
Vol.:(0123456789)

Machine Learning (2022) 111:1695–1738
https://doi.org/10.1007/s10994-022-06145-4

1 3

Partitioned hybrid learning of Bayesian network structures

Jireh Huang1 · Qing Zhou1

Received: 11 March 2021 / Revised: 18 November 2021 / Accepted: 23 January 2022 /
Published online: 16 March 2022
© The Author(s) 2022

Abstract
We develop a novel hybrid method for Bayesian network structure learning called par-
titioned hybrid greedy search (pHGS), composed of three distinct yet compatible new
algorithms: Partitioned PC (pPC) accelerates skeleton learning via a divide-and-conquer
strategy, p-value adjacency thresholding (PATH) effectively accomplishes parameter tun-
ing with a single execution, and hybrid greedy initialization (HGI) maximally utilizes
constraint-based information to obtain a high-scoring and well-performing initial graph for
greedy search. We establish structure learning consistency of our algorithms in the large-
sample limit, and empirically validate our methods individually and collectively through
extensive numerical comparisons. The combined merits of pPC and PATH achieve signifi-
cant computational reductions compared to the PC algorithm without sacrificing the accu-
racy of estimated structures, and our generally applicable HGI strategy reliably improves
the estimation structural accuracy of popular hybrid algorithms with negligible additional
computational expense. Our empirical results demonstrate the competitive empirical per-
formance of pHGS against many state-of-the-art structure learning algorithms.

Keywords Bayesian networks · Directed acyclic graphs · Structure learning · Greedy
search · PC algorithm · Divide-and-conquer

1 Introduction

Bayesian networks are compact yet powerful graphical models that efficiently encode
in their graphical structures probabilistic relationships amongst a large number of vari-
ables (Neapolitan 2004). Despite their utility for probabilistic inference, the problem of
recovering from data the structure of the true underlying Bayesian network that governs
a domain of variables is notoriously challenging (Chickering et al. 2004). The space of
Bayesian network structures grows super-exponentially with the number of variables,

Editor: Pradeep Ravikumar.

 * Qing Zhou
 zhou@stat.ucla.edu

 Jireh Huang
 jirehhuang@ucla.edu

1 Department of Statistics, University of California, Los Angeles, USA

http://orcid.org/0000-0002-2100-8840
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06145-4&domain=pdf

1696 Machine Learning (2022) 111:1695–1738

1 3

severely limiting exhaustive evaluation of all structures and motivating decades of work
in developing efficient algorithms for structure learning (Robinson 1977; Spirtes et al.
2000).

Generally, Bayesian network structure learning algorithms can be classified as one of
the following three classes of algorithms. Constraint-based methods strategically test con-
ditional independence relationships between pairs of variables, first determining the exist-
ence of edges before inferring orientations (Spirtes and Glymour 1991; Meek 1995). In
the score-based approach, heuristics are designed to optimize some scoring criterion that
evaluates the goodness-of-fit of a proposed structure to the available data (Heckerman et al.
1995; Chickering 2002b; Russell and Norvig 2009). Finally, hybrid methods combine the
two strategies, optimizing a score over a reduced space of structures restricted through a
constraint-based approach (Tsamardinos et al. 2006a; Gasse et al. 2014).

The PC algorithm, named after its authors, is often considered state-of-the-art amongst
constraint-based methods for Bayesian network structure learning because of its polyno-
mial complexity for sparse graphs and attractive theoretical properties (Spirtes and Gly-
mour 1991; Kalisch and Bühlmann 2007). Even with its favorable scaling, PC can quickly
become unwieldy for large networks, motivating various developments to structure learn-
ing speed. Several works have contributed to accelerating its execution with various par-
allelization strategies, resulting in speed-ups ranging from up to ten times to over three
orders of magnitude (Kalisch et al. 2012; Le et al. 2016; Madsen et al. 2017; Scutari 2017;
Zarebavani et al. 2020). However, these improvements are primarily feats of distributed
processing implementation and are limited by the availability of required hardware. Gu
and Zhou (2020) proposed a hybrid framework for partitioned estimation of Bayesian net-
works called partition, estimation, and fusion (PEF) in the interest of distributing learning
by adopting a divide-and-conquer strategy. Unfortunately, its application to the PC algo-
rithm does not in general retain the completeness of the PC algorithm and is limited in its
capacity for parallel processing. Finally, none of these contributions tackle the practical
problem that the performance of constraint-based algorithms can vary substantially with
certain tuning parameters, potentially requiring multiple algorithm executions.

Prominent hybrid methods leverage the efficiency of constraint-based strategies to con-
siderably reduce the space of Bayesian network models but sacrifice the asymptotic guar-
antees of constraint-based edge orientation for the generally superior empirical structural
accuracy of restricted greedy search (Tsamardinos et al. 2006a). This is characteristic of
members of what we call the generalized sparse candidate (GSC) framework, named after
the sparse candidate algorithm (Friedman et al. 1999), in which a greedy search in the
DAG space is executed from an empty graph (EG) restricted to a sparse set of candidate
edges obtained through a constraint-based strategy. Hybrid algorithms belonging to GSC
include max–min hill-climbing (MMHC) and hybrid hybrid parents and children (H2PC),
which, despite being popular and widely regarded as well-performing, are well-known to
be lacking in asymptotic guarantees (Tsamardinos et al. 2006a; Gasse et al. 2014). While
the adaptively restricted greedy equivalence search (ARGES) stands out as a hybrid
framework with established consistency (Nandy et al. 2018), our simulations suggest that
ARGES can likewise empirically benefit from the developments in our work. In particu-
lar, both GSC and ARGES initialize their respective greedy searches with an EG and, to
our knowledge, no principled and well-performing initialization strategy without assuming
expert knowledge has been proposed.

We propose an answer to these challenges by the development of the partitioned hybrid
greedy search (pHGS) algorithm, a hybrid structure learning algorithm that can be consid-
ered the composition of three independent contributions to the computational efficiency,

1697Machine Learning (2022) 111:1695–1738

1 3

theoretical guarantees, and empirical performance of Bayesian network structure learning.
In particular, pHGS accomplishes the following:

1. Restricts the search space with our proposed partitioned PC (pPC) algorithm that
improves on the efficiency of the PC algorithm while retaining its soundness and com-
pleteness and capacity for parallel processing;

2. Mitigates the need for parameter tuning by automatically selecting the sparsity-control-
ling threshold of conditional independence tests with our p-value adjacency thresholding
(PATH) algorithm that extends the accessibility of constraint-based consistency;

3. Initializes the restricted greedy search with our hybrid greedy initialization (HGI) algo-
rithm that elevates the asymptotic guarantees of existing hybrid algorithms such as
members of the GSC framework to that of sound and complete constraint-based methods
while improving empirical performance.

After reviewing relevant preliminaries in Sect. 2, the novel components of pHGS are
organized in the remainder of this paper as follows. In Sect. 3, we develop the pPC algo-
rithm which employs a partitioned estimation strategy to reduce the number of statistical
tests required for the exhaustive conditional independence investigation in PC-like CPDAG
learning. We additionally detail the PATH thresholding algorithm, which efficiently gener-
ates and selects from a set of CPDAG estimates with varying sparsity from a single exe-
cution of pPC (or PC) and extends the accessibility of classical asymptotic consistency
results to more flexible parameter specification. We begin Sect. 4 with a brief review of
score-based structure learning before developing HGI, a greedy initialization strategy
which endears constraint-based edge orientation to the empirical setting with desirable
theoretical guarantees.

We empirically validate pPC, PATH, and HGI in Sect. 5, first independently and then
collectively in the form of pHGS through an extensive simulation study. We show that pPC
generally requires significantly fewer statistical calls as compared to PC, and that PATH
effectively accomplishes the task of parameter tuning from a single algorithm execution
with practically negligible additional computational expense. Compared to repeated exe-
cutions of PC, the combined effect of pPC and PATH consistently achieves significant
computational reductions without sacrificing (and indeed often improving on) estimation
accuracy. We demonstrate the effectiveness of HGI on several instantiations of the GSC
hybrid framework, and validate the holistic merits of pHGS against several popular struc-
ture learning algorithms. Though the focus of our paper is on the discrete case, we include
succinct comments and results for our methods on high-dimensional Gaussian data in the
discussion in Sect. 6 and the Supplementary Information.

2 Background

A graph G = (�,�) is a structure composed of a set of nodes � = {1,… , p} and a set of
edges � . For a pair of distinct nodes i, j ∈ � , we encode an undirected edge between i and
j in G by an unordered connected pair i − j ∈ � , and a directed edge from i to j in G by an
ordered pair i → j ∈ � . A directed acyclic graph (DAG) has only directed edges and is
oriented such that there are no directed cycles in G . A DAG G defines the structure of a
Bayesian network of a joint probability distribution P of variables � corresponding to � if
P factorizes according to the structure of G:

1698 Machine Learning (2022) 111:1695–1738

1 3

where �G

i
= {Xj ∶ j → i ∈ �} denotes the parents of Xi according to G . In this paper, we

may refer to a node i ∈ � and its corresponding variable Xi ∈ � interchangeably. In a causal
DAG, i → j asserts that i is a direct cause of j, whereas more generally, a DAG encodes
in its structure a set of conditional independence statements between distinct variables
according to the above factorization. For ease of notation, we let �

�
= {Xk ∈ � ∶ k ∈ �}

for � ⊆ �.
This paper focuses on the setting in which P is a discrete probability distribution,

although the presented strategies are not limited to such a domain. Each variable Xi proba-
bilistically attains one of ri ≥ 2 states depending on the attained states of its parents �G

i
 .

The conditional probability distributions of the variables given each of their parent con-
figurations are multinomial distributions.

Let (Xi⟂⟂Xj ∣��
)P denote that Xi and Xj are independent given conditioning set

�
�
⊆ � ⧵ {Xi,Xj} in P, and (Xi⟂⟂Xj ∣��

)G that Xi and Xj are d-separated by �
�
 in G . The

factorization in Eq. (1) implies that G and P satisfy the (global) Markov condition: for dis-
joint sets of variables �,�,� ⊆ �,

2.1 Markov equivalence

Multiple DAGs may encode the same set of d-separation statements and thus redun-
dantly entail the same conditional independence statements. Such DAGs are said
to be Markov equivalent. Formally, two DAGs G and G′ are Markov equivalent if
(�⟂⟂� ∣�)G ⇔ (�⟂⟂� ∣�)G� for all mutually disjoint subsets �,�,� ⊆ � . We refer to
Markov equivalent DAGs as simply equivalent and belonging to the same equivalence
class. Given our distributional assumptions on P, equivalent DAGs are indistinguishable
without background information or experimental data. As our interest lies in structure
learning from observational data, the objective amounts to recovering the equivalence class
of the underlying DAG.

The skeleton of a graph G = (�,�) is the undirected graph obtained from replacing
every adjacent (that is, connected) node pair in G with an undirected edge. A v-structure
is a triplet i, j, k ∈ � oriented i → k ← j in G with i and j not adjacent. Let the pattern of G
be the partially DAG (PDAG) obtained by orienting all and only the v-structures of G in its
skeleton, leaving all remaining edges undirected. The following theorem was adapted from
Verma and Pearl (1991) to characterize equivalent DAGs.

Theorem 1 (Meek (1995)) Two DAGs are equivalent if and only if they have the same
patterns.

Implied by Theorem 1 is the existence of compelled and reversible edges. An edge i → j
in a DAG G is compelled if it exists oriented as stated in every DAG in the equivalence class
of G , whereas it is reversible if it is directed j → i in at least one DAG in the equivalence
class of G . Meek (1995) detailed a set of sound and complete rules known as Meek’s rules
(R1, R2, R3, and R4) that deterministically extend the pattern of a graph G to its completed

(1)P(�) =

p∏
i=1

P(Xi ∣ �
G

i
),

(2)(�⟂⟂� ∣�)G ⇒ (�⟂⟂� ∣�)P.

1699Machine Learning (2022) 111:1695–1738

1 3

PDAG (CPDAG), a PDAG featuring a directed edge for every compelled edge and an undi-
rected edge for every reversible edge (Chickering 2002a). As the unique representation of its
equivalence class, the CPDAG is the structure of interest for structure learning methods in the
observational setting.

2.2 Faithfulness

The global Markov property, as stated in Eq. (2), defines an avenue for inference regarding
the conditional independence relationships in P according to information encoded in its
Bayesian network structure G . As our interest is in recovering G from data generated from
and thus sample estimates of probability distribution P, we require the assumption of faith-
fulness to infer the structure of G from P.

Definition 1 (Faithfulness) A distribution P and a DAG G are said to be faithful to each
other if all and only the conditional independence relations true in P are entailed by the
d-separation statements in G , i.e.

Under faithfulness, we may say in such a case that � and � are separated by � , regard-
less of whether we are referring to d-separation or conditional independence. If P is faith-
ful to G , then the existence of an edge between any distinct pair of nodes i and j can be
necessarily and sufficiently determined by the nonexistence of a separation set of variables
that render i and j conditionally independent in P. In particular,

Throughout the development of our methodology, in what we call the population versions
of procedures, we assume possession of all conditional independence information in P
denoted {⟂⟂P} , thus having conditional independence oracles perfectly corresponding to
d-separation. For inferring conditional independence from finite samples of discrete data D
in the sample counterparts, we use the popular G2 log-likelihood ratio test of independence
for empirical estimation of conditional independence in P with some significance level
threshold � , denoting the G2 test statistic for testing (Xi⟂⟂Xj ∣��

)P as G2
ij∣�

 (Spirtes et al.
2000). We briefly discuss the basic notation for and evaluation of the G2 test in Appen-
dix C, referring details and examples to (Neapolitan 2004, Sect. 10.3.1)

2.3 The PC algorithm

The well-known PC algorithm (Spirtes and Glymour 1991), named after its authors, is
widely considered the gold standard constraint-based structure learning method. The PC
algorithm first efficiently estimates a skeleton, reducing the criterion stated in Eq. (3) by
leveraging sparsity. Let �G

i
= {Xj ∈ � ∶ i and j are connected in G} be the neighbors, or

adjacencies, of node i in a graph G = (�,�) . If G is a DAG, the following is evident from
the Markov condition:

(�⟂⟂� ∣�)G ⇔ (�⟂⟂� ∣�)P.

(3)i, j ∈ � are not connected in G ⇔ ∃� ⊆ � ⧵ {i, j} such that (Xi⟂⟂Xj ∣��
)P.

(4)
i, j ∈ � are not connected in G ⇔∃�

�
⊆ �

G

i
⧵ {Xj} or ∃��

⊆ �
G

j
⧵ {Xi}

such that (Xi⟂⟂Xj ∣��
)P.

1700 Machine Learning (2022) 111:1695–1738

1 3

For easy reference in our algorithm description, we detail an implementation of the skeleton
estimation step of the PC algorithm known as PC-stable in Algorithm 1 (Colombo and Maathuis
2014). Note that as discussed, in the population versions of procedures we assume possession of
conditional independence oracles. For finite-sample execution, we replace {⟂⟂P} with data samples
D from which conditional independence relationships are inferred using a consistent test and some
threshold � . The key difference that distinguishes the PC-stable implementation from the original
PC algorithm is that in line 5, the adjacencies are fixed in G′ such that the considerations of adja-
cent node pairs within the outermost loop (lines 4–15) become order-independent and thus execut-
able in parallel. We further discuss parallel execution of the PC algorithm in Sect. 3.1.2. Note that
for every node i, �G

i
⊆ �

G′

i
 for �G′

i
 in any stage in Algorithm 1, preserving the general design of

the original PC skeleton learning method by ensuring the exhaustive investigation of Eq. (4) and
thus retaining its theoretical properties. Hereafter, when we discuss the PC algorithm, we refer to
the PC-stable implementation.

After determining the skeleton of a DAG G , knowledge about the conditional independence
relationships between variables (namely, the accrued separation sets �) can be used to detect the
existence of v-structures and orient the skeleton to the pattern of G . Recovery of the CPDAG of G
can then be achieved by repeated application of Meek’s rules (Meek 1995). This process, which
we refer to as skel-to-cpdag (Algorithm 6 in Appendix B), is guaranteed to orient the skel-
eton of a DAG G to its CPDAG given accurate conditional independence information entailed by
G . For details regarding constraint-based edge orientation, see Appendix B.

The complete PC(-stable) algorithm consists of skeleton estimation according to Algo-
rithm 1 followed by edge orientation according to Algorithm 6, and is well-known to be
sound and complete for CPDAG estimation (Kalisch and Bühlmann 2007; Colombo and
Maathuis 2014).

1701Machine Learning (2022) 111:1695–1738

1 3

3 The pPC and PATH algorithms

In constraint-based methods, the computational expense of edge orientation has been noted
to be generally insignificant compared to that of skeleton estimation (Chickering 2002a;
Madsen et al. 2017). As such, we develop the pPC algorithm to reduce the computational
expense of skeleton estimation by imposing a partitioned ordering to the conditional inde-
pendence tests. Similarly, we propose the PATH algorithm that effectively accomplishes
the task of parameter tuning by efficiently generating a solution path of estimates from a
single execution of pPC or PC.

3.1 The partitioned PC algorithm

The pPC algorithm improves on the already desirable efficiency of the PC algorithm while
retaining its attractive theoretical properties and empirical structure learning accuracy. The
structure follows similarly to the PEF strategy applied to the PC algorithm in Gu and Zhou
(2020). We develop improvements and computational exploits to further increase perfor-
mance, formulate pPC to retain soundness and completeness, and propose adaptations to
address the challenges of learning the structure of discrete Bayesian networks.

The intuition motivating a partitioned strategy is that any structure learning algorithm that
scales worse than linearly with p will be able to estimate 𝜅 > 1 subgraphs for node clusters that
partition the p nodes faster than a single graph on all nodes. If the p nodes can be reliably parti-
tioned such that the connectivity between clusters is weak relative to within clusters, then we can
expect that there will not be many false positive edges (as a result of causal insufficiency) within
subgraphs. Consequently, the adjacencies are expected to be relatively well-estimated, providing
a selective candidate set of neighbors to screen the edges between subgraphs. Coupled with the
assumed weak connectivity between clusters, the process of determining the existence of edges
amongst clusters is expected to be efficient.

The pPC algorithm estimation process proceeds as follows. We partition the p nodes into
� clusters using a version of the modified hierarchical clustering algorithm proposed in Gu
and Zhou (2020) applied with a normalized discrete distance metric, additionally blacklisting
marginally independent node pairs. We then apply the PC algorithm to estimate edges within
clusters, and filter and refine edges between nodes in different clusters. Finally, we achieve com-
pleteness by applying a reduced PC algorithm before orienting the edges.

3.1.1 Clustering

As previously motivated, the task of obtaining an effective partition of the nodes is crucial
for the success of the skeleton learning. A partition with many clusters � is desirable for
greatest computational benefit in subgraph estimation, but each cluster must be substantive
so as to minimally violate causal sufficiency. To accomplish this, the distances between
nodes are measured by a normalized mutual information distance metric, and the target
number of clusters and initial clusters are chosen adaptively.

Mutual information, denoted I(Xi,Xj) , serves as a similarity measure between dis-
crete random variables Xi and Xj and may be interpreted as the Kullback–Leibler diver-
gence between the joint probability distribution and the product of their marginals. We
obtain a distance measure by inverting the pairwise mutual information after normal-
izing using the joint entropy H(Xi,Xj) . In particular, we formulate the distance between
each pair of variables Xi and Xj as

1702 Machine Learning (2022) 111:1695–1738

1 3

The proposed distance dij is a metric in the strict sense as shown by Kraskov et al. (2005),
meaning it is symmetric, non-negative, bounded, and satisfies the triangle inequality. In
practice, we compute the empirical quantities of the mutual information and joint entropy
(̂I and Ĥ , respectively) between discrete variables (see Appendix C).

Given our distance matrix D = (dij)p×p , we apply Algorithm 1 in Gu and Zhou
(2020) with average linkage to determine a cut l for the agglomerative hierarchical
clustering of the p nodes. Succinctly described, we choose the highest cut such that
the resulting cluster consists of the greatest number of large clusters, defined as node
clusters of at least size 0.05p according to a loose suggestion by Hartigan (1981). We
then merge clusters of size less than 0.05p with other small clusters or into large clus-
ters sequentially, ordered by average linkage, until every cluster is a large cluster. For
further details regarding the algorithm, we refer to the original paper. The clustering
step partitions the p nodes into � clusters, returning the cluster labels � = {c1,… , cp} ,
with ci ∈ {1,… , �} denoting the cluster label of node i.

While the pairwise computation of both the mutual information and the
joint entropy may seem expensive for the purpose of obtaining a partition, we
take advantage of two exploits to accomplish this economically. Observing that
I(Xi,Xj) = H(Xi) + H(Xj) − H(Xi,Xj) , we need only compute the marginal entropies
H(Xi) = I(Xi,Xi) to derive the joint entropies from the pairwise mutual information,
a reduction from p(p − 1) computations to p(p + 1)∕2 . Further noting that the discrete
unconditional G2 test statistic for investigating the marginal independence between Xi
and Xj is computed as G2

ij
= 2n ⋅ Î(Xi,Xj) [see Eq. (23) in Appendix C], an initial edge

screening can easily be obtained through the evaluation

where f is the degrees of freedom corresponding to the test of independence between i and
j conditioned on � = � (see Appendix C). This effectively accomplishes the empty condi-
tioning set (l = 0) testing step of the PC algorithm by separating all marginally independ-
ent pairs of variables (Algorithm 2 line 2).

Note that for continuous data, we recommend using correlation as a similarity
measure, which Gu and Zhou (2020) found to lead to reasonable partitions of nodes for
divide-and-conquer strategies for learning Gaussian Bayesian networks. This design
may also take advantage of Eq. (6) by testing for zero correlation. After the clustering
step, the pPC algorithm and other methods developed in this paper can be generalized
to continuous cases with straightforward substitutions of conditional independence
tests and score functions.

3.1.2 Partitioned skeleton estimation

We now apply the PC algorithm skeleton learning phase to estimate � disconnected undi-
rected subgraphs according to the partition obtained in the clustering step. Practically,
independently applying the PC algorithm to each node cluster benefits from at most � pro-
cessors if distributed as such for parallel processing. Furthermore, the speed-up is limited

(5)dij = 1 −
I(Xi,Xj)

H(Xi,Xj)
∈ [0, 1].

(6)
Pr(𝜒2

f
> 2n ⋅ Î(Xi,Xj)) > 𝛼 ⇒ (Xi⟂⟂Xj)P

⇒ blacklist the edge i − j,

1703Machine Learning (2022) 111:1695–1738

1 3

by the longest estimation runtime, usually corresponding to the largest node cluster. In con-
trast, the design of the PC-stable implementation (Algorithm 1) by Colombo and Maathuis
(2014) allows for parallel investigation of adjacent node pairs in lines 6–13, provided that
updating the graph estimate is deferred to a synchronization step between iterations of
l. Several contributions and implementations exist for this approach, referred to as ver-
tical parallelization, which addresses the case where the number of variables p is large
(Kalisch et al. 2012; Le et al. 2016; Scutari 2017; Zarebavani et al. 2020). Alternatively,
a horizontal parallelization approach parallelizes across data observations and is preferred
when the sample size n is large (Madsen et al. 2017). In these parallelization paradigms,
due to the large number of distributed tasks, the number of utilizable computing processors
is not practically limited, and the computational load is reasonably expected to be evenly
distributed. To take advantage of these developments in parallelizing the PC algorithm,
we estimate subgraphs within the node clusters by executing Algorithm 1 with the follow-
ing modifications: (i) form the initial complete undirected graph by only connecting nodes
within clusters, (ii) delete edges according to Eq. (6), and (iii) begin investigating candidate
conditioning sets of size l = 1 . The result is an undirected graph G on � consisting of � dis-
connected subgraphs.

At this stage, given a good partition, we expect the node adjacencies to be relatively
well-estimated, with the exception of extraneous edge connections within clusters due to
the violation of causal sufficiency and missing edge connections between clusters that are
disconnected by the partition. Recall from Sect. 3.1.1 that many pairs, including those
between clusters, were removed from consideration via the initial marginal independence
filtering according to Eq. (6). We further refine the pairs between clusters through a two-
step screening process, our strategy being similar to Algorithm 2 designed by Gu and Zhou
(2020), with modifications made to accommodate discrete structure learning. Note that this
is where we anticipate to derive the most computational advantage over the PC algorithm.
Assuming a block structure was successfully detected, we aim to circumvent the lower
order conditional independence tests in our investigation of Eq. (4) by separating as many
between cluster pairs as possible with the currently estimated adjacencies.

The proposed between cluster screening process is summarized in the following opera-
tions to the currently estimated skeleton G = (�,�):

where ci is the cluster label of Xi . The first screen in Eq. (7) constructively connects the
between cluster edges that are dependent marginally, as assessed according to Eq. (6), as well
as conditioned on the union of the neighbor sets. With the addition of edges between clus-
ters, the second screen in Eq. (8) disconnects pairs that are separated by the newly updated
adjacencies. As in Algorithm 1, we fix adjacencies to retain the capacity for parallel investi-
gation of the considered node pairs. Note that every between-cluster edge that is present in
the underlying DAG will be connected by Eq. (7), and Eq. (8) can only prune false positives.
Thus, after this step every node pair will have been considered and, in the population setting,
every truly connected edge in the underlying DAG will be connected in G.

(7)� ← � ∪
{
i − j ∶ ci ≠ cj, (Xi⟂̸⟂Xj)P, and (Xi ⟂̸⟂Xj ∣�

G

i
∪ �

G

j
)P

}
,

(8)
� ← � ⧵

{
i − j ∈ � ∶ ci ≠ cj, and (Xi⟂⟂Xj ∣�

G

i
⧵ {Xj})P

or (Xi⟂⟂Xj ∣�
G

j
⧵ {Xi})P

}
,

1704 Machine Learning (2022) 111:1695–1738

1 3

Remark 1 The formulation of the discrete G2 tests of independence require enumerating
and counting across all conditioning variable configurations. An unavoidable consequence
is that the computational complexity and memory requirement increase dramatically with
increasing conditioning variables, especially when they have a large number of discrete
levels. As such, it is of practical interest to restrict the size of conditioning sets to some
user-specified m > 0 . Thus, for the evaluations in Eqs. (7) and (8) (Algorithm 2 lines 5 and
13), if for example |�G

i
∪ �

G

j
| > m , we instead investigate the unique sets �

�
⊆ �

G

i
∪ �

G

j

such that |�| = m . Furthermore, in the case that the considered neighborhood is large due

1705Machine Learning (2022) 111:1695–1738

1 3

to an unfavorable partition, the investigated conditioning sets may be limited to those con-
tained within only a subset of the neighborhood, provided the subsequent step is adjusted
accordingly [(b) in Eq. (9)].

However, it is important to note that the constraint-based criterion for edge existence
expressed in Eq. (4) has not yet been fully investigated for all node pairs. The tests for
edges within clusters only considered conditioning sets consisting of nodes within the
same clusters, and tests for edges between clusters were limited to the empty set, �G

i
∪ �

G

j
 ,

�
G

i
⧵ {Xj} , and �G

j
⧵ {Xi} . In particular, for each remaining adjacent node pair i − j ∈ � , the

possible separation sets that have not been evaluated are limited to either of the following
cases, if any:

The most straightforward continuation to achieve completeness in our partitioned skeleton
learning process would be to exhaustively evaluate the dependence of the remaining con-
nected node pairs in G conditioned on the remaining conditioning sets. We accomplish this
by restarting the PC algorithm on the current skeleton, evaluating independence condi-
tioned on sets restricted to criteria Eq. (9), before finally orienting the resulting skeleton to
a CPDAG with skel-to-cpdag (Algorithm 6) to complete structure learning.

The resulting pPC algorithm is detailed in Algorithm 2, and an example of its execution
is illustrated in Fig. 1, which provides intuition for its theoretical properties expressed in
Theorem 2. The pPC algorithm first estimates the edges within the clusters to obtain � = 3
disconnected subgraphs (Fig. 1a). False positives may be present in these subgraphs in
the case that conditioning sets that separate truly disconnected variables contain variables

(9)
(a) ci = cj (within clusters), sets � where ∃k ∈ � such that ck ≠ ci;

(b) ci ≠ cj (between clusters), sets � ≠ � not defined in Eq. (7) or Eq. (8).

(a) (b) (c)

Fig. 1 Example of various stages of pPC (Algorithm 2). Node shading denotes clusters, lines represent esti-
mated edges, with dashed lines representing false positive edges. The estimated graph after line 2 and after
line 10 are shown in a and b, respectively. The final output is equivalent to the CPDAG of the underlying
DAG G∗ in c

1706 Machine Learning (2022) 111:1695–1738

1 3

belonging to different clusters, such as in the case of X6 − X9 for which the common parent
X5 is in a different cluster. Similarly, two false positive edges are constructively connected
along with all true positives according to Eq. (7) (Fig. 1b), but these are quickly pruned by
the second screening of edges between clusters with Eq. (8) (not shown). X6 − X9 remains
to be separated, requiring (X6⟂⟂X9 ∣X5)P to be investigated in line 18 to recover the underly-
ing skeleton before orientation to the true CPDAG G∗ in line 19 (Fig. 1c).

The pPC algorithm (Algorithm 2) is sound and complete, formalized in Theorem 2,
which we prove in Appendix A.

Theorem 2 Suppose that probability distribution P and DAG G∗ are faithful to each other.
Then given conditional independence oracles, the output of the pPC algorithm (Algo-
rithm 2) is the CPDAG that represents the equivalence class of G∗.

Its implication is the asymptotic consistency of pPC for fixed p as n → ∞ , given a con-
sistent conditional independence test such as the G2 test (Cressie and Read 1989). Note
that while the computational savings may depend heavily on the quality of the partitioning,
Theorem 2 holds regardless of the obtained clusters.

3.2 p‑value adjacency thresholding

Despite the attractive theoretical properties of algorithms such as pPC and PC, it is well-
known that in practice, constraint-based algorithms suffer from the multiple testing prob-
lem, a challenge exacerbated when p is large (Spirtes 2010). The effect of individual errors
can compound throughout the conditional independence testing process, leading to errone-
ous inferences regarding both the existence and orientation of edges (Koller and Friedman
2009; Spirtes 2010). In addition to deteriorated quality of structures estimated, mistakes
in conditional independence inferences can result in invalid PDAG estimates that do not
admit a consistent extension (see Remark 2). In practical applications, the choice of condi-
tional independence test threshold � can significantly control the sparsity and quality of the
resulting estimate. To the best of our knowledge, proposed theoretical thresholds depend
on unknown quantities and are not practically informative, such as in Kalisch and Bühl-
mann (2007). Empirically, the optimal choice of � varies depending on factors such as the
sample size and the structure and parameters of the underlying Bayesian network, and no
universally well-performing value is known.

We propose the PATH algorithm to generate and select from a CPDAG solution path
across various values of � from a single execution of the pPC algorithm, or indeed from
any constraint-based structure learning algorithm that is able to obtain the following.
Define the maximum p-values Φ = (Φij) such that Φij is the maximum p-value obtained
by the conditional independence test between i and j across all conditioning sets � ∈ Kij
visited in the algorithm, as well as the corresponding separation sets, thus extending the
definition of � . That is, for all distinct node pairs i, j,

For a connected node pair i − j , �(i, j) may be considered the conditioning set closest to
separating i and j, and Φij measures how close.

(10)
Φij = Φji∶=max

�∈Kij

Pr
(
𝜒2
f
> G2

ij|�
)
,

�(i, j) = �(j, i)∶= argmax
�∈Kij

Pr
(
𝜒2
f
> G2

ij|�
)
.

1707Machine Learning (2022) 111:1695–1738

1 3

The process itself is straightforward: for a sequence of significance levels {�(t)} , we
obtain updated PDAG estimates G(t) by thresholding the maximum achieved p-values Φ to
obtain skeleton estimates with edge sets �(t) = {i − j ∶ Φij ≤ �(t)} and then orienting them
to CPDAGs according skel-to-cpdag (Algorithm 6) with the corresponding separa-
tion information �(t) = {�(i, j) ∶ Φij > 𝛼(t)} . The quality of the estimates are then evaluated
by a scoring criterion and the highest-scoring network is returned. In what follows, we
develop the choice of the threshold values and present the strategy for estimate generation
and selection.

We begin with a graph estimate obtained by executing the pPC algorithm with some
maximal threshold value � . The goal is to start with the densest graph so that the ele-
ments of Φ and � in Eq. (10) are maximized over a larger number of visited conditioning
sets |K| . We generate a sequence of � values decreasing from �(1)∶=� to some mini-
mum threshold value �(�) . This sequence may be incremented according to some linear
or log-linear scale, but we choose to achieve maximal difference in sparsity amongst
estimates by utilizing the information in Φ . Given each �(t) corresponding to estimate
G
(t) = (�,�(t)) , we choose �(t+1) such that

Noting that ��(t)� = ∑
i<j �

�
Φij ≤ 𝛼(t)

�
 for indicator function �{⋅} , it is easy to see that the

sequence �(1),… , �(�) can be straightforwardly obtained using the order statistics of the
elements of Φ.

Once a solution path of CPDAG estimates {G(t) ∶ t ∈ {1,… , �}} is obtained, we select
the highest quality estimate by means of score-based selection. The Bayesian informa-
tion criterion (BIC) is a penalized log-likelihood score derived from the asymptotic
behavior of Bayesian network models, with established consistency (Schwarz 1978).
The formulation of the BIC score makes clear its score decomposability [see Eq. (24)
in Appendix C]; that is, the score �(G,D) can be computed as the sum of the scores of
the individual variables with respect to their parents in G : �(G,D) =

∑p

i=1
�(Xi,�

G

i
) . The

BIC score is additionally score equivalent, evaluating all Markov equivalent DAGs as of
identical quality, with a higher value indicating a better fit to the data.

Due to score equivalence, it is sufficient to evaluate each CPDAG G(t) with any arbi-
trary DAG G̃(t) in its equivalence class, called a consistent extension of G(t) . Dor and
Tarsi (1992) proposed a simple algorithm, which we refer to as pdag-to-dag, that
obtains such an extension by orienting the undirected (reversible) edges in G(t) without
inducing directed cycles or introducing new v-structures, and is guaranteed to succeed
if a consistent extension exists (further discussed in Sect. 4.2). After obtaining these
DAG extensions, in practice, score decomposability can be leveraged to avoid scoring
p nodes for � estimates by setting Δ(1) = 0 and computing the score differences between
estimates Δ(t) = 𝜙(G̃

(t)
,D) − 𝜙(G̃

(t−1)
,D) for t = 2,… , � , caching computed node score to

avoid redundant computations. The best solution can then be straightforwardly obtained
according to

We detail the PATH solution path strategy in Algorithm 3.

(11)|�(t)| − |�(t+1)| ≈ |�(1)| − |�(�)|
� − 1

.

t∗ = argmax t∈{1,…,�}�(G
(t),D) = argmax t∈{1,…,�}

t∑
r=1

Δ(r).

1708 Machine Learning (2022) 111:1695–1738

1 3

Remark 2 While pdag-to-dag is guaranteed to extend a PDAG G to a DAG if any con-
sistent extension exists, in the presence of finite-sample error, Algorithm 6 may obtain a
PDAG estimate G for which no such extension exists. In such a case, we say that G does not
admit a consistent extension, and refer to it as an invalid CPDAG. Such PDAGs contain
undirected edges that cannot be oriented without inducing cycles or constructing additional
v-structures, and do not encode any probabilistic model of P. To account for these, we
restrict the candidate graphs considered in line 13 to valid CPDAGs. In the case that no
valid CPDAG is obtained, we obtain semi-arbitrary DAG extensions G̃(t) by first applying
the algorithm by Dor and Tarsi (1992) and randomly directing as many remaining undi-
rected edges as possible without introducing any cycles, finally removing edges that cannot
be oriented. The resulting DAGs are used to score the PDAGs, and the original PDAGs are
returned in the output as these structures are nonetheless interpretable even as incomplete
dependency structures.

The computational expense of executing Algorithm 3 can reasonably be expected to
be insignificant compared to any constraint-based algorithm to which it is attached, sup-
ported by our empirical results in Sect. 5.2. Our exploitation of score decomposability
reduces the order of score computations far below the worst case of O(�p) , which is
already much more efficient than any favorable order of conditional independence tests
such as polynomial with p. As for the � executions of skel-to-cpdag and pdag-
to-dag, Chickering (2002a) found the computational cost of applying the edge orien-
tation heuristics to be insignificant, as did Madsen et al. (2017) for skel-to-cpdag
in comparison to skeleton learning. As such, the computational cost for score-based
selection from the solution path can be expected to be essentially inconsequential, an
assertion further validated in our experiments.

1709Machine Learning (2022) 111:1695–1738

1 3

In the large-sample limit, the correctness of Eq. (4) and skel-to-cpdag implies the
asymptotic consistency of PC and pPC under certain conditions without any solution path
(see Lemma 2 in Appendix A). This property can be achieved with a consistent conditional
independence test by controlling type I error with �n → 0 as n → ∞ , thus rendering the
test Chernoff-consistent (Cressie and Read 1989; Shao 2003, Definition 2.13). As �n is not
practically informative due to its implicit dependence on n, Algorithm 3 contributes an ele-
ment of accessibility to this asymptotic result in the form of the following theorem, a proof
for which can be found in Appendix A.

Theorem 3 Suppose the distribution P is fixed and faithful to a DAG with CPDAG G∗ , D
is data containing n i.i.d. samples from P, and � is a consistent score. Let Φn = (Φn,ij) and
�n be the maximum p-values and corresponding separation sets recorded for any exhaus-
tive investigation of Eq. (4), executed with a consistent test applied with threshold �n . Let
Ĝ
(t∗)

n
(𝛼n) be the selected estimate of Algorithm 3 with parameters 𝜏 = 1 +

∑
i<j �

�
Φn,ij ≤ 𝛼n

�

and �(�) = 0 applied to Φn and �n . Then there exists an → 0 as n → ∞ such that if �n ≥ an
when n is large,

In particular, Eq. (12) holds if �n is fixed to some constant � ∈ (0, 1) for all n.

In the finite-sample setting, the thresholded estimate G(t) corresponding to 𝛼(t) < 𝛼(1) typ-
ically does not correspond exactly to the estimate obtained by directly executing PC or pPC
with significance level �(t) . Adjacencies that would be disconnected in the earlier stages of
the learning process with threshold �(t) may survive to the later stages with a more leni-
ent threshold �(1) . The enlarged neighborhoods may persist as additional (potentially false
positive) connections in the output structure, but may also cause more conditioning sets to
be considered and thus lead to the deletion of edges that would not have been deleted in
the execution with �(t) . Thus, while the estimated structure from executing with �(1) may
reasonably be expected to be denser than that of �(t) , it may not be a supergraph of the lat-
ter, and the p-values for each node pair [Eq. (10)] are optimized over different conditioning
sets, so the thresholded estimate with PATH is likely to differ. Nonetheless, our empirical
results demonstrate the potential of the solution path generated by thresholding, showing
that PATH applied to pPC and PC is able to produce estimates of competitive quality to the
best of those obtained by multiple executions with various �.

To the best of our knowledge, there is currently no easy way to choose the optimal
threshold �n for PC (or pPC), and thus repeated executions are often needed for parameter
tuning. The application of PATH pragmatically allows for a single execution of PC or pPC
with fixed threshold � while returning estimates with both theoretical guarantees (Theo-
rem 3) and empirical well-performance (Sect. 5.2).

4 Consistent hybrid structure learning

Despite the accessibility provided by PATH (Algorithm 3), the asymptotic guarantees of
constraint-based learning strategies do not necessarily translate to well-performance in
practice. For this reason, based on their experiments with which our simulation results are
in agreement, Tsamardinos et al. (2006a) preferred greedy search in the DAG space over

(12)lim
n→∞

Pr
[
Ĝ
(t∗)

n
(𝛼n) = G

∗
]
= 1.

1710 Machine Learning (2022) 111:1695–1738

1 3

constraint-based orientation in their development of their algorithm, even though the for-
mer is lacking in comparable theoretical guarantees.

In the interest of elevating the class of algorithms that share such an compromise, we
develop the HGI strategy to preserve the asymptotic guarantees of sound and complete
constraint-based structure learning while improving on the empirical well-performance of
the current standard hybrid framework. We motivate and develop HGI in this section, first
reviewing relevant standard score-based and hybrid structure learning before describing
the HGI strategy in detail.

4.1 Score‑based and hybrid structure learning

Chickering (2002a) distills score-based Bayesian network learning into two general prob-
lems: the evaluation problem and the identification problem. In this section, we begin by
introducing the relevant tenets of score-based structure learning under these categories.

We have briefly interacted with the evaluation problem in our discussion of the BIC
score in Sect. 3.2, which more broadly involves the development of scoring criteria to eval-
uate the goodness-of-fit of a Bayesian network to data. The existence of equivalence classes
(Sect. 2.1) motivates the design of metrics that evaluate all structures within an equiva-
lence class as of equal quality, satisfying the score equivalence property. The BIC score
that we utilize satisfies this property, and is equivalent to the (negative) minimum descrip-
tion length (MDL) in Rissanen (1978). Other scores that are score equivalent include log-
likelihood, Akaike’s information criterion (AIC), and Bayesian Dirichlet equivalence score
(BDeu) (Akaike 1974; Buntine 1991; Heckerman et al. 1995). Notwithstanding, prominent
scores that are not score equivalent exist as well, such as the K2 score (Cooper and Her-
skovits 1991) and, more recently, �1-regularized likelihood scores (Fu and Zhou 2013; Gu
et al. 2019). In their investigation, Liu et al. (2012) found BIC to have favorable model
selection performance relative to a number of other scores.

The consistency of the BIC score guarantees that in the large-sample limit,
G
∗ = argmax G�(G,D) is in the equivalence class of the underlying DAG. BIC additionally

retains the property of local consistency (Chickering 2002b), meaning for any DAG G and
another DAG G′ resulting from adding the edge Xi → Xj to G , the following two properties
hold asymptotically:

We have discussed the BIC score as having desirable qualities for evaluating Bayesian net-
work structures, being decomposable, score equivalent, consistent, locally consistent, and
empirically well-performing. However, finding the global optimum G∗ is highly non-trivial,
reminding us of the problem of identification.

Relevant to our work is the general greedy search algorithm which repeatedly moves
from the current state to the neighboring state that maximally improves the optimization
criterion (in our application, BIC) until no improvement can be thusly achieved (Russell
and Norvig 2009). That is, the algorithm is guaranteed to terminate in a locally optimal
state, where locality is determined by the chosen definitions of a state and its neighbor-
hood. The popular hill-climbing (HC) algorithm is a greedy search in the state space of
DAGs, with neighboring states defined as DAGs obtainable by a single directed edge

(13)(Xj ⟂̸⟂Xi ∣�
G

j
)P ⇒ 𝜙(� ∣ G�,D) > 𝜙(� ∣ G,D), and

(14)(Xj⟂⟂Xi ∣�
G

j
)P ⇒ 𝜙(� ∣ G�,D) < 𝜙(� ∣ G,D).

1711Machine Learning (2022) 111:1695–1738

1 3

addition, deletion, or reversal applied to the current DAG (Heckerman et al. 1995; Russell
and Norvig 2009). The greedy equivalence search (GES) algorithm is a sound and com-
plete variation of greedy search in which the state space is CPDAGs representing equiva-
lence classes, with a forward-stepping edge addition phase followed by an edge deletion
phase (Meek 1997; Chickering 2002a, b).

While widely applied and regarded as efficient and well-performing, the locality of the
HC search in the DAG space unavoidably risks the common problem of accepting locally
optimal yet globally suboptimal solutions. Gámez et al. (2011) showed that under certain
conditions, HC returns a minimal independence map of the probability distribution P, but
it does not guarantee a globally optimal result. HC can be augmented to more thoroughly
search the DAG space with one or both of tabu list and random restarts, respectively gov-
erned by parameters (t0, t1) and (r0, r1) . In what is known as the tabu search, a solution is
obtained through HC while a tabu list stores the last t1 DAG structures visited during the
search. Then, the HC procedure is continued for up to t0 iterations while allowing for mini-
mal score decreases, with a local neighborhood restricted by the tabu list to avoid previ-
ously visited structures. In HC with random restarts, the HC procedure is repeated r0 times
after the initial execution by perturbing the current solution with r1 random local changes.
In our work, we prefer augmenting HC with a tabu list rather than random restarts due to
its generally superior efficiency and its reliable and deterministic well-performance.

As mentioned in Sect. 1, prominent hybrid structure learning algorithms are instantia-
tions of what we call the GSC framework, in which HC is executed from an EG restricted
to a sparse set of candidate edge connections. That is, for a graph G = (�,�) estimated
using a constraint-based approach, define � = {(i, j) ∶ i and j are connected in G} as the set
of candidates: the unordered node pairs that have not been determined to be conditionally
independent. HC is then executed from an EG on � , considering adding an edge i → j only
if (i, j) ∈ � . MMPC and H2PC are two well-known examples, obtaining � according to
sound skeleton estimation algorithms max–min parents and children (MMPC) and hybrid
parents and children (HPC), respectively (Tsamardinos et al. 2006a; Gasse et al. 2014).
The GSC strategy guarantees estimation of a valid DAG restricted to � , but often accepts
locally optimal solutions that are structurally inaccurate due to the connectivity of the DAG
space induced by the HC neighborhood. As will be seen in Sect. 5.3, this problem persists
even when the search space is well-restricted and a tabu list is utilized, leaving much to be
desired. In this work, we primarily focus on improving upon the theoretical properties and
empirical performance of the GSC framework, though our contributions may be applied to
another hybrid approach that uses greedy search in the space of equivalence classes instead
of DAGs, which we discuss briefly in Sect. 6 and the Supplementary Information.

4.2 Hybrid greedy initialization

We now develop our proposed HGI strategy to overcome the aforementioned difficulties
for hybrid algorithms belonging to the GSC framework. Our method is designed to retain
the soundness and completeness of constraint-based structure learning while empirically
improving structural estimation accuracy and achieving higher-scoring structures as com-
pared to those obtained by the GSC framework. The primary novel contribution is the
introduction of a score-based ordering to the application of orientation heuristics to obtain
a favorable initialization for HC. Given the skeleton output of a constraint-based algo-
rithm, we sequentially add v-structures that most improve the score, scored with respect
to directed edges. We then make greedy determinations for the remaining undirected edges

1712 Machine Learning (2022) 111:1695–1738

1 3

according to efficient criteria from pdag-to-dag, assisted by Meek’s rules R1–4 (Dor
and Tarsi 1992; Meek 1995). Finally, we execute HC initialized by the resulting DAG.
From a score-based learning perspective, the formulation of HGI may be understood as a
principled strategy for obtaining a good starting point for greedy search. In what follows,
we further detail and discuss the HGI algorithm.

Recall that pdag-to-dag (introduced in Sect. 3.2) is guaranteed to obtain a consist-
ent extension of a PDAG if one exists, and thus implicitly includes Meek’s rules R1–4
when the given PDAG is a valid pattern that admits a consistent extension. Let G0 and G be
identical copies of a PDAG to be oriented. The algorithm repeatedly searches for a node j
satisfying the following conditions in a PDAG G0 :

(a) j is a sink: that is, j has no edges directed outwards in G0;
(b) For every vertex k connected to j by an undirected edge in G0 , k is adjacent to all the

other vertices which are adjacent to j in G0.

If such a node j can be found, all undirected edges adjacent to j are oriented into j in G and
G0 . Node j is then a complete sink, a node satisfying (a) with no undirected edges incident
to it, and is removed from G0 along with all edges incident to it in order to uncover subse-
quent candidate nodes. This process is repeated until G is fully oriented to a DAG, or until
no such node j can be found, in which case the initial PDAG does not admit a consist-
ent extension. Briefly exposited, (a) ensures acyclicity by requiring that all directed paths
induced by considered orientations terminate in sinks, and (b) ensures that considered ori-
entations do not create new v-structures if applied.

Consider an example of pdag-to-dag applied to a PDAG in Fig. 2. The algorithm
proceeds as follows. Starting from the PDAG structure in Fig. 2a, nodes X1 , X7 , and X8 sat-
isfy conditions (a) and (b), with X8 additionally a complete sink. Nodes X2 , X4 , and X6 vio-
late condition (a), and X3 and X5 violate condition (b). Since X1 , X7 , and X8 are not adjacent
to each other, they may be selected by the algorithm in an arbitrary order without affecting
the particular outcome of the DAG extension, resulting in orientations X4 → X1 , X5 → X1 ,
and X5 → X7 . Once these nodes are removed from consideration, X5 and X6 are likewise
removed as complete sinks, and the remaining undirected edge X2 − X3 may be oriented in
either direction as both X2 and X3 satisfy (a) and (b).

Since the implementation of pdag-to-dag, as proposed, does not straightforwardly
lend itself to greedy application, we accomplish this by developing a decomposed version of

X1 X2 X3

X4 X5 X6

X7 X8

(a) Pattern PDAG structure

X1 X2 X3

X4 X5 X6

X7 X8

(b) DAG extension

Fig. 2 Example of pdag-to-dag (Dor and Tarsi 1992) applied to a PDAG pattern structure

1713Machine Learning (2022) 111:1695–1738

1 3

pdag-to-dag. Let G0 be a PDAG with only v-structures oriented, and let G be a DAG consist-
ing of only the directed edges in G0 . We prioritize checking for and removing all complete sinks
from consideration by deleting all edges incident to such nodes in G0 , and we greedily consider
orienting i → j in G0 and G if i − j is an undirected edge in G0 and conditions (a) and (b) are satis-
fied for node j. For example, in a single greedy step applied to Fig. 2a, we would first remove
X8 from G0 as a complete sink, resulting in nodes X1 , X6 , and X7 satisfying (a) and (b). We then
greedily consider the individual edge orientations X4 → X1 , X5 → X1 , X5 → X7 , and X3 → X6 ,
applying the orientation that most improves the score computed with respect to the structure of G
(i.e., all edges that have determined orientations). This design essentially decomposes the node-
centric operations in pdag-to-dag into single edge operations (e.g., X4 → X1 and X5 → X1 are
considered as individual orientations instead of both being considered with node X1), and its result
is a DAG in the same equivalence class as the output of pdag-to-dag given a valid PDAG.
In practice, as with the sequential v-structure application, the greedy ordering filters edges and
selects between ambiguous orientations. In the case that undirected edges still exist in G0 and no
node satisfying (a) and (b) can be found, we likewise greedily consider transformations compelled
by Meek’s rules R1–4 applied to G0 . We detail the HGI strategy in Algorithm 4.

Important to note is that in the population setting, v-structure detection and orientation
is order-independent, and while the particular DAG obtained by (our decomposed) pdag-
to-dag is order-dependent, it will always recover a DAG in the same equivalence class if
successful (i.e., a consistent extension of the input PDAG exists). In such a case, whatever
ordering imposed on both or either of the heuristics has no meaningful effect on the result.
Furthermore, given a greedy criterion, a locally consistent score will asymptotically accept
proposed additions of truly connected edges due to Eq. (13), thus preserving guaranteed

1714 Machine Learning (2022) 111:1695–1738

1 3

identification of the equivalence class of the underlying DAG. Indeed, in such a setting, a
lenient score that prefers denser graphs is sufficient as only property Eq. (13) is required.

In the finite-sample setting, incorrectly inferred conditional independence information
can result in the determination of incomplete or extraneous and even conflicting v-struc-
tures, and could result in PDAGs that do not admit a consistent extension (Remark 2). The
outcome of a naive non-greedy application of v-structures and (our decomposed) pdag-
to-dag empirically varies in quality depending on the order by which the operations are
applied due to conflicting operations and obstacles induced by the acyclicity constraint,
providing the primary incentive for greedy decisions regarding proposed constraint-based
orientations. From a constraint-based learning perspective, greedy forward stepping
imposes a greedy ordering on the application of v-structures and other potentially conflict-
ing or ambiguous edge orientations, while additionally providing an element of selectivity
by disregarding operations that deteriorate the score.

As already discussed, Algorithm 4 asymptotically preserves sound and complete orien-
tation of the skeleton of the underlying DAG G to a DAG in its equivalence class, straight-
forwardly evident from our discussion thus far.

Lemma 1 Suppose that probability distribution P is fixed and faithful to a DAG G∗ , Dn is
data containing n i.i.d. samples from P, and � is a score satisfying local consistency. Let
Ĝn be the output of Algorithm 4. If G0 is the skeleton of G∗ and � contains the v-structures
of G∗ , then Ĝn is in the same equivalence class as G∗ with probability approaching one as
n → ∞.

Note that while we state Lemma 1 assuming possession of all v-structures � that are
present in the underlying DAG, these may be correctly obtained asymptotically depending
on what information is available from the skeleton estimation method, which we discuss in
Appendix B.

Indeed, neither operations (ii)–(iv) in line 7 nor any subsequent score-based search is
necessary for Lemma 1 to hold, but rather serve in a corrective capacity in the finite-sam-
ple setting. The process of completing and deleting sinks to uncover subsequent sinks in G0
requires decisions for each undirected edge participating in a node satisfying (a) and (b) in
order to continually progress in the algorithm. Operation (ii) discards each proposed edge
addition i → j that deteriorates the score when no improvement according to (i) is possible
so that j can be completed and removed. In the case that no node satisfying both (a) and (b)
can be found, we apply the same greedy criterion to all edges compelled by Meek’s rules
R1–4 in operations (iii) and (iv). These rules are not subject to a leaf-to-root construction
and often help resume applications of (i) and (ii), for example by deleting an undirected
edge i − j participating in an unshielded triple from G0 so that j can satisfy (b).

Note that in finite-sample applications, repeated application of (i)–(iv) does not guaran-
tee orientation or deletion of all undirected edges in G0 [e.g. consider an undirected square
where no vertex satisfies (a) and (b) and no edge is compelled by R1–4], though we empiri-
cally find it to typically address most if not all edges. Furthermore, while the adjacency cri-
terion (b) exists to prevent the creation of additional v-structures, it is still possible for new
v-structures to be created by deletion. Consider an undirected triangle in G0 where all three
vertices i, j, and k satisfy (a) and (b). The greedy ordering may orient i → k and j → k ,
remove node k once it is a complete sink, and eventually delete i − j , leaving i → k ← j as a
new v-structure in G.

1715Machine Learning (2022) 111:1695–1738

1 3

While essentially equivalent in the large sample setting, directly executing a greedy
decomposed pdag-to-dag poses a number of pragmatic advantages over first greed-
ily applying Meek’s rules in the presence of finite-sample error. The sink criterion (a)
effectively accomplishes acyclicity checks for each proposed edge orientation, which grow
increasingly computationally burdensome for larger networks. It additionally induces a
leaf-to-root construction with operations that minimally conflict with subsequent opera-
tions, with i → j only denying i from satisfying (a) until j is removed. This further strength-
ens the effect of the greedy ordering in minimizing ambiguity in the initial DAG construc-
tion process. Indeed, considering Theorem 1, the order of greedy v-structure application
is unambiguous given a score equivalent metric. In contrast, HC from an EG restricted to
sparse candidates � begins with O(|�|2) ambiguous edge additions where, for any distinct
node pair (i, j) ∈ � , adding the edge i → j or j → i results in the same score improvement,
again evident from Theorem 1. HC may encounter many such non-unique edge additions
which are typically decided according to a node ordering that is often arbitrary, and their
compounding effect can result in conflicts that, together with the acyclicity constraint,
entrap HC in local solutions.

Remark 3 Relevant to our work is the PEF framework by Gu and Zhou (2020), a hybrid
strategy consisting of a final fusion step that is conceptually analogous to a non-greedy
form of sparse candidate HC initialized with the directed edges of an estimated PDAG
rather than an EG. The algorithm removes all undirected edges from a PDAG input and
performs local edge additions, reversals, and deletions to the resulting DAG that improve
the overall score by repeatedly iterating through the surviving node pairs in a semi-arbi-
trary order, simultaneously testing for conditional independence. While they empirically
demonstrated this process to correct many of the errors in the estimated structure, we find
that the order with which the edges are visited can result in varying degrees of improve-
ment, and the testing strategy performs redundant conditional independence tests. Further-
more, naively initializing a score-based search with the PDAG output of a constraint-based
algorithm may prove volatile given the sensitivity of skel-to-cpdag to erroneous
conditional independence inferences as well as its order-dependence. Lastly, even if ini-
tialized by the DAG consisting of the compelled edges of the underlying DAG and per-
fectly restricted to true connections, neither PEF nor HC with a consistent score guarantees
asymptotic orientation to a DAG in the equivalence class of G.

1716 Machine Learning (2022) 111:1695–1738

1 3

Finally, we detail in Algorithm 5 the partitioned hybrid greedy search (pHGS) algo-
rithm, a composition of pPC, PATH, and HGI. The pHGS algorithm efficiently restricts the
search space with the pPC algorithm (Algorithm 2), obtaining Φ and � as in Eq. (10) for
use in PATH. Instead of generating � CPDAG estimates with skel-to-cpdag, PATH
instead obtains � DAG estimates by detecting v-structures �(t) in each thresholded skeleton
G
(t) and executing HGI (Algorithm 4). See Appendix B for details on v-structure detec-

tion. The highest-scoring of the � estimates G(t∗) is selected to initialize HC (or an alter-
nate score-based search algorithm) restricted to the active set � = {(i, j) ∶ Φij ≤ �(1)} . We
choose the maximum threshold �(1) (see Sect. 3.2) for the restriction instead of �(t∗) corre-
sponding to the highest-scoring estimate to reduce false negatives that excessively restrict
the score-based exploration in the finite-sample setting.

In the large-sample limit, under the same conditions and parameter specifications as
Theorem 3 and Lemma 1, the output of pHGS (Algorithm 5) is a DAG that is Markov
equivalent to the underlying DAG. Indeed, this result is already achieved by the modified
PATH in line 2, and in such a case the subsequent greedy search exists only to verify its
optimality.

5 Numerical results

We conducted extensive simulations to demonstrate the merits of pPC, PATH, HGI, and
pHGS alongside a number of other popular structure learning algorithms. In addition to
considering data simulated from various reference Bayesian network configurations, which
we introduce in Sect. 5.1, we analyze real data in the form of a well-known flow cytometry
dataset in Sect. 5.4.

5.1 Simulation set‑up

The performance of our methods were primarily evaluated in comparison to several struc-
ture learning algorithms on numerous reference Bayesian networks obtained from the

1717Machine Learning (2022) 111:1695–1738

1 3

Bayesian network repository compiled alongside the R package bnlearn (Scutari 2010,
2017). Most available discrete networks were considered, with the MUNIN networks rep-
resented by MUNIN1 and the LINK network omitted because certain minuscule marginal
probabilities required much larger sample sizes to generate complete sets of valid variables.
The following preprocessing procedures were applied to each network. For each random
variable Xi , non-informative states xi with Pr(Xi = xi) = 0 were removed, and non-inform-
ative variables Xi with |ri| = 1 were likewise removed. Furthermore, each variable Xi was
restricted to |ri| ≤ 8 , with the extraneous discrete states of excessively granular variables
removed by randomly merging states. The conditional probability distributions imposed by
merged states were averaged, weighted according to their marginal probabilities.

In order to demonstrate the effectiveness of our methods for learning large discrete net-
works, we generated larger versions of each network with a house implementation of the
tiling method proposed by Tsamardinos et al. (2006b), modified to approximately preserve
the average in-degree amongst non-minimal nodes. In particular, let G = (�,�) be the
structure consisting of � disconnected subgraphs to be connected by tiling. For a minimal
node k (that is, k has no parents), instead of probabilistically choosing the number of added
interconnecting edges, denoted by ek , according to ek ∼ Unif{0, d∶=maxi∈� |�G

i
|} , we let

Pr(ek = a) =
∑

i∈� �
���G

i
� = a

�
∕��� for a = 0,… , min{d, 4} . Note that in this process we

did not enforce any block structure on the tiled structures.
The considered networks, along with select descriptive characteristics, are presented

in Table 1, ordered by increasing complexity. The MIX network consists of the 14

Table 1 Networks for data generation consisting of � connected sub-networks with p nodes, |�| edges, aver-
age number of neighbors |�G| , maximum in-degree max

i
|�G

i
| , and |�| number of parameters

Network � p |�| |�G| max
i
|�G

i
| |�|

1 EARTHQUAKE 200 1000 1103 2.206 2 2380
2 CANCER 200 1000 1123 2.246 2 2399
3 ASIA 125 1000 1243 2.486 2 2544
4 SURVEY 167 1002 1347 2.689 2 4444
5 ANDES 5 1115 2245 4.027 6 7082
6 WIN95PTS 14 1064 2184 4.105 7 9525
7 CHILD 50 1000 1309 2.618 2 11,649
8 ALARM 28 1036 1689 3.261 4 16,574
9 MIX 14 1011 1877 3.713 7 17,319
10 SACHS 91 1001 1822 3.640 3 18,746
11 PIGS 3 1323 2182 3.299 2 20,102
12 HEPAR2 15 1050 2077 3.956 6 23,007
13 INSURANCE 38 1026 2120 4.133 3 40,918
14 HAILFINDER 18 1008 1541 3.058 4 54,322
15 WATER 39 1014 2303 4.542 5 72,316
16 MUNIN1 7 1064 1776 3.338 3 83,208
17 PATHFINDER 10 1090 1968 3.611 5 96,037
18 DIABETES 3 1239 2035 3.285 2 302,008
19 MILDEW 29 1015 1913 3.769 3 345,575
20 BARLEY 21 1008 2101 4.169 4 1,771,800

1718 Machine Learning (2022) 111:1695–1738

1 3

networks from Table 1 with the least complexity, tiled in random order. For each net-
work configuration, we generated N = 100 datasets with n = 25, 000 data samples each,
for a total of 2000 datasets. The p columns of each dataset were randomly permuted so
as to obfuscate any information regarding the causal ordering. Note that while only one
sample size was considered for all the networks of similar order in p, the networks vary
significantly with respect to sparsity, structure, and complexity, thus representing a wide
variety of conditions.

Algorithm implementations of competing algorithms MMPC, HPC, HITON, IAMB,
MMHC, and H2PC, which we briefly introduce in their respective featuring sections,
were obtained from the R package bnlearn, which is written in R with computation-
ally intensive operations delegated to C (R Core Team 2021; Scutari 2010, 2017). We
also compared against GES and FGES from rcausal, the R package wrapper for the
Tetrad Library (Wongchokprasitti 2019). Our pPC, PATH, HGI, and pHGS implementa-
tions were built in R and Rcpp using tools from the bnlearn package, and the results
for PC were obtained by executing pPC restricted to � = 1 for fair comparison. We have
made our methods publicly available in the form of an R package at https:// github. com/
jireh huang/ phsl.

We evaluate the quality of a graph estimate Ĝ = (�, �̂) with respect to the underlying
DAG G = (�,�) by considering the Jaccard index (JI) of the CPDAG of Ĝ in compari-
son to the CPDAG of G . JI is a normalized measure of accuracy (higher is better) that
is monotonically associated with the F1 score, computed as JI = TP/ (|�| + |�̂| − TP)
where TP is the number of true positive edges: the number of edges in the CPDAG of Ĝ
that coincide exactly with the CPDAG of G (both existence and orientation).

We use the JI as our primary accuracy metric over the popular structural Hamming
distance (SHD) as we find it to be consistent with SHD (higher JI almost always indi-
cates lower SHD) and for its convenience as a normalized metric. The choice of evalu-
ating the CPDAG estimates rather than DAG estimates is motivated foremost by the
fact that given that our estimates are inferred from observational data, the orientation
of reversible edges in DAGs provide no meaningful interpretation (see Sect. 2.1). Addi-
tionally, the aforementioned metrics allow for evaluation of the quality of estimated
PDAGs that do not admit a consistent extension (see Remark 2).

Regarding efficiency, execution time is confounded by factors such as hardware, soft-
ware platform, and implementation quality. Even if the aforementioned variables are
accounted for, performing all simulations on the same device cannot guarantee consist-
ent performance over all simulations and instead severely constrains the feasible scope
of study. Thus, we evaluate the estimation speed of structure learning algorithms by
the number of statistical calls to conditional independence tests or local score differ-
ences, with fewer calls indicating greater efficiency. For pPC, we additionally include
mutual information and entropy evaluations to account for the expense of clustering (see
Sect. 3.1.1).

Remark 4 In general, we find the relative execution time comparisons to be approximately
equivalent to the relative number of statistical calls, within comparable implementations.
For example, the relative estimation speed of pPC as compared to PC is approximately
equivalently characterized by their relative execution time and relative number of statistical
calls. The implementation of HC, however, does not scale as well as that of pPC, result-
ing in disproportionately greater relative execution times compared to relative number of
statistical calls.

https://github.com/jirehhuang/phsl
https://github.com/jirehhuang/phsl

1719Machine Learning (2022) 111:1695–1738

1 3

5.2 pPC and PATH

As the pPC algorithm can be considered an augmentation of the PC algorithm by imposing
an ordering to the conditional independence tests by partitioning, we highlight its perfor-
mance against the PC algorithm. We additionally apply the PATH augmentation to pPC
and PC.

Note that our proposed HGI strategy motivates the design of high-performing con-
straint-based algorithms that not only efficiently restrict the search space, but also demon-
strate potential for good score-based search initialization with HGI by producing structur-
ally accurate estimates. As such, we further validate the performance of pPC and PATH
against four other established constraint-based structure learning algorithms, all local dis-
covery methods, modified with a symmetry correction for skeleton learning (Aliferis et al.
2010). Max-min parents and children (MMPC) uses a heuristic that selects variables that
maximize a minimum association measure before removing false positives by testing for
conditional independence (Tsamardinos et al. 2003b, 2006a). The fast version of the incre-
mental association Markov blanket algorithm (Fast-IAMB; IAMB in this paper) is a two-
phase algorithm that consists of a speculative stepwise forward variable selection phase
designed to reduce the number of conditional independence tests as compared to single for-
ward variable selection, followed by a backward variable pruning phase by testing for con-
ditional independence (Tsamardinos et al. 2003a; Yaramakala and Margaritis 2005). The
semi-interleaved implementation of HITON1 parents and children (SI-HITON-PC; HITON
in this paper) iteratively selects variables based on maximum pairwise marginal associa-
tion while attempting to eliminate selected variables by testing for conditional independ-
ence (Aliferis et al. 2003, 2010). Finally, HPC is comprised of several subroutines designed
to efficiently control the false discovery rate while reducing false negatives by increasing
the reliability of the tests (Gasse et al. 2014). For each of these methods, following skeleton
estimation, we orient edges by detecting and orienting v-structures according to Eq. (22)
(in Appendix B) and applying Meek’s rules R1–4.

The maximum size of considered conditioning sets m was chosen empirically for a bal-
ance between efficiency and well-performance: m = 3 for pPC and PC, m = 4 for HPC,
and m = 5 for the remaining methods. We note that HPC insignificantly varies in effi-
ciency with m and produces the most accurate estimates in our simulations with m = 4 , and
the remaining competing methods are more efficient but significantly less accurate with
m < 5 . Additionally for pPC, we restricted the maximum set size to 3 for the evaluations
in Eqs. (7) and (8), and the maximum considered neighborhood size to 5 (see Remark 1).
We executed each algorithm with each of the following ten choices of significance level
thresholds:

For each execution of pPC and PC, estimates for � = 10 thresholding values were automat-
ically generated with PATH (Algorithm 3) according to Eq. (11), restricted to a minimum
value of �(�) = 10−5.

The comparison results for pPC and PATH are reported in Table 2. We first com-
pare pPC against PC in terms of computational efficiency and estimation accuracy.

(15)
� ∈ A∶={0.1, 0.05, 0.01, 0.005, 0.001, 0.0005,

0.0001, 0.00005, 0.00001, 0.000005}.

1 From the Greek word “ X��o� ”, pronounced “hee-tón”, meaning “cover”, “cloak”, or “blanket”.

1720 Machine Learning (2022) 111:1695–1738

1 3

Unsurprisingly, pPC demonstrates the greatest computational benefit over PC for large � ,
typically halving the number of conditional independence tests for � = 0.1 , as seen from
the normalized calls of PC with � = 0.1 and PATH (� = 10) in the table. Note that our
partitioning strategy is solely responsible for this computational improvement as paral-
lelization has no bearing on the efficiency metric, and by design pPC can, like PC, fur-
ther benefit from parallel execution. The reduction suffers from diminishing returns with
decreasing � , with an average speed-up of about 22% across the ten � . Notwithstanding,
we found pPC and PC, even without PATH, to generally prefer larger � . In particular, esti-
mates with thresholds � = 0.1 and 0.05 respectively produced the best estimates (highest
JI) for over 50% and 17% of datasets, resulted in the highest average JI scores for 13 and 3
network configurations, and achieved the highest two JI scores averaged across all datasets.
As such, algorithm executions with large significance level thresholds are not unreasonable
in practice, which coincides with the general strategy of PATH. We note that while pPC
appears to be typically slightly more accurate than PC, we do not find the improvement to
be substantial and primarily assert that pPC performs comparably to PC.

Table 2 Accuracy (JI) and efficiency (Normalized Calls) comparison between pPC and PC, without and
with PATH (indicated by None and � = 10 , respectively)

Columns pPC∗ and PC∗ provide the highest JI and total statistical calls of executions for all 10 � ∈ A . Rows
correspond to the networks in Table 1, and best values are provided in boldface
 aNormalized by pPC-PATH(� = 0.1, � = 10)

JI Normalized Callsa

pPC PC pPC∗ PC∗ PC pPC∗ PC∗

� = 0.1 � = 0.1 � ∈ A � ∈ A � = 0.1 � ∈ A � ∈ A

None � = 10 None � = 10 None None � = 10 None None

1 0.447 0.725 0.390 0.697 0.712 0.707 3.261 8.516 11.384
2 0.243 0.333 0.259 0.332 0.292 0.292 7.905 7.264 15.643
3 0.218 0.284 0.211 0.275 0.261 0.261 1.435 4.580 5.122
4 0.322 0.362 0.309 0.362 0.360 0.360 2.821 7.914 10.321
5 0.497 0.560 0.487 0.561 0.515 0.505 4.384 7.668 12.707
6 0.403 0.411 0.382 0.404 0.408 0.398 2.500 8.358 10.889
7 0.564 0.579 0.536 0.562 0.569 0.548 1.586 8.446 9.355
8 0.474 0.478 0.469 0.480 0.477 0.473 1.812 8.150 9.845
9 0.517 0.546 0.504 0.536 0.519 0.506 1.297 7.456 8.068
10 0.542 0.551 0.506 0.522 0.543 0.508 1.896 8.204 9.908
11 0.851 0.852 0.867 0.871 0.851 0.867 1.562 8.910 10.641
12 0.204 0.233 0.197 0.224 0.204 0.199 2.236 7.675 9.815
13 0.404 0.424 0.401 0.419 0.408 0.404 1.900 8.123 9.886
14 0.337 0.360 0.341 0.361 0.340 0.346 1.466 8.582 9.591
15 0.305 0.298 0.291 0.272 0.305 0.291 1.875 8.501 10.223
16 0.086 0.086 0.087 0.087 0.088 0.090 2.009 8.573 13.332
17 0.053 0.053 0.053 0.052 0.054 0.053 1.266 8.805 9.860
18 0.219 0.219 0.262 0.262 0.239 0.263 1.765 8.705 11.573
19 0.324 0.297 0.312 0.274 0.326 0.313 1.665 8.676 10.256
20 0.158 0.157 0.149 0.149 0.168 0.160 1.684 8.239 9.662

1721Machine Learning (2022) 111:1695–1738

1 3

Additionally, we see from Table 2 that PATH applied to pPC and PC is able to obtain,
from a single execution with � = 0.1 and � = 10 , estimates of similar and often superior
quality compared to the best estimates without PATH (pPC∗ and PC∗) obtained from 10
executions with the various � ∈ A . Important to note is that the solution path automatically
selects an estimate based on a BIC selection strategy restricted to valid CPDAG estimates,
if any (see Remark 2), whereas for the multiple executions the maximum JI (as computed
with respect to the CPDAG of the underlying DAG) for each dataset was chosen. The BIC
selection strategy appears less effective for a couple of networks (e.g., 15 and 19), where
on average the original estimates without PATH were more structurally accurate than those
chosen from a solution path. One explanation for the worse performance could be the pres-
ence of invalid CPDAG estimates. PATH prefers valid estimates, and may prefer lower-
scoring valid estimates over more structurally accurate invalid estimates. In the case that all
estimates are invalid, the semi-arbitrary DAG extension process can be volatile, resulting
in structurally inaccurate estimates being selected. As anticipated in Sect. 3.2, the compu-
tational expense required to execute Algorithm 3 is practically negligible in comparison to
skeleton estimation. The statistical calls for pPC and PC with PATH (� = 0.1 and � = 10)
include the scores evaluated for BIC selection from the generated solutions by PATH, and
are practically indistinguishable from those without PATH, with the score evaluations typi-
cally consisting of less than 0.1% of the statistical calls.

In Table 3, we compare pPC with PATH against other constraint-based structure learn-
ing algorithms. We exclude PC as its comparison with pPC is thoroughly demonstrated
in Table 2. Again, competing methods report optimal results and total statistical calls for
the executions across the 10 significance levels � ∈ A . In terms of structural accuracy, the
only algorithm that can compete against pPC is HPC, which outperforms pPC in 12 of the
network configurations, sometimes by a substantial margin. However, when it comes to
efficiency, there is no contest against the pPC algorithm, in most cases even if the number
of calls were averaged across the 10 executions instead of summed. Additionally, pPC most
often produced valid CPDAG estimates, succeeding with 44% of the datasets with only
� = 0.1 and � = 10 in contrast to from 10% by HPC to up to 41% by IAMB with � ∈ A.

In the Supplementary Information, we provide additional results for the comparisons of
pPC against three constraint-based methods, PC, MMPC, and HPC, thus far discussed in
Tables 2 and 3. We include detailed tables that report additional metrics as well as standard
deviations, and a figure that visualizes the comparisons and variability of the accuracy and
efficiency results across executions by including the results for individual datasets for each
network (Fig. S6). Furthermore, we provide extended simulation results investigating the
effect of the clustering quality of pPC on its subsequent structure learning, as well as evalu-
ating the performance of PATH for varying sample sizes.

5.3 HGI and pHGS

Having discussed the theoretical merits of HGI in Sect. 4.2, we demonstrate the empiri-
cal performance of HGI and pHGS in this section, beginning with the comparison and
application to the GSC framework. We refer to unrestricted HC as simply HC and perfectly
restricted HC as GSC∗ . In general, for a restriction of the search space with constraint-
based algorithm Alg, we refer to the GSC version as Alg-HC, and the version with HGI
as Alg-HGI–HC. However, we refer to the versions of established algorithms MMHC and
H2PC that are augmented with HGI as MMHC–HGI and H2PC–HGI.

1722 Machine Learning (2022) 111:1695–1738

1 3

The HC phase of each algorithm was augmented with a tabu list to avoid t1 = 100 previ-
ously visited DAG structures for t0 = 100 suboptimal iterations (see Sect. 4.1). All score-
based methods evaluated structures with the BIC score. We executed pHGS with signifi-
cance level � = 0.01 , and generated and selected from � = 10 HGI estimates in PATH by
thresholding to a minimum of �(�) = 10−5.

The accuracy results for HGI and pHGS are summarized in Table 4. All methods other
than HC, GSC∗ , and pHGS report the highest JI for the executions across the ten � ∈ A . In
the first column, the performance of (unrestricted) HC leaves much to be desired with its
generally lackluster structural accuracy in comparison with the hybrid methods. Exceptions
exist, as anticipated by Table 3 in which constraint-based methods struggle to produce
good estimates for some higher complexity networks, often inferring excessive false nega-
tives that erroneously reduce the search space. In such cases, hybrid approaches are limited
by their constraint-based component and thus perform worse than HC.

We first highlight the demonstrated improvement of initialization with HGI compared
to the EG (as in the GSC framework) for different skeleton restriction methods. A per-
fect restriction to the true skeleton represents the most optimistic scenario for GSC and
HGI, wherein all true positives are accessible and no false positives are considered. HGI

Table 3 Accuracy (JI) and efficiency (Normalized Calls) comparison amongst constraint-based methods

Rows correspond to the networks in Table 1, and the best values are provided in boldface
 aNormalized with respect to pPC-PATH(� = 0.1, � = 10)
bpPC-PATH(� = 0.1, � = 10) , while all other methods report the highest JI from and the (normalized) total
statistical calls for the executions across the 10 � ∈ A

JI Normalized callsa

pPCb MMPC HPC IAMB HITON MMPC HPC IAMB HITON

1 0.725 0.759 0.760 0.749 0.759 33.933 86.837 53.532 17.189
2 0.333 0.757 0.805 0.870 0.701 30.377 157.542 39.762 16.831
3 0.284 0.306 0.245 0.260 0.299 15.271 47.117 21.783 7.758
4 0.362 0.773 0.818 0.835 0.734 33.130 97.750 40.456 20.167
5 0.560 0.563 0.692 0.532 0.606 34.973 168.566 33.262 61.176
6 0.411 0.295 0.379 0.251 0.243 30.886 101.774 44.803 17.194
7 0.579 0.087 0.717 0.317 0.077 29.551 67.678 49.607 15.100
8 0.478 0.200 0.434 0.314 0.158 29.016 78.442 59.514 14.939
9 0.546 0.423 0.633 0.360 0.316 12.150 53.621 14.422 7.762
10 0.551 0.259 0.724 0.352 0.358 27.139 100.016 30.732 14.306
11 0.852 0.536 0.974 0.385 0.276 12.454 69.107 12.761 6.200
12 0.233 0.259 0.399 0.289 0.262 21.322 82.737 31.368 12.408
13 0.424 0.189 0.310 0.252 0.114 24.916 95.332 38.883 12.967
14 0.360 0.246 0.325 0.287 0.220 32.241 59.202 40.034 16.646
15 0.298 0.283 0.287 0.291 0.232 32.291 88.191 48.761 16.602
16 0.086 0.004 0.010 0.032 0.004 11.962 72.271 12.746 6.757
17 0.053 0.067 0.077 0.050 0.062 7.282 19.078 10.687 3.737
18 0.219 0.067 0.221 0.073 0.061 28.936 74.800 26.148 14.965
19 0.297 0.066 0.252 0.232 0.064 32.707 82.580 36.943 16.629
20 0.157 0.055 0.244 0.093 0.055 24.945 96.625 22.784 12.777

1723Machine Learning (2022) 111:1695–1738

1 3

additionally enjoys consideration of all true v-structures when detecting v-structures
amongst unshielded triples according to Eq. (22). Unsurprisingly, perfectly restricted GSC
uniformly improves on the performance of unrestricted HC. The addition of HGI achieves
further improvements to structural accuracy of typically 28% and up to 139% (Table 4,
True Skeleton). This same trend persists when comparing GSC without and with HGI for
empirical skeleton estimation methods pPC, MMPC, and HPC, demonstrating the effec-
tiveness of HGI. For the various skeleton estimation methods, the addition of HGI achieves
estimates that are typically 14% and up to 120% more structurally accurate.

We now compare pHGS with established algorithms HC, MMHC, and H2PC, the best
values amongst which are indicated in boldface in Table 4. In most of the network configu-
rations, a single execution of pHGS learns estimates of higher quality than the best of the
ten executions with � ∈ A of MMHC and H2PC. Note that for the GSC framework, the
goal of parameter tuning for � is to obtain a balance between true positives and true nega-
tives. MMHC does not outperform pHGS in any meaningful capacity, and H2PC only sub-
stantially outperforms pHGS for higher complexity networks due to a mechanism in HPC
to reduce false negative edges (Gasse et al. 2014). While the addition of HGI dramatically

Table 4 Accuracy (JI) comparisons for CPDAGs estimated without and with HGI (indicated by EG for
empty graph and HGI, respectively) given restrictions obtained by various skeleton methods

Rows correspond to the networks in Table 1, and best values amongst pHGS, HC, MMHC, and H2PC are
provided in boldface
 a pHGS(� = 0.01 , � = 10); all other methods, excluding HC and GSC∗ , report the highest JI for the execu-
tions across the ten � ∈ A

Restrict None True Skeleton pPC MMPC HPC

Initial EG EG HGI EG HGI EG HGI EG HGI

Alias HC GSC∗ pHGSa MMHC H2PC

1 0.341 0.478 0.806 0.501 0.746 0.500 0.761 0.548 0.762
2 0.419 0.596 0.954 0.577 0.729 0.570 0.874 0.590 0.903
3 0.323 0.504 0.802 0.255 0.282 0.254 0.302 0.224 0.255
4 0.649 0.770 0.931 0.751 0.786 0.726 0.819 0.760 0.887
5 0.610 0.910 0.970 0.715 0.746 0.544 0.598 0.686 0.738
6 0.295 0.564 0.736 0.414 0.467 0.254 0.306 0.330 0.403
7 0.450 0.535 0.995 0.528 0.851 0.191 0.199 0.532 0.854
8 0.361 0.567 0.889 0.411 0.515 0.288 0.329 0.493 0.636
9 0.630 0.823 0.902 0.686 0.726 0.388 0.441 0.695 0.738
10 0.320 0.417 1.000 0.413 0.807 0.276 0.308 0.418 0.921
11 0.827 1.000 1.000 0.992 0.991 0.450 0.535 0.990 0.991
12 0.529 0.634 0.763 0.513 0.552 0.247 0.294 0.585 0.622
13 0.368 0.513 0.811 0.417 0.610 0.212 0.227 0.404 0.423
14 0.456 0.730 0.920 0.387 0.449 0.279 0.315 0.455 0.488
15 0.234 0.361 0.581 0.293 0.399 0.268 0.366 0.328 0.419
16 0.261 0.576 0.655 0.045 0.056 0.007 0.007 0.096 0.102
17 0.358 0.407 0.478 0.070 0.072 0.081 0.081 0.345 0.336
18 0.222 0.618 0.946 0.164 0.197 0.063 0.069 0.241 0.304
19 0.375 0.549 0.690 0.276 0.320 0.106 0.114 0.440 0.481
20 0.260 0.524 0.607 0.144 0.165 0.068 0.080 0.289 0.327

1724 Machine Learning (2022) 111:1695–1738

1 3

improves the general accuracy of MMHC, only H2PC–HGI performs competitively with
pHGS, reflective of the results in Table 3 where HPC rivaled pPC in the realm of structural
accuracy. However, as we will see from our discussion of Table 5, the speed comparisons
in Table 3 generally hold for these hybrid variants as well, with pHGS on average nearly
an order of magnitude more efficient than H2PC and around 2.5 times more efficient than
MMHC per execution, with or without HGI. HC only outperforms the hybrid methods for
a few structures in which the latter overly restrict the search space. Overall, we find pHGS
to be most well-performing method, followed by H2PC, MMHC, and HC. We provide
detailed results for these methods in the Supplementary Information, with boxplots (Fig.
S7) visualizing the accuracy comparisons across datasets for each network as well as tables
with additional metrics.

In Table 5, we compare the computational expense of GSC and HGI–HC with respect to
skeleton learning. Under HGI–HC, the Detect column refers to the computational expense
of detecting v-structures necessary to execute HGI (Algorithm 4) (see Appendix B). While
HGI–HC typically comes at greater computational cost compared to the HC step in GSC,
the expense of either is largely negligible in comparison to that of skeleton learning, gen-
erally (and often significantly) fewer than an additional 2% statistical calls. Rare excep-
tions exist, in particular extreme cases where MMPC or HPC required a significant number
of additional tests to detect v-structures. Here, pPC has a clear computational advantage,
having the ability to detect v-structures using separation sets accrued throughout skel-
eton learning [see Eq. (21) in Appendix B], resulting in fewer than 4.8% additional calls
for every dataset to execute HGI � = 10 times in PATH and perform HC from the chosen
initial DAG. Other algorithms must conduct additional conditional independence tests to
detect v-structures via Eq. (22), which can quickly add up if the learned skeleton structure
has a significant number of unshielded triples i − k − j , or if either or both of |�G

i
| and |�G

j
|

are large. On the topic of efficiency, unrestricted HC typically requires three to five times
the number of statistical calls to execute as compared to pHGS, providing further valida-
tion for the hybrid approach.

In general, we find the initial DAG obtained by HGI (Algorithm 4) through the
greedy application of v-structures and greedy decomposed pdag-to-dag to be
typically superior in structural accuracy compared to the direct application of skel-
to-cpdag (Algorithm 6), the standard edge orientation strategy of constraint-based
algorithms. HGI exhibits the greatest median improvement of 16.7% over skel-
to-cpdag when applied to pPC, followed by 9.5% with HPC, 7.3% restricted to the

Table 5 Median and 95% precision intervals of percent additional statistical calls by GSC and HGI–HC
with respect to skeleton learning

Each data point represents one algorithm execution for each dataset
 apPC under HGI–HC represents pHGS executed with � = 10 and � = 0.01

bMMPC and HPC include the results from every individual execution across the ten � ∈ A

GSC HGI–HC

HC Detect HGI HC

pPCa 1.00 (0.04, 1.88) 0.00 (0, 0) 1.12 (0.05, 3.87) 0.52 (0.03, 1.21)

MMPCb 0.13 (0.01, 0.28) 0.90 (0.02, 51.64) 0.02 (0, 0.06) 0.06 (0.01, 0.16)
HPCb 0.22 (0.02, 0.41) 0.92 (0, 32.56) 0.04 (0.01, 0.08) 0.12 (0.02, 0.21)

1725Machine Learning (2022) 111:1695–1738

1 3

skeleton of the underlying DAG (True Skeleton), and 1.9% with MMPC. In general,
pPC detects the most v-structures as its detection criterion Eq. (21) may be consid-
ered less strict than Eq. (22) used by True Skeleton, MMPC, and HPC. Consequently,
pPC generally detects a significant number of false positive v-structures, thus benefit-
ing most significantly from the greedy v-structure determinations. The poor skeleton
estimation performance of MMPC is likely responsible for its lackluster improvement,
with its estimated skeletons generally containing the fewest unshielded triples corre-
sponding to true v-structures in the underlying DAGs in comparison to pPC and HPC.

Next, we compare pHGS against GES, introduced in Sect. 4.1, along with one
of its variants, which serve well as points of reference for evaluating pHGS as they
share comparable theoretical guarantees in our investigative setting, being sound and
complete for Bayesian network structure learning (Meek 1997; Chickering 2002a, b).
Ramsey (2015) proposed the fast greedy (equivalence) search algorithm (in this paper,
FGES), which featured a number of optimizations and adjustments to scale up GES to
handle large networks. In addition to techniques such as parallelization and addressing
redundant scoring, perhaps the most prominent improvement was that of blacklisting
zero correlation edges when computing initial scores for the addition of edges to the
EG. This drastically reduces the number of computations of local score differences. A
highly optimized implementation of FGES is available in the R package rcausal,
and we roughly recover an efficient implementation of the original GES algorithm by
omitting the blacklisting step (Wongchokprasitti 2019).

In the detailed results in Table 6, in addition to the JI and log10 number of statistical
calls (Calls), we report the number of predicted edges (P), true positives (TP), edges
correctly present but with incorrect orientation (R), false positives (FP), and the SHD,
which may be interpreted as the number of edge additions, deletions, and reversals
required to traverse from one graph to another.

For most networks, pHGS executes significantly faster than GES, with a few excep-
tions, most notably in networks with higher complexity. With respect to FGES, we
find pHGS to be approximately equivalently efficient in most cases, though consider-
ably slower in some. The initial blacklisting feature in FGES functions similarly to that
of Eq. (6) in the pPC algorithm, drastically reducing the number of considered edge
connections. Furthermore, (F)GES conducts its greedy search in the reduced space of
equivalence classes represented by CPDAGs rather than DAGs.

In terms of structural accuracy, pHGS performs competitively against GES and
FGES. Consistent with the observations of Ramsey (2015), we find that the significant
computational reductions achieved by FGES generally do not compromise the quality
of learned structures compared to GES. The results for FGES are quite similar to that
of GES for all metrics apart from number of statistical calls, though FGES does appear
to obtain marginally sparser networks. As a hybrid algorithm that estimates the skel-
eton with a constraint-based approach, pHGS is much more restrictive in determining
edge connections, resulting in significantly fewer true positives than (F)GES in some
networks. As discussed previously in this section, in these scenarios, the pPC compo-
nent excessively inferred false negatives that erroneously reduced the set of candidate
edges. On the other hand, however, pHGS produced substantially fewer false positives
than (F)GES for not only these networks but indeed in every network configuration. In
such a way, pHGS appears more appropriate in applications where conservative esti-
mation of edge connections is desired.

1726 Machine Learning (2022) 111:1695–1738

1 3

Table 6 Results comparing pHGS against GES and FGES

pHGS GES FGES pHGS GES FGES pHGS GES FGES
EARTHQUAKE CANCER ASIA

P 911.3 1099.5 1082.0 1124.1 1203.3 1179.2 876.3 1199.7 1176.4
TP 860.7 680.3 686.8 947.3 949.5 947.0 466.3 947.9 941.1
R 21.9 227.5 220.1 126.5 135.0 131.3 383.7 177.4 175.6
FP 28.7 191.7 175.1 50.2 118.8 101.0 26.3 74.4 59.7
SHD 271.1 614.4 591.2 225.9 292.4 276.9 803.1 369.6 361.7
JI 0.746 0.447 0.459 0.729 0.690 0.699 0.282 0.634 0.637
Calls 5.724 6.395 5.735 5.739 6.326 5.724 5.745 6.374 5.751

pHGS GES FGES pHGS GES FGES pHGS GES FGES
SURVEY ANDES WIN95PTS

P 1329.2 1431.0 1418.7 1853.6 2398.4 2341.8 1308.6 2023.0 1973.0
TP 1177.5 992.4 987.3 1751.8 2009.2 1934.6 1111.9 1403.3 1366.5
R 145.2 340.5 340.6 57.8 83.8 94.3 158.2 225.3 224.1
FP 6.5 98.2 90.7 44.0 305.4 312.9 38.5 394.4 382.4
SHD 175.9 452.8 450.4 537.2 541.1 623.4 1110.6 1175.1 1199.9
JI 0.786 0.556 0.556 0.746 0.763 0.730 0.467 0.501 0.490
Calls 5.742 6.237 5.722 5.924 6.438 5.918 5.864 6.327 5.893

pHGS GES FGES pHGS GES FGES pHGS GES FGES
CHILD ALARM MIX

P 1298.8 1312.0 1304.6 1282.9 1649.4 1631.2 1547.8 1850.7 1829.6
TP 1198.1 1239.0 1200.5 1010.1 1322.2 1313.2 1440.1 1592.2 1567.6
R 100.7 66.7 99.4 269.9 203.8 203.5 94.2 126.0 130.2
FP 0.1 6.3 4.7 3.0 123.4 114.5 13.5 132.5 131.8
SHD 111.0 76.3 113.2 681.9 490.2 490.3 450.4 417.4 441.3
JI 0.851 0.897 0.853 0.515 0.656 0.654 0.726 0.746 0.733
Calls 5.798 6.277 5.785 5.837 6.306 5.862 6.223 6.317 5.907

pHGS GES FGES pHGS GES FGES pHGS GES FGES
SACHS PIGS HEPAR2

P 1797.5 1864.4 1862.3 2170.6 2280.2 2280.6 1424.5 1745.2 1685.5
TP 1615.7 1544.3 1537.8 2166.0 2124.7 2122.2 1245.9 1375.9 1325.1
R 181.9 264.3 270.0 4.6 49.7 51.2 158.5 239.2 243.1
FP 0.0 55.8 54.4 0.0 105.7 107.2 20.1 130.1 117.3
SHD 206.3 333.6 338.6 16.0 163.0 167.0 851.2 831.3 869.2
JI 0.807 0.722 0.717 0.991 0.909 0.907 0.552 0.563 0.544
Calls 5.847 6.451 5.855 6.523 6.441 6.139 5.978 6.317 5.822

pHGS GES FGES pHGS GES FGES pHGS GES FGES
INSURANCE HAILFINDER WATER

P 1512.0 1899.5 1848.4 986.8 1493.8 1480.8 1321.1 1672.4 1642.3
TP 1375.2 1198.9 1178.4 783.3 1191.0 1192.9 1032.5 1048.8 1033.8
R 133.8 479.0 479.5 117.1 143.6 135.1 288.3 427.3 427.5
FP 3.0 221.6 190.4 86.4 159.3 152.8 0.3 196.3 181.0

1727Machine Learning (2022) 111:1695–1738

1 3

5.4 Real data application

To evaluate our methods applied to real data, we analyzed a flow cytometry dataset gener-
ated by Sachs et al. (2005) through a series of experiments measuring p = 11 phospho-
rylated proteins and phospholipids. In particular, we considered their preprocessed dataset
containing n = 5400 observations discretized to low, medium or high levels of the phos-
phorylated components, available in the R package sparsebn (Aragam et al. 2019). The
structure of the currently accepted signalling network, which we refer to as the consensus
network, is shown in Fig. 3a, and contains 20 directed edges.

We executed pHGS, MMHC, H2PC, HC, and FGES on this dataset, reporting the structure
learning performance with respect to the consensus DAG. Since the dataset contains a mixture
of observational and interventional data, we directly evaluate the DAG estimates against the
consensus network instead of comparing their respective CPDAGs. For FGES, which outputs
a CPDAG representing an equivalence class, we obtained a DAG extension by applying lines
5-8 of Algorithm 4 to evaluate the structure learning accuracy of FGES, which we note is sig-
nificantly more favorable for FGES than comparing its CPDAG to the CPDAG of the consen-
sus network. The hybrid algorithms pHGS, MMHC, and H2PC were executed with � ∈ A in
Eq. (15), with other parameters unchanged from Sect. 5.2 with the exception of �(�) = 10−6 to

Calls reports log10(calls)

Table 6 (continued)

pHGS GES FGES pHGS GES FGES pHGS GES FGES
INSURANCE HAILFINDER WATER

SHD 747.8 1142.8 1131.9 844.1 509.3 500.9 1270.7 1450.5 1450.2
JI 0.610 0.425 0.422 0.449 0.646 0.653 0.399 0.358 0.355
Calls 5.910 6.368 5.868 5.790 6.267 5.819 5.779 6.250 5.783

pHGS GES FGES pHGS GES FGES pHGS GES FGES
MUNIN1 PATHFINDER DIABETES

P 518.2 1629.6 1614.4 290.6 1458.5 1458.5 1053.3 1988.2 1972.2
TP 120.8 890.5 891.3 151.6 1017.9 1006.9 508.6 1303.6 1305.0
R 364.2 215.7 216.0 135.6 262.0 274.5 523.0 399.1 395.2
FP 33.3 523.4 507.1 3.4 178.7 177.1 21.7 285.5 272.0
SHD 1688.5 1408.8 1391.8 1819.8 1128.8 1138.2 1548.1 1016.8 1002.0
JI 0.056 0.354 0.357 0.072 0.423 0.417 0.197 0.480 0.483
Calls 6.437 6.423 6.194 6.531 6.560 6.328 6.040 6.496 6.043

pHGS GES FGES pHGS GES FGES
MILDEW BARLEY

P 1094.8 1526.1 1502.7 758.6 1481.1 1462.7
TP 729.1 1241.5 1232.8 404.6 1120.8 1117.6
R 365.4 178.2 178.0 332.6 212.9 213.6
FP 0.2 106.4 91.9 21.3 147.4 131.5
SHD 1184.2 777.9 772.1 1717.7 1127.7 1114.9
JI 0.320 0.565 0.565 0.165 0.455 0.457
Calls 5.772 6.138 5.752 5.869 6.171 5.782

1728 Machine Learning (2022) 111:1695–1738

1 3

ensure 𝛼(𝜏) < 𝛼 for all executions of pHGS. For these methods, we present the results for the
estimates closest in sparsity to the consensus graph (20 edges), which coincide with those with
the highest JI. The results are reported in Table 7, and the pHGS estimate is shown in Fig. 3b.

By a substantial margin, pHGS produced the most structurally accurate estimate with respect
to the consensus network, recovering 11 out of the 20 well-established causal relationships. The
score-based algorithms FGES and HC obtained the densest networks as they do not conduct any
restriction of the search space. In contrast, MMHC estimated the sparsest graph and indeed esti-
mated the exact same graph for all 10 � ∈ A , obtaining different restrictions of the search space
via MMPC yet arriving at the same network structure in the restricted HC step.

6 Discussion

In this paper, we proposed three independent yet compatible contributions to the general
well-performance of discrete Bayesian network structure learning, culminating in the form
of the pHGS algorithm.

PIP2

PIP3

Erk

Akt

PKA

PKC P38

Jnk

Raf

Mek

PLCg

PIP2

PIP3

Erk

Akt

PKA

PKC P38

Jnk

Raf

Mek

PLCg

(a) Consensus network

PIP2

PIP3

Erk

Akt

PKA

PKC P38

Jnk

Raf

Mek

PLCg

PIP2

PIP3

Erk

Akt

PKA

PKC P38

Jnk

Raf

Mek

PLCg

(b) Output of pHGS

Fig. 3 Comparison of a the consensus network and b the DAG estimated by pHGS. In b, edges correctly
present in the consensus graph are drawn in solid black, edges with incorrect orientation in solid red, and
false positive edges in dashed red (Color figure online)

Table 7 Structure learning and
difference in test log-likelihood
performance on discretized
cytometry data

pHGS MMHC H2PC HC FGES

P 20 16 20 22 22
TP 11 8 8 7 6
R 4 4 7 7 7
FP 5 4 5 8 9
SHD (DAG) 14 16 17 21 23
SHD (skeleton) 10 12 10 14 16
JI 0.379 0.286 0.250 0.200 0.167

1729Machine Learning (2022) 111:1695–1738

1 3

First, the pPC algorithm improves on the empirical efficiency of the PC algorithm while
retaining its soundness and completeness as well as its empirical performance. Though it is
difficult to quantify the expected computational reduction, our simulation results in Table 2
indicate that for the empirically preferred significance level threshold, pPC typically
requires less than half the number of conditional independence tests per execution com-
pared to PC. This speed-up is enjoyed at no compromise to structural accuracy, with pPC
performing comparably with PC. Second, the PATH algorithm effectively accomplishes
the task of parameter tuning for certain constraint-based structure learning algorithms such
as pPC and PC, theoretically preserving consistency in the classical setting and empiri-
cally achieving highly competitive structural accuracy at negligible computational expense.
In the current landscape, the asymptotic result for sound and complete constraint-based
structure learning asserts the existence of some uninformative sequence of significance lev-
els �n → 0 as n → ∞ that recovers the underlying equivalence class in the large-sample
limit. We prove that appropriately applied to pPC or PC executed with any fixed thresh-
old � ∈ (0, 1) , PATH asymptotically includes and correctly selects the underlying CPDAG
in its generated solution path. We demonstrate an analogous result in the empirical set-
ting, wherein pPC with PATH returns estimates of competitive quality to that of optimistic
parameter tuning, achieving significant computational reductions compared to the current
standard.

Third, the HGI algorithm provides a principled strategy for initializing score-based
search in hybrid methods that asymptotically preserves soundness and completeness of
constraint-based structure learning, elevating the GSC framework to consistency in the
classical setting while significantly improving its empirical performance. While popular
hybrid algorithms MMHC and H2PC forego asymptotic consistency for empirical perfor-
mance, our HGI strategy makes no such compromise. When applied to GSC with various
skeleton estimation strategies (including MMHC and H2PC), HGI significantly improves
the estimation accuracy with typically negligible additional computational expense. Nota-
bly, a more recent development in hybrid structure learning is ARGES, which adaptively
relaxes the restricted search space in order to ensure a search path in the space of equiva-
lence classes (CPDAGs) to the optimal solution (Nandy et al. 2018). Though in this paper
we take primary interest in improving upon the GSC framework which operates in the
space of DAGs, we present preliminary simulation results in Sect. S1 of the Supplemen-
tary Information that indicate significant potential for empirical improvement to ARGES
through the initialization provided by HGI.

Altogether, we combined pPC, PATH, and HGI to create the pHGS algorithm, which
enjoys the skeleton estimation efficiency of pPC, the parameter tuning by PATH, and the
empirical well-performance afforded by HGI. In comparison to MMHC and H2PC, pHGS
learns more accurate DAGs in nearly every considered underlying network configuration
with significantly reduced computational cost.

While we have empirically demonstrated a significant reduction to the number of con-
ditional independence tests executed by pPC in comparison to PC, we have not established
any concrete theoretical complexity results. Indeed, the extent of computational reduction
inevitably depends on the quality of the partition with respect to the underlying structure.
As such, it is of interest to determine under what conditions pPC is guaranteed to perform
fewer tests than PC, and to quantify the reduction. Such an investigation is crucial to estab-
lish structure learning consistency of pPC in the sparse high-dimensional setting with mul-
tivariate Gaussian distributions. The high-dimensional Gaussian consistency of PC proved
in Kalisch and Bühlmann (2007) relies on the number of conditional independence tests
performed, determined by the maximum size of conditioning sets reached by PC with no

1730 Machine Learning (2022) 111:1695–1738

1 3

errors. The same result holds for pPC under the same assumptions if the number of tests
investigated by pPC is not greater than that of PC. Note that empirically, we find pPC to
always perform fewer tests than PC.

In Sect. 5, we observed superior structure learning performance by HPC and H2PC–HGI
against pPC–PATH and pHGS, respectively, though not without significantly greater com-
putational expense. We note that since the skeleton learning phase of HPC involves inde-
pendently estimating the parents and children of each variable and aggregating the results,
there are many obvious opportunities to more efficiently execute a synchronized global
version of HPC for skeleton learning that avoids redundant computations. For instance,
the first subroutine estimates a supergraph by identifying, for each node i ∈ � , every node
j ∈ � ⧵ {i} that cannot be separated from i by conditioning sets {� ⊆ � ⧵ {i, j} ∶ |�| ≤ 1} .
When considered node-wise, every conditional independence test is executed twice, once
in the consideration of i as a neighbor of j and again in the consideration of j as a neighbor
of i. A global partition-based strategy, such as the pPC algorithm with the restriction to
conditioning sets |�| ≤ 1 , can be utilized to substantially reduce the computational expense
compared to the original formulation.

As formulated, pPC is limited to obtaining � ≤ 20 clusters as per a loose suggestion by
Hartigan (1981). Note that by our design, pPC is not limited to parallel processing utility
from at most � processors, having comparable capacity for parallel execution as PC. None-
theless, a future direction for further improvement would be the development of an unsu-
pervised criterion to more flexibly determine the target number of clusters that optimizes
the efficiency of pPC.

A Proofs

In this section, we prove Theorems 2 and 3.

A.1 Proof of Theorem 2

The proof of Theorem 2 regarding the soundness and completeness of the pPC algorithm
(Algorithm 2) follows from the thorough investigation of the criterion expressed in Eq. (4)
by the pPC algorithm.

Proof of Theorem 2
Let � be any clustering labels obtained in the clustering step. Let Ĝ1 denote the estimated

structure after estimating edges within clusters at line 3, and G̃ denote the final estimated
skeleton at line 18.

We first show that every truly adjacent node pair (that is, adjacent in G∗) is also
adjacent in the estimated structure at every stage of Algorithm 2 following line 10. An
implication of the Markov condition (Sect. 2) is that no truly adjacent pair of nodes
i, j ∈ � are independent conditioned on any set of variables not containing Xi or Xj .
Thus, every truly adjacent pair of nodes belonging to the same cluster are never discon-
nected after being connected in the first execution of Algorithm 2 in line 2:

(16)�
Ĝ1

i
⊇ {Xk ∈ �

G∗

i
∶ ck = ci} for all i ∈ �.

1731Machine Learning (2022) 111:1695–1738

1 3

Similarly, every truly adjacent pair of nodes belonging to different clusters will necessarily
be connected in the first screening of edges between clusters, and are never disconnected.
Thus, G̃ is equivalent to or a supergraph of the skeleton of G∗ , with

Next, we show that no truly nonadjacent node pair (that is, not adjacent in G∗) will be con-
nected in G̃ . Restating Eq. (4), for every truly nonadjacent distinct node pair i, j ∈ � there
exists at least one conditioning set �

�
⊆ �

G∗

i
⧵ Xj or �

�
⊆ �

G∗

j
⧵ Xi such that (Xi⟂⟂Xj ∣��

)P .
Thus, it is sufficient to show that for every truly nonadjacent node pair, (Xi⟂⟂Xj ∣��

)P for
one such separation set �(i, j)∶=� is evaluated by Algorithm 2. Consider the following for
any truly nonadjacent node pair i, j ∈ �.

Suppose ci = cj . If there exists a conditioning set �
�
 such that (Xi⟂⟂Xj ∣��

)P and
ck = cj for all k ∈ � , then due to Eq. (16), (Xi⟂⟂Xj ∣��

)P is evaluated by the first modified
execution of PC in line 2. Otherwise, if ∃k ∈ � such that ck ≠ cj , then for any and every
conditioning set ��

 such that (Xi⟂⟂Xj ∣��
)P , �

�
 satisfies criteria (a) of Eq. (9). In such a

case, because of Eq. (17), (Xi⟂⟂Xj ∣��
)P for one such conditioning set �

�
 is evaluated by

the second modified execution of PC in line 18.
Suppose ci ≠ cj . Ideally, i and j will be separated during the screening of edges

between clusters in lines 3-17. If they are not, then for any and every conditioning set
�

�
 such that (Xi⟂⟂Xj ∣��

)P , �
�
 satisfies criteria (b) of Eq. (9). Since Eq. (17) holds,

(Xi⟂⟂Xj ∣��
)P for one such �

�
 is evaluated by the second modified execution of PC in

line 18.
We have shown that Algorithm 2 correctly estimates the skeleton of G∗ and, in particu-

lar, for every truly nonadjacent i, j ∈ � , (Xi⟂⟂Xj ∣��
)P for some conditioning set �

�
 has

been evaluated, with separation set �(i, j)∶=� stored as specified in Algorithm 2. Since
these separation sets are guaranteed to be accurate with conditional independence oracles,
orientation of G̃ to the CPDAG of G∗ in line 19 follows directly from the correctness of
skel-to-cpdag (Algorithm 6) (Spirtes and Glymour 1991; Meek 1995; Kalisch and
Bühlmann 2007). ◻

A.2 Proof of Theorem 3

To prove Theorem 3, we begin by stating and proving a well-known consistency result for
constraint-based structure learning in the classical setting.

Lemma 2 Suppose the distribution P is fixed and faithful to a DAG with CPDAG G∗ and D
is data containing n i.i.d. samples from P. Let Ĝn(𝛼n) = (�, �̂n) be the graph output of any
exhaustive investigation of Eq. (4) followed by Algorithm 6 executed with a consistent test
applied with threshold �n . Then there exists �n → 0 (n → ∞) such that

Proof of Lemma 2 Define pn;i,j|� and p∗
n;i,j|� be the p-values for testing the independence

between i and j conditioned on � with n data samples when i and j are and are not d-sepa-
rated by � in G∗ , respectively. For example,

(17)�
G̃

i
⊇ �

G∗

i
for all i ∈ �.

lim
n→∞

Pr
[
Ĝn(𝛼n) = G

∗
]
= 1.

1732 Machine Learning (2022) 111:1695–1738

1 3

for the G2 test of independence. Given faithfulness, d-separation in G∗ corresponds one-to-
one with conditional independence in P. In the case that conditional independence holds
(i.e. the null hypothesis is true), pn;i,j|� ∼ Unif(0, 1) , so Pr(pn;i,j|� ≤ �n) = �n → 0 (n → ∞) .
Whereas whenever conditional independence does not hold, the consistency of the condi-
tional independence test implies that p∗

n;i,j|� = o(1) . As these statements hold for every
i, j ∈ � and � ⊆ � ⧵ {i, j} with fixed p = |�| , what follows is the existence of �n → 0 such
that the probability of making any erroneous conditional independence inference in the
investigation of Eq. (4) decays to zero when n → ∞ . That is,

Given perfect conditional independence inferences asymptotically, the consistency follows
straightforwardly from the correctness of Eq. (4) for skeleton identification and the sound-
ness and completeness of Algorithm 6 for CPDAG orientation. ◻

The proof of Theorem 3 then proceeds from Lemma 2 and its proof as follows.
Proof of Theorem 3 Equation (18) indicates the existence of some an → 0 (n → ∞)

such that

That is, in the large-sample limit, an perfectly discriminates true positives from true nega-
tives. For conditional independence inferred with threshold �n ≥ an ≥ supi,j,� p

∗
n;i,j|� , only

false positive edges are possible. This ensures that for every truly nonadjacent distinct node
pair i, j ∈ � (that is, i − j ∉ �∗ where �∗ is the edge set of the skeleton of G∗), at least one
conditioning set that separates i and j is considered in the investigation of Eq. (4) and stored
in Eq. (10) since Eq. (19) holds asymptotically.

Inspecting Eq. (20) confirms the existence of a threshold value ân , in particular
ân = maxi−j∈�∗ Φn;i,j , that perfectly discriminates true positives from true negatives. Conse-
quently, �∗ = {i − j ∶ Φn;ij ≤ ân} , and {�n(i, j) ∶ Φn;ij > ân} obtains correct separation sets
for complete and sound orientation to G∗ according to Algorithm 6.

Having verified the existence of a threshold ân that recovers G∗ by thresholding Φn and
�n , it remains to show that ân is recovered and selected by Algorithm 3. Parameter set-
tings 𝜏 = 1 +

∑
i<j �

�
Φn;ij ≤ 𝛼n

�
= 1 + ��̂(1)

n
� and �(�) = 0 regulate the generation of

�(t) such that the skeletons of sequential estimates differ in sparsity by exactly one edge.
The resulting values A∶={�(1),… , ��} correspond to the order statistics of the upper
triangular elements of Φn decreasing from 𝛼(1)

n
= 𝛼n ≥ an ≥ ân to �(�)

n
= 0 , ensuring that

ân = maxi−j∈�∗ Φn;i,j ∈ A and so G∗ ∈ {G(t) ∶ t ∈ {1, 2,… , �}} . The consistency of �
ensures that in the large-sample limit, t∗ = argmax t∈{1,…,𝜏}𝜙(� ∣ Ĝ

(t)
,D) selects 𝛼(t∗) = ân

that results in the true CPDAG Ĝ
(t∗)

n
(𝛼n) = G

∗ , with high probability.

pn;i,j∣� = Pr(𝜒2
f
> G2

n;ij|� ∣ (Xi⟂⟂Xj ∣��
)G), and

p∗
n;i,j∣�

= Pr(𝜒2
f
> G2

n;ij|� ∣ (Xi ⟂̸⟂Xj ∣��
)G)

(18)lim
n→∞

Pr

[⋃
i,j,�

(
pn;i,j|� ≤ 𝛼n

)
∪
(
p∗
n;i,j|� > 𝛼n

)]
= 0.

(19)lim
n→∞

Pr

[
sup
i,j,�

p∗
n;i,j|� ≤ an < inf

i,j,�
pn;i,j|�

]
= 1.

(20)max
i−j∈�∗

Φn;ij ≤ sup
i,j,�

p∗
n;i,j|� ≤ an < inf

i,j,�
pn;i,j|� ≤ min

i−j∉�∗
Φn;ij.

1733Machine Learning (2022) 111:1695–1738

1 3

Given that the arguments hold for any �n as long as �n ≥ an when n is large, it is not nec-
essary for �n to converge to zero. In particular, Eq. (12) holds for any fixed �n = � ∈ (0, 1).

 ◻

Note that while Theorem 3 generously allows for any �n ∈ (0, 1) , in practice a small
threshold is desirable in the interest of efficiency. Since Pr(pn;i,j|� ≤ �n) = �n , the
expected length of the solution path � may be approximately bounded between |�∗| and
|�∗| + p(p−1)

2
�n . The bounds may be further regulated if approximate knowledge of the

sparsity of G∗ is known.
Furthermore, an inspection of the proof of Theorem 3 more generally indicates that the

solution path returned by Algorithm 3 with the same � and �(�) contains the CPDAG of the
underlying DAG G∗ if there exists some a ≤ � such that

holds when Eq. (4) is investigated with threshold � , which can hold even for a finite sample
size n.

B Constraint‑based edge orientation

In this section, we review established constraint-based strategies for determining edge ori-
entations, summarized in Algorithm 6.

We begin by discussing the work of Verma and Pearl (1991) in determining edge ori-
entations. Under faithfulness, knowledge about the conditional independence relationships
between variables can be used to detect the existence of v-structures (defined in Sect. 2.1)
as follows. A triplet of nodes (i, k, j) configured i − k − j with i and j not adjacent, called an
unshielded triple, is a v-structure if and only if

It is easy to see that any other directed configuration of i − k − j requires k to separate i
and j (Spirtes et al. 2000, Lemma 5.1.3). To investigate this criterion, the separation sets
� are recorded throughout the estimation process (e.g., line 9 of Algorithm 1), defined as
�(i, j) = �(j, i) ⊆ � ⧵ {i, j} such that (Xi⟂⟂Xj ∣��(i,j))P for distinct nodes i and j. Assuming
accurate separation sets, every v-structure in G can be recovered according to Eq. (21),
guaranteeing extension of the skeleton of G to its pattern, to which Meek’s rules can be
straightforwardly applied to obtain its CPDAG (see Sect. 2.1).

Alternatively, considering the Markov condition, an unshielded triple (i, k, j) in G with
adjacencies �G

i
 and �G

j
 can be correctly identified as a v-structure by investigating the cri-

teria Eq. (21) limited to sets � such that �
�
⊆ �

G

i
 or sets � such that �

�
⊆ �

G

j
 . Margaritis

(2003) proposed the following criteria for identifying (i, k, j) as a v-structure:

investigating the smaller of |�G

i
| and |�G

j
| for efficiency. For constraint-based algorithms

that do not record � , we empirically prefer investigating Eq. (22) over Eq. (21) for both
general well-performance and efficiency. As with Eq. (21), the correctness of Eq. (22)
guarantees detection of all and only the v-structures in a DAG G faithful to P given its skel-
eton and conditional independence oracles.

max
i,j∈�∗

Φij ≤ a < min
i,j∉�∗

Φij

(21)∃� ⊆ � ⧵ {i, j, k} such that (Xi⟂⟂Xj ∣��
)P.

(22)(Xi ⟂̸⟂Xj ∣��
)P for all �

�
⊆ �

G

i
or for all �

�
⊆ �

G

j
with k ∈ �,

1734 Machine Learning (2022) 111:1695–1738

1 3

C Details regarding statistical evaluations

In this section, we provide basic details omitted from the body of the paper for the sake of
brevity.

We develop here the notation and evaluation of the popular G2 log-likelihood ratio test of
independence for empirical estimation of conditional independence in P (Spirtes et al. 2000).
For further details and examples, we refer to Neapolitan (2004) 10.3.1. Let n[xi] denote the
number of counts for which random variable Xi = xi in n data samples D , with the defini-
tion extending similarly to n[xi, xj] and so on. For � ⊆ � , let n[xi, xj, ��] denote the number of
counts for which Xi = xi , Xj = xj , and �

�
 attains one of its

∏
k∈� rk state configurations �

�
 in

D . Then the G2 test statistic for testing H0 ∶ (Xi⟂⟂Xj ∣Xk)P is calculated as

The equation can be applied to test marginal independence with � = � . Under H0 , the G2
statistic is asymptotically �2

f
 distributed with

degrees of freedom. Then for a chosen significance level �,

(23)G2
ij|� = 2

∑
xi,xj ,��

n[xi, xj, ��] log

(
n[xi, xj, ��] ⋅ n[��]

n[xi, xj] ⋅ n[xj, ��]

)
.

f = (ri − 1)(rj − 1)
∏
k∈�

rk

1735Machine Learning (2022) 111:1695–1738

1 3

Note that the PC algorithm (Algorithm 1) operates in a somewhat backwards fashion where
the initialized complete graph on � assumes all distinct pairs of variables dependent rather
than independent. A node pair i and j is then disconnected if

for some considered conditioning set ��
.

The mutual information I(Xi,Xj) serves as a similarity measure between discrete random
variables Xi and Xj . It may be interpreted as the Kullback–Leibler divergence between the
joint probability distribution and the product of the marginals, and it is empirically calculated
for n data observations as

where n[xi, xj] is the counts of the instances of the n observations that satisfy Xi = xi
and Xj = xj , with corresponding definitions for n[xi] and n[xj] . It is easy to see that
G2

ij
= 2n ⋅ Î(Xi,Xj).
Lastly, we include the penalized multinomial log-likelihood score with penalty parameter

� . Following the notation from Eq. (23), let �G

i
 represent one of the qi unique state configura-

tions of �G

i
 . Given the Bayesian network DAG structure G and empirical data D from P, the

penalized score is computed as

In the penalty term,
∑p

i=1
(ri − 1)qi encodes model complexity, encouraging sparsity in the

structure of G . In the BIC score, � =
1

2
log(n) (Schwarz 1978).

Supplementary Information The online version of this article (https:// doi. org/ 10. 1007/ s10994- 022- 06145-
4) contains supplementary material, which is available to authorized users.

Funding This study was funded by National Science Foundation (NSF) Division of Mathematical Sciences
(Grant No. 1952929).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not

Pr(𝜒2
f
> G2

ij|�) ≤ 𝛼 ⇒ reject H0 ∶ (Xi ⟂̸⟂Xj ∣��
)P.

Pr(𝜒2
f
> G2

ij|�) > 𝛼 ⇒ retain H0 ∶ (Xi⟂⟂Xj ∣��
)P

Î(Xi,Xj) =
∑
xi,xj

n[xi, xj]

n
log

(
n[xi, xj]∕n

n[xi]∕n ⋅ n[xj]∕n

)
,

(24)

�(G,D) =
�
i,xi,�

G

i

n[xi,�
G

i
] log

�
n[xi,�

G

i
]

n[�G

i
]

�
− �

�
i

(ri − 1)qi

=

p�
i=1

⎛⎜⎜⎝
�
xi ,�

G

i

n[xi,�
G

i
] log

�
n[xi,�

G

i
]

n[�G

i
]

�
− �(ri − 1)qi

⎞⎟⎟⎠
=

p�
i=1

�(Xi,�
G

i
).

https://doi.org/10.1007/s10994-022-06145-4
https://doi.org/10.1007/s10994-022-06145-4

1736 Machine Learning (2022) 111:1695–1738

1 3

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic
Control, 19(6), 716–723. https:// doi. org/ 10. 1109/ tac. 1974. 11007 05

Aliferis, C. F., Statnikov, A., Tsamardinos, I., Mani, S., & Koutsoukos, X. D. (2010). Local causal and
Markov blanket induction for causal discovery and feature selection for classification Part I: Algo-
rithms and empirical evaluation. Journal of Machine Learning Research, 11(7), 171–234. http://
jmlr. org/ papers/ v11/ alife ris10a. html.

Aliferis, C. F., Tsamardinos, I., & Statnikov, A. (2003). HITON: A novel Markov Blanket algorithm for
optimal variable selection. In AMIA annual Symposium proceedings (Vol. 2003, p. 21–25). https://
www. ncbi. nlm. nih. gov/ pmc/ artic les/ PMC14 80117/.

Aragam, B., Gu, J., & Zhou, Q. (2019). Learning large-scale Bayesian networks with the sparsebn pack-
age. Journal of Statistical Software, 91(11), 1–38. https:// doi. org/ 10. 18637/ jss. v091. i11

Buntine, W. (1991). Theory refinement on Bayesian networks. In B. D. D’Ambrosio, P. Smets & P. P.
Bonissone (Eds.), Uncertainty proceedings 1991 (p. 52–60). Morgan Kaufmann. https:// doi. org/ 10.
1016/ B978-1- 55860- 203-8. 50010-3.

Chickering, D. M. (2002a). Learning equivalence classes of Bayesian-network structures. Journal of
Machine Learning Research, 2(Feb), 445–498. https:// www. jmlr. org/ papers/ v2/ chick ering 02a. html.

Chickering, D. M. (2002b). Optimal structure identification with greedy search. Journal of Machine
Learning Research, 3(Nov), 507–554. https:// jmlr. org/ papers/ v3/ chick ering 02b. html.

Chickering, D. M., Heckerman, D., & Meek, C. (2004). Large-sample learning of Bayesian networks is
NP-hard. Journal of Machine Learning Research, 5(Oct), 1287–1330.

Colombo, D., & Maathuis, M. H. (2014). Order-independent constraint-based causal structure learn-
ing. Journal of Machine Learning Research, 15(116), 3921–3962. http:// jmlr. org/ papers/ v15/ colom
bo14a. html.

Cooper, G. F., & Herskovits, E. (1991). A Bayesian method for constructing Bayesian belief networks
from databases. In B. D. D’Ambrosio, P. Smets & P. P. Bonissone (Eds.), Uncertainty proceedings
1991 (pp. 86–94). Morgan Kaufmann. https:// doi. org/ 10. 1016/ B978-1- 55860- 203-8. 50015-2.

Cressie, N., & Read, T. R. C. (1989). Pearson’s $\chi ^{2}$ and the loglikelihood ratio statistic G^{2}:
A comparative review. International Statistical Review/Revue Internationale de Statistique, 57(1),
19–43. https:// doi. org/ 10. 2307/ 14035 82

Dor, D., & Tarsi, M. (1992). A simple algorithm to construct a consistent extension of a partially ori-
ented graph. Technical Report R-185. Cognitive Systems Laboratory, UCLA.

Friedman, N., Nachman, I., & Peér, D. (1999). Learning Bayesian network structure from massive data-
sets: The “Sparse Candidate” algorithm. In Proceedings of the fifteenth conference on uncertainty
in artificial intelligence (pp. 206–215). Morgan Kaufmann Publishers Inc. https:// doi. org/ 10. 5555/
20737 96. 20738 20.

Fu, F., & Zhou, Q. (2013). Learning sparse causal Gaussian networks with experimental intervention:
Regularization and coordinate descent. Journal of the American Statistical Association, 108(501),
288–300. https:// doi. org/ 10. 1080/ 01621 459. 2012. 754359

Gámez, J. A., Mateo, J. L., & Puerta, J. M. (2011). Learning Bayesian networks by hill climbing: Effi-
cient methods based on progressive restriction of the neighborhood. Data Mining and Knowledge
Discovery, 22(1–2), 106–148. https:// doi. org/ 10. 1007/ s10618- 010- 0178-6

Gasse, M., Aussem, A., & Elghazel, H. (2014). A hybrid algorithm for Bayesian network structure learn-
ing with application to multi-label learning. Expert Systems with Applications, 41(15), 6755–6772.
https:// doi. org/ 10. 1016/j. eswa. 2014. 04. 032

Gu, J., Fu, F., & Zhou, Q. (2019). Penalized estimation of directed acyclic graphs from discrete data.
Statistics and Computing, 29(1), 161–176. https:// doi. org/ 10. 1007/ s11222- 018- 9801-y

Gu, J., & Zhou, Q. (2020). Learning big Gaussian Bayesian networks: Partition, estimation and fusion.
Journal of Machine Learning Research, 21(158), 1–31. http:// jmlr. org/ papers/ v21/ 19- 318. html.

Hartigan, J. A. (1981). Consistency of single linkage for high-density clusters. Journal of the American
Statistical Association, 76(374), 388–394. https:// doi. org/ 10. 1080/ 01621 459. 1981. 10477 658

Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination
of knowledge and statistical data. Machine Learning, 20(3), 197–243. https:// doi. org/ 10. 1023/A:
10226 23210 503

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/tac.1974.1100705
http://jmlr.org/papers/v11/aliferis10a.html
http://jmlr.org/papers/v11/aliferis10a.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1480117/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1480117/
https://doi.org/10.18637/jss.v091.i11
https://doi.org/10.1016/B978-1-55860-203-8.50010-3
https://doi.org/10.1016/B978-1-55860-203-8.50010-3
https://www.jmlr.org/papers/v2/chickering02a.html
https://jmlr.org/papers/v3/chickering02b.html
http://jmlr.org/papers/v15/colombo14a.html
http://jmlr.org/papers/v15/colombo14a.html
https://doi.org/10.1016/B978-1-55860-203-8.50015-2
https://doi.org/10.2307/1403582
https://doi.org/10.5555/2073796.2073820
https://doi.org/10.5555/2073796.2073820
https://doi.org/10.1080/01621459.2012.754359
https://doi.org/10.1007/s10618-010-0178-6
https://doi.org/10.1016/j.eswa.2014.04.032
https://doi.org/10.1007/s11222-018-9801-y
http://jmlr.org/papers/v21/19-318.html
https://doi.org/10.1080/01621459.1981.10477658
https://doi.org/10.1023/A:1022623210503
https://doi.org/10.1023/A:1022623210503

1737Machine Learning (2022) 111:1695–1738

1 3

Kalisch, M., & Bühlmann, P. (2007). Estimating high-dimensional directed acyclic graphs with the PC-
algorithm. Journal of Machine Learning Research, 8(22), 613–636. http:// jmlr. org/ papers/ v8/ kalis
ch07a. html.

Kalisch, M., Mächler, M., Colombo, D., Maathuis, M. H., & Bühlmann, P. (2012). Causal inference using
graphical models with the R Package pcalg. Journal of Statistical Software, 47(11), 1–26. https:// doi.
org/ 10. 18637/ jss. v047. i11.

Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and techniques. MIT Press.
Kraskov, A., Stögbauer, H., Andrzejak, R. G., & Grassberger, P. (2005). Hierarchical clustering using

mutual information. Europhysics Letters, 70(2), 278–284. https:// doi. org/ 10. 1209/ epl/ i2004- 10483-y
Le, T. D., Hoang, T., Li, J., Liu, L., Liu, H., & Hu, S. (2016). A fast PC algorithm for high dimensional

causal discovery with multi-core PCs. IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, 16, 1483–1495. https:// doi. org/ 10. 1109/ TCBB. 2016. 25915 26

Liu, Z., Malone, B., & Yuan, C. (2012). Empirical evaluation of scoring functions for Bayesian network
model selection. BMC Bioinformatics, 13, 1–16. https:// doi. org/ 10. 1186/ 1471- 2105- 13- S15- S14

Madsen, A. L., Jensen, F., Salmerón, A., Langseth, H., & Nielsen, T. D. (2017). A parallel algorithm for
Bayesian network structure learning from large data sets. Knowledge-Based Systems, 117, 46–55.
https:// doi. org/ 10. 1016/j. knosys. 2016. 07. 031 Volume, Variety and Velocity in Data Science.

Margaritis, D. (2003). Learning Bayesian network model structure from data. Unpublished Doctoral Disser-
tation, Carnegie Mellon University School of Computer Science.

Meek, C. (1995). Causal inference and causal explanation with background knowledge. In Proceedings of
the eleventh conference on uncertainty in artificial intelligence (pp. 403–410). Morgan Kaufmann Pub-
lishers, Inc. https:// doi. org/ 10. 5555/ 20741 58. 20742 04.

Meek, C. (1997). Graphical Models: Selecting causal and statistical models. Unpublished Doctoral Disser-
tation, Carnegie Mellon University School of Computer Science.

Nandy, P., Hauser, A., & Maathuis, M. H. (2018). High-dimensional consistency in score-based and hybrid
structure learning. The Annals of Statistics, 46(6A), 3151–3183. https:// doi. org/ 10. 1214/ 17- AOS16 54

Neapolitan, R. E. (2004). Learning Bayesian networks (Vol. 38). Pearson Prentice Hall.
R Core Team. (2021). R: A language and environment for statistical computing (computer software man-

ual). https:// www. Rproj ect. org/.
Ramsey, J. D. (2015). Scaling up greedy equivalence search for continuous variables. Computing Research

Repository. arXiv:1507.07749.
Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(5), 465–471. https:// doi. org/ 10.

1016/ 0005- 1098(78) 90005-5
Robinson, R. W. (1977). Counting unlabeled acyclic digraphs. In C. H. C. Little (Ed.), Combinatorial math-

ematics V (pp. 28–43). Springer. https://doi.org/10.1007/BFb0069178.
Russell, S., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed.). Pearson Prentice Hall.
Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., & Nolan, G. P. (2005). Causal protein-signaling net-

works derived from multiparameter single cell data. Science, 308(5721), 523–529. https:// doi. org/ 10.
1126/ scien ce. 11058 09

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. https://
doi. org/ 10. 1214/ aos/ 11763 44136

Scutari, M. (2010). Learning Bayesian Networks with the bnlearn R Package. Journal of Statistical Soft-
ware, 35(3), 1–22. https:// doi. org/ 10. 18637/ jss. v035. i03

Scutari, M. (2017). Bayesian network constraint-based structure learning algorithms: Parallel and optimized
implementations in the bnlearn R package. Journal of Statistical Software, 77(2), 1–20. https:// doi. org/
10. 18637/ jss. v077. i02

Shao, J. (2003). Mathematical statistics (2nd ed., pp. 91–160). Springer.
Spirtes, P. (2010). Introduction to causal inference. Journal of Machine Learning Research, 11(54), 1643–

1662. http:// jmlr. org/ papers/ v11/ spirt es10a. html.
Spirtes, P., & Glymour, C. (1991). An algorithm for fast recovery of sparse causal graphs. Social Science

Computer Review, 9(1), 62–72. https:// doi. org/ 10. 1177/ 08944 39391 00900 106
Spirtes, P., Glymour, C., Scheines, R., & Heckerman, D. (2000). Causation, prediction, and search (2nd

ed.). MIT Press.
Tsamardinos, I., Aliferis, C. F., & Statnikov, A. R. (2003a). Algorithms for large scale Markov blanket dis-

covery. In FLAIRS conference (pp. 376–380).
Tsamardinos, I., Aliferis, C. F., & Statnikov, A. (2003b). Time and sample efficient discovery of Markov

blankets and direct causal relations. In Proceedings of the ninth ACM SIGKDD international confer-
ence on knowledge discovery and data mining (pp. 673–678). Association for Computing Machinery.
https:// doi. org/ 10. 1145/ 956750. 956838.

http://jmlr.org/papers/v8/kalisch07a.html
http://jmlr.org/papers/v8/kalisch07a.html
https://doi.org/10.18637/jss.v047.i11
https://doi.org/10.18637/jss.v047.i11
https://doi.org/10.1209/epl/i2004-10483-y
https://doi.org/10.1109/TCBB.2016.2591526
https://doi.org/10.1186/1471-2105-13-S15-S14
https://doi.org/10.1016/j.knosys.2016.07.031
https://doi.org/10.5555/2074158.2074204
https://doi.org/10.1214/17-AOS1654
https://www.Rproject.org/
https://doi.org/10.1016/0005-1098(78)90005-5
https://doi.org/10.1016/0005-1098(78)90005-5
https://doi.org/10.1126/science.1105809
https://doi.org/10.1126/science.1105809
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.18637/jss.v035.i03
https://doi.org/10.18637/jss.v077.i02
https://doi.org/10.18637/jss.v077.i02
http://jmlr.org/papers/v11/spirtes10a.html
https://doi.org/10.1177/089443939100900106
https://doi.org/10.1145/956750.956838

1738 Machine Learning (2022) 111:1695–1738

1 3

Tsamardinos, I., Brown, L. E., & Aliferis, C. F. (2006). The max–min hill-climbing Bayesian network struc-
ture learning algorithm. Machine Learning, 65(1), 31–78. https:// doi. org/ 10. 1007/ s10994- 006- 6889-7

Tsamardinos, I., Statnikov, A. R., Brown, L. E., & Aliferis, C. F. (2006). Generating realistic large Bayesian
networks by tiling. In FLAIRS conference (pp. 592–597).

Verma, T., & Pearl, J. (1991). Equivalence and synthesis of causal models. UCLA Computer Science
Department.

Wongchokprasitti, C. (2019). R-causal: R Wrapper for Tetrad Library. v1.2.1. https:// github. com/ bd2kc
cd/r- causal.

Yaramakala, S., & Margaritis, D. (2005). Speculative Markov blanket discovery for optimal feature selec-
tion. In Fifth IEEE international conference on data mining (ICDM’05). https:// doi. org/ 10. 1109/
ICDM. 2005. 134.

Zarebavani, B., Jafarinejad, F., Hashemi, M., & Salehkaleybar, S. (2020). cuPC: CUDA-based parallel PC
algorithm for causal structure learning on GPU. IEEE Transactions on Parallel and Distributed Sys-
tems, 31(3), 530–542. https:// doi. org/ 10. 1109/ TPDS. 2019. 29391 26

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1007/s10994-006-6889-7
https://github.com/bd2kccd/r-causal
https://github.com/bd2kccd/r-causal
https://doi.org/10.1109/ICDM.2005.134
https://doi.org/10.1109/ICDM.2005.134
https://doi.org/10.1109/TPDS.2019.2939126

	Partitioned hybrid learning of Bayesian network structures
	Abstract
	1 Introduction
	2 Background
	2.1 Markov equivalence
	2.2 Faithfulness
	2.3 The PC algorithm

	3 The pPC and PATH algorithms
	3.1 The partitioned PC algorithm
	3.1.1 Clustering
	3.1.2 Partitioned skeleton estimation

	3.2 p-value adjacency thresholding

	4 Consistent hybrid structure learning
	4.1 Score-based and hybrid structure learning
	4.2 Hybrid greedy initialization

	5 Numerical results
	5.1 Simulation set-up
	5.2 pPC and PATH
	5.3 HGI and pHGS
	5.4 Real data application

	6 Discussion
	References

