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Abstract
We consider the problem of extracting a deterministic finite automaton (DFA) from a 
trained recurrent neural network (RNN). We present a novel algorithm that uses exact 
learning and abstract interpretation to perform efficient extraction of a minimal DFA 
describing the state dynamics of a given RNN. We use Angluin’s L∗ algorithm as a learner 
and the given RNN as an oracle, refining the abstraction of the RNN only as much as nec-
essary for answering equivalence queries. Our technique allows DFA-extraction from the 
RNN while avoiding state explosion, even when the state vectors are large and fine differ-
entiation is required between RNN states. We experiment on multi-layer GRUs and LSTMs 
with state-vector dimensions, alphabet sizes, and underlying DFA which are significantly 
larger than in previous DFA-extraction work. Aditionally, we discuss when it may be rel-
evant to apply the technique to RNNs trained as language models rather than binary clas-
sifiers, and present experiments on some such examples. In some of our experiments, the 
underlying target language can be described with a succinct DFA, yet we find that the 
extracted DFA is large and complex. These are cases in which the RNN has failed to learn 
the intended generalisation, and our extraction procedure highlights words which are mis-
classified by the seemingly “perfect” RNN.
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1 Introduction

In recent years, there has been significant interest in the use of neural models, and in 
particular recurrent neural networks (RNNs), for learning languages. Like other super-
vised machine learning techniques, RNNs are trained based on a large set of examples 
of the target concept.

RNNs can reasonably approximate a variety of languages, and even precisely repre-
sent a regular language (Casey 1998). However, they are in practice unlikely to gener-
alise exactly to the concept being trained, and what they eventually learn in actuality is 
unclear (Omlin&Giles 2000). Indeed, several lines of work attempt to glimpse into the 
RNN black-box (Zeng et  al. 1993; Omlin&Giles 1996; Cechin et  al. 2003; Jacobsson 
2005; Karpathy et al. 2015; Li et al. 2015; Linzen et al. 2016; Strobelt et al. 2016; Lei 
et al. 2016; Kádár et al. 2016; Shi et al. 2016; Adi et al. 2016; Murdoch&Szlam 2017; 
Wang et al. 2017; Arras et al. 2017).

In contrast to the supervised ML paradigm, the exact learning paradigm consid-
ers setups that allow learning a target language without approximation. For example, 
Angluin’s L∗ algorithm enables the learning of any regular language, provided a teacher 
capable of answering membership (request to label example) and equivalence (compari-
son of proposed language with target language) queries is available (Angluin 1987).

In this work we use exact learning to elicit the true concept class of a trained recur-
rent neural network. This is done by treating the trained RNN as the teacher of the L∗ 
algorithm. To the best of our knowledge, this is the first attempt to use exact learning 
with queries and counterexamples to extract an automaton from a given RNN.

Recurrent neural networks Recurrent neural networks (RNNs) are a class of neural 
networks which are used to process sequences of arbitrary lengths. When operating over 
sequences of discrete alphabets, the input sequence is fed into the RNN on a symbol-
by-symbol basis. For each input symbol the RNN outputs a state vector representing the 
sequence up to that point, combining the current state vector and input symbol at every 
step to produce the next one. An RNN is essentially a parameterised mathematical function 
that takes as input a state vector and an input vector, and produces a new state vector. The 
RNN is trainable, and, when trained together with a classification component, the training 
procedure drives the state vectors to provide a representation of the prefix which is inform-
ative for the classification task being trained.

Classification An RNN can be paired with a classification component, a classifier function 
that takes as input a state vector and returns a binary or multi-class classification decision. 
The RNN and the classifier are combined by applying the RNN to the sequence, and then 
the classifier to the final resulting state vector. When the classification component gives a 
binary classification for each state vector, the combination defines a binary classifier over 
sequences, which we call an RNN-acceptor. When the component gives a distribution over 
the possible next tokens, the combination defines a next-token distribution for each input 
sequence, which we call a Language-Model RNN (LM-RNN).

A trained RNN-acceptor can be seen as a state machine in which the states are high-
dimensional vectors: it has an initial state, a well defined transition function between inter-
nal states, and a well defined classification for each internal state. A trained LM-RNN is 
not immediately analogous to a binary state machine, but we will see in this work how it 
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may be interpreted as a one, and under this interpretation also extracted from using our 
method.

RNNs play a central role in deep learning, and in particular in natural language process-
ing. For more in-depth overview, see (Goodfellow et al. 2016; Goldberg 2016, 2017).

We now turn to the question of understanding what an RNN has actually learned. We 
formulate the question around RNN-acceptors, but later (in Sect. 8) show how the solution 
relates to LM-RNNs.

Motivation Given an RNN-acceptor R trained over a finite alphabet Σ , our goal is to 
extract a deterministic finite-state automaton (DFA) A that classifies sequences in a manner 
observably equivalent to R. (Ideally, we would like to obtain a DFA that accepts exactly the 
same language as the network, but this is a much more difficult task.1)

Note In this work, when understood from context, we use the term RNN to mean RNN-
acceptor. Additionally, we use “automata” to refer specifically to deterministic finite 
automata (DFAs) (as opposed to other automata variants, such as pushdown automata or 
weighted automata).

Previously existing techniques for DFA extraction from recurrent neural networks are 
based on creating an a-priori partitioning of the RNN’s state space, and mapping the transi-
tions between the resulting clusters (e.g., Omlin&Giles (1996); Zeng et al. (1993)). In this 
work however, we approach the question using exact learning.

Exact learning In the field of exact learning, concepts (sets of instances) can be learned 
precisely from a minimally adequate teacher—an oracle capable of answering two query 
types (Goldman&Kearns 1995):

• membership queries state whether a given instance is in the concept or not
• equivalence queries state whether a given hypothesis (set of instances) is equal to the 

concept held by the teacher. If not, return an instance on which the hypothesis and the 
concept disagree (a counterexample).

The L∗ algorithm (Angluin 1987) is an exact learning algorithm for learning a DFA from 
a minimally adequate teacher with knowledge of some regular language L. In this con-
text, the concept is L, the instances are finite sequences (‘words’) over its alphabet, and 
the hypotheses are presented as automata A defining a regular language LA . L∗ completes 
when the oracle accepts its latest equivalence query, i.e. when LA = L.
Our approach We treat DFA extraction from RNNs as an exact learning problem. We use 
Angluin’s L∗ algorithm to elicit a DFA from any type of trained RNN, using the RNN as 
a teacher. In doing so, we maintain only a coarse partitioning of the RNN’s state space, 
refining it only as much as necessary to answer L∗ ’s queries.

RNNs as teachers A trained RNN-acceptor can trivially answer membership queries, by 
feeding input sequences to the network for classification. Answering equivalence queries, 
however, is not so easy. The main challenge is that no finite interpretation of the network’s 

1 In fact, given the results showing that some RNN architectures can count (Gers&Schmidhuber 2001; 
Weiss et al. 2018b), a DFA may not be sufficient for representing the language learned by an RNN at all.
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states and transitions is given upfront: the states of an RNN are high-dimensional real-
valued vectors, resulting in an infinite state space which cannot be exhaustively enumerated 
and compared to the hypothesis.

To address this challenge, we use a finite abstraction of the RNN R to answer equiva-
lence queries: we define a finite partitioning of the state space, and create from it an autom-
aton which can be compared to the hypothesis A . A unique aspect of this setting compared 
to previous L∗ works is that we only observe an abstraction of the teacher. This means 
that when there is a disagreement between the teacher and the learner, it may be not that 
the learner is incorrect and needs to refine its representation, but rather (or also) that our 
abstraction of the teacher is not precise enough and must be refined. Indeed, at every equiv-
alence query, the current finite abstraction and current proposed automaton A act as two 
hypotheses for the RNN R’s ground truth, which must at least be equivalent to each other 
in order to both be equivalent to R. Thus, whenever the two disagree on a sample, we find 
its true classification in R, obtaining through this either a counterexample to A or a refine-
ment to the abstraction.

Main contributions The main contributions of this paper are:

• We present a novel and general framework for extracting automata from trained RNNs, 
using the RNNs as teachers in an exact learning setting.

• We implement2 the technique and show its ability to extract descriptive automata in set-
tings where previous approaches fail. We demonstrate its effectiveness on modern RNN 
architectures—multi-layer LSTMs and GRUs.

• We describe how the technique can be used to learn DFAs from only positive exam-
ples, and demonstrate its effectiveness in this setting. To do so we show how to create 
RNN-acceptors from positive examples only, using a language modeling objective.

• We apply our technique to RNNs trained to 100% train and test accuracy on simple lan-
guages, and discover in doing so that some RNNs have not generalised to the intended 
concept. Our method easily reveals and produces adversarial inputs—words misclassi-
fied by the trained RNN and not present in the train or test set.

A basic version of this paper has been presented in ICML 2018 (Weiss et al. 2018a).

2  Preliminaries

In this paper we use the following notations and terminology.

2.1  Automaton and classification function

A deterministic finite automaton (DFA) A is a tuple ⟨Σ,Q, i,F, �⟩ , in which Σ is the 
alphabet, Q the set of states, F ⊆ Q the set of accepting states, i ∈ Q the initial state, 
and � ∶ Q × Σ → Q the transition function. For a given automaton we add the nota-
tion f ∶ Q → {Acc,Rej} as the function giving the classification of each state, i.e. 
f (q) = Acc ⟺ q ∈ F , and the notation 𝛿 ∶ Q × Σ

∗
→ Q as the recursive application 

2 www. github. com/ tech- sr/ lstar_ extra ction

www.github.com/tech-sr/lstar_extraction
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of � to a sequence, i.e.: for every q ∈ Q , 𝛿(q, 𝜖) = q , and for every w ∈ Σ
∗ and � ∈ Σ , 

𝛿(q,w⋅𝜎) = 𝛿(𝛿(q,w), 𝜎) . As an abuse of notation, use 𝛿(w) to denote 𝛿(i,w).
The classification of a word w ∈ Σ

∗ by a DFA A is defined A(w) = f (𝛿(w)) , and the 
regular language defined by A is the set of words it accepts, LA = {w ∈ Σ

∗ | A(w) = Acc}.
Two automata A and B are equivalent if LA = LB , and an automaton A = ⟨Σ,Q, i,F, �⟩ 

is minimal if for every automaton A�
= ⟨Σ,Q�, i�,F�, ��⟩ equivalent to A, |Q| ≤ |Q′| . Two 

states q1, q2 ∈ Q of an automaton A = ⟨Σ,Q, i,F, �⟩ are equivalent if for every w ∈ Σ
∗ , 

f (𝛿(q1,w)) = f (𝛿(q2,w)) , and an automaton is minimal iff it has no two equivalent states.
For visual clarity, ‘sink reject states’—states q ∉ F for which �(q, �) = q for every �—

are not drawn in images of DFAs in this paper. Thus for example the second DFA in Fig. 1 
actually has 3 states, and rejects the sequence “)”.

2.2  Recurrent neural networks

An RNN R is a parameterised function gR(h, x) that takes as input a state-vector ht ∈ ℝ
ds 

and an input vector xt+1 ∈ ℝ
di and returns a state-vector ht+1 ∈ ℝ

ds . An RNN can be 
applied to a sequence x1, ..., xn by recursive application of the function gR to the vectors 
xi , beginning from a given initial state h0,R associated with the network. When applying 
an RNN to a sequence over a finite alphabet, each symbol is deterministically mapped to 
an input vector using either a one-hot encoding3 or an embedding matrix, the method pre-
sented in this work is agnostic to this choice. For convenience, we refer to input symbols 
and their corresponding input vectors interchangeably.

We denote the state space of a network R by SR ⊆ ℝ
ds , and by ĝR ∶ SR × Σ

∗
→ SR the 

recursive application of gR to a sequence, i.e. for every h ∈ SR , ĝR(h, 𝜖) = h , and for every 
w ∈ Σ

∗ and � ∈ Σ , ĝR(h,w⋅𝜎) = gR(ĝR(h,w), 𝜎) . As an abuse of notation, we also use ĝR(w) 
to denote ĝR(h0,R,w).

2.3  RNN‑acceptors

A binary RNN-acceptor is an RNN with an additional function fR ∶ SR → {Acc,Rej} that 
receives a state vector ht and returns an accept or reject decision. The RNN-acceptor R is 
the pair of functions gR, fR with associated initial state h0,R , The classification of a word 
w ∈ Σ

∗ by an RNN-acceptor R is defined R(w) = fR(ĝR(w)) , and the language defined by R 
is the set of words it accepts, LR = {w ∈ Σ

∗ | R(w) = Acc}.
A given RNN-acceptor can be interpreted as a deterministic, though possibly infinite, 

automaton, which we do note is a more powerful model than that of deterministic finite 
automata.

We drop the subscript R when it is clear from context.

2.4  Multi‑layer RNNs

RNNs are often arranged in layers (“deep RNNs”). In a k-layers layered configuration, 
there are k RNN functions g1, ..., gk , which are applied to an input sequence x = x1, ..., xm 

3 A one-hot encoding assigns each symbol in an alphabet of size v to an integer i in 1, ..., v, and maps the 
symbol to an indicator vector in ℝv where the ith entry is 1 and the others are 0.
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as follows: x is mapped by g1 to a sequence of state vectors h1,1, ..., h1,m , and then each 
sequence hi,1, ..., hi,m is mapped by gi+1 to the sequence hi+1,1, ..., hi+1,m . For such multi-layer 
configurations, we take the entire state-vector at time t to be the concatenation of the indi-
vidual layers’ state vectors: ht = h1,t⋅ h2,t...⋅hk,t . Generally, the classification component of a 
multi-layered RNN-acceptor or LM-RNN is applied only to the final state of the top layer: 
fR(ht) = f �

R
(ht,x) for some f ′

R
.

2.5  RNN architectures

The parameterised functions gR and fR can take many forms. The function fR can take the 
form of a linear transformation or a more elaborate classifier. The original form of gR is the 
Elman RNN (Elman 1990), in which gR is an affine transform followed by a non-linearity, 
gR(h, x) = tanh(Wxx +Whh + b) . Here Wx , Wh and b are the parameters of the function that 
need to be trained, and have dimensions ds × di , ds × ds , and ds × 1 respectively. Other pop-
ular forms are the Long Short-Term Memory (LSTM) (Hochreiter&Schmidhuber 1997) 
and the Gated Recurrent Unit (GRU) (Cho et  al. 2014; Chung et  al. 2014). These more 
elaborate functions are based on a differentiable gating mechanism, and have been repeat-
edly demonstrated to be easier to train than the Elman RNN, and to robustly handle long-
range sequential dependencies. We refer the interested readers to textbooks such as Good-
fellow et al. (2016); Goldberg (2017) or to the documentation of the PyTorch framework 
(Paszke et al. 2019) for their exact forms.

Our technique is agnostic to these internal differences, treating the functions fR and gR 
as black boxes. In our experiments, we use linear transformation for fR , and the popular 
LSTM and GRU architectures for gR . For the LSTM, whose transition function is often 
described as converting a triplet of input-vector, state-vector and memory-vector to a next 
state-vector and memory-vector, we treat the concatenation of the state-vector and mem-
ory-vector as a single state-vector with dimension ds = 2hs , where hs is the hidden size of 
the cell.

2.6  Network abstraction

Given a neural network R with state space S and alphabet Σ , and a partitioning function 
p∶S → ℕ , Omlin and Giles (1996) presented a method for extracting a DFA for which 
every state is a partition from p, and the state transitions and classifications are defined by 
a single sample from each partition. Their method can be seen as a simple sheared explora-
tion of the partitions defined by p. The exploration begins from the partition containing the 
initial state p(h0,R) , explores according to the network’s transition function gR , and shears 
wherever it reaches an abstract state (partition) that has already been visited. We present it 
as pseudocode in Algorithm 1.

We denote by AR,p the DFA extracted by this method from a network R and partitioning 
p, and denote all its related states and functions by subscript R, p.4 Note that the algorithm 
is guaranteed to extract a deterministic finite automaton (DFA) from any network and finite 
partitioning.

4 The exact order of the exploration (i.e., selection of states from New) is not important, but if we want to 
be well defined we can assume that New is FIFO and that Σ has an order which the for loop over it follows. 
This would make the exploration a (sheared) BFS.
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2.7  The L ∗ algorithm

Angluin’s L∗ algorithm (1987) is an exact learning algorithm for regular languages. The 
algorithm learns an unknown regular language L over an alphabet Σ from a teacher T, gen-
erating as output a DFA A that accepts L. In our work we implement such a teacher for L∗ 
around a given RNN, and apply L∗ to this teacher directly. Therefore it is sufficient here to 
limit our discussion to only the requirements of this interaction.

L∗ interacts with a teacher that must answer two types of queries: membership queries, 
in which the teacher must classify words presented by L∗ , and equivalence queries, in 
which the teacher must accept or reject automata proposed by L∗based on whether or not 
they correctly represent the target language. If the teacher rejects an automaton A , it must 
also provide a counterexample—a word that A misclassifies with respect to the target lan-
guage. L∗ continues to present queries to the teacher until the teacher accepts a hypothesis 
A , at which point it terminates and returns A.

The L∗ algorithm is guaranteed to always present a minimal DFA consistent with all 
membership queries given so far, and we use this fact in our work. Additionally, provided 
the target language T is regular, L∗ is guaranteed to return a minimal DFA for T in polyno-
mial time in (|Q| + |w| + |Σ|) , where |Q| is the number of states in that DFA, Σ is the input 
alphabet, and |w| is the length of the longest counterexample given by the teacher (Angluin 
1987; Berg et al. 2005).
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3  Existing approaches and related work

Soon after the introduction of the RNN (Elman 1990), it was shown that, when learning a 
regular language, a simple (“Elman-”) RNN is able to cluster its reachable states in a man-
ner that resembles a (not necessarily minimal) DFA for that language (Cleeremans et al. 
19895). Since then there has been a lot of research on extracting rules, and in particular 
finite automata, from RNNs. Partial surveys of these works are presented by Wang et al. 
(2017) and Jacobsson (2005).

Transition mapping In their 1996 paper, Omlin and Giles experimented on second-order 
RNNs, and found that their learned states also tend to cluster in small areas in the network 
state space. Through this, and an assumption of continuity in the network behavior (i.e., 
small changes in the current state lead only to small changes in the next state), they con-
cluded that it was safe to cluster like-valued state vectors together as one state, and traverse 
these clustered states in order to recover a DFA from the RNN.

In particular, given a neural network R with state space S and alphabet Σ , and a parti-
tioning function p∶S → ℕ , Omlin and Giles presented a method (Algorithm 1) for extract-
ing a DFA abstraction of the network in which every abstracted state is an entire partition 
from p, and the transitions between abstracted states and their classifications are obtained 
by a single sample of the continuous values in each such partition.

In both their own work and more recent research by others (e.g. Wang et  al. 2017), 
this extraction method has been shown to produce DFAs that are reasonably representa-
tive of given second-order RNNs—provided the given partitioning captures the differences 
between the network states well enough.

Quantisation For networks with bounded output values, Omlin and Giles suggested divid-
ing each dimension of the network state space into q ∈ ℕ (referred to as the quantisation 
level) equal intervals, yielding qds subsets of the output space with ds being the length of 
the state vectors.

However, because this technique applies a uniform quantisation over the entire output 
space, it suffers from inherent state explosion and does not scale to the networks used in 
practice today: the original paper demonstrates the technique on networks with 8 hidden 
values, whereas today’s can have hundreds to thousands.

Clustering Other state-partitioning approaches use clustering (Cechin et al. 2003; Wang 
et  al. 2017; Cohen et  al. 2017). In these approaches, an unsupervised classifier such as 
k-means is applied to a large sample set of reachable network states, creating a finite num-
ber of clusters. The sample states can be found by various methods, such as a BFS explora-
tion of the network state space to a certain depth, or by recording all state vectors reached 
by the network when applied to its train set (if available). The partitioning of the state space 
defined by the clusters is then explored in a similar way to that described by Omlin&Giles 

5 This work references a slightly older version of (Elman 1990).
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(1996). Clustering approaches yield automata that are much smaller than those given by 
the partitioning method originally proposed by Omlin and Giles, making them more appli-
cable to networks of today’s standards.

Weaknesses In both of these approaches the partitioning is set before the extraction 
begins, with no mechanism for recognizing and overcoming overly coarse behavior. Both 
approaches thus face the challenge of choosing the best parameter value for extraction, and 
are generally applied several times with different parameter values, after which the ‘best’ 
DFA is chosen according to a heuristic (e.g., accuracy against RNN on the test set). Addi-
tionally, both approaches can still have rather large state space, and—as the exploration of 
the extracted DFA is performed blindly—these states cannot be merged until the extraction 
is complete and the DFA can be minimised.

Note on architectures Many of these works use second order RNNs (Giles et al. 1990), 
which are shown to better map DFAs than simple RNNs (Goudreau et al. 1994; Wang et al. 
2018). In this work however, we experiment on the popular GRU (Cho et al. 2014; Chung 
et  al. 2014) and LSTM (Hochreiter&Schmidhuber 1997) architectures, as they are more 
widely used in practice.

3.1  Recent works and future directions

Since the initial publication of this method, several other approaches for extracting DFAs 
have been suggested, and still other works have begun grappling with more complicated 
targets such as weighted automata or context free languages.

DFAs Mayr&Yovine (2018) released an L∗-based approach for learning DFAs from any 
neural network architecture, answering equivalence queries by drawing random samples 
over the input alphabet and checking if they are counterexamples to the proposed automa-
ton. Their work analyses this approach from a PAC learning perspective and applies also 
to completely black box models, in contrast to our own work and other extraction works 
listed above (which rely on access to the RNN’s hidden state from different prefixes). In 
Sect.  7.7, we compare our method to this approach, highlighting the advantage of the 
abstraction based approach to equivalence queries when the hidden state is available.

Wang&Niepert (2019) propose state-regularised RNNs, a variant of RNNs that is regu-
larised towards transitioning between a finite number of learned internal states. Their work 
discusses both training these new RNNs and the recovery of DFAs from them once trained, 
presenting an extraction method tailored to their proposed architecture.

WFAs Ayache et al. (2018) use spectral learning ( Balle et al. (2014)) to extract weighted, 
non-deterministic finite automata (WFAs) from any black box language model, evaluat-
ing on RNNs. Okudono et al. (2020) also apply spectral learning for WFA extraction, but 
this time to whitebox RNNs, using an adaptation of the equivalence query presented in 
this paper to refine the WFA beyond the initial spectral extraction. In a later work, we 
adapt L∗ to a weighted setting, extracting weighted deterministic finite automata (WDFAs) 
from any black box language model (Weiss et al. 2019). Finally, more recently, Zhang et al. 
(2021) expand on the partitioning and then transition-mapping approach of the classical 
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DFA extraction papers (Omlin&Giles 1996) to recover WFAs from RNNs without using 
exact or spectral learning.

CFGs With the understanding that some RNN architectures behave more like counter 
machines (Gers&Schmidhuber 2001; Weiss et al. 2018b; Suzgun et al. 2019), which are 
more expressive than DFAs, and indeed that an RNN in general might be trained on some-
thing more complicated than a regular language, it becomes interesting to consider extrac-
tion of context free languages (CFGs) from RNNs.

Recently, Yellin&Weiss (2021) use the DFA-extraction method presented in this paper 
as the initial step in an algorithm for extracting a subclass of CFGs from trained RNNs,6 
and Barbot et al. (2021) apply results on visibly pushdown languages and tree automata to 
extract a different subclass of CFGs, also from trained RNNs. Independently, there exist 
several works on learning (subclasses of) CFGs from queries, or from examples only, that 
have not yet been applied for extraction from RNNs (Sakakibara 1992; Yokomori 2003; 
Tellier 2006; Clark&Eyraud 2007; Clark 2010; D’ulizia et  al. 2010; Shibata&Yoshinaka 
2016; Clark&Yoshinaka 2016; Yoshinaka 2019).

4  Learning automata from RNNs using L*

In the following sections we show how to build a teacher for the L∗ algorithm around a 
given RNN-acceptor R. The teacher must be able to answer membership and equivalence 
queries as required by L∗.

To implement membership queries we rely on the RNN classifier itself. To determine 
whether a given word w is in the unknown language LR , we simply run the RNN on this 
word, and check whether it accepts or rejects w.

To implement equivalence queries we check the equivalence of the L∗ hypothesised 
automaton A against an abstraction AR,p of the network, where p is a partitioning over the 
network’s state space. If we find a disagreement w ∈ Σ

∗ between A and the current abstrac-
tion AR,p , we use R to determine whether this is because the L∗ hypothesis is incorrect (i.e., 
LR(w) ≠ A(w) ), or a result of a poor abstraction (i.e., LR(w) ≠ AR,p(w) ). In the former case 
( LR(w) ≠ A(w) ), we end the equivalence query and return w as a counterexample to L∗ . 
Otherwise, we refine p and restart the comparison of A and AR,p . If no such disagreement 
w is found (i.e., A and AR,p are equivalent), we accept L∗ ’s hypothesis and the extraction 
ends.

p is maintained between equivalence queries, i.e., the partitioning p at the start of the 
j+1th equivalence query is the same partitioning p from the end of the jth equivalence 
query.

In theory, the extraction continues until the automaton proposed by L∗ is accepted, i.e., 
A and AR,p converge. In practice, for some RNNs this may take a long time and yield a 
large DFA (>30,000 states). To counter this, we place time or size limits on the interaction, 

6 By creating an algorithm for generalising CFGs from a sequence of DFAs, and using the hypotheses pro-
vided by L∗ as that sequence.
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after which the last L∗ hypothesis is returned.7 We see that these DFAs still generalise well 
to their respective networks.

The partitioning p has to be coarse enough to facilitate feasible computation of AR,p , 
but fine enough to capture the interesting observations made by the network. As we have 
an iterative setting, we can satisfy this by starting with a very coarse initial abstraction and 
refining it only sparingly, whenever it is proven incorrect.

The equivalence queries are described in Sect.  5, and the partitioning and its refine-
ments in Sect. 6.

Note Convergence of AR,p and A does not guarantee that R and A are equivalent. Provid-
ing such a guarantee would be an interesting direction for future work.

5  Answering equivalence queries

Given a network R, a partitioning function p over its state space S, and a proposed minimal 
automaton A , we wish to check whether the abstraction of the network AR,p is equivalent 
to A , preferably while exploring as little of AR,p as necessary. If the two are not equiva-
lent—meaning, necessarily, that at least one is not an accurate representation of the net-
work R—we wish to find and resolve the cause of the inequivalence, either by returning a 
counterexample to L∗(and so refining A ), or refining the partitioning function p (and so the 
abstraction AR,p ) in the necessary area. Hence our equivalence query must be able not only 
to return counterexamples when necessary, but also to specifically identify overly-coarse 
partitions in the partitioning p.

For clarity, from here onwards we refer to the continuous network states h ∈ S as 
R-states, the abstracted states in AR,p as A-states, and the states of the L∗ DFAs A as 
L-states.

In this section we describe the details of an equivalence query assuming a given par-
titioning p and refinement operation refine. We present our initial partitioning p0 and 
refine operation in Sect. 6.

5.1  Parallel exploration

The key intuition to our approach is the fact that A is minimal, and so each state in 
the DFA AR,p should—if the two automata are equivalent—be equivalent to exactly 
one state in the DFA A . This is based on the fact that for automata A = ⟨Σ,Q, i,F, �⟩ 
and A�

= ⟨Σ,Q�, i�,F�, ��⟩ in which A′ is minimal, A and A′ are equivalent if and only 
if there exists a mapping m ∶ Q → Q� satisfying that m(i) = i� , f (q) = f �(m(q)) , and 
m(�(q, �)) = �

�
(m(q), �) for every q, � ∈ Q × Σ.

To check the equivalence of AR,p and A without necessarily having to fully explore AR,p , 
we build such a mapping between their states on-the-fly: we associate between states of 

7 We could also return the last abstraction, AR,p , and focus on refining p over returning counterexamples. 
But we find that the abstractions are often less accurate (see Sect. 7.8). We suspect this is due to the lack of 
‘foresight’ AR,p has, as opposed to L∗ ’s many separating suffix strings (loosely, L∗ works by maintaining two 
growing lists of ‘interesting’ prefixes and suffixes, generating an equivalence query only when all the pre-
fixes going into the each hypothesis state have the same classification on all of the suffixes).
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the two automata during the extraction of AR,p , by traversing A in parallel to the extrac-
tion of AR,p (which is extracted according to Algorithm  1). We update this association 
for all R-states visited during this extraction, i.e., including those at which the traversal 
is sheared.8 Any inconsistencies (conflicts) in this association are definite indicators of 
inequivalence between AR,p and A.

5.1.1  Conflict types

We refer to associations in which an accepting A-state is associated with a rejecting L-state 
or vice versa as abstract classification conflicts. We refer to multiple but disagreeing asso-
ciations for a single A-state, i.e. situations in which one A-state is associated with two 
different (minimal) L-states, as partitioning conflicts. (The inverse, in which one minimal 
L-state is associated with several A-states, is not a problem: AR,p is not necessarily minimal 
and so these states may be equivalent.)

Recalling that the ulterior motive is to find inconsistencies between the proposed autom-
aton A and the given network R, and that the exploration of AR,p runs atop an exploration 
of the actual R-states, we also check at each point during the exploration whether the cur-
rent R-state h ∈ SR has identical classification to that of the current L-state reached in the 
parallel traversal of A . As the classification of a newly discovered A-state is determined by 
the R-state with which it was first mapped, this also covers all abstract classification con-
flicts. We refer to failures of this test generally as classification conflicts, and check only for 
them and for partitioning conflicts.

5.2  Conflict resolution and counterexample generation

Classification conflicts are a sign that a path w ∈ Σ
∗ satisfying R(w) ≠ A(w) has been 

traversed in the exploration of AR,p , and so necessarily that w is a counterexample to the 
equivalence of A and R. They are resolved by returning the path w as a counterexample to 
L∗ , so that it may refine its observations and provide a new automaton. All that is necessary 
for this is to maintain the current path w throughout the exploration.

Partitioning conflicts are a sign that an A-state q ∈ QR,p , that has already been reached 
with a path w1 during the exploration of AR,p , has been reached again with a new path 
w2 for which the L-state is different from that of w1 . In other words, partitioning conflicts 
give us two sequences w1,w2 ∈ Σ

∗ for which ̂𝛿R,p(w1) =
̂𝛿R,p(w2) but 𝛿A(w1) ≠ 𝛿A(w2) . 

We denote by q1, q2 ∈ QA the L-states reached in A by these sequences, qi = 𝛿A(wi) . As 
A is a minimal automaton, q1 and q2 are necessarily inequivalent, meaning there exists 
a differentiating suffix s ∈ Σ

∗ for which fA(𝛿A(q1, s)) ≠ fA(𝛿A(q2, s)) , i.e. for which 
fA(w1⋅s) ≠ fA(w2⋅s) . Conversely, as ̂𝛿R,p(w1) =

̂𝛿R,p(w2) then ̂𝛿R,p(w1⋅s) =
̂𝛿R,p(w2⋅s) , and so 

fR,p(w1⋅s) = fR,p(w2⋅s).
Clearly in this case A and AR,p must disagree on the classification of either w1⋅s or w2⋅s , 

and so at least one of them must be inconsistent with the network R. In order to determine 
the ‘offending’ automaton, we pass both w1⋅s and w2⋅s to R for their true classifications. 
If A is found to be inconsistent with the network, the word on which A and R disagree is 
returned to L∗ as a counterexample.

8 These are important: they are the repeat visits to an A-state, from which a partitioning conflict may occur.
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Else, w1⋅s and w2⋅s are necessarily classified differently by the network, and AR,p should 
not lead w1 and w2 to the same A-state. The R-states h1 = ĝ(w1) and h2 = ĝ(w2) are passed, 
along with the current partitioning p, to a refinement operation, which refines p such that 
the two are no longer mapped to the same A-state—preventing a reoccurrence of that par-
ticular conflict.

The previous reasoning can be applied to w2 with all paths w1 that have reached the 
conflicted A-state q ∈ QR,p without conflict before w2 was traversed. As such, the classifica-
tions of all the words w1⋅s are tested against the network, prioritising returning a counter-
example over refining the partitioning.9 If eventually it is the partitioning that is refined, 
then the R-state that triggered the conflict, h = ĝ(w2) , is split from all R-states h1 = ĝ(w1) 
for w1 that have already reached q in the exploration, in one single refinement.10

Every time the partitioning is refined, the guided exploration starts over, and the process 
repeats until either a counterexample is returned to L∗ , equivalence is reached (exploration 
completes without a counterexample), or some predetermined limit (such as time or par-
titioning size) is exceeded. We note that in practice—and very often so with the decision-
tree based refinement operation that we present—there are cases in which starting over is 
equivalent to merely updating the associated A-state p(h) of the R-state h that triggered the 
refinement and continuing the exploration from there, and we implement our equivalence 
query to take advantage of this.

In our implementation, whenever we find several potential counterexamples to the pro-
posed DFA, we check them in order of increasing length and return the shortest counterex-
ample we have found.

9 As we will ultimately return the last L∗hypothesis and not the abstraction if time runs out (see Sect. 7.8).
10 At least, this is the ideal case. In practice, we allow a relaxed setting where it might only be split from 
some (non-empty) subset of them. In the worst case, this will trigger a further refinement when the query is 
attempted again.
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5.3  Algorithm
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Pseudocode for this entire equivalence checking procedure (ignoring preference for short-
est counterexamples) is presented in Algorithm  2.11 The description here assumes the 
existence of a refinement operation refine separating in the partitioning an R-state h from 
a set of other R-states H, we present such a method in Sect. 6.

The overall iterative process, including the refinements to p, is desribed in check_
equivalence, and the equivalence checking for a specific partitioning p is given in 
parallel_explore.
parallel_explore attempts to build AR,p in variables Q,F, q0, � , while also main-

taining the associations of these states to R and A as follows:

• Visitors holds for every A-state q the set of all R-states h satisfying p(h) = q that 
have been visited during the exploration. This is used for refinements triggered by par-
titioning conflicts.

• Path holds for every R-state h the sequence w ∈ Σ
∗ with which h has been visited 

during the exploration.12 This is used for generating potential counterexamples when 
handling a partitioning conflict.

• Association holds for every A-state q the L-state q� ∈ QA visited in the parallel 
exploration of A the first time that q was visited. If at any point q is visited while the 
parallel exploration is on a different state q′′ ≠ q′ , a partitioning conflict is triggered.

Note that finding the separating suffix for two inequivalent states q1, q2 of a given automa-
ton A can be done by a simple parallel BFS exploration of the states reachable from q1 and 
q2 in A, continuing until two states with opposite classifications are found.

6  Abstraction and refinement

Given a partitioning p, an R-state h, and a set of R-states H ⊆ S ⧵ {h} , we must refine p to 
obtain a new partitioning p′ satisfying: 

1. for every h1 ∈ H , p�(h) ≠ p�(h1) , and
2. for every h1, h2 ∈ S , if p(h1) ≠ p(h2) then p�(h1) ≠ p�(h2).

The first condition separates (in the partitioning) the R-states that caused the partitioning 
conflict leading to the refinement. The second condition maintains separations made by 
earlier refinements, i.e., it prevents previously created abstract states from being merged.

We want to generalise the information given by h and H well, so as not to invoke exces-
sive refinements as new R-states are explored. Additionally, we would like to keep the par-
titioning as small as possible, so that AR,p can be explored and compared to A in reasonable 
time at every equivalence query.

To keep the partitioning small, we settle on a decision tree structure, in which each 
refinement only splits the partition in which the conflict was recognised. Additionally, 
seeing that in practice our equivalence checking method can overcome imperfect splits 
between H and h by generating further splits if necessary, we relax the first condition. 

11 And full code is available online at www.github.com/tech-srl/lstar_extraction.
12 Technically this should be maintained as a set of sequences reaching h, but in practice, the probability of 
there being more than one such sequence per h is too low to consider.
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Specifically, we allow the classifiers splitting between H and h in the conflicated partition 
to not do so perfectly, provided they separate at least some of H from h.

Our method is unaffected by the length of the R-states, and very conservative: each 
refinement increases the number of A-states by exactly one. Our experiments show that it 
is fast enough to quickly find counterexamples to proposed DFAs.

6.1  Initial partitioning

In addition to a refinement method, our algorithm needs an initial partitioning p0 from 
which to start the first equivalence query. As we wish to keep the abstraction as small as 
possible, we begin with no state separation at all: p0 ∶ h ↦ 0.

6.2  Decision‑tree based partitioning, with support vector refinement

Let h ∈ S,H ⊂ S be the R-states with which a refinement was invoked. We know the refine-
ment is only applied to h, H satisfying p(h) = p(h�) for every h� ∈ H . To keep the partition-
ing small, we define a gentle refinement operation, in which for every call we only split the 
single partition p(h). This approach avoids state explosion by adding only one A-state per 
refinement.

Decision Tree It is natural to maintain a partitioning p refined over time in this way as 
a decision tree, where each internal node tracks some single refinement made to p, and its 
leaves are the current A-states of the abstraction.

SVM classifiers At every refinement, for the split of p(h), we would like to allocate 
a region around the R-state h that is large enough to contain other R-states that behave 
similarly, but separate from neighbouring R-states that do not. We achieve this by fitting an 
SVM (Boser et al. 1992) classifier with an RBF kernel13 to separate h from H (splitting the 
partition p(h) in exactly two). The max-margin property of the SVM ensures a large space 
around h, while the Gaussian RBF kernel allows for a non-linear partitioning of the space. 
We use this classifier to split the A-state p(h), yielding a new partitioning p′ with exactly 
one more A-state than p.

Whenever the SVM successfully separates h from H entirely, this approach satisfies the 
requirements of refinement operations. Otherwise, the method fails to satisfy condition 1 of 
the refinement operation. Nevertheless, the SVM classifier will always separate at least one 
of the R-states h� ∈ H from h, and later explorations can invoke further refinements if nec-
essary. In practice we see that this does not hinder the main goal of the abstraction, which 
is finding counterexamples to equivalence queries.

Unlike mathematically defined partitionings such as the quantisation proposed by 
Omlin&Giles (1996), our abstraction’s storage is linear in the number of A-states it can 
map to; and computing an R-state’s associated A-state may be linear in this number as well 
(e.g. if the decision tree is a chain). Luckily, as this number of A-states also grows very 
slowly (linearly in the number of refinements), this does not become a problem.

13 While we see this as a natural choice, other kernels or classifiers may yield similar results. We do not 
explore such variations in this work.
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6.3  Practical considerations

As the initial partitioning and the refinement operation are very coarse, our method runs 
the risk of accepting very small but wrong DFAs early in the extraction.

To counter this, two measures are taken:   

1. At the beginning of extraction, one accepting and one rejecting sequence are provided 
to the teacher, and then checked as potential counterexamples at the beginning of every 
equivalence query.14 Conversely, if these are not available, equivalence queries are 
extended with n random samples for some small n (e.g. n = 100 ) and range of lengths 
(e.g. 0-100): whenever A and AR,p are equivalent, n random samples are generated and 
checked as potential counterexamples ( A(w) ≠ R(w) ) before A can be accepted.

2. The first refinement is aggressive, generating a greater (but still manageable) number 
of A-states than made with the main single-partition split approach used for the rest of 
the extraction.

 The first measure is taken specifically to prevent erronous termination of the extraction on 
a single state automaton, and requires only two samples (if provided) or short additional 
time before accepting an equivalence query.

The second measure prevents the extraction from too readily terminating on small 
DFAs, by creating a (manageably) large AR,p that will hopefully capture a relatively rich 
representation of the RNN. Our method for it is presented in Sect. 6.3.1.

6.3.1  Aggressive difference‑based refinement

At the first refinement, instead of splitting p0(h) to separate h from all or most of H using 
a single SVM, we split S in its entirety across multiple dimensions chosen according to h 
and H. Specifically, we calculate the mean hm of H, find the d dimensions with the larg-
est gap between h and hm , and then split S along the middle of that gap for each of the d 
dimensions.

The resulting partitioning can be comfortably stored in a decision tree of depth d. It is 
intuitively similar to that of the quantisation suggested by Omlin and Giles, except that it 
focuses only on the dimensions with the greatest deviation of values between the states 
being split, and splits the ‘active’ range of values.

The value d may be set by the user, and increased if the extraction is suspected to have 
converged too soon. We found that d = 10 generally provides a strong enough initial parti-
tioning of S, without making the abstraction too large for feasible exploration.

14 When using these in our experiments, we used the shortest possible examples, e.g., the empty sequence 
and ) for the balanced parentheses language.
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7  Experimental results

We first demonstrate the effectiveness of our method on LSTM- and GRU-acceptors15 
trained on the Tomita grammars (1982), which have been used as benchmarks in previous 
automata-extraction work (Wang et al. 2017), and then on substantially more complicated 
languages. We show the effectiveness of our refinement-based equivalence query approach 
over that of plain random sampling and present cases in which our method extracts inform-
ative DFAs where other approaches fail. In addition, for some seemingly perfect networks, 
we find that our method quickly returns counterexamples representing deviations from the 
target language.

We clarify that when we refer to extraction time for any method, we consider the entire 
process: from the moment the extraction begins, to the moment a DFA is returned.16

Prototype Implementation and Settings
We implemented all methods in Python, using PyTorch (Paszke et al. 2019) and scikit-

learn (Pedregosa et al. 2011). For the SVM classifiers, we used the SVC variant, with regu-
larisation factor C = 104 to encourage perfect splits and otherwise default parameters—in 
particular, the RBF kernel with gamma value 1∕(num features).

All training and extraction was done on amazon instances of type p3.2xlarge, 
except for the BP and email classifier RNNs which were run on p2.xlarge.

7.1  Languages

We consider the Tomita Grammars (7.4.1), and more complicated regular languages 
defined by small, randomly sampled DFAs (7.4.2). We also consider the language of legal 
email addresses (defined precisely in 7.9.1), and the language of balanced parentheses 
(BP): the set of sequences over ()a-z in which the parentheses are balanced, e.g. a(a)
ba and ()(()).

7.2  Sample sets and training

Tomita and Random Regular Languages We use train, validation, and test sets of sizes 
5000, 1000 and 1000 containing samples of lengths 1-100 (uniformly distributed). To get 
‘representative’ sample sets, we define a distribution over each DFA’s state transitions 
favouring transitions which do not reduce the number of reachable states,17 sample from 
that distribution, and train the RNN to provide correct output for all prefixes of every sam-
ple (as opposed to only the full samples).18 We train these RNNs with the Adam optimiser, 

17 (E.g., a transition into a sink reject state—unless it also comes from the sink reject state—reduces the 
number of reachable states.)
18 The intuition behind this choice is that every ‘irreversible’ transition in the DFA (e.g., the first 0 in a 
sample for Tomita 1, the language of sequences containing only 1) is delated, increasing the time spent in 
the states before them, which might otherwise be underrepresented in the samples.

15 While many previous automata-extraction works evaluate on second-order RNNs (Giles et al. 1990), we 
evaluate on the more popular LSTM and GRU architectures. We note that with the exception of quantisa-
tion-based partitioning (Omlin&Giles 1996), which requires minor adaptation for unbounded RNN state 
space, all of these methods—including our own—can be applied to any RNN architecture.
16 Covering among others: abstraction exploration, abstraction refinements (including training SVM clas-
sifiers), and L∗ refinements (for our method), and total time for all created DFAs (for k-means clustering). 
Unless otherwise stated, this time is measured using the process_time method in python’s time module.
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using initial learning rate 0.0003, an exponential learning rate scheduler with gamma 0.9, 
and dropout 0.1. Each RNN was trained for up to 100 epochs on its train set, or until the 
validation set had 100% accuracy for 3 epochs in a row, whichever came sooner.

Balanced Parentheses and Email Addresses We generated positive samples using tai-
lored functions,19 and negative samples as a mix of both random sequences and mutations 
of the positive samples.20 Here we train the RNN only on the full samples (as opposed to 
classifying every prefix). We trained all networks to 100% accuracy on their train sets, and 
considered only those that reached 99.9+% accuracy on a test set consisting of up to 1000 
uniformly sampled words of each of the lengths n ∈ 1, 4, 7, ..., 28 . The positive to negative 
sample ratios in the test sets were not controlled. The BP and email train sets were ran-
domly generated during training. The BP train set created ≈44600 samples, of which ≈60% 
were positive for each RNN, and reached balanced parentheses up to depth 11. The email 
addresses train set created 40000 samples.

7.3  Details on our extraction (practical considerations)

We apply the measures discussed in Sect. 6.3 as follows: First, for all networks, we apply 
our method with aggressive initial refinement depth d = 10 (Sect. 6.3.1). Second, we use 
additional counterexamples:

Additional Counterexamples For the Tomita and random DFA languages, during extrac-
tion, we used random samples as additional potential counterexamples. Specifically, when-
ever an equivalence query was going to accept, we considered an additional 100 potential 
counterexamples, each generated as follows: first, we choose a length from 0 − 10 (uni-
formly), and then uniformly sample a sequence of that length over the RNN input alphabet.

For BP and email addresses, during extraction, we presented each RNN along with one 
positive and one negative sample to check for counterexamples at each equivalence query. 
These were chosen as the shortest positive and shortest negative word in the train set of the 
RNN, in particular: for BP, the initial samples were the empty sequence (positive) and ) (neg-
ative), and for emails, the initial samples were 0@m.com (positive) and the empty sequence 
(negative). For BP, these samples are covered anyway by L∗ ’s initial membership queries, but 
for email addresses the positive sample helps ‘kick off’ the extraction, preventing the method 
from accepting an automaton with a single (rejecting) state.

No further parameter tuning was required to achieve our results.

7.4  Small regular languages

7.4.1  The Tomita grammars

The Tomita grammars (1982) are the following 7 languages over Σ = {0, 1} : 

1. 1*
2. (10)*

19 For instance, a function that creates emails by uniformly sampling 2 sequences of length 2−8 , choosing 
uniformly from the options .com, .net, and all .co.XY for X,Y lowercase characters, and then concat-
enating the three with an additional @.
20 With mutations obtained by adding, removing, changing, or moving up to 9 characters.
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3. The complement of ((0|1)*0)*1(11)*(0(0|1)*1)*0(00)*(1(0|1)*)*, 
i.e.: all sequences w which do not contain an odd series of 1s followed later by an odd 
series of 0s

4. All words w not containing 000,
5. All w for which #0(w) and #1(w) are even (where #a(w) is the number of a’s in w),
6. All w for which ( #0(w) − #1(w)) ≡3 0 , and
7. 0*1*0*1*.

They are the languages classically used to evaluate DFA extraction from RNNs.
We trained one 1-layer GRU network with hidden size 50 for each Tomita grammar 

(7 GRUs in total), in the manner described in Sect.  7.2. In training, all but one of the 
RNNs reached 3 consecutive epochs with 100% validation set accuracy within 10 epochs, 
and reached 100% test set accuracy. The 6th Tomita grammar was harder to train, with the 
RNN reaching only 78% validation accuracy after 100 epochs. As our focus is on extraction 
rather than training, we repeated training on this language, eventually obtaining an RNN 
with perfect train and validation accuracy for this language as well (this time with initial 
learning rate 0.0004 and gamma 0.95). We then applied our method to extract from the 
perfectly trained RNNs.

For each one, our method correctly extracted and accepted the target grammar in under 
1 second.

7.4.2  Random small regular languages

Though the Tomita grammars are a popular language set for evaluating DFA extraction 
from RNNs, they are quite simple: the largest Tomita grammars are still only 5-state DFAs 
over a 2-letter alphabet. As our method performed so well on these grammars, we expand 
to more challenging languages.

We considered randomly-generated minimal DFAs of varying complexity, specifically, 
DFAs with alphabet size and number of states (|Σ|, |Q|) = (3, 5), (5, 5) and (3,  10). For 
each combination we randomly generated 10 minimal DFAs, making 30 DFAs overall. For 
each DFA we trained 6 2-layer RNNs: 3 GRUs and 3 LSTMs, each with hidden state sizes 
ds = 50, 100 and 500, this makes 180 RNNs overall. The training method is described in 
Sect. 7.2. We applied our extraction method to each of these RNNs, with a time limit of 30 
seconds (after which the last L∗ hypothesis is returned) and initial split depth and counter-
examples as described in Sect. 7.3. The results of these experiments are shown in Table 1. 
Each row in the table represents the average of 10 extractions.

Most extractions completed before the time limit, having reached equivalence.21 We 
compared the extracted automata against the networks on their training sets and on 1000 
randomly generated word samples for each of the word-lengths 10,50,100 and 1000. In 
all settings (hidden size, alphabet size, and DFA size) where the RNNs achieved 100% test 
set accuracy, our extraction obtained DFAs with perfect accuracy against their RNNs. For 
two RNNs which reached 99% accuracy, our extraction achieved 99% accuracy against the 
RNNs, and for the two RNNs with less than 99% accuracy our extraction achieved on aver-
age ≥ 88% accuracy for all evaluation sets.

21 Though this is not necessarily a guarantee of true equivalence, it does generally indicate strong similar-
ity.
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7.5  Comparison with a‑priori quantisation

In their 1996 paper, Omlin and Giles suggested partitioning the network state space by 
dividing each state dimension into q equal intervals, with q being the quantisation level. 
We tested this method on each of our small regular language RNNs (Sect. 7.4.2), with 
q = 2 and a time limit of 500 seconds to avoid excessive memory consumption.22

In many cases, we found that 500 seconds was not enough time for this method to 
extract a complete DFA from our RNNs.23 To enable some comparison, we allow the 
method to return incomplete DFAs, i.e. DFAs in which some transitions are missing, and 
we move from evaluating just the accuracy of a DFA to evaluating both its accuracy and its 
coverage, with coverage being the fraction of samples for which it has a full transition path.

We provide the results of extracting with this method in Table 2, which uses the exact 
same RNNs as in Table 1.

The extracted DFAs are very large—with some even having 100,  000 states–and yet 
their coverage of sequences of length 1, 000 and even 100 tends to zero as the RNN com-
plexity (state size ds , or RNN target language complexity) increases. For the covered 
sequences, the extracted DFA’s accuracy was often very high (99+% ), suggesting that 
quantisation—while impractical—is sufficiently expressive to describe a network’s state 
space. However, it is also possible that the sheer size of the quantisation ( 250 for our small-
est RNNs, and more for others) simply allowed each explored R-state its own A-state, giv-
ing high accuracy just by observation bias (only covered sequences could have their accu-
racy checked).

This is in contrast to our method, which always returns complete DFAs,24 and which 
consistently extracted accurate DFA from the same networks in a fraction of the time 
and memory used by the plain quantisation approach. This is because our method main-
tains from a very early point in extraction a complete DFA A that constitutes a constantly 
improving approximation of the considered RNN.

7.6  Comparison with k‑Means clustering

Next, we implemented a simple k-means clustering and extraction approach and applied it 
to the same networks from Sect. 7.4.2 with varying k.

Specifically, for each RNN, we sampled N = 5000 unique prefixes from its train set, 
computed the states reached from them in the RNN, and used k-means clustering to par-
tition the state space according to those states for each of k = 1, 6, 11, ..., 31.25 We then 

22 LSTMs have unbounded state space, which makes quantisation challenging. Specifically for q = 2 how-
ever, we just split each dimension along 0.
23 This is because the quantisation method, even for the smallest possible q ( q = 2 ), generates far more 
partitions than can be traversed within the time limit ( qds where ds is the RNN state size, and ds ≥ 50 in our 
case). Note that this is in contrast to our method: our method only applies this quantisation method on d 
initial dimensions for user-defined d (typically ≤ 10 ), before continuing with only very gentle refinements 
as needed.
24 Provided L∗ manages to generate at least one equivalence query before the time limit, which we observe 
to always happen in practice (usually taking ≤1 second).
25 Using sklearn.cluster.KMeans.
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mapped the transitions of each partitioning to create 7 potential DFAs, and evaluated each 
one against the RNN on its 1000-sample test set to choose the best.

k-means has a well defined and ‘reasonably quick’ stopping condition: the number of 
RNN states visited, and the number of clusters to be created and traversed from them, is 
given as input to the extraction.26 Hence for this extraction we do not use a time limit, 
allowing the method to extract all of its potential DFAs in full, evaluate them, and return 
the best DFA. As done for the other methods, we measure for k-means the total time from 
beginning the extraction until a single final DFA is returned. In particular, this covers sam-
pling once all 5000 RNN states (generally <10 seconds), making a k-state DFA from these 
RNN states by applying k-means clustering to them (taking from <1 to ∼50 seconds for 
each k, depending on the states and on k), and finally choosing the best DFA by evaluating 
on the test set (generally <10 seconds). We note that the bulk of the extraction time is spent 
in clustering the sampled states into different numbers of clusters k.

In Table 3 we report the results of these extractions. In particular, we report the time (in 
seconds) spent on each full extraction, the number of clusters k used for each best DFA, 
each DFA’s size |QA| after minimisation, and of course each extracted DFA’s accuracy 
against the same sample sets as before (i.e., as in 1).

For the GRU networks trained on smaller DFAs (which reached 100% test-set accuracy), 
k-means clustering is as successful as our method, often returning a DFA with perfect or 
near-perfect accuracy against the target RNN. For the LSTMs and the larger DFAs how-
ever, our method obtains far higher accuracy, and often in less time. The difference in suc-
cess on the LSTMs and GRUs is curious, we leave this question open in this work.

7.7  Comparison with random sampling for counterexample generation

For 3 of the Tomita grammars (specifically, Tomitas 3,4, and 7), the first counterexample 
returned in our extraction (Sect. 7.4.1) was actually created by the initial random sampling. 
Moreover, for all of the Tomita grammars, answering all equivalence queries using a ran-
dom sampler alone (with up to 1, 000 samples per query) was successful at extracting the 
grammars from the RNNs, and this was also true for many of the languages considered in 
Sect. 7.4.2. The termination is slightly slower than our own, to allow for sampling many 
potential counterexamples before accepting the L∗ hypothesis, but still fast enough to make 
random sampling seem appealing (the method spent ≈ 10 seconds on each Tomita gram-
mar). Indeed, Mayr&Yovine (2018) even suggest such a method in their recent work, ana-
lysing it from a PAC perspective.

Given this, the question may arise whether there is at all merit to the exploration 
and refinement of abstractions of the network, as opposed to a simple random sampling 
approach to counterexample generation for L∗ equivalence queries.

In this section we show the advantage of our method for counterexample generation, 
through the example of balanced parentheses (BP): the language of sequences with cor-
rectly balanced parentheses over the alphabet ()a-z. BP is not a regular language, but the 
attempt to approximate it with DFAs, and in particular the search for counterexamples to 
proposed DFAs, proves informative. In particular, when sampling the tokens with uniform 

26 This is in contrast to our method, which may continue to refine its hypothesis indefinitely without ever 
reaching equivalence (consider for example an RNN that has learned a non-regular language), or quantisa-
tion, which creates so many partitions in modern-sized architectures ( 250 even for our smallest networks and 
quantisation level) that it cannot be used without adding some time or size limit.
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distribution, the probability of randomly generating a sequence with nested and correctly 
balanced parentheses over the BP alphabet is very low. This prevents the random sampler 
from finding counterexamples to L∗ ’s proposed automata, each of which accept balanced 
parentheses to a bounded depth (see Examples in Fig. 1), highlighting the advantage of our 
approach.

We train one GRU and one LSTM network on BP, each with 2 layers and hidden dimen-
sion 50. We extract DFAs from these networks using L∗ , generating counterexamples once 
with our method and once with a random counterexample generator. The random coun-
terexample generator works as follows: for each equivalence query, it randomly samples 
sequences over the input alphabet Σ until a counterexample (sample on which A and the 
RNN disagree) is found. In particular, for each length l = 1, 2, 3, ... and increasing until a 
counterexample is found, it generates and compares up to 1000 random samples of length l, 
with uniform distribution.

We allowed each method 400 seconds27 to extract an automaton from networks trained 
to 100% train set accuracy. The accuracy of these extracted automata against the original 
networks on their training sets is recorded in Table 4, as well as the maximum parentheses 
nesting depth the L∗ proposed automata reached during extraction. 

We list the counterexamples and counterexample generation times for each of the BP 
network extractions in Table  5. Note the succinctness and the generation speed of the 
counterexamples generated by our method: excluding two samples at the end of the GRU 
extraction, they are clear of the ‘neutral’ tokens a-z and of repeating parentheses (e.g., ()
()), as these were not necessary to advance the automata learned by L∗ (Fig. 1). In con-
trast, the random sampling method has difficulty finding legally balanced sequences, tak-
ing a long time to find counterexamples at all, and including many ‘uninformative’ neutral 
tokens in its results.

The extracted DFAs themselves were also pleasing: each subsequent DFA proposed 
by L∗ for this language was capable of accepting all words with balanced parentheses 
of increasing nesting depth, as pushed by the counterexamples provided by our method 
(Fig. 1). In addition, for the GRU network trained on BP, our extraction method managed 
to push past the limits of the network’s ‘understanding’—finding the point at which the 
network begins to overfit to the particularly deeply-nested examples in its training set, and 
extracting the slightly more complicated automaton seen in Fig. 2.

7.8  Additional variations on our method

We show the necessity of the initial split and counterexamples for our method, the effect 
of running extraction for a longer time (if it has not completed), and support the decision 
to return the final L∗ hypothesis A as opposed to the final abstraction AR,p whenever the 
extraction has not reached equivalence in time.

Removing the Initial Split Heuristics 
We run the extraction again on the same RNNs as in Table 1, but this time setting the 

initial split depth to 1 and the number of random samples before accepting a hypothesis 
to 0. We report the results in Table 6. The average number of counterexamples (“#c-exs”) 
per extraction drops to almost 0 for most settings, meaning the majority L∗ initial hypoth-
eses are accepted immediately by the method (without counterexamples). The number of 

27 Timed using the clock() method from python’s time module.
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states in the returned automata is often smaller than in the target, and their accuracy drops 
significantly.

This shows that indeed our method must be coupled with some heuristics to prevent 
acceptance in the early stages, during which both the abstraction and the L∗ hypothesis 
only reflect the RNN’s classification on very short sequences, and have not yet diverged.

Timing out: Using the Abstraction, and Increasing the Time Limit 
When we increase |Σ| and |Q| of our randomly generated target DFAs to 10, the train-

ing routine used in this work is not sufficient for the RNNs with dimensions ds = 50 and 
ds = 100 to train perfectly, and they reach on average < 0.8% test set accuracy on their 
target languages. For these RNNs, we observe that our extraction method does not reach 

Table 1  Results for DFA extracted using our method from 2-layer GRU and LSTM networks with various 
state sizes, trained on random regular languages of varying sizes and alphabets. Each row in each table 
represents 10 experiments with the same parameters (network hidden-state size ds , alphabet size |Σ| , and 
minimal target DFA size |QT | ). In each experiment, a random DFA is generated and an RNN is trained on 
it, after which a DFA is extracted from and compared to the RNN. The column |QA| represents the size of 
the final returned DFA, #c-exs describes how many counterexamples were used during extraction, max |c-
ex| describes their maximum length, and RNN Acc. is the accuracy of the trained RNN on its test set. Each 
column represents the average of the 10 experiments, except for max |c-ex| which gives the overall maxi-
mum counterexample used across all RNNs in that row. Each extraction was run with a time limit of 30 
seconds, and whenever an extraction timed out the last automaton proposed by L∗ was taken as the extracted 
automaton. For the accuracies on the different lengths, 1000 random words of each length were sampled 
and evaluated, and for the accuracy on the training set all of the RNN’s training set was evaluated (i.e., 
comparing DFA against RNN)

Extraction from LSTM networks — Our method

max RNN Average extracted DFA accuracy

ds |Σ| |QT | Time (s) |QA| #c-exs |c-ex| Acc. l=10 l=50 l=100 l=1000 Train

50 3 5 6.82 10.8 2.5 12 1.0 1.0 1.0 1.0 1.0 1.0
100 3 5 4.09 5.0 2.0 10 1.0 1.0 1.0 1.0 1.0 1.0
500 3 5 10.03 5.0 1.8 10 1.0 1.0 1.0 1.0 1.0 1.0
50 5 5 16.66 19.9 3.0 8 0.99 0.99 0.99 0.99 0.99 0.99
100 5 5 12.53 6.6 2.4 12 1.0 1.0 1.0 1.0 1.0 1.0
500 5 5 18.34 5.0 2.3 8 1.0 1.0 1.0 1.0 1.0 1.0
50 3 10 30.97 67.8 5.2 9 0.91 0.92 0.88 0.88 0.88 0.89
100 3 10 21.15 23.4 4.6 18 0.99 1.0 0.99 0.99 0.99 0.99
500 3 10 16.27 10.0 4.0 9 1.0 1.0 1.0 1.0 1.0 1.0

Extraction from GRU networks — Our method

50 3 5 4.85 5.0 2.0 13 1.0 1.0 1.0 1.0 1.0 1.0
100 3 5 3.22 5.0 2.0 10 1.0 1.0 1.0 1.0 1.0 1.0
500 3 5 6.29 5.0 1.8 10 1.0 1.0 1.0 1.0 1.0 1.0
50 5 5 15.98 11.8 2.8 16 1.0 1.0 1.0 1.0 1.0 1.0
100 5 5 7.22 5.0 2.4 18 1.0 1.0 1.0 1.0 1.0 1.0
500 5 5 12.3 4.9 2.1 8 1.0 1.0 1.0 1.0 1.0 1.0
50 3 10 29.09 76.2 5.6 11 0.94 0.97 0.92 0.92 0.92 0.93
100 3 10 13.88 23.3 4.7 20 1.0 1.0 1.0 1.0 1.0 1.0
500 3 10 12.01 10.0 3.8 9 1.0 1.0 1.0 1.0 1.0 1.0
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equivalence in the provided time. In particular, the L∗ hypotheses grow very large, and 
the extraction often times out while increasing the observation table: the internal table of 
sequence labels maintained by L∗ between equivalence queries (i.e., the majority time is 
spent on refining A after each new counterexample).

In all of our experiments, whenever we run out of time, we return the last L∗ hypoth-
esis A as the extracted automaton. In this section, we check how much this hypothesis 
improves as we increase the time limit, and evaluate the option of returning the last 
abstraction AR,p used by our method instead.

Table 7 shows a set of extractions from imperfectly trained RNNs, trained with the 
same training routine and number of repetitions as before. We make 10 DFAs all with 
|Q| = |Σ| = 10 and on each DFA train 4 2-layer RNNs: 2 GRUs and 2 LSTMs, each 
with hidden state sizes ds = 50 and ds = 100 . We then extract from each RNN with 5 
different time limits ranging from 50 to 1000 seconds. This means that overall Table 7 

Table 2  Results for DFA extracted using a simple partitioning of the RNN state space, in which each state 
dimension is split into q = 2 equal segments (positive and negative). The extractions were applied to the 
same RNNs as in Table  1, with each row representing 10 experiments as before. |QA| again reports the 
(average) number of states in the extracted DFAs, though this time it is rounded for clearer presentation. 
The extractions were run with a time limit of 500 seconds. This time, instead of reporting only the accuracy 
of the extracted DFAs against their RNNs on different samples sets, we also report their coverage: the frac-
tion of samples for which the DFAs have a classification at all (i.e., do not have missing transitions). The 
accuracy is computed only on covered sequences, and we write report the accuracy as −1 when all extrac-
tions in the row have 0 coverage for that set. For example: 1.0×0.12 tells us that only 12% of samples have 
full transitions in the extracted DFA, but that for those 12% , the DFA accuracy against the RNN is perfect

Extraction from LSTM Networks — Quantisation

RNN Extracted DFA Accuracy × Coverage

ds |QT | |Σ| Time (s) |QA| Acc. l=10 l=50 l=100 l=1000 Train

50 5 3 100.17 16868 1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0
100 5 3 237.06 40088 1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0
500 5 3 469.64 60295 1.0 1.0×1.0 1.0×0.53 1.0×0.42 1.0×0.21 1.0×0.59
50 5 5 283.83 29472 0.99 0.99×1.0 0.99×1.0 0.99×1.0 0.99×1.0 0.99×1.0
100 5 5 469.88 47873 1.0 1.0×1.0 1.0×0.94 1.0×0.91 1.0×0.79 1.0×0.95
500 5 5 503.68 39508 1.0 1.0×0.03 − 1×0.0 − 1×0.0 − 1×0.0 1.0×0.08
50 10 3 434.75 77538 0.91 0.98×1.0 0.94×0.58 0.97×0.44 0.94×0.31 0.97×0.65
100 10 3 500.62 83402 0.99 1.0×1.0 1.0×0.46 1.0×0.32 1.0×0.02 1.0×0.55
500 10 3 502.84 64720 1.0 1.0×1.0 − 1×0.0 − 1×0.0 − 1×0.0 1.0×0.12

Extraction from GRU Networks — Quantisation

50 5 3 102.48 21359 1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0
100 5 3 239.93 49203 1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0
500 5 3 501.37 82933 1.0 1.0×1.0 1.0×0.22 1.0×0.13 1.0×0.0 1.0×0.35
50 5 5 335.37 42008 1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0 1.0×1.0
100 5 5 500.34 60089 1.0 1.0×0.98 1.0×0.77 1.0×0.67 1.0×0.41 1.0×0.8
500 5 5 502.31 49206 1.0 1.0×0.02 − 1×0.0 − 1×0.0 − 1×0.0 1.0×0.08
50 10 3 500.42 100417 0.94 1.0×1.0 0.99×0.4 0.99×0.27 0.98×0.14 0.99×0.51
100 10 3 500.42 103488 1.0 1.0×1.0 1.0×0.51 1.0×0.34 1.0×0.06 1.0×0.58
500 10 3 501.93 82378 1.0 1.0×1.0 − 1×0.0 − 1×0.0 − 1×0.0 1.0×0.12
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shows results for 10 DFAs, 40 RNNs, and 200 extractions (each row represents 10 
extractions).28

Alongside the details of the last L∗ hypothesis A , we also report the size of our final 
partitioning p (i.e., number of partitions it divides the state space into), the size (after mini-
misation) of the abstraction AR,p it defines, and the accuracy of AR,p against its target RNN.

The results show clearly that the L∗ hypothesis is the preferable choice when the extrac-
tion does not complete. Effectively, the partitioning p and abstraction AR,p it defines act as a 
tool for refining the L∗ hypotheses, and not so much the other way around.29

Table 3  Results for DFA extracted using k-means clustering from the same 2-layer GRU and LSTM net-
works considered in Table 1, i.e., each row represents the average results of 10 experiments as before, and 
considers the exact same trained RNNs. The extractions did not have a time limit, instead, the number of 
states sampled was set to 5000 and the k values considered were k = 1, 6, 11, ..., 31 . The accuracies were 
evaluated on the same sample sets as in Table 1

Extraction from LSTM networks — k -means clustering

RNN Average extracted DFA accuracy

ds |Σ| |QT | Time (s) |QA| k Acc. l=10 l=50 l=100 l=1000 Train

50 3 5 48.93 4.5 25.5 1.0 0.85 0.85 0.85 0.85 0.85
100 3 5 69.85 3.9 20.0 1.0 0.82 0.81 0.81 0.81 0.81
500 3 5 274.96 5.0 18.5 1.0 0.87 0.85 0.86 0.85 0.86
50 5 5 53.13 3.3 18.5 0.99 0.8 0.8 0.8 0.79 0.8
100 5 5 84.48 4.3 18.0 1.0 0.83 0.83 0.83 0.82 0.83
500 5 5 289.63 5.6 24.0 1.0 0.98 0.97 0.98 0.97 0.98
50 3 10 52.74 6.4 19.5 0.91 0.67 0.66 0.65 0.67 0.67
100 3 10 63.06 12.0 27.5 0.99 0.8 0.75 0.75 0.74 0.76
500 3 10 250.99 11.6 28.0 1.0 0.93 0.89 0.89 0.89 0.9

Extraction from GRU Networks — k -means Clustering

50 3 5 21.95 5.0 14.5 1.0 0.99 1.0 1.0 1.0 1.0
100 3 5 24.89 4.9 12.0 1.0 1.0 1.0 1.0 1.0 1.0
500 3 5 85.46 5.0 13.5 1.0 0.99 1.0 1.0 1.0 1.0
50 5 5 22.74 5.4 20.0 1.0 1.0 1.0 1.0 1.0 1.0
100 5 5 29.13 5.0 18.5 1.0 1.0 1.0 1.0 1.0 1.0
500 5 5 91.68 5.1 19.0 1.0 1.0 1.0 1.0 1.0 1.0
50 3 10 27.98 12.4 28.5 0.94 0.87 0.84 0.84 0.83 0.85
100 3 10 27.15 10.5 31.0 1.0 0.96 0.94 0.94 0.94 0.94
500 3 10 92.63 10.0 28.5 1.0 0.99 0.98 0.99 0.98 0.99

28 We ran each extraction in itself, for example each RNN’s 1000 second extraction was not merely a con-
tinuation of its 50 second extraction but a full extraction in its own.
29 This may be because, whenever the equivalence checking finds a disagreement, it first checks for the 
possibility of a counterexample to L∗ before checking whether the abstraction needs to be refined. However, 
the difference may also come through the more long-sighted nature of L∗ : internally, L∗maintains a growing 
list of prefixes and suffixes, all combinations of which its hypotheses have to classify correctly. In contrast, 
traversing a partitioning of the state space only looks as far as the immediate classification and transitions 
of each visited partition. L∗ ’s advantage here is also its curse: learning a DFA with L∗ has polynomial time 
complexity in the size of the DFA, whereas traversing a partitioning is linear in the number of partitions.
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The results also show that, for these non-terminating extractions, it is ‘difficult’ to 
improve beyond the automata reached in the early stages: increasing the extraction time 
to 100, 200, and even 1000 seconds gives only a small increase in accuracy each time. We 
also see that the number of counterexamples used per extraction grows very slowly with 
the increase in time, i.e., more time does not significantly increase the number of hypoth-
eses presented by L∗.

Analysing the time spent by the extraction reveals that L∗ gets ‘stuck’ refining the large 
hypotheses it creates, generating many membership queries without reaching new equiva-
lence queries. The average equivalence query time across all experiments is <1.5 s, whereas 
the maximum hypothesis refinement time in each experiment grew to over 10, 48, 60, 170 
and 314 seconds for each of the time limits respectively.30 A more efficient implementation 
of L∗ , or possibly an approximation of it, would be an important step towards scaling this 
method.

7.9  Discussion

7.9.1  Adversarial inputs

Balanced Parentheses Excitingly, the penultimate counterexample returned by our method 
during the extraction of balanced parentheses (BP) in Sect. 7.7 is an adversarial input: a 
sequence with unbalanced parentheses that the network accepts (despite its target language 
accepting only sequences with balanced parentheses). This input is found in spite of the 
network’s seemingly perfect behavior on its set of 44000+ training samples. Note that the 
random sampler did not manage to find such samples.

Inspecting the extracted automata indeed reveals an almost-but-not-quite correct DFA 
for the BP language (Fig. 2). The RNN overfit to random peculiarities in the training data 
and did not learn the intended language, and our extraction method managed to discover 
and highlight an example of this ‘incorrect’ behaviour.

Email Addresses For a seemingly perfect LSTM-acceptor trained on the regular 
expression

(simple email addresses over the 38 letter alphabet {a-z, 0-9, @, .} ) to 100% accuracy on a 
40,000 sample train set and a 2,000 sample test set, our method quickly returned the coun-
terexamples seen in Table 8, showing clearly words that the network misclassified (e.g., 
25.net). We ran extraction on this network for 400 seconds, and while we could not 
extract a representative DFA in this time,31 our method did show that the network learned 
a far more elaborate (and incorrect) function than needed. In contrast, given a 400 second 
overall time limit, the random sampler did not find any counterexample beyond the pro-
vided one.

[a − z][a − z0 − 9] ∗ @[a − z0 − 9] + .(com|net|co.[a − z][a − z])$

31 A 134-state DFA A was proposed by L∗ after 178 seconds, and the next refinement to A (initiated 4.43 
seconds later) timed out. The accuracy of the 134-state DFA on the train set was nearly random. We suspect 
that the network learned such a complicated behavior that it simply could not be represented by any small 
DFA.

30 I.e., for example, each one of the 1000 second extractions spent at least 314 seconds on at least one 
hypothesis refinement.
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We note that our implementation of k-means clustering and extraction had no success 
with this network, returning a completely rejecting automaton (representing the empty lan-
guage), despite trying k values of up to 100 and using all of the network states reached 
using a train set with a 50:50 ratio between positive and negative samples.

Beyond demonstrating the capabilities of our method, these results also highlight the 
brittleness in generalisation of trained RNNs, and suggest that evidence based on test-set 
performance should be interpreted with extreme caution. This reverberates the results of 
Gorman and Sproat (2016), who trained a neural architecture based on a multi-layer LSTM 
to mimic a finite state transducer (FST) for number normalisation. They showed that the 
RNN-based network, trained on 22M samples and validated on a 2.2M sample develop-
ment set to 0% error on both, still had occasional errors (though with error rate < 0.0001) 
when applied to a 240,000 sample blind test set.

7.9.2  Limitations and discussion

L∗ Optimisation One limitation of the method shown in this work is the polynomial time 
complexity of L∗ , which becomes a significant issue as the extracted DFA grows (see 
Sect. 7.8, Timing out). Applying our method with more efficient variants of L∗ , such as the 
TTT algorithm presented by Isberner et al. (2014), may yield better results.

L∗ and Noise Whenever applied to an RNN that has failed to generalise properly to its 
target language, our method soon finds several adversarial inputs, and begins to build very 
large DFAs. As noted above, to L∗ ’s polynomial complexity and intolerance to noise, this 
quickly becomes extremely slow.32

Of course by the nature of L∗ , any complexity in the final returned automaton is only a 
result of the inherent complexity of the RNN’s learned behaviour, and so we may say that 
this result is not necessarily incorrect. Nevertheless, it limits us, and seeking a way to rec-
ognise and overcome ‘noise’ in the given network’s behaviour is an interesting avenue for 
future work.

Adversarial Inputs On the bright side, this same limitation does demonstrate the ease 
with which our method identifies imperfectly trained networks. These cases are annoyingly 
frequent: for many RNN-acceptors with 100% train and test accuracy on large test sets, our 
method was able to find many simple misclassified examples (Sect. 7.9.1).

Note on Heuristics In Sect. 3, we note that existing works consider multiple RNNs, and 
then must choose the best according to a heuristic. Our method can also be seen as consider-
ing multiple DFAs and abstractions, with the equivalence query being the ‘heuristic’ decid-
ing whether to terminate or consider more DFAs/abstractions. We highlight here our differ-
ences. First, in our method, the DFAs considered are always minimal (thanks to L∗ ), and the 
abstractions used can be much smaller than in other methods. In particular the abstractions 
can be small because they are dynamically refined by the method on an as-needed basis, and 
so can afford to be very coarse: ‘missed partitions’ are discovered and fixed automatically by 
the method. Secondly, even when the refinement eventually creates a very large abstraction, 
the equivalence query is applied ‘on-the-fly’, meaning it can cut off and return counterexam-
ples/refine the abstraction even before AR,p has been fully mapped.

32 This happened for example to our balanced-parentheses LSTM network, which timed out during L∗

refinement after the last counterexample.
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8  Learning from only positive samples

Thus far, the method presented here can be used to learn a DFA from a set of positive and 
negative samples: we train an RNN-acceptor to generalise from them, and then extract a 
DFA from it.

However, we can also use our method to learn a DFA from positive samples only, by 
training an RNN using a language-modeling objective, and then extracting from an RNN-
acceptor interpretation of it. Such RNNs are trained only on positive samples, attempting 
to model their distribution rather than classify what is or isn’t in the language:

A language-model RNN (LM-RNN) over an alphabet Σ and end-of-sequence sym-
bol $ ∉ Σ is an RNN with classification component fR ∶ SR → [0, 1]Σ∪{$} defining for 
every RNN-state a distribution over Σ ∪ {$} . An LM-RNN effectively defines for every 
sequence w ∈ Σ

∗ and token � ∈ Σ ∪ {$} the probability of sampling � after seeing w: 
P(𝜎|w) = fR(ĝR(w))(𝜎).

LM-RNNs can be interpreted as classifiers by taking a threshold t and defining that they 
accept exactly the set of sequences w = w1w2...wn ∈ Σ

∗ which satisfy: 1. P($|w) ≥ t , and 2. 
for every strict prefix w�

= w1w2...wi , i < n of w, P(wi+1|w
�
) ≥ t . This interpretation recently 

appears as locally �-truncated support in the work of Hewitt et al. (2020), with � = t.
LM-RNNs can therefore be adapted for extraction as classifiers by defining each of their 

states as accepting or rejecting according to the probability they assign to $, and introduc-
ing an artificial sink-reject state v33 that is entered whenever a sequence transitions through 
a token with too low probability. Formally:

Making an RNN acceptor Let R be an LM-RNN with reachable state space S ⊊ ℝ
ds , 

initial state h0,R ∈ S , update function gR , and classification function fR . Let t ∈ [0, 1] be a 
threshold and let v ∈ ℝ

ds ⧵ S be a vector that cannot be reached in R from any input 
sequence.34 To create an RNN-acceptor R′ from R, we build the components h�

0,R
= h0,R , 

f �
R
(s) =

{
Acc ∶ fR(s)($) ≥ t

Rej ∶ else

 , and g�
R
(s, 𝜎) =

{
v ∶ fR(s)(𝜎) < t or s=v

gR(s, 𝜎) ∶ else

.

Table 4  Accuracy of extracted automata against their networks, which were trained to 100% training 
accuracy on the balanced parentheses (BP) language. The comparisons were done on the training sets of 
the networks. The maximum nesting depth the extracted automata reached while still behaving as BP is 
recorded (the GRU network ultimately returned a more complex automaton than the one extracted from 
the LSTM network, but this automaton no longer behaved as BP and so we have no reasonable measure for 
its ‘depth’). The hidden size ds and the number of layers in each network is also noted. (For the LSTM net-
work, this is the size of both the memory and the cell vectors, meaning the total hidden size of a single cell 
in this network is twice as big as the value listed.)

Network Accuracy on train set Max nesting depth ds #Layers

Our method Random Our method Random

GRU 99.98 87.12 8 2 50 2
LSTM 99.98 94.19 8 3 50 2

33 I.e., an externally maintained state v ∉ SR.
34 For most RNN architectures, finding such a vector v is easy from the architecture definition. For 
instance, for LSTMs and GRUs, v = 2̄ is sufficient: both have at least some of their state dimensions bound 
to the range [−1, 1].
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The new RNN-acceptor R′ can now be passed directly to our algorithm for extraction.
When the language is ‘small’—in the sense that uniformly sampled sequences are likely 

to be rejected—sampling sequences according to the RNN’s distribution is likely to hit a 
sample that has not yet been considered by L∗ . Hence here random sampling according to 
the RNN’s distribution can be a useful augmentation to the equivalence query—though 
this can also create overly long counterexamples (Sect. 8.1.3).

This approach—training an LM-RNN, adapting it as a classifier, and then extracting 
from it with the method presented in this work—has been recently applied by Yellin&Weiss 
(2021) to elicit a sequence of DFAs from trained LM-RNNs, as part of a process for learn-
ing context free grammars from trained RNNs.

Note Extracting from LM-RNNs requires some hyperparameter tuning, as changing the 
threshold t changes the set of sequences accepted by R′.

Table 5  Extraction of automata from GRU and LSTM networks trained to 100% accuracy on the training 
set for the language of balanced parentheses over the 28-letter alphabet a-z, (, ). Each table shows the 
counterexamples and the counterexample generation times for each of the successive equivalence queries 
posed by L∗during extraction, for both our method and a brute force approach. Generally, each successive 
equivalence query from L∗for either network was an automaton classifying the language of all words with 
balanced parentheses up to nesting depth n, with increasing n. The exception to this comes after the penul-
timate counterexample in the extraction from the GRU network, in which a word with unbalanced parenthe-
ses was returned as a counterexample to L∗(whose automaton currently rejects it)

Refinement-based vs. brute-force counterexample generation on the balanced parentheses language

Refinement based Brute Force

Counterexample Time (seconds) Counterexample Time (seconds)

GRU 
)) 1.1 )) 0.4
(()) 1.2 (()i)ma 32.6
((())) 2.1
(((()))) 3.1
((((())))) 3.8
(((((()))))) 4.4
((((((())))))) 6.6
(((((((()))))))) 9.2
((((((((v()))))))) 10.7
((((((((a()z))))))))) 8.3

LSTM

)) 1.4 )) 1.5
(()) 1.6 tg(gu()uh) 57.5
((())) 3.1 ((wviw(iac)r)mrsnqqb)iew 231.5
(((()))) 3.1
((((())))) 3.4
(((((()))))) 4.7
((((((())))))) 6.3
(((((((()))))))) 9.2
((((((((())))))))) 14.0
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8.1  Proof of concept

We provide a small number of example extractions from LM-RNNs trained on non-regular 
languages, observing the ability of the method to generate increasingly ‘complex’ DFA 
approximations of the targets. More examples are also present in Yellin&Weiss (2021).

8.1.1  anbn

We train a 2-layer LSTM-based LM-RNN with hidden dimension ds = 50 on positive sam-
ples from the language anbn = {aibi | i ∈ ℕ}.35 We then interpret it as an RNN-acceptor as 
described above, and extract from it using our extraction method, with t = 0.1 and a time 
limit of 400 seconds.

As expected, the extraction generates a series of DFA approximations of the non-regu-
lar target language, we present some of these in Fig. 3. The extraction ultimately reached 
DFAs approximating anbn up to n ≤ 20 before timing out, with the majority of time spent 
on refining the L∗ hypotheses, which grew slower as the DFA grew: the final hypotheses 
returned by L∗ took 46, 54, and 63 seconds each to generate after their ‘prompting’ coun-
terexamples, and the next L∗ refinement after them also timed out after 53 seconds (mean-
while, each of the counterexamples took < 5 seconds to generate). This result suggests that 
this method may benefit from applying a more efficient implementation of L∗ , such as the 
TTT algorithm of Isberner et al. (2014).

Fig. 1  Select automata of increasing size for recognising balanced parentheses over the 28 letter alphabet 
a-z,  (,  ), up to nesting depths 1 (flawed), 1 (correct), 2, and 4, respectively. In this and in all following 
automata figures, the initial state is an octogon, accepting states have a double border, and sink reject states 
(rejecting states whose transitions all lead back to themselves) are not drawn

35 20 epochs on 5000 non-unique samples of average length 50.
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Fig. 2  Automaton with vague 
resemblance to the BP automata 
of Fig. 1, but no longer represent-
ing a language of balanced 
parentheses up to a certain depth. 
(Showing how a trained network 
may be overfitted past a certain 
sample complexity.)
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8.1.2  Dyck‑3

We consider the language Dyck-3 with 3 additional neutral tokens, i.e.: correctly balanced 
sequences over the alphabet {}()[]abc. For example, {}a(b[])c is in the language, 
but ([)] and ()) are not.

We use a 2-layer GRU with dimension 50, and train it as a language model on 50000 
non-unique samples of lengths 1-100 from Dyck-3 for 20 epochs, reaching a train, test, and 
validation cross-entropy loss of ≈1.7 . We interpret the GRU as a classifier using rejection 
threshold t = 0.01 , and extract from it using our method with a time limit of 400 seconds 
and initial split depth d = 10.36

Table 6  Extracting with our method from the same RNNs as in Table 1, but this time without the initial 
heuristics as described in Sect. 7.3. The extraction time is reduced significantly, along with the accuracy: 
L
∗ ’s first hypotheses are frequently very small, and without the aggressive initial state-splitting and random 

samples, the abstraction is too coarse to find counterexamples

Extraction from LSTM networks — Our method (No Heuristics)

max RNN Average extracted DFA accuracy

ds |Σ| |QT | Time (s) |QA| #c-exs |c-ex| Acc. l=10 l=50 l=100 l=1000 Train

50 3 5 0.26 2.2 0.2 3 1.0 0.63 0.64 0.63 0.63 0.64
100 3 5 0.21 2.1 0.1 3 1.0 0.64 0.65 0.63 0.64 0.64
500 3 5 0.23 2.1 0.1 3 1.0 0.64 0.65 0.63 0.64 0.64
50 5 5 0.25 1.8 0.0 – 0.99 0.74 0.74 0.74 0.74 0.75
100 5 5 0.2 1.8 0.0 – 1.0 0.74 0.74 0.74 0.74 0.75
500 5 5 0.29 1.8 0.0 – 1.0 0.74 0.74 0.74 0.74 0.75
50 3 10 9.52 15.8 1.6 8 0.91 0.66 0.65 0.65 0.65 0.66
100 3 10 0.65 2.4 0.3 5 0.99 0.58 0.56 0.57 0.57 0.58
500 3 10 0.16 1.7 0.0 – 1.0 0.55 0.54 0.54 0.55 0.55

Extraction from GRU Networks — Our Method (No Heuristics)

50 3 5 0.16 2.1 0.1 3 1.0 0.64 0.65 0.63 0.64 0.64
100 3 5 0.16 2.0 0.0 – 1.0 0.66 0.67 0.66 0.66 0.67
500 3 5 0.2 2.0 0.0 – 1.0 0.66 0.67 0.66 0.66 0.67
50 5 5 0.19 1.8 0.0 – 1.0 0.74 0.74 0.74 0.74 0.75
100 5 5 0.18 1.8 0.0 – 1.0 0.74 0.74 0.74 0.74 0.75
500 5 5 0.21 1.8 0.0 – 1.0 0.74 0.74 0.74 0.74 0.75
50 3 10 0.13 1.7 0.0 – 0.94 0.55 0.55 0.54 0.55 0.56
100 3 10 0.16 1.7 0.0 – 1.0 0.55 0.54 0.54 0.55 0.55
500 3 10 0.31 2.5 0.3 7 1.0 0.59 0.59 0.59 0.59 0.6

36 We also augmented the equivalence queries with random counterexample generation using LM-sam-
pling, to be considered before accepting any DFA. However, this was never used: our abstraction-based 
method rejected every hypothesis before reaching this stage.
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The abstraction-based equivalence query provides L∗ with counterexamples teaching it 
new ‘parantheses nestings’ one at a time,37 creating in 128 seconds the Dyck-3 approxima-
tion A24 shown in Figu. 4 (the 24th hypothesis created during the extraction). Each of the 
counterexamples, including those after A24 , takes under 3 seconds to find.

Table 7  Extracting with our method from 2-layer GRUs and LSTMs trained imperfectly on DFAs with size 
|Σ| = |Q| = 10 , varying RNN hidden size ( ds ) and extraction time limit. Each row represents the average 
of 10 experiments, with average DFA ( |QA| , |QAR,p

| ) and final partitioning (|p|) sizes rounded for space. We 
report both the accuracy (against the RNN) of the final L∗ hypothesis, A , and the abstraction AR,p used by 
the method to find counterexamples to each A . We see that the final L∗ hypothesis is clearly the superior 
option when extraction has not terminated. Unfortunately, we also see that the accuracy does not increase 
well with more time, this is because the hypothesis generation (time from counterexample to new hypoth-
esis) grows slower with each iteration

Extraction from LSTM networks — Our method (Time limits)

Time RNN A Accuracy AR,p Accuracy

ds Limit |QA| |QR,p| |p| #c-exs Acc. l=10 l=1000 Train l=10 l=1000 Train

 50 50 116 157 1029 5.9 0.74 0.84 0.85 0.85 0.66 0.66 0.66
100 178 163 1031 6.8 0.74 0.86 0.86 0.87 0.66 0.67 0.66
200 300 160 1031 7.5 0.74 0.86 0.86 0.87 0.66 0.67 0.67
500 466 162 1031 8.0 0.74 0.88 0.88 0.88 0.65 0.66 0.66
1000 810 162 1032 9.1 0.74 0.89 0.9 0.9 0.65 0.66 0.66

 100 50 113 304 1029 5.0 0.78 0.77 0.77 0.77 0.62 0.62 0.62
100 200 307 1031 6.0 0.78 0.79 0.79 0.79 0.61 0.62 0.62
200 313 305 1029 6.6 0.78 0.8 0.8 0.81 0.61 0.62 0.62
500 532 310 1032 7.4 0.78 0.81 0.81 0.81 0.61 0.62 0.62
1000 728 309 1032 7.6 0.78 0.81 0.82 0.83 0.61 0.62 0.62

Extraction from GRU Networks — Our Method (Time Limits)

 50 50 132 349 1031 6.3 0.75 0.86 0.86 0.86 0.68 0.69 0.7
100 210 348 1031 6.9 0.75 0.86 0.86 0.86 0.68 0.69 0.69
200 352 348 1030 7.6 0.75 0.87 0.87 0.87 0.68 0.69 0.69
500 540 349 1032 8.8 0.75 0.89 0.89 0.89 0.68 0.7 0.69
1000 830 353 1034 9.7 0.75 0.89 0.89 0.9 0.68 0.7 0.7

 100 50 141 508 1031 5.0 0.79 0.76 0.76 0.77 0.61 0.63 0.62
100 174 506 1031 5.6 0.79 0.77 0.78 0.78 0.62 0.63 0.63
200 306 508 1030 6.5 0.79 0.78 0.78 0.79 0.61 0.62 0.63
500 567 522 1035 7.4 0.79 0.81 0.81 0.82 0.62 0.63 0.63
1000 780 517 1033 7.5 0.79 0.81 0.81 0.82 0.61 0.62 0.62

37 The counterexamples are: 1. () 2.{} 3.[} 4.(()) 5.({}) 6.([]) 7.{()} 8.{{}} 9.{[]} 10.[{}] 
11.((())) 12.(({})) 13.({[]}) 14.([{}]) 15.{([])} 16.{{[]}} 17.{[[]]} 18.[(){}] 
19.([()]) 20.[(())] 21.[[]()] 22.(([])) 23.([[]]) 24.[([])] 25.[[()]] 26. [[{}]] 27. 
[[[]]] 28. (((()))) 29. ((([]))) 30. (([{}])) 31. (([[])]] 32. (()[]) Excluding the third 
counterexample [}, which teaches L∗ of an incorrectly balanced pair that must be rejected, each counter-
example describes a new way to nest parentheses pairs in each other, and is accepted by the RNN. Unfor-
tunately towards the end errors show up, and we see in the 30th counterexample an incorrectly balanced 
sequence that the RNN accepts.
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Table 8  Counterexamples 
generated during extraction 
from an LSTM email-address 
network with 100% train and 
test accuracy. Examples of the 
network deviating from its target 
language are shown in bold

Counter- Network Target
example Time (s) Classification Classification

0@m.com provided
√ √

@@y.net 2.93 × ×

25.net 1.60
√

×

5x.nem 2.34
√

×

0ch.nom 8.01 × ×

9s.not 3.29 × ×

2hs.net 3.56
√

×

@cp.net 4.43 × ×

Fig. 3  Automata approximating the language anbn up to different lengths, extracted from an RNN trained 
on only positive examples. The extraction created ‘correct’ approximations up to n = 20 before reaching the 
time limit
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After the counterexample [([])] returned for A24 however, L∗ begins to find irregu-
larities in the LSTM’s behavior, and jumps from the 26 state DFA shown in Fig. 4 to the 
47 state DFA shown in Fig. 5. The new hypothesis shows us how the GRU has overfit-
ted to the training data. For example, one of the shortest sequences reaching the ‘new’ 
accepting state 41 is [([a]]), and indeed checking the GRU shows that it accepts this 
sequence despite it being incorrectly balanced. Following the transitions for this sequence, 
the GRU’s ‘first mistake’ appears to be on the neutral tokens of state 9, which instead of 
sitting on a self-loop now go to the different state 22.

Up until A24 , the L∗ refinement time (time from counterexample to next equivalence 
query) was < 10 seconds per hypothesis. The next refinement, creating A25 , takes 68 sec-
onds however, and from there all remaining refinements take 15 − 35 seconds each.

8.1.3  Sampling the LM‑RNN for equivalence queries

Long Samples We take the same Dyck-3 RNN as above and again use L∗ to extract from 
it for 400 seconds, but this time with the equivalence query based only on comparison of 
samples generated from the RNN’s distribution. Specifically, for each equivalence query, 
we sample sequences up to length 100 indefinitely (as the focus here is finding counter-
examples, not reaching equivalence quickly) with tokens chosen according to the GRU’s 
next-token distribution.

Sampling the GRU is effective for creating well balanced nested parentheses, and the 
method rejects the initial hypotheses of L∗(in which the parentheses are not yet nested), in 
under one second. The counterexample has 57 tokens and is:
{c{}{(b[]){()}c}[]()}({{{}c}ccca}cc[]){b}bbb[]abc[]a[c]()
which reaches a maximum nesting depth of 4 and shows multiple parentheses nesting 

combinations. Unfortunately, a second equivalence query is never made before reaching 
the time limit. The length of the counterexample slows L∗ down (it has polynomial time 

Fig. 4  An automaton approximating the language Dyck-3 with neutral tokens a-c, obtained in 128 seconds 
as the 24th hypothesis during extraction from a GRU trained on only positive samples from the language. 
The automaton correctly recognises many (but not all) correct parenthesis nestings up to depth n = 3 , for 
example, it accepts the sequence {([])}() but not the sequence ({()}). It rejects the empty sequence, 
this is an artefact of the RNN’s behavior



2913Machine Learning (2024) 113:2877–2919 

1 3

complexity in, among other things, the length of its counterexamples), and—possibly more 
significantly—it is possible that this counterexample has led L∗ to many ‘incorrect’ behav-
iours in the RNN, forcing it to begin working on a large DFA covering all of them at a very 
early stage in the extraction.

Fig. 5  The next hypothesis presented by L∗ after receiving the counterexample [([])] to the DFA shown 
in 4, while extracting from our LM-GRU trained on Dyck-3. While the previous hypotheses reflected clear 
(regular) subsets of Dyck-3 with bounded depth, now L∗ has found several ‘irregularities’ in the RNN, and 
encoded them into a new hypothesis which is much larger and more complicated than those before it
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LM Sampling: Short Samples A second attempt at extraction with RNN-sampled coun-
terexamples,38 this time with maximum sample length 10, creates 23 DFAs. The last of 
these is shown in Fig. 6.

The equivalence queries are fast (the first ten take <1 second each, and all take <6 sec-
onds),39 though the extraction does not as clearly resemble Dyck-3: the DFAs have irregu-
larities relative to those obtained with the abstraction-based L∗ extraction method. We do 
not know whether this is due to the random sampling missing key counterexamples (such 
as the [} counterexample in Sect.  8.1.2) or a reflection of unwanted behaviours in the 
RNN, but initial checks of misclassified sequences in the last DFA of this extraction show 

Fig. 6  The last DFA extracted from the LM-GRU trained on Dyck-3 with neutral tokens a-c, when extract-
ing with L∗ for 400 seconds and only using LM-sampling with maximum length 10 for the equivalence que-
ries. It is not a subset of Dyck-3, for example, it accepts the sequence ]]]}. This seems to be an oversight 
in the extraction: the RNN does not accept this sequence, and an appropriate counterexample would fix this

38 Again with reject threshold t = 0.01 and time limit 400s.
39 The counterexamples are (examples rejected by the RNN are marked with R): 1. R: ab(){c}[(c 2. 
{()}[ac[]] 3. [{}] 4. a()b([][]) 5. {a}({})ba 6. c{{}c}b(b) 7. b[({})b()] 8. R: b[[]
[[]{}] 9. a([a[]]()) 10. {()[][]}a 11. [acaa{()}] 12. b[{{()}}]a 13. ((()))c{} 14. 
R: (c)ca[{[]} 15. {[[]]}[]ca 16. (({})) 17. ([()]) 18. (({}b[])c) 19. ({}(){()}) 20. 
[]{bb({})} 21. [(())c]a 22. cbb[[()c]] 23. a[(a[])]ab . The last counterexample is given 
only 5 seconds before the time limit, and so the 24th equivalence query is not reached.
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that the RNN actually classifies them correctly, suggesting that at least some key counter-
examples could help ‘clean’ these DFAs.

9  Conclusions

We present a novel technique for extracting deterministic finite automata from recurrent 
neural networks, with roots in exact learning. As our method makes no assumptions as to 
the internal configuration of the network, it is easily applicable to any RNN architecture, 
and we evaluate it on the popular LSTM and GRU models. We show also how to apply it to 
RNNs trained as language models rather than acceptors.

In contrast to previous methods, our method is not affected by hidden state size, and 
successfully extracts representative DFAs from trained RNNs of arbitrary size—provided 
of course that the language learned by these RNNs can be approximated by DFAs. Our 
technique works with little to no parameter tuning, and requires very little prior informa-
tion to get started (the input alphabet, and optionally 2 labeled samples).

By the nature of L∗ , which always returns the minimal automaton consistent with all of 
its observations, our method is guaranteed to never extract a DFA more complicated than 
the language of the RNN being considered. Moreover, the counterexamples returned dur-
ing our extraction can point us to ‘incorrect’ (with respect to the target language) patterns 
that the network has learned without our awareness.

Beyond scalability and ease of use, our method obtains reasonable approximations 
for RNNs even if extraction is cut short: for the poorly trained RNNs (RNNs with <80% 
accuracy on their own test sets) considered in Table 7, our method obtains ≥77% train set 
accuracy in each of the extractions. Moreover, for networks that accurately represent small 
automata, we have shown that our method gets very good results: in these cases our method 
often obtains small, succinct DFAs, with accuracies of over 99% against their networks, in 
seconds or tens of seconds of extraction (Table 1). This is in contrast to existing methods, 
which require orders of magnitude more time to complete, and often return cumbersome or 
inaccurate DFAs (Tables 2 and 3).
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