
Vol.:(0123456789)

Machine Learning (2022) 111:2349–2380
https://doi.org/10.1007/s10994-022-06139-2

1 3

Modelling spatiotemporal dynamics from Earth observation
data with neural differential equations

Ibrahim Ayed1,2 · Emmanuel de Bézenac2 · Arthur Pajot2 · Patrick Gallinari2,3

Received: 16 June 2020 / Revised: 4 February 2022 / Accepted: 11 February 2022 /
Published online: 18 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022

Abstract
Forecasting complex spatiotemporal dynamics is central in Earth science for modeling a
variety of phenomena ranging from atmospheric dynamics to the evolution of vegetation.
Those phenomena are often observed from remote sensing measurements that only provide
partial information on the underlying physical equations. In this context, we consider the
problem of automatically learning the dynamics of physical spatiotemporal processes from
incomplete observations. We propose a new data-driven framework where the dynamics is
modeled by an unknown differential equation and where the state representation and evo-
lution is learned only from partial observations. The dynamical model is parametrized by
a deep neural network. Since the problem is underconstrained, the model may learn high
quality forecasts of the observations while being physically inconsistent. We introduce two
settings that help analyze and interpret the learned model states. We evaluate the proposed
model on two benchmarks: (1) the incompressible Navier–Stokes equations which underlie
transport phenomena in the atmosphere and in the ocean, (2) a challenging problem of sea
surface temperature prediction where the underlying dynamics corresponds to a sophisti-
cated ocean dynamics model. The proposed model is able to provide long term forecasts
for these complex dynamics and large dimensional observation spaces.

Keywords Deep learning · Forecasting · Partial observations · Spatio-temporal ·
Dynamical systems

Editor: Thomas Corpetti.

 * Ibrahim Ayed
 ayedibrahim@gmail.com

 Emmanuel de Bézenac
 emmanueldebezenac@gmail.com

1 Present Address: Theresis Lab, Thales, Paris, France
2 Sorbonne Université, CNRS, ISIR, Paris, France
3 Criteo AI Lab, Paris, France

http://orcid.org/0000-0002-1210-1293
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06139-2&domain=pdf

2350 Machine Learning (2022) 111:2349–2380

1 3

1 Introduction

Machine learning (ML) has been part of geoscience for a long time. It has been applied
to many sub-domains of Earth science, mostly as dedicated ML solutions developed for
specific problems. The success of deep learning for large size real world applications in
domains like vision or signal processing opens new perspectives for a better and broader
integration of ML and Earth science and for bypassing limitations of current ML and
assimilation solutions. This has been advocated in several recent prospective papers
(Reichstein et al., 2019; Bergen et al., 2019; Gil et al., 2019; Huntingford et al., 2019).

Although there exists a lot of similarities between standard deep learning applica-
tive domains and Earth science applications, the latter have specificities that make them
extremely different from the classical playground of deep learning. Let us quote some of
them that are particularly relevant for the present work. (1) Earth science is mostly con-
cerned with the modeling of complex phenomena involving spatio-temporal dynamics.
This shares similarities with video and motion prediction (Mathieu et al., 2016; Denton
and Fergus, 2018; Franceschi et al., 2020), but the underlying phenomena are usually
much more complex, involving time-evolving multidimensional structures and observa-
tions at different spatio-temporal resolutions. (2) Only raw observations are available and
in most scenarios, labels are not available. (3) The full state of the system itself is usually
not observable so that observations only reflect some partial or indirect knowledge on the
true state values (Carrassi et al., 2018a): for example when studying ocean’s circulation,
variables contained in the system’s state such as surface temperature, salinity or sea surface
heigth are observable via satellite imaging, while subsurface variables characterizing ocean
dynamics are substantially much more difficult to observe. In this case, the state is said to
be partially observable. (4) Extrapolation is not guaranteed since problems in geosciences
are often underconstrained, possibly leading to models with high predictive performance
on the training/ test sets that do not generalize to new geophysical contexts.

Besides, there are other challenges that are common to all physical modeling problems.
An important one is physical consistency and interpretability: predictions achieving good
performance may be inconsistent or not physically plausible and then useless for practition-
ners. It is then essential to constrain the statistical model to be physically consistent. This
is usually performed by regularizing the loss function or by constraining the deep learning
model dynamics.

In what follows, we attempt to provide answers to some of these problems. We consider
the task of learning spatio-temporal dynamics when observations are supposed to represent
partial information of the underlying system state and the dynamics governing the state
evolution are unknown. This is the general situation in most Earth observation problems.
We make the hypothesis that the unkown dynamics obey a set of differential equations with
general form:

where X is the system state, considered here as a spatio-temporal vector field. Its value at
time t is denoted Xt(x) ∈ ℝ

d . When F is known, predicting and analyzing the dynamics of
the system often amounts to using an adequate numerical solver. For many practical prob-
lems, F may not be fully known, e.g., the relations between the components of the state can
be difficult to establish from first principles. A data-driven paradigm for modeling dynami-
cal systems has then emerged (Crutchfield and Mcnamara, 1987; Alvarez et al., 2013) for

(1)
dXt

dt
= F(Xt)

2351Machine Learning (2022) 111:2349–2380

1 3

some years, where the state dynamics is automatically discovered based on the observa-
tions. This is usually performed by considering an adequate class of admissible functions
{F�} parametrized by � , and looking for a � such that the solution X� of

fits the measured data.
As mentioned before, for most real-world applications, the X variables describing

the system are not fully visible to sensors and this is the case considered here. We then
suppose available sequences of partial observations Y1,… , YT acquired on a regular
spatial grid, providing incomplete information about the unknown underlying process
with (full) state variables X1,… ,XT . We make the classical hypothesis that incomplete
observation Yt can be computed from the corresponding unknown state Xt . In order to
model the unknown spatio-temporal dynamics, we will consider a class of admissible
functions F� implemented by deep convolutional neural networks for taking into account
complex spatial dependencies and multiscale behavior. Our objective is then to learn
parameters � capturing the dynamics of the system’s state and then perform long-term
forecasts.

Our approach indeed learns the dynamics of spatio-temporal systems from raw and
partial image observations without prior knowledge of the system. We start by present-
ing our model and analyze its properties (Sect. 3) as well as the adjoint equation used
for training it (Sect. 4). We then introduce two instances of this general model (Sect. 5).
In the experimental sections, we make use of the model for two problems. First for
the well-known Navier–Stokes equations (Sect. 6), which underlie a large amount of
physical phenomena, for example in the ocean-atmosphere exchanges. Second, on the
prediction of Sea Surface Temperature (Sect. 7), for which we use data coming from
a sophisticated ocean dynamics model which is improved using actual observations.
Our experiments demonstrate a clear improvement over state-of-the-art deep learning
baselines in terms of forecasting accuracy. We further analyze experimentaly how the
learned state dynamics characterize the non-observed state variables. This is up to our
knowledge the first data driven model able to forecast complex spatio-temporal dynam-
ics characteristics of geophysics applications, in a partially observed context, at this
complexity and size levels.

To summarize, our main contributions are the following:

• We propose a framework for learning spatio-temporal dynamics characteristic of
geophysics transport phenomena in the challenging partially observable, large size
observation spaces context.

• We introduce two settings: the first relies only on observations while the second
assumes that a full initial state is available for each trajectory. For both, we analyze the
learned state represnetaions with respect to the canonical interpretable physical states.

• We demonstrate its performances on two problems: the incompressible Navier–Stokes
equations and a challenging and realistic dataset of Sea Surface Temperatures.

Overall, the most promising aspect of our contributions is the fact that, when para-
metrized and trained correctly, Neural Networks are able to learn realistic Earth obser-
vations dynamics with reasonable amounts of data, even in the partially observable set-
ting and without any prior knowledge.

(2)
dXt

dt
= F�(Xt)

2352 Machine Learning (2022) 111:2349–2380

1 3

2 Related work

In the past, several works have already attempted to learn differential equations from data,
such as e.g., Crutchfield and Mcnamara (1987), Alvarez et al. (2013). More recently, Rudy
et al. (2017) and Zhang and Lin (2018) use sparse regression on a dictionary of differen-
tial terms to recover the underlying PDE. In Raissi et al. (2017), they propose recovering
the coefficients of the differential terms by deriving a GP kernel from a linearized form of
the PDE. Long et al. (2018) carefully tailor the neural network architecture, based on the
discretization of the different terms of the underlying PDE. Raissi (2018) develops a NN
framework for learning PDEs from data. Fablet et al. (2017) construct a bilinear network
and use an architecture similar to finite difference schemes to learn fully observed dynami-
cal systems. In those approaches, we often see that either the form of the PDE or the vari-
able dependency are supposed to be known and that the context is the unrealistic setting
where the state is fully observed.

Related to our work, there is the field of data assimilation (Lorenc, 1986; Carrassi et al.,
2018b), where one is interested in using (partial) observations, in conjunction with the
evolution model, supposed known, in order to retrieve the canonical state. Typically, our
constrained optimisation problem is similar to the one posed in classical 4D-Var (Carrassi
et al., 2018b), where the constraint is the evolution equation of the state. Although there
have been work in data assimilation community where the evolution equation is only par-
tially known and some unknown forcing terms are estimated from the data (Béréziat and
Herlin, 2015), our work takes a more data-driven approach, where we make no assump-
tions and use no prior knowledge of the underlying evolution equation.

Recently, other approaches, combining ideas from data-assimilation and machine
learning attempt to tackle the problem of learning the system from partially observations.
Nguyen et al. (2019), learn an LSTM to forecast Lorenz-63 system when only sparse acqui-
sitions in time of the full state are available. However, these methods evaluate themselves
solely on the observed data, and do not consider the hidden states that are predicted by the
model. A more hybrid example is de Bézenac et al. (2018), corresponding to our PKnI
baseline, where they propose to learn a forecasting system in the partially observable case,
where part of the differential equation is known, and the other is approximated using the
data, which allows the network hidden state to ressemble the true hidden state.

As mentioned in the introduction, machine learning as been part of geophysics mod-
eling for the past decades. Most machine learning methodologies have been aplied to geo-
physics and remote sensing. We will focus here on recent developments in the field. The
last few years have seen an exponentially increasing number of deep learning applications
to geophysics through the use of Earth observation data. We then highlight a few represent-
ative applications. Kalinicheva et al. (2020) perform change detection for satellite image
time series using autoencoders. One of the first papers for extreme weather event detection
is considered in Racah et al. (2017). Convolutional LSTMs were introduced in Shi et al.
(2015) for nowcasting. Karpatne et al. (2017) is one of the first papers constraining neural
networks to be consistent with physics and using prior physical knowledge for a prediction
task, the application is lake temperature modeling. Vandal et al. (2018) makes use of a
super resolution convolutional neural network with multi-scale input channels for statistical
downscaling of climate variables. de Bézenac et al. (2018) used as a baseline in this paper
introduces physical knowldge under the form of an advection-diffusion equation in order to
predict sea surface temperature. Ouala et al. (2018) also tackle the forecasting and assimi-
lation of geophysical fields and consider sea surface temperature as an application.

2353Machine Learning (2022) 111:2349–2380

1 3

Moreover, during the last few years, a link has been made between residual networks
and dynamical systems (Weinan, 2017): a residual block ht+1 = ht + f (ht, �t) can be seen as
the explicit Euler discretization of the following system: dht

dt
= f (ht, �t) . Adopting this view-

point, time t corresponds to the neural network’s layer index, the initial condition h(0) to the
network’s input, and the forward pass as the time integration h(T) = h(0) + ∫ T

0
f (h(t), �t) dt ,

where h(T) corresponds to its output. Chen et al. (2018) propose computing this intractable
integral using an ordinary differential equation (ODE) solver. During training, in order to
compute the derivative with respect to the neural network parameters, the corresponding
adjoint state equation is solved backward in time. Note that in our work, instead of consid-
ering the evolution of the inner dynamics of the neural throughout its layers, we consider
the dynamics of the studied process itself, in the context of partially observed states.

3 Learning the dynamics of partially observable systems

Let us first formulate the task of learning partially observed dynamics as an optimization
problem and then introduce a training algorithm.

3.1 Partially observable systems: hypothesis

We assume that only partial measurements of the system’s state are available.
Our hypothesis are the following:

• We have a dataset {Y (i)}i = 1…N corresponding to N sequences of observations. Here,
Y
(i)

l
 denote the available measurement at time l from the i− th sample sequence, and Y (i)

l∶m

the sub-sequence of observations from time l to m. For simplicity, the superscript (i)
may be omitted.

• There exists a stationary, deterministic and differentiable function H and a vector field
X satisfying equation (1) such that H(X) = Y .

H represents the loss of information between the state X describing the system and obser-
vations Y. Note that in our experiments H will be a projection operator, i.e. Yt is a subset
of the variables in Xt . A first question is whether it is always possible to reconstruct the
state X from the observations, for any function H . This is not the case in general: if H has a
constant value for all inputs for example. However, the Takens theorem, see Takens (1981)
for the original statement and Robinson (2010) for a more recent version, states that, for
a dense set of observation functions H , there exists an integer K such that Yt−K+1∶t can
be transoformed into Xt.1 In the following, we suppose that H is such a function. In other
words, there exists K and a function g such that Xt = g(Yt−K+1∶t) . In practice, K is treated as
a hyper-parameter of our models.

Another question regards the uniqueness of the state X. Indeed, H represents a
loss of information and is not injective. This implies that there could exist many state

1 We have voluntarily stated the theorem in loose terms as there are many versions of it in many different
settings and the involved technicalities are beyond the scope of the heuristical argument we present here.

2354 Machine Learning (2022) 111:2349–2380

1 3

representations which induce the same observations Y.2 Our experiments are performed
on simulated data, providing access to all the variables of the system. We will denote by
canonical state, the true state of the physical model, which is not available for training in
our context but known from the simulations. Having access to this ground truth will allow
us to measure how much of the ground truth state information has been learned by our
model. Of course this analysis is performed here for evaluation purpose and is not feasible
in real situations where we have no access to state variables.

3.2 Optimization problem

We want to learn a state representation and its evolution dynamics from sequences of par-
tial observations. A natural formulation as an optimization problem is the following:

where we take

taking the L2 norm over the compact spatial domain Ω ⊂ ℝ
d over which the vector fields

are defined here and where the dataset is a set of the form {(Y (i)

−k+1
,… , Y

(i)

0
,… , Y

(i)

T
)}i ,

where all observations Y (i) are supposed to be generated through the same underlying
dynamical system, with different initial conditions. g� is a function to be learned for pre-
dicting an initial state X0 from past observations Y−k+1∶0.

The difficulty and originality in our context stems from the combination of multiple fac-
tors: the incomplete information setting, the complexity of the considered dynamics and
the high-dimensional, raw spatial data provided as observations. Classical non-linear sys-
tem identification do not handle this type of data (Voss et al., 2004). Closer to us, neural
differential equation solvers, e.g., Sirignano and Spiliopoulos (2018), Raissi et al. (2019)
or Chen et al. (2018), all assume having access to the full states and not only to incom-
plete observations as we do here. Sirignano and Spiliopoulos (2018), Raissi et al. (2019)
furthermore assume that the form of the differential equation is known. Solving problem
(3) in this context requires a specific parametrization of the model: we choose F� and g�
to be deep convolutional networks, which allows us to learn complex spatial differential
operators from data like advection or diffusion terms present in Navier–Stokes (Ruthotto
and Haber, 2018) unsupervisedly. The time evolution is obtained by solving the forward
equation parametrized by F�.

While this model can (and will) be discretized, it is continuous in nature and can thus be
related to the equations used in standard physical models. Here, � is the variable control-
ling the learning and contains the parameters for both F and g.

(3)

minimize
�

�Y∈Dataset[J(Y ,H(X))]

subject to
dXt

dt
= F�(Xt)

X0= g�(Y−k+1∶0),

(4)J(Y , Ỹ) = ∫
T

0

‖Yt − Ỹt‖2L2 ,

2 We give a more rigorous statement regarding the more particular situation of interest in this work in
Sect. 5.

2355Machine Learning (2022) 111:2349–2380

1 3

3.3 Training and inference algorithms

The formulation above closely resembles control problems where a given controllable
dynamical system is constrained to optimize a certain objective. However, our aim here
is different as our goal is to find the dynamical system fitting a certain set of constraints,
here provided through the observations Y. In practice, the optimization problem defined
here can be solved using gradient descent methods. There are many methods to calcu-
late the gradient and we briefly recall in Sect. 4 the adjoint method used in our experi-
ments. In general, F� and g� can be parameterized as a neural network or as another
parametric family, the only constraint being that it is differentiable almost everywhere
with respect to �.

The (general) training algorithm adopted here is Algorithm 1 below.

For inference, the parameters being learnt and fixed, we simply calculate
X0 = g�(Y−k+1∶0) then use it as an initial condition to solve the equation parametrized by
F� which gives us Xt for any t.

The following section details the important step of gradient computation.

4 Calculating the gradient

We start by briefly recalling the adjoint state equation and the corresponding general
algorithm. We then discuss the two main methods used to discretize it, and then end
the section by discussing stability and robustness properties of the resulting gradient.
The definition of the adjoint state equation and the general algorithm highlighted in
theorem 1 are classical results, recalled here for completeness since they underlie our
approach.

When the dynamics are learned as it is the case in our work, there are no closed formu-
lae for the forward equation which must be discretized, thus inducing discretization errors.
Propositions 3 and 4 presented in the Appendix, Sect. A, show that the gradient is still
well-defined and doesn’t amplify errors.

2356 Machine Learning (2022) 111:2349–2380

1 3

4.1 The adjoint state equation

In what follows, all considered functions are supposed to be twice continuously differenti-
able in all variables and we will use the notation �uf (u0) to denote the differential of f with
respect to u i.e.:

By hypothesis, we consider this differential operator to be always continuous. ⟨⋅, ⋅⟩ is the
scalar product associated to the L2 space over the compact spatial domain Ω ⊂ ℝ

d over
which the vector fields are defined.

In order to construct a gradient descent algorithm to solve equation (3), we need to find
the gradient of the cost functional under the given constraints, i.e. the differential of
� → �YJ(Y ,H(X�)) . However, this implies calculating �X

�

��
 , which is often computation-

ally demanding, as it implies solving dim(�) forward equations, which is high in our case.
The adjoint state method avoids those costly computations by considering the Lagrangian
formulation of the constrained optimization problem. A classical calculation gives the
expression stated in the following theorem:

Theorem 1 (Adjoint State Equation)

where � is solution of

solved backwards, starting with �T = 0 , and where

and

Here, M⋆ denotes the adjoint operator of the linear operator M.

For completeness, a proof of this result is provided in the Appendix, Sect. B.1.

4.2 Approximate solutions

Theorem 1 gives us a way to calculate, for a given value of � , the gradient of the con-
strained problem being solved. However, solving the forward and backward equations,
namely Eqs. (2) and (6) isn’t generally straightforward. They do not yield a closed form

f (u0 + �u) = f (u0) + �uf (u0) ⋅ �u + o(�u)

(5)∇�J =

(
−∫

T

0

⟨
�t,

�F�(X
�
t
)

��i

⟩
dt −

⟨
�0,

�g�

��i

⟩)

i

(6)
d�t

dt
= At�t + Bt

At = −(𝜕XF𝜃(X
𝜃
t
))⋆

Bt = 2(𝜕XH(X𝜃
t
))⋆(H(X𝜃

t
) − Yt).

2357Machine Learning (2022) 111:2349–2380

1 3

solution and we must content ourselves with approximations. There are essentially two
different ways to tackle this problem (Gunzburger, 2002): the differentiate-then-discretize
approach, and the discretize-then-differentiate approach.3

In the differentiate-then-discretize approach, one directly approximates the equations
using numerical schemes. Here, the approximation error to the gradient comes from the
discretization error made in the solver for both the forward and backward equations. This
method is used in the black box solvers in Chen et al. (2018). It has the advantage of allow-
ing the use of non-differentiable steps in the solver. However, it can yield inconsistent gra-
dients of the cost functional J , the discretization of the adjoint equations depends on the
studied problem and therefore must be carefully selected and tuned (Bocquet, 2012).

In a discretize-then-differentiate approach, a differentiable solver for the forward equa-
tions is used, e.g., using an explicit Euler scheme X�

t+�t
≈ X�

t
+ �tF�(X

�
t
) . Based on the

solver’s sequence of operations for the forward equations, the backward equations and the
gradient can be directly obtained using automatic differentiation software (Paszke et al.,
2017). This algorithm is actually equivalent to backpropagation (LeCun et al., 1988) which
can be derived as a special case of it: As the step-size approaches zero, the forward and
backward equations are recovered.

While the two methods are consistent and both converge to the equations derived in
Theorem 1, they do not always yield the same results as they proceed differently. In our
experience, the second one proved more stable and the fact that we were limited to dif-
ferentiable solvers wasn’t an obstacle. Moreover, in the Appendix, Sect. A, we derive some
properties of the adjoint equation and the corresponding gradient which are reassuring
regarding its stability and robustness to approximation errors.

5 Analyzing the hidden dynamics

In this section, we show that the optimization problem defined above is ill-posed and
admits non-canonical state representations as optimal solutions. We then outline two set-
tings where we analyze the induced state representation.

5.1 Learning an ill‑posed problem

For all of the following, we will consider the more specific (but still broad) situation where
we take Y and X to be vector-valued spatio-temporal fields with values respectively in ℝl
and ℝd where l ≤ d , thus reflecting the loss of information through H . This last operator is
taken as a linear projection. Without loss of generality, we can thus consider Y to be consti-
tuted by the first l components of X.

Given the remarks in Sect. 3.1, the following result shows that there is usually an infi-
nite number of solutions to the optimisation problem.

Proposition 1 If l < d and the unobserved part of the state is non trivial, the non-para-
metric version of the optimization problem equation (3) admits an infinite number of null
loss solutions which are distinct from canonical state representations.

3 The differentiate-then-discretize method is often referred to as the continuous adjoint method, and the
discretize-then-differentiate approach as the discrete adjoint method (Sirkes and Tziperman, 1997).

2358 Machine Learning (2022) 111:2349–2380

1 3

A proof is given in the Appendix, Sect. B.2.
Moreover, as a corollary, if the chosen parametric families are universal approximators,

which is true in our case, this means that we can obtain state representations which are non-
canonical with arbitrary low losses over observations. In other words, this result shows that
solving the optimization problem defining our model doesn’t necessarily leads to a state
space that is physically interpretable, even when observations are accurately forecasted.

In the following, we introduce two settings for analyzing the learned hidden states and
help understanding what information has been learned. As we show in Sect. 7, the proper-
ties of those two settings can be useful when dealing with real world data.

5.2 Setting 1: Jointly trained (JT) states

In this setting we fix the architectures of g� and F� and train the model. The dataset used
is only composed of observations and is of the form {(Y (i)

−k+1
,… , Y

(i)

0
,… , Y

(i)

T
)}i . The states

learned in this setting will be referred to as Jointly Trained (JT) states.
We can’t expect JT states to have any particular structure for its d − l hidden compo-

nents as we don’t prescribe any in the loss nor in the formulation of the problem. However,
two questions can still be asked:

• Is this model able to learn dynamics which can generate accurate observation forecasts?
• Do the JT states contain the same information as canonical ones? In other words, can

we transform JT states into canonical ones?

Intuitively, any method which sucessfully forecasts observations up to arbitrary forecasting
horizons and for different initial conditions using some state representation should have
stored the relevant information into the learned state representation. The following proposi-
tion makes a more precise statement of this intuition:

Proposition 2 There exists an invertible function e which transforms jointly learned
states into canonical states.

A proof is given in the Appendix, Sect. B.3.
This implies that when a model is trained without any supervision or prior informa-

tion about the true states, it is still able to capture the information present in the canonical
states.

5.3 Setting 2: Feeding in a canonical initial condition

In this second setting, we inject some prior information to constrain the learned state
space. There are several ways to do that. One may for example add terms to the loss that
reflect physical constraints, constrain the parametrization of F to follow some predefined
dynamics, etc. However, all those methods would be problem specific. We chose here to
inject prior information by prescribing an initial state with canonical structure instead of
using g as above. This comes at a cost: the algorithm now has to take a full state as input
for each sequence of observations. Thus, in this setting, the dataset used is of the form
{(X

(i)

0
, Y

(i)

1
,… , Y

(i)

T
)}i . This is an idealized setting since usually true state information will

not be available, but it is used here as a simple and generic way to inject prior information.
There are also two main questions to ask in this setting:

2359Machine Learning (2022) 111:2349–2380

1 3

• Are we still able to forecast accurately observations with this additional constraint?
How does it compare to the JT setting?

• Can we find a way to conserve the structure of the initial state throughout time-steps so
that we unsupervisedly learn the dynamics of the hidden components of the state?

A first fact is that, for the same reasons outlined in the proof of proposition 5, there still are
infinitely many possible state representations which produce accurate forecasts for observa-
tions, even when X0 is fed as an input to the model. The idea here is that if the evolution
term F was chosen to be structurally conservative, meaning that it would preserve through
time the way information is encoded canonically, as it is in X0 , then we could hope to keep
the canonical structure throughout state forecasts and thus learn unsupervisedly the hidden
canonical dynamics.

This is one of the reasons we choose to parametrize F as a residual network in our
experiments: ResNets tend to modify only slightly their input (see Hauser, 2019 or Jastrz-
kebski et al., 2017 for example) and we use this property successfully in Sect. 6.5 to learn
canonical state representations in the case of the Navier–Stokes equations.

6 Experiments on the Navier–Stokes equations

In this section, we present experiments conducted on simulations of the two-dimensional
incompressible Navier–Stokes equation. The dataset is the result of a simulation, thus giv-
ing us a controlled environment for experimentation and giving us a way to test our model
and its properties. Moreover, those equations are fundamental for modeling transport phe-
nomena in the atmosphere and in the ocean including the data generated for the more com-
plex Glorys2v4 experiment (Sect. 7).

6.1 A short reminder about the Navier–Stokes equations

A modern and thorough presentation of the incompressible Navier–Stokes equations and
the underlying mathematical objects can be found in Foias et al. (2001) for example.

Those equations are

where ∇⋅ is the divergence operator, u corresponds to the flow velocity vector, p to the
pressure, and � to the density.

The Navier–Stokes equations are not of the form of Eq. (1) as we still have the pressure
variable p as well as the null divergence constraint. However, the Helmholz-Leray decom-
position result (Foias et al., 2001), states that for any vector field a, there exists b and c
such that

(7)

�u

�t
+ (u ⋅ ∇)u = −

∇p

�
+ g + �∇2u,

��

�t
+ (u ⋅ ∇)� = 0,

∇ ⋅ u = 0,

2360 Machine Learning (2022) 111:2349–2380

1 3

and

Moreover, this pair is unique up to an additive constant for b. Thus, we can define a linear
operator ℙ by:

This operator is a continuous linear projector which is the identity for divergence-free vec-
tor fields and vanishes for those deriving from a potential.

By applying ℙ on the first line of Eq. (7), we have, as u is divergence free from the third
equation and as g derives from a potential:

where permuting derivation and ℙ is justified by the continuity of the operator.4
Thus, if u is solution to Eq. (7), it is also a solution of:

which is of the form of Eq. (1).
Conversely, the solution of the above system is such that:

which gives, by exchanging ℙ and the integral5:

so that u is automatically of null divergence by definition of ℙ . The two systems are thus
equivalent.

In conclusion, we have:

Moreover, u is generally a two or three-dimensional spatial field while � is a scalar field.

a = ∇b + c

∇ ⋅ c = 0

ℙ(a) = c

�u

�t
= −ℙ[(u ⋅ ∇)u] + �ℙ(∇2u)

�u

�t
= −ℙ[(u ⋅ ∇)u] + �ℙ(∇2u)

��

�t
= −(u ⋅ ∇)�

ut = ∫
�u

�t
= ∫ −ℙ[(u ⋅ ∇)u] + �ℙ(∇2u)

ut = ℙ

[
∫ −(u ⋅ ∇)u + �∇2u

]

X =

(
u

�

)
, and H(X) = �

4 One can use a finite difference approximation to show it for example.
5 To prove this, we can take a sum approximation to the integral and use again the linearity then the conti-
nuity of ℙ.

2361Machine Learning (2022) 111:2349–2380

1 3

6.2 Implementation and dataset details

6.2.1 The dataset

We have taken the observations to be the density of the fluid while the hidden components
are the two-dimensional velocity field.

We have produced 600 separate simulations with independently and randomly gen-
erated initial conditions,6 with the 2D spatial domain containing 64 × 64 points. The
simulations were conducted with Δt = 0.5s then subsampled 5 times. This means that the
frames in the figures and tables, both in the training supervision loss and during inference,
are separated by 2.5s. The total length was 50 time-steps per simulation. Regarding turbu-
lence, the fluid has been chosen with relatively low viscosity, close from the Euler equa-
tions in the velocity regime we sampled from, with a Reynolds number of 10000.

We have taken 300 from those simulations to construct the training set, 200 for valida-
tion and 100 for test. In particular, this means that the sequences used in the test results
we present and analyze below are produced by initial conditions the model has never
seen. For both settings, this gives us a total of 15000 observations for the training set and
10000 for the test set. In setting 1, for the restructuring of JT states experiment, we used
500 additional full states to train the transformation. In setting 2, we use an additional 2500
full states for training and 1666 for testing where each full state is the full initial state for a
certain trajectory.7

As stated before, one also has to choose a training horizon T, to construct the used data-
set of the form {(Y (i)

−k+1
,… , Y

(i)

0
,… , Y

(i)

T
)}i for setting 1 and {(X(i)

0
, Y

(i)

1
,… , Y

(i)

T
)}i for set-

ting 2. We have treated T as a hyperparameter of the model and have chosen it to be equal
to 6. An important observation is that the higher T, the more memory demanding the train-
ing will be and the more carefully the gradient descent has to be done, especially at the first
steps (by tuning the learning rate, scheduled sampling, ...). However, we have observed that
models with higher horizons tend to generalize better and forecast more accurately for far-
ther time horizons, which makes sense as it makes the model take into account long term
effects.

Another misconception to avoid is to confuse the training horizon T with the inference
horizons at test time: For example, a model which is trained for sequences with T = 6 can
be very accurate for longer time horizons as we show in the results below.

6.2.2 Implementation

In practice, the cost functional J is estimated on a minibatch of sequences from the dataset
and optimized using stochastic gradient descent. Throughout all the experiments, F� is a
standard residual network (He et al., 2016), with 2 downsampling layers, 6 residual blocks,
and bilinear up-convolutions instead of transposed convolutions.

In the experiments for setting 1, we parametrize g� as a UNet (Ronneberger et al., 2015).
More precisely, we have used a modified variant of the FlowNetS architecture of Dosovits-
kiy et al. (2015) with:

6 For each, we have chosen a random location where we put a concentric density, as well as a random
velocity field.
7 This means in particular that the supervision loss is still only calculated w.r.t. observations.

2362 Machine Learning (2022) 111:2349–2380

1 3

• three double convolution steps, each double step having a two-strided first convolu-
tion then a one-strided second one, with all convolutions having kernels of size 3
and batch normalization;

• non linearities are Leaky ReLU with parameter 0.1;
• the last two deconvolution steps are replaced with convolutions so that the desired

number of output channels is obtained (in our case, we start with four input channels
and output two).

Note that all experiments were conducted with the same architectures, showing the
genericity of our approach: while adapting the parametrization can improve quantitative
results, it doesn’t fundamentally alter our conclusions and shows that the cost of experi-
mentation when developping a model for a new dataset can be decreased.

To discretize the forward equation (2) in time, we use a simple Euler scheme. Note
that the discretization step-size may differ from the time interval between consecutive
observations; in our case, we apply 3 Euler steps between two observations, thus giving
us i.e. �t = 1

3
× 2.5s . For the spatial discretization, we use the standard grid discretiza-

tion induced by the dataset.
The weights of the residual network � are initialized using an orthogonal initializa-

tion. Our model is trained using a scheduled sampling scheme with exponential decay,
along with the Adam optimizer, with a learning rate set to 1 × 10−5 . We use the Pytorch
deep learning library (Paszke et al., 2017). The use of a small learning rate was vol-
untary: in conjunction with the orthogonal initialization, this ensures that the weight
matrices do not deviate too much from the orthogonality condition during training thus
allowing for good gradient propagation and stable learning dynamics. We have also
observed that those choices allow for results which are robust across different runs.

Training usually took a few hours on the datasets we describe here, which is compara-
ble to other baselines (although PRNN took a few more hours to converge satisfyingly).

6.2.3 Baselines and metrics

We compare our models to two different baselines:

• PKnI It is a physics-informed deep learning model described in de Bézenac et al.
(2018), where prior physical knowledge is integrated: it uses an advection-diffusion
equation to link the velocity with the observed temperatures, and uses a neural net-
work to estimate the velocities.

• PRNN (Wang et al., 2018) It is a heavy-weight, state of the art model used for video
prediction tasks. It is based on a Spatiotemporal Convolutional LSTM that models
spatial deformations and temporal variations simultaneously.

We use a renormalized relative squared error as a metric for observations:

To evaluate the quality of the hidden states, we use cosine similarity between the model’s
hidden state and the true hidden state of the system:

(8)1

T

1

�Ω�
T�

k=1

�
x∈Ω

‖H(Xk(x)) − Yk(x)‖2
‖Yk(x)‖2

2363Machine Learning (2022) 111:2349–2380

1 3

where the ui are the horizontal and vertical components of the velocity field u.
The cosine similarity is relevant for the comparison with PKnI: the norm of its hidden

state may not correspond to the ground truth norm.
For the velocity vector field representation, color represents the angle, and the intensity

the magnitude of the associated vectors. More specifically, we represent the velocity fields
into an image by using the Middlebury color code from the flowlib library (for which there
is a code here: https:// github. com/ liruo teng/ Optic alFlo wTool kit/ blob/ master/ lib/ flowl ib.
py).

6.3 Forecasting observations

Figure 1 shows a sample of the predictions of our system over the test set for the
Navier–Stokes equations for both settings 1 and 2. The good results it shows are confirmed
by Table 1. Our model is able to predict observations up to a long forecasting horizon
(results are shown for up to 30 steps in Fig. 1 and 50 steps in Table 1), which means that
it has managed to learn the dynamical system. Note that for setting 2 in Fig. 1, the initial
states used at test time have never been seen at training time which means that the opti-
mization problem was solved correctly without over-fitting. Recall that the supervision is
done here only at the level of observations, in accordance with our setting. An interesting
remark is to observe that the jointly trained model (setting 1) is slightly less accurate than
the one given X0 (setting 2), which makes sense as this last algorithm is given a few addi-
tional full states when JT isn’t given any.

Visually, as can be seen in Fig. 1 by looking at the small features of the observations,
our model manages to capture many details which are important to robust long term fore-
casts while the PRNN model, which proves to be a strong baseline at the level of obser-
vations even though it doesn’t produce meaningful hidden states, for the first few steps,
produces less sharp predictions which explains its worse performance when evaluated on
long term predictions. Additional samples shown in Figs. 2 and 3 confirm this observation.

6.4 Restructuring jointly trained states

Proposition 2 shows that there must exist a way to transform JT states into canonical ones,
which would make them more palatable and easier to interpret. In order to confirm this
theoretical result empirically, we did the following:

1. We took a small set of full canonical states from the Navier–Stokes dataset, correspond-
ing to 10 sequences (to be compared to 300 sequences of observations used for training)
and computed the corresponding JT states.

2. We used it as a training set to learn the invertible transformation between JT states XJT
and canonical ones Xcan , which boils down to a regression problem where we want to
predict Xcan from XJT.

Figure 4 shows an example of the output from the transformation this transformation
yields: it allows us to transform the non-structured hidden states of the jointly trained

(9)1

K

K∑
k=1

1

|Ω|
∑
x∈Ω

⟨
u1(x), u2(x)

⟩
‖‖u1(x)‖‖‖‖u2(x)‖‖

https://github.com/liruoteng/OpticalFlowToolkit/blob/master/lib/flowlib.py
https://github.com/liruoteng/OpticalFlowToolkit/blob/master/lib/flowlib.py

2364 Machine Learning (2022) 111:2349–2380

1 3

model into interpretable states corresponding to the canonical representation. From a quan-
titative point of view, after 5 predictions, the average cosine similarity over the whole test
set goes from 0.192 in the jointly trained representation to 0.582 when transformed. While
this result is far from perfect,8 it still shows promise and demonstrates that this approach
could be applied in many cases.

6.5 Imposing the initial condition prescribes the hidden dynamics

Figure 1 shows that in setting 2, when we add a full initial state, our model is able to fore-
cast not only observations but also the dynamics of the hidden components of the state.

Fig. 1 Forecasting the Navier–Stokes equations 30 time-steps ahead with different models, starting from a
given initial condition. In this figure as well as in the following ones, the velocity field is represented using
the Middlebury Color Code as implemented in the flowlib library https:// github. com/ liruo teng/ Optic alFlo
wTool kit/ blob/ master/ lib/ flowl ib. py

8 In particular, the choice of the regression algorithm isn’t obvious and the size of the needed dataset will
depend on this choice as well as on the desired accuracy, as with any regression problem.

Table 1 Relative MSE as in Eq.
(8) for our model and different
baselines, at different temporal
horizons on the Navier–Stokes
equations.

Note that the Setting 2 model uses a full, true initial state as X
0
 while

the Setting 1 one only relies on observations
Bold values indicate that the best score for a given column

Model T = 5 T = 10 T = 50

Ours (Setting 1) 0.152 0.243 0.650
Ours (Setting 2) 0.118 0.180 0.483
PKnI (de Bézenac et al., 2018) 0.194 0.221 0.752
PRNN (Wang et al., 2018) 0.170 0.227 0.719

https://github.com/liruoteng/OpticalFlowToolkit/blob/master/lib/flowlib.py
https://github.com/liruoteng/OpticalFlowToolkit/blob/master/lib/flowlib.py

2365Machine Learning (2022) 111:2349–2380

1 3

This is a surprising result: even though this model gets additional structured information
at the input, there are still an infinite number of ways to transport that information through
time-steps and to store it into the state representation. Table 2, shows the mean cosine simi-
larity between target and predicted states for our model in setting 2. This similarity is high
(around 0.8) for short term prediction (5 steps) and still substantial for long term prediction
(around 0.5 for 50 steps). For comparison, we also indicate in Table 2 the values obtained
with the PKnI model.

Fig. 2 Setting 2: Forecasting the Navier–Stokes equations, starting from a given initial condition (not
shown here). We forecast 42 time-steps ahead and compare results with the ground truth simulation

Fig. 3 Setting 2: Forecasting the Navier–Stokes equations, starting from a given initial condition (not
shown here). We forecast 42 time-steps ahead and compare results with the ground truth simulation

2366 Machine Learning (2022) 111:2349–2380

1 3

In order to see if this is a property of the particular architecture used here, we conduct
a series of ablation studies where we try to remove different components of the model and
see how it behaves (numerical results are shown in Table 3):

ResNet. Here we simply use a residual network, with the exact same architecture as
the one used to parameterize our model. The difference is that here we use it directly, not
through an Euler solver. The results are notably less accurate for observations but, more
importantly, this model turns out to be completely unable to forecast hidden states cor-
responding to the true ones. This shows that the way our model is structured around a
solver which takes into account the differential structure of the studied problem is a strong
regularizer.

ResNet no skip. This last argument may remind us that a residual network closely
resembles the non-uniform discretization of an ODE. Thus, this should help it perform well
and explains the relatively good results on observations for the ResNet and, by getting rid
of the skip connections while keeping all layers untouched, which leads to a CNN, the per-
formance should worsen. This is indeed what happens in our tests.

UNet. We tried using this other classical architecture, which is often used for regres-
sion problems, with roughly the same number of parameters as in our parameterization. It
proved to be weak against our model for both observations and hidden states.

Ours, Projection. Here, we seek to check whether our results depend of our particu-
lar choice of H : we change it and make it project to the first dimension of the velocity
field (instead of the density). We use our model in setting 2 (we give X0 as input). The
results, while slightly less good, are quite robust to this change, considering that we haven’t
changed the hyper-parameters of the model.

6.6 Discussion of the results

Those experiments lead us to the following conclusions:

• In the case of the Navier–Stokes equations, our model, with a simple solver for an
equation parametrized through a residual network, allows us to learn unsupervisedly
the dynamics of the hidden dynamics of the state.

• This result is robust to a change to the dimension H project onto.
• The fact that a solver is used, instead of a direct regression model, appears to be very

important, as comparisons to other standard powerful architectures show, even when
the exact same parametrizations are used.

Fig. 4 Setting 1: Example of a sequence of hidden states transformed by the calculated conjugacy

2367Machine Learning (2022) 111:2349–2380

1 3

However, this still doesn’t explain why this works for the hidden components, as the prob-
lem is ill-posed nonetheless. We hypothesize that the architecture of the network used to
parametrize the equation is biased towards preservation of the input code, which happens
to be that of the canonical state because X0 is fed into it. A similar kind of phenomenon is
also empirically observed in the unsupervised domain translation field with the success
of the CycleGAN model which is explored from this point of view in (de Bézenac et al.,
2019).9

In those first experiments, we have studied two separate settings with different levels
of supervision over the full state: Setting 1 supposes that none is available while Setting 2
allows to initialize with a fully known state. In practice, systems of interest may present a
hybrid setting, the following will study an example of such a situation for a more complex,
more realistic dynamical system.

7 Forecasting ocean circulation dynamics from satellite images

In this section, we use our model to study Sea Surface Temperatures dynamics as modeled
by the Glorys2v4 simulations. We suppose access to part of the hidden components of the
state for the initial condition. This places us in a hybrid setting when compared to the two
settings used for Navier–Stokes equations. This allows us to leverage the properties of both
while remaining in a realistic context. We first describe this realistic, state-of-the-art simu-
lation of ocean circulation, we then propose two instances of our model and compare them
to standard baselines.

Table 2 Cosine similarity as in Eq. (9) scores for our models and a baseline, at different temporal horizons
on the Navier–Stokes equations

Bold values indicate that the best score for a given column

Model T = 5 T = 10 T = 50

Ours (Setting 2) 0.798 0.679 0.483
PKnI 0.243 0.207 0.098

Table 3 Ablation study for our model, at different temporal horizons on the Navier–Stokes equations

Model T = 5 T = 10 T = 50

MSE Cosine MSE Cosine MSE Cosine

Ours (Setting 2) 0.118 0.798 0.180 0.679 0.628 0.483
Ours (Setting 2—projection) 0.191 0.732 0.288 0.620 0.49 0.534
Resnet 0.288 0.604 0.391 0.333 0.73 0.032
UNet 0.659 0.069 0.692 0.028 0.84 0.023
Resnet no skip 0.615 0.162 0.71 0.060 0.897 − 0.04

9 Obviously, the jointly trained model can’t be expected to learn a state corresponding to the canonical one
as it is never provided with any structure.

2368 Machine Learning (2022) 111:2349–2380

1 3

7.1 The Glorys2v4 dataset

The Glorys2v4 product is a reanalysis of the global Ocean (and the Sea Ice, not considered
in this work). The numerical ocean model is NEMOv3.1 (Madec, 2008) constrained by
partial real observations of Temperature, Salinity and Sea Level. Oceanic output variables
of this model are daily means of Temperature, Salinity, Currents, Sea Surface Height at a
resolution of 1/4 degree horizontal resolution.

The NEMO model describes the ocean by the primitive equations (Navier–Stokes equa-
tions together with an equation of states). Let (�, �, �) the 3D basis vectors, U the vector
velocity, � = �h + w� (the subscript h denotes the local horizontal vector, i.e. over the (�, �)
plane), T the potential temperature, S the salinity, � the in situ density. The vector invari-
ant form of the primitive equations in the (�, �, �) vector system provides the following six
equations (namely the momentum balance, the hydrostatic equilibrium, the incompressibil-
ity equation, the heat and salt conservation equations and an equation of state):

where � is the in situ density, �0 is a reference density, p the pressure, f = 2Ω.� is the
Coriolis acceleration. DU , DT and DS are the parameterizations of small-scale physics for
momentum, temperature and salinity, and FU , FT and FS surface forcing terms.

As in Sect. 6, the divergence-free constraint can be enforced through the Leray operator.
Moreover, � is a function of other state variables so that the state can be written as

where T is the daily mean surface temperature derived from the instantaneous potential
temperature T in the model.

The level of supervision for the initial state here is hybrid when compared to the two
settings described in the previous sections: in addition to the temperature observations, it is
possible to access an estimation of the velocity field w̃0.

7.2 Models

This dataset is much more challenging and represents a leap from the fully simulated
one presented before. One reason is obviously the high dimensionality of the system

��h

�t
= −

[
(�.∇)�

]

h

− f� × �h −
1

�0
∇hp + D� + F�,

�p

�z
= −�g,

∇.� = 0,

�T

�t
= −∇.(T�) + DT + FT ,

�S

�t
= −∇.(S�) + DS + FS,

� = �(T , S, p),

X =

⎛
⎜⎜⎜⎝

U

p

S

T

⎞⎟⎟⎟⎠
and H(X) = T ,

2369Machine Learning (2022) 111:2349–2380

1 3

and the absence of a full state as initial input to our system as we only have a proxy
over the velocity field. A second one is the fact that the neural network model is trained
over sequences where only a local spatial region is observed (see Fig. 6) correspond-
ing to fixed size zones of the ocean. The physical model, on the other hand, simulates
the dynamics over a larger area on the ocean. This means that informations from the
neighboring areas beyond the fixed size zone is not available to the neural network. This
makes the dynamics for the coresponding zone non-stationary as boundary conditions
are constantly shifting, thus violating an assumption of our method and making it dif-
ficult to make long term forecasts with a reasonable number of observations. We can
hope for the dynamics to be locally stationary so that the model can work well for a few
steps.

In other words, the initial temperatures T0 (since we observe the temperatures,
Y0 = T0) and the proxy of the velocity field w̃0 provided as initial input are insufficient to
represent the full state. Taking this fact into account, we build on the results obtained in
the case of the Navier–Stokes equations and propose two variants of our model:

• Ours, which is the same as before, taking as initial state

• Ours, with Estimation where we use past observations Y−K∶0 in order to infer the
unknown part of the initial state, similarly to what is done in the JT model:

Here, E� is an encoder neural network. Using it allows us to encode available informa-
tion from the observations Y−K∶0 which is not contained in w̆0 nor in T0 . For E� , we use
the UNet architecture (Ronneberger et al., 2015).

7.3 Results and conclusions

We have used the same hyper-parameters to build and train our architectures as for the
Navier–Stokes simulations (described in Sect. 6.2). We also consider the same base-
lines. As a reviewer of this paper suggested, we also compute a persistence score which
is produced by simply considering a constant output corresponding to the initial value.
This is meaningful as it allows to evaluate the “memory” of the ocean over the time-
scales considered here.

Regarding the forecasting of observations, we can clearly see, as expected, from
Figs. 5, 6 and 7 as well as Table 4 that this task is more challenging, with lower perfor-
mances for all models when compared to those obtained in the case of the Navier–Stokes
equations, even though we evaluate for shorter time horizons. Nevertheless, the two var-
iants of our model still perform better than the two powerful Deep Learning baselines
we test against, as well as against the persistence score which does underperform all
other baselines.

X0 =

⎛⎜⎜⎝

Y0
w̆0

0

⎞⎟⎟⎠
;

X0 = g𝜃(Y−K∶0, w̃0) = E𝜃(Y−K∶0, w̃0) +

⎛⎜⎜⎝

Y0
w̆0

0

⎞⎟⎟⎠
.

2370 Machine Learning (2022) 111:2349–2380

1 3

We also observe, from the cosine similarity results, that our models are still able to
reproduce some coherent dynamics for the hidden components of the state for which the
initial condition was given. Using an additional estimation, while lowering the accuracy
for observations, also helps with improving the cosine similarity for those dynamics.
However, comparing to the persistence baseline shows that our models are not really
doing better than simply preserving the structure of the velocity field.

8 Discussion

In the machine learning community, the forecasting problem is often seen as a learning
a neural network mapping consecutive states in time. In this work, we take an alter-
nate approach, and use the neural network to express the rate of change of the states
instead. This task is intrinsically simpler for the network, and is in fact the natural way
to model time varying processes. This also allows to accommodate irregularly acquired
observations as showed in Chen et al. (2018), and can also allow interpolation between
observations.

In Sect. 5, we explore avenues in order to constrain the hidden dynamics. Typically,
in Setting 1 (Sect. 5.2), if we have access to a small amount of observations of the full
state, it is possible to map the hidden states learned by the neural network onto the
canonical coordinate system. This opens up interesting directions for future exploration,
as it possible to predict quantities of interest (velocity, pressure, etc...) from the states of
the network, rendering the hidden dynamics of the network more interpretable.

Although the theoretical foundations of Setting 1 are well understood (Coudène,
2016), it is not the case for the setting 2. The fact that we learn dynamics closely
resembling the dynamics of the underlying system by only giving as input the initial

Fig. 5 Forecasting sea surface temperatures 10 time-steps ahead with different models, starting from a
given initial condition

2371Machine Learning (2022) 111:2349–2380

1 3

condition (see Sect. 6.5) is intriguing. We have conducted an ablation study in order
to better understand this phenomenon (Sect. 6.5), showing that the success in predict-
ing the hidden states correctly without direct supervision is due to the proposed con-
tinuous-time framework and the particular architecture we used. However, the exact
underpinnings are not entirely understood. As future work, we wish to develop the

Fig. 6 Forecasting Glorys2v4 10 time-steps ahead, starting from a given, full state, initial condition (not
shown here), wthout the estimation

Fig. 7 Forecasting Glorys2v4 10 time-steps ahead, starting from a given, full state, initial condition (not
shown here), without the estimation

Table 4 Relative MSE and
cosine similarity scores for our
models and different baselines,
at different temporal horizons on
the Glorys2v4 dataset

State estimation is not available for PRNN which is based on a recur-
rent network, hence the crosses in the “cosine” columns
Bold values indicate that the best score for a given column

Model T = 5 T = 10

MSE cosine MSE cosine

Persistence 0.476 0.788 0.842 0.666
Ours 0.306 0.671 0.402 0.589
Ours, Est. 0.364 0.718 0.490 0.670
PKnI 0.411 0.448 0.494 0.368
PRNN 0.423 XX 0.546 XX

2372 Machine Learning (2022) 111:2349–2380

1 3

theoretical aspects and implications of these results in order to shed light on the under-
lying mechanisms.

9 Conclusion

We present in this paper a general data-driven model for space-time processes when the
state is only partially observable. We show that partial observability introduces ill-posed-
ness in the determination of an interpretable state representation then propose two methods
to solve this issue: This allows to demonstrate that non-structured states can be interpreted
when correctly transformed and that the model, when fed with a structured interpret-
able state with a well parametrized evolution term, can forecast unsupervisedly the hid-
den dynamics of the state. The theoretical analysis is confirmed through experiments on
raw simulations of the Navier–Stokes equations and comparisons with two competitive
data-sets.

Appendix A: Properties of the adjoint equation

In this section, we derive some properties of the adjoint equation of Theorem 1.
Let us start by stating a version of the Gronwall lemma:

Lemma 1 (Gronwall) Let u be solution to:

with uT = 0 . Then:

We can then prove a first stability result for the gradient calculated by the adjoint
method:

Proposition 3 (Stability of the gradient) Under the hypothesis in Theorem 1, � is defined
and bounded over [0, T]. Thus, �

��
J(Y ,H(X�)) is also well-defined and bounded.

Proof Using the lemma above, we have, using the same notations as in Theorem 1, that:

Moreover, by the hypothesis above, �XF� , �XH and H are continuous and [0,T] × Ω is com-
pact so that A and B are bounded. Combining this fact with the inequality above gives us
the boundedness of � . Finally, g� and ��F� are continuous as well so that �

��
J(Y ,H(X�)) is

also bounded. ◻

�tut = �tut + �t

‖ut‖ ≤ �
T

t

‖�s‖ds + �
T

t �
T

s

‖�r‖dr‖�s‖ exp
�
�

s

t

‖�r‖dr
�
ds

∀t, ‖�t‖ ≤ �
T

t

‖Bs‖ds + �
T

t �
T

s

‖Br‖dr‖As‖ exp
�
�

s

t

‖Ar‖dr
�
ds

2373Machine Learning (2022) 111:2349–2380

1 3

This is a minimal requirement for the descent algorithm we use to be meaningful: The
solution of the adjoint equation has to be well-defined and the gradient has to be stable
enough.

In the following, we denote ‖f‖∞ = sup(t,x)∈[0,T]×Ω ‖f (t, x)‖ for any function defined over
[0,T] × Ω . Then we have:

Proposition 4 (Robustness of the gradient) Consider a perturbed solution X̃ of the for-
ward equation.10 Then:

for a real number M.

Proof We have, taking � = �̃ − �:

We know that � is bounded. Moreover:

and:

Combining all those inequalities, we then have L such that:

Taking �t = Ãt , �t = (Ãt − At)�t + B̃t − Bt and recalling that �T = �̃T − �T = 0 , we can then
apply the Grönwall lemma to conlude. ◻

In other words, the gradient calculated through the adjoint method is robust in the sense
that it doesn’t amplify perturbations of the forward equation. This is important from a prac-
tical point of view as there is bound to be approximation errors when solving the forward
equation. Moreover, noise in the data would also result in a perturbation of the resulting
solution of the forward equation and has thus to be controlled.

Appendix B: Proofs

Proof of Theorem 1

Theorem 2 (Adjoint State Equation)

‖�̃ − �‖∞ ≤ M‖X̃ − X‖∞

�t�t = Ãt�t + (Ãt − At)�t + B̃t − Bt

‖Ãt − At‖ ≤ ‖�2
XX
F�‖∞‖X̃ − X‖∞

‖B̃t − Bt‖ ≤ 2‖�2
XX
H‖∞‖H(X̃t) −H(X)t‖ ≤ 2‖�2

XX
H‖∞‖�XH‖∞‖X̃ − X‖∞

‖�t‖ ≤ L‖X̃ − X‖∞

(10)��J(Y ,H(X�)) = −∫
T

0

�
�t, ��F�(X

�
t
)
�
dt − ⟨�0, ��g�⟩

10 The perturbation can for example model approximation errors in solving the equation.

2374 Machine Learning (2022) 111:2349–2380

1 3

where � is solution of:

solved backwards, starting with �T = 0 , and where:

and

where M⋆ denotes the adjoint operator of linear operator M.

Proof Let us define:

As, for any � , X� satisfies the constraints by definition, we can now write:

which gives:

Straightforward calculus gives us:

Let us fix � and a variation �� . Then, we have, by definition:

and, for any X and any �X:

and:

so that:

Then, because F is twice continuously differentiable:

(11)�t�t = At�t + Bt

At = −(𝜕XF𝜃(X
𝜃
t
))⋆

Bt = 2(𝜕XH(X𝜃
t
))⋆(H(X𝜃

t
) − Yt)

(12)
L(X, �,�, �) = J(X) + ∫

T

0

�
�t,

dXt

dt
− F�(Xt)

�
dt

+ ⟨�,X0 − g�⟩

∀�, �,�, L(X� , �,�, �) = J(Y ,H(X�))

∀�,�, ��L(X
� , �,�, �) = ��J(X

�)

��J(X
�
t
) = ∫

T

0

2
⟨
�XH(X�

t
) ⋅ ��X

�
t
,H(X�

t
) − Yt

⟩
dt

X�+�� = X�
t
+ ��X

�
t
⋅ �� + o(��)

F�(X + �X) = F�(X) + �XF�(X) ⋅ �X + o(�X)

F�+��(X) = F�(X) + ��F�(X) ⋅ �� + o(��)

F�+��(X
�+��
t

) = F�(X
�+��
t

) + ��F�(X
�+��
t

) ⋅ �� + o(��)

2375Machine Learning (2022) 111:2349–2380

1 3

and:

Moreover, as all differential operators below are continuous by hypothesis, we have that:

so that:

We now have all elements to conclude calculating the derivative of L , with some more
easy calculus:

By the Schwarz theorem, as X is twice continuously differentiable, we have that
���tX

�
t
= �t��X

�
t
 . Integrating by parts, we get:

Putting all this together and arranging it, we get:

We can now define:

and

��F�(X
�+��
t

) = ��F�

(
X�
t
+ ��X

�
t
⋅ �� + o(��)

)

= ��F�(X
�
t
) + �X��F�(X

�
t
) ⋅ ��X

�
t
⋅ ��

+ o(��)

F�(X
�+��
t

) = F�

(
X�
t
+ ��X

�
t
⋅ �� + o(��)

)

= F�(X
�
t
) + �XF�(X

�
t
) ⋅ ��X

�
t
⋅ �� + o(��)

‖(�X��F�(X
�
t
) ⋅ ��X

�
t
⋅ ��) ⋅ ��‖ ≤ ‖�X��F�(X

�
t
)‖ ‖��X�

t
‖ ‖��‖2

F�+��(X
�+��
t

)

= F�(X
�
t
) +

(
�XF�(X

�
t
) ⋅ ��X

�
t
+ ��F�(X

�
t
)
)
⋅ �� + o(��)

��L = ∫
T

0

(
2
⟨
�XH(X�

t
) ⋅ ��X

�
t
,H(X�

t
) − Yt

⟩
+

⟨
�t, ���tX

�
t
− �XF�(X

�
t
) ⋅ ��X

�
t
− ��F�(X

�
t
)
⟩)

dt

+
⟨
�, ��X

�
0
− ��g�

⟩

∫
T

0

⟨
�t, ���tX

�
t

⟩
dt =

⟨
�T , ��X

�
T

⟩
−
⟨
�0, ��X

�
0

⟩

− ∫
T

0

⟨
�t�t, ��X

�
t

⟩
dt

𝜕𝜃L = ∫
T

0

�
𝜕𝜃X

𝜃
t
, 2𝜕XH(X𝜃

t
)⋆
�
H(X𝜃

t
) − Yt

�

−𝜕t𝜆t − 𝜕XF𝜃(X
𝜃
t
)⋆𝜆t

�
dt

− ∫
T

0

�
𝜆t, 𝜕𝜃F𝜃(X

𝜃
t
)
�
dt +

�
𝜆T , 𝜕𝜃X

𝜃
T

�
+
�
𝜇 − 𝜆0, 𝜕𝜃X

𝜃
0

�

− ⟨𝜇, 𝜕𝜃g𝜃⟩

At = −(𝜕XF𝜃(X
𝜃
t
))⋆

2376 Machine Learning (2022) 111:2349–2380

1 3

and, recalling that � can be freely chosen, impose that � is solution of:

with final condition �T = 0 . We also choose � = �0 so that, finally, we have:

which concludes the proof. ◻

Proof of Proposition 5

Proposition 5 If l < d and the unobserved part of the state is non trivial, the non-para-
metric version of the optimization problem equation (3) admits an infinite number of null
loss solutions which are distinct from canonical state representations.

Proof Let us suppose we have an equation F along with a state X perfectly fitting all obser-
vations so that the loss is null and that we can write, because all observations are perfectly
fit, Xt =

(
Yt, Zt

)
 where Z is an ℝd−l-valued spatio-temporal field. We also write the ℝd to ℝd

function F as (F(1),F(2)) so that we have:

Let � be a smooth diffeomorphism of ℝd−l , meaning that it is a smooth invertible function
with a smooth inverse,11 and let 𝜙♯X be defined as:

We then have:

so that:

where F� is defined by:

Bt = 2(𝜕XH(X𝜃
t
))⋆(H(X𝜃

t
) − Yt)

�t�t = At�t + Bt

��L = −∫
T

0

�
�t, ��F�(X

�
t
)
�
dt − ⟨�0, ��g�⟩

dXt

dt
=

(
dYt

dt
,
dZt

dt

)
= F(Xt) =

(
F(1)(Xt),F

(2)(Xt)
)

∀t, (𝜙♯X)t =
(
Yt,𝜙(Zt)

)

d�(Zt)

dt
= �Z�(Zt) ⋅

dZt

dt
= �Z�(Zt) ⋅ F

(2)(Xt)

d(𝜙♯X)t

dt
= F𝜙

(
(𝜙♯X)t

)

F𝜙(W) =
(
F(1)

(
(𝜙−1)♯(X)

)
,

𝜕Z𝜙
(
P(2)

(
(𝜙−1)♯(W)

))
⋅ F(2)

(
(𝜙−1)♯(W)

))

11 Smoothness may depend on the considered system but here we need it at least to be of class C3 so that F�
can be C2 as needed for the gradient descent algorithm.

2377Machine Learning (2022) 111:2349–2380

1 3

with P(2) being the projection associating to a vector of ℝd the vector of its last d − l
components.

Moreover, 𝜙♯X fits all observations as H(𝜙♯X) = H(X) by construction. Thus, 𝜙♯X is
also a null loss solution. Finally, whenever � is not the identity over the range of Z, which
is for an infinite number of transformations because by assumption the range of Z is non
trivial, 𝜙♯X ≠ X which gives us an infinite number of null loss solutions.

By construction, the canonical state Xcan along with the canonical ODE which has gen-
erated the dataset perfectly fits the observations and thus has a null loss. From this, we can
thus generate an infinite number of null loss solutions which are distinct from Xcan by the
arguments above. ◻

Proof of Proposition 2

Proposition 6 There exists an invertible function g which transforms jointly learned
states into canonical states.

Proof Let Xcan , resp. XJT , be the canonical state, resp. the jointly learned state, which
dynamics are described by Fcan , resp. FJT . Let Φcan , resp. ΦJT , denote the flow of the cor-
responding ODEs so that Φcan

t,X
 , resp. ΦJT

t,X
 , is the value of the canonical state, resp. jointly

learned state, at time t if it was of value X at time 0. Remember that Φt,⋅ is invertible at
every t for both states. Finally, let us denote Scan , resp. SJT , the space spanned by all canoni-
cal states, resp. jointly learned states.

By construction, there is a function e and an integer K such that XJT
t

= e(Yt−K+1,⋯ , Yt) .
Then, if we denote by j the function:

we have that:

Let us now suppose that two different canonical states, X and X′ are such that j(X) = j(X�) .
Then, applying j then the flow ΦJT then H , we see that those two states generate the same
sequence of observations, as, again by construction, we always have H(Xcan) = H(XJT) .
This means that the two states are the same, as those are two canonical states generating
the exact same sequences of observations. Thus j is injective.

Moreover, all possible observations can be generated by canonical states by defi-
nition and thus for any XJT

t
∈ SJT there is a sequence of observations such that

XJT
t

= e(Yt−KΔt+1,… , Yt) and then taking the corresponding canonical state Xcan
t

 we have
that XJT

t
= j(Xcan

t
) . Thus j is surjective. ◻

Author contributions IA: Jointly elaborated the theory and conducted experiments, jointly wrote the paper.
EB: Jointly elaborated the theory and conducted experiments, jointly wrote the paper. AP: Participated in

j ∶ X ⟶ e
(
H

(
(Φcan

K−1,⋅
)−1(X)

)
,… ,

H

(
(Φcan

1,⋅
)−1(X)

)
,H(X)

)

∀t, XJT
t

= j(Xcan
t

)

2378 Machine Learning (2022) 111:2349–2380

1 3

conducting some of the experiments, participated in discussions. PG: Supervision, participated in discus-
sions and in writing the paper.

Funding ANR Project LOCUST, Award Number: Project-ANR-15-CE23-0027 Recipient: Patrick Gallinari
CLEAR joint Lab. Thales - Sorbonne Universite, Award Number: None Recipient: Ibrahim Ayed

Declarations

Conflict of interest All authors declare taht they have no conflict of interest.

References

Alvarez, M. A., Luengo, D., & Lawrence, N. D. (2013). Linear latent force models using Gaussian pro-
cesses. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(11), 2693–2705.

Béréziat, D., & Herlin, I. (2015). Coupling dynamic equations and satellite images for modelling ocean sur-
face circulation (pp. 191–205). Springer.

Bergen, K. J., Johnson, P. A., De Hoop, M. V., & Beroza, G. C. (2019). Machine learning for data-driven
discovery in solid Earth geoscience. Science, 363, 6433.

Bocquet, M. (2012). Parameter-field estimation for atmospheric dispersion: Application to the Chernobyl
accident using 4D-Var. Quarterly Journal of the Royal Meteorological Society, 138(664), 664–681.
https:// doi. org/ 10. 1002/ qj. 961

Carrassi, A., Bocquet, M., Bertino, L., & Evensen, G. (2018a). Data assimilation in the geosciences: An
overview of methods, issues, and perspectives. Wiley Interdisciplinary Reviews: Climate Change, 9(5).
https:// doi. org/ 10. 1002/ wcc. 535

Carrassi, A., Bocquet, M., Bertino, L., & Evensen, G. (2018b). Data assimilation in the geosciences: An
overview of methods, issues, and perspectives. Wiley Interdisciplinary Reviews: Climate Change, 9(5).
https:// doi. org/ 10. 1002/ wcc. 535

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., & Duvenaud, D. (2018) Neural ordinary differential equa-
tions. In: NIPS.

Coudène, Y. (2016). Conjugation (pp. 69–78). Springer. https:// doi. org/ 10. 1007/ 978-1- 4471- 7287-1_7
Crutchfield, J. P., & Mcnamara, B. S. (1987). Equations of motion from a data series. Complex Systems, 66,

452.
de Bézenac, E., Ayed, I., & Gallinari, P. (2019). Optimal unsupervised domain translation. CoRR arXiv:

1906. 01292
de Bézenac, E., Pajot, A., & Gallinari, P. (2018). Deep learning for physical processes: Incorporating prior

scientific knowledge. In: ICLR.
Denton, E., & Fergus, R. (2018). Stochastic video generation with a learned prior. In J. Dy, & A. Krause

(Eds.), Proceedings of the 35th international conference on machine learning, proceedings of machine
learning research (PMLR) (vol. 80, pp 1174–1183). Stockholmsmässan.

Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., Smagt, P.vd, Cremers, D., & Brox,
T. (2015) FlowNet: Learning optical flow with convolutional networks (pp. 2758–2766). IEEE. https://
doi. org/ 10. 1109/ ICCV. 2015. 316

Fablet, R., Ouala, S., & Herzet, C. (2017). Bilinear residual neural network for the identification and fore-
casting of dynamical systems. CoRR arXiv: 1712. 07003

Foias, C., Manley, O., Rosa, R., & Temam, R. (2001). Navier–Stokes Equations and Turbulence. Encyclope-
dia of mathematics and its applications. Cambridge University Press.

Franceschi, J. Y., Delasalles, E., Chen, M., Lamprier, S., & Gallinari, P. (2020). Stochastic latent residual
video prediction. arXiv preprint arXiv: 20020 9219

Gil, Y., Hill, M., Horel, J., Hsu, L., Kinter, J., Knoblock, C., Krum, D., Kumar, V., Lermusiaux, P., Liu, Y.,
North, C., Pierce, S. A., Pankratius, V., Peters, S., Plale, B., Pope, A., Ravela, S., Restrepo, J., Ridley,
A., … Gomes, C. (2019). Intelligent systems for geosciences. Communications of the ACM, 62(1),
76–84.

Gunzburger, M. D. (2002). Perspectives in flow control and optimization. Society for Industrial and Applied
Mathematics.

Hauser, M. (2019). On residual networks learning a perturbation from identity. CoRR arXiv: 1902. 04106

https://doi.org/10.1002/qj.961
https://doi.org/10.1002/wcc.535
https://doi.org/10.1002/wcc.535
https://doi.org/10.1007/978-1-4471-7287-1_7
http://arxiv.org/abs/1906.01292
http://arxiv.org/abs/1906.01292
https://doi.org/10.1109/ICCV.2015.316
https://doi.org/10.1109/ICCV.2015.316
http://arxiv.org/abs/1712.07003
http://arxiv.org/abs/200209219
http://arxiv.org/abs/1902.04106

2379Machine Learning (2022) 111:2349–2380

1 3

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE
conference on computer vision and pattern recognition (CVPR 2016), Las Vegas, NV, USA, June
27–30, 2016 (pp. 770–778).

Huntingford, C., Jeffers, E. S., Bonsall, M. B., Christensen, H. M., Lees, T., & Yang, H. (2019). Machine
learning and artificial intelligence to aid climate change research and preparedness. Environmental
Research Letters. https:// doi. org/ 10. 1088/ 1748- 9326/ ab4e55.

Jastrzkebski, S., Arpit, D., Ballas, N., Verma, V., Che, T., & Bengio, Y. (2017). Residual connections
encourage iterative inference. CoRR arXiv: 1710. 04773

Kalinicheva, E., Ienco, D., Sublime, J., & Trocan, M. (2020). Unsupervised change detection analysis in
satellite image time series using deep learning combined with graph-based approaches. IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1450–1466.

Karpatne, A., Watkins, W., Read, J., & Kumar, V. (2017). Physics-guided neural networks (PGNN): An
application in lake temperature modeling. arXiv: 1710. 11431

LeCun, Y., & Touresky, D., Hinton, G., & Sejnowski, T. (1988). A theoretical framework for back-prop-
agation. In Proceedings of the 1988 connectionist models summer school, CMU (vol. 1, pp. 21–28).
Morgan Kaufmann.

Long, Z., Lu, Y., Ma, X., & Dong, B. (2018). PDE-Net: Learning PDEs from data (pp. 3214–3222). In:
ICML.

Lorenc, A. C. (1986). Analysis methods for numerical weather prediction. Quarterly Journal of the
Royal Meteorological Society, 112(474), 1177–1194. https:// doi. org/ 10. 1002/ qj. 49711 247414

Madec, G. (2008). NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace
(IPSL), France, No 27, ISSN No 1288-1619.

Mathieu, M., Couprie, C., & LeCun, Y. (2016). Deep multi-scale video prediction beyond mean square
error. In International conference on learning representations.

Nguyen, D., Ouala, S., Drumetz, L., & Fablet, R. (2019). EM-like learning chaotic dynamics from noisy
and partial observations. https:// doi. org/ 10. 13140/ RG.2. 2. 19493. 96483

Ouala, S., Herzet, C., & Fablet, R. (2018). Sea surface temperature prediction and reconstruction using
patch-level neural network representations. In IGARSS 2018—2018 IEEE international geoscience
and remote sensing symposium (pp. 5628–5631).

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L.,
& Lerer, A. (2017). Automatic differentiation in pytorch.

Racah, E., Beckham, C., Maharaj, T., Ebrahimi Kahou, S., Prabhat, M., & Pal, C. (2017). Extrem-
eweather: A large-scale climate dataset for semi-supervised detection, localization, and understand-
ing of extreme weather events. In Advances in neural information processing systems 30 (NIPS
2017) (pp. 3405–3416).

Raissi, M. (2018). Deep hidden physics models: Deep learning of nonlinear partial differential equa-
tions. Journal of Machine Learning Research, 66, 19.

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2017). Machine learning of linear differential equations
using Gaussian processes. Journal of Computational Physics, 348, 683–693.

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378, 686–707.

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat, H.
(2019). Deep learning and process understanding for data-driven Earth system science. Nature,
566, 195–204.

Robinson, J. C. (2010). Dimensions, embeddings, and attractors. Cambridge Tracts in Mathematics.
Cambridge University Press. https:// doi. org/ 10. 1017/ CBO97 80511 933912

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image
segmentation. CoRR arXiv: 1505. 04597

Rudy, S. H., Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2017). Data-driven discovery of partial differ-
ential equations. Science Advances, 3(4), e1602614.

Ruthotto, L., & Haber, E. (2018). Deep neural networks motivated by partial differential equations.
arXiv: 1804. 04272

Shi, X., Chen, Z., Wang, H., Yeung, D. Y., Wk, Wong, & Wc, Woo. (2015). Convolutional LSTM net-
work: A machine learning approach for precipitation nowcasting. Advances in Neural Information
Processing Systems, 28, 802–810.

Sirignano, J., & Spiliopoulos, K. (2018). DGM: A deep learning algorithm for solving partial differential
equations. Journal of Computational Physics, 375(Dms 1550918), 1339–1364. https:// doi. org/ 10.
1016/j. jcp. 2018. 08. 029, arXiv: 1708. 07469

https://doi.org/10.1088/1748-9326/ab4e55
http://arxiv.org/abs/1710.04773
http://arxiv.org/abs/1710.11431
https://doi.org/10.1002/qj.49711247414
https://doi.org/10.13140/RG.2.2.19493.96483
https://doi.org/10.1017/CBO9780511933912
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1804.04272
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1016/j.jcp.2018.08.029
http://arxiv.org/abs/1708.07469

2380 Machine Learning (2022) 111:2349–2380

1 3

Sirkes, Z., & Tziperman, E. (1997). Finite difference of adjoint or adjoint of finite difference? Monthly
Weather Review, 125(12), 3373–3378.

Takens, F. (1981). Detecting strange attractors in fluid turbulence. In Symposium on dynamical systems
and turbulence (pp. 366–381).

Vandal, T., Kodra, E., Ganguly, S., Michaelis, A., Nemani, R., & Ganguly, A. R. (2018). Generating
high resolution climate change projections through single image super-resolution: An abridged ver-
sion. In Proceedings of the twenty-seventh international joint conference on artificial intelligence,
IJCAI-18, international joint conferences on artificial intelligence organization pp (pp. 5389–
5393). https:// doi. org/ 10. 24963/ ijcai. 2018/ 759

Voss, H., Timmer, J., & Kurths, J. (2004). Nonlinear dynamical system identification from uncertain and
indirect measurements. International Journal of Bifurcation and Chaos, 14, 66.

Wang, Y., Gao, Z., Long, M., Wang, J., & Yu, P. S. (2018). Predrnn++: Towards a resolution of the deep-
in-time dilemma in spatiotemporal predictive learning. arXiv: 1804. 06300

Weinan, E. (2017). A proposal on machine learning via dynamical systems. Communications in Mathemat-
ics and Statistics, 5, 1–11.

Zhang, S., & Lin, G. (2018). Robust data-driven discovery of governing physical laws with error bars.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 474(2217),
20180305. https:// doi. org/ 10. 1098/ rspa. 2018. 0305

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.24963/ijcai.2018/759
http://arxiv.org/abs/1804.06300
https://doi.org/10.1098/rspa.2018.0305

	Modelling spatiotemporal dynamics from Earth observation data with neural differential equations
	Abstract
	1 Introduction
	2 Related work
	3 Learning the dynamics of partially observable systems
	3.1 Partially observable systems: hypothesis
	3.2 Optimization problem
	3.3 Training and inference algorithms

	4 Calculating the gradient
	4.1 The adjoint state equation
	4.2 Approximate solutions

	5 Analyzing the hidden dynamics
	5.1 Learning an ill-posed problem
	5.2 Setting 1: Jointly trained (JT) states
	5.3 Setting 2: Feeding in a canonical initial condition

	6 Experiments on the Navier–Stokes equations
	6.1 A short reminder about the Navier–Stokes equations
	6.2 Implementation and dataset details
	6.2.1 The dataset
	6.2.2 Implementation
	6.2.3 Baselines and metrics

	6.3 Forecasting observations
	6.4 Restructuring jointly trained states
	6.5 Imposing the initial condition prescribes the hidden dynamics
	6.6 Discussion of the results

	7 Forecasting ocean circulation dynamics from satellite images
	7.1 The Glorys2v4 dataset
	7.2 Models
	7.3 Results and conclusions

	8 Discussion
	9 Conclusion
	References

