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Abstract
Real causal processes may contain cycles, evolve over time or differ between populations. 
However, many graphical models cannot accommodate these conditions. We propose to 
model causation using a mixture of directed cyclic graphs (DAGs); each sample follows 
a joint distribution that factorizes according to a DAG, but the DAG may differ between 
samples due to multiple independent factors. We then introduce an algorithm called Causal 
Inference over Mixtures that uses longitudinal data to infer a graph summarizing the causal 
relations generated from a mixture of DAGs even when cycles, non-stationarity, latent vari-
ables or selection bias exist. Experiments demonstrate improved performance in inferring 
ancestral relations as compared to prior approaches. R code is available at https://github.
com/ericstrobl/CIM.

Keywords  Causal discovery · Longitudinal data · Directed acyclic graph · Mixture of 
DAGs

1  Introduction

Causal discovery or causal inference refers to the process of inferring causation from data. 
Investigators usually perform causal discovery using randomized controlled trials (RCTs). 
However, RCTs can be impractical or unethical to perform. For example, scientists can-
not randomly administer illicit substances or withhold active treatment from critically ill 
subjects. Many investigators therefore experiment with animals, which in turn raises more 
ethical questions, knowing that the derived results may not directly apply to humans.

In this paper, we develop an algorithm that discovers causation directly from observa-
tional data, or data collected without randomization. Denote the variables in an observa-
tional dataset by X . We summarize the causal relations between variables in X using a 
directed graph, where the directed edge Xi → Xj with Xi,Xj ∈ X means that Xi is a direct 
cause of Xj . Similarly, Xi is a cause of Xj if there exists a directed path, or a sequence of 
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directed edges, from Xi to Xj . We want to recover the directed graph as best as possible 
using the observational dataset.

We may however fail to always sample from a probability distribution obeying a single 
directed graph in practice. In this paper, we consider the relaxed scenario where each sam-
ple follows a single directed graph, but the graph may differ between samples. Consider for 
example the dataset shown in Fig. 1a. The samples in blue arise from the directed graph 
shown in Fig. 1b, but the samples in grey arise from the graph in Fig. 1c. If we do not have 
color coding or labels distinguishing the two different sample types, then the probability 
distribution obeys a mixture of the two directed graphs. We thus focus on inferring a graph 
summarizing the relationships encoded in the component graphs using samples from the 
mixture distribution. Note that we may have many more than two component graphs in 
practice.1 We do not assume access to any type of prior knowledge about the number of 
component graphs.

This approach is particularly powerful for modeling non-equilibriated causal processes 
with cycles. Directed graphs in nature often contain feedback loops, or cycles, where Xi 
causes Xj and Xj directly causes Xi . For example, Fig. 2a depicts a portion of the thyroid 
system where X1 denotes the thyroid stimulating hormone (TSH) and X2 the T4 hormone 
(T4). TSH released from the anterior pituitary regulates T4 hormone release from the thy-
roid gland, while T4 feeds back to inhibit TSH release. Cycles such as these abound in 
practice, so we must develop algorithms that can accommodate them in order to accurately 
model causal processes.

Authors have proposed multiple interpretations of cycles in the causal discovery lit-
erature. The most popular approach assumes that Xi causes Xj and Xj causes Xi simul-
taneously in an equilibrium distribution (see Appendix 8.1 for a detailed description). 
This formulation however differs from the standard way cycles are taught in biology, 
where Xi causes Xj , then Xj causes Xi , then Xi causes Xj and so forth in a non-equilib-
riated process rarely reaching a stationary point (e.g., Chapters 2, 7 and 15 in (Alberts 
et al. 2015)); notice that causation occurs in succession and never simultaneously, simi-
lar to a discrete switching process.

We therefore propose a different interpretation of cycles based on non-equilibri-
ated distributions, where we model a potentially cyclic causal process using multiple 
directed acyclic graphs (DAGs), or graphs with directed edges but no cycles. The causal 
process is represented as a DAG at any single point in time, but the DAG may change 
across time to accommodate feedback. We illustrate the idea by decomposing the cycle 
in Fig. 2a into two DAGs: TSH → T4 and T4 → TSH. For each sample, TSH first causes 
T4 release at time point t1 and then T4 inhibits TSH release at time point t2 > t1 . Such 

Fig. 1   A dataset containing 
samples from a distribution mod-
eled by a mixture of two directed 
graphs in (a). The samples in 
blue arise from the graph in (b), 
while the samples in grey from 
(c) (Color figure online)

X1 X2 X3
8.04 -2.20 1.24
7.19 -0.98 5.28
1.68 -6.40 2.03
0.77 -1.40 9.59
2.43 -1.126 1.40

(a)

X1

X2

X3

(b)

X1

X2

X3

(c)

1  The examples in the paper only include two component graphs for ease of presentation and to conserve 
space; they do not imply an additional assumption.
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a successive relationship is known to hold in biology, and this process never reaches 
equilibrium because the hormone levels fluctuate throughout the entire day (Pirahanchi 
et al. 2021; Lucke et al. 1977). We however can only measure each sample at a single 
point in time, so the observational dataset in Fig.  2b contains some samples in blue 
when TSH causes T4 and others in grey when T4 causes TSH. If we do not observe the 
time variable T, then the observational dataset arises from a mixture of DAGs where 
the mixing occurs over time: p(X1,X2) =

∑
T p(X1,X2�T)p(T) . We interpret the cycle in 

Fig.  2a as the uncertainty in knowing which samples came from X1 → X2 and which 
from X1 ← X2 . Cycles therefore arise because of multiple DAGs, each representing an 
unknown time period in a non-equilibriated process where causation occurs in succes-
sion, rather than from a single cyclic graph representing an equilibriated process where 
causation occurs simultaneously. We now must infer the directed graph in Fig. 2a using 
the samples from X1 and X2 alone. In practice, we observe more than two random vari-
ables without color coding and mixing occurs over more than two graphs indexed by 
multiple variables T denoting entities such as time, gender, income and disease status. 
Figure 2c therefore depicts a more realistic dataset.

We now develop a method for recovering a directed graph summarizing the causal 
relations arising from a mixture of DAGs. We do so by first reviewing related work in 
Sect.  2. We then provide background in Sect.  3. Section  4 introduces the mixture of 
DAGs framework. In Sect. 5, we explain why existing algorithms fail and then detail a 
new method called Causal Inference over Mixtures (CIM) to infer causal relations using 
longitudinal data. We then report experimental results in Sect. 6 highlighting the supe-
riority of CIM compared to prior approaches on both real and synthetic datasets. We 
finally conclude the paper in Sect. 7. We delegate all proofs to the Appendix.

This paper improves upon a previously published workshop paper (Strobl 2019), 
where we proposed the mixture of DAGs framework as well as an early version of the 
CIM algorithm. The paper unfortunately has some limitations, which we corrected 
herein. We specifically make the following new contributions in this submission: 

(a)	 We simplify and improve the description of the mixture of DAGs framework.
(b)	 The original global Markov property is incorrect. We prove the correct property without 

assuming strict positivity, a single latent and discrete variable in T , parametric forms 
or particular variable orderings across the constituent DAGs.

X1 X2

(a)

X1 X2 T
0.21 -0.20 1.29
0.68 -0.47 7.30
1.05 -0.19 4.33
0.72 -1.40 0.10
0.13 -0.56 2.91

(b)

X1 X3 X4 X7 · · · T3
0.31 -1.01 5 0 · · · 1.29
0.89 -0.58 6 0 · · · 7.30
1.11 -0.79 2 1 · · · 4.33
0.14 -1.23 5 0 · · · 0.10
0.21 -0.20 4 1 · · · 2.91
...

...
...

...
...

...

(c)

Fig. 2   We decompose the cycle in (a) into two DAGs: X1 → X2 and X2 → X1 . The blue samples in (b) refer 
to samples arising from the first DAG and the grey ones to the second. The table in (c) depicts a more real-
istic dataset containing more variables and samples (Color figure online)
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(c)	 We improve the CIM algorithm by accommodating the new global Markov property 
and increasing the number of conditioning sets. This substantially improves perfor-
mance by recovering a sparser causal graph.

(d)	 We improve the known ground truth for the real datasets. This allows us to run all 
experiments using sensitivity, fallout and distance from the upper left hand corner of 
the ROC in order to directly compare algorithms across all three metrics.

(e)	 We run all algorithms using the GCM conditional independence (CI) test which con-
trols the Type I error rate better than the RCoT test used in the previous paper (Shah 
et al. 2020; Strobl et al. 2018).

These changes improve the arguments substantially and lead to an even better causal infer-
ence algorithm.

2 � Related work

Several algorithms perform causal discovery with cycles. Most of these methods assume 
stationarity, or a stable equilibrium distribution over time. The Fast Causal Inference (FCI) 
algorithm for example infers causal relations by executing CI tests in greedy sequence 
(Spirtes et  al. 2000; Zhang 2008). The algorithm was initially developed for the acyclic 
case, but it can handle cycles, provided that we can ignore them by transforming the cyclic 
graph into an acyclic one sharing the same CI relations (Mooij and Claassen 2020; Spirtes 
1995). FCI thus cannot recover within-cycle causal relations, but other algorithms can. The 
Cyclic Causal Discovery (CCD) algorithm for instance works well when no selection bias 
or latent variables exist (Richardson 1996). The Cyclic Causal Inference (CCI) algorithm 
extends CCD to handle selection bias and latent variables, but both algorithms require lin-
ear or discrete variables for correctness (Strobl 2018; Forré and Mooij 2017, 2018). Inves-
tigators have since proposed a variety of extensions based on exhaustive search that can 
infer causal relations with higher accuracy (Hyttinen et  al. 2013, 2014; Lu et  al. 2021). 
These methods however can have trouble scaling to higher dimensions due to the combina-
torial search space over directed graphs and the potentially exponential increase in condi-
tioning set sizes of the CI tests.

Another set of methods can handle non-equilibrium distributions, but most of them 
require a single underlying directed graph either in discrete time with dynamic Bayesian 
networks (Murphy 2002) or in continuous time with dynamic structural causal models 
(Dagum et al. 1995; Zhang et al. 2017; Rubenstein et al. 2018; Bellot et al. 2021). Two 
methods exist for recovering causal processes with multiple graphs (Strobl 2017; Zhang 
and Glymour 2018), but they assume a mixture of parametric distributions. Saeed et  al. 
(2020) showed that FCI can also handle non-stationarity, provided that a certain variable 
ordering assumption holds across time. This ordering however can easily be violated with 
shifting graphical structure or cycles. CIM improves upon all of these methods by allowing 
arbitrary variable ordering, non-linearity, cycles, non-stationarity, non-parametric distribu-
tions, changing graphical structure, latent variables and selection bias.

Finally, several methods can discover causal structure under different known contexts, 
usually framed in terms of experimental conditions (Mooij et al. 2020; Squires et al. 2020; 
Ke et al. 2019; Jaber et al. 2020). These algorithms require observed variables indexing the 
contexts. Most also assume that the observational distribution follows a single underlying 
DAG, from which we can model experiments by removing parents. We instead consider 
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unknown contexts and violations of acyclicity. The observational distribution therefore fol-
lows a mixture of DAGs, where mixing occurs over latent context variables and the DAGs 
obey potentially different partial orderings.

3 � Background

We now delve into the background material required to understand the proposed 
methodology.

3.1 � Terminology

In addition to directed edges, we consider other edge types including: ↔ (bidirected), — 
(undirected),  (partially directed),  (partially undirected) and  (nondirected). The 
edges contain three endpoint types: arrowheads, tails and circles. Each circle corresponds 
to an unknown endpoint thus denoting either an arrowhead or tail. We say that two vertices 
Xi and Xj are adjacent if there exists an edge between the two vertices. We refer to the triple 
Xi ∗→ Xj ←∗ Xk as a collider or v-structure, where each asterisk corresponds to an arbitrary 
endpoint type, when Xi and Xk are non-adjacent. The triple Xi ∗−∗ Xj ∗−∗ Xk is conversely 
a triangle if Xi and Xk are adjacent. Unless stated otherwise, a path is a sequence of edges 
without repeated vertices. Xi is an ancestor of Xj if there exists a directed path from Xi to 
Xj or Xi = Xj . We write Xi ∈ Anc

�
(Xj) when Xi is an ancestor of Xj in the graph � . We also 

apply the definition of an ancestor to a set of vertices Y ⊆ X as follows:

If A , B and C are disjoint sets of vertices in X , then A and B are said to be d-connected by 
C in a directed graph � if there exists a path Π between some vertex in A and some vertex 
in B such that, for any collider Xi on Π , Xi is an ancestor of C and no non-collider on Π is 
in C . We also say that A and B are d-separated by C if they are not d-connected by C . For 
shorthand, we write A ⟂⟂d B|C to denote d-separation and A ̸⟂⟂d B|C to denote d-connec-
tion. The set C is more specifically called a minimal separating set if we have A ⟂⟂d B|C 
but A ̸⟂⟂d B|D , where D denotes any proper subset of C.

A mixed graph contains edges with only arrowheads or tails, while a partially oriented 
mixed graph may also include circles. We focus on mixed graphs that contain at most one 
edge between any two vertices. We can associate a mixed graph �∗ with a directed graph 
� as follows. We first partition X = O ∪ L ∪ S denoting observed, latent and selection vari-
ables, respectively; the selection variables allow us to model the selection bias frequently 
present in real data. We then consider a graph over O summarizing the ancestral relations 
in � with the following endpoint interpretations: Oi ∗→ Oj in �∗ if Oj ∉ Anc

�
(Oi ∪ S) , and 

Oi ∗—Oj in �∗ if Oj ∈ Anc
�
(Oi ∪ S).

3.2 � Probabilistic interpretation

We associate a density p(X) to a DAG � by requiring that the density factorize into the 
product of conditional densities of each variable given its parents:

Anc
�
(Y) = {Xi|Xi ∈ Anc

�
(Yj) for some Yj ∈ Y}.
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Any distribution which factorizes as above also satisfies the global Markov property w.r.t. 
� where, if we have A ⟂⟂d B|C in � , then A and B are conditionally independent given 
C (Lauritzen et al. 1990). We denote the conditional independence (CI) as A ⟂⟂ B|C for 
short. We refer to the converse of the global Markov property as d-separation faithfulness. 
An algorithm is constraint-based if it utilizes CI testing to recover some aspects of �∗ as a 
consequence of the global Markov property and d-separation faithfulness.

4 � Mixture of DAGs

We introduce the framework with univariate T and then generalize to multivariate T because 
the univariate case is simpler. Note that Spirtes (1994) considered the univariate setting as 
well, but he also (1) assumed that T is discrete, and (2) described the framework in terms of 
structural equations rather than densities. We do not impose any type restrictions and detail the 
density approach. We finally consider the multivariate case which is entirely novel.

4.1 � Univariate case

We consider the set of vertices Z = X ∪ T  . We divide Z into three non-overlapping sets O , 
L and S denoting observed, latent and selection variables, respectively. At each time point 
t, we consider the joint density p(X, T = t) and assume that it factorizes according to a 
DAG �t over Z:

where Pat(Zi) refers to Pa
�t
(Zi) for shorthand, the parent set of Zi at time point t. We ana-

lyze the following density:

where PaT (T) = � . The above equation differs from Eq. (1) for a single DAG; the parent set 
Pa

�
(Zi) remains constant over time in Eq. (1), but the parent set PaT (Zi) may vary over time 

in Eq. (2).
Note that we may have T ∈ PaT (Zi) for some Zi ∈ Z . Let R ⊆ Z correspond to all those 

variables in Z where T is not in the parent set, so T ∉ PaT (Zi) for all Zi ∈ R . We also have 
T ∈ PaT (Zi) for all Zi ∈ [Z ⧵ R] . We can then rewrite Eq. (2):

(1)p(X) =

p∏

i=1

p(Xi|Pa�(Xi)).

p(X, T = t) = p(T = t)p(X|T = t)

= p(T = t)

p∏

i=1

p(Xi|Pat(Xi)),

(2)p(Z) =

p+1∏

i=1

p(Zi|PaT (Zi)),

(3)

p+1∏

i=1

p(Zi|PaT (Zi))

=
∏

Zi∈R

p(Zi|PaT (Zi) ⧵ T)
∏

Zi∈[Z⧵R]

p(Zi|PaT (Zi) ∪ T).



4207Machine Learning (2023) 112:4201–4225	

1 3

The left hand term corresponds to the stationary component and the right hand to the non-
stationary component. We assume that we can sample i.i.d. from the density p(O|S):

where mixing occurs over time T in the integration if T ∈ L . We technically do not require 
T ∈ L , but we refer to the above equation as the mixture of DAGs framework because we 
usually have T ∈ L in practice.

4.2 � Multivariate case

We generalize the mixture of DAGs framework to a multivariate set of mutually independ-
ent variables T that may include variables other than time. This step is critical for modeling 
sparse graphical structure and many independent causes of change. For example, we may let 
T = {T1, T2} , where T1 denotes time and T2 gender. Gender is instantiated independent of 
time, but the causal process can change over time and differ by gender. The set T can encom-
pass a wide range of variables and will allow the DAG to change according to multiple condi-
tions such as time, location and sub-populations. In contrast, methods like dynamic Bayesian 
networks and dynamic structural causal models only accommodate changes across a single 
variable – typically time.

We consider the set of vertices Z = X ∪ T instead of the original X ∪ T . We divide Z 
into three non-overlapping sets O , L and S . We assume a joint density p(X,T) that factorizes 
according to a DAG �

T
 over Z:

where Pa
T
(T) = � . The above equation mirrors Eq. (2).

Note that we may have T ∩ Pa
T
(Zi) ≠ � for some Zi ∈ Z . So for each Zi ∈ Z , let Ui ⊆ T 

denote the largest set such that Ui ∩ Pa
T
(Zi) = � . This implies T ∩ Pa

T
(Zi) = T ⧵ Ui ≜ Vi . 

We then rewrite Eq. (4):

so that p(Zi|PaT(Zi)) is stationary over Ui but non-stationary over Vi . Setting Ui = T  and 
Vi = � for Zi ∈ R and vice versa for Zi ∈ [Z ⧵ R] recovers Eq. (3). We finally sample i.i.d. 
from the density p(O|S):

where mixing occurs over T ∩ L if T ∩ L ≠ � . We again technically do not require 
T ∩ L ≠ � , but this usually holds in practice.

p(O|S) =
∑

L

p(O,L|S),

(4)

p(Z) = p(T)p(X|T) =
s∏

i=1

p(Ti)

p∏

i=1

p(Xi|PaT(Xi))

=

p+s∏

i=1

p(Zi|PaT(Zi)),

(5)
p+s∏

i=1

p(Zi|PaT(Zi)) =
p+s∏

i=1

p(Zi|(PaT(Zi) ⧵ Ui) ∪ Vi),

(6)p(O|S) =
∑

L

p(O,L|S).
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4.3 � Global Markov property

The factorization in Eq. (5) implies certain CI relations. In this section, we will identify 
the CI relations by deriving a global Markov property similar to the traditional DAG 
case.

There exists a DAG �
T
 for each instantiation of T because Pa

T
(Zi) is defined for all 

Zi ∈ Z . Consider the collection G consisting of all DAGs indexed by T . The number 
of DAGs over Z is finite, so |G| = q ∈ ℕ

+ . Let T  denote the set of all values of T cor-
responding to members of G , and Tj ⊆ T  to the set for �j ∈ G . We can then rewrite Eq. 
(5) as:

We want to find a single graph where d-separation between the vertices implies CI in the 
density that factorizes according to Eq. (7). Clearly, we need to combine the graphs in G 
using some procedure. We use the notation Aj to refer to the set of vertices A ⊆ Z asso-
ciated with �j in the resultant graph. We also let A� = ∪

q

j=1
A
j denote the corresponding 

collection across all DAGs in G . It turns out that the following combination of graphs in G 
suffices:

Definition 1  (Mixture graph) The mixture graph � is a DAG constructed by combining 
the graphs in G using the following procedure: 

1.	 Plot each of the q DAGs in G adjacent to each other.
2.	 Merge T ′

i
⊆ T

′ into a single vertex Ti for each Ti ∈ T.

Notice therefore that the DAGs in G are connected by T in � , so they are statistically 
dependent in general. We provide an example in Fig. 3. Figure 3a corresponds to the two 
DAGs in G plotted next to each other according to Step 1 of Definition 1. We then merge 
the two vertices in T ′

1
 into a single vertex T1 according to Step 2 to yield � in Fig. 3b.

If A ⊆ T , then A� = A in � due to Step 2 above. We can now read off the implied 
CI relations from � by utilizing d-separation across groups of vertices rather than just 
singletons.

Theorem  1  (Global Markov property) Let A,B,C denote disjoint subsets of Z . If 
A
′ ⟂⟂d B

′|C′ in � , then A ⟂⟂ B|C.

(7)
p+s∏

i=1

p(Zi|PaT(Zi)) =
q∑

j=1

1
T∈Tj

p+s∏

i=1

p(Zi|Pa�j (Zi)).

X1
1 X1

3

X1
2 T 1

1

G1

X2
3 X2

1

X2
2T 2

1

G2

(a)

X1
1 X1

3

X1
2 T1

X2
3 X2

1

X2
2

(b)

Fig. 3   Construction of a mixed graph. We plot the two DAGs in G next to each other in (a) for Step 1 of 
Definition 1. Merging the two vertices in T ′

1
 to create T1 generates � in (b) for Step 2
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We refer to the reverse direction as d-separation faithfulness with respect to (w.r.t.) � . 
The result improves upon that of (Spirtes 1994) and (Saeed et al. 2020), where the authors 
additionally assumed that T is univariate, latent and discrete. Spirtes (1994) also proposed 
another global Markov property that implies less CI relations even under the univariate 
assumption (see Definition 2 and then Appendix 8.3 for a detailed discussion).

We provide an example again in Fig. 3. In Fig. 3a, we have X1
1
→ X1

2
 in the first DAG and 

X2
2
← X2

3
 in the second; however, we do not have the v-structure Xj

1
→ X

j

2
← X

j

3
 in either 

DAG. We also have the relation X′
1
⟂⟂d X

′
3
 in Fig. 3b, so � implies X1 ⟂⟂ X3 per Theorem 1. 

In contrast, X�
1
̸⟂⟂d X

�
3
|X�

2
 in Fig. 3b, so � implies X1 ̸⟂⟂ X3|X2 per d-separation faithfulness 

w.r.t. � . This holds even though we have Xj

1
⟂⟂d X

j

3
|Xj

2
 in either DAG in Fig. 3a. Variables 

may therefore be conditionally dependent in the mixture distribution, even though they are 
d-separated within any single DAG in G , because the variables are connected by T in �.

5 � Causal inference over mixtures

5.1 � Fused graph

The mixture graph encodes the global Markov property, but we cannot easily visualize 
cycles in � because they are spread across different sub-DAGs. We therefore construct a 
fused graph, first introduced in (Spirtes 1994), that contains cycles but does not necessarily 
encode the best global Markov property.

X1
3

X1
4

X1
1

X1
2

T1

X2
1

X2
2

X2
3

X2
4

(a)

X1

X2

X3

X4

T1

(b)

X1 1

X1 2

X2 3

X1 4

T1

(c)

X1 1

X1 2

X2 3

X1 4

(d)

Fig. 4   We have the mixture graph in (a) and the fused graph in (b). Subfigures (c) and (d) contain �  and � ∗ , 
respectively, with additional time step information



4210	 Machine Learning (2023) 112:4201–4225

1 3

Definition 2  The fused graph �  is a directed graph (potentially cyclic) constructed by 
merging the graphs in G . In other words: 

1.	 Plot each of the q DAGs in G adjacent to each other.
2.	 Merge Z′

i
⊆ Z

′ into a single vertex Zi for each Zi ∈ Z , so that �  may contain cycles.

Intuitively, the fused graph combines each set of vertices Z′
i
 in � into a single vertex Zi . 

�  therefore summarizes cycles in one directed graph, so it is more intuitive than � , where 
cycles are spread across multiple sub-graphs.

We provide an example of a mixture graph and its associated fused graph in Fig. 4. We 
focus on the mixture graph in Fig. 4a, where we have a cycle involving {X1,X2,X4} , but we 
do not observe the full cycle in either sub-DAG. We have also drawn out �  in Fig. 4b. X2 is 
an ancestor of X1 in �  even though X′

2
 is not an ancestor of X′

1
 in �.

We will utilize the global Markov property of � in order to recover (parts of) a mixed 
graph � ∗ summarizing the ancestral relations in �  , because � ∗ allows us to visualize cycles 
that are not present within � but exist once the DAGs are combined in �  . This differs from 
the work in (Spirtes 1994), where the author proposed to use a global Markov property 
based directly on �  . This property unfortunately implies less CI relations even for univari-
ate T , so we cannot use it to infer as many ancestral relations in �  as compared to the pro-
posed global Markov property based on � (details to come in Sect. 5.4).

5.2 � Longitudinal data

We have unfortunately identified an instance, where it is impossible to even detect a v-structure 
under acyclicity using a CI oracle alone (Appendix 8.4). We therefore rely on additional informa-
tion to orient arrowheads (which encode non-ancestral relations) using longitudinal data, where 
we assume access to multiple time steps of variables.2 Note that we differentiate between discrete 
time steps and discrete or continuous time points because each time step may include a mixture 
of different time points corresponding to instantiations of a time variable in T . We assume access 
to w time steps, so that we can partition O into w disjoint subsets denoted by 1O,… , wO . We thus 
have ∪w

k=1
kO = O . We then consider the following density:

Definition 3  (Longitudinal density) A longitudinal density is a density p(∪w
k=1

kO,L,S) that 
factorizes according to Eq. (5) such that no variable in time step a is an ancestor of a vari-
able in time step b < a and w ≥ 2.

Causation proceeds forward in time, so no variable in time step a can be an ancestor of a 
variable in time step b < a.

It is important to take some time and decompose Definition 3, because it can be con-
fused with some other concepts in causal discovery, such as those used in dynamic Bayes-
ian networks or equilibrium distributions. The set Z = 1O ∪ L ∪ S with w = 1 corresponds 
to a standard variable set in causal discovery, where we assume access to only one time 
step for the observable variables. Under the mixture of DAGs framework, the density of Z 
factorizes as 

∏p+s

i=1
p
�
Zi�PaT(Zi)

�
 just like in Eq. (5). Mixing over DAGs then occurs accord-

ing to T ∩ L with 
∑

L
p(1O,L�S) = p(1O�S) as in Eq. (6). The time step w = 1 therefore can 

2  Time steps are also commonly known as waves in the applied literature (Taris 2000).
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include a mixture of DAGs representing cycles as well as different time points, sub-popula-
tions and distributions indexed by T.

With longitudinal data, we consider multiple time steps 1O,… , wO and consider the 
set Z = ∪w

k=1
kO ∪ L ∪ S with w ≥ 2 . We then assume that the entire joint density factor-

izes according to a mixture of DAGs just like in Eq. (5): 
∏p+s

i=1
f
�
Zi�PaT(Zi)

�
. We of course 

require the additional constraint that aOi ∈ Pa
T
(bOj) implies a ≤ b as indicated in Defini-

tion 3 because causation must proceed forward in time. Mixing over DAGs then occurs 
over T ∩ L such that 

∑
L
p(∪w

k=1
kO,L�S) = p(∪w

k=1
kO|S) . Thus, although we partition the 

variables across time steps, each time step can still include a mixture of DAGs representing 
cycles as well as different time points, sub-populations and distributions indexed by T just 
like the original case where w = 1 . The time steps are also statistically dependent in gen-
eral because the factorization in Eq. (5) includes variables in different time steps. Our setup 
is similar to the problem discussed in (Rubenstein et al. 2018), where they highlight the 
indeterminacies that arise when discretizing a continuous time causal model into a few dis-
crete time steps because each discrete time step can contain samples from multiple models.

We provide an example of a longitudinal dataset in Table 1. The dataset is derived using 
2 DAGs in G , 9 variables in O and three time steps. Each time step contains blue and grey 
rows corresponding to samples obeying either the first or second DAG, respectively. The 
variables are statistically dependent between time steps in general and do not contain miss-
ing values. Further observe that Ok

i
 in � is not equivalent to kOi ∈

kO ; the first notation 
refers to Oi in �k ∈ G , while the other refers to Oi measured at time step k which may arise 
from any graph in G because each time step is a mixture of DAGs; the pre-super script and 
the post-super script therefore denote different concepts.

5.3 � Output target

If Y ⊆ O , then let aY and aY′ denote Y ∩ aO and [aY]� , respectively. We write c
d
Adj

� ∗ (aOi) to 
mean those variables between time steps c and d inclusive that are adjacent to aOi in � ∗ . We 
will specifically construct � ∗ with the following adjacencies:

List 1  (Adjacency Interpretations) 

Table 1   An example of a 
longitudinal dataset containing 
three time steps, 9 variables in 
O and two DAGs in G . The light 
blue samples correspond to �1 
and the grey samples to �2 . 
Notice that each time step is still 
a mixture of DAGs

Time Step 1 Time Step 2 Time Step 3

1
O

1
1
O

2
1
O

3
2
O

4
2
O

5
2
O

6
3
O

7
3
O

8
3
O

9

2.28 −1.27 1.61 0.15 30.18 0.25 0.39 −0.27 1.80
0.48 −0.59 0.23 0.55 −0.45 0.58 0.05 −0.41 0.25
0.16 −0.82 0.13 0.61 −0.26 0.41 0.12 −0.59 0.57
0.61 −1.18 0.70 1.38 −1.28 0.05 1.38 −0.36 0.91
1.10 −0.42 1.14 0.24 −2.22 0.25 0.76 −1.24 0.54
0.76 −0.47 0.66 0.34 −0.97 1.10 0.78 −1.06 2.47
0.10 −0.37 1.01 0.12 −0.33 0.98 0.35 −0.09 0.40
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
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1.	 If we have aOi ∗−∗
bOj (with possibly a = b ), then aO�

i
̸⟂⟂d

bO�
j
|W� ∪ S

� in � for all 
W ⊆ a

b
Adj

� ∗ (aOi) ⧵
bOj and all W ⊆ a

b
Adj

� ∗ (bOj) ⧵
aOi.

2.	 If we do not have aOi ∗−∗
bOj (with possibly a = b ), then aO�

i
⟂⟂d

bO�
j
|W� ∪ S

� in � for 
some W ⊆ O ⧵ {aOi,

bOj}.

The endpoints of � ∗ have the following modified interpretations:

List 2  (Endpoint Interpretations) 

1.	 If aOi ∗→
bOj , then bOj ∉ Anc

�
(aOi) ; in other words, merging the graphs in G does not 

create a directed path from bOj to aOi.
2.	 If aOi ∗−

bOj , then bOj ∈ Anc
�
(aOi ∪ S) ; in other words, merging the graphs in G creates 

a directed path from bOj to aOi ∪ S.

The arrowheads do not take into account selection variables because we often cannot 
a priori specify whether a variable is an ancestor of S in �  using either time step informa-
tion or other prior knowledge in practice. We re-emphasize that Ok

i
 in � is not equivalent 

to kOi in �  . We draw an example of � in Fig. 4a, its fused graph �  with time step notation 
in Fig.  4c and the corresponding mixed graph � ∗ in Fig.  4d, where 1O = {1X1,

1X2,
1X4}, 

2O = 2X3, L = T1 , S = � and w = 2.

5.4 � Algorithm

We cannot apply an existing constraint-based algorithm like FCI on data arising from a 
mixture of DAGs and expect to recover a partially oriented � ∗ . For example, FCI and CCI 
can make incorrect inferences if G contains more than one DAG. Consider the mixture 
graph in Fig. 5a, where all variables lie in the same time step. O2 is an ancestor of O3 in �  
drawn in Fig. 5b, but we have O′

1
⟂⟂d O

′
3
 in � , so O1 and O3 are independent by Theorem 1. 

FCI and CCI therefore infer the incorrect collider O1 ∗→ O2 ←∗ O3 in � ∗ during v-structure 
discovery. We thus require an alternative algorithm to correctly recover a partially oriented 
�
∗.

We now propose a new algorithm called Causal Inference over Mixtures (CIM) which 
correctly recovers causal relations. We summarize the procedure in Algorithm 1. The CIM 
algorithm works as follows. First, CIM runs a variant of PC-stable’s skeleton discovery 
procedure in order to discover adjacencies as well as minimal separating sets in Step 1 
(Colombo and Maathuis 2014). This step is summarized in Algorithm  2. The skeleton 
discovery procedure attempts to find a minimal set that renders aOi and bOj conditionally 

O1
1

O1
2

O1
3

T1

O2
3

O2
2

O2
1

(a)

O1 O3

O2
T1

(b)

O1 O3

O2

(c)

Fig. 5   An example where both FCI and CCI fail. We have a mixture graph in (a) and its fused graph in (b). 
Subfigure (c) contains the correct � ∗ , but FCI and CCI infer the incorrect collider O1 ∗→ O2 ←∗ O3
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independent using variables adjacent to aOi and between time steps a and b inclusive in 
Lines 8 and 9. If the algorithm succeeds in doing so, then it removes the edge between aOi 
and bOj in Line 10. Algorithm  2 therefore recovers the adjacencies with interpretations 
listed in List 1. The algorithm stores the minimal separating sets in the array Sep in Line 11 
so that Sep(aOi,

bOj) contains a minimal separating set of aOi and bOj , if such a set exists. 

CIM next adds arrowheads in Step 2 using time step information from a longitudinal data-
set with the list W . If we have  with a < b , then CIM orients  because 
bOj ∉ Anc

�
(aOi) according to List 2. We can orient additional arrowheads using other prior 

knowledge P . Step 2 orients many arrowheads in practice, so long as we have at least two 
time steps of data.

For every triple aOi ∗→
bOj ∗−∗

cOk with aOi and cOk non-adjacent, CIM then attempts 
to find a minimal separating set that contains bOj in Step 3. These sets are important due to 
the following lemma which allows us to infer tails in Step 4:
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Lemma 1  Suppose aO�
i
⟂⟂d

bO�
j
|W� ∪ S

� in � but aO�
i
̸⟂⟂d

bO�
j
|V� ∪ S

� for every V ⊂ W . If 
cOk ∈ W , then cOk ∈ Anc

�
(aOi ∪

bOj ∪ S).

Theorem 1 therefore allows us to infer more ancestral relations via the above lemma 
– as compared to the global directed Markov property based directly on the fused graph �  
(Spirtes 1994) – because � has more d-separation relations than �  . CIM finally adds some 
additional tails in Step 5 due to transitivity of the tails.

We now formally claim that Algorithm 1 is sound:

Theorem  2  Suppose the longitudinal density p(∪w
k=1

kO,L,S) factorizes according to Eq. 
(5). Assume that all prior information P is correct. Then, under d-separation faithfulness 
w.r.t. � , the CIM algorithm returns �̂ ∗ – the mixed graph � ∗ partially oriented.

Thus if aOi ∗−
bOj for any two vertices in �̂ ∗ , then bOj ∈ Anc

�
(aOi ∪ S) ; in other words, 

merging the graphs in G creates a directed path from bOj to aOi ∪ S per List 2. Moreover, 
CIM completes in O(rs) time where r denotes the number of variables in ∪w

k=1
kO and s the 

maximum number of vertices adjacent to any vertex in � ∗ due to Steps 1 and 3 of Algo-
rithm 1. We can therefore predict that CIM will take about the same amount of time to 
complete as PC.

6 � Experiments

We had two overarching goals: (1) evaluate the performance of CIM against other con-
straint-based algorithms using real data, and (2) determine if we can reconstruct the real 
data results using synthetic data sampled from a mixture of DAGs. We utilized the setup 
described below.

6.1 � Algorithms

CIM is a constraint-based algorithm that executes CI tests in greedy sequence. We there-
fore compared CIM against similar greedy constraint-based algorithms in recovering the 
ancestral relations in �  : PC, FCI, RFCI and CCI. FCI covers the recent proposal by Saeed 
et al. (2020). We equipped all algorithms with a nonparametric CI test called GCM (Shah 
et  al. 2020) and fixed � = 0.01 across all experiments. We gave all algorithms the same 
time step information during skeleton discovery in order to orient arrowheads between the 
time steps. The algorithms perform much worse without the additional knowledge. As a 
result, we more specifically compared CIM against the time series versions of the algo-
rithms (Entner and Hoyer 2010; Malinsky and Spirtes 2018; Runge et al. 2019).

6.1.1 � Metrics

Let tails refer to positives and arrowheads to negatives. Recall that the output of CIM �̂ ∗ 
includes arrowheads and tails, but the arrowheads are oriented by time steps and prior 
knowledge according to Step 2. CIM therefore only infers tails using CI tests.
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Since CIM only infers tails, we compared the algorithms on their ability to infer ances-
tral relations according to List 2. We specifically evaluated the algorithms using sensitivity 
and fallout. The sensitivity is defined as TP/P, where TP refers to true positives and P to 
positives. The fallout is defined as FP/N, where FP refers to false positives and N to nega-
tives. A tail in place of an arrowhead corresponds to a false positive.

The receiver operating characteristic (ROC) curve plots sensitivity against the fallout. 
If an algorithm does not orient any tails, then the sensitivity is zero. On the other hand, if 
an algorithm just orients all tails, then the fallout is one. If an algorithm achieves a perfect 
balance by orienting all true tails as tails and no true arrowheads as tails, then sensitivity 
is one and the fallout is zero. Perfect accuracy therefore corresponds to a sensitivity of 
one and a fallout of zero at the upper left hand corner of the ROC curve. Constraint-based 
algorithms do not output a continuous score required to compute the area under the ROC 
curve, but we can assess overall performance using the Euclidean distance from the upper 
left hand corner (Perkins and Schisterman 2006).

6.2 � Real data

6.2.1 � Framingham heart study

We first evaluated the algorithms on real data. We considered the Framingham Heart Study 
(FHS), where investigators measured cardiovascular changes across time in residents 
of Framingham, Massachusetts (Mahmood et  al. 2014). The dataset contains three time 
steps of data with 8 variables in each time step. We obtained 2019 samples after removing 
patients with missing values.

The dataset contains the following known direct causal relations: (1) number of ciga-
rettes per day causes heart rate via cardiac nicotonic acetylcholine receptors (Aronow et al. 
1971; Levy 1971; Haass and Kübler 1997; 2) age causes systolic blood pressure due to 
increased large artery stiffness (Pinto 2007; Safar 2005; 3) age causes cholesterol levels 
due to changes in cholesterol and lipoprotein metabolism (Parini et al. 1999; 4) BMI causes 
number of cigarettes per day because smoking cigarettes is a common weight loss strat-
egy (Jo et al. 2002; Chiolero et al. 2008; 5) systolic blood pressure causes diastolic blood 
pressure and vice versa by definition, because both quantities refer to pressure in the same 
arteries at different points in time. We can compute sensitivity using this information.

We summarize the results over 50 bootstrapped datasets in Fig. 6a, b, c. We first evalu-
ated sensitivity by running the algorithms using the full time step information. RFCI, FCI 
and CCI oriented few tails overall, so they obtained lower sensitivity scores (Fig. 6a). PC 
and CIM had similar sensitivities (t=-0.80, p=0.43). We next combined time steps 2 and 
3, so that the algorithms could incorrectly orient tails backwards in time. CIM made fewer 
errors than PC as indicated by a lower fallout (Fig. 6b, t=-11.85, p=5.37E-16). FCI, RFCI 
and CCI also achieved low fallout scores, but they again did not orient many tails to begin 
with. CIM therefore obtained the best overall score when we combined sensitivity and fall-
out (Fig. 6c, t=-5.60, p=9.70E-7). Timing results in Fig. 7a finally indicate that CIM takes 
about the same amount of time to complete as the fastest algorithms, PC and RFCI, as pre-
dicted by the complexity analysis in Sect. 5.4. We conclude that both CIM and PC orient 
many tails, but CIM makes fewer errors as evidenced by its high sensitivity and low fallout. 
We therefore prefer CIM in this dataset.
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6.2.2 � Sequenced treatment alternatives to relieve depression trial

We next analyzed Level 1 of the Sequenced Treatment Alternatives to Relieve Depression 
(STAR​  D) trial (Sinyor et  al. 2010). Investigators gave patients an antidepressant called 
citalopram and then tracked their depression symptoms using a standardized questionnaire 

Fig. 6   Results for FHS in (a, b, c), STAR​∗ D in (d, e, f) and the synthetic data in (g, h, i). Bar heights repre-
sent empirical means and error bars their 95% confidence intervals. An up-pointing arrow means higher is 
better and a down-pointing arrow means lower is better. CIM achieves higher sensitivity in (a, d, g) while 
maintaining a low fallout in (b, e, h). CIM performs the best overall in all cases as shown in (c, f, i)

Fig. 7   Timing results for FHS in (a), STAR​∗ D in (b) and the synthetic data in (c). CIM completes in about 
the same amount of time as PC and RFCI
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called QIDS-SR-16. We analyzed the 9 QIDS-SR-16 sub-scores measuring components of 
depression at weeks 0, 2 and 4. We also included age and gender in the first time step. The 
dataset contains 2043 subjects after removing subjects with missing values.

The 9 QIDS-SR-16 subscores include sleep, mood, appetite, concentration, self-esteem, 
thoughts of death, interest, energy and psychomotor changes. We asked a psychiatrist to 
identify direct ground truth causal relations among the subscores before we ran the experi-
ments. The ground truth includes: (1) sleep causes mood (Motomura et al. 2017; 2) energy 
causes psychomotor changes; (3) appetite causes energy; (4, 5) mood causes appetite and 
self-esteem (Hepworth et  al. 2010; 6) psychomotor changes cause concentration; (7, 8) 
mood and self-esteem cause thoughts of death (Bhar et al. 2008).

We summarize the sensitivity, fallout and overall performance over 50 bootstrapped 
datasets in Fig. 6d, e, f. CIM achieved higher sensitivity than all other algorithms (Fig. 6d, 
t=5.66, p=7.86E-7). CIM also had a smaller fallout score compared to PC (Fig.  6(e), 
t=-19.19, p<2.20E-16). CIM therefore obtained the highest overall score compared to the 
other algorithms (Fig. 6(f), t=-14.95, p<2.20E-16). CIM finally completed within a short 
time frame like PC and RFCI (Fig. 7b). These results corroborate the superiority of CIM in 
a second real dataset.

6.3 � Synthetic data

We next sampled from a mixture of DAGs to see if we could replicate the real data results. 
We specifically instantiated a linear DAG with an expected neighborhood size of 2, p = 24 
vertices and linear coefficients drawn from Uniform([−1,−0.25] ∪ [0.25, 1] ). We then uni-
formly instantiated q = 5 to 15 binary variables for T and block randomized the edges in 
the DAG to each element of T . We assigned the first 8 variables to time step 1, the second 8 
to time step 2, and the third 8 to time step 3. We added a directed edge from the nth variable 
in time step 1 to the nth variable in time step 2, and similarly added the directed edges from 
time step 2 to time step 3 in order to model self-loops. We randomly selected a set of 0-2 
latent common causes without replacement from X , which we placed in L in addition to 
the variables in T . We then selected a set of 0-2 selection variables S without replacement 
from the set X ⧵ L.

We uniformly instantiating the mixing probabilities p(Ti = 0) and p(Ti = 1) for each 
Ti ∈ T . We then generated 2000 samples as follows. For each sample, we drew an instan-
tiation T = t according to 

∏s

i=1
p(Ti) and created a graph containing the union of the edges 

associated with those elements in t equal to one. We then sampled the resultant DAG using 
a multivariate Gaussian distribution. We finally removed the latent variables and intro-
duced selection bias by removing the bottom kth percentile for each selection variable, with 
k chosen uniformly between 10 and 50.

We report the results in Fig. 6(g, h, i after repeating the above process 50 times. We 
computed the sensitivity and fallout using the ground truth in time steps 2 and 3. CIM 
achieved the highest sensitivity (Fig.  6g, t=3.71, p=5.35E-4). PC obtained the second 
highest sensitivity, but CIM had a lower fallout than PC (Fig. 6(h), t=-4.63,p=2.72E-5). 
CIM ultimately achieved the best overall score (Fig. 6(i), t=-3.78,p=4.37E-4). We finally 
provide timing results in Fig. 7c, showing that CIM takes about the same amount of time 
as PC and RFCI. We conclude that the synthetic data results mimic those seen with the real 
data.
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7 � Conclusion

We proposed to model causal processes using a mixture of DAGs to accommodate non-
equilibriated distributions, sub-populations and cycles. We then introduced a constraint-
based algorithm called CIM to infer causal relations from data even with latent variables 
and selection bias. The CIM algorithm infers ancestral relations with greater accuracy as 
compared to several constraint-based algorithms across simulated data and two real data-
sets with partially known ground truths. CIM thus broadens the scope of causal discov-
ery to processes that do not necessarily follow a single graphical structure. Future work 
may consider further improving the accuracy of CIM by exhaustive search or continuous 
optimization, similar to the works: (Hyttinen et al. 2013), (Hyttinen et al. 2014), (Lu et al. 
2021) and (Zheng et al. 2018).

Appendix

Equilibrium distribution

Our interpretation of cycles differs from the interpretation used with equilibrium distribu-
tions. An equilibrium distribution ℙ refers to a distribution that obeys a structural equation 
model with independent errors respecting a potentially cyclic graph � . In other words, we 
can describe the variables X as Xi = gi(Pa�(Xi), �i) for all Xi ∈ X such that Xi is measur-
able according to the sigma algebra �(Pa

�
(Xi), �i) ; we have �i ∈ � , where the set � contains 

jointly independent errors (Evans 2016).
We can simulate data from the equilibrium distribution in practice using the fixed point 

method (Fisher 1970). The fixed point method involves two steps. We first sample the error 
terms according to their independent distributions and then initialize X to some values. We 
then apply the structural equations iteratively until the values of X converge almost surely 
to a fixed point. The values of X are not guaranteed to converge to a fixed point all of the 
time for every set of structural equations, but we only consider those structural equations 
and error distributions which do. Notice therefore that if Xi → Xj and Xj → Xi in � , then 
applying the second step of the fixed point method means Xi is used to instantiate Xj in one 
iteration, and then that value of Xj is used to instantiate Xi in the next iteration. In other 
words, Xi causes Xj and then Xj causes Xi ; the process of arriving at a fixed point therefore 
coincides with our mixture of DAGs interpretation of cycles. We however do not consider 
the causal interpretation at the fixed point where Xi and Xj cause each other simultaneously.

Proofs

Let A,B,C denote disjoint subsets of Z . Let �̄ denote the moral graph of 
Anc

�
(A� ∪ B

� ∪ C
�) . We prove the global Markov property by first finding two sets Ä ⊇ A

′ 
and B̈ ⊇ B

′ separated by C′ in �̄ . The vertices Ä and B̈ represent the random variables 
�A
j
⊇ A and �B

j
⊇ B , respectively, in �j . We use the cliques in �̄ to decompose the density ∏

Zi∈Ã
j
∪B̃

j
∪C

p(Zi�Pa�j (Zi)) into a non-negative function involving Ã
j
∪ C and another non-

negative function involving B̃
j
∪ C . Integrating out all of the variables not in A ∪ B ∪ C 

and then combining the densities across the DAGs in G finally allows us to represent 
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p(A,B,C) as a product of a non-negative function involving A ∪ C and another non-nega-
tive function involving B ∪ C – thus arriving at conditional independence.

Theorem 1  Let A,B,C denote disjoint subsets of Z . If A′ ⟂⟂d B
′|C′ in � , then A ⟂⟂ B|C.

Proof  We consider a partition of the vertices Ä ∪ B̈ ∪ C
� = Anc

�
(A� ∪ B

� ∪ C
�) so that 

A
′ ⊆ Ä , B′ ⊆ B̈ , and Ä , B̈ and C′ are disjoint sets of vertices. We require that Ä and B̈ be 

separated by C′ in �̄ ; in other words, there does not exist an undirected path between Ä and 
B̈ that is active (i.e., unblocked) given C′.

We now construct such a partition (Ä, B̈) . First set Ä to A
′ and B̈ to B′ . If 

A
′ ⟂⟂d B

′|C′ in � , then A′ and B′ are separated by C′ in the moral graph of the small-
est ancestral set Anc

�
(A� ∪ B

� ∪ C
�) (Proposition 3 in (Lauritzen et  al. 1990)). Ä and 

B̈ are therefore separated by C′ in �̄ at the moment. Now consider the set of vertices 
H = Anc

�
(A� ∪ B

� ∪ C
�) ⧵ (A� ∪ B

� ∪ C
�). We will put members of H into either Ä or B̈ . 

We have two situations for each vertex Hm
i
∈ H : 

1.	 In �̄ , there does not exist an undirected path between Hm
i

 and A′ or an undirected path 
between Hm

i
 and B′ (or both) that is active given C′ . More specifically: 

(a)	 If there does not exist an undirected path between Hm
i

 and A′ that is active given 
C
′ , but such a path exists between Hm

i
 and B′ , then include Hm

i
 into B̈ so that 

B̈ ← B̈ ∪ Hm
i

.
(b)	 If there does not exist an undirected path between Hm

i
 and B′ that is active given 

C
′ , but such a path exists between Hm

i
 and A′ , then include Hm

i
 into Ä so that 

Ä ← Ä ∪ Hm
i

.
(c)	 If there does not exist an undirected path between Hm

i
 and A′ that is active given 

C
′ and there likewise does not exist such a path between Hm

i
 and B′ , then include 

Hm
i

 into Ä so that Ä ← Ä ∪ Hm
i

.

2.	 In �̄ , there exists an undirected path between Hm
i

 and A′ and an undirected path between 
Hm

i
 and B′ that are both active given C′ . But this implies that A′ and B′ are connected 

given C′ in �̄ via Hm
i

 – a contradiction.

We have constructed a disjoint partition of vertices (Ä, B̈) such that 
Ä ∪ B̈ ∪ C

� = Anc
�
(A� ∪ B

� ∪ C
�) . Moreover, Ä and B̈ are separated given C′ in �̄.

We may then consider all of the cliques in �̄ corresponding to each vertex and its mar-
ried parents. Denote this set of cliques as E . Also let E

B̈
 denote the set of cliques in E that 

have non-empty intersection with B̈ . Because Ä and B̈ are separated given C′ , the vertices 
Ä and B̈ are also non-adjacent in �̄ ; this implies that no clique in E

B̈
 can contain a member 

of Ä . We also have B̈ ∩ e = � for all e ∈ E ⧵ E
B̈
.

Consider an arbitrary graph �j ∈ G . Let Ej denote the cliques in E only containing verti-
ces in �j – likewise for Ej

B̈
 . Note that we can associate the vertices Ä with the random vari-

ables �A
j
= ∪

H
j

i
∈Ä
Hi – and similarly for B̃

j . We can then write the density factorizing 
according to �j as follows:
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where f denotes some non-negative function.
We now proceed by integrating out [Ã

j
∪ B̃

j
] ⧵ [A ∪ B]:

The fourth equality follows because [Ã
j
⧵ A] ∩ [B̃

j
⧵ B] = � by construction.

Suppose T ∩ (A ∪ B ∪ C) = � . Then 
∑q

j=1
1
T∈Tj

�
f (A,C)f (B,C)

�
= f (A,C)f (B,C) , so 

A ⟂⟂ B|C in this case.
Now assume T ∩ (A ∪ B ∪ C) ≠ � . Let U = T ∩ (A ∪ C) and V = T ∩ (B ∪ C) . Also 

let U denote the set of all values of U . The values in U index the r unique functions 
f
U
((A ∪ C) ⧵ U) = f (A,C) . Let Uk more specifically denote those values of U associated 

with the kth unique function over (A ∪ C) ⧵ U , denoted by f k
U
((A ∪ C) ⧵ U) . Similarly, let 

V denote the set of all values of V indexing s unique functions f
V
((B ∪ C) ⧵ V) = f (B,C) . 

Also let Vl refer to the values of V associated with the lth unique function over (B ∪ C) ⧵ V , 
denoted by f l

V
((B ∪ C) ⧵ V) . We must have:

because f
U=u((A ∪ C) ⧵ U)f

V=v((B ∪ C) ⧵ V) is the product of a unique function over 
(A ∪ C) ⧵ U and a unique function over (B ∪ C) ⧵ V . We can therefore write:

∏

Zi∈
�A
j
∪�B

j
∪C

p(Zi|Pa�j (Zi))

=
∏

{
Zi∪Pa�j (Zi)

}
∈Ej⧵E

j

B̈

p(Zi|Pa�j (Zi))
∏

{
Zi∪Pa�j (Zi)

}
∈E

j

B̈

p(Zi|Pa�j (Zi))

= f (�A
j
,C)f (�B

j
,C),

p(A,B,C) =

q∑

j=1

1
T∈Tj

( ∑

[Ã
j
∪B̃

j
]⧵[A∪B]

∏

Zi∈Ã
j
∪B̃

j
∪C

p(Zi|Pa�j (Zi))
)

=

q∑

j=1

1
T∈Tj

( ∑

[Ã
j
∪B̃

j
]⧵[A∪B]

f (Ã
j
,C)f (B̃

j
,C)

)

=

q∑

j=1

1
T∈Tj

( ∑

[Ã
j
⧵A]∪[B̃

j
⧵B]

f (Ã
j
,C)f (B̃

j
,C)

)

=

q∑

j=1

1
T∈Tj

([ ∑

[B̃
j
⧵B]

[ ∑

[Ã
j
⧵A]

f (Ã
j
,C)

]
f (B̃

j
,C)

])

=

q∑

j=1

1
T∈Tj

( ∑

[Ã
j
⧵A]

f (Ã
j
,C)

∑

[B̃
j
⧵B]

f (B̃
j
,C)

)

=

q∑

j=1

1
T∈Tj

(
f (A,C)f (B,C)

)
.

(8)

q∑

j=1

1
T∈Tj fU((A ∪ C) ⧵ U)f

V
((B ∪ C) ⧵ V)

=

r∑

k=1

1
U∈Uk f k

U
((A ∪ C) ⧵ U)

s∑

l=1

1
V∈Vl f l

V
((B ∪ C) ⧵ V),
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The conclusion follows by this last equality. 	�  ◻

Lemma 1  Suppose aO�
i
⟂⟂d

bO�
j
|W� ∪ S

� in � but aO�
i
̸⟂⟂d

bO�
j
|V� ∪ S

� for every V ⊂ W . If 
cOk ∈ W , then cOk ∈ Anc

�
(aOi ∪

bOj ∪ S).

Proof  We invoke Lemma 15 in (Strobl 2018) by setting R = � , Oi =
aO�

i
 , Oj =

bO�
j
 , 

W = W
� and S = S

� in that paper. We can then conclude that cO�
k
∈ Anc

�
(aO�

i
∪ bO�

j
∪ S

�) . 
Moreover, if cO�

k
∈ Anc

�
(aO�

i
∪ bO�

j
∪ S

�) , then cOk ∈ Anc
�
(aOi ∪

bOj ∪ S) by construc-
tion of �  . 	�  ◻

Theorem  2  Suppose the longitudinal density p(∪w
k=1

kO,L,S) factorizes according to Eq. 
(5). Assume that all prior information P is correct. Then, under d-separation faithfulness 
w.r.t. � , the CIM algorithm returns �̂ ∗ – the mixed graph � ∗ partially oriented.

Proof  Under d-separation faithfulness w.r.t. � , CI and d-separation w.r.t. � are equivalent 
by Theorem 1, so we can refer to them interchangeably. Algorithm 2 finds the adjacencies 
in List 1 because we must always have a

b
Adj

� ∗ (aOi) ⊆
a
b
Adj�� ∗ (

aOi) in Step 8 of Algorithm 2. 
Step 4 discovers the correct tails by Lemma 1. Step 5 follows directly by transitivity of the 
tails. 	�  ◻

q∑

j=1

1
T∈Tj

(
f (A,C)f (B,C)

)

=
( r∑

k=1

1
U∈Uk f k

U
((A ∪ C) ⧵ U)

)( s∑

l=1

1
V∈Vl f l

V
((B ∪ C) ⧵ V)

)
.

X1
1 X1

3

X1
2 T 1

1

G1

X2
3 X2

1

X2
2T 2

1

G2

(a)

X1
1 X1

3

X1
2 T1

X2
3 X2

1

X2
2

(b)

X1 X3

X2
T1

(c)

Fig. 8   An example where � implies more CI relations than �  . The two DAGs in G are plotted in (a). In (b), 
X
′
1
⟂⟂

d
X
′
3
 in � implies X1 ⟂⟂ X3 . The fused graph �  in (c) however does not imply the independence relation
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Comparison to previous global Markov property

Spirtes (1994) also characterized the global Markov property across a mixture of DAGs 
using �  under the additional assumption that T is discrete, latent and univariate. The 
fused graph however implies less CI relations than � as illustrated in Fig. 8. We have 
drawn �  in Fig. 8c. X1 and X3 are d-connected in �  even though X′

1
 and X′

3
 are d-sepa-

rated in � in Fig. 8b. We have established an instance where the mixture graph implies 
strictly more independence relations than the fused graph.

The mixture graph in fact always implies at least the same number of CI relations as 
the fused graph:

Proposition 1  Let A,B,C denote disjoint subsets of Z . If A ⟂⟂d B|C in �  , then A′ ⟂⟂d B
′|C′ 

in �.

Proof  We create q copies of �  and plot them adjacent to each other. Denote the resultant 
graph as � ′ . As a result, we have A ⟂⟂d B|C in �  if and only if A′ ⟂⟂d B

′|C′ in � ′ . Create a 
new graph � ′′ as follows. First set � ′′ equal to � ′ . Then merge T ′

i
⊆ T

′ into a single vertex Ti 
for each Ti ∈ T . Denote the resultant graph as � ′′.

We will show that A� ̸⟂⟂d B
�|C� in � ′′ implies A� ̸⟂⟂d B

�|C� in � ′ . Denote the moral 
graph of Anc

� �� (A
� ∪ B

� ∪ C
�) by �̄ ′′ . If A� ̸⟂⟂d B

�|C� in � ′′ , then there exists an active path 
Π

A
�
B
� between A′ and B′ given C′ in �̄ ′′ by Proposition 3 in (Lauritzen et al. 1990). We can 

replace an arbitrary vertex Zm
i

 on Π
A
�
B
� with Zn

i
 on �n ∈ G . Repeating this process for every 

vertex on Π
A
�
B
� creates a non-simple path (i.e. with potentially repeated vertices) between 

A
n and Bn that does not contain any member of Cn . There thus exists a simple path without 

repeated vertices between An and Bn that does not contain any member of Cn in �̄ ′′ – so in 
�̄
′ as well. Hence A� ̸⟂⟂d B

�|C� in � ′ again by Proposition 3 in (Lauritzen et al. 1990).
Note that all of the edges in � are contained within � ′′ . We can therefore write 

A
� ̸⟂⟂d B

�|C� in � implies A� ̸⟂⟂d B
�|C� in � ′′ , which implies A� ̸⟂⟂d B

�|C� in � ′ , which 
implies A ̸⟂⟂d B|C in �  . The conclusion follows by contrapositive.

	�  ◻

� is thus superior to �  because (1) � implies at least as many CI relations as �  , and (2) 
� implies strictly more CI relations in some cases.

O1
3

O1
1

O1
2

O2
3

O2
1

O2
2

T1

(a)

O3

O1

O2

T1

(b)

O1
3

O1
1

O1
2

O2
3

O2
1

O2
2

T1L1
1 L2

1

(c)

O3

O1

O2

T1L1

(d)

Fig. 9   Example showing that we cannot infer v-structures without additional assumptions. a and b show the 
pair (�1, �1) , respectively, where O1 ∉ Anc

�1
(O2) . c and d on the other hand show the pair (�2, �2) , where 

O1 ∈ Anc
�2
(O2 ∪ S)
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Counterexample

We sometimes cannot even detect v-structures with a CI oracle alone. Consider for exam-
ple the mixture and fused graph pairs shown in Fig. 9 where {T1, L1} = L and S = � . We 
have O1 ∉ Anc

�1
(O2) and O1 ∈ Anc

�2
(O2 ∪ S) . However, all of the following relations hold 

in both �1 and �2 : O′
3
⟂⟂d O

′
2
 , O�

3
̸⟂⟂d O

�
2
|O�

1
 , O�

3
̸⟂⟂d O

�
1
 , O�

3
̸⟂⟂d O

�
1
|O�

2
 , O�

2
̸⟂⟂d O

�
1
 , and 

O�
2
̸⟂⟂d O

�
1
|O�

3
 . In other words, O′

i
⟂⟂d O

′
j
| W� ∪ S

� in �1 if and only if O�
i
⟂⟂d O

�
j
|W� ∪ S

� 
in �2 for any Oi,Oj ∈ O and W ⊆ O ⧵ {Oi,Oj} . We therefore cannot distinguish the two 
mixed graphs O3 ∗→ O1 ←∗ O2 and O3 ∗→ O1−∗ O2 for � ∗

1
 and � ∗

2
 , respectively, using CI 

relations alone under d-separation faithfulness w.r.t. � ; this holds even though �1 and �2 are 
acyclic.
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