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Abstract
The ability to analyze data streams, which arrive sequentially and possibly infinitely, is 
increasingly vital in various online applications. However, data streams pose various chal-
lenges, including sparse and noisy data as well as concept drifts, which easily mislead 
a learning method. This paper proposes a simple yet robust framework, called Adaptive 
Infinite Dropout (aiDropout), to effectively tackle these problems. Our framework uses a 
dropout technique in a recursive Bayesian approach in order to create a flexible mechanism 
for balancing between old and new information. In detail, the recursive Bayesian approach 
imposes a constraint on the model parameters to make a regularization term between the 
current and previous mini-batches. Then, dropout whose drop rate is autonomously learned 
can adjust the constraint to new data. Thanks to the ability to reduce overfitting and the 
ensemble property of Dropout, our framework obtains better generalization, thus it effec-
tively handles undesirable effects of noise and sparsity. In particular, theoretical analy-
ses show that aiDropout imposes a data-dependent regularization, therefore, it can adapt 
quickly to sudden changes from data streams. Extensive experiments show that aiDropout 
significantly outperforms the state-of-the-art baselines on a variety of tasks such as super-
vised and unsupervised learning.

Keywords Bayesian models · Data streams · Streaming learning · Dropout · Data-
dependent regularization

1 Introduction

Bayesian modelling has become a powerful tool in machine learning and has been uti-
lized in a wide range of applications such as text mining (Blei et al., 2003; Van Linh et al., 
2017), recommendation systems (Le et  al., 2018; Van Linh et  al., 2020), social network 
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(Gopalan et al., 2013; Mehrotra et al., 2013), computer vision (Fei-Fei & Perona, 2005), 
bioinformatics (Rogers et al., 2005), etc. Based on assumptions about data, we can straight-
forwardly build a model with hidden variables and observations. The inferred posteriors of 
the hidden variables expose data characteristics that can used in applications.

There are numerous inference methods (MacKay & Mac Kay, 2003; Zhang et al., 2018) 
to work well in a static environment in which there is no change in data in the entire train-
ing process. However, in modern applications such as social networks, and E-commerce, 
data is generated continually and is collected in infinitely many mini-batches (known as the 
streaming environment). The prevailing characteristics of data are big, noisy and sparse. 
Moreover, the various kinds of concept drifts (such as sudden, incremental, and recurring 
concept drifts Gama et al., 2014; Krawczyk & Cano, 2018), in which the statistical char-
acteristics of new data change, can happen. Therefore, developing an effective learning 
method poses challenging problems in the streaming environment. Firstly, traditional infer-
ence methods which implement an iterative procedure on all data are impossible to work 
on data streams. It is necessary for a method to adapt to new data quickly without revisit-
ing the past data. As a result, it must deal with the stability-plasticity dilemma (Mermillod 
et  al., 2013). The dilemma requires a learning method to be stable to effectively exploit 
acquired knowledge when working on new data whose characteristics are similar to those 
of the past data. Simultaneously, it should be plastic when concept drift happens. Secondly, 
noisy and sparse data (Nguyen et al., 2021; Ha et al., 2019; Mai et al., 2016; Tuan et al., 
2020) makes a lot of difficulties for learning methods. While sparse data does not provide 
an unclear context, noisy data can mislead the methods. Consequently, the generalization 
ability of a learned model can be limited. In this paper, we focus on these challenges.

Some recent studies (Broderick et  al., 2013; Duc et  al., 2017; Masegosa et  al., 2017; 
McInerney et  al., 2015; Tran et  al., 2021; Van et  al., 2022) have provided solutions to 
learning from data streams. Those methods enable Bayesian models, which are designed 
for static conditions, to work with data streams. The recursive Bayesian approach (Ahn 
et  al., 2019; Broderick et  al., 2013; Duc et  al., 2017; Masegosa et  al., 2017; McInerney 
et al., 2015; Nguyen et al., 2018) has emerged as an effective solution and has been paid 
a great deal of attention by researchers. The main idea is that the learned posterior from a 
mini-batch is used as the prior in the next one. Therefore, this approach provides a flexible 
mechanism to exploit acquired knowledge in the current mini-batch without revisiting past 
data. However, the existing studies are still limited when facing the above challenges. We 
found that streaming variational Bayes (SVB) (Broderick et al., 2013) could suffer from 
the phenomenon of overconfident posterior after receiving a large enough amount of data. 
Concretely, the posterior variance would become arbitrarily small leading to point-mass 
posterior concentration. This arguably cause several critical issues in the online Bayesian 
updates including poor uncertainty representation of the underlying data-generating distri-
bution, and lack of the flexibility to adapt to the sudden changes in data streams. Hierarchi-
cal power prior (HPP) (Masegosa et al., 2017, 2020) is more plastic to learn a new concept, 
however, it does not have any efficient way to work on noisy and sparse data. Other recur-
sive Bayesian-based studies (Nguyen et al., 2021; Duc et al., 2017; Tran et al., 2021; Van 
et al., 2022) require external knowledge to deal with the challenges.

In this paper, we propose a novel framework called Adaptive Infinite Dropout (aiD-
ropout) which enables a wide range of models to work in streaming environments. Our 
framework is based on the recursive Bayesian approach and dropout technique (Srivastava 
et al., 2014) to create an effective solution to learning from data streams. It has several ben-
efits. Firstly, aiDropout has an easy mechanism to balance the information between old and 
new data throughout the data stream, which helps tackle the stability-plasticity dilemma. 
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Secondly, we theoretically prove that Dropout in aiDropout induces a data-dependent regu-
larization, which allows each parameter component to have its own search space to capture 
geometric properties, especially highly discriminative characteristics, of the data features. 
This is extremely important when data comes continuously with high uncertainty, which 
has the possibility of concept drifts or undesirable properties such as noise and sparsity. 
Thirdly, Dropout in our method works as an ensemble of an exponential number of learn-
ers, which is very useful in making good predictions for future data. These advantages help 
our method obtain better generalization. Finally, because the data inevitably changes over 
time, the drop rate should be adapted according to the data. Our method provides a mecha-
nism to automatically tune the drop rate and therefore obtains better generalization and 
more practicality.

We empirically evaluate the performance of aiDropout compared to the existing state-
of-the-art streaming methods by using two base models: (1) latent Dirichlet allocation 
(LDA) (Blei et al., 2003) for topic modelling and (2) Naïve Bayes (NB) (Russell and Nor-
vig 2016) for classification. The extensively experimental results on both learning tasks 
show the superior effectiveness of aiDropout.

Roadmap: Section  2 briefly provides closely related work. We formally describe the 
aiDropout framework in Sect. 3 and its applications in Sect. 4. Non-trivial findings of aiD-
ropout are described in Sect. 5. Section 6 presents extensive experiments and a conclusion 
is made in Sect. 7.

2  Related work

Several studies have addressed the inference problem on data streams. They are divided 
into two notable approaches: Stochastic optimization and recursive Bayesian update. The 
first one (Hoffman et al., 2013; Hughes & Sudderth, 2013; Kim et al., 2019; McInerney 
et al., 2015; Theis & Hoffman, 2015) considers the inference problem as a stochastic opti-
mization problem in which the objective function is the expectation of the likelihood. In 
particular, stochastic variational inference (SVI) (Hoffman et al., 2013) aims to optimize 
the empirical expectation by sampling data instances from the uniform distribution on a 
fixed dataset, which is impractical in the streaming environment. To address this limit, pop-
ulation variational Bayes (PVB) (McInerney et  al., 2015) assumes that data streams are 
generated by consecutively sampling � (population size) data instances from the population 
distribution F� instead of the uniform distribution. However, � must be manually adjusted 
to achieve better performances. Meanwhile, the second approach assumes that the learned 
knowledge from a mini-batch is considered as prior knowledge in the next one (Ahn et al., 
2019; Broderick et al., 2013; Chérief-Abdellatif et al., 2019; Kirkpatrick et al., 2017; Kurle 
et  al., 2020; Nguyen et  al., 2018; Masegosa et  al., 2017; Zenke et  al., 2017). Streaming 
variational Bayes (SVB) (Broderick et al., 2013) uses the variational distribution learned in 
the previous mini-batch as the prior distribution for the current one. However, we find that 
SVB can become too stable in many cases and therefore can be unable to learn new infor-
mation once trained from large enough data. To address the drawback of SVB, hierarchical 
power prior (HPP) (Masegosa et  al., 2017, 2020) uses a forgetting factor relating to the 
degree of forgetting the old knowledge at the current mini-batch. Unfortunately, because 
this forgetting factor is considered as a hidden variable, the model in HPP is non-conjugate, 
leading to difficulties in inferring complicated Bayesian models. In addition, a lot of stud-
ies (Ahn et  al., 2019; Kirkpatrick et  al., 2017; Nguyen et  al., 2018; Zenke et  al., 2017) 
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apply the recursive Bayesian approach to deal with multiple tasks. In this paper, we only 
concentrate on addressing the problem in data streams without changing tasks.

In terms of dealing with sparse and noisy data, none of these mentioned methods pays 
careful attention to this problem. Following the recursive Bayesian approach, some recent 
studies (Nguyen et  al., 2021; Duc et  al., 2017; Tran et  al., 2021; Van et  al., 2022) have 
proposed methods based on exploiting external/prior knowledge which is derived from 
a pre-trained model or human knowledge. Albeit those methods show promising results 
in coping with extremely short texts, their performances depend heavily on the quality of 
prior knowledge. Moreover, it is difficult to find external knowledge which is suitable for 
data streams. In contrast, by adopting the dropout technique in the streaming environment, 
our proposed method can tackle the problem of noise and sparsity efficiently without using 
external knowledge.

Dropout (Hinton et  al., 2012) is well-known as a powerful regularization technique 
(Mou et al., 2018) for preventing overfitting by discouraging the co-adaptation of features. 
Moreover, dropout provides an efficient way to approximately combine an exponential 
number of learners, working as a form of ensemble learning. The idea of dropout is to 
randomly drop a subset of features at each iteration during training. At first, the drop rate 
is manually tuned, which demands to use grid-search, a prohibitive operation with large 
network models. To address this problem, some methods (Gal et al., 2017; Kingma et al., 
2015; Liu et al., 2019) have been proposed to automatically determine the drop rate. Drop-
out has achieved great success in various machine learning models, e.g., neural networks 
(Srivastava et  al., 2014), SVM (Chen et  al., 2014), matrix factorization (Zhai & Zhang, 
2015), topic models (Ha et al., 2019). However, the applications of Dropout are still limited 
to a static data environment. In parallel to our work, Guzy and Woźniak (2020) showed that 
dropout helps deal with recurring concept drift because dropout leads to using submod-
els generated for each concept. However, this work only focused on deterministic neural 
networks and lacked an adaptive mechanism. Moreover, the random selection of features 
in adaptive Random Forest (Gomes et  al., 2017) achieves good performance in stream-
ing environments. Therefore, exploiting adaptive dropout for learning Bayesian models 
on data streams is hopeful. In this paper, we explore Dropout for training Bayesian mod-
els to address the challenges in the streaming data. Our analysis about the role of Drop-
out as regularization applies well to a large class of Bayesian models, extending existing 
works (Baldi & Sadowski, 2014; Helmbold & Long, 2015; Mianjy et al., 2018; Rifai et al., 
2011; Wager et al., 2013; Wang et al., 2013) to significantly wider contexts.

3  Adaptive infinite dropout for Bayesian models

In this section, we first introduce how to apply dropout to a general Bayesian model to 
work on data streams. Then, we present a strategy to learn drop rate.

3.1  Infinite dropout

We consider a general model B(�, z, x) (Hoffman et  al., 2013; McInerney et  al., 2015) 
which consists of global variable � , the set of observations x = x1∶M and the set of hid-
den variables z = z1∶M . More explicitly, each data instance (observation) xi has a hid-
den variable zi to encode the hidden feature of xi . Meanwhile, the global variable � is 
shared among all of the data instance x1∶M . Bayesian methods aim to infer the posterior 
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distribution of hidden variables p(�, z|x) when given a fixed dataset. Undoubtedly, this 
can not work with data streams where the data comes in an infinite sequence of mini-
batches C = {D1,D2,⋯ ,Dt,⋯} and each mini-batch t consists of M observed data 
points: Dt = {xt

1
, xt

2
,⋯ , xt

M
}.

We need to extend the model to also describe the dynamics of data streams. Here we 
assume that only the global variable � evolves over time, which we indicate with super-
script t, i.e., � t . We introduce a transition model p(� t|� t−1) to describe the transforma-
tion between two consecutive mini-batches:

where k is the row index of � t−1 and I is the identity matrix of size V. The variance �2 is a 
hyperparameter, which describes our assumption about the fluctuation of �k between two 
consecutive mini-batches.

We assume that � is represented by a K × V  matrix. Dropout is utilized in our frame-
work as follows. In each mini-batch t, we drop randomly some elements of matrix � t . 
This is implemented by using a hyperparameter called drop matrix �t to make the ele-
ment-wise product with � t , then going through a transformation: 𝛽 t = f (𝛽 t ⊙ 𝜋t) . Trans-
formation f should be chosen to assure that 𝛽 t can replace � in model B(�, z, x) at each 
mini-batch t (in the later subsections, we use softmax to be the transformation). Given 
the new global variable 𝛽 t at each mini-batch t, the generative process of all data points 
is similar to the original model B (Fig. 1a). In order to keep the randomness of Dropout, 
we use a different drop matrix at each mini-batch. Each element �t

ij
 of �t is generated 

using one of two options: 

1. Bernouli dropout: p(�t
ij
= 1) = 1 − p , p(�t

ij
= 0) = p

2. Inverted dropout: 

(1)p(� t
k
|� t−1

k
) = N(.|� t−1

k
, �2I)

(2)p(�t
ij
= 1∕(1 − p)) = 1 − p, p(�t

ij
= 0) = p

β̃t−1βt−1

πt−1

xt−1

zt−1

M

β̃tβt

πt

xt

zt

M

B(β, z, x)

β̃t−1βt−1

πt−1

pt−1

xt−1

zt−1

M

β̃tβt

πt

pt

xt

zt

M

(a) iDropout for (b) aiDropout for B(β, z, x)

Fig. 1  Graphical representation for iDropout and aiDropout
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in which p is drop rate. Note that when � t is used at test time, it has to be rescaled by �[�t
ij
] . 

By doing this scaling, 2K×V models with shared parameters can be combined into a single 
model to be used at test time, which works as a form of ensemble learning.

Learning: At each mini-batch t, we make a point estimate for � t by maximizing 
log p(� t|� t−1,�t,Dt) , where � t−1 is learned from the previous mini-batch:

While the direct optimization of p(Dt|�t, � t) is intractable, it is significantly easier to opti-
mize than the complete data likelihood ∫

zt
p(Dt, zt|�t, � t) . By introducing a variational dis-

tribution q(zt|�t) defined over the local variables zt , we then have:

By substituting (4) into (3), our objective function can be rewritten as:

The learning process is composed of two phases. We first infer the local variables by inher-
iting from the original model B, and then update the global variable. Algorithm 1 briefly 
describes the learning process. 

3.2  Learning drop rate

Difference from the previous subsection in which �t is sampled from a fixed Ber-
noulli distribution, we will infer the posterior of �t . The prior distribution for �t is a 

(3)

𝛽 t = argmax
𝛽 t

{
log p(𝛽 t|𝛽 t−1,𝜋t,Dt)

}

= argmax
𝛽 t

{
log p(𝛽 t,Dt|𝛽 t−1,𝜋t)

}

= argmax
𝛽 t

{
log p(𝛽 t|𝛽 t−1) + log p(Dt|𝜋t, 𝛽 t)

}

(4)
log p(Dt|�t, � t) = log�zt

p(Dt, zt|�t, � t)dzt = log�zt
q(zt|�t)

p(Dt, zt|�t, � t)

q(zt|�t)
dzt

≥ �zt
q(zt|�t) log

p(Dt, zt|�t, � t)

q(zt|�t)
dzt = Eq(zt|�t)

[
log

p(Dt, zt|�t, � t)

q(zt|�t)

]

(5){𝛽 t, �̂�t} = argmax
𝛽 t ,𝜙t

{
log p(𝛽 t|𝛽 t−1) + Eq(zt|𝜙t)

[
log

p(Dt, zt|𝜋t, 𝛽 t)

q(zt|𝜙t)

]}
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Bernoulli distribution parameterized by pt (Fig.  1b). Our goal here is to maximize log 
p(� t|� t−1, pt,Dt) at each mini-batch t:

To automatically determine the posterior of �t and hyperparameter pt , we use the empirical 
Bayesian method and introduce the variational distribution q(�t|�t) = Bernoulli(�t) where 
�t is the variational hyper-parameter of Bernoulli distribution. Therefore, we have a lower 
bound on log p(Dt|pt, � t):

By introducing (7) into (6), the objective function can be written as:

While the KL term has a closed-form expression, it is not straightforward to estimate the 
expected log-likelihood �q(�t) log p(D

t|� t,�t) , and more importantly the derivative of this 
second term with respect to the variational distribution parameter �t due to the difficulty 
in applying reparameterization trick (Kingma & Welling, 2014) to discrete random vari-
ables. There are some studies (Grathwohl et al., 2018; Jang et al., 2017; Maddison et al., 
2017; Yin et al., 2019) to handle the learning problem from discrete latent variables. We 
select a simple solution that exploits the Gumbel-Softmax distribution (Jang et al., 2017), 
a continuous distribution, which helps us to do reparameterization for discrete variables. 
The original Gumbel-Softmax trick is intended to approximate samples from a categori-
cal distribution that depends on a temperature parameter � , but here we concentrate on the 
Bernoulli distribution case. It turns out that we now have a simple formula for the continu-
ous relaxation �̃�t of �t:1

(6)

𝛽 t = argmax
𝛽 t

{
log p(𝛽 t|𝛽 t−1, pt,Dt)

}

= argmax
𝛽 t

{
log p(𝛽 t,Dt|𝛽 t−1, pt)}

= argmax
𝛽 t

{
log p(𝛽 t|𝛽 t−1) + log p(Dt|pt, 𝛽 t)}

(7)

log p(Dt|pt, � t) = log
∑
�t

p(Dt,�t|pt, � t) = log
∑
�t

q(�t|�t)p(D
t,�t|pt, � t)
q(�t|�t)

≥ ∑
�t

q(�t|�t) log p(Dt,�t|pt, � t)
q(�t|�t) =

∑
�t

q(�t|�t) log p(Dt|�t, � t)p(�t|pt)
q(�t|�t)

= Eq(�t|�t)
[
log p(Dt|�t, � t)

]
− KL

[
q(�t|�t)||p(�t|pt)]

(8)
{𝛽 t, �̂�t, p̂t} = argmax

𝛽 t ,𝜆t ,pt

{
log p(𝛽 t|𝛽 t−1) + Eq(𝜋t|𝜆t)

[
log p(Dt|𝜋t, 𝛽 t)

]

−KL
[
q(𝜋t|𝜆t)||p(𝜋t|pt)]}

(9)
�̃�t =

exp
(

log(𝜆t)+g1

𝜏

)

exp
(

log(𝜆t)+g1

𝜏

)
+ exp

(
log(1−𝜆t)+g2

𝜏

)

with g1, g2 ∼ Gumbel(0, 1)

1 We can sample realizations from the Gumbel(0, 1) distribution by firstly drawing u ∼ Uniform(0, 1) , and 
then computing g = − log(− log(u)).
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In each iteration, we draw L samples ( {�̃�t
l
}L
l=1

 ) of �t to calculate Eq(�t|�t)
[
log p(Dt|�t, � t)

]
 as 

follows:

The previous studies (Jang et al., 2017; Kingma & Welling, 2014) showed that using the 
reparameterization trick with L = 1 also achieves good performance in terms of both com-
putation and quality. The objective function (8) can then be rewritten in the form of:

Similar to the previous subsection, instead of directly optimizing log p(Dt|�̃�t, 𝛽 t) , we try 
to optimize the complete-data log likelihood ∫

zt
p(Dt, zt|�̃�t, 𝛽 t) . We then rewrite (10) in the 

form of:

It is worth observing that the parts of objective functions w.r.t � and � in iDropout (5) 
and aiDropout (11) are in the same form. They are merely different in the random dropout 
variable � . While in iDropout � is sampled from a Bernoulli distribution with a fixed drop 
rate, aiDropout provides a mechanism to autonomously learn drop rate for adapting to new 
data. In the special case that samples of � in both iDropout and aiDropout are the same, 
aiDropout will degenerate to iDropout. Algorithm 2 briefly describes the learning process 
of aiDropout. 

Eq(𝜋t|𝜆t)
[
log p(Dt|𝜋t, 𝛽 t)

]
=

1

L

L∑
l=1

log p(Dt|�̃�t
l
, 𝛽 t)

(10)

{𝛽 t, �̂�t, p̂t} = argmax
𝛽 t ,𝜆t ,pt

{
log p(𝛽 t|𝛽 t−1) + log p(Dt|�̃�t, 𝛽 t) − KL

[
q(𝜋t|𝜆t)||p(𝜋t|pt)]}

(11)
{𝛽 t, �̂�t, �̂�t, p̂t} = argmax

𝛽 t ,𝜙t ,𝜆t ,pt

{
log p(𝛽 t|𝛽 t−1) + Eq(zt|𝜙t)

[
log

p(Dt, zt|�̃�t, 𝛽 t)

q(zt|𝜙t)

]

−KL
[
q(𝜋t|𝜆t)||p(𝜋t|pt)]}
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4  Case study

We will show the application of aiDropout to latent Dirichlet allocation (LDA) (Blei et al., 
2003) for document analysis and Multinomial Naïve Bayes (NB) (Russell & Norvig, 2016) for 
document classification (see Appendix A for iDropout).

4.1  Case study 1: when LDA is the base model

LDA is one of the most popular unsupervised models and provides an effective and interpret-
able solution in a wide range of applications such as text mining, recommendation system, etc. 
Therefore, some recent studies considered LDA as a base model to develop learning methods 
in the streaming environment. We merely explore how aiDropout works on LDA.

Suppose that each mini-batch t consists of M documents and each document d contains Nd 
words. LDA aims to learn hidden topics in a text dataset as well as the topic proportion of each 
document. Hyper-parameter � is the parameter of Dirichlet distribution for topic mixture � , the 
matrix 𝛽  of size K × V is the topic distribution over V words in the vocabulary.

The generative process for documents in each mini-batch tth is as follows: 

1. Draw � t ∶ � t
k
∼ N(� t−1

k
, �2I)

2. Draw �t ∶ �t
kj
∼ Bernoulli (pt

kj
)

3. Calculate topic distribution 𝛽 t : 

4. For each document d in mini-batch t: 

(a) Draw topic mixture: �d ∼ Dirichlet (�)

(b) For nth word in document d: 

i Draw a topic index:zdn ∼ Multinomial (�d)

2 Draw a word: wdn ∼ Multinomial (𝛽 t
zdn
) word in document d: 

Learning process:  At each mini-batch t, we maximize log p(� t|� t−1, pt, �,Dt)

We have a lower bound on log p(Dt|pt, � t, �) , which is the same as (7):

𝛽 t
kj
= softmax (𝛽 t

k
⊙ 𝜋t

k
)j =

exp(𝛽 t
kj
𝜋t
kj
)

∑V

i=1
exp(𝛽 t

ki
𝜋t
ki
)

(12)

𝛽 t = argmax
𝛽 t

{
log p(𝛽 t|𝛽 t−1, pt, 𝛼,Dt)

}

= argmax
𝛽 t

{
log p(𝛽 t,Dt|𝛽 t−1, pt, 𝛼)}

= argmax
𝛽 t

{
log p(𝛽 t|𝛽 t−1) + log p(Dt|pt, 𝛽 t, 𝛼)}
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As mentioned above, due to the difficulties in directly optimizing p(Dt|�̃�t, 𝛽 t, 𝛼) , infer-
ence for local variables � and z can be done by using Mean-field variational infer-
ence as in the original paper (Blei et  al., 2003). In particular, for each document 
d: q(�d, zd��d,�d) = q(�d��d)∏n∈[Nd]

q(zdn��dn) with the variational distributions: 
q(�d|�d) = Dirichlet(.|�) and q(zdn|�dn) = Multinomial(.|�dn) where �d and �d are vari-
ational parameters. According to Blei et al. (2003), these parameters for each document d 
are updated until convergence as follow:

where [V] = {1, ...,V} , �[.] is an indicator function that equals 1 if the condition is true.
As the topics are independent, we consider the objective function with respect to � t

k
 , �t

k
 

and pt:

Algorithm 3 briefly describes the learning process of aiDropout for LDA. 

(13)

log p(Dt|pt, 𝛽 t, 𝛼) = log
∑
𝜋t

p(Dt,𝜋t|pt, 𝛽 t, 𝛼) = log
∑
𝜋t

q(𝜋t|𝜆t)p(D
t,𝜋t|pt, 𝛽 t, 𝛼)
q(𝜋t|𝜆t)

≥ ∑
𝜋t

q(𝜋t|𝜆t) log p(Dt,𝜋t|pt, 𝛽 t, 𝛼)
q(𝜋t|𝜆t) =

∑
𝜋t

q(𝜋t|𝜆t) log p(Dt|𝜋t, 𝛽 t, 𝛼)p(𝜋t|pt)
q(𝜋t|𝜆t)

= Eq(𝜋t|𝜆t)
[
log p(Dt|𝜋t, 𝛽 t, 𝛼)

]
− KL

[
q(𝜋t|𝜆t)||p(𝜋t|pt)]

≃ log p(Dt|�̃�t, 𝛽 t, 𝛼) − KL
[
q(𝜋t|𝜆t)||p(𝜋t|pt)]

(14)�dk ← �k +

Nd∑
n=1

�dnk for k = 1, ...,K

(15)𝜙dnk ∝ exp(�q[log 𝜃dk] +

V∑
v=1

�[wdn = v] log 𝛽kv)

(16)

{𝛽 t
k
, �̂�t

k
, �̂�t

k
, p̂t

k
}

= argmax
𝛽 t
k
,𝜙t

k
,𝜆t

k
,pt

k

�
log p(𝛽 t

k
�𝛽 t−1

k
) +

M�
d=1

Nd�
n=1

log p(wdn�zdn, 𝛽 tk, �̃�t
k
) − KL[q(𝜋t

k
�𝜆t

k
)��p(𝜋t

k
�pt

k
)]

�

= argmax
𝛽 t
k
,𝜙t

k
,𝜆t

k
,pt

k

�
−

1

2𝜎2
‖𝛽 t

k
− 𝛽 t−1

k
‖2
2
+

M�
d=1

Nd�
n=1

V�
j=1

𝜙dnk�[wdn = j]𝛽 t
kj
�̃�t
kj

−

M�
d=1

Nd�
n=1

V�
j=1

𝜙dnk�[wdn = j] log(

V�
i=1

exp(𝛽 t
ki
�̃�t
ki
)) − KL[q(𝜋t

k
�𝜆t

k
)��p(𝜋t

k
�pt

k
)]
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4.2  Case study 2: when NB is the base model

NB is a popular supervised model for text classification. We will use NB as a base model to 
evaluate how our framework works in the streaming environment.

Suppose that each mini-batch consists of M documents, each document d contains Nd 
words and belongs to a class cd ∈ {1, 2, ...,C} . Each cd is generated by: cd ∼ Multinomial(�) 
in which � is a fixed symmetric vector, and finally � of size C × V is the class distribution over 
V words in the vocabulary.

The generative process for each mini-batch t is as follows: 

1. Draw � t : � t
c
∼ N(� t−1

c
, �2I)

2. Draw �t : �t
cj
∼ Bernoulli (pt

cj
)

3. Calculate the class matrix: 𝛽 t
cj
= softmax (𝛽 t

c
⊙ 𝜋t

c
)j

4. Each document d is drawn by: 

(a) Choose the class label cd ∼ Multinomial (�)

(b) Draw nth word wdn ∼ Multinominal (𝛽 t
cd
)

Learning process: 
At each mini-batch t, our goal is to maximize log p(� t|� t−1, pt, c,Dt):

Same as (7), we have a lower bound on log p(Dt|pt, � t, c):

(17)

𝛽 t = argmax
𝛽 t

{
log p(𝛽 t|𝛽 t−1, pt, c,Dt)

}

= argmax
𝛽 t

{
log p(𝛽 t,Dt|𝛽 t−1, pt, c)}

= argmax
𝛽 t

{
log p(𝛽 t|𝛽 t−1) + log p(Dt|pt, 𝛽 t, c)}
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For each class c, the objective function with respect to � t
c
 and �t

c
 is:

where Dt
c
 includes all documents which belong to class c, Nc is the total number of words 

in all documents belonging to class c. We use a gradient-based algorithm to maximize 
F(� t

c
, �t

c
, pt

c
) with respect to � t

c
, �t

c
, pt

c
.

5  Discussions

In this section, we discuss some aspects of aiDropout. First, we analyse how existing 
frameworks and aiDropout deal with the stability-plasticity dilemma. Then, we present 
the role of Dropout in our framework and prove that aiDropout provides a data-dependent 
regularization.

5.1  The stability‑plasticity dilemma

In this subsection, we investigate how different streaming learning frameworks trade off 
stability against plasticity in models similar to LDA,2 i.e., how they balance between 
old and new information from data streams. In particular, SVB (Broderick et al., 2013) 
uses the variational parameter of the global variable � t at mini-batch t, which we denote 
by �t , as the parameter of the Dirichlet prior distribution at mini-batch t + 1 . In other 

(18)

log p(Dt|pt, 𝛽 t, c)
= log

∑
𝜋t

p(Dt,𝜋t|pt, 𝛽 t, c) = log
∑
𝜋t

q(𝜋t|𝜆t)p(D
t,𝜋t|pt, 𝛽 t, c)
q(𝜋t|𝜆t)

≥ ∑
𝜋t

q(𝜋t|𝜆t) log p(Dt,𝜋t|pt, 𝛽 t, c)
q(𝜋t|𝜆t) =

∑
𝜋t

q(𝜋t|𝜆t) log p(Dt|𝜋t, 𝛽 t, c)p(𝜋t|pt)
q(𝜋t|𝜆t)

= Eq(𝜋t|𝜆t)
[
log p(Dt|𝜋t, 𝛽 t, c)

]
− KL

[
q(𝜋t|𝜆t)||p(𝜋t|pt)]

≃ log p(Dt|�̃�t, 𝛽 t, c) − KL
[
q(𝜋t|𝜆t)||p(𝜋t|pt)]

(19)

{𝛽 t
c
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2
+
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d=1

Nd�
n=1
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−Nc log(
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exp(𝛽 t
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�̃�t
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c
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)��p(𝜋t

c
�pt

c
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�

2 Such models require the global variable � to be in a simplex, e.g., NB.
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words, for each k ∈ {1,⋯ ,K} , � t+1
k

 has the prior distribution Dir(� t+1
k

|�t
k
) (Dir is Dir-

ichlet distribution). Then we have:

Theorem 1 In SVB: �[� t+1
kj

] = � t
kj

 and Var[� t+1
kj

] → 0 as t → ∞.

Proof SVB (Broderick et al., 2013) proposes recursive updating of the variational distribu-
tion. For LDA (conjugate models, exponential family, i.i.d. data), the variational parameter 
�t of global variable � t is updated by: 𝜆t = 𝜆t−1 + �̃�t , where �t−1 is made available from the 
previous mini-batch and �̃�t is the learned information from the current mini-batch. In other 
words, �t is the addition of the learned information from all previous steps:

where:

Therefore, ���t��1 = ∑T

t=1

∑
d∈Dt Nd ≥ t , which approaches infinity as t goes to infin-

ity. When a new mini-batch t + 1 arrives, �t will be used as the parameter of the prior: 
p(� t+1

k
|�t

k
) = Dir(.|�t

k
) . This distribution has the expectation:

and the variance:

which varies inversely with the size of �t
k
 . As t → ∞ , leading to ||�t||1 → ∞ , we have 

Var[� t+1
kj

] → 0 .   ◻

This problem is potentially present in SVB-PP (Masegosa et  al., 2017), albeit �t 
takes longer to accumulate: 𝜆t = 𝜌𝜆t−1 + (1 − 𝜌)𝜂 + �̃�t , where � is the forgetting factor 
(0 < 𝜌 < 1) and � is the uninformative prior.

When this happens, SVB and SVB-PP expect the model at time t + 1 to be nearly 
identical to the model at time t. This phenomenon essentially says that a model will 
evolve very slowly and have difficulties in learning new information, thus could not deal 
well with sudden changes in the environment.

aiDropout does not encounter this problem. In aiDropout, we have an easy mecha-
nism to balance the information between old and new data. Indeed, to maximize the 
objective function F(𝛽 t

k
) = −

1

2𝜎2
||𝛽 t

k
− 𝛽 t−1

k
||2
2
+ log p(Dt|�̃�t

k
, 𝛽 t

k
) , we need to consider 

both components. While the first term encourages new model � t to fluctuate around the 
previously learned � t−1 , the latter allows model to accommodate information from new 
data Dt . In other words, aiDropout helps model to flexibly learn new information, while 
retaining relevant information from historical observations to maintain the stability.

𝜆t = �̃�t +⋯ + �̃�1 + 𝜆0
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The balancing ability of aiDropout is easily controlled by the variance �2 . The bigger 
�2 is, the more we focus on learning new information, rather than keeping old informa-
tion, and vice versa. This balance is unchanged throughout the learning process. Unlike 
aiDropout, SVB and SVB-PP cannot control this balance. Particularly, in LDA, SVB 
and SVB-PP become too rigid and unable to learn new information after receiving a 
large amount of data, due to the reason mentioned above.

5.2  The role of dropout in aiDropout

In streaming environments, the problem of noisy and sparse data is unavoidable. Spe-
cifically, learning from noisy data can potentially overfit models, while sparsity in data 
may not provide enough relevant information to make good predictions for unseen data, 
both leading to poor performance.

To overcome these challenges, we propose to utilize Dropout by omitting randomly a 
number of elements of the global variable � t at each mini-batch t. Dropout in our frame-
work has two main roles. Firstly, we theoretically prove that it plays as a data-depend-
ent regularizer, which makes aiDropout more robust against overfitting. Moreover, in 
our framework, Dropout is used throughout the data stream, leading to a special effect, 
which is ensemble learning. Indeed, at each mini-batch in the training process, the use 
of Dropout is equivalent to sampling a single learner from a set of 2K×V possible learn-
ers. Then, by rescaling � t with �[�t] , 2K×V learners with shared parameters can be com-
bined into a single learner to be used at test time. Therefore, methodically, we would 
like to remark that there is not much difference between the dropout technique in aiD-
ropout and the original one used widely in deep learning. However, we also agree that 
there would be certain differences in terms of the ensembling efficiency. Concretely, in 
deep neural nets, the desirable effect of Dropout ensemble could be interpreted well via 
the functional behaviors (such as diversity, mutual explanation) of the predictive dis-
tribution. Whilst the similar effect in our method needs further investigation for better 
understanding.

The ability to prevent overfitting and the ensemble property make iDropout have bet-
ter generalization on future data, which is specially important in streaming learning, 
because data streams can be non-stationary and have high uncertainty.

5.3  Dropout in aiDropout as adaptive data‑dependent regularization

The learning process at each mini-batch in aiDropout for LDA and NB can be reduced 
to maximizing the objective function of the following form:

where �prev
k

 is made available from the previous mini-batch, �k is the drop rate that needs to 
be learned on the current mini-batch (we omit superscript t for simplicity) and ukj is defined 
as follows:

(20)
F = −

1

2𝜎2
||𝛽k − 𝛽

prev

k
||2
2
+

V∑
j=1

ukj�q(𝜋k|𝜆k) log
(
softmax(𝛽k ⊙ 𝜋k)j

)

− KL[q(𝜋k|𝜆k)||p(𝜋k|pk)]
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Consider x1,⋯ , xK as K-dimension one-hot vectors ( xk has only kth element activated) and 
� = [�1�2 ⋯ �V ] where �j is jth column of matrix � , then:

with skj = �T
j
xk is a undropped score value and A(sk) = log

∑V

i=1
exp(ski) is the log-partition 

function.
Assume �k is drawn from q(�k|�k) which is a Bernoulli distribution parameterized by 

�k , corresponding to the Inverted Dropout:

then �q(�k|�k)[�kj] = 1 , and:

with s̃kj = (𝛽i ⊙ 𝜋i)
Txk , A(s̃k) = log

∑V

i=1
exp(s̃ki) . Using this notation, we can write F as:

Since �q(�k|�k)[�kj] = 1 so the dropout technique preserves mean, leading to 
�q(𝜋k|𝜆k)[s̃kj] = skj , we have:

Then we can write:

Since the log-partition function A(.) is convex, (�q(𝜋k|𝜆k)[A(s̃k)] − A(sk)) is always positive 
by Jensen’s inequality and can therefore be interpreted as a regularizer. Indeed, applying 
second-order Taylor approximation to A(s̃k) around the undropped score vector sk , we have 
means and covariances of the dropout features:

then we obtain a following regularizer:

ukj =

⎧⎪⎪⎨⎪⎪⎩

M�
d=1

Nd�
n=1

�dnk�[wdn = j] in LDA

�
d∈Dt

c

Nd�
n=1

�[wdn = j] in NB

softmax(�k)j = exp(skj − A(sk))

q(�ij = 1∕(1 − �k)|�k) = 1 − �k, q(�ij = 0|�k) = �k

softmax(𝛽k ⊙ 𝜋k)j = exp(s̃kj − A(s̃k))

F = −
1

2𝜎2
||𝛽k − 𝛽

prev

k
||2
2
+

V∑
j=1

ukj�q(𝜋k|𝜆k)[s̃kj − A(s̃k)] − KL[q(𝜋k|𝜆k)||p(𝜋k|pk)]

�q(𝜋k|𝜆k)[s̃kj − A(s̃k)] = skj − A(sk) − (�q(𝜋k|𝜆k)[A(s̃k)] − A(sk))

= softmax(𝛽k)j − (�q(𝜋k|𝜆k)[A(s̃k)] − A(sk))

F = −
1

2𝜎2
||𝛽k − 𝛽

prev

k
||2
2
+

V∑
j=1

ukj log
(
softmax(𝛽k)j

)

− (�q(𝜋k|𝜆k)[A(s̃k)] − A(sk))

V∑
j=1

ukj − KL[q(𝜋k|𝜆k)||p(𝜋k|pk)]

A(s̃k) = A(sk) + ∇A(sk)
T (s̃k − sk) +

1

2
(s̃k − sk)

T∇2A(sk)(s̃k − sk)
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where �kj = softmax(sk)j is the model probability, the variance �kj(1 − �kj) measures model 
uncertainty, and

Hence, �q(𝜋k�𝜆k)[A(s̃k)] − A(sk) =
𝜆k

2(1−𝜆k)

∑V

j=1
𝜇kj(1 − 𝜇kj)𝛽

2
kj

 has quadratic format w.r.t �k . In 
other words, the effect of Dropout in aiDropout is equivalent to a L2-regularization R(�):

This is a theoretical interpretation on the ability of iDropout to reduce overfitting. Unlike 
other regularization techniques, each �kj in aiDropout has a different regularization param-
eter �k

2(1−�k)
�kj(1 − �kj)

∑V

j=1
ukj , depending on the input data. This is interesting, since this 

data-dependent regularization allows each �kj to have its own search space to catch the geo-
metric property of data. With this property, dropout in our method is more effective than 
other standard computationally inexpensive regularizers, such as weight decay, filter norm 
constraints and sparse activity regularization (Goodfellow et al., 2016).

6  Empirical evaluation

This section will present extensive experiments to evaluate how our methods (iDropout and 
aiDropout) and baselines deal with two challenges: Short and noisy texts and stability-plastic-
ity dilemma. In terms of short and noisy texts, we use two popular scenarios: Evaluating on 
a hold-out test set and evaluating on consecutive arriving mini-batches. The former scenario 
(Broderick et al., 2013; McInerney et al., 2015) is often used to examine the performance of 
the methods in simulated streaming environments on datasets without time stamp. Meanwhile, 
the latter scenario (Masegosa et al., 2017, 2020) helps evaluate them on actual streaming envi-
ronments. Regarding stability-plasticity dilemma, we investigate how the methods deal with 
concept drift and forgetting the knowledge learned from past data.

�q(𝜋k|𝜆k)[A(s̃k)] − A(sk) =
1

2
�q(𝜋k|𝜆k)[(s̃k − sk)

T∇2A(sk)(s̃k − sk)]

=
1

2
Tr[∇2A(sk)Covq(𝜋k|𝜆k)(s̃k)] =

1

2

V∑
j=1

𝜇kj(1 − 𝜇kj)Varq(𝜋k|𝜆k)[s̃kj]

=
1

2

V∑
j=1

𝜇kj(1 − 𝜇kj)𝛽
T
j
Covq(𝜋k|𝜆k)(xk)𝛽j

�T
j
Covq(�k|�k)(xk)�j =

K∑
m=1

�k

1 − �k
x2
km
�2
mj

=
�k

1 − �k
�2
kj

R(𝛽) = (�q(𝜋k|𝜆k)[A(s̃k)] − A(sk))

V∑
j=1

ukj

=
𝜆k

2(1 − 𝜆k)

V∑
j=1

[
𝜇kj(1 − 𝜇kj)

V∑
j=1

ukj

]
𝛽2
kj
.
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6.1  Baselines

We compare aiDropout3 to iDropout (Nguyen et al., 2019), SVB (Broderick et al., 2013), 
SVB-PP (Masegosa et al., 2017),4 PVB (McInerney et al., 2015). We select the best result 
of each method by using grid search. The range of each parameter is as follows:

• the forgetting factor � ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.99} for SVB-PP.
• the population size � ∈ {103, 104, 105, 106, 5.103, 5.104, 5.105, 5.106} and dimming fac-

tor � ∈ {0.5, 0.6, 0.7, 0.8, 0.9} for PVB.
• the variance �2 ∈ {0.01, 0.1, 1, 10, 100} and the drop rate dr ∈ {0, 0.15, 0.25, 0.35} for 

iDropout.
• the variance �2 ∈ {0.01, 0.1, 1, 10, 100} , the hyperparameter of the Gumbel-Softmax 

distribution � = 0.01 for aiDropout.

Moreover, for iDropout and aiDropout, the gradient-based algorithm is Adagrad with 
learning rate 0.01, the maximum number of Adagrad iterations 100, and the number of 
iterations between the updating phases of local and global parameters in each mini-batch is 
set to 10.

6.2  Experiments on noisy and sparse data

To evaluate how the methods deal with noisy and sparse data, we conduct extensive experi-
ments with both chronological and non-chronological datasets. While the two chrono-
logical datasets (The Irish Times and News Aggregator) have available published time for 
each document, the six non-chronological datasets do not have this information. On the 
non-chronological datasets, we follow the experimental scenarios of prior studies (Nguyen 
et al., 2021; Broderick et al., 2013; Duc et al., 2017; McInerney et al., 2015; Van et al., 
2022) to create a sequence of mini-batches for training and a hold-out set for evaluat-
ing after having finished traininig each mini-batch. The experiments not only show how 
the methods deal with sparse and noisy data but also consider the stability of the meth-
ods when they are evaluated on the same hold-out test set. Meanwhile, we follow the 

Table 1  Six datasets without 
time stamp

Dataset Vocab size Training size Testing size Words/doc

20Newsgroups 24905 17846 1000 88.2
Grolier 15269 23044 1000 79.9
TMN 11599 31604 1000 24.3
TMN-title 2823 26251 1000 4.6
Yahoo-title 21439 517770 10000 4.6
NYT-title 46854 1664127 10000 5.0

3 The implementation of aiDropout and iDropout is available at https:// github. com/ pvh16 02/ aiDro pout.
4 SVB-HPP is not included since its application requires non-trivial efforts. Further, as observed by 
Masegosa et al. (2017), SVB-HPP is often comparable to the best SVB-PP.

https://github.com/pvh1602/aiDropout
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experimental scenarios of recent studies (Masegosa et  al., 2017, 2020; Van et  al., 2022) 
on the two chronological datasets to examine how the methods work on actual noisy and 
sparse data streams.

6.2.1  Experiments on datasets without time stamp

Base model and datasets: In this subsection, we use LDA as our base model. As men-
tioned in Sect. 4, LDA, a popular Bayesian model, is widely applied to uncover hidden top-
ics. We analyze how the methods deal with sparse and noisy data by using six non-chrono-
logical datasets, including two long text datasets (20Newsgroups,5 Grolier)6 and four short 
text ones (TagMyNews (TMN),7 TagMyNews-title (TMN-title), Yahoo-title, NYT-title8 
with some statistics in Table 1.

Fig. 2  Performance of the 5 methods on datasets without time stamp. LDA is the base model. Higher is bet-
ter

5 http:// qwone. com/ ~jason/ 20New sgrou ps/.
6 https:// cs. nyu. edu/ ~roweis/ data. html.
7 http:// acube. di. unipi. it/ tmn- datas et/.
8 http:// archi ve. ics. uci. edu/ ml/ datas ets/ Bag+ of+ Words.

http://qwone.com/%7ejason/20Newsgroups/
https://cs.nyu.edu/%7eroweis/data.html
http://acube.di.unipi.it/tmn-dataset/
http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
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Settings: To simulate streaming data, we randomly shuffle and then divide each data-
set into a sequence of mini-batches with batchsize: 500 for Grolier, 20Newsgroups, TMN, 
TMN-title; 5000 for NYT-title, Yahoo-title. We set prior of topic mixture � = 0.01 ; the 
number of topic K = 50 for Grolier, 20Newsgroups, TMN, TMN-title; K = 100 for NYT-
title, Yahoo-title. We note that batchzise and the number of topics are selected based on the 
sizes of datasets. We can consider the stability of our methods (aiDropout and iDropout) 
compared to the others when they are evaluated on the same hold-out test set after having 
finished training each mini-batch. Moreover, we conduct experiments with different drop-
out rates (dr ∈ {0;0.15;0.25;0.35}) for iDropout to show the sensitivity of iDropout w.r.t 
dropout rate.

Evaluation metric: Log Predictive Probability (LPP) (Hoffman et al., 2013) and Nor-
malized Pointwise Mutual Information (NPMI) (Bouma, 2009) are used. While LPP meas-
ures the generalization of a model on unseen data, NPMI is used to examine the coherence 
and interpretability of the learned topics. LPP calculates the probabilities of a part of a 
test document given the remaining part and trained model’s parameters. NPMI is based on 

Fig. 3  Performance of aiDropout compared to iDropout with different drop rates. LDA is the base model. 
Higher is better
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the co-occurrence of pairs of top words of learned topics. The details on the calculation of 
these two metrics are given in the Appendix B.

Experimental results: 
Figure  2 shows the performance of all methods. The results of aiDropout roughly 

approximate that of iDropout and are better than the others. For short text datasets (NYT-
title, Yahoo-title,TMN, and TMN-title), it is quite likely to encounter the unwanted prop-
erties of data such as noise and sparsity in these datasets. While noisy data may lead to 
overfitting, sparse data causes the model to make wrong predictions due to the lack of 
information. Thanks to the benefits of dropout, our methods can address this problem 
effectively. In contrast, the other methods do not have efficient ways to deal with this issue, 
hence give poor performance. The LPPs and NPMIs of baselines reduce significantly 
although more mini-batches arrive. It means that the baselines suffer from overfitting on 
short and noisy datasets. We also consider the performances of the methods on long (regu-
lar) text datasets (20Newsgropus and Grolier). It is obvious that the baselines do not suffer 
from decreasing both LPP and NPMI when more data comes. SVB and SVB-PP become 
too stable once received large enough data. This may explain why the results of these two 
methods are roughly unchanged. It can be seen that PVB does not encounter this prob-
lem and has a considerable evolution over time. Our proposed methods also overcome this 
issue and have superior results.

Figure 3 shows the results of LPP measurement on aiDropout and iDropout with differ-
ent drop rates(dr ∈ {0, 0.15, 0.25, 0.35} ). It can be seen that aiDropout with adaptive drop 
rate has different effects on different datasets. It is remarkable to see that with four short 
text datasets (NYT-title, Yahoo-title,TMN, and TMN-title) that have two typical proper-
ties in streaming data, i.e., noise and sparsity, the results of aiDropout outperform that of 
iDropout with most drop rates. This may be explained that while iDropout with fixed drop 
rate is not flexible in handling noisy and sparse data, aiDropout enables the drop rate to 
be automatically adapted along the change in data. However, with two long text datasets 
(20Newsgropus and Grolier), aiDropout seems not to work as well as itself with the short 
datasets. This results could be clarified that as training on these long datasets does not 
severely meet the problem of noise and sparsity, learning the drop rate does not give a sig-
nificant improvement.

Fig. 4  Performance of the 5 methods on datasets with time stamp. LDA is the base model. Higher is better
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6.2.2  Experiments on datasets with time stamp

Base model and datasets:  In this subsection, LDA is used as a base model for topic 
modeling and NB for classification. We will study how the methods work on actual data 
streams on two chronological datasets which are The Irish Times dataset9 and News Aggre-
gator dataset.10 Particularly, The Irish Times corpus contains 1376099 data instances from 
02/01/1996 to 31/12/2017 with 6 classes and its vocab size is 25328. News Aggregator 
dataset includes 422937 news stories between 10/03/2014 and 10/08/2014 with 4 classes 
and its vocab size is 25509.

Settings:  When evaluating using LDA, we simply throw away labels and use K = 100 
and � = 0.01 . We also divide the whole datasets into mini-batches in which each mini-
batch corresponds to a month in The Irish Times and two consecutive days in News Aggre-
gator. To find out how our proposed frameworks act in streaming environments compared 
with other methods, we use documents of the next mini-batch to evaluate the model at 
any mini-batch. Additionally, we also study on how sensitive iDropout is when dropout 
rate is tuned, particularly we set dr ∈ {0;0.1;0.3;0.5} with The Irish Times dataset and 
dr ∈ {0;0.2;0.4;0.6;0.8} with News Aggregator dataset when NB is base model.

Fig. 5  Performance of the 5 methods on datasets with time stamp. NB is the base model. Higher is better

Fig. 6  Performance of aiDropout compared to iDropout with different drop rates. NB is the base model. 
Higher is better

9 https:// www. kaggle. com/ thero hk/ irela nd- histo rical- news/.
10 https:// www. kaggle. com/ uciml/ news- aggre gator- datas et.

https://www.kaggle.com/therohk/ireland-historical-news/
https://www.kaggle.com/uciml/news-aggregator-dataset
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Evaluation metric: We use LPP to evaluate the learned topic model in LDA and accu-
racy to evaluate the classification performance in NB.

Experimental results on LDA: The results are shown in Fig.  4. It is clear that our 
methods with dropout outperform the others. Comparing the results of aiDropout and 
iDropout on both of the two datasets, we see that while the performance of aiDropout on 
The Irish Times is much better than that of iDropout, the two frameworks give similar 
results on News Aggregator. This could be due to the small number of mini-batches, and 
the fairly large number of data points per mini-batch on News Aggregator, hence the aiD-
ropout cannot enhance significantly compared to the one with fixed drop rate. It can also be 
easily seen that the methods with no dropout suffer from overfitting and decline in perfor-
mance as learning from more data, especially SVB. In contrast, our proposed methods with 
dropout demonstrate the effectiveness of handling overfitting. This may be explained that 
because both two datasets are short-text and contain unwanted properties such as noise and 
sparsity, the use of dropout helps our methods reduce overfitting, and hence obtains better 
generalization.

Experimental results on NB: 
Figure 5 shows the performance of five methods on classfication task. In particular, the 

results of aiDropout are slightly better than that of iDropout. Compared to the others with 
no dropout, the performance of aiDropout with adaptive drop rate gets about 6–8% better 
than SVB, and about 3–4% better than SVB-PP and PVB on The Irish Times, about 5–6% 
better than SVB and SVB-PP, and about 1–2% better than PVB on News Aggregator. It is 
clear that dropout plays a crucial role in helping our framework work effectively in data 
streams. We also notice that about the 175th mini-batch on The Irish Times dataset, the 
results of all methods drop due to abnormal changes. Again, thanks to the benefits of drop-
out, our proposed methods do not fall too deeply and then recover quickly to keep leading 
on the successive mini-batches.

Figure 6 shows the accuracy for aiDropout and iDropout with different settings of drop 
rate ( dr ∈ {0, 0.1, 0.3, 0.5} with The Irish Times, and dr ∈ {0.2, 0.4, 0.6, 0.8} with News 
Aggregator). We observe that the performance of aiDropout is slightly higher than that of 
iDropout with the best drop rate setting (dr = 0.5 with The Irish Times, and dr = 0.2 with 
News Aggregator), and outperforms the others. Specifically, the datasets used in this exper-
iment are short-text, and hence contain significant undesirable properties such as noise and 
sparsity. Our framework with adaptive drop rate tends to work more flexibly than the fixed 
drop rate based method when dealing with this problem. It can also be seen that there is not 
much difference between the performance of aiDropout and various settings of iDropout 
on News Aggregator compared to The Irish Times. It seems that when the number of mini-
batches on News Aggregator is small and the number of data points per mini-batch is quite 
large, aiDropout and iDropout can obtain similar results.

6.3  Balancing stability and plasticity

In this subsection, we consider how the methods balance stability and plasticity when 
training on data streams. We design experimental scenarios with various kinds of concept 
drifts to evaluate the plasticity of the methods for adapting to new concepts. Meanwhile, 
we examine the forgetting phenomenon of the methods to evaluate their stability.
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6.3.1  Evaluation on sudden concept drift

The problem in which the underlying relationships in the data change suddenly is referred 
to as sudden concept drift (Gama et  al., 2014; Krawczyk & Cano, 2018). This issue is 
very likely to be encountered in streaming data. We evaluate how well our frameworks and 
other methods deal with abrupt changes in data streams. In appendix C, we present how the 
methods face incremental and recurring concept drifts (Krawczyk & Cano, 2018).

Base model and settings: We use LDA with K = 100 and � = 0.01 as our base model 
and two datasets (News Aggregator and The Irish Times) for this experiment. Each dataset 
is split into mini-batches, each mini-batch contains 2000 documents of a particular class, 
and all mini-batches of the same class are placed adjacent to each other. Therefore, concept 
drift happens noticeably when data transfers from one class to another. After learning on 
each mini-batch, the model is evaluated by computing LPP on the next mini-batch.

Experimental results: The result is illustrated in Fig. 7. It is clear that after each drift 
point, SVB recovers slowly and gives poor performance when encountering concept drift. 
SVB-PP and PVB seem to adapt better to concept drift. While SVB-PP uses a forgetting 
factor which allows it to learn new information from new data, the variance of the vari-
ational posterior in PVB never decreases below a given threshold indirectly controlled by 
population size � that helps adapt to concept drift. iDropout gets better result compared to 

Fig. 7  Performance of the methods when facing with sudden concept drift on The Irish Times and News 
Aggregator datasets. LDA is the base model. Higher is better
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the mentioned methods. This may be easily explained that iDropout has the balance mech-
anism which enables it to learn new underlying distribution of data. In addition, thanks to 
the ability to reduce overfitting and the ensemble property of dropout, the fixed drop rate 
based method can obtain better generalization, and hence prevent the performance from 
falling too deeply when facing the concept drift problem. Finally, aiDropout outperforms 
the others significantly. This result may be due to the drop rate adaptation over time. Par-
ticularly, The Irish Times and News Aggregator datasets are short-text datasets that can 
contain undesirable properties, such as noise and sparsity. aiDropout enables the drop rate 
to be adaptively learned corresponding to the changes in arriving data, thereby it addresses 
the problem of noisy and sparse data in streaming data better than the method with a fixed 
drop rate.

Next, we examine the methods’ behaviors more thoroughly when dealing with concept 
drift. Following by Guzy and Woźniak (2020) and Shaker and Hüllermeier (2015), we 
evaluate the five methods in terms of the lowest LPP achieved in a drift area, the median 
LPP in each concept, and restoration time for each new concept. While the lowest LPP 
shows the performance of methods when a new concept has just appeared, the median LPP 
illustrates the ability to learn this new concept from all data. Meanwhile, restoration time 
shows the number of required mini-batches for a method to achieve back good performance 
after appearing a new concept. For each new concept, restoration time TR is calculated as 
follow:

where t1 is a mini-batch where the LPP drops below 95% of the median LPP of an old con-
cept, t2 is a mini-batch where the LPP achieves 95% of the mean LPP of the next concept, 
and T is the total number of mini-batches. We use again the available source code11 from 
Guzy and Woźniak (2020) to compute the mentioned measures.

Table 2 shows the performance of the five methods in terms of the average of lowest 
LPP, median LPP, and restoration time on all times that concepts happen. In terms of the 
lowest LPP, both aiDropout and iDropout achieve significantly better results than PVB, 
SVB-PP, and SVB. It means that aiDropout and iDropout can work better than the remain-
ing methods on data from a new concept without any training on this concept. After that, 

(21)TR =
t2 − t1

T

Table 2  The lowest LPP, median LPP, and restoration time of the five methods when dealing with sudden 
concept drifts

For the lowest LPP and median LPP, higher is better. For restoration time, lower is better

aiDropout iDropout PVB SVB-PP SVB

The Irish times Lowest LPP – 9.18982 – 9.18982 – 9.58466 – 9.6715 – 9.61944
Median LPP – 8.27008 – 8.61166 – 8.8322 – 8.72202 – 9.45928
Restoration time 0.17194 0.25264 0.22924 0.26344 0.18918

News aggregator Lowest LPP – 8.99844 – 9.2935 – 9.52333 – 9.66889 – 9.80323
Median LPP – 8.1325 – 8.36248 – 8.77829 – 8.81617 – 9.26231
Restoration time 0.025767 0.025733 0.074067 0.069233 0.0338

11 https:// gitlab. com/ filip mg/ ds- dropo ut- submo dels/-/ blob/ master/ evalu ators/ Drift Evalu ator. py.

https://gitlab.com/filipmg/ds-dropout-submodels/-/blob/master/evaluators/DriftEvaluator.py
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many mini-batches arrive, the LPPs of all methods increase considerably Fig. 7. Therefore, 
their median LPPs are noticeably higher than their lowest LPPs, respectively. Because aiD-
ropout and iDropout have high uncertainty, they can learn new concepts well. Thus, their 
LPPs are higher than PVB, SVB-PP, SVB. Moreover, aiDropout uses adaptive droprate, 
and it obtains a better median LPP than iDropout. It is obvious that online Bayesian updat-
ing (such as SVB Broderick et al., 2013) often suffers from the phenomenon of overcon-
fident posterior after receiving a large enough amount of data. Consequently, it cannot 
learn new concepts well. After the LPPs of SVB drop significantly (the lowest LPP is low) 
when concept drift happens, its median LPP does not increase significantly in comparison 
with the lowest LPP. SVB-PP and PVB alleviate this issue, however, they do not achieve 
good results as aiDropout and iDropout. Regarding restoration time, aiDropout achieves 
the smallest value among the five methods. It means that aiDropout requires the smallest 
number of mini-batches to work well on a new concept in comparison with the remaining 
methods. Meanwhile, iDropout restore more quickly than PVB, SVB-PP, and SVB on the 
News Aggregator dataset, but it needs more mini-batchs on the Irish Times dataset. It is 
acceptable when iDropout achieves significantly better median LPP than PVB, SVB-PP, 
and SVB.

6.3.2  Catastrophic forgetting phenomenon when training LDA on data streams

In this subsection, we examine the stability of the methods in streaming environments. 
The methods often deal with the problem of forgetting knowledge acquired from past data, 
known as catastrophic forgetting phenomenon (Ahn et  al., 2019; Ebrahimi et  al., 2020; 
Kirkpatrick et al., 2017; Nguyen et al., 2018), when training on new data. This phenom-
enon is studied carefully in the continual learning field where a method must learn multiple 
tasks consecutively. We follow the experimental scenarios of continual learning to evaluate 
the catastrophic forgetting phenomenon of the methods. In detail, learning hidden topics in 
each class is considered as a task and tasks are learned consecutively as in the experimental 
scenarios of the sudden concept drift on News Aggregator and The Irish Times datasets. 
However, we create a hold-out test set (2000 short texts) for each class. The average LPP 
on the hold-out test sets of past classes is calculated after finishing training each class. The 
predictive ability of a method on past data shows how it deals with the forgetting problem.

Figure 8 presents the average LPP of the methods. It is obvious that forgetting phenom-
enon is unavoidable for artificial intelligence as well as human beings. The average LPPs of 

Fig. 8  Catastrophic forgetting phenomenon when training LDA on data streams. LPP is averagely calcu-
lated on hold-out test sets of past classes. Higher is better
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the methods decrease when training new tasks. Albeit both iDropout and aiDropout suffer 
from catastrophic forgetting, their average LPPs are superior to these of remaining methods. 
Because our methods learn each task well and outperform the others with significant mag-
nitudes. Moreover, some studies (De Lange et al., 2021; Goodfellow et al., 2013) practically 
investigated dropout in continual learning and they showed that dropout can reduce the cata-
strophic forgetting phenomenon. Meanwhile, according to our theoretical analyses, SVB is the 
most stable, therefore, the average LLPs of SVB reduce the least on both of the two datasets. 
While SVB-PP and PVB deal better with concept drift than SVB, they forget previous tasks 
more considerably than SVB. These results demonstrate stability-plasticity dilemma that all 
the methods must face with.

7  Conclusion

In this paper, we aim to develop a framework which helps learn a wide range of Bayesian 
models on data streams. We focus on two popular challenges: Noisy and sparse data and 
stability-plasticity dilemma to build an effective streaming method. We propose aiDropout, 
a novel and straightforward framework, which is based on the transition model and adaptive 
dropout technique to address these challenges. The transition model creates a simple mecha-
nism to balance knowledge learned from past data and current data. In spite of simplicity, 
aiDropout avoids being too stable to learn new concepts. Meanwhile, the adaptive dropout 
brings the properties of data-dependent regularization and ensemble learning to tackle the sta-
bility-plasticity dilemma as well as handle noisy and sparse data. The extensively experimen-
tal results shows that aiDropout prevents overfitting which prior methods suffer when training 
in noisy and sparse data. Although the performance of aiDropout decreases dramatically when 
new concepts happen, aiDropout is still significantly better than other methods. Then, the 
performance of aiDropout increases more quickly as well as significantly than those of other 
methods. Moreover, our framework achieves better performances than the baselines in facing 
catastrophic forgetting phenomenon.

In the future, we will focus on three topics to make aiDropout more effective and impact-
ful. Firstly, our framework needs to manually tune the parameter of the transition model � . 
Therefore, a solution to automatically learn this parameter will make aiDropout more practi-
cal in actual streaming environments. Secondly, in this paper, aiDropout is merely applied to 
the two Bayesian models: LDA and Multinomial naive Bayes for text mining. We will aim to 
exploit aiDropout for recommender systems that also deals with the noise and sparse rating 
matrix. Finally, this work only focuses on learning one task on data streams. In the next work, 
we will consider how our framework deals with multiple tasks in online continual learning.

A iDropout for LDA and NB

A.1 When LDA is the base model

Learning process: Inference for local variables � and z can be done as in aiDropout. We only 
consider the objective function with respect to � t

k
:
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The objective function F is guaranteed to be concave. In deed, − 1

2�2
||� t

k
− � t−1

k
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are obviously concave with respect to � t
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 , while the log-sum-exp is also a well-known con-

vex function. Therefore, F(� t
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) is concave with respect to � t

k
 , and we can find its maximum 

by applying gradient ascent on F. We sum up the learning algorithm of iDropout for LDA 
in Algorithm 4. 

When NB is the base model

The generative process for each mini-batch t is as follows. Firstly, draw the global variable � t : 
� t
c
∼ N(� t−1
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where Dt
c
 includes all documents which belong to class c, Nc is the total number of words 

in all documents belonging to class c. Learning for NB is very simple. At each mini-batch 
t, we use gradient ascent to maximize F(� t

c
) with respect to � t

c
.

B Evaluation metrics for the unsupervised task

Log predictive probability  (Hoffman et  al., 2013): Predictive Probability measures the 
predictiveness and generalization of a model on new data. Assume that after learning from 
training data Dtrain , we obtain the model parameter � . For each document in testing Dtest 
with more than or equal to 5 words, we divide randomly into two disjoint parts �

���
 and 

�
��

 with a ratio of 80:20. We next do inference for �
���

 to estimate �obs . Then, we approxi-
mate the predictive probability �

��
 as:

Then Log Predictive Probability of each document d is:

(with |�
��
| is the length of d in �

��
 ) and on the whole testing Dtest is:

Log Predictive Probability was averaged from 5 random splits, each was on 1000 
documents.
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(24)Log Predictive Probability =

∑
d∈Dtest

LPPd

�Dtest�

Table 3  Data streams with incremental and recurring concept drifts on news aggregator

LDA is trained consecutively on the mini-batches of classes. While class order shows the class sequence 
that is trained consecutively, final mini-batch index is the final mini-batch of the corresponding class in the 
mini-batch sequence. Regarding incremental concept drift, at the change point between two classes, we add 
5 mixed mini-batches which include data from both of the two classes. In terms of recurring concept drift, 
the mini-batches of each class are divided into three parts to simulate the recurring concept drift with three 
iterations

Incremental Class order 1 2 3 4 – – – – – – – –
Final mini-batch index 54 108 183 208 – – – – – – – –

Recurring Class order 1 2 3 4 1 2 3 4 1 2 3 4
Final mini-batch index 20 40 65 72 92 112 137 144 161 174 199 207
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Normalized Pointwise Mutual Information  (Bouma, 2009): NPMI is the measure to 
help us see the coherence or semantic quality of individual topics. For each topic k, we pick a 
set �� = {wk

1
,wk

2
, ...,wk

t
} , including t words with the highest probabilities in topic distribution 

�k . NPMI of one topic k is computed as follows:

NPMI(k,��) =
2

t(t − 1)

t∑
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i−1∑
j=1

log
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j
)
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Fig. 9  Performance of the methods when facing with incremental concept drift on News Aggregator data-
set. LDA is the base model. Higher is better

Fig. 10  Performance of the methods when facing with recurring concept drift on News Aggregator dataset. 
LDA is the base model. Higher is better
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where D is the total number of documents, D(wk
i
) is the number of docs containing wk

i
 , 

D(wk
i
,wk

j
) is the number of docs containing pair (wk

i
,wk

j
).

Overall, NPMI of a model with all K topics is:

In the experiments, we choose t = 20 for each topic.

C Evaluation on incremental and recurring concept drifts

We conduct more experiments on News Aggregator dataset to investigate how our methods 
(iDropout and aiDropout) and the baselines deal with incremental and recurring concept 
drifts. We use LDA with K = 100 and � = 0.01 as our base model for these experiments. 
Each dataset is split into mini-batches, each mini-batch contains 2000 documents. Regard-
ing incremental concept drift, we randomly shuffle data instances in each class and then 
divide them into mini-batches. We train LDA on the mini-batches of consecutive classes. 
At the change point between two classes, we add 5 mixed mini-batches which include 
data from both of the two classes. In terms of recurring concept drift, the mini-batches of 
each class are divided into three parts to simulate the recurring concept drift with three 
iterations. Table 3 shows mini-batch sequence in incremental and recurring concept drifts. 
After finishing training each mini-batch, we measure LPP on the next mini-batch to evalu-
ate how the methods adapt to new concept drift.

Figures 9 and 10 illustrate the performance of the methods when dealing with the incre-
mental and recurring concept drifts respectively. Overall, both iDropout and aiDropout 
achieve better performance than the baselines. Although their LPPs decrease dramatically 
when new concept drift happens, they adapt quickly to the new concept after a few next 
mini-batches. It is obvious that the decrease in the performances of all methods in the 
incremental concept drift is less than this in both the sudden and recurring concept drifts. 
In particular, aiDropout outperforms significantly iDropout in the recurring concept drift 
where several new concepts occur. This phenomenon can be because the adaptive mecha-
nism helps learn dropout rate automatically to adapt to new data effectively. Moreover, 
Table 4 shows the lowest LPP, median LPP and restoration time of the 5 methods when 

(25)NPMI =
1

K

K∑
k=1

NPMI(k, t)

Table 4  The lowest LPP, median LPP and restoration time of the 5 methods when dealing with gradual and 
recurring concept drift on News Agrregator dataset

For the lowest LPP and median LPP, higher is better. For restoration time, lower is better

aiDropout iDropout PVB SVB-PP SVB

Recurring concept drift Lowest LPP – 9.16939 – 9.21681 – 9.44007 – 9.53854 – 9.50774
Median LPP – 8.23875 – 8.49794 – 8.90354 – 8.92836 – 9.17998
Restoration time 0.157218 0.242427 0.414582 0.414582 0.359682

Gradual concept drift Lowest LPP – 8.8894 – 8.96813 – 9.23823 – 9.36473 – 9.60927
Median LPP – 8.20903 – 8.3581 – 8.77503 – 8.838 – 9.25923
Restoration time 0.0048 0.0129 0.404433 0.4106 0.0483
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dealing with gradual and recurring concept drift on News Agrregator dataset. Overall, the 
behaviours of the 5 methods on recurring and gradual concept drifts are similar to them on 
sudden one. Both aiDropout and iDropout drop LPP least when a new concept happens, 
then they restore most quickly to achieve better performance than the remaining methods.

D Discussion on computational and memory complexity

This section discusses the computational and memory complexity of iDropout and aiD-
ropout. We make an intuitive comparison with the baselines (SVB, PVB, and SVB-PP) 
albeit it is difficult to theoretically analyze the computational and memory complexity of 
the methods for a general model. Then, we make an empirical comparison.

We consider a general model B(�, z, x) (as in Sect.  3) where � is the global variable, 
x = x1∶M is the set of observations, and z = z1∶M is the set of hidden variables of observa-
tions. All methods often use variational inference for inferring local variable z. However, 
while SVB, PVB, SVB-PP aim to full Bayesian approximation for global variable � based 
on variational inference, iDropout and aiDropout use the maximum a posterior (MAP) to 
learn a point estimate. The model is consecutively trained on collected mini-batches in a 
general learning scenario in a streaming environment. Let �t and �t be variational param-
eters of � and z at mini-batch t respectively, � be the hyperparameter of prior distribution 
p(� t|�) , and � be a forgetting factor. When learning the model on a mini-batch Dt , the 
objective function of each method is re-written as bellow:

For SVB:12

For PVB:

For SVB-PP:

For iDropout:

where 𝛽 t = f (𝛽 t ⊙ 𝜋t) and �t is sampled from Bernoulli distribution with hyperparameter p.
For aiDropout:

(26){�̂�t, �̂�t} = argmax
𝜂t ,𝜙t

{
Eq(zt|𝜙t)

[
log

p(Dt, zt|𝛽 t)
q(zt|𝜙t)

]
− KL

[
q(𝛽 t|𝜂t)||q(𝛽 t|𝜂t−1)]

}

(27){�̂�t, �̂�t} = argmax
𝜂t ,𝜙t

{
Eq(zt|𝜙t)

[
log

p(Dt, zt|𝛽 t)
q(zt|𝜙t)

]
− KL

[
q(𝛽 t|𝜂t)||p(𝛽 t|𝛾)]

}

(28)

{�̂�t, �̂�t} = argmax
𝜂t ,𝜙t

{
Eq(zt|𝜙t)

[
log

p(Dt, zt|𝛽 t)
q(zt|𝜙t)

]
− KL

[
q(𝛽 t|𝜂t)||q(𝛽 t|𝜌𝜂t−1 + (1 − 𝜌)𝛾)

]}

(29){𝛽 t, �̂�t} = argmax
𝛽 t ,𝜙t

{
log p(𝛽 t|𝛽 t−1) + Eq(zt|𝜙t)

[
log

p(Dt, zt|𝛽 t)
q(zt|𝜙t)

]}

12 The objective function can be seen in some studies (Nguyen et al., 2018; Theis and Hoffman 2015).
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where 𝛽 t = f (𝛽 t ⊙ 𝜋t) and �t is sampled from variational distribution q(�t|�t).
We emphasize that the five methods have the same objective function w.r.t the vari-

ational parameter �t of local variable z, the parameters related to the global variable 
make them different. We will focus on discussing their computational and memory com-
plexity on global variables.

Regarding memory complexity, compared to the three baselines (SVB, PVB, and 
SVB-PP), both aiDropout and iDropout must use dropout matrix �t and sample it in 
each iteration. Note that �t has the same size as the global variable � . Moreover, because 
aiDropout approximates the true posterior of �t by a variational distribution q(�t|�t) in 
order to create an adaptive droprate mechanism, it must store variational parameter �t . 
In our work, the size of �t is set the same as �t . Therefore, iDropout and aiDropout must 
store more parameters than the baselines by once and twice the size of � t , respectively.

In terms of computational complexity, both aiDropout and iDropout are often more 
complex than the baselines. They use gradient-based optimizers that often require a 
large number of iterations to learn global parameters. Moreover, due to optimizing the 
dropout rate, aiDropout requires more computation than iDropout to do an iteration. 
Meanwhile, SVB, PVB, and SVB-PP achieve closed-form solutions when they apply for 
conjugate models (as in our case studies); therefore, they often run considerably faster 
than both iDropout and aiDropout in these cases. When working with non-conjugate 
models, iDropout can compare to the baselines. However, it is difficult to make a clear 
comparison because they learn different models when both iDropout and aiDropout 
change the prior distribution of � compared to the baselines.

From the discussion above, it is evident that aiDropout trades off the quality of the 
learned model against computational and memory complexity. However, we consider a 
general learning scenario in a streaming environment where data is often collected in 
mini-batches based on the fixed mini-batch size or timestamp; then a model is trained 
on each mini-batch. Therefore, the velocity and volume of arriving mini-batches directly 
make the computational and memory complexity requirements for learning methods. 
iDropout and aiDropout are effective solutions when working on a streaming environ-
ment in which they can respond to time and memory requirements well.

(30)
{𝛽 t, �̂�t, �̂�t, p̂t} = argmax

𝛽 t ,𝜙t ,𝜆t ,pt

{
log p(𝛽 t|𝛽 t−1) + Eq(zt|𝜙t)

[
log

p(Dt, zt|𝛽 t)
q(zt|𝜙t)

]

−KL
[
q(𝜋t|𝜆t)||p(𝜋t|pt)]}

Table 5  The average training time (second) of minibatches when using the five methods to learn LDA and 
NB

Method LDA NB

News aggregator The Irish times News aggregator The Irish times

aiDropout 185 227 3.3103 3.8347
iDropout 155 161 1.0774 1.1521
PVB 24 26 0.0424 0.0334
SVB-PP 20.6 23 0.0405 0.0325
SVB 20.5 23.2 0.0413 0.0333
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To show the trade-off in aiDropout more obviously, we measure mini-batch’s average 
training time when using the five methods to learn LDA as in subsection 6.3.1 (Fig. 8) and 
NB as in 6.2.2 (Fig. 5). We use our server (64 cores CPU, 128G DDR) to train LDA and 
Google colab with free GPU Tesla K80 to train NB. Table 5 shows the results. aiDropout 
and iDropout are noticeably slower than the baselines in both LDA and NB. Because LDA 
and NB are conjugate models, the baselines obtain closed-form solutions. Meanwhile, both 
aiDropout and iDropout require large iterations (100 in our experiments) when conducting 
gradient-based algorithms.
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