
Vol.:(0123456789)

Machine Learning (2022) 111:2037–2091
https://doi.org/10.1007/s10994-022-06140-9

1 3

Randomized approximate class‑specific kernel spectral
regression analysis for large‑scale face verification

Ke Li1 · Gang Wu1

Received: 14 April 2021 / Revised: 7 November 2021 / Accepted: 9 February 2022 /
Published online: 21 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022

Abstract
Kernel methods are known to be effective to analyse complex objects by implicitly embed-
ding them into some feature space. The approximate class-specific kernel spectral regres-
sion (ACS-KSR) method is a powerful tool for face verification. This method consists of
two steps: an eigenanalysis step and a kernel regression step, however, it may suffer from
heavily computational overhead in practice, especially for large-sample data sets. In this
paper, we propose two randomized algorithms based on the ACS-KSR method. The main
contribution of our work is four-fold. First, we point out that the formula utilized in the
eigenanalysis step of the ACS-KSR method is mathematically incomplete, and we give a
correction to it. Moreover, we consider how to efficiently solve the ratio-trace problem and
the trace-ratio problem involved in this method. Second, it is well known that kernel matrix
is approximately low-rank, however, to the best of our knowledge, there are few theoretical
results that can provide simple and feasible strategies to determine the numerical rank of a
kernel matrix without forming it explicitly. To fill-in this gap, we focus on the commonly
used Gaussian kernel and provide a practical strategy for determining numerical rank of
the kernel matrix. Third, based on numerically low-rank property of the kernel matrix, we
propose a modified Nyström method with fixed-rank for the kernel regression step, and
establish a probabilistic error bound on the approximation. Fourth, although the proposed
Nyström method can reduce the computational cost of the original method, it is required
to form and store the reduced kernel matrix explicitly. This is unfavorable to extremely
large-sample data sets. To settle this problem, we propose a randomized block Kaczmarz
method for kernel regression problem with multiple right-hand sides, in which there is no
need to compute and store the reduced kernel matrix explicitly. The convergence of this
method is established. Comprehensive numerical experiments on real-world data sets are
performed to show the effectiveness of our theoretical results and the efficiency of the pro-
posed methods.

Keywords Face verification · Approximate class-specific kernel spectral regression (ACS-
KSR) · Kernel matrix · Nyström method · Block Kaczmarz method

Editor: Paolo Frasconi.

 * Gang Wu
 gangwu@cumt.edu.cn; gangwu76@126.com

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06140-9&domain=pdf

2038 Machine Learning (2022) 111:2037–2091

1 3

1 Introduction

The face verification problem has attracted great attention for more than two decades due
to its application demands including security, human–computer interaction, human behav-
iour analysis for assisted living, and so on (Barr et al., 2007; Lei et al., 2012; Li et al.,
2011; Tefas & Pitas, 2011). In essence, face verification is conceptually different from the
famous face recognition problem (Cao et al., 2018; Iosifidis & Gabbouj, 2016a, 2016b,
2017; Iosifidis et al., 2015). On one hand, face recognition is a multi-class problem, which
concentrates on recognizing the identity of a person from a pool of some known person
identities. On the other hand, face verification is a binary problem where it focuses on veri-
fying whether a facial image depicts a person of interest (Iosifidis & Gabbouj, 2016b; Wu
et al., 2019).

Subspace learning method is done by projecting images into a lower dimensional space,
and after that recognition is performed by measuring the distances between known images
and the image to be recognized. Two representative subspace learning methods are princi-
pal component analysis (PCA) (Duda et al., 2000) and linear discriminant analysis (LDA)
(Li et al., 2011; Lei et al., 2012; Duda et al., 2000). PCA is an unsupervised method in
which the discriminative information encoded in the labels of training data is not exploited.
Hence, its discrimination power is often limited (Zhou et al., 2013). On the other hand,
the maximal dimensionality of the learnt subspace in LDA is restricted by the number of
classes s, which limits the application of LDA in face verification problem. Indeed, since
the rank of the between-class scatter matrix is at most s − 1 , the subspace learned by the
LDA method has only one dimension in binary (two-class) problems, which might not be
the optimal choice for discrimination problems (Iosifidis & Gabbouj, 2016; Zhou et al.,
2013).

To remedy these limitations, class-specific approaches are investigated in Zafeiriou
et al. (2012), Kittler et al. (2000), Goudelis et al. (2007), Iosifidis et al. (2015), Arashloo
and Kittler (2014). In class-specific subspace learning techniques, an optimal subspace that
highlights the discrimination of one class (noted as client class hereafter) from all other
possibilities (i.e. data not belonging to the client class, forming the so-called impostor
class) is determined (Iosifidis and Gabbouj, 2016). Meanwhile, to achieve nonlinear data
projections which have been found to outperform linear ones with a large extend in face
recognition and verification problems, class-specific subspace learning methods can be
extended to their nonlinear counterparts by exploiting the well-known kernel trick (Baudat
& Anouar, 2000; Hofmann et al., 2008; Lu et al., 2003; Müller et al., 2001).

Kernel methods are well known to be effective in dealing with nonlinear machine learn-
ing problems in general, and are often required for machine learning tasks on complex data
sets (Hofmann et al., 2008; Müller et al., 2001). The main idea behind kernel machines
is to map the data from the input space to a higher dimension feature space via a nonlin-
ear map, where the mapped data can be then analysed by linear models. Kernel learning
techniques aim at constructing kernel matrices whose structure is well aligned with the
learning target, which improves the generalization performance of kernel methods (Lan
et al., 2017; Tran et al., 2020). However, most kernel learning approaches are computation-
ally very expensive. It is well known that kernel versions of subspace learning techniques
require to compute the kernel matrix K ∈ ℝ

n×n explicitly, where n is the training set cardi-
nality. However, as the computational complexities and the storage requirements are O(n3)
and O(n2) (Iosifidis et al., 2015; Tavernier et al., 2019), respectively, both approaches above
will become computationally intractable as n is large.

2039Machine Learning (2022) 111:2037–2091

1 3

Class-specific kernel discriminant analysis (CS-KDA) (Goudelis et al., 2007; Iosifidis
et al., 2015) and class-specific kernel spectral regression (CS-KSR) (Arashloo & Kittler,
2014; Iosifidis et al., 2015) are commonly used class-specific kernel approaches. Recently,
Iosifidis and Gabbouj (2016) put forward an approximate class-specific kernel spectral
regression (ACS-KSR) method that employs the reduced kernel matrix �K ∈ ℝ

r×n(r < n)
to take place of the kernel matrix, which speedups the computation. Roughly speaking,
this method is composed of two steps: the eigenanalysis step for computing the eigenvec-
tor matrix T, and a kernel regression step for the reconstruction weights matrix A. Unfor-
tunately, we find that the widely used eigenanalysis step in the ACS-KSR method (Iosi-
fidis & Gabbouj, 2016) and other class-specific kernel discriminant analysis methods (Cao
et al., 2018; Iosifidis & Gabbouj, , 2017; Iosifidis et al., 2015) is incomplete. Moreover,
the explicit computation of the cross-product matrix K̃K̃T in the kernel regression step is
computationally impracticable, in addition to some useful information may be lost (Golub
& Van Loan, 2014). Therefore, it is necessary to revisit the ACS-KSR method and improve
the numerical performance of this type of methods.

With the development of science and technology, the ability to generate data at the scale
of millions and even billions has increased rapidly, posing great computational challenges
to scientific computation problems involving large-scale kernel matrices (Hofmann et al.,
2008). Low-rank approximations are popular techniques to reduce the highly computa-
tional cost of algorithms involving large-scale kernel matrices (Halko et al., 2011; Hof-
mann et al., 2008; Wang et al., 2018; Wathen & Zhu, 2015). Indeed, the success of these
low-rank approximation algorithms hinges on a large spectrum gap or a fast decay of the
spectrum of the kernel matrix (Halko et al., 2011; Pan et al., 2011). This motivates the
analysis on the numerical rank of kernel matrix. In recent years, the low-rank property and
low-rank approximation of kernel matrix have attracted great attention (Cambier & Darve,
2019; Iske et al., 2017; Wang et al., 2018; Wathen & Zhu, 2015; Xing & Chow, 2020).
For example, the low-rank property of kernel matrix is investigated in Wang et al. (2018),
Wathen and Zhu (2015), an interpolation method is used to construct the approximation of
kernel matrix (Cambier & Darve, 2019; Xing & Chow, 2020), and a low-rank approxima-
tion is constructed in Iske et al. (2017), with the help of hierarchical low-rank property of
kernel matrix. Although there has been a lot of research on the low-rank approximation of
the kernel matrix, the estimation of the numerical rank of the kernel matrix is still in the
theoretical stage. To the best of our knowledge, most existing results usually require the
key information of kernel matrices, and there are few theoretical results could provide sim-
ple and feasible strategies for determining the numerical rank of a kernel matrix without
forming the matrix explicitly. Moreover, estimations to the upper bound of the numerical
rank are often too large to be used in practice.

To fill in this gap and to tackle the computational challenges mentioned above, we aim
to improve the approximate class-specific kernel spectral regression method in this work.
The main contribution is four-fold. First, we give a correction to the eigenanalysis step
used in the ACS-KSR method, and consider how to solve the ratio-trace problem and the
trace-ratio problem by exploiting the structure of the intra-class and out-of-class scatter
matrices. Second, we consider low-rank property of the Gaussian kernel matrix, and pro-
vide a practical strategy for determining numerical rank of kernel matrix without forming it
beforehand. Third, based on the numerically low-rank property of Gaussian kernel matrix,
we provide a modified Nyström method with fixed-rank for the kernel regression step,
and establish a probabilistic error bound on the approximation. Although the proposed
Nyström method can reduce the computational cost of the original method, it is required
to form and store the reduced kernel matrix K̃ explicitly. In the era of big data, however,

2040 Machine Learning (2022) 111:2037–2091

1 3

the reduced kernel matrix may be so huge that it can not be stored in main memory, and
the proposed Nyström method can still be time-consuming. To deal with this problem, the
fourth contribution of this paper is to propose a randomized block Kaczmarz method for
kernel regression problem with multiple right-hand sides. The convergence of this method
is established.

The structure of this paper is as follows. In Sect. 2, we briefly introduce the face veri-
fication problem, the class-specific kernel discriminant analysis method and its two var-
iations. The eigenanalysis step involved in the CS-KSR and ACS-KSR methods is cor-
rected in Sect. 3, moreover, we consider how to solve the trace-ratio or the ratio-trace
problems involved in this step. In Sect. 4, we focus on the numerically low-rank property
of the Gaussian kernel matrix, and propose a modified and fixed-rank Nyström method.
To further reduce the computational overhead, in Sect. 5, we propose a randomized block
Kaczmarz method for regression with multiple right-hand sides. In Sect. 6, we perform
numerical experiments on some real-world data sets, to show the numerical behavior of the
proposed algorithms as well as the effectiveness of our theoretical results. Some conclu-
sions are drawn in Sect. 7. MATLAB notations are utilized in our algorithms whenever
necessary, and some notations used in this paper are listed in Table 1.

2 Class‑specific kernel discriminant analysis and its variants

Denote by U a training set consists of n facial images. Assume that all facial images
in U have been preprocessed and represented by facial vectors �i ∈ ℝ

m, i = 1, 2,… , n,
which are followed by binary labels �i ∈ {+1,−1} denoting whether the facial vector

Table 1 Some notations used in this paper

Notations Description

m, n The data dimension and the number of training samples
n1, n2 The number of client class, and the number of impostor class, with n = n1 + n2

d, r Discriminant space dimensionality, and reference vector set cardinality
�, [n] The binary label vector, and the set {1, 2,… , n}

k, l The target rank and the number of sampling, with l > k

[n] ⧵ [r] The set whose elements belong to [n] but not [r], i.e., the set subtraction
�, I

i
Zero matrix or vector, and identity matrix of dimension i

dim(W) Dimension of the subspace W
span{A} Subspace spanned by the columns of a matrix A
A
T ,A† Transpose and Moore–Penrose inverse of a matrix A

A
i
,A

ii
The i-th column and the i-th diagonal element of A

rank(A), tr(A) Rank and trace of a matrix A
[[A]]

k
The best rank-k approximation to a matrix A, with k ≤ rank(A)

N(A),R(A) Null space and range of a matrix A
‖ ⋅ ‖2, ‖ ⋅ ‖F 2-norm and Frobenius norm of a vector or matrix
N(A) ⧵N(B) The subspace in N(A) but not in N(B)

�
k
(A), �

k
(A) The k-th largest singular value and eigenvalue of A

𝔼(⋅),ℙ(⋅) Expectation and probability

2041Machine Learning (2022) 111:2037–2091

1 3

�i belongs to the client (+1) or the impostor (−1) class. Suppose that there are n1 facial
images belong to the client class (i.e., the person of interest), while the remaining n2
facial images belong to the impostor class.

The kernel approaches map the input space ℝm to the kernel space F by using a
nonlinear function �(⋅) , and then determine a linear projection W in the kernel space F ,
such that

where W ∈ ℝ
|F|×d . However, the data representation �(�i) in F cannot be computed

directly in practice, and the kernel trick is used instead (Lu et al., 2003; Müller et al., 2001;
Zheng et al., 2013). Indeed, the multiplication in (1) is inherently computed by using dot
products in F . More precisely, one exploits the kernel function �(⋅, ⋅) to express dot prod-
ucts �(�i, �j) = �(�i)

T�(�j) between training data in the kernel space F . The dot prod-
ucts between all the training vectors in the kernel space F are stored in the kernel matrix
K ∈ ℝ

n×n whose i-th column is

Denote by Φ = [�(�1),�(�2),… ,�(�n)] ∈ ℝ
|F|×n , the kernel matrix K can be written as

K = ΦTΦ , and the projection matrix W can be represented as

where A ∈ ℝ
n×d is a reconstruction weights matrix. A combination of (1) and (2) yields

In Class-Specific Kernel Discriminant Analysis (CS-KDA) (Goudelis et al., 2007), we
denote by � =

1

n1

∑
i,�i=1

�i the client class mean vector, and define DI ,DC the distances of
the impostor vectors and the client vectors from the client class mean vector � , respec-
tively. From (1), we have � = W

T�� , where �� =
1

n1

∑
i,�i=1

�(�i) is the client class mean
expressed in F . Hence,

The objective of CS-KDA is to determine data representations �i ∈ ℝ
d in a feature space,

such that the client class is as compact as possible, while the impostor class is spread far
away as much as possible from the client class. Mathematically, we aim to seek a matrix
W∗ , such that

(1)�i = WT�(�i),

�i = [�(�i)
T�(�1),�(�i)

T�(�2),… ,�(�i)
T�(�n)]

T , i = 1, 2,… , n.

W =

n∑

i=1

�(�i)�
T
i
= ΦA,

(3)�i = ATΦT�(�i) = AT�i.

DI =
�

i,�i=−1

‖WT�(�i) −WT��‖
2
2

and DC =
�

i,�i=1

‖WT�(�i) −WT��‖
2
2
.

(4)
W∗ = argmax

W ∈ span{Φ}

W ∈ ℝ
|F|×d

DI

DC

.

2042 Machine Learning (2022) 111:2037–2091

1 3

That is,

where tr(⋅) is the trace of a matrix, and

and

are the out-of-class and the in-class scatter matrices in F , respectively.
However, solving (5) directly is impractical since |F| is very large or even infinite in

practice. Fortunately, by substituting (2) in (6) and (7), the Eq. (5) can be equivalently
expressed as the following trace-ratio problem on A (Iosifidis et al., 2015)

where

and

and �I ∈ ℝ
n2 and �C ∈ ℝ

n1 are vectors of all ones, KI ∈ ℝ
n×n2 and KC ∈ ℝ

n×n1 are matrices
formed by the columns of K corresponding to the impostor and client class data, respec-
tively. However, the trace-ratio problem (8) is difficult to solve (Jia et al., 2009; Wang et al.,
2007), and one often solves the following ratio-trace problem instead

which reduces to a generalized eigenproblem MI� = �MC� . By (9) and (10), the rank of
MI and MC are at most n2 + 3 and n1 − 1 , respectively, and both of the two matrices are
rank-deficient. Thus, the generalized eigenvalue problem can be non-regular (Golub & Van
Loan, 2014). Notice that (8) and (11) are not mathematically equivalent in general (Shi &
Wu, 2021).

Recently, a spectral regression-based method for (5) was proposed in Arashloo and Kit-
tler (2014), Iosifidis et al. (2015). Let (�,�) be an eigenpair satisfying SI� = �SC� . From
(2), we have � = Φ� , moreover, if we set K� = � , where K = ΦTΦ is the kernel matrix,
then this eigenproblem reduces to Arashloo and Kittler (2014), Iosifidis et al. (2015)

(5)
W∗ = argmax

W ∈ span{Φ}

W ∈ ℝ
|F|×d

tr(WTSIW)

tr(WTSCW)
,

(6)SI =
∑

i,�i=−1

(
�(�i) −��

)(
�(�i) −��

)T
∈ ℝ

|F|×|F|

(7)SC =
∑

i,�i=1

(
�(�i) −��

)(
�(�i) −��

)T
∈ ℝ

|F|×|F|

(8)T(A) = max
A∈ℝn×d

tr(ATMIA)

tr(ATMCA)
,

(9)MI = KIK
T
I
−

1

n1
KI�I�

T
C
KT
C
−

1

n1
KC�C�

T
I
KT
I
+

n2

n2
1

KC�C�
T
C
KT
C
∈ ℝ

n×n,

(10)MC = KCK
T
C
−

1

n1
KC�C�

T
C
KT
C
∈ ℝ

n×n,

(11)T̂(A) = max
A∈ℝn×d

tr

((
A
T
M

C
A
)−1(

A
T
M

I
A
))

,

2043Machine Learning (2022) 111:2037–2091

1 3

where

and

and �C ∈ ℝ
n is a vector whose elements �C,i = 1 if �i = 1 and �C,i = 0 if �i = −1 , moreover,

�I ∈ ℝ
n is a vector whose elements �I,i = 1 if �i = −1 and �I,i = 0 if �i = 1 . However, both

PI and PC are singular, and (12) is non-regular. Usually, some regularization techniques are
used, and the following eigenproblem is solved instead

where � is a regularization parameter. In the Class-Specific Kernel Spectral Regression
(CS-KSR) method, the reconstruction weights matrix A is computed as follows

• Eigenanalysis Step: Compute T = [�1, �2,… , �d] from solving the large-scale eigenprob-
lem (15), where �i is the eigenvector corresponding to the i-th largest eigenvalue and d
is the dimension of the discriminant space.

• Kernel Regression Step: Solving K�i = �i, i = 1,… , d , for the reconstruction weights
matrix A = [�1, �2,… , �d].

In the aforementioned CS-KDA and CS-KSR approaches, we have to calculate and store
the kernel matrix K ∈ ℝ

n×n , whose computational cost is O(n3) flops, and the space com-
plexity is O(n2) . Here n is the number of training samples. Therefore, forming and storing
the full kernel matrix K explicitly are very time consuming, especially for large classifica-
tion problems (Tavernier et al., 2019).

To partially overcome this difficulty and speedup the kernel regression step, an approxi-
mate class-specific kernel spectral regression (ACS-KSR) method is proposed (Iosifidis
& Gabbouj, 2016), in which an approximate kernel space is exploited. More precisely, in
terms of the structure of the intra-class and out-of-class scatter matrices, Iosifidis and Gab-
bouj (2016) show that the eigenanalysis step can be solved by applying a much simpler and
faster process involving only the class labels of the training data; see Algorithm 1. Further-
more, recall that CS-KSR resorts to the following kernel regression problem

and the matrix A is obtained from expressing W as a linear combination of all training data
representations in the kernel space, i.e., W = ΦA.

The key idea of Iosifidis and Gabbouj (2016) is that the matrix W is expressed as a lin-
ear combination of r reference vectors, i.e., W = ΨA , where Ψ ∈ ℝ

|F|×r with r < n . In this
case, the kernel regression problem (16) can be written as

(12)PI� = �PC�,

(13)PI = �I�
T
I
−

1

n1
�I�

T
C
−

1

n1
�C�

T
I
+

1

n2
1

�C�
T
C
,

(14)PC = (1 −
2

n1
+

1

n2
1

)�C�
T
C
,

(15)(PI + �In)� = �PC�,

(16)
W∗ = argmin

W ∈ span{Φ}

W ∈ ℝ
�F�×d

‖WTΦ − TT‖2
F
,

2044 Machine Learning (2022) 111:2037–2091

1 3

where K̃ = ΨTΦ ∈ ℝ
r×n is a reduced kernel matrix expressing the training data representa-

tions in a kernel space defined on the reference data Ψ . As a result, we have from (17) that
Golub and Van Loan (2014)

The ACS-KSR method is presented in Algorithm 2.

Remark 1 Some remarks are in order. The adoption of such approximate kernel regres-
sion scheme leads to an important reduction on memory requirements, which allows one to
apply ACS-KSR method to large-scale verification problems. Unfortunately, we find that
the formulas (13) and (14) for computing T, which are widely used in Iosifidis et al. (2015),
Iosifidis and Gabbouj (2016), Iosifidis and Gabbouj (2016), Iosifidis and Gabbouj (2017),
Cao et al. (2018), are incomplete. On the other hand, an explicit computation of K̃K̃T will
cost us O(nr2) flops, and some useful information in K̃ may be lost when forming the cross-
product matrix (Golub & Van Loan, 2014). Furthermore, both the CS-KDA method and
the ACS-KSR method focus on ratio-trace problems, rather than the original trace-ratio

(17)A∗ = argmin
A∈ℝr×d

‖ATΨTΦ − TT‖2
F
= argmin

A∈ℝr×d

‖K̃TA − T‖2
F
,

(18)A∗ = (K̃K̃T)−1K̃T .

2045Machine Learning (2022) 111:2037–2091

1 3

problem (5). Thus, it is necessary to give new insight into the ACS-KSR method, and
improve this method substantially.

3 On the ratio‑trace and the trace‑ratio problems for the eigenanalysis
step

In this section, we first show that (13) and (14) are incomplete for solving the ratio-trace
problem (11) corresponding to (8). Some corrections to the two matrices PI and PC are
given. Second, we consider how to solve the trace-ratio problem (8) and the corresponding
ratio-trace problem (11) efficiently.

Theorem 3.1 Let EI ∈ ℝ
n×n2 and EC ∈ ℝ

n×n1 be matrices constituted by some columns
of the identity matrix In ∈ ℝ

n×n , corresponding to the impostor and client class index,
respectively. Then under the above notations, (8) is equivalent to the following trace-ratio
problem

where

and

where �C ∈ ℝ
n is a vector with elements �C,i = 1 if �i = 1 , and �C,i = 0 if �i = −1 , and

�I ∈ ℝ
n is a vector with elements �I,i = 1 if �i = −1 and �I,i = 0 if �i = 1.

Proof Notice that KEI = KI , KEC = KC , and EI�I = �I , EC�C = �C . It follows from (9) that

where PI = EIE
T
I
−

1

n1
�I�

T
C
−

1

n1
�C�

T
I
+

n2

n2
1

�C�
T
C
.

Similarly, we obtain from (10) that

(19)max
T∈ℝn×d

tr(TTPIT)

tr(TTPCT)
,

(20)PI = EIE
T
I
−

1

n1
�I�

T
C
−

1

n1
�C�

T
I
+

n2

n2
1

�C�
T
C
,

(21)PC = ECE
T
C
−

1

n1
�C�

T
C
,

(22)

MI =KIK
T
I
−

1

n1
KI�I�

T
C
KT
C
−

1

n1
KC�C�

T
I
KT
I
+

n2

n2
1

KC�C�
T
C
KT
C

=K
(

EIE
T
I
−

1

n1
EI�I�

T
C
ET
C
−

1

n1
EC�C�

T
I
ET
I
+

n2

n2
1

EC�C�
T
C
ET
C

)

K

=K
(

EIE
T
I
−

1

n1
�I�

T
C
−

1

n1
�C�

T
I
+

n2

n2
1

�C�
T
C

)

K

≡KPIK,

2046 Machine Learning (2022) 111:2037–2091

1 3

where PC = ECE
T
C
−

1

n1
�C�

T
C
 . Substitute (22) and (23) into (8), and note that KA = T , the

trace-ratio problem (8) can be equivalently rewritten as (19). □

Remark 2 Theorem 3.1 indicates that (13) and (14) are mathematically incomplete, and
(20), (21) give some corrections to them. Unlike (13) and (14), it is seen that the two new
matrices are not rank-2 and rank-1 matrices any more.

With (20) and (21) at hand, we consider how to solve the optimization problem (19)
efficiently. So as to get structured intra-class and out-of-class scatter matrices, we first
reorder the elements in the binary label vector � . More precisely, suppose that the train-
ing binary label vector � is permuted to the binary label �̃ , in which all the client (+1)
classes in �̃ are sorted before all the impostor (−1) classes. Mathematically speaking,
there exists a permutation matrix P ∈ ℝ

n×n such that P� = �̃ . Corresponding to �I , �C ,
EI and EC , we define the four variables �̃I , �̃C , ẼI and ẼC with respect to the new binary
label �̃ . Moreover, we have that P�I = �̃I , P�C = �̃C , PEI = ẼI and PEC = ẼC , and

Denote by P̃I = PPIP
T , then it follows from (20) that

Similarly, denote by P̃C = PPCP
T , we have from (21) that

Therefore, combining (25) and (26), the Eq. (19) can be rewritten as

where T̃ = PT , and we make use of the property PTP = In , as P is a permutation matrix.
In summary, we solve the target matrix T in the following two steps:

• Solving the following trace-ratio problem

(23)

MC =KCK
T
C
−

1

n1
KC�C�

T
C
KT
C

=K
(
ECE

T
C
−

1

n1
EC�C�

T
C
ET
C

)
K

=K
(
ECE

T
C
−

1

n1
�C�

T
C

)
K

≡KPCK,

(24)ẼT
I
ẼC = �, ẼC�C = �̃C, �̃T

I
ẼC = �.

(25)

P̃I =PPIP
T = P

(

EIE
T
I
−

1

n1
�I�

T
C
−

1

n1
�C�

T
I
+

n2

n2
1

�C�
T
C

)

PT

=ẼI Ẽ
T
I
−

1

n1
�̃I �̃

T
C
−

1

n1
�̃C �̃

T
I
+

n2

n2
1

�̃C �̃
T
C
.

(26)P̃C = PPCP
T = P

(

ECE
T
C
−

1

n1
�C�

T
C

)

PT = ẼCẼ
T
C
−

1

n1
�̃C �̃

T
C
.

tr(TTPIT)

tr(TTPCT)
=

tr
(
TTPT (PPIP

T)PT
)

tr
(
TTPT (PPCP

T)PT
) ≡

tr(T̃T P̃I T̃)

tr(T̃T P̃CT̃)
,

2047Machine Learning (2022) 111:2037–2091

1 3

 or the ratio-trace problem

 for the matrix T̂ , where P̃I and P̃C are defined in (25) and (26), respectively.
• Let T = PTT̂.

Remark 3 An advantage of the problem (27) over the original one (19) is that, one can take
full advantage of the special structure of matrices P̃I and P̃C . Keep in mind that there is no
need to form and store the perturbation matrix P explicitly in the two methods.

Next, we propose two methods for solving the ratio-trace problem (28) and the trace-ratio
problem (27), respectively.

3.1 Solution of the ratio‑trace problem for the eigenanalysis step

It is well known that the trace-ratio problem (27) is difficult to solve (Jia et al., 2009; Wang
et al., 2007). As an alternative, one often solves the relatively easier ratio-trace problem (28).
Note that it is different from the one given in (12) which is widely used in Iosifidis et al.,
(2015), Iosifidis and Gabbouj (2016), Iosifidis and Gabbouj (2016), Iosifidis and Gabbouj
(2017), Cao et al., (2018). First, we show that both P̃I and P̃C are positive semidefinite matri-
ces. Recall that we have obtained four structured variables �̃I , �̃C , ẼI and ẼC with respect to
the new binary label �̃ . In fact, due to the characteristics of the new binary label �̃ , we see that
ẼC and ẼI are the first n1 columns and the last n2 columns of the identity matrix In ∈ ℝ

n×n ,
respectively. In addition, the first n1 elements of �̃C are all 1 and the rest are all 0, and the last
n2 elements of �̃I are all 1 and the rest are all 0. Thus, by (25) and (26), the two matrices P̃I and
P̃C are block matrices of the following form, i.e.,

and

On one hand, since the eigenvalues of In1 −
1

n1
�C�

T
C
 are either 1 or 0, P̃C is positive sem-

idefinite. On the other hand, we consider the following positive semidefinite matrix

(27)T̂tr = argmax
T̃∈ℝn×d

tr(T̃T P̃I T̃)

tr(T̃T P̃CT̃)
,

(28)T̂rt = argmax
T̃∈ℝn×d

tr
[

(T̃T P̃CT̃)
−1(T̃T P̃I T̃)

]

(29)P̃I =

(n2

n2
1

�C�
T
C

−
1

n1
�C�

T
I

−
1

n1
�I�

T
C

In2

)

,

(30)P̃C =

(
In1 −

1

n1
�C�

T
C

�

� �

)

.

B =

⎛
⎜
⎜
⎝

√
n2

n1
�C

−
1

√
n2
�I

⎞
⎟
⎟
⎠

� √
n2

n1
�T
C

−
1

√
n2
�T
I

�

=

� n2

n2
1

�C�
T
C

−
1

n1
�C�

T
I

−
1

n1
�I�

T
C

1

n2
�I�

T
I

�

.

2048 Machine Learning (2022) 111:2037–2091

1 3

Notice that

is a positive semidefinite matrix. Thus, P̃I is also positive semidefinite.
Indeed, the solution of the ratio-trace problem (28) can be reduced to the following

generalized eigenvalue problem (Duda et al., 2000)

However, both P̃I and P̃C may be singular, and this generalized eigenvalue problem can be
non-regular in practice (Golub and Van Loan, 2014). One remedy is to use the regularized
technique

where 𝛼 > 0 is a user-described regularization parameter.
Denote by P̃ = (P̃I + �In)

−1P̃C , we are interested in the eigenvectors corresponding to
the smallest d eigenvalues of the matrix P̃ . As

it follows from the Sherman–Morrison–Woodbury formula (Golub & Van Loan, 2014) that

where

Thus,

P̃I − B =

(
� �

� In2 −
1

n2
�I�

T
I

)

P̃I �̃ = �̃P̃C �̃.

(31)(P̃I + �In)̂� = �̂P̃C �̂,

P̃I = ẼI Ẽ
T
I
−

1

n1
�̃I �̃

T
C
−

1

n1
�̃C �̃

T
I
+

n2

n2
1

�̃C �̃
T
C

=
�
ẼI �̃I �̃C

�
⎛
⎜
⎜
⎜
⎝

In2 � �

� � −
1

n1

� −
1

n1

n2

n2
1

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎝

ẼT
I

�̃T
I

�̃T
C

⎞
⎟
⎟
⎠

∈ ℝ
n×n,

(P̃I + �In)
−1 =

⎡
⎢
⎢
⎢
⎣

�In +
�
ẼI �̃I �̃C

�
⎛
⎜
⎜
⎜
⎝

In2 � �

� � −
1

n1

� −
1

n1

n2

n2
1

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎝

ẼT
I

�̃T
I

�̃T
C

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎦

−1

=
1

�
In −

1

�2

�
ẼI �̃I �̃C

�
Θ−1

⎛
⎜
⎜
⎜
⎝

In2 � �

� � −
1

n1

� −
1

n1

n2

n2
1

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎝

ẼT
I

�̃T
I

�̃T
C

⎞
⎟
⎟
⎠

,

Θ = In2+2 +
1

�

⎛
⎜
⎜
⎜
⎝

In2 � �

� � −
1

n1

� −
1

n1

n2

n2
1

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎝

ẼT
I

�̃T
I

�̃T
C

⎞
⎟
⎟
⎠

�
ẼI �̃I �̃C

�
∈ ℝ

(n2+2)×(n2+2).

2049Machine Learning (2022) 111:2037–2091

1 3

Next, we will prove that

On one hand, we obtain from (26) that

From ẼC�C = �̃C , we have span{�PC} ⊆ span{�EC} . A combination of the above equation
with (24) yields

On the other hand, we have from (26) that

So we get (33) from combining (34) and (35). In conclusion, we have from (30), (32) and
(33) that

Thus, P̃ has n2 + 1 eigenvalues 0 and n1 − 1 eigenvalues which equal to 1
�
 . In practice, we

often have d ≤ n1 − 1 and n2 ≥ n1 (Iosifidis and Gabbouj 2016), and (28) can be reduced to
the problem of finding d vectors in the null space of P̃.

Hence, it is only necessary to consider the null space of P̃ . Assume that � ∈ N(P̃) , and
let � = [�T

1
, �T

2
]T ∈ ℝ

n , with �1 ∈ ℝ
n1 and �2 ∈ ℝ

n2 . Then we have from (36) that

which can be equivalently rewritten as

As a result, the solution of (28) has the following form

(32)

P̃ = (P̃I + �In)
−1P̃C

=
1

�
P̃C −

1

�2

�
ẼI �̃I �̃C

�
Θ−1

⎛
⎜
⎜
⎜
⎝

In2 � �

� � −
1

n1

� −
1

n1

n2

n2
1

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎝

ẼT
I

�̃T
I

�̃T
C

⎞
⎟
⎟
⎠

P̃C.

(33)
⎛
⎜
⎜
⎝

ẼT
I

�̃T
I

�̃T
C

⎞
⎟
⎟
⎠

P̃C =

⎛
⎜
⎜
⎝

ẼT
I
P̃C

�̃T
I
P̃C

�̃T
C
P̃C

⎞
⎟
⎟
⎠

= �.

P̃C = ẼCẼ
T
C
−

1

n1
�̃C �̃

T
C
=
(
ẼC �̃C

)
(

In1 �

� −
1

n1

)(
ẼT
C

�̃T
C

)

.

(34)ẼT
I
P̃C = � and �̃T

I
P̃C = �.

(35)�̃T
C
P̃C = �̃T

C
(ẼCẼ

T
C
−

1

n1
�̃C �̃

T
C
) = �T

C
ẼT
C
−

n1

n1
�̃T
C
=�̃T

C
− �̃T

C
= �.

(36)P̃ =
1

�
P̃C =

1

�

(
In1 −

1

n1
�C�

T
C

�

� �

)

.

(
In1 −

1

n1
�C�

T
C

�

� �

)(
�1
�2

)

=

(
�

�

)

,

(37)

⎧
⎪
⎨
⎪
⎩

(In1 −
1

n1
�C�

T
C
)�1 = �,

∀ �2 ∈ ℝ
n2 .

2050 Machine Learning (2022) 111:2037–2091

1 3

where �i ∈ ℝ
n2 , i = 1, 2,… , d, are arbitrary such that the columns of T̂rt are linear inde-

pendent. In summary, we have Algorithm 3 for the eigenanalysis step.

3.2 Solution of the trace‑ratio problem for the eigenanalysis step

In the previous subsection, we solve the ratio-trace problem (28) for the eigenanalysis
step. However, the ratio-trace model and the trace-ratio model (27) are not mathemati-
cally equivalent (Park and Park, 2008; Shi and Wu, 2021). The trace-ratio problem has
regained great concerns in recent years. The reason is that the trace-ratio model can
yield markedly improved recognition results compared with the ratio-trace model (Jia
et al., 2009; Ngo et al., 2012; Shi & Wu, 2021; Wang et al., 2007).

In this subsection, we focus on the trace-ratio problem (3.9). It has been long
believed that there is no closed-form solution for the trace-ratio problem, and some
commonly used techniques are inner-outer iterative methods (Jia et al., 2009; Ngo
et al., 2012; Wang et al., 2007; Zhao et al., 2013). Recently, Shi and Wu point out that
the trace-ratio problem has a close-form solution when the dimension of data points is
greater than or equal to the number of training samples (Shi & Wu, 2021), as the follow-
ing theorem indicates.

Theorem 3.2 Shi and Wu (2021) Let P̃T = P̃I + P̃C , then the subspace N(P̃C) ⧵N(P̃T) , i.e.,
the subspace in N(P̃C) but not in N(P̃T) , is the solution space of the trace-ratio problem
(27). Let d be the reducing dimension, if dim(N(P̃C) ⧵N(P̃T)) ≥ d , then any orthonormal
basis of a d-dimensional subspace of N(P̃C) ⧵N(P̃T) , is a solution to (27).

Based on Theorem 3.2 and the structure of the three matrices P̃I , P̃C and P̃T , we con-
sider how to solve trace-ratio problem (27) efficiently. First, we obtain from (36) that

Second, it follows from (29) and (30) that

(38)T̂rt =

(
�C �C … �C
�1 �2 … �d

)

∈ ℝ
n×d,

(39)N(P̃C) = N(P̃) = span{T̂rt}.

2051Machine Learning (2022) 111:2037–2091

1 3

Suppose that � ∈ N(P̃T) , and let � = [�T
1
, �T

2
]T ∈ ℝ

n , where �1 ∈ ℝ
n1 and �2 ∈ ℝ

n2 , we
have

which is equivalent to

Therefore, the solution is � = [�T
C

�T
I
]T = �n ∈ ℝ

n . So we obtain from Theorem 3.2 that

is a solution to trace-ratio problem (27). We present Algorithm 4 for solving the eigena-
nalysis step. It is seen that the solutions to the trace-ratio problem (27) and the ratio-trace
problem (28) are related, but are different from each other in essence.

P̃T =P̃I + P̃C

=

(
In1 +

n2−n1

n2
1

�C�
T
C

−
1

n1
�C�

T
I

−
1

n1
�I�

T
C

In2

)

.

(
In1 +

n2−n1

n2
1

�C�
T
C

−
1

n1
�C�

T
I

−
1

n1
�I�

T
C

In2

)(
�1
�2

)

=

(
�

�

)

,

(40)

⎧
⎪
⎨
⎪
⎩

(In1 −
1

n1
�C�

T
C
)�1 = �,

1

n1
�I�

T
C
�1 = �2.

(41)T̂tr = (In −
1

n
�n�

T
n
) ⋅ T̂rt

2052 Machine Learning (2022) 111:2037–2091

1 3

4 A modified Nyström method based on low‑rank approximation
for the kernel regression step

In this section, we focus on the kernel regression step. In conventional methods, one has to
compute the kernel matrix K ∈ ℝ

n×n in this step, and the computational complexities and
the storage requirements are O(n3) and O(n2) , respectively. This will be very time-consum-
ing and even be infeasible when n is extremely large.

Fortunately, kernel matrix is often approximately low-rank, based on the observation
that the spectrum of the Gaussian kernel decays rapidly (Hofmann et al., 2008; Pan et al.,
2011; Wathen & Zhu, 2015; Wang et al., 2018). Hence, devising scalable algorithms for
kernel methods has long been an active research topic, and the key is to construct low-rank
approximations to the kernel matrix (Iosifidis et al., 2015; Wang et al., 2018; Wathen &
Zhu, 2015). For example, an interpolation method was used to construct the approximation
of kernel matrix (Cambier & Darve, 2019; Xing & Chow, 2020), and a low-rank approxi-
mation was constructed in Iske et al., (2017) with the help of hierarchical low-rank prop-
erty of kernel matrix. However, to the best of our knowledge, most of the existing results
are purely theoretical and are difficult to use in practice.

In this section, we first show the numerically low-rank property of the popular used
Gaussian kernel matrix from a theoretical point of view. Based on the proposed results,
we shed light on how to determine an appropriate target rank for randomized algorithms.
We then provide a modified Nyström method with fixed-rank, and establish a probabilistic
error bound on the low-rank approximation.

4.1 On the approximately low‑rank property of kernel matrix

Low-rank approximations are popular techniques to reduce the high computational cost of
algorithms for large-scale kernel matrices (Halko et al., 2011; Hofmann et al., 2008; Wang
et al., 2018; Wathen & Zhu, 2015). In essence, the success of these low-rank algorithms
hinges on a large spectrum gap or a fast decay of the spectrum of the kernel matrix (Halko
et al., 2011; Hofmann et al., 2008; Wang et al., 2018; Wathen & Zhu, 2015). This moti-
vates the analysis on the numerical rank of kernel matrix; see Bach (2013), Wathen and
Zhu (2015), Wang et al. (2018) and the references therein. However, it seems there are few
theoretical results that can provide both simple and feasible strategies for the target rank
used in randomized algorithms hitherto.

To fill in this gap, we investigate the numerical rank of the kernel matrix, and provide
a suitable target rank for practical use. The popular used Radial Basis Function (RBF) or
Gaussian kernel function is considered

where the value of the Gaussian scale � is set to be the mean Euclidean distance between
the training vectors, corresponding to the natural scaling value of each data set (Iosifidis &
Gabbouj, 2016). We need the following definition for numerical rank of a matrix.

Definition 4.1 Higham and Mary (2019) Let A ∈ ℝ
n×n be nonzero. For k ≤ n , the rank-k

accuracy of A is

(42)�(�i, �j) = exp
�

−
‖�i − �j‖

2
2

2�2

�

,

2053Machine Learning (2022) 111:2037–2091

1 3

We call Wk an optimal rank-k approximation to A if Wk achieves the minimum in (43). The
numerical rank of A at accuracy � , denoted by k�(A) , is

The matrix A is of low numerical rank if 𝜀k(A) ≪ 1 for some k ≪ n.

Let UΣVT be the singular value decomposition (SVD) of A, with singular values
�1 ≥ �2 ≥ ⋯ ≥ �n . Denote by Uj,Vj be the matrices composed of the first j columns of
U, V, respectively, and by Σj the j-by-j principle submatrix of Σ . In terms of Definition
4.1, Wj = UjΣjV

T
j

 is an optimal rank-j approximation to A, and if

then the matrix A is of low numerical rank, where �j+1(A) is the (j + 1)-th largest singular
value of A.

The main aim of this subsection is to show that kernel matrix K has low numerical rank
which depends on the number of clusters s. Let X = [�1, �2,… , �n] ∈ ℝ

m×n be the set of
training samples, with �i ∈ ℝ

m and ‖�i‖2 = 1, i = 1,… , n . Assume that the data matrix is
partitioned into s classes as X = [X1,X2,… ,Xs] , where Xj is the j-th set with nj being the
number of samples. In supervised methods, the number of s is known, otherwise, one can
use, say, the K-means method (Wu et al., 2008) for choosing an appropriate s in advance.
Additionally, denote by �j the centroid vector of Xj and by Δj = Xj − �j�

T
nj
, j = 1, 2,… , s ,

then

where �nj is the vector of all ones with dimension nj , and

Thanks to the structure of the kernel matrix K, we can decompose it into s blocks corre-
sponding to the classification indexes in Xj , i.e.,

where �̂j is the centroid vector of Kj, j = 1, 2,… , s , and

We are ready to present the main theorem of this subsection on numerically low-rank prop-
erty of Gaussian kernel matrix.

Theorem 4.2 Under the above notations, we have

(43)�k(A) = min
Wk∈ℝ

n×n

�
‖A −Wk‖2

‖A‖2
∶ rank(Wk) ≤ k

�

.

k�(A) = min{k ∶ �k(A) ≤ �}.

(44)𝜀j(A) =
𝜎j+1(A)

𝜎1(A)
≪ 1,

(45)X = [X1,X2,… ,Xs] = [�1�
T
n1
, �2�

T
n2
,… , �s�

T
ns
] + [Δ1,Δ2,… ,Δs] = X̂ + Δ,

(46)Δ = X − [�1�
T
n1
, �2�

T
n2
,… , �s�

T
ns
] = [Δ1,Δ2,… ,Δs].

(47)K = [K1,K2,… ,Ks] = [�̂1�
T
n1
, �̂2�

T
n2
,… , �̂s�

T
ns
] + [Δ̂1, Δ̂2,… , Δ̂s] =K̂ + Δ̂,

(48)K̂ = [�̂1�
T
n1
, �̂2�

T
n2
,… , �̂s�

T
ns
], Δ̂ = [Δ̂1, Δ̂2,… , Δ̂s].

2054 Machine Learning (2022) 111:2037–2091

1 3

where � is Gaussian scale value in the radial basis function (RBF), and − 2

𝜎2
< 𝜁 < 0.

Proof Let �i and �j be in the q-th class, 1 ≤ i, j ≤ n, 1 ≤ q ≤ s . First, we establish the
relationship between the i-th column �i and the j-th column �j of the RBF kernel matrix
defined in (42). Notice that

 Denote by

and without loss of generality, we suppose that tz,i < tz,j . Since the exponential function is
continuous and derivable in the interval [tz,i, tz,j] , it follows from the Lagrange mean value
theorem (Zoric, 2008) that there exists a point �i,j,z ∈ (tz,i, tz,j) , such that

where we have − 2

𝜎2
< 𝜁i,j,z < 0 , as ‖�i‖2 = ‖�j‖2 = ‖�z‖ = 1 . Moreover, we obtain from

(50) that

A combination of (51) and (52) yields

where � = max
i,j,z

�i,j,z and − 2

𝜎2
< 𝜁 < 0 . As a result,

Second, we consider the relation between ‖Δq‖2 and ‖Δ̂q‖F , 1 ≤ q ≤ s . It follows from (54)
that

(49)
�s+1(K)

�1(K)
≤ 4

�
nmax
1≤i≤s

ni
e�

�2
⋅

‖Δ‖F

‖K‖2
,

(50)
‖�i − �j‖2 = ‖�i − �q + �q − �j‖2 ≤ ‖�i − �q‖2 + ‖�j − �q‖2 ≤ 2‖Xq − �q�

T
nq
‖2 = 2‖Δq‖2.

tz,i = −
‖�z − �i‖

2
2

2�2
and tz,j = −

‖�z − �j‖
2
2

2�2
, 1 ≤ z ≤ n,

(51)

�etz,j − etz,i � =e�i,j,z ⋅ �(tz,j − tz,i)�

=e�i,j,z ⋅

�
�
�
‖�z − �i‖

2
2
− ‖�z − �j‖

2
2

�
�
�

2�2
, 1 ≤ z ≤ n,

(52)

�
�
�
‖�z − �i‖

2
2
− ‖�z − �j‖

2
2

�
�
�
=
�
�
�
(‖�z − �i‖2 + ‖�z − �j‖2) ⋅ (‖�z − �i‖2 − ‖�z − �j‖2)

�
�
�

≤4
�
�
�
‖�z − �i‖2 − ‖�z − �j‖2

�
�
�

≤4‖�j − �i‖2 ≤ 8‖Δq‖2.

(53)�etz,j − etz,i � ≤ e�i,j,z ⋅
4‖Δq‖2

�2
≤ e� ⋅

4‖Δq‖2

�2
, 1 ≤ z ≤ n,

(54)‖�i − �j‖2 =

�
n�

z=1

�etz,j − etz,i �2

� 1

2

≤ 4
√
ne� ⋅

‖Δq‖2

�2
.

2055Machine Learning (2022) 111:2037–2091

1 3

where �q,t , t = 1, 2,… , nq , are the t-th column of the matrix Kq.
Third, we focus on the relationship between ‖Δ̂‖F and ‖Δ‖F . We have from (55) that

Finally, it follows from (48) that rank(K̂) ≤ s , and �s+1(K̂) = 0 . Thus, we have from the
perturbation theory of singular values (Golub & Van Loan, 2014), Corollary 8.6.2 and (56)
that

which completes the proof. ◻

Remark 4 We show that the kernel matrix K has low numerical rank that depends on the
number of clusters s. Let ‖Δ‖2 =

∑s

i=1
‖Δi‖2

s
 , which reflects the clustering effect of the origi-

nal data X. Then Theorem 4.2 indicates that

In other words, if ‖Δ‖2
‖K‖2

 is sufficiently small, then the kernel matrix K is numerically low-
rank, and the number of clusters s can be viewed as a numerical rank of K. This provides a
target rank for solving the kernel regression problem, with applications to some rand-
omized algorithms; see Sect. 4.2. Moreover, the proof also applies to other kernel functions
such as the Laplacian kernel (Hofmann et al., 2008).

4.2 A modified Nyström method with fixed‑rank

In this subsection, we consider how to solve the kernel regression problem (17) efficiently.
As was mentioned in Remark 1, an explicit computation of the matrix K̃K̃T can be prohibi-
tive, and an alternative is to use some low-rank approximations to K̃K̃T without forming it
explicitly. We have from Sect. 4.1 that the kernel matrix K is numerically low-rank and the
number of clusters s can be used as a numerical rank of K. Hence, s can also be used as

(55)

‖Δ̂q‖F =‖Kq − �̂q�
T
nq
‖F

=

�
�
�
�

nq�

h=1

‖�q,h − �̂q‖
2
2

≤

�
�
�
�

nq�

h=1

(
∑nq

t=1
‖�q,h − �q,t‖2)

2

n2
q

≤4
√
n ⋅ nqe

�
⋅

‖Δq‖2

�2
,

(56)

‖Δ̂‖F =

�
�
�
�

s�

i=1

‖Δ̂i‖
2
F
≤

�
�
�
�

s�

i=1

�

4
√
n ⋅ nie

�
⋅

‖Δi‖2

�2

�2

≤ 4
�

n ⋅ max
1≤i≤s

ni
e�

�2
‖Δ‖F .

�s+1(K)

�1(K)
=

��s+1(K) − �s+1(K̂)�

�1(K)
≤

‖Δ̂‖F

‖K‖2
≤ 4

�
n ⋅ max

1≤i≤s
ni
e�

�2

‖Δ‖F

‖K‖2
,

(57)
�s+1(K)

�1(K)
= O

�
‖Δ‖2

‖K‖2

�

.

2056 Machine Learning (2022) 111:2037–2091

1 3

a target rank of the reduced kernel matrix K̃ ∈ ℝ
r×n which is a sub-matrix of the original

kernel matrix K ∈ ℝ
n×n . Thus, the idea is to choose s as the numerical rank of K̃K̃T , and

compute

instead of (17) for the kernel regression step.
Given the target rank k, the standard Nyström method (Williams & Seeger, 2001;

Drineas & Mahoney, 2005) constructs a rank-k approximation to an arbitrary symmet-
ric positive semidefinite (SPSD) kernel matrix H ∈ ℝ

r×r by using only a few columns
(or rows) of the matrix. More precisely, let l be the number of sampling, we denote by
C ∈ ℝ

r×l(r > l > k) the matrix consists of l columns sampled from the kernel matrix H,
and by W ∈ ℝ

l×l the intersection matrix formed by the intersection of these l columns and
the corresponding l rows. The rank-l and rank-k Nyström approximation are

respectively, where [[W]]k represents the best rank-k approximation to W. Although this
method can avoid accessing the entire kernel matrix, and thus greatly reduces the amount
of calculation cost and storage requirement, it may suffer from losing of accuracy. Indeed,
it was shown that no matter what sampling technique is employed, the incurred error in the
Nyström approximation must grow with the matrix size r at least linearly (Wang & Zhang,
2013). As a result, the approximation obtained from the standard Nyström method may be
unsatisfactory when r is large, unless a considerable number of columns are selected.

In Cortes et al. (2010), Cortes et al., pointed out that a tighter kernel approximation
may lead to a better learning accuracy, so it is necessary to find kernel approximation
models with better accuracies than the standard Nyström method. For instance, a modified
Nyström method (Wang & Zhang, 2013; Sun et al., 2015) was proposed by borrowing the
techniques in CUR matrix decomposition. With the selected columns C ∈ ℝ

r×l at hand, the
rank-l modified Nyström approximation uses

as an approximation to the kernel matrix H, where

It is seen from (60) and (59) that the modified Nyström approximation H̃mod is no worse
than the standard rank-l Nyström approximation H̃nys

l
.

Although Nyström method aims to compute a rank-k approximation, it is often preferred
to choose l > k landmark points and then restrict the resultant approximation to have rank
at most k. Recently, a new alternative called the fixed-rank Nyström approximation was
proposed (Anaraki & Becker, 2019), in which

is utilized as an approximation to H. Theoretical analysis and numerical experiments show
that the fixed-rank Nyström approximation H̃opt is superior to the standard rank-k Nyström
method H̃nys

k
 with respect to the nuclear norm (Anaraki & Becker, 2019).

(58)Ã = (K̃K̃T)†K̃T ,

(59)H̃
nys

l
= CW†CT and H̃

nys

k
= C[[W]]†

k
CT ,

(60)H̃mod = C(C†H(C†)T)CT = CUmodCT

Umod = argmin
U∈ℝl×l

‖H − CUCT‖F = C†H(C†)T .

(61)H̃opt = [[CW†CT]]k

2057Machine Learning (2022) 111:2037–2091

1 3

Inspired by the fixed-rank Nyström method (Anaraki & Becker, 2019) and the modified
Nyström method (Wang & Zhang, 2013), we knit the two methods together and propose a
modified Nyström method with fixed-rank. More precisely, we first perform the economized
QR decomposition C = QR , then the rank-l approximation (60) can be rewritten as

Afterward, we make use of

i.e., the best rank-k approximation to QQTHQQT , as approximation to the kernel matrix H.
In summary, we present in Algorithm 5 our modified Nyström method with fixed-rank for
the computation of the reconstruction weights matrix A arising in (58).

Remark 5 Compared with the fixed-rank Nyström approximation (61), for the same
selected columns C ∈ ℝ

r×l , the intersection matrix in our method reaches the solution of
the optimization problem as in (60), and our approximation (63) is more accurate than
the one obtained from the fixed-rank Nyström method. On the other hand, unlike many
Nyström methods (Sun et al., 2015), an advantage of (63) is that it is free of computing the
Moore–Penrose inverse C† . Finally, for clarity, we list the time and space complexities of

(62)H̃mod = C(C†H(C†)T)CT = CC†HCC† = QQTHQQT .

(63)H̃mod
opt

= [[QQTHQQT]]k,

Table 2 A comparison of
computational complexities and
memory requirements of three
different Nyström methods

Algorithms Computational complexities Memory
require-
ments

Fixed-rank Nyström O(nrl + rl
2 + rlk + l

3) O(nr)

Modified Nyström O(nrk + nk
2 + rk

2) O(nr)

Algorithm 5 O(nrl + nl
2 + rl

2) O(nr)

2058 Machine Learning (2022) 111:2037–2091

1 3

the fixed-rank Nyström method, the modified Nyström method, as well as Algorithm 5; see
Table 2.

Next, we will establish a probabilistic error bound for our modified Nyström method
with fixed-rank. We first need the following Lemma.

Lemma 4.3 Tropp (2012) Given � independent random p × p symmetric positive semidefi-
nite (SPSD) matrix G1,G2,… ,G

�
 , with the property

where �1(Gi) is the largest eigenvalue of Gi and 𝛾 > 0 is a uniform upper bound of
�1(Gi

), i = 1, 2,… ,� . Defining Y =
∑

�

i=1
Gi and �min = �min(�(Y)) , then for any � ∈ (0, 1] ,

the following probability inequality holds

where �(Y) denotes expectation with respect to the random matrix Y.

Notice that K̃ is an r × n matrix, let K̃ = ŨΣ̃ṼT be the economized singular value
decomposition of K̃ , where Ũ ∈ ℝ

r×n , Σ̃ ∈ ℝ
n×n and Ṽ ∈ ℝ

n×n . Then K̃K̃T = ŨΣ̃2ŨT , and
we rewrite the singular value decomposition as

where Σ̃2
1
∈ ℝ

k×k and Ũ1 ∈ ℝ
r×k . Let S ∈ ℝ

r×l be a random matrix that has only one entry
equals to one and the rest are zero in each column, and at most one nonzero element in
each row. Denote by

As k < l , one can assume that S1 is of full row rank. Now we are ready to present the
following theorem for the probabilistic error bound on the low-rank approximation from
Algorithm 5.

Theorem 4.4 Let �1 ≥ �2 ≥ �3 ≥ ⋯ ≥ �r ≥ 0 be the singular values of �K ∈ ℝ
r×n(r < n) ,

and let UkDkU
T
k
 be the low-rank approximation from Algorithm 5. If S1 is of full row rank,

then we have that

with probability at least 1 − 2� , where

and

�1(Gi) ≤ � , i = 1, 2,… ,�,

ℙ
{
�min(Y) ≤ ��min

}
≤ p ⋅

(
e�−1

��

) �min

�

,

(64)K̃K̃T = ŨΣ̃2ŨT = Ũ

(
Σ̃2
1

�

� Σ̃2
2

)(
ŨT

1

ŨT
2

)

,

(65)S1 = ŨT
1
S ∈ ℝ

k×l and S2 = ŨT
2
S ∈ ℝ

(n−k)×l.

‖K̃K̃T − UkDkU
T
k
‖2

‖K̃K̃T‖2

≤ 2

�

3

2
+

1

�
√
�
⋅

�

1 +

�
r − 1

r
+

�
(r − 1)(n − k)

rl

��
�2
k+1

(K̃)

�2
1
(K̃)

𝛿 = k

(
e𝜃 − 1

𝜃𝜃

) l

k𝜇0

, 0 < 𝜃 ≤ 1,

2059Machine Learning (2022) 111:2037–2091

1 3

is the matrix coherence of Ũ1 , with (ŨT
1
)i and (Ũ1Ũ

T
1
)ii being the i-th column of ŨT

1
 and the

i-th diagonal element of Ũ1Ũ
T
1
 , respectively.

Proof We have from Algorithm 5 that

where [[UDUT]]k denotes the best rank-k approximation of the matrix UDUT . By using the
notations in Algorithm 5, we have

and

First, we analyze the probabilistic error bound on (66). Notice that

Based on (67) and the singular value interlacing theorem (Golub & Van Loan, 2014, p.
443), we have from (66) that

where �k+1(QQTK̃K̃TQQT) and �k+1(K̃K̃T) are the (k + 1)-th largest singular value of the
matrices QQTK̃K̃TQQT and K̃K̃T , respectively.

Second, we consider the term ‖K̃K̃T − QQTK̃K̃T‖2 . As S1 is of full row rank, we obtain
from (Halko et al., 2011), Theorem 9.1) that

and thus

Third, we consider the upper bound of ‖S†
1
‖2 , whose proof is along the line of (Gittens,

2011), Lemma 1. Notice that

�0 =
r

k
max
1≤i≤r

‖(ŨT
1
)i‖

2
2
=

r

k
max
1≤i≤r

(Ũ1Ũ
T
1
)ii

‖K̃K̃T − UkDkU
T
k
‖2 = ‖K̃K̃T − [[UDUT]]k‖2,

[[UDUT]]k = [[QVDVTQT]]k = [[QWWTQT]]k = [[QQTK̃K̃TQQT]]k,

(66)‖K̃K̃T − UkDkU
T
k
‖2 = ‖K̃K̃T − [[QQTK̃K̃TQQT]]k‖2.

(67)
‖K̃K̃T − QQTK̃K̃TQQT‖2 ≤‖K̃K̃

T − QQTK̃K̃T‖2 + ‖QQT (K̃K̃T − K̃K̃TQQT)‖2

≤2‖K̃K̃T − QQTK̃K̃T‖2.

(68)

‖K̃K̃T − [[QQTK̃K̃TQQT]]k‖2

≤ ‖K̃K̃T − QQTK̃K̃TQQT‖2 + ‖QQTK̃K̃TQQT − [[QQTK̃K̃TQQT]]k‖2

≤ 2‖K̃K̃T − QQTK̃K̃T‖2 + �k+1(QQ
TK̃K̃TQQT)

≤ 2‖K̃K̃T − QQTK̃K̃T‖2 + �k+1(K̃K̃
T),

(69)‖K̃K̃T − QQTK̃K̃T‖2
2
≤ ‖Σ̃2

2
‖2
2
+ ‖Σ̃2

2
S2S

†

1
‖2
2
,

(70)

‖K̃K̃T − QQTK̃K̃T‖2

≤ (‖Σ̃2
2
‖2
2
+ ‖Σ̃2

2
S2S

†

1
‖2
2
)
1

2

≤ ‖Σ̃2
2
‖2 + ‖Σ̃2

2
S2S

†

1
‖2

≤ ‖Σ̃2
2
‖2 + ‖Σ̃2

2
S2‖2 ⋅ ‖S

†

1
‖2.

2060 Machine Learning (2022) 111:2037–2091

1 3

where �k(ŨT
1
SSTŨ1) is the k-th largest eigenvalue of ŨT

1
SSTŨ1 . Denote by (ŨT

1
)i the i-th col-

umn of ŨT
1
 , then we have that ŨT

1
Ũ1 =

∑r

i=1
(ŨT

1
)i ⋅ [(Ũ

T
1
)i]

T . Thanks to the property of S, let
Gi ∈ ℝ

k×k, i = 1, 2,… , l , be matrices chosen randomly from the set {(ŨT
1
)i ⋅ [(Ũ

T
1
)i]

T}r
i=1

 ,
then we have from (71) that

Define � = max
1≤i≤l

�1(Gi) , then

where �0 =
r

k
max
1≤i≤r

‖(ŨT
1
)i‖

2
2
=

r

k
max
1≤i≤r

(Ũ1Ũ
T
1
)ii is the matrix coherence of Ũ1 (Gittens,

2011), and (Ũ1Ũ
T
1
)ii stands for the i-th diagonal element of Ũ1Ũ

T
1
.

Denote by �min = �min(�(
∑l

i=1
Gi)) , then

where we use the orthogonality of the matrix Ũ1 . From Lemma 4.3, we obtain

where � ∈ (0, 1] . Thus, a combination of (72) and (73) yields

where � = k
(

e�−1

��

) l

k�0.
Fourth, we establish a probabilistic bound on ‖Σ̃2

2
S2‖2 in (70). Recall that S is a Gauss-

ian matrix whose entries are independent normal variables with mean � and variance �2 ,
i.e., S ∼ N(�, �2) . Denote by Ω =

S−��r�
T
l

�
 , where �r is the vector of all ones with dimension

r, then Ω is a standard Gaussian matrix and S = �Ω + ��r�
T
l
 . It follows from (65) that

where we use ‖�r�Tl ‖2 =
√
rl in the last inequality. Taking expectation with respect to (75)

gives

(71)‖S
†

1
‖2
2
= ‖(ŨT

1
S)†‖2

2
=

1

�2
k
(ŨT

1
S)

=
1

�k(Ũ
T
1
SSTŨ1)

,

(72)‖S
†

1
‖2
2
=

1

�k(Ũ
T
1
SSTŨ1)

=
1

�k(
∑l

i=1
Gi)

.

� = max
1≤i≤l

�1(Gi) = max
1≤i≤r

‖(ŨT
1
)i‖

2
2
=

k

r
�0,

�min = �min

(

�
(

l∑

i=1

Gi

))

= l�min

(
1

r
ŨT

1
Ũ1

)

=
l

r
,

(73)ℙ

{

�min(

l∑

i=1

Gi) ≤
�l

r

}

≤ k

(
e�−1

��

) l

k�0

,

(74)ℙ

�

‖S
†

1
‖2 ≥

�
r

�l

�

≤ �,

(75)

‖Σ̃2
2
S2‖2 =‖Σ̃

2
2
ŨT

2
(�Ω + ��r�

T
l
)‖2

≤�‖Σ̃2
2
ŨT

2
Ω‖2 + �‖Σ̃2

2
ŨT

2
�r�

T
l
‖2

≤

�

�‖ŨT
2
Ω‖2 + �‖ŨT

2
�r�

T
l
‖2

�

‖Σ̃2
2
‖2

≤

�

�‖ŨT
2
Ω‖2 + �

√
rl
�

‖Σ̃2
2
‖2,

2061Machine Learning (2022) 111:2037–2091

1 3

Notice that Ũ2 is a column orthogonal matrix and the distribution of the standard Gaussian
matrix Ω is rotationally invariant, and ŨT

2
Ω ∈ ℝ

(n−k)×l is also a standard Gaussian matrix.
So we have (Halko et al., 2011)

Thus, a combination of (76) and (77) gives

In light of the Markov’s inequality (Grimmett & Stirzaker, 2001), we get

Combining (74) and (78), and applying the union bound, we have

Hence, we have the following probabilistic error bound for ‖Σ̃2
2
S2‖2 ⋅ ‖S

†

1
‖2 in (70), i.e.,

with probability at least 1 − 2� , where

and

is the matrix coherence of Ũ1.
Finally, based on (68), (70) and (80), a probabilistic error bound on the low-rank

approximation [[QQTK̃K̃TQQT]]k to K̃K̃T is given as follows.

(76)�(‖Σ̃2
2
S2‖2) ≤ ‖Σ̃2

2
‖2 ⋅

�

��(‖ŨT
2
Ω‖2) + �

√
rl
�

.

(77)�(‖ŨT
2
Ω‖2) ≤

√
l +

√
n − k.

�(‖Σ̃2
2
S2‖2) ≤ ‖Σ̃2

2
‖2 ⋅

�

� (
√
l +

√
n − k) + �

√
rl
�

.

(78)

ℙ

�

‖Σ̃2
2
S2‖2 ≥

� (
√
l +

√
n − k) + �

√
rl

�
‖Σ̃2

2
‖2

�

≤
𝔼(‖Σ̃2

2
S2‖2)

� (
√
l+
√
n−k)+�

√
rl

�
‖Σ̃2

2
‖2

≤ �.

(79)ℙ

�

‖S
†

1
‖2 ≥

�
r

�l
or ‖Σ̃2

2
S2‖2 ≥

� (
√
l +

√
n − k) + �

√
rl

�
‖Σ̃2

2
‖2

�

≤ 2�.

(80)‖Σ̃2
2
S2‖2 ⋅ ‖S

†

1
‖2 ≤

�
r

�l
⋅

� (
√
l +

√
n − k) + �

√
rl

�
‖Σ̃2

2
‖2,

𝛿 = k

(
e𝜃 − 1

𝜃𝜃

) l

k𝜇0

, 0 < 𝜃 ≤ 1,

�0 =
r

k
max
1≤i≤r

‖(ŨT
1
)i‖

2
2
=

r

k
max
1≤i≤r

(Ũ1Ũ
T
1
)ii

‖K̃K̃T − [[QQTK̃K̃TQQT]]k‖2

≤ 2‖K̃K̃T − QQTK̃K̃T‖2 + �k+1(K̃K̃
T)

≤ 2
�

‖Σ̃2
2
‖2 + ‖Σ̃2

2
S2‖2 ⋅ ‖S

†

1
‖2

�

+ �k+1(K̃K̃
T)

≤ 2

�

1 +

�
r

�l
⋅

� (
√
l +

√
n − k) + �

√
rl

�

�

‖Σ̃2
2
‖2 + �k+1(K̃K̃

T)

2062 Machine Learning (2022) 111:2037–2091

1 3

holds with probability at least 1 − 2� . Recall that S ∈ ℝ
r×l is a Gaussian distribution matrix

with mean � and variance �2 , and it is easy to check that � =
1

r
 and �2 = r−1

r2
 . So we have

holds with probability at least 1 − 2� . In summary, we have from (66) and (81) that

with probability at least 1 − 2� . ◻

Remark 6 Theorem 4.4 gives a relative error bound on approximating the matrix K̃K̃T . As
was mentioned in Remark 4, if the clustering result of the original data X is ideal, then the
reduced kernel matrix K̃ will have low numerical rank that is the number of clusters s. In
other words, one can choose s as the target rank in randomized algorithms to solve the ker-
nel regression step. Thus, from the probabilistic error bound established in Theorem 4.4, if
we adopt the number of clusters s as the target rank k, then �2

k+1
(K̃)∕�2

1
(K̃) is sufficiently

small, and our proposed algorithm will be effective.

5 A randomized block Kaczmarz method for kernel regression
problem with multiple right‑hand sides

In Sect. 4, we propose a low-rank approximation to K̃K̃T for solving (17). Although the
proposed Nyström method is not required to form the matrix K̃K̃T explicitly, this method
needs to form and store the reduced kernel matrix K̃ explicitly. In the era of big data, the
reduced kernel matrix may be so huge that it can not be stored in main memory. To deal
with this problem, in this section, we propose a randomized block Kaczmarz method for
kernel regression problem. For notation simplicity, we write (17) as

As T ∈ ℝ
n×d with d > 1 , we call it a kernel regression problem with multiple right-hand

sides.

(81)

‖K̃K̃T − [[QQTK̃K̃TQQT]]k‖2

≤ 2

�

1 +

�
r

�l
⋅

1

�
⋅

√
r − 1(

√
l +

√
n − k) +

√
rl

r

�

�k+1(K̃K̃
T) + �k+1(K̃K̃

T)

= 2

⎛
⎜
⎜
⎜
⎜
⎝

3

2
+

1

�
√
�
⋅

√
r − 1

�

1 +
�

n−k

l

�

+
√
r

√
r

⎞
⎟
⎟
⎟
⎟
⎠

�k+1(K̃K̃
T)

= 2

�

3

2
+

1

�
√
�
⋅

�

1 +

�
r − 1

r
+

�
(r − 1)(n − k)

rl

��

�2
k+1

(K̃),

‖K̃K̃T − UkDkU
T
k
‖2

‖K̃K̃T‖2

≤ 2

�

3

2
+

1

�
√
�
⋅

�

1 +

�
r − 1

r
+

�
(r − 1)(n − k)

rl

��
�2
k+1

(K̃)

�2
1
(K̃)

,

(82)X∗ = argmin
X∈ℝr×d

‖BX − T‖2
F
, where B ≡ K̃T ∈ ℝ

n×r.

2063Machine Learning (2022) 111:2037–2091

1 3

The randomized Kaczmarz method is a popular solver for large-scale and dense linear
systems (Strohmer & Vershynin, 2009). An advantage of this type of method is that there
is no need to access the full data matrix into main memory, and only a small portion of the
data matrix is utilized to update the solution in each iteration. In Zouzias and Freris (2013),
Zouzias and Freris introduced a randomized extended Kaczmarz (REK) method for solv-
ing the least squares problem min�∈ℝr ‖B� − �‖2

2
 . In essence, it is a specific combination

of the randomized orthogonal projection method together with the randomized Kaczmarz
method. It was shown that, the solution of the randomized extended Kaczmarz method
approaches the l2 norm least squares solution up to an additive error that depends on the
distance between the right-hand side vector � and the column space of the matrix B (Zou-
zias & Freris, 2013). More precisely, the randomized extended Kaczmarz method exploits
the randomized orthogonal projection method to efficiently reduce the norm of the “noisy”
part �R(B)⊥ of � , where �R(B)⊥ = (In − BB†)� . As the least squares solution is

the randomized Kaczmarz method is applied to a new linear system whose right-hand side
is �R(B) = BB†�.

The block Kaczmarz method is generally considered to be more efficient than the clas-
sical Kaczmarz method, because of subtle computational issues involved in data transfer
and basic linear algebra subroutines (Necoara, 2019; Needell & Tropp, 2014; Needell
et al., 2015). In Needell et al. (2015), Needell et al., put forward a randomized double block
Kaczmarz method that is an extension to the block Kaczmarz method and the randomized
extended Kaczmarz (REK) method. The randomized double block Kaczmarz method
exploits column partition for the projection step and row partition for the Kaczmarz step.
Consequently, the computational cost will be very high for large-scale data. As an alterna-
tive, a randomized block coordinate descent (RBCD) method was also proposed in Needell
et al. (2015), which utilizes only column paving for the projection step and Kaczmarz step
for the resulting linear system. To reduce the amount of calculation, this method acquires
a suitable partition to the columns based on random selections; for more details, refer to
Needell et al. (2015).

�LS = B†� = B†BB†� ≡ B†�R(B),

2064 Machine Learning (2022) 111:2037–2091

1 3

To the best of our knowledge, however, Kaczmarz-type methods have not yet been
used to solve linear systems and least squares problems with multiple right-hand sides.
Hence, on the basis of the randomized block coordinate descent method proposed in
Needell et al. (2015), we present in Algorithm 7 a randomized block Kaczmarz method
for regression problem with multiple right-hand sides.

Remark 7 Some remarks are given to Algorithm 7. First, compared with some existing
methods for the optimization problem (17), an advantage of Algorithm 7 is that there is no
need to explicitly form and store all the elements of the reduced kernel matrix K̃ . Second,
the randomized block Kaczmarz methods proposed in Necoara (2019), Needell and Tropp
(2014), Needell et al., (2015) are just for solving least squares problems or linear systems
with only one right-hand side. As a comparison, Algorithm 7 can solve the d problems
once for all, where d is the discriminant space dimensionality. So the proposed method
can accelerate some existing randomized block Kaczmarz methods significantly, especially
when d is large. Third, we propose a new sampling scheme which is different from the
standard block Kaczmarz method, see Step 5 in Algorithm 7. More precisely, we first per-
form a random partition to the column index set with p blocks, and select one block arbi-
trarily from the partition. Then, we choose half of the columns corresponding to the largest
norm from the selected block.

2065Machine Learning (2022) 111:2037–2091

1 3

The stopping criteria utilized in the existing randomized block Kaczmarz methods often
relies on the full coefficient matrix B more or less (Necoara, 2019; Needell & Tropp, 2014;
Needell et al., 2015), which contradicts the purpose of not storing the entire coefficient matrix
in main memory. To circumvent this difficulty, in Algorithm 7, we propose a practical stop-
ping criterion (83) in which there is no need to access the full coefficient matrix. Indeed, com-
pared with the (� − 1)-th iterative solution X(�−1) , the �-th iterative solution X(�) only updates
those rows corresponding to the index set �

�
 , while the other rows remain unchanged. More

precisely, in Step 10 of Algorithm 7, we make use of

as a stopping criterion, and there is no need to access the entire coefficient matrix B. Now
we show the rationality of this scheme. Denote by XLS = B†T the least square solution with
least F-norm of the optimization problem (82). It is easy to see that

Thus, if the iterative sequence {X(�)}∞
�=0

 converges to XLS , then ‖X(�) − X(�−1)‖F∕‖T‖F
converges to 0, and (83) can be used as a stopping criterion for solving (82).

Denote by B(∶, �̃
�
) = B�̃

�

 , in Algorithm 7, we notice that the conditioning of the blocks
B
�̃
�

 plays a crucial role in the behavior of the block Kaczmarz methods. In Needell and
Tropp (2014), Needell et al. (2015), Needell and Tropp give a definition of a “paving" for
the matrix B.

Definition 5.1 Needell and Tropp (2014) A column paving (p, �, �) of an n × r matrix B is
a partition T̃ = {�̃1, �̃2,… , �̃p} of the column indices such that

where B
�̃ i
= B(∶, �̃ i) is composed of the columns in matrix B corresponding to the index �̃ i.

Inspired by Needell et al. (2015), Theorem 7), we give the following theoretical analysis
on the convergence of the iterative sequence {X(�)}∞

�=0
 generated by Algorithm 7.

Theorem 5.2 Denote by {X(�)}∞
�=0

 the iterative sequence generated by Algorithm 7, and
by (p, �, �) a column paving of B. Assume that B is of full column rank, then there exists a
scalar � ∈ (0, 1) such that

where �nz

min
(B) is the smallest non-zero singular value of B, and �(B) = �max(B)

�nz

min
(B)

 is the 2-norm
condition number of B.

Proof We note that

(83)err =
‖X(�) − X(�−1)‖F

‖T‖F
=

‖X(�)(�
�
, ∶) − X(�−1)(�

�
, ∶)‖F

‖T‖F
=

‖W
�
‖F

‖T‖F

�
�‖X

(�) − XLS‖F − ‖X(�−1) − XLS‖F
�
�

‖T‖F
≤

‖X(�) − X(�−1)‖F

‖T‖F
≤

‖X(�) − XLS‖F + ‖X(�−1) − XLS‖F

‖T‖F
.

� ≤ �min(B�̃i
BT

�̃ i

) and �max(B�̃ i
BT

�̃i
) ≤ �, i = 1, 2,… , p,

�

�
‖XLS − X(𝓁)‖2

F

‖XLS‖
2
F

�

≤

�

1 −
� ⋅ (�nz

min
(B))2

p�

�
𝓁

�2(B),

(84)
B(XLS − X(�)) = BB†T − BX(�) = T − BX(�) − (In − BB†)T = T − BX(�) − TR(B)⊥ ,

2066 Machine Learning (2022) 111:2037–2091

1 3

where XLS = B†T and TR(B)⊥ = (In − BB†)T .
First, we prove that Z

�
= T − BX(�) by induction on � . For � = 0 , we have from Algo-

rithm 7 that Z0 = T − BX(0) . Denote by B(∶, �
�
) = B�

�

 , we note that X(1)(�1, ∶) = W1
and X(1)([r] ⧵ �1, ∶) = � , where [r] is the set {1, 2,… , r} , “ ⧵ " is the set subtraction oper-
ation, and [r] ⧵ �1 is the set whose elements belong to [r] but not to �1 . Thus, we have
Z1 = Z0 − B

�1
W1 = T − BX(1) . Now we assume that Z

�−1 = T − BX(�−1) with � ≥ 1 , then

It follows from Algorithm 7 that BX(�) = BX
(�−1) + B�

�

W
�
 . For the sake of simplicity, we

denote by X(�)(�
�
, ∶) = X(�)

�
�

 . From X(�)
�
�

= X
(�−1)
�
�

+W
�
 and X(�)

[r]��
�

= X
(�−1)

[r]��
�

 , we obtain

Combining (85) and (86), we arrive at

As a result, it follows from (84) and (87) that

Second, let F
�
= Z

�
− TR(B)⊥ , we take conditional expectation on F

�
 over �

�
 , then

where the second equality follows from the definition of Z
�
 , and the third one is from the

definition of W
�
 and the fact that the two subspaces span{B�

�

B†
�
�

} and span{TR(B)⊥} are
orthogonal.

Notice that

Next we consider the lower bound on �‖B�
�

B†
�
�

F
�−1‖

2
F
 . Let B�

�

= U�
�

Σ�
�

VT
�
�

 be the econo-
mized SVD decomposition of B�

�

 , where U�
�

,V�
�

 are orthonormal and Σ�
�

 is a diagonal
matrix containing the non-zero singular values of B�

�

 . Therefore,

and we have from Definition 5.1 that

(85)Z
�
= Z

�−1 − B�
�

W
�
= T − BX(�−1) − B�

�

W
�
.

(86)

BX(�) =B�
�

X(�)
�
�

+ B[r]��
�

X
(�)

[r]��
�

=B�
�

X(�−1)
�
�

+ B�
�

W
�
+ B[r]��

�

X
(�)

[r]��
�

=B�
�

X(�−1)
�
�

+ B�
�

W
�
+ B[r]��

�

X
(�−1)

[r]��
�

=BX(�−1) + B�
�

W
�
.

(87)Z
�
= T − (BX(�) − B�

�

W
�
) − B�

�

W
�
= T − BX(�).

(88)B(XLS − X(�)) = Z
�
− TR(B)⊥ .

(89)

�‖F
�
‖2
F
=�‖Z

�
− TR(B)⊥‖

2
F

=�‖Z
�−1 − B𝜏

�

W
�
− TR(B)⊥‖

2
F

=�‖Z
�−1 − B𝜏

�

B†
𝜏
�

Z
�−1 − (In − B𝜏

�

B†
𝜏
�

)TR(B)⊥‖
2
F

=�‖(In − B𝜏
�

B†
𝜏
�

)(Z
�−1 − TR(B)⊥)‖

2
F

=�‖(In − B𝜏
�

B†
𝜏
�

)F
�−1‖

2
F
,

(90)‖(In − B�
�

B†
�
�

)F
�−1‖

2
F
= ‖F

�−1‖
2
F
− ‖B�

�

B†
�
�

F
�−1‖

2
F
.

�‖B�
�

B†
�
�

F
�−1‖

2
F
= �‖U�

�

UT
�
�

F
�−1‖

2
F
= �‖Σ−1

�
�

VT
�
�

BT
�
�

F
�−1‖

2
F
,

2067Machine Learning (2022) 111:2037–2091

1 3

Further, we have from (88) that span{F
�−1} ⊆ R(B) , so it is known from the Courant-Fis-

cher Theorem (Golub & Van Loan, 2014, p. 441) that ‖BTF
�−1‖

2
F
≥ (�nz

min
(B))2‖F

�−1‖
2
F
 ,

where �nz

min
(B) is the smallest non-zero singular value of B. Thus, it follows from Step 5 in

Algorithm 7 that there exists a scalar � ∈ (0, 1) , such that

Hence, combining (89), (90) and (58), we get

Notice that ‖F0‖
2
F
= ‖Z0 − TR(B)⊥‖

2
F
= ‖BB†T‖2

F
 , and a combination of (88) and (93)

yields

Finally, when B is of full column rank, we obtain

where �(B) = �max(B)

�nz

min
(B)

 denotes condition number of matrix B, and the proof is completed.
 ◻

(91)

�‖B�
𝓁

B†
�
𝓁

F
𝓁−1‖

2
F

≥ �

�

�2
min

(Σ−1
�
𝓁

VT
�
𝓁

) ⋅ ‖BT
�
𝓁

F
𝓁−1‖

2
F

�

= �

�
‖BT

�
𝓁

F
𝓁−1‖

2
F

�2
max

(B�
𝓁

)

�

≥
1

�
⋅ �‖BT

�
𝓁

F
𝓁−1‖

2
F
.

(92)

�‖B�
𝓁

B†
�
𝓁

F
𝓁−1‖

2
F

≥
1

�
�‖BT

�
𝓁

F
𝓁−1‖

2
F

=
1

�

�

�∈T

‖BT
�
F
𝓁−1‖

2
F
⋅

1

p

=
�

p�
‖BTF

𝓁−1‖
2
F

≥
� ⋅ (�nz

min
(B))2

p�
‖F

𝓁−1‖
2
F
.

(93)

�‖F
𝓁
‖2
F
=‖F

𝓁−1‖
2
F
− �‖B�

𝓁

B†
�
𝓁

F
𝓁−1‖

2
F

≤

�

1 −
� ⋅ (�nz

min
(B))2

p�

�

‖F
𝓁−1‖

2
F

≤

�

1 −
� ⋅ (�nz

min
(B))2

p�

�
𝓁

‖F0‖
2
F
.

(94)�‖B(XLS − X(𝓁))‖2
F
≤

�

1 −
� ⋅ (�nz

min
(B))2

p�

�
𝓁

‖BB†T‖2
F
.

�

�
‖XLS − X(𝓁)‖2

F

‖XLS‖
2
F

�

≤

�

1 −
� ⋅ (�nz

min
(B))2

p�

�
𝓁

�2(B),

2068 Machine Learning (2022) 111:2037–2091

1 3

6 Numerical experiments

In this section, we perform numerical experiments on some real-world databases to illus-
trate the numerical behavior of our proposed algorithms. In all the experiments, the data
vectors are normalized so that ‖�i‖2 = 1 , i = 1, 2,… , n . Moreover, we consider three popu-
lar used kernels (Hofmann et al., 2008), including the Gaussian kernel function

the Laplacian kernel function

and the Polynomial kernel function

where � = 2 , and the value of the Gaussian scale 𝜎 > 0 is set to be the mean Euclidean dis-
tance between the training vectors �i (Iosifidis & Gabbouj, 2017). All the numerical experi-
ments are carried on a Hp workstation with 16 cores double Intel(R)Xeon(R) E5-2620 v4
processors, and with CPU 2.10 GHz and RAM 64 GB. The operation system is 64-bit Win-
dows 10. The numerical results are obtained from running the MATLAB R2016b software.

There are seven databases used in our experiments, including five facial image data-
bases AR, CMU-PIE, Extended YaleB, Facescrub, and YouTube Faces, a
handwritten digits database MNIST, and a tiny images database CIFAR-100. Table 3
lists the details of these databases.

• The AR database1 consists of over 4000 facial images (70 male and 56 female)
having a frontal facial pose, exhibiting several facial expressions (e.g. anger, smiling
and screaming), in different illumination source directions (left and/or right) and with
some occlusions (e.g. sun glasses and scarf). A subset of s = 100 persons (50 males
and 50 females) with 26 images of per people, i.e., 2600 images are utilized in our
experiments. We re-scaled the original facial images to 40 × 30-pixel images, which are
subsequently vectorized to m = 1200 dimensional facial vectors.

• The CMU-PIE2 (Sim et al., 2003) database consists of more than 40,000 images for
s = 68 subjects with more than 500 images in each class. These face images are cap-
tured by 13 synchronized cameras and 21 flashes under varying pose, illumination,
expression and lights. In our experiments, we choose 170 images under different illu-
minations, lights, expressions and poses for each subject. Thus, the total number of
images chosen from CMU-PIE database is 11, 560. We crop the images to 32 × 32
pixels and get m = 1024 dimensional facial vector representations.

• The Extended YaleB3 database contains 5760 single light source images of 10
subjects, each seen under 576 viewing conditions (9 different poses and 64 illumination

�(�i, �j) = exp
�

−
‖�i − �j‖

2
2

2�2

�

,

�(�i, �j) = exp
�

−
‖�i − �j‖2

�

�

,

�(�i, �j) = (�T
i
�j)

� ,

1 http:// rvl1. ecn. purdue. edu/ ~aleix/ aleix_ face_ DB. html.
2 http:// www. cs. cmu. edu/ afs/ cs/ proje ct/ PIE/ web/.
3 http:// cvc. yale. edu/ proje cts/ yalef acesB/ yalef acesB. html.

http://rvl1.ecn.purdue.edu/~aleix/aleix_face_DB.html
http://www.cs.cmu.edu/afs/cs/project/PIE/web/
http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html

2069Machine Learning (2022) 111:2037–2091

1 3

conditions of each person). The images have normal, sleepy, sad and surprising expres-
sions. In this experiment, we make use of a subset of s = 38 persons with 64 images to
per people, i.e., 2432 images, which are cropped and scaled to 64 × 64 pixels.

• The Facescrub4 (Ng and Winkler, 2014) database contains 106,863 photos of 530
celebrities (265 male and 265 female). The initial images that make up this dataset
are procured using Google Image Search. Subsequently, they are processed using the
Haarcascade-based face detector from OpenCV 2.4.7 on the images to obtain a set of
faces for each celebrity name, with the requirement that a face must be at least 96 × 96
pixels. In our experiment, we use 22631 photos from 256 male, and scale the images to
9216 pixels.

• The Youtube Faces5 (Wolf et al., 2011) consists of 621126 facial images depicting
1595 persons. In our experiments, we choose the facial images of people with at least
500 images, resulting to a dataset of 370319 images and s = 340 classes. Subsequently,
each facial image is vectorized to a facial image representation of m = 1024 dimen-
sions.

• The MNIST6 database of handwritten digits has 70,000 examples. It was derived from
a much larger dataset known as the NIST Special Database 19 (Grother, 1995) which
contains digits, uppercase and lowercase handwritten letters. Moreover, the MNIST
database contains a total of s = 10 numbers from 0 to 9. For simplicity, each digit
image is flattened and converted into a one-dimensional array of m = 28 × 28 = 784
features.

• The dataset CIFAR-1007 (Krizhevsky, 2009), named after the Canadian Institute for
Advanced Research, is labeled subset of the 80 million tiny images dataset. Further-
more, it comes in 20 superclasses of five classes each. For example, the superclass rep-
tile consists of the five classes crocodile, dinosaur, lizard, turtle and snake. The idea
is that classes within the same superclass are similar. Each image comes with a “fine”
label (the class to which it belongs) and a “coarse” label (the superclass to which it
belongs). In our experiment, the “fine” labels are utilized, which results in 600 exam-
ples of each of s = 100 non-overlapping classes. In other words, in our experiment,
60,000 images with each m = 3072-pixel are used.

One refers to Figs. 1, 2 and 3 for some samples of the five face databases, the handwrit-
ten digits database MNIST and the tiny images dataset CIFAR-100, respectively. In all
the experiments, we randomly split each ID class into two sets, 70 percent for training
and 30 percent for testing. To measure the effectiveness of the compared algorithms, we
calculate the value of Area Under the Receiver Operating Characteristic Curve (AUC)
(Fawcett, 2006; Zhang et al., 2015; Ling et al., 2003) and the value of the Equal Error
Rate (EER) (Goudelis et al., 2007; Friedman et al., yyy) for each face verification problem.
More precisely, to calculate the AUC and EER metrics, we project the test samples to the
corresponding discriminant subspace and depict the similarity between the reduced vector
�i and the client class mean vector � , by using si = ‖�i −�‖−1

2
 . The similarity values of

all test samples are then sorted in a descending order, and the AUC and EER metrics are
calculated. Notice that the smaller the EER values, the larger the AUC values, and the less

4 http:// vinta ge. winkl erbros. net/ faces crub. html.
5 https:// www. cs. tau. ac. il/ ~wolf/ ytfac es/.
6 http:// yann. lecun. com/ exdb/ mnist/.
7 http:// www. cs. toron to. edu/ ~kriz/ cifar. html.

http://vintage.winklerbros.net/facescrub.html
https://www.cs.tau.ac.il/%7ewolf/ytfaces/
http://yann.lecun.com/exdb/mnist/
http://www.cs.toronto.edu/%7ekriz/cifar.html

2070 Machine Learning (2022) 111:2037–2091

1 3

the CPU time, the better an algorithm. In order to eliminate randomness caused by the
training-test partition, we apply the above process five times and list the mean values of
AUC, EER, the mean CPU time in seconds, as well as the mean standard deviation (Std-
Dev) in the tables below.

In this section, the target rank used in all the Nyström-type methods including the stand-
ard Nyström, the modified Nyström, the fixed-rank Nyström methods and Algorithm 5, is
based on our proposed strategy. That is, the number of clusters s is used as the target rank
unless otherwise stated.

Example 1 In this example, we show the efficiency of our proposed trace-ratio model (27)
and ratio-trace model (28) in the eigenanalysis step for the calculation of T. To this aim, we
compare Algorithm 3 and Algorithm 4 with Algorithm 1 proposed in Iosifidis and Gab-
bouj (2016a). Three test sets including AR, CMU-PIE and Extended YaleB are used
in this example. We choose the reference vector set cardinality r = 1000 and the discrimi-
nant space dimensionality d = 10, 20, 30 for the AR data set, r = 3000 and the discriminant

Fig. 1 Some samples of the five face databases, including AR (the first line), the CMU-PIE (the second
line), the Extended YaleB (the third line), the Facescrub (the fourth line), and the YouTube Face
(the fifth line)

Fig. 2 Some samples of the
handwritten digits database
MNIST

2071Machine Learning (2022) 111:2037–2091

1 3

space dimensionality d = 50, 60, 70 for the CMU-PIE data set, and r = 1000 and the discri-
minant space dimensionality d = 10, 20, 30 for the Extended YaleB data set. Tables 4,
5 and 6 list the experimental results, where we explore the Cholesky factorization for solv-
ing (18) in the kernel regression step.

It is obvious to see from Tables 4, 5 and 6 that the AUC values obtained and the CPU
time used are comparable for the three algorithms, while the EER values from Algorithm 3
and Algorithm 4 are better than those from Algorithm 1. These show the advantages and
illustrate the superiority of the two proposed algorithms over Algorithm 1.

Example 2 The aim of this example is twofold. First, we try to show the effectiveness of
Theorem 4.2. Second, we illustrate the rationality of using the number of clusters s as a
target rank for randomized algorithms. In Theorem 4.2, it is pointed out that the kernel
matrix K is numerically low-rank, and the numerical rank is closely related to the cluster-
ing effect of the original data X. Moreover, the better the clustering effect, the closer the
numerical rank is to the number of cluster s. We make use of some semi-artificial data
based on the two data sets CMU-PIE and Extended YaleB to illustrate this. For the
two databases, we first compute the centroid vector �j of each class Xj to get
X = [�1�

T
n1
, �2�

T
n2
,… , �s�

T
ns
] , where �ni ∈ ℝ

ni is the vector of all ones. We then use the
MATLAB built-in function rand.m to generate a random matrix Δ̃ with uniform distribu-
tion, and construct the semi-artificial data X̃ = X + � ⋅ Δ̃ with 0 < 𝜇 ≪ 1.

Table 7 presents the values of �s+1(K)
�1(K)

 and ‖Δ‖2∕‖K‖2 in (57). Although the theoretical
upper bound given in Theorem 4.2 may not be sharp in practice, it is seen that the values of
�s+1(K)∕�1(K) and ‖Δ‖2∕‖K‖2 are close to each other. Thus, one can use ‖Δ‖2∕‖K‖2 as an
estimation to �s+1(K)∕�1(K) in practice.

In Fig. 4, we plot the ratio
{
�i(X̃)∕�1(X̃)

}min(m,n)

i=1
 of the semi-artificial data X̃ , and the

ratio
{
�i(K)∕�1(K)

}n

i=1
 of the corresponding kernel matrix K for the CMU-PIE database

and the Extended YaleB database with � = 5 × 10−3 . Here �1, �i are the largest and the
i-th largest singular values, respectively, and the values in brackets are s + 1 and the ratio

Fig. 3 Some samples (airplane, deer, dog, horse and ship) of the tiny images dataset CIFAR-100

2072 Machine Learning (2022) 111:2037–2091

1 3

Ta
bl

e
3

 D
at

ab
as

es
 u

se
d

in
 th

e
ex

pe
rim

en
ts

D
at

as
et

s
D

im
en

si
on

al
ity

(m

)
♯

of
 c

la
ss

es
 (s

)
♯

of
 d

at
a

♯
of

 tr
ai

ni
ng

 d
at

a
(n

)
♯

of
 te

st
da

ta
B

ac
kg

ro
un

d

A
R

12
00

10
0

26
00

19
00

70
0

Fa
ce

 re
co

gn
iti

on
C
M
U
-
P
I
E

10
24

68
11

56
0

80
92

34
68

Fa
ce

 re
co

gn
iti

on
E
x
t
e
n
d
e
d

Y
a
l
e
B

40
96

38
24

32
17

10
72

2
Fa

ce
 re

co
gn

iti
on

F
a
c
e
s
c
r
u
b

92
16

25
6

22
,6

31
15

,9
56

66
75

Fa
ce

 re
co

gn
iti

on
Y
o
u
T
u
b
e

F
a
c
e
s

10
24

34
0

37
0,

31
9

25
9,

22
3

11
1,

09
6

Fa
ce

 re
co

gn
iti

on
M
N
I
S
T

78
4

10
70

00
0

49
00

5
20

99
5

H
an

dw
rit

te
n

di
gi

ts
 re

co
gn

iti
on

C
I
F
A
R
-
1
0
0

30
72

10
0

60
,0

00
42

,0
00

18
,0

00
O

bj
ec

t r
ec

og
ni

tio
n

2073Machine Learning (2022) 111:2037–2091

1 3

�s+1(X̃)

�1(X̃)
 or �s+1(K)

�1(K)
 . It is seen from Fig. 4 that when the clustering effect is good (i.e., � is rela-

tively small), both the singular values of X̃ and those of the kernel matrix K decay quickly.
More precisely, there is a gap between �s

�1
 and �s+1

�1
 , which validates our theory. Hence, s can

be utilized as a numerical rank to K, provided that the clustering effect to X is satisfactory;
refer to (45).

Next, we further explain the rationality of using the number of clusters s as a target
rank for randomized algorithms. Notice that the performance of a randomized algorithm
strongly relies on the chosen target rank, which is difficult to determine in advance, if there
is no information available a prior. Indeed, if the chosen parameter is too large, the compu-
tational cost and storage requirement will be high. However, if it is too small, the recogni-
tion results such as the value of EER will be unsatisfactory. Thus, the idea is to strike a
balance between CPU time and EER. More precisely, we aim to find a reasonable target
rank that makes both the computation time and the value of EER be relatively small in
some degree.

Recall that the kernel spectral regression method is composed of two steps, i.e.,
the eigenanalysis step and the kernel regression step. Given a range for possible target
ranks, we first compute the CPU time (used in seconds) and the value of EER obtained
from running “Algorithm 4 + Algorithm 5" for each scatter point, and plot the Time-
EER curve. Here “Algorithm 4 + Algorithm 5" means Algorithm 4 for the eigenanalysis
step and Algorithm 5 for the kernel regression step. We then use the MATLAB built-in
curve fitting toolbox cftool to get the analytic expression of the fitted curve. Here the
“ideal" target rank is corresponding to the point which has the shortest distance to the
origin in the fitted curve. More precisely, this process can be divided into the following
four steps.

(1) We first set the target ranks to be R = {r1, r2, r3,… , rt} = {5, 15, 25,… , 195} , i.e., from
5 to 200 with an interval of 10. Using ri(i = 1, 2,… , t) as the target rank in “Algorithm 4
+ Algorithm 5", we can get the CPU time used in seconds C = {c1, c2, c3,… , ct} and
the values of EER, i.e., F = {f1, f2, f3,… , ft}.

Table 4 Example 1: A comparison of three algorithms for eigenanalysis step on AR database with
d = 10, 20, 30 and r = 1000 , where the kernel regression step is solved by using the Cholesky factorization

Calculation of T EER ± Std-Dev% AUC ± Std-Dev CPU time(s) ± Std-Dev

AR database (r = 1000,d = 10)
 Algorithm 1 1.03 ± 0.56% 0.993 ± 0.0043 0.00053 ± 0.00016
 Algorithm 3 0.29 ± 0.094% 0.999 ± 0.00039 0.0011 ± 0.00013
 Algorithm 4 0.38 ± 0.067% 0.999 ± 0.00054 0.0016 ± 0.00018

AR database (r = 1000,d = 20)
 Algorithm 1 1.42 ± 0.46% 0.991 ± 0.0028 0.0011 ± 0.00015
 Algorithm 3 0.25 ± 0.088% 0.998 ± 0.00058 0.0024 ± 0.00012
 Algorithm 4 0.25 ± 0.081% 0.999 ± 0.00063 0.0035 ± 0.00019

AR database (r = 1000,d = 30)
 Algorithm 1 1.83 ± 0.57% 0.986 ± 0.0047 0.0022 ± 0.00016
 Algorithm 3 0.19 ± 0.10% 0.999 ± 0.00053 0.0041 ± 0.00015
 Algorithm 4 0.21 ± 0.11% 0.999 ± 0.00059 0.0059 ± 0.00030

2074 Machine Learning (2022) 111:2037–2091

1 3

(2) To make the roles of CPU time and EER be of equal importance, we scale the data C and
F to get C̃ and F̃ , such that they are in about the same order. We then exploit the MAT-
LAB built-in curve fitting toolbox cftool to fit the points in C̃ = [̃c1, c̃2, c̃3,… , c̃t]
and F̃ = [̃f1, f̃2, f̃3,… , f̃t] , in which the type of fit is chosen as “Custom Equation". The
analytic expression of the fitted curve is y = a ⋅ e−bx + c, x ∈ [xmin, xmax] , where a, b, c
are parameters depending on the data source used.

Table 5 Example 1: A comparison of three algorithms for eigenanalysis step on CMU-PIE database with
d = 50, 60, 70 and r = 3000 , where the kernel regression step is solved by using the Cholesky factorization

Calculation of T EER ± Std-Dev% AUC ± Std-Dev CPU time(s) ± Std-Dev

CMU-PIE database (r = 3000,d = 50)
 Algorithm 1 4.56 ± 0.42% 0.962 ± 0.0035 0.013 ± 0.00057
 Algorithm 3 1.02 ± 0.12% 0.995 ± 0.00050 0.027 ± 0.0014
 Algorithm 4 1.07 ± 0.073% 0.995 ± 0.00054 0.035 ± 0.0019

CMU-PIE database (r = 3000,d = 60)
 Algorithm 1 5.84 ± 0.34% 0.952 ± 0.0028 0.016 ± 0.00059
 Algorithm 3 1.21 ± 0.24% 0.994 ± 0.00058 0.034 ± 0.0015
 Algorithm 4 1.27 ± 0.17% 0.994 ± 0.00063 0.046 ± 0.0023

CMU-PIE database (r = 3000,d = 70)
 Algorithm 1 6.84 ± 0.83% 0.944 ± 0.0070 0.018 ± 0.00078
 Algorithm 3 1.52 ± 0.18% 0.993 ± 0.00095 0.039 ± 0.0017
 Algorithm 4 1.53 ± 0.26% 0.993 ± 0.0013 0.054 ± 0.0024

Table 6 Example 1: A comparison of three algorithms for eigenanalysis step on Extended YaleB data-
base with d = 10, 20, 30 and r = 1000 , where the kernel regression step is solved by using the Cholesky
factorization

Calculation of T EER ± Std-Dev% AUC ± Std-Dev CPU time(s) ± Std-Dev

Extended YaleB database (r = 1000,d
= 10)

 Algorithm 1 3.60 ± 0.86% 0.971 ± 0.0084 0.00055 ± 0.00022
 Algorithm 3 0.31 ± 0.14% 0.999 ± 0.0010 0.0011 ± 0.00019
 Algorithm 4 0.36 ± 0.15% 0.999 ± 0.00073 0.0015 ± 0.00030

Extended YaleB database (r = 1000,d
= 20)

 Algorithm 1 6.87 ± 0.60% 0.948 ± 0.0038 0.0011 ± 0.00022
 Algorithm 3 1.57 ± 0.48% 0.992 ± 0.0032 0.0023 ± 0.00020
 Algorithm 4 2.12 ± 0.63% 0.989 ± 0.0032 0.0033 ± 0.00035

Extended YaleB database (r = 1000,d
= 30)

 Algorithm 1 11.60 ± 1.90% 0.913 ± 0.012 0.0021 ± 0.00024
 Algorithm 3 3.52 ± 0.75% 0.983 ± 0.0038 0.0040 ± 0.00017
 Algorithm 4 3.65 ± 0.85% 0.982 ± 0.0047 0.0054 ± 0.00036

2075Machine Learning (2022) 111:2037–2091

1 3

Ta
bl

e
7

 E
xa

m
pl

e
2:

 T
he

 v
al

ue
s

of
 �

s
+
1
(K

)

�
1
(K

)
 a

nd
 ‖
Δ
‖
2

‖
K
‖
2

 (i
n

br
ac

ke
ts

) a
pp

ea
re

d
in

 (5
7)

 fo
r d

iff
er

en
t v

al
ue

s
�

 o
n

th
e

se
m

i-a
rti

fic
ia

l d
at

a
se

ts
 X̃

 b
as

ed
 o

n
C
M
U
-
P
I
E

 a
nd

 E
x
t
e
n
d
e
d

Y
a
l
e
B

 d
at

ab
as

es

D
at

as
et

�
=
5
×
1
0
−
3

�
=
5
×
1
0
−
4

�
=
5
×
1
0
−
5

�
=
5
×
1
0
−
6

X̃
 (
C
M
U
-
P
I
E
)

5
.1
3
×
1
0
−
3
(3
.9
2
×
1
0
−
4
)

4
.5
7
×
1
0
−
5
(2
.2
2
×
1
0
−
5
)

4
.4
9
×
1
0
−
7
(2
.1
8
×
1
0
−
6
)

4
.4
1
×
1
0
−
9
(2
.1
8
×
1
0
−
7
)

X̃
 (
E
x
t
e
n
d
e
d

Y
a
l
e
B
)

2
.9
3
×
1
0
−
2
(3
.5
4
×
1
0
−
3
)

2
.6
4
×
1
0
−
4
(1
.2
3
×
1
0
−
4
)

2
.5
1
×
1
0
−
6
(1
.1
9
×
1
0
−
5
)

2
.4
4
×
1
0
−
8
(1
.1
8
×
1
0
−
6
)

2076 Machine Learning (2022) 111:2037–2091

1 3

(3) By using the MATLAB built-in optimization function fmincon, we look for a target
point in the fitted curve, which corresponds to the shortest distance from the origin to
the curve. Here the target point should be associated with both good recognition effect
(small EER value) and less CPU time. In light of the analytic expression of the fitted
curve, we define the constraint function as

 Then, the MATLAB built-in optimization function fmincon is exploited to solve
the problem

 and (ĉ, f̂) is the desired target point.
(4) Seeking the smallest domain that contains the point (ĉ, f̂) . More precisely, we find the

index j (1 ≤ j ≤ t − 1) such that (ĉ, f̂) ∈ [�cj,�cj+1] × [�fj,�fj+1] . To judge the validity of
our theorem, for the index j, we determine the range [rj, rj+1] (1 ≤ j ≤ t − 1) in R, and
check whether the target rank s defined in Theorem 4.2 is in this interval or not.

We run Algorithm 4 + Algorithm 5 on the CMU-PIE database with r = 3000 ,
d = 50 , and the Extended YaleB database with r = 1000 , d = 10 . The numerical
results are the mean of five runs. In Fig. 5, we depict the curves, where the root mean
squared errors are RMSE = 0.0837 and RMSE = 0.0858 for CMU-PIE and Extended
YaleB, respectively. Notice that a smaller RMSE value implies a better fit.

We observe from Fig. 5 that, for the CMU-PIE and the Extended YaleB
databases, the desired balance points p1 and p2 corresponding to the shortest dis-
tance from the origin to the fitted curve are (ĉ, f̂) = (0.63, 0.89) ∈ [�c8,�c9] × [�f8,�f9] and
(ĉ, f̂) = (0.76, 1.14) ∈ [�c4,�c5] × [�f4,�f5] , respectively. Moreover, for the CMU-PIE data-
base with s = 68 and the Extended YaleB database with s = 38 , the ranges for
target ranks corresponding to the balance point p1 and p2 are [r8, r9] = [75, 85] and

(95)h(x, y) = y −
(
a ⋅ e−bx + c

)
, x ∈ [xmin, xmax] = �, y ∈ [ymin, ymax] = � .

(96)
(ĉ, f̂) = argmin

x ∈ �, y ∈ �

h(x, y) = 0

√
x2 + y2,

Fig. 4 Example 2: The ratio
{ �

i
(X̃)

�1(X̃)

}min(m,n)

i=1
 of the semi-artificial data X̃ , and the ratio

{ �
i
(K)

�1(K)

}n

i=1
 of the corre-

sponding kernel matrix K for the CMU-PIE database (left) and Extended YaleB database (right),
� = 5 × 10−3 . Here �1, �i are the largest and the i-th largest singular values, respectively, and the values in
brackets are s + 1 and the ratio �s+1(X̃)

�1(X̃)
 or �s+1(K)

�1(K)

2077Machine Learning (2022) 111:2037–2091

1 3

[r4, r5] = [35, 45] , respectively. These demonstrate that Theorem 4.2 is very effective in
practice, and our proposed target rank s can be utilized as a numerical rank to the kernel
matrix K.

Example 3 In this experiment, we show the numerical behavior of our modified Nyström
method with fixed-rank for low-rank approximation of matrices. We run Algorithm 5 and
three popular Nyström methods including the standard Nyström (Anaraki & Becker, 2019;
Drineas & Mahoney, 2005; Wang & Zhang, 2013), the modified Nyström (Wang & Zhang,
2013) and the fixed-rank Nyström (Anaraki & Becker, 2019) on the Facescrub database
of size 9216 × 22631 . As the matrix K̃K̃T can be very large in practical applications, it is
desirable to seek approximations with no need to form it explicitly. Indeed, in the Nyström-
type methods, one usually selects a subset of the columns of the matrix in question to build
an approximation (Sun et al., 2015). We denote by S ∈ ℝ

r×l(l ≪ r) a permutation matrix,
i.e., a random matrix which has only one entry is one and the rest are zero in each column,
and at most one nonzero element in each row. Then we sample the matrix K̃K̃T efficiently
by computing K̃ ⋅ (K̃TS) ∈ ℝ

r×l , where the permutation matrix S is stored as a vector, and
there is no need to form and store the matrix explicitly. As was stressed in Remark 4, we
choose the number of clusters s as the target rank. Moreover, we set the range of the target
rank used in the four randomized algorithms from s − 25 to s + 25 with an interval of 5,
and the oversampling parameter is set to be 10.

The numerical performances of four Nyström algorithms on the Facescrub data-
base are depicted in Fig. 6, with the reference vector set cardinality r = 6000 . Denote by
H = K̃K̃T , we define the relative error as ‖H − H̃‖F∕‖H‖F , where H̃ is low-rank approxi-
mation obtained from different Nyström methods. All the four algorithms are run for 10
times, and the relative error and CPU time are the mean from the 10 runs.

We observe from Fig. 6 that the relative errors of our approximation is much better than
those from the standard Nyström and the fixed-rank Nyström methods. In addition, it is a
little better than the one from the modified Nyström method. On the other hand, we see
that our algorithm is comparable in CPU time to the modified Nyström algorithm, but it

Fig. 5 Example 2: Scaled CPU time and values of EER on CMU-PIE (left) with r = 3000 , d = 50 , and
Extended YaleB (right) with r = 1000 , d = 10

2078 Machine Learning (2022) 111:2037–2091

1 3

is slightly slower than the standard Nyström and the fixed-rank Nyström methods. More
precisely, Algorithm 5 is better than the standard Nyström, the modified Nyström and the
fixed-rank Nyström methods according to accuracy, and it is comparable to the modified
Nyström method in terms of CPU time. Thus, Algorithm 5 is a good choice for overall
consideration, and it is a competitive candidate for providing low-rank approximations to
large-scale kernel matrices.

Example 4 In this example, we show the efficiencies of Algorithms 5 and 7 for large-scale
face verification problem. Three popular used kernels, the Gaussian kernel, the Laplacian
kernel and Polynomial kernel are utilized. The test sets are the face databases YouTube
Face of size 1024 × 370, 319 and Facescrub of size 9216 × 22, 631 . In this example,
we set the reference vector set cardinality r = 6000 and the discriminant space dimen-
sionality d = 50, 100 for the YouTube Face database, and r = 5000 , d = 10, 50 for the
Facescrub database. Recall that the kernel spectral regression methods are composed
of the eigenanalysis step and the kernel regression step. For the sake of justification, we
choose Algorithm 4 for the eigenanalysis step in all the algorithms.

In the kernel regression step, we run six algorithms including the two proposed Algo-
rithms 5 and 7, the modified Nyström method (Wang & Zhang, 2013), the fixed-rank
Nyström method (Anaraki & Becker, 2019), the original ACS-KSR method (Algorithm 2),
as well as the randomized block coordinate descent (RBCD) method due to Needell et al.,
(Needell et al., 2015, Algorithm 2). In view of Theorem 4.2 and Remark 4, the target rank
and the oversampling parameter are selected to be the number of clusters s and 10, respec-
tively, in the modified Nyström method, the fixed-rank Nyström method and Algorithm 5.
Notice that the kernel regression step in the ACS-KSR-based algorithm is solved “exactly",
while it is solved “inexactly" in the other algorithms. Tables 8 and 9 list the numerical
results of six algorithms, including the values of EER, AUC, standard deviations, as well
as CPU time in seconds. In these tables, the total CPU time includes two parts: the time for
generating the reduced kernel matrix K̃ (the common time), and that for the eigenanalysis
step and the kernel regression step (the computational time).

Some remarks are in order. First, regardless of kernel function used, we observe from
Tables 8 and 9 that for the YouTube Face dataset, the AUC values of all the algorithms
are comparable, while the EER values from ACS-KSR, Needell’s RBCD and Algorithm 7

Fig. 6 Example 3: Relative error (left) and CPU time in seconds (right) obtained from four Nyström meth-
ods on Facescrub with r = 6000

2079Machine Learning (2022) 111:2037–2091

1 3

are better than those from Modified Nyström method, Fixed-rank Nyström method and
Algorithm 5. For the Facescrub dataset, we see that the AUC and EER values of Algo-
rithm 7 are better than those from the other five algorithms. Moreover, it is seen from the
two tables that Algorithm 5 and Modified Nyström method are comparable in view of EER
values, and both of them are better than the Fixed-rank Nyström method. It is important to
mention that the selection of the target rank in the standard Nyström, the modified Nyström
and the fixed-rank Nyström methods, all relies on our proposed strategy, i.e., the number
of clusters s is used as the target rank. Without this strategy, the numerical performances
of the standard Nyström, the modified Nyström as well as the fixed-rank Nyström methods,
may not be so satisfactory.

Second, as is shown in Tables 8 and 9, the computation of the reduced kernel matrix
is the main overhead for the first four algorithms. The total CPU timings are about the
same for the three randomized algorithms, which are much fewer than those for ACS-KSR.
Taking the large-scale dataset YouTube Face as an example, we see from Table 8 that
Algorithm 5 is about three times faster than the ACS-KSR method. However, when the
number of samples is large, explicitly forming or storing the reduced kernel matrix is very
costly, and it is interesting to investigate new algorithms that are free of computing and
storing the reduced kernel matrix K̃ directly.

Third, we show the efficiency of our randomized block Kaczmarz method for kernel
regression problem with multiple right-hand sides. In Algorithm 7, the stopping cri-
terion tol and the maximum number of iteration iter are set to be 10−2 and 20, respec-
tively. Moreover, we make use of the MATLAB built-in function svd.m to compute the
Moore-Penrose inverse appeared in Step 7. As a comparison, we apply the randomized
block coordinate descent (RBCD) method (Needell et al., 2015, Algorithm 2) proposed
by Needell et al., to solve (82), in which the stopping criterion (83) is also used in this
algorithm.

For the large-scale dataset YouTube Face, it is obvious to see from Table 8 that
Algorithm 7 runs much faster than the other algorithms. Indeed, unlike the methods
ACS-KSR, modified Nyström, fixed-rank Nyström methods and Algorithm 5, there is
no need to explicitly form and store the full reduced kernel matrix K̃ in Algorithm 7.
With d = 50 and 100, we see that Algorithm 7 is about 60 and 12 times faster than the
ACS-KSR-based algorithm, and it is about 13 and 4 times faster than the modified and
fixed-rank Nyström methods, and Algorithm 5. Although there is no need to explicitly
form and store the full reduced kernel matrix K̃ in Needell’s RBCD algorithm, one has
to solve the kernel regression problem with multiple right-hand sides one by one. Con-
sequently, the RBCD-based algorithm often runs much slower than Algorithm 7. This
demonstrate the efficiency of our randomized block Kaczmarz method.

For the relatively small database Facescrub, it is seen from Table 9 that the CPU
time of Algorithm 7 is comparable to the three Nyström-like methods and Algorithm 5.
This is because Algorithm 7 is more suitable to solve large-scale systems with tall (i.e.,
the number of rows is much larger than the columns) coefficient matrices (Zouzias &
Freris, 2013). On the other hand, the AUC and EER values obtained from Algorithm 7
are better than those from the Nyström-like methods and Algorithm 5. Considering the
AUC, EER values and CPU time as a whole, Algorithm 7 is a competitive algorithm
among all the algorithms.

2080 Machine Learning (2022) 111:2037–2091

1 3

Ta
bl

e
8

 E
xa

m
pl

e
4:

 N
um

er
ic

al
 r

es
ul

ts
 o

f
th

e
al

go
rit

hm
s

us
in

g
th

e
G

au
ss

ia
n

ke
rn

el
, L

ap
la

ci
an

 k
er

ne
l a

nd
 P

ol
yn

om
ia

l k
er

ne
l o

n
th

e
fa

ce
 d

at
ab

as
e
Y
o
u
T
u
b
e

F
a
c
e

 w
ith

d
=
5
0
,
1
0
0
 a

nd
 r
=
6
0
0
0
 , w

he
re

 th
e

ei
ge

na
na

ly
si

s s
te

p
is

 so
lv

ed
 b

y
us

in
g

A
lg

or
ith

m
 4

 in
 a

ll
th

e
al

go
rit

hm
s

A
lg

or
ith

m
s

Fa
ce

 d
at

ab
as

e:
 Y
o
u
T
u
b
e

F
a
c
e

 (r
 =

 6
00

0,
d

=
 5

0)
Fa

ce
 d

at
ab

as
e:

 Y
o
u
T
u
b
e

F
a
c
e

 (r
 =

 6
00

0,
d

=
 1

00
)

(M
et

ho
ds

)
EE

R
 ±

 S
td

-D
ev

%
A

U
C

 ±
 S

td
-D

ev
C

PU
 ti

m
e

(s
)

EE
R

 ±
 S

td
-D

ev
%

A
U

C
 ±

 S
td

-D
ev

C
PU

 ti
m

e
(s

)

G
au

ss
ia

n
K

er
ne

l
G

au
ss

ia
n

K
er

ne
l

A
C

S-
K

SR
0.

16
 ±

 0
.0

21
%

0.
99

 ±
 0

.0
00

16
18

5.
18

 (2
8.

26
 +

 1
56

.9
2)

0.
17

 ±
 0

.0
22

%
0.

99
 ±

 0
.0

00
16

14
9.

14
 (2

8.
93

 +
 1

20
.2

1)
M

od
ifi

ed
 N

ys
trö

m
 m

et
ho

d
W

an
g

an
d

Zh
an

g
(2

01
3)

4.
66

 ±
 0

.0
63

%
0.

97
 ±

 0
.0

00
87

40
.8

0
(2

8.
26

 +
 1

2.
54

)
4.

56
 ±

 0
.1

6%
0.

98
 ±

 0
.0

01
6

50
.2

6(
28

.9
3

+
 2

1.
33

)

Fi
xe

d-
ra

nk
 N

ys
trö

m
 m

et
ho

d
A

na
ra

ki
 a

nd

B
ec

ke
r (

20
19

)
5.

37
 ±

 0
.2

6%
0.

97
 ±

 0
.0

02
2

36
.5

4
(2

8.
26

 +
 8

.2
8)

5.
33

 ±
 0

.0
51

%
0.

97
 ±

 0
.0

00
71

46
.9

7(
28

.9
3

+
 1

8.
04

)

A
lg

or
ith

m
 5

4.
59

 ±
 0

.0
92

%
0.

98
 ±

 0
.0

00
52

40
.3

4
(2

8.
26

 +
 1

2.
08

)
4.

53
 ±

 0
.0

35
%

0.
98

 ±
 0

.0
00

74
50

.8
6(

28
.9

3
+

 2
1.

93
)

N
ee

de
ll’

s R
B

C
D

 N
ee

de
ll

et
 a

l.
(2

01
5)

0.
71

 ±
 0

.3
8%

0.
99

 ±
 0

.0
00

21
72

.7
1

(0
 +

 7
2.

71
)

0.
79

 ±
 0

.3
7%

0.
99

 ±
 0

.0
00

25
15

8.
11

(0
 +

 1
58

.1
1)

A
lg

or
ith

m
 7

1.
51

 ±
 0

.7
9%

0.
99

 ±
 0

.0
01

0
2.

89
 (0

 +
 2

.8
9)

0.
68

 ±
 0

.3
8%

0.
99

 ±
 0

.0
00

42
11

.7
9(

0
+

 1
1.

79
)

La
pl

ac
ia

n
K

er
ne

l
La

pl
ac

ia
n

K
er

ne
l

A
C

S-
K

SR
1.

48
 ±

 0
.0

49
%

0.
98

 ±
 0

.0
00

53
18

6.
71

 (2
8.

52
 +

 1
58

.1
9)

1.
30

 ±
 0

.0
65

%
0.

98
 ±

 0
.0

00
67

14
4.

44
(2

9.
89

 +
 1

14
.5

5)
M

od
ifi

ed
 N

ys
trö

m
 m

et
ho

d
W

an
g

an
d

Zh
an

g
(2

01
3)

6.
50

 ±
 0

.1
7%

0.
96

 ±
 0

.0
01

8
40

.1
0

(2
8.

52
 +

 1
1.

58
)

6.
47

 ±
 0

.2
0%

0.
96

 ±
 0

.0
01

6
51

.3
2(

29
.8

9
+

 2
1.

43
)

Fi
xe

d-
ra

nk
 N

ys
trö

m
 m

et
ho

d
A

na
ra

ki
 a

nd

B
ec

ke
r (

20
19

)
8.

48
 ±

 0
.2

9%
0.

95
 ±

 0
.0

03
0

35
.6

5
(2

8.
52

 +
 7

.1
3)

8.
37

 ±
 0

.2
3%

0.
95

 ±
 0

.0
02

0
47

.7
3(

29
.8

9
+

 1
7.

84
)

A
lg

or
ith

m
 5

6.
70

 ±
 0

.1
3%

0.
96

 ±
 0

.0
01

4
39

.3
5

(2
8.

52
 +

 1
0.

83
)

6.
67

 ±
 0

.1
5%

0.
96

 ±
 0

.0
00

82
51

.6
5(

29
.8

9
+

 2
1.

76
)

N
ee

de
ll’

s R
B

C
D

 N
ee

de
ll

et
 a

l.,
 (2

01
5)

0.
52

 ±
 0

.3
1%

0.
99

 ±
 0

.0
03

2
83

.1
1

(0
 +

 8
3.

11
)

0.
84

 ±
 0

.1
4%

0.
99

 ±
 0

.0
00

20
16

2.
60

(0
 +

 1
62

.6
0)

A
lg

or
ith

m
 7

1.
52

 ±
 1

.8
%

0.
99

 ±
 0

.0
02

7
2.

95
 (0

 +
 2

.9
5)

0.
92

 ±
 0

.6
0%

0.
99

 ±
 0

.0
00

57
12

.1
5(

0
+

 1
2.

15
)

Po
ly

no
m

ia
l K

er
ne

l
Po

ly
no

m
ia

l K
er

ne
l

A
C

S-
K

SR
0.

31
 ±

 0
.0

24
%

0.
99

 ±
 0

.0
00

29
12

3.
82

 (1
7.

59
 +

 1
06

.2
3)

0.
30

 ±
 0

.0
17

%
0.

99
 ±

 0
.0

00
15

13
4.

48
(1

7.
86

 +
 1

16
.6

2)
M

od
ifi

ed
 N

ys
trö

m
 m

et
ho

d
W

an
g

an
d

Zh
an

g
(2

01
3)

4.
52

 ±
 0

.0
66

%
0.

98
 ±

 0
.0

00
37

29
.6

7
(1

7.
59

 +
 1

2.
08

)
4.

60
 ±

 0
.1

1%
0.

98
 ±

 0
.0

00
83

39
.4

1(
17

.8
6

+
 2

1.
55

)

Fi
xe

d-
ra

nk
 N

ys
trö

m
 m

et
ho

d
A

na
ra

ki
 a

nd

B
ec

ke
r (

20
19

)
5.

00
 ±

 0
.0

75
%

0.
97

 ±
 0

.0
00

89
25

.8
5

(1
7.

59
 +

 8
.2

6)
5.

05
 ±

 0
.0

53
%

0.
97

 ±
 0

.0
00

26
35

.5
4(

17
.8

6
+

 1
7.

68
)

A
lg

or
ith

m
 5

4.
52

 ±
 0

.0
95

%
0.

98
 ±

 0
.0

01
0

29
.4

8
(1

7.
59

 +
 1

1.
89

)
4.

53
 ±

 0
.0

81
%

0.
98

 ±
 0

.0
00

66
39

.6
7(

17
.8

6
+

 2
1.

81
)

N
ee

de
ll’

s R
B

C
D

 N
ee

de
ll

et
 a

l.
(2

01
5)

1.
25

 ±
 0

.2
6%

0.
99

 ±
 0

.0
00

18
46

.0
0

(0
 +

 4
6.

00
)

0.
97

 ±
 0

.3
4%

0.
99

 ±
 0

.0
00

32
89

.1
5(

0
+

 8
9.

15
)

2081Machine Learning (2022) 111:2037–2091

1 3

Th
e

C
PU

 ti
m

e
Z
(Z

1
+
Z
2
) m

ea
ns

 th
e

to
ta

l C
PU

 ti
m

e
Z

is
 c

om
po

se
d

of
 Z

1 (
th

e
co

m
m

on
 ti

m
e)

 fo
r g

en
er

at
in

g
th

e
re

du
ce

d
ke

rn
el

 m
at

rix
 K̃

 , a
nd

 Z
2
 (t

he
 c

om
pu

ta
tio

n
tim

e)
 fo

r
th

e
ei

ge
na

na
ly

si
s s

te
p

an
d

th
e

ke
rn

el
 re

gr
es

si
on

 st
ep

Ta
bl

e
8

 (c
on

tin
ue

d)

A
lg

or
ith

m
s

Fa
ce

 d
at

ab
as

e:
 Y
o
u
T
u
b
e

F
a
c
e

 (r
 =

 6
00

0,
d

=
 5

0)
Fa

ce
 d

at
ab

as
e:

 Y
o
u
T
u
b
e

F
a
c
e

 (r
 =

 6
00

0,
d

=
 1

00
)

(M
et

ho
ds

)
EE

R
 ±

 S
td

-D
ev

%
A

U
C

 ±
 S

td
-D

ev
C

PU
 ti

m
e

(s
)

EE
R

 ±
 S

td
-D

ev
%

A
U

C
 ±

 S
td

-D
ev

C
PU

 ti
m

e
(s

)

A
lg

or
ith

m
 7

1.
55

 ±
 0

.5
7%

0.
99

 ±
 0

.0
00

46
2.

41
 (0

 +
 2

.4
1)

1.
43

 ±
 0

.5
9%

0.
99

 ±
 0

.0
00

65
12

.2
6(

0
+

 1
2.

26
)

2082 Machine Learning (2022) 111:2037–2091

1 3

Ta
bl

e
9

 E
xa

m
pl

e
4:

 N
um

er
ic

al
 r

es
ul

ts
 o

f
th

e
al

go
rit

hm
s

us
in

g
th

e
G

au
ss

ia
n

ke
rn

el
,

La
pl

ac
ia

n
ke

rn
el

 a
nd

 P
ol

yn
om

ia
l

ke
rn

el
 o

n
th

e
fa

ce
 d

at
ab

as
e
F
a
c
e
s
c
r
u
b

 w
ith

d
=
1
0
,
5
0
 a

nd
 r
=
5
0
0
0
 , w

he
re

 th
e

ei
ge

na
na

ly
si

s s
te

p
is

 so
lv

ed
 b

y
us

in
g

A
lg

or
ith

m
 4

 in
 a

ll
th

e
al

go
rit

hm
s

Th
e

C
PU

 ti
m

e
Z
(Z

1
+
Z
2
) m

ea
ns

 th
e

to
ta

l C
PU

 ti
m

e
Z

is
 c

om
po

se
d

of
 Z

1 (
th

e
co

m
m

on
 ti

m
e)

 fo
r g

en
er

at
in

g
th

e
re

du
ce

d
ke

rn
el

 m
at

rix
 K̃

 , a
nd

 Z
2
 (t

he
 c

om
pu

ta
tio

n
tim

e)
 fo

r
th

e
ei

ge
na

na
ly

si
s s

te
p

an
d

th
e

ke
rn

el
 re

gr
es

si
on

 st
ep

A
lg

or
ith

m
s

Fa
ce

 d
at

ab
as

e:
 F
a
c
e
s
c
r
u
b

 (r
 =

 5
00

0,
d

=
 1

0)
Fa

ce
 d

at
ab

as
e:

 F
a
c
e
s
c
r
u
b

 (r
 =

 5
00

0,
d

=
 5

0)

(M
et

ho
ds

)
EE

R
 ±

 S
td

-D
ev

%
A

U
C

 ±
 S

td
-D

ev
C

PU
 ti

m
e

(s
)

EE
R

 ±
 S

td
-D

ev
%

A
U

C
 ±

 S
td

-D
ev

C
PU

 ti
m

e
(s

)

G
au

ss
ia

n
K

er
ne

l
G

au
ss

ia
n

K
er

ne
l

A
C

S-
K

SR
19

.2
5

±
 0

.2
9%

0.
88

 ±
 0

.0
01

8
12

.9
5

(7
.0

6
+

 5
.8

9)
19

.5
7

±
 0

.2
4%

0.
87

 ±
 0

.0
01

4
12

.6
8(

6.
99

 +
 5

.6
9)

M
od

ifi
ed

 N
ys

trö
m

 m
et

ho
d

W
an

g
an

d
Zh

an
g

(2
01

3)
22

.7
6

±
 0

.2
0%

0.
84

 ±
 0

.0
01

2
7.

72
 (7

.0
6

+
 0

.6
6)

26
.5

3
±

 0
.1

4%
0.

80
 ±

 0
.0

02
2

7.
69

(6
.9

9
+

 0
.7

0)
Fi

xe
d-

ra
nk

 N
ys

trö
m

 m
et

ho
d

A
na

ra
ki

 a
nd

 B
ec

ke
r (

20
19

)
25

.0
1

±
 0

.3
0%

0.
82

 ±
 0

.0
03

2
7.

49
 (7

.0
6

+
 0

.4
3)

29
.9

1
±

 0
.3

7%
0.

76
 ±

 0
.0

03
5

7.
46

(6
.9

9
+

 0
.4

7)
A

lg
or

ith
m

 5
22

.6
1

±
 0

.2
7%

0.
85

 ±
 0

.0
01

7
7.

67
 (7

.0
6

+
 0

.6
1)

26
.3

9
±

 0
.0

85
%

0.
80

 ±
 0

.0
01

2
7.

64
(6

.9
9

+
 0

.6
5)

N
ee

de
ll’

s R
B

C
D

 N
ee

de
ll

et
 a

l.,
 (2

01
5)

14
.2

5
±

 5
.5

7%
0.

91
 ±

 0
.0

52
91

.6
7

(0
 +

 9
1.

67
)

30
.1

9
±

 9
.5

1%
0.

77
 ±

 0
.0

97
5

43
1.

82
(0

 +
 4

31
.8

2)
A

lg
or

ith
m

 7
13

.9
7

±
 5

.4
5%

0.
92

 ±
 0

.0
45

10
.6

0
(0

 +
 1

0.
60

)
16

.4
7

±
 8

.6
6%

0.
89

 ±
 0

.0
75

4
10

.3
0(

0
+

 1
0.

30
)

La
pl

ac
ia

n
K

er
ne

l
La

pl
ac

ia
n

K
er

ne
l

A
C

S-
K

SR
26

.5
4

±
 0

.1
3%

0.
80

 ±
 0

.0
01

6
12

.9
9

(7
.1

1
+

 5
.8

8)
17

.9
2

±
 0

.2
5%

0.
89

 ±
 0

.0
00

72
12

.4
7(

7.
15

 +
 5

.3
2)

M
od

ifi
ed

 N
ys

trö
m

 m
et

ho
d

W
an

g
an

d
Zh

an
g

(2
01

3)
25

.1
8

±
 0

.5
2%

0.
82

 ±
 0

.0
06

2
7.

78
 (7

.1
1

+
 0

.6
7)

24
.4

4
±

 0
.2

0%
0.

82
 ±

 0
.0

02
4

7.
85

(7
.1

5
+

 0
.7

0)
Fi

xe
d-

ra
nk

 N
ys

trö
m

 m
et

ho
d

A
na

ra
ki

 a
nd

 B
ec

ke
r (

20
19

)
28

.6
5

±
 0

.4
4%

0.
77

 ±
 0

.0
05

6
7.

54
 (7

.1
1

+
 0

.4
3)

27
.5

0
±

 0
.2

8%
0.

79
 ±

 0
.0

02
7

7.
63

(7
.1

5
+

 0
.4

8)
A

lg
or

ith
m

 5
24

.8
4

±
 0

.3
7%

0.
82

 ±
 0

.0
03

1
7.

73
 (7

.1
1

+
 0

.6
2)

24
.3

7
±

 0
.4

6%
0.

82
 ±

 0
.0

02
8

7.
80

(7
.1

5
+

 0
.6

5)
N

ee
de

ll’
s R

B
C

D
 N

ee
de

ll
et

 a
l.

(2
01

5)
15

.7
1

±
 5

.9
0%

0.
90

 ±
 0

.0
53

91
.7

7
(0

 +
 9

1.
77

)
30

.1
6

±
 1

1.
31

%
0.

77
 ±

 0
.1

8
43

3.
76

(0
 +

 4
33

.7
6)

A
lg

or
ith

m
 7

15
.2

5
±

 5
.6

6%
0.

94
 ±

 0
.0

34
10

.6
8

(0
 +

 1
0.

68
)

16
.3

6
±

 5
.9

2%
0.

92
 ±

 0
.0

56
10

.2
7(

0
+

 1
0.

27
)

Po
ly

no
m

ia
l K

er
ne

l
Po

ly
no

m
ia

l K
er

ne
l

A
C

S-
K

SR
22

.9
6

±
 0

.3
2%

0.
83

 ±
 0

.0
01

7
11

.5
2

(5
.9

9
+

 5
.5

3)
27

.9
3

±
 0

.3
8%

0.
78

 ±
 0

.0
01

7
11

.8
1(

6.
22

 +
 5

.5
9)

M
od

ifi
ed

 N
ys

trö
m

 m
et

ho
d

W
an

g
an

d
Zh

an
g

(2
01

3)
21

.9
0

±
 0

.2
4%

0.
85

 ±
 0

.0
01

4
6.

64
 (5

.9
9

+
 0

.6
5)

31
.2

1
±

 0
.2

7%
0.

74
 ±

 0
.0

02
8

6.
91

(6
.2

2
+

 0
.6

9)
Fi

xe
d-

ra
nk

 N
ys

trö
m

 m
et

ho
d

A
na

ra
ki

 a
nd

 B
ec

ke
r (

20
19

)
23

.8
6

±
 0

.1
6%

0.
82

 ±
 0

.0
02

1
6.

41
 (5

.9
9

+
 0

.4
2)

33
.9

5
±

 0
.3

5%
0.

71
 ±

 0
.0

02
1

6.
68

(6
.2

2
+

 0
.4

6)
A

lg
or

ith
m

 5
22

.0
0

±
 0

.1
4%

0.
85

 ±
 0

.0
00

33
6.

59
 (5

.9
9

+
 0

.6
0)

30
.9

9
±

 0
.2

7%
0.

74
 ±

 0
.0

01
6

6.
87

(6
.2

2
+

 0
.6

5)
N

ee
de

ll’
s R

B
C

D
 N

ee
de

ll
et

 a
l.

(2
01

5)
17

.7
7

±
 4

.3
7%

0.
91

 ±
 0

.0
38

27
.7

5
(0

 +
 2

7.
75

)
25

.5
4

±
 9

.3
7%

0.
80

 ±
 0

.0
99

14
6.

30
(0

 +
 1

46
.3

0)
A

lg
or

ith
m

 7
12

.1
2

±
 4

.5
4%

0.
95

 ±
 0

.0
16

4.
34

 (0
 +

 4
.3

4)
18

.8
0

±
 3

.9
8%

0.
89

 ±
 0

.0
32

4.
77

(0
 +

 4
.7

7)

2083Machine Learning (2022) 111:2037–2091

1 3

Example 5 In this example, we show that our strategies proposed in Algorithm 5 and
Algorithm 7 also apply to other types of data sets, such as the handwritten digits data-
base and the tiny images database. The Gaussian kernel, the Laplacian kernel and Poly-
nomial kernel are utilized in this example. The tiny images database CIFAR-100 is of
size 3072 × 60, 000 and the handwritten digits database MNIST is of size 784 × 70, 000 . In
this experiment, we set the reference vector set cardinality r = 6000 and the discriminant
space dimensionality d = 50, 100 for the CIFAR-100 and the MNIST databases. Similar
to Example 4, we apply Algorithm 4 for the eigenanalysis step in all the algorithms. In the
kernel regression step, we also run the proposed Algorithm 5 and Algorithm 7, the modi-
fied Nyström method (Wang & Zhang, 2013), the fixed-rank Nyström method (Anaraki &
Becker, 2019), the original ACS-KSR method (Algorithm 2), as well as the randomized
block coordinate descent (RBCD) method due to (Needell et al., 2015, Algorithm 2). The
target rank and the oversampling parameter are selected to be the number of clusters s and
10, respectively.

Tables 10 and 11 list EER, AUC, standard deviations, as well as CPU time in seconds of
the six algorithms. For the handwritten digits database MNIST, we see from Table 10 that
the EER values obtained from Algorithm 7 are often smaller than the three Nyström-type
methods, and it runs much faster than the other algorithms in many cases. For the CIFAR-
100 database in Table 11, it is seen that the EER and AUC values obtained from the six
algorithms are with ups and downs, and we cannot tell which one is the best. Indeed, the
results are closely related to the data sets and the selection of the kernel functions. Moreo-
ver, we observe from Table 11 that the EER and AUC values from the first four algorithms
are comparable. This illustrates the rationality of using s as the target rank in the rand-
omized algorithms for solving the kernel regression problem.

Again, we observe from Tables 10 and 11 that the total CPU timings of the modified
Nyström method (Wang & Zhang, 2013), the fixed-rank Nyström method (Anaraki &
Becker, 2019) and Algorithm 5 are about the same, and they are much faster than the ACS-
KSR method. As a comparison, the randomized block coordinate descent (RBCD) method
is the slowest one, while the proposed Algorithm 7 performs the best in terms of CPU
time. More precisely, Algorithm 5 and Algorithm 7 are about two to three times faster than
the ACS-KSR method, respectively. Compared with the RBCD-based algorithm which
does not require explicitly form and store the reduced kernel matrix K̃ , either, Algorithm 7
is nearly 10 times faster. All these illustrate the superiority of Algorithm 5 and Algorithm 7
for high-dimensional and large-sample kernel regression problems.

7 Concluding remarks

Face verification is a crucial problem in many applications such as human-computer inter-
action and human behaviour analysis for assisted living. The approximate class-specific
kernel spectral regression (ACS-KSR) method is an improvement to the class-specific ker-
nel discriminant analysis (CS-KDA) and the class-specific kernel spectral regression (CS-
KSR) methods, and it is an effective method for face verification problem. However, when
the scale of data sets is very large, ACS-KSR may suffer from heavily computational over-
head or even be infeasible in practice.

2084 Machine Learning (2022) 111:2037–2091

1 3

Ta
bl

e
10

Ex

am
pl

e
5:

 N
um

er
ic

al
 re

su
lts

 o
f t

he
 a

lg
or

ith
m

s
us

in
g

th
e

G
au

ss
ia

n
ke

rn
el

, L
ap

la
ci

an
 k

er
ne

l a
nd

 P
ol

yn
om

ia
l k

er
ne

l o
n

th
e

ha
nd

w
rit

te
n

di
gi

ts
 d

at
ab

as
e
M
N
I
S
T

 w
ith

d
=
5
0
,
1
0
0
 a

nd
 r
=
6
0
0
0
 , w

he
re

 th
e

ei
ge

na
na

ly
si

s s
te

p
is

 so
lv

ed
 b

y
us

in
g

A
lg

or
ith

m
 4

 in
 a

ll
th

e
al

go
rit

hm
s

A
lg

or
ith

m
s

H
an

dw
rit

te
n

di
gi

ts
 d

at
ab

as
e:

 M
N
I
S
T

 (r
 =

 6
00

0,
 d

 =
 5

0)
H

an
dw

rit
te

n
di

gi
ts

 d
at

ab
as

e:
 M
N
I
S
T

 (r
 =

 6
00

0,
 d

 =
 1

00
)

(M
et

ho
ds

)
EE

R
 ±

 S
td

-D
ev

%
A

U
C

 ±
 S

td
-D

ev
C

PU
 ti

m
e

(s
)

EE
R

 ±
 S

td
-D

ev
%

A
U

C
 ±

 S
td

-D
ev

C
PU

 ti
m

e
(s

)

G
au

ss
ia

n
K

er
ne

l
G

au
ss

ia
n

K
er

ne
l

A
C

S-
K

SR
2.

63
 ±

 0
.0

99
%

0.
99

 ±
 0

.0
00

33
26

.4
2(

4.
53

 +
 2

1.
89

)
6.

77
 ±

 0
.1

0%
0.

97
 ±

 0
.0

00
88

26
.3

4
(4

.6
0

+
 2

1.
74

)
M

od
ifi

ed
 N

ys
trö

m
 m

et
ho

d
W

an
g

an
d

Zh
an

g
(2

01
3)

16
.3

9
±

 0
.8

0%
0.

89
 ±

 0
.0

07
8

5.
18

(4
.5

3
+

 0
.6

5)
15

.9
0

±
 0

.5
6%

0.
90

 ±
 0

.0
05

7
6.

81
 (4

.6
0

+
 2

.2
1)

Fi
xe

d-
ra

nk
 N

ys
trö

m
 m

et
ho

d
A

na
ra

ki
 a

nd
 B

ec
ke

r
(2

01
9)

16
.1

3
±

 0
.2

0%
0.

90
 ±

 0
.0

01
7

5.
06

(4
.5

3
+

 0
.5

3)
15

.9
1

±
 0

.0
90

%
0.

90
 ±

 0
.0

01
4

6.
63

 (4
.6

0
+

 2
.0

3)

A
lg

or
ith

m
 5

15
.7

7
±

 0
.1

3%
0.

90
 ±

 0
.0

01
0

5.
19

(4
.5

3
+

 0
.6

6)
15

.6
0

±
 0

.1
2%

0.
90

 ±
 0

.0
00

90
6.

79
 (4

.6
0

+
 2

.1
9)

N
ee

de
ll’

s R
B

C
D

 N
ee

de
ll

et
 a

l.,
 (2

01
5)

7.
86

 ±
 0

.5
5%

0.
96

 ±
 0

.0
04

8
46

.4
2(

0
+

 4
6.

42
)

8.
69

 ±
 0

.7
4%

0.
97

 ±
 0

.0
05

3
92

.6
0

(0
 +

 9
2.

60
)

A
lg

or
ith

m
 7

7.
85

 ±
 0

.7
4%

0.
97

 ±
 0

.0
04

9
5.

12
(0

 +
 5

.1
2)

8.
42

 ±
 0

.4
7%

0.
97

 ±
 0

.0
02

8
5.

66
 (0

 +
 5

.6
6)

La
pl

ac
ia

n
K

er
ne

l
La

pl
ac

ia
n

K
er

ne
l

A
C

S-
K

SR
1.

21
 ±

 0
.0

68
%

0.
99

 ±
 0

.0
00

71
26

.2
0(

4.
96

 +
 2

1.
24

)
1.

19
 ±

 0
.0

00
45

%
0.

99
 ±

 0
.0

00
17

26
.7

3
(4

.9
5

+
 2

1.
78

)
M

od
ifi

ed
 N

ys
trö

m
 m

et
ho

d
W

an
g

an
d

Zh
an

g
(2

01
3)

16
.9

4
±

 0
.3

9%
0.

89
 ±

 0
.0

04
9

5.
62

(4
.9

6
+

 0
.6

6)
16

.6
9

±
 0

.3
0%

0.
89

 ±
 0

.0
01

8
7.

20
 (4

.9
5

+
 2

.2
5)

Fi
xe

d-
ra

nk
 N

ys
trö

m
 m

et
ho

d
A

na
ra

ki
 a

nd
 B

ec
ke

r
(2

01
9)

16
.6

4
±

 0
.5

5%
0.

89
 ±

 0
.0

05
0

5.
48

(4
.9

6
+

 0
.5

2)
16

.5
6

±
 0

.5
5%

0.
90

 ±
 0

.0
04

5
7.

02
 (4

.9
5

+
 2

.0
7)

A
lg

or
ith

m
 5

16
.0

7
±

 0
.2

0%
0.

90
 ±

 0
.0

01
6

5.
65

(4
.9

6
+

 0
.6

9)
15

.8
9

±
 0

.1
3%

0.
91

 ±
 0

.0
01

0
7.

17
 (4

.9
5

+
 2

.2
2)

N
ee

de
ll’

s R
B

C
D

 N
ee

de
ll

et
 a

l.
(2

01
5)

5.
61

 ±
 0

.6
8%

0.
98

 ±
 0

.0
03

5
55

.9
8(

0
+

 5
5.

98
)

6.
32

 ±
 0

.8
8%

0.
98

 ±
 0

.0
06

0
11

8.
05

 (0
 +

 1
18

.0
5)

A
lg

or
ith

m
 7

5.
37

 ±
 0

.6
4%

0.
98

 ±
 0

.0
03

2
6.

55
(0

 +
 6

.5
5)

6.
67

 ±
 0

.5
1%

0.
98

 ±
 0

.0
04

1
6.

69
 (0

 +
 6

.6
9)

Po
ly

no
m

ia
l K

er
ne

l
Po

ly
no

m
ia

l K
er

ne
l

A
C

S-
K

SR
5.

56
 ±

 0
.1

1%
0.

97
 ±

 0
.0

00
55

24
.6

6(
2.

80
 +

 2
1.

86
)

12
.9

6
±

 0
.1

9%
0.

93
 ±

 0
.0

00
32

24
.2

9
(2

.7
5

+
 2

1.
54

)
M

od
ifi

ed
 N

ys
trö

m
 m

et
ho

d
W

an
g

an
d

Zh
an

g
(2

01
3)

17
.2

4
±

 0
.9

7%
0.

89
 ±

 0
.0

08
8

3.
44

(2
.8

0
+

 0
.6

4)
16

.2
6

±
 0

.2
4%

0.
90

 ±
 0

.0
02

7
4.

89
 (2

.7
5

+
 2

.1
4)

Fi
xe

d-
ra

nk
 N

ys
trö

m
 m

et
ho

d
A

na
ra

ki
 a

nd
 B

ec
ke

r
(2

01
9)

16
.5

6
±

 0
.3

9%
0.

90
 ±

 0
.0

03
8

3.
32

(2
.8

0
+

 0
.5

2)
16

.4
7

±
 0

.4
3%

0.
90

 ±
 0

.0
03

8
4.

77
 (2

.7
5

+
 2

.0
2)

A
lg

or
ith

m
 5

16
.0

0
±

 0
.1

7%
0.

90
 ±

 0
.0

01
3

3.
46

(2
.8

0
+

 0
.6

6)
15

.9
8

±
 0

.1
8%

0.
91

 ±
 0

.0
01

1
4.

90
 (2

.7
5

+
 2

.1
5)

N
ee

de
ll’

s R
B

C
D

 N
ee

de
ll

et
 a

l.,
 (2

01
5)

4.
95

 ±
 0

.3
2%

0.
98

 ±
 0

.0
01

5
7.

89
(0

 +
 7

.8
9)

5.
56

 ±
 1

.2
1%

0.
98

 ±
 0

.0
04

7
15

.3
5

(0
 +

 1
5.

35
)

2085Machine Learning (2022) 111:2037–2091

1 3

Ta
bl

e
10

 (
co

nt
in

ue
d)

A
lg

or
ith

m
s

H
an

dw
rit

te
n

di
gi

ts
 d

at
ab

as
e:

 M
N
I
S
T

 (r
 =

 6
00

0,
 d

 =
 5

0)
H

an
dw

rit
te

n
di

gi
ts

 d
at

ab
as

e:
 M
N
I
S
T

 (r
 =

 6
00

0,
 d

 =
 1

00
)

(M
et

ho
ds

)
EE

R
 ±

 S
td

-D
ev

%
A

U
C

 ±
 S

td
-D

ev
C

PU
 ti

m
e

(s
)

EE
R

 ±
 S

td
-D

ev
%

A
U

C
 ±

 S
td

-D
ev

C
PU

 ti
m

e
(s

)

A
lg

or
ith

m
 7

10
.9

2
±

 1
.6

1%
0.

95
 ±

 0
.0

12
0.

76
(0

 +
 0

.7
6)

9.
94

 ±
 1

.1
8%

0.
96

 ±
 0

.0
09

7
2.

02
 (0

 +
 2

.0
2)

Th
e

C
PU

 ti
m

e
Z
(Z

1
+
Z
2
) m

ea
ns

 th
e

to
ta

l C
PU

 ti
m

e
Z

is
 c

om
po

se
d

of
 Z

1 (
th

e
co

m
m

on
 ti

m
e)

 fo
r g

en
er

at
in

g
th

e
re

du
ce

d
ke

rn
el

 m
at

rix
 K̃

 , a
nd

 Z
2
 (t

he
 c

om
pu

ta
tio

n
tim

e)
 fo

r
th

e
ei

ge
na

na
ly

si
s s

te
p

an
d

th
e

ke
rn

el
 re

gr
es

si
on

 st
ep

2086 Machine Learning (2022) 111:2037–2091

1 3

Ta
bl

e
11

Ex

am
pl

e
5:

 N
um

er
ic

al
 re

su
lts

 o
f t

he
 a

lg
or

ith
m

s
us

in
g

th
e

G
au

ss
ia

n
ke

rn
el

, L
ap

la
ci

an
 k

er
ne

l a
nd

 P
ol

yn
om

ia
l k

er
ne

l o
n

th
e

tin
y

im
ag

es
 d

at
as

et
 C
I
F
A
R
-
1
0
0

 w
ith

d
=
5
0
,
1
0
0
 a

nd
 r
=
6
0
0
0
 , w

he
re

 th
e

ei
ge

na
na

ly
si

s s
te

p
is

 so
lv

ed
 b

y
us

in
g

A
lg

or
ith

m
 4

 in
 a

ll
th

e
al

go
rit

hm
s

A
lg

or
ith

m
s

Ti
ny

 im
ag

es
 d

at
as

et
: C
I
F
A
R
-
1
0
0

 (r
 =

 6
00

0,
d

=
 5

0)
Ti

ny
 im

ag
es

 d
at

as
et

: C
I
F
A
R
-
1
0
0

 (r
 =

 6
00

0,
d

=
 1

00
)

(M
et

ho
ds

)
EE

R
 ±

 S
td

-D
ev

%
A

U
C

 ±
 S

td
-D

ev
C

PU
 ti

m
e

(s
)

EE
R

 ±
 S

td
-D

ev
%

A
U

C
 ±

 S
td

-D
ev

C
PU

 ti
m

e
(s

)

G
au

ss
ia

n
K

er
ne

l
G

au
ss

ia
n

K
er

ne
l

A
C

S-
K

SR
32

.1
0

±
 0

.1
9%

0.
73

 ±
 0

.0
02

0
26

.9
4

(8
.6

4
+

 1
8.

30
)

36
.8

5
±

 0
.0

56
%

0.
67

 ±
 0

.0
00

56
26

.5
3(

8.
20

 +
 1

8.
33

)
M

od
ifi

ed
 N

ys
trö

m
 m

et
ho

d
W

an
g

an
d

Zh
an

g
(2

01
3)

33
.8

4
±

 0
.2

4%
0.

70
 ±

 0
.0

02
0

9.
68

 (8
.6

4
+

 1
.0

4)
35

.1
2

±
 0

.2
2%

0.
68

 ±
 0

.0
02

0
10

.4
7(

8.
20

 +
 2

.2
7)

Fi
xe

d-
ra

nk
 N

ys
trö

m
 m

et
ho

d
A

na
ra

ki
 a

nd
 B

ec
ke

r
(2

01
9)

36
.5

7
±

 0
.2

2%
0.

67
 ±

 0
.0

03
2

9.
37

 (8
.6

4
+

 0
.7

3)
38

.4
3

±
 0

.2
3%

0.
64

 ±
 0

.0
02

7
10

.1
6(

8.
20

 +
 1

.9
6)

A
lg

or
ith

m
 5

33
.8

0
±

 0
.2

1%
0.

70
 ±

 0
.0

02
0

9.
68

 (8
.6

4
+

 1
.0

4)
35

.1
6

±
 0

.3
0%

0.
68

 ±
 0

.0
02

7
10

.4
7(

8.
20

 +
 2

.2
7)

N
ee

de
ll’

s R
B

C
D

 N
ee

de
ll

et
 a

l.
(2

01
5)

42
.2

4
±

 3
.2

6%
0.

61
 ±

 0
.0

39
79

.5
3

(0
 +

 7
9.

53
)

44
.2

4
±

 4
.2

9%
0.

57
 ±

 0
.0

51
14

6.
98

(0
 +

 1
46

.9
8)

A
lg

or
ith

m
 7

39
.9

9
±

 1
.3

3%
0.

63
 ±

 0
.0

11
4.

30
 (0

 +
 4

.3
0)

41
.3

4
±

 1
.7

0%
0.

61
 ±

 0
.0

15
5.

29
(0

 +
 5

.2
9)

La
pl

ac
ia

n
K

er
ne

l
La

pl
ac

ia
n

K
er

ne
l

A
C

S-
K

SR
22

.6
7

±
 0

.1
7%

0.
84

 ±
 0

.0
01

8
27

.3
4

(9
.0

9
+

 1
8.

25
)

23
.1

8
±

 0
.1

9%
0.

83
 ±

 0
.0

01
8

28
.5

5(
8.

78
 +

 1
9.

77
)

M
od

ifi
ed

 N
ys

trö
m

 m
et

ho
d

W
an

g
an

d
Zh

an
g

(2
01

3)
32

.2
9

±
 0

.2
2%

0.
72

 ±
 0

.0
01

5
10

.1
3

(9
.0

9
+

 1
.0

4)
32

.9
3

±
 0

.2
8%

0.
71

 ±
 0

.0
01

9
11

.0
0(

8.
78

 +
 2

.2
2)

Fi
xe

d-
ra

nk
 N

ys
trö

m
 m

et
ho

d
A

na
ra

ki
 a

nd
 B

ec
ke

r
(2

01
9)

37
.0

4
±

 0
.3

4%
0.

67
 ±

 0
.0

03
5

9.
83

 (9
.0

9
+

 0
.7

4)
38

.1
9

±
 0

.2
5%

0.
65

 ±
 0

.0
02

4
10

.7
6(

8.
78

 +
 1

.9
8)

A
lg

or
ith

m
 5

32
.2

6
±

 0
.1

9%
0.

72
 ±

 0
.0

01
6

10
.1

0
(9

.0
9

+
 1

.0
1)

32
.9

3
±

 0
.1

3%
0.

71
 ±

 0
.0

01
5

11
.0

4(
8.

78
 +

 2
.2

6)
N

ee
de

ll’
s R

B
C

D
 N

ee
de

ll
et

 a
l.,

 (2
01

5)
43

.4
3

±
 3

.2
3%

0.
61

 ±
 0

.0
34

41
4.

43
 (0

 +
 4

14
.4

3)
46

.3
2

±
 1

.1
9%

0.
56

 ±
 0

.0
17

80
0.

49
(0

 +
 8

00
.4

9)
A

lg
or

ith
m

 7
36

.4
7

±
 1

.2
6%

0.
68

 ±
 0

.0
17

11
.8

0
(0

 +
 1

1.
80

)
39

.0
9

±
 1

.8
4%

0.
66

 ±
 0

.0
19

12
.7

0(
0

+
 1

2.
70

)
Po

ly
no

m
ia

l K
er

ne
l

Po
ly

no
m

ia
l K

er
ne

l
A

C
S-

K
SR

42
.1

3
±

 0
.1

4%
0.

61
 ±

 0
.0

01
7

24
.2

3
(6

.6
8

+
 1

7.
55

)
45

.5
7

±
 0

.1
2%

0.
56

 ±
 0

.0
00

85
25

.0
8(

6.
52

 +
 1

8.
56

)
M

od
ifi

ed
 N

ys
trö

m
 m

et
ho

d
W

an
g

an
d

Zh
an

g
(2

01
3)

38
.1

4
±

 0
.1

6%
0.

65
 ±

 0
.0

02
2

7.
70

 (6
.6

8
+

 1
.0

2)
40

.2
9

±
 0

.1
2%

0.
62

 ±
 0

.0
01

3
8.

76
(6

.5
2

+
 2

.2
4)

Fi
xe

d-
ra

nk
 N

ys
trö

m
 m

et
ho

d
A

na
ra

ki
 a

nd
 B

ec
ke

r
(2

01
9)

39
.8

7
±

 0
.1

9%
0.

62
 ±

 0
.0

01
8

7.
42

 (6
.6

8
+

 0
.7

4)
42

.1
4

±
 0

.2
1%

0.
60

 ±
 0

.0
03

3
8.

50
(6

.5
2

+
 1

.9
8)

A
lg

or
ith

m
 5

38
.0

7
±

 0
.0

75
%

0.
65

 ±
 0

.0
01

2
7.

70
 (6

.6
8

+
 1

.0
2)

40
.3

0
±

 0
.1

3%
0.

62
 ±

 0
.0

01
6

8.
78

(6
.5

2
+

 2
.2

6)
N

ee
de

ll’
s R

B
C

D
 N

ee
de

ll
et

 a
l.,

 (2
01

5)
44

.0
7

±
 2

.4
4%

0.
58

 ±
 0

.0
26

10
8.

81
 (0

 +
 1

08
.8

1)
45

.9
6

±
 0

.6
5%

0.
56

 ±
 0

.0
15

21
3.

31
(0

 +
 2

13
.3

1)

2087Machine Learning (2022) 111:2037–2091

1 3

Ta
bl

e
11

 (
co

nt
in

ue
d)

A
lg

or
ith

m
s

Ti
ny

 im
ag

es
 d

at
as

et
: C
I
F
A
R
-
1
0
0

 (r
 =

 6
00

0,
d

=
 5

0)
Ti

ny
 im

ag
es

 d
at

as
et

: C
I
F
A
R
-
1
0
0

 (r
 =

 6
00

0,
d

=
 1

00
)

(M
et

ho
ds

)
EE

R
 ±

 S
td

-D
ev

%
A

U
C

 ±
 S

td
-D

ev
C

PU
 ti

m
e

(s
)

EE
R

 ±
 S

td
-D

ev
%

A
U

C
 ±

 S
td

-D
ev

C
PU

 ti
m

e
(s

)

A
lg

or
ith

m
 7

44
.6

5
±

 1
.2

5%
0.

58
 ±

 0
.0

19
5.

67
 (0

 +
 5

.6
7)

48
.1

1
±

 0
.8

5%
0.

54
 ±

 0
.0

08
7

7.
11

(0
 +

 7
.1

1)

Th
e

C
PU

 ti
m

e
Z
(Z

1
+
Z
2
) m

ea
ns

 th
e

to
ta

l C
PU

 ti
m

e
Z

is
 c

om
po

se
d

of
 Z

1 (
th

e
co

m
m

on
 ti

m
e)

 fo
r g

en
er

at
in

g
th

e
re

du
ce

d
ke

rn
el

 m
at

rix
 K̃

 , a
nd

 Z
2
 (t

he
 c

om
pu

ta
tio

n
tim

e)
 fo

r
th

e
ei

ge
na

na
ly

si
s s

te
p

an
d

th
e

ke
rn

el
 re

gr
es

si
on

 st
ep

2088 Machine Learning (2022) 111:2037–2091

1 3

In this paper, we propose new algorithms based on ACS-KSR method to speed up the
computation of large-scale face verification problem. By exploiting the special structure
of the scatter matrices, we give a correction to the eigenanalysis step in the ACS-KSR
method. The first main contribution of this work is to show why low-rank matrix approxi-
mation works well for the kernel methods from a theoretical point of view, and we propose
a practical strategy for determining target rank for the randomized Nyström method. Based
on this strategy, a modified Nyström method with fixed-rank for low-rank approximation of
matrices is proposed.

In the big data era, however, the size of kernel matrix is so huge that it is impractical
to form or store the matrix in main memory. Therefore, the second main contribution is to
propose a randomized block Kaczmarz algorithm for kernel regression with multiple right-
hand sides, in which one only needs to compute a very small portion of the reduced kernel
matrix. The convergence analysis of the new method is established. Numerical experiments
on some real-world data sets demonstrate that the proposed approaches achieve satisfactory
performance, especially for huge-scale data problems.

We would like to provide more specific information for helping the interested readers
to identify pros and cons associated with the two proposed methods. On one hand, if the
reduced kernel matrix is not very large and one can store some portions of it, we recom-
mend using Algorithm 5 for its simplicity. On the other hand, if the reduced kernel matrix
is so huge that even a small portion is hard to store in main memory, we highly recommend
using Algorithm 7 for its high efficiency and low workload. Finally, we would like to stress
that the strategies proposed in this paper also apply to many conventional kernel methods
(Hofmann et al., 2008), the multiple kernel methods (Bucak et al., 2014; Gönen & Alpayin,
2011), and deep learning (Wang et al., 2021). These are very interesting topics and deserve
further investigation.

Acknowledgements We would like to express our sincere thanks to our editor and the anonymous referees
for insightful comments and suggestions that greatly improved the representation of this paper.

Funding This work is supported by the Fundamental Research Funds for the Central Universities of China
under Grant No. 2019XKQYMS89.

References

Anaraki, F., & Becker, S. (2019). Improved fixed-rank Nyström approximation via QR decomposition: Prac-
tical and theoretical aspects. Neurocomputing, 363, 261–272.

Arashloo, S., & Kittler, J. (2014). Class-specific kernel fusion of multiple descriptors for face verification
using multiscale binarised statistical image features. IEEE Transactions on Information Forensics and
Security, 9, 2100–2109.

Bach, F. (2013). Sharp analysis of low-rank kernel matrix approximations, JMLR: Workshop and Confer-
ence Proceedings, 30: 1–25.

Barr, P., Noble, J., & Biddle, R. (2007). Video game values: Human-computer interaction and games. Inter-
acting with Computers, 19, 180–195.

Baudat, G., & Anouar, F. (2000). Generalized discriminant analysis using a kernel approach. Neural Com-
putation, 12, 2385–2404.

Bucak, S., Jin, R., & Jain, A. (2014). Multiple kernel learning for visual object recognition: a review. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 36, 1354–1369.

Cambier, L., & Darve, E. (2019). Fast low-rank kernel matrix factorization using skeletonized interpolation.
SIAM Journal on Scientific Computing, 41, A1652–A1680.

Cao, G., Iosifidis, A., & Gabbouj, M. (2018). Neural class-specific regression for face verification. IET
Biometrics, 7, 63–70.

2089Machine Learning (2022) 111:2037–2091

1 3

Cortes, C., Mohri, M., & Talwalkar, A. (2010). On the impact of kernel approximation on learning accu-
racy, Journal of Machine Learning Research, 113–120.

Drineas, P., & Mahoney, M. (2005). On the Nyström method for approximating a gram matrix for improved
kernel-based learning. Journal of Machine Learning Research, 6, 2153–2175.

Duda, R., Hart, P., & Stork, D. (2000). Pattern Classification, 2nd edition, Wiley.
Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27, 861–874.
Friedman, L., Stern, H., Prokopenko, V., & Komogortsev, O.. Relationship between number of subjects and

biometric authentication equal error rates, arXiv: 1906. 06272 v1.
Gittens, A. (2011). The spectral norm error of the naive Nyström extension, arXiv: 1110. 5305.
Golub, G. H., & Van Loan, C. F. (2014). Matrix Computations (4th ed.). Baltimore: Johns Hopkins Univer-

sity Press.
Gönen, M., & Alpayin, E. (2011). Multiple kernel learning algorithms. Journal of Machine Learning

Research, 12, 2211–2268.
Goudelis, G., Zafeiriou, S., Tefas, A., & Pitas, I. (2007). Class-specific kernel discriminant analysis for face

verification. IEEE Transactions on Information Forensics and Security, 2, 570–587.
Grimmett, G., & Stirzaker, D. (2001). Probability and random processes, 3rd edition, Oxford University

Press.
Grother, P. (1995). NIST special database 19 handprinted forms and characters database. National Institute

of Standards and Technology: Tech. Rep.
Halko, N., Martinsson, P., & Troop, J. (2011). Finding structure with randomness: probabilistic algorithms

for constructing approximate matrix decompositions. SIAM Review, 53, 217–288.
Higham, N. J., & Mary, T. (2019). A new preconditioner that exploits low-rank approximations to factoriza-

tion error. SIAM Journal on Scientific Computing, 41, A59–A82.
Hofmann, T., Schölkopf, B., & Smola, A. (2008). Kernel methods in machine learning. The Annals of Sta-

tistics, 36, 1171–1220.
Iosifidis, A., & Gabbouj, M. (2016). Hierarchical class-specific kernel discriminant analysis for face verifi-

cation, Visual Communications and Image Processing (VCIP), pp. 1–4.
Iosifidis, A., & Gabbouj, M. (2016). Scaling up class-specific kernel discriminant analysis for large-scale

face verification. IEEE Transactions on Information Forensics and Security, 11, 2453–2465.
Iosifidis, A., & Gabbouj, M. (2017). Class-specific kernel discriminant analysis revisited: further analysis

and extensions. IEEE Transactions on Cybernetics, 47, 4485–4496.
Iosifidis, A., Tefas, A., & Pitas, I. (2015). Class-specific reference discriminant analysis with application in

human behavior analysis. IEEE Transactions on Human-Machine Systems, 45, 315–326.
Iske, A., Borne, S., & Wende, M. (2017). Hierarchical matrix approximation for kernel-based scattered data

interpolation. SIAM Journal on Scientific Computing, 39, A2287–A2316.
Jia, Y., Nie, F., & Zhang, C. (2009). Trace ratio problem revisited. IEEE Transactions on Neural Networks,

20, 729–735.
Kittler, Y., Li, J., & Matas, J. (2000). Face verification using client specific Fisher faces, The Statistics of

Directions, 63–66.
Krizhevsky, A. (2009). Learning multiple layers of features from tiny images .
Lan, L., Zhang, K., Ge, H., et al., (2017). Low-rank decomposition meets kernel learning: A generalized

Nyström method. Artificial Intelligence, 250, 1–15.
Lei, Z., Liao, S., Jain, A. K., & Li, S. Z. (2012). Coupled discriminant analysis for heterogeneous face rec-

ognition. IEEE Transactions on Information Forensics and Security, 7, 1707–1716.
Ling, C., Huang, J., & Zhang, H. (2003). AUC: a better measure than accuracy in comparing learning algo-

rithms, Advances in Artificial Intelligence, pp. 329–341.
Li, Z., Park, U., & Jain, A. K. (2011). A discriminative model for age invariant face recognition. IEEE

Transactions on Information Forensics and Security, 6, 1028–1037.
Lu, J., Plataniotis, K., & Venetsanopoulos, A. (2003). Face recognition using kernel direct discriminant

analysis algorithms. IEEE Transactions on Neural Networks, 14, 117–126.
Müller, K., Mika, S., Rätsch, G., Tsuda, K., & Schölkopf, B. (2001). An introduction to kernel-based learn-

ing algorithms. IEEE Transactions on Neural Networks, 12, 181–201.
Necoara, I. (2019). Faster randomized block Kaczmarz algorithms. SIAM Journal on Matrix Analysis and

Applications, 40, 1425–1452.
Needell, D., & Tropp, J. A. (2014). Paved with good intentions: Analysis of a randomized block Kaczmarz

method. Linear Algebra and its Applications, 441, 199–221.
Needell, D., Zhao, R., & Zouzias, A. (2015). Randomized block Kaczmarz method with projection for solv-

ing least squares. Linear Algebra and its Applications, 484, 322–343.
Ng, H., & Winkler, S. (2014).A data-driven approach to cleaning large face datasets, IEEE International

Conference on Image Processing (ICIP), pp. 343–347.

http://arxiv.org/abs/1906.06272v1
http://arxiv.org/abs/1110.5305

2090 Machine Learning (2022) 111:2037–2091

1 3

Ngo, T., Bellalij, M., & Saad, Y. (2012). The trace-ratio optimization problem. SIAM Review, 54, 545–569.
Pan, B., Lai, J., & Yuen, P. (2011). Learning low-rank Mercer kernels with fast-decaying spectrum. Neuro-

computing, 74, 3028–3035.
Park, C., & Park, H. (2008). A comparision of generalized linear discriminant analysis algorithms. Pattern

Recognition, 41, 1083–1097.
Shi, W., & Wu, G. (2021). New algorithms for trace-ratio problem with application to high-dimension and

large-sample data dimensionality reduction. Machine Learning, Machine Learning, Special Issue on
Feature Engineering, Article, 4, 1–28.

Sim, T., Baker, S., & Bsat, M. (2003). The CMU pose, illumination, and expression database. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 25, 1615–1618.

Strohmer, T., & Vershynin, R. (2009). A randomized Kaczmarz algorithm with exponential convergence.
Journal of Fourier Analysis and Applications, 15, 262–278.

Sun, S., Zhao, J., & Zhu, J. (2015). A review of Nyström methods for large-scale machine learning. Infor-
mation Fusion, 26, 36–48.

Tavernier, J., Simm, J., Meerbergen, K., Wegner, J. K., Ceulemans, H., & Moreau, Y. (2019). Fast semi-super-
vised discriminant analysis for binary classification of large data sets. Pattern Recognition, 91, 86–99.

Tefas, A., & Pitas, I. (2011). Human centered interfaces for assisted living. Man-Machine Interactions, 2,
3–10.

Tran, T., Douzal-Chouakria, A., Yazdi, S., et al., (2020). Interpretable time series kernel analytics by preim-
age estimation. Artificial Intelligence, 286, 103342.

Tropp, J. (2012). User-friendly tools for random matrices: An introdction.
Wang, H., Yan, S., Xu, D., & Huang, X. (2007). Trace-ratio vs. ratio-trace for dimensionality reduction,

IEEE Conference on Compute Vision and Pattern Recognition, pp. 1–8.
Wang, R., Li, Y., & Darve, E. (2018). On the numerical rank of radial basis function kernels in high dimen-

sions. SIAM Journal on Matrix Analysis and Applications, 39, 1810–1835.
Wang, S., & Zhang, Z. (2013). Improving CUR matrix decomposition and Nyström approximation via

adaptive sampling. Journal of Machine Learning Research, 14, 2729–2769.
Wang, T., Zhang, L., & Hu, W. (2021). Bridging deep and multiple kernel learning: A review. Information

Fusion, 67, 3–13.
Wathen, A., & Zhu, S. (2015). On spectral distribution of kernel matrices related to radial basis functions.

Numerical Algorithms, 70, 709–726.
Williams, C., & Seeger, M. (2001). Using the Nyström method to speed up kernel machines. Advances in

Neural Information Processing Systems, 13, 682–688.
Wolf, L., Hassner, T., & Maoz, I. (2011). Face recognition in unconstrained videos with matched back-

ground similarity, IEEE Conference on Computer Vision and Pattern Recognition, pp. 529–534.
Wu, X., Kumar, V., Quinlan, J., et al., (2008). Top 10 algorithms in data mining. Knowledge and Informa-

tion Systems, 14, 1–37.
Wu, X., Xu, J., Wang, J., Li, Y., Li, W., & Guo, Y. (2019). Identity authentication on mobile devices using

face verification and ID image recognition. Procedia Computer Science, 162, 932–939.
Xing, X., & Chow, E. (2020). Interpolative decomposition via proxy points for kernel matrices. SIAM Jour-

nal on Matrix Analysis and Applications, 41, 221–243.
Zafeiriou, S., Tzimiropoulos, G., Petrou, M., & Stathaki, T. (2012). Regularized kernel discriminant analy-

sis with a robust kernel for face recognition and verification. IEEE Transactions on Neural Networks
and Learning Systems, 23, 526–534.

Zhang, X., Li, X., Feng, Y., & Liu, Z. (2015). The use of ROC and AUC in the validation of objective image
fusione valuation metrics. Signal Processing, 115, 38–48.

Zhao, M., Chan, R., Tang, P., Chow, T., & Wong, S. (2013). Trace-ratio linear discriminant analysis for
medical diagnosis: a case study of dementia. IEEE Singal Processing Letters, 20, 431–434.

Zheng, W., Lin, Z., & Wang, H. (2013). L1-norm kernel discriminant analysis via Bayes error bound opti-
mization for robust feature extraction. IEEE Transactions on Neural Networks and Learning Systems,
25, 793–805.

Zhou, C., Wang, L., Zhang, Q., & Wei, X. (2013). Face recognition based on PCA image reconstruction and
LDA. Optik, 124, 5599–5603.

Zoric, V. (2008). Mathematical Analysis I. Berlin: Springer.
Zouzias, A., & Freris, N. M. (2013). Randomized extended Kaczmarz for solving least-squares. SIAM Jour-

nal on Matrix Analysis and Applications, 34, 773–793.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

2091Machine Learning (2022) 111:2037–2091

1 3

Authors and Affiliations

Ke Li1 · Gang Wu1

 Ke Li
 likeer1002@163.com

1 School of Mathematics, China University of Mining and Technology, Xuzhou 221116, Jiangsu,
People’s Republic of China

	Randomized approximate class-specific kernel spectral regression analysis for large-scale face verification
	Abstract
	1 Introduction
	2 Class-specific kernel discriminant analysis and its variants
	3 On the ratio-trace and the trace-ratio problems for the eigenanalysis step
	3.1 Solution of the ratio-trace problem for the eigenanalysis step
	3.2 Solution of the trace-ratio problem for the eigenanalysis step

	4 A modified Nyström method based on low-rank approximation for the kernel regression step
	4.1 On the approximately low-rank property of kernel matrix
	4.2 A modified Nyström method with fixed-rank

	5 A randomized block Kaczmarz method for kernel regression problem with multiple right-hand sides
	6 Numerical experiments
	7 Concluding remarks
	Acknowledgements
	References

