0.1756(0.0354) 0.1071(0.0361) 0.2642(0.0697) 0.3030(0.0311)
Cloud �.����(�.����) 0.8636(0.0309) 0.2419(0.0015) 0.9067(0.0018) 0.8865(0.0029)
Ecoli �.����(�.����) 0.5303(0.0611) 0.4598(0.0686) 0.0193(0.0175) 0.3939(0.0098)
Forest type 0.3894(0.0267) 0.2792(0.0427) �.����(�.����) 0.3429(0.0243) 0.2388(0.0009)
Heart �.����(�.����) 0.0471(0.0022) 0.0259(0.0029) 0.0518(0.0212) 0.0498(0.0113)
Lung cancer 0.2546(0.0798) 0.1594(0.0949) 0.2079(0.0705) 0.0844(0.0297) �.����(�.����)

Parkinsons �.����(�.����) 0.0282(0.0286) 0.0217(0.0389) 0.0159(0.0121) 0.0387(0.0081)
Pima Indians dia-

betes
0.1317(0.0329) 0.0010(0.0003) 0.0736(0.0027) �.����(�.����) 0.1135(0.0058)

SPECTF �.����(�.����) 0.0598(0.0033) 0.0608(0.0042) 0.0516(0.0248) 0.0894(0.057)
Statlog ACA �.����(�.����) 0.0031(0.0007) 0.0030(0.0008) 0.4525(0.0042) 0.4590(0.0162)
Teaching assistant �.����(�.����) 0.0248(0.0061) 0.0024(0.0069) 0.0248(0.0115) 0.0201(0.0097)
User knowledge 

modeling
0.2729(0.0520) �.����(�.����) 0.1542(0.0377) 0.1495(0.0121) 0.1046(0.0174)

Table 6  Average performance (and the standard deviation) for different methods with respect to adjusted 
V-measure

The best result among different methods are shown in bold
We observe that the average results are consistent with the results from the first type of study and Shifted 
Min Cut performs well compared to the alternatives

Dataset ShiftedMinCut GMM K-means PIC SP

Breast tissue �.����(�.����) 0.4015(0.0326) 0.2711(0.0329) 0.5193(0.0190) 0.5113(0.0174)
Cloud �.����(�.����) 0.8329(0.0137) 0.3402(0.0011) 0.8602(0.0011) 0.8395(0.0028)
Ecoli �.����(�.����) 0.6029(0.0355) 0.6007(0.0432) 0.0884(0.0372) 0.5296(0.0031)
Forest type 0.4712(0.0402) 0.3835(0.0178) �.����(�.����) 0.3936(0.0147) 0.3169(0.0017)
Heart �.����(�.����) 0.0841(0.0053) 0.0864(0.0019) 0.0608(0.0142) 0.1066(0.0036)
Lung cancer 0.2578(0.0667) 0.2004(0.0559) 0.2194(0.0623) 0.1094(0.0350) �.����(�.����)

Parkinsons �.����(�.����) 0.0134(0.0102) 0.0152(0.0096) 0.0216(0.0142) 0.1506(0.0243)
Pima Indians dia-

betes
0.1026(0.0328) 0.0011(0.0006) 0.0217(0.0058) �.����(�.����) 0.1205(0.0016)

SPECTF �.����(�.����) 0.0850(0.0028) 0.0891(0.0015) 0.0592(0.0058) 0.0974(0.0108)
Statlog ACA �.����(�.����) 0.0040(0.0030) 0.0033(0.0051) 0.3627(0.0015) 0.3655(0.0147)
Teaching assistant �.����(�.����) 0.0506(0.0123) 0.0170(0.0086) 0.0535(0.0110) 0.0284(0.0072)
User knowledge 

modeling
0.3027(0.0592) �.����(�.����) 0.2250(0.0540) 0.2612(0.0131) 0.1257(0.0236)
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In the second type of study, in order to investigate the optimization itself, we report the 
average scores and the respective standard deviations over the 100 different runs for each 
method. We note that DSC, InImDyn and PSC are non-randomized algorithmic procedures 
that do not show randomness in the performance and their results are stable among differ-
ent runs. Therefore, we do not need to report their results here. Tables 4, 5 and 6 show such 
optimization variability results for different UCI datasets (i.e., the average results and the 
respective standard deviations shown in brackets). We observe that the results are consistent 
among different runs and the better methods in Tables 1, 2 and 3 perform well on average 

Table 7  Performance of different methods on DS1

The best result among different methods are shown in bold
On this dataset, Shifted Min Cut yields superior results compared to the alternatives

ShiftedMinCut DSC InImDyn PSC GMM K-means PIC SP

Mutual Information 0.6046 0.2951 0.2786 0.1572 0.6124 0.5880 0.5994 0.3525
Rand score 0.4632 0.2101 0.2067 0.0762 0.2945 0.2434 0.2640 0.1384
V-measure 0.8107 0.4884 0.4655 0.3119 0.7996 0.7854 0.7733 0.5874

Table 8  Performance of different methods on DS2 where Shifted Min Cut leads to the best overall perfor-
mance

The best result among different methods are shown in bold

ShiftedMinCut DSC InImDyn PSC GMM K-means PIC SP

Mutual Information 0.5621 0.3011 0.3180 0.3572 0.4793 0.5103 0.4272 0.5475
Rand score 0.5316 0.2780 0.2621 0.2752 0.4648 0.4512 0.4484 0.5528
V-measure 0.6179 0.3126 0.3441 0.3270 0.5245 0.5523 0.5164 0.5715

Table 9  Average performance (and the standard deviation shown in brackets) for different methods over 
100 runs with respect to different evaluation criteria on DS1

The best result among different methods are shown in bold

ShiftedMinCut GMM K-means PIC SP

Mutual Information 0.5785(0.0352) �.����(�.����) 0.5773(0.0467) 0.5367(0.0386) 0.3493(0.0460)
Rand score �.����(�.����) 0.2872(0.0377) 0.2278(0.0491) 0.2614(0.0195) 0.1146(0.0207)
V-measure �.����(�.����) 0.7806(0.0272) 0.7590(0.0338) 0.7568(0.0248) 0.5506(0.0512)

Table 10  Average performance (and the standard deviation) for different methods over 100 runs with 
respect to different evaluation criteria on DS2

The best result among different methods are shown in bold
On both DS1 and DS2, Shifted Min Cut yields more promising results in overall

ShiftedMinCut GMM K-means PIC SP

Mutual Information �.����(�.����) 0.4427(0.0465) 0.4519(0.0421) 0.4185(0.0307) 0.5118(0.0535)
Rand score 0.5185(0.0266) 0.4502(0.0379) 0.4327(0.0289) 0.4151(0.0342) �.����(0.0372)

V-measure �.����(�.����) 0.5081(0.0507) 0.5122(0.0410) 0.4870(0.0441) 0.5385(0.0463)
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too, i.e., the results from the first type of study and the second type of study are consistent in 
overall. In particular, Shifted Min Cut yields the most promising results in this type of study 
as well. The results also confirm the effectiveness of the optimization based on local search, 
a method that is nowadays used widely in different machine learning paradigms.

Experiments on real-world data In the following, we investigate the performance of dif-
ferent clustering methods on two real-world datasets: 

1. DS1 This dataset, collected by a document processing company, contains the vectors of 
675 scanned documents, wherein each document is represented in a 4096 dimensional 
space using different textual, image, structural and other features. The documents are 
placed within 56 clusters with different sizes, that makes the clustering task challenging. 
The size of the clusters varies from few documents to more than 200 documents. The 
features are real-valued.

2. DS2 In this dataset, we collect articles about 5 different Computer Science subjects: 
‘artificial intelligence’, ‘software’, ‘hardware’, ‘networks’ and ‘algorithms’. For each 
category, we collect 1500 articles, thus in total there are 7500 articles in this dataset. 
We computer the tf-idf vectors for each article, thus the attributes are numerical. There 
are no missing values.

Similar to the experiments on the UCI datasets, we first study the performance of the 
methods when the optimization is performed properly, i.e., when we pick the best results 
in terms of the cost function or the likelihood over 100 different runs. Tables 7 and 8 show 
the performance of different clustering methods with respect to the evaluation criteria on 
DS1 and DS2. We observe that only Shifted Min Cut yields high scores with respect to all 
criteria. In most of the cases, Shifted Min Cut results in the best scores. Otherwise, it is still 
competitive compared to the best choice.

Finally, we study the optimization variability, i.e., the average results and the respec-
tive standard deviations among the 100 runs. The results with respect to different evalua-
tion criteria are shown in Tables 9 and 10 corresponding to DS1 and DS2. Similar to the 
experiments on the UCI datasets, we observe that the optimization variability results fol-
low the same trend as the results in Tables 7 and 8. This indicates that the average results 
are consistent with the results obtained based on the best values of the cost function or the 
likelihood. On the other hand, Shifted Min Cut yields the most promising results either in 
average or when choosing the best solutions in terms of cost/likelihood.

8  Conclusion

This paper investigates an alternative approach for regularizing the Min Cut cost function 
in order to avoid the appearance of singleton clusters, where the regularization term is 
added to the cost function, instead of dividing the Min Cut clusters by a cluster dependent 
factor. We, in particular, studied the case where the regularization term leads to subtract-
ing the pairwise similarities by the regularization factor. Then, we only need to apply the 
base Min Cut, but on the (adaptively) shifted similarities instead of the original data. In 
the following, we developed an efficient local search algorithm to optimize (locally) the 
Shifted Min Cut cost function and studied its fast theoretical convergence rate. Thereafter, 
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we discussed that unlike Min Cut, many other common clustering cost functions are invari-
ant with respect to the shift of pairwise similarities. Finally, we performed extensive exper-
iments on several UCI and real-world datasets to demonstrate the superior performance of 
Shifted Min Cut according to different evaluation criteria.
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