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Abstract
Forecasting complex spatiotemporal dynamics is central in Earth science for modeling a 
variety of phenomena ranging from atmospheric dynamics to the evolution of vegetation. 
Those phenomena are often observed from remote sensing measurements that only provide 
partial information on the underlying physical equations. In this context, we consider the 
problem of automatically learning the dynamics of physical spatiotemporal processes from 
incomplete observations. We propose a new data-driven framework where the dynamics is 
modeled by an unknown differential equation and where the state representation and evo-
lution is learned only from partial observations. The dynamical model is parametrized by 
a deep neural network. Since the problem is underconstrained, the model may learn high 
quality forecasts of the observations while being physically inconsistent. We introduce two 
settings that help analyze and interpret the learned model states. We evaluate the proposed 
model on two benchmarks: (1) the incompressible Navier–Stokes equations which underlie 
transport phenomena in the atmosphere and in the ocean, (2) a challenging problem of sea 
surface temperature prediction where the underlying dynamics corresponds to a sophisti-
cated ocean dynamics model. The proposed model is able to provide long term forecasts 
for these complex dynamics and large dimensional observation spaces.
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1 Introduction

Machine learning (ML) has been part of geoscience for a long time. It has been applied 
to many sub-domains of Earth science, mostly as dedicated ML solutions developed for 
specific problems. The success of deep learning for large size real world applications in 
domains like vision or signal processing opens new perspectives for a better and broader 
integration of ML and Earth science and for bypassing limitations of current ML and 
assimilation solutions. This has been advocated in several recent prospective papers 
(Reichstein et al., 2019; Bergen et al., 2019; Gil et al., 2019; Huntingford et al., 2019).

Although there exists a lot of similarities between standard deep learning applica-
tive domains and Earth science applications, the latter have specificities that make them 
extremely different from the classical playground of deep learning. Let us quote some of 
them that are particularly relevant for the present work. (1) Earth science is mostly con-
cerned with the modeling of complex phenomena involving spatio-temporal dynamics. 
This shares similarities with video and motion prediction (Mathieu et  al., 2016; Denton 
and Fergus, 2018; Franceschi et  al., 2020), but the underlying phenomena are usually 
much more complex, involving time-evolving multidimensional structures and observa-
tions at different spatio-temporal resolutions. (2) Only raw observations are available and 
in most scenarios, labels are not available. (3) The full state of the system itself is usually 
not observable so that observations only reflect some partial or indirect knowledge on the 
true state values  (Carrassi et al., 2018a): for example when studying ocean’s circulation, 
variables contained in the system’s state such as surface temperature, salinity or sea surface 
heigth are observable via satellite imaging, while subsurface variables characterizing ocean 
dynamics are substantially much more difficult to observe. In this case, the state is said to 
be partially observable. (4) Extrapolation is not guaranteed since problems in geosciences 
are often underconstrained, possibly leading to models with high predictive performance 
on the training/ test sets that do not generalize to new geophysical contexts.

Besides, there are other challenges that are common to all physical modeling problems. 
An important one is physical consistency and interpretability: predictions achieving good 
performance may be inconsistent or not physically plausible and then useless for practition-
ners. It is then essential to constrain the statistical model to be physically consistent. This 
is usually performed by regularizing the loss function or by constraining the deep learning 
model dynamics.

In what follows, we attempt to provide answers to some of these problems. We consider 
the task of learning spatio-temporal dynamics when observations are supposed to represent 
partial information of the underlying system state and the dynamics governing the state 
evolution are unknown. This is the general situation in most Earth observation problems. 
We make the hypothesis that the unkown dynamics obey a set of differential equations with 
general form:

where X is the system state, considered here as a spatio-temporal vector field. Its value at 
time t is denoted Xt(x) ∈ ℝ

d . When F is known, predicting and analyzing the dynamics of 
the system often amounts to using an adequate numerical solver. For many practical prob-
lems, F may not be fully known, e.g., the relations between the components of the state can 
be difficult to establish from first principles. A data-driven paradigm for modeling dynami-
cal systems has then emerged (Crutchfield and Mcnamara, 1987; Alvarez et al., 2013) for 

(1)
dXt

dt
= F(Xt)
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some years, where the state dynamics is automatically discovered based on the observa-
tions. This is usually performed by considering an adequate class of admissible functions 
{F�} parametrized by � , and looking for a � such that the solution X� of

fits the measured data.
As mentioned before, for most real-world applications, the X variables describing 

the system are not fully visible to sensors and this is the case considered here. We then 
suppose available sequences of partial observations Y1,… , YT acquired on a regular 
spatial grid, providing incomplete information about the unknown underlying process 
with (full) state variables X1,… ,XT . We make the classical hypothesis that incomplete 
observation Yt can be computed from the corresponding unknown state Xt . In order to 
model the unknown spatio-temporal dynamics, we will consider a class of admissible 
functions F� implemented by deep convolutional neural networks for taking into account 
complex spatial dependencies and multiscale behavior. Our objective is then to learn 
parameters � capturing the dynamics of the system’s state and then perform long-term 
forecasts.

Our approach indeed learns the dynamics of spatio-temporal systems from raw and 
partial image observations without prior knowledge of the system. We start by present-
ing our model and analyze its properties (Sect. 3) as well as the adjoint equation used 
for training it (Sect. 4). We then introduce two instances of this general model (Sect. 5). 
In the experimental sections, we make use of the model for two problems. First for 
the well-known Navier–Stokes equations  (Sect.  6), which underlie a large amount of 
physical phenomena, for example in the ocean-atmosphere exchanges. Second, on the 
prediction of Sea Surface Temperature  (Sect.  7), for which we use data coming from 
a sophisticated ocean dynamics model which is improved using actual observations. 
Our experiments demonstrate a clear improvement over state-of-the-art deep learning 
baselines in terms of forecasting accuracy. We further analyze experimentaly how the 
learned state dynamics characterize the non-observed state variables. This is up to our 
knowledge the first data driven model able to forecast complex spatio-temporal dynam-
ics characteristics of geophysics applications, in a partially observed context, at this 
complexity and size levels.

To summarize, our main contributions are the following:

• We propose a framework for learning spatio-temporal dynamics characteristic of 
geophysics transport phenomena in the challenging partially observable, large size 
observation spaces context.

• We introduce two settings: the first relies only on observations while the second 
assumes that a full initial state is available for each trajectory. For both, we analyze the 
learned state represnetaions with respect to the canonical interpretable physical states.

• We demonstrate its performances on two problems: the incompressible Navier–Stokes 
equations and a challenging and realistic dataset of Sea Surface Temperatures.

Overall, the most promising aspect of our contributions is the fact that, when para-
metrized and trained correctly, Neural Networks are able to learn realistic Earth obser-
vations dynamics with reasonable amounts of data, even in the partially observable set-
ting and without any prior knowledge.

(2)
dXt

dt
= F�(Xt)
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2  Related work

In the past, several works have already attempted to learn differential equations from data, 
such as e.g., Crutchfield and Mcnamara (1987), Alvarez et al. (2013). More recently, Rudy 
et al. (2017) and Zhang and Lin (2018) use sparse regression on a dictionary of differen-
tial terms to recover the underlying PDE. In Raissi et al. (2017), they propose recovering 
the coefficients of the differential terms by deriving a GP kernel from a linearized form of 
the PDE. Long et al. (2018) carefully tailor the neural network architecture, based on the 
discretization of the different terms of the underlying PDE. Raissi (2018) develops a NN 
framework for learning PDEs from data. Fablet et al. (2017) construct a bilinear network 
and use an architecture similar to finite difference schemes to learn fully observed dynami-
cal systems. In those approaches, we often see that either the form of the PDE or the vari-
able dependency are supposed to be known and that the context is the unrealistic setting 
where the state is fully observed.

Related to our work, there is the field of data assimilation (Lorenc, 1986; Carrassi et al., 
2018b), where one is interested in using (partial) observations, in conjunction with the 
evolution model, supposed known, in order to retrieve the canonical state. Typically, our 
constrained optimisation problem is similar to the one posed in classical 4D-Var (Carrassi 
et al., 2018b), where the constraint is the evolution equation of the state. Although there 
have been work in data assimilation community where the evolution equation is only par-
tially known and some unknown forcing terms are estimated from the data (Béréziat and 
Herlin, 2015), our work takes a more data-driven approach, where we make no assump-
tions and use no prior knowledge of the underlying evolution equation.

Recently, other approaches, combining ideas from data-assimilation and machine 
learning attempt to tackle the problem of learning the system from partially observations. 
Nguyen et al. (2019), learn an LSTM to forecast Lorenz-63 system when only sparse acqui-
sitions in time of the full state are available. However, these methods evaluate themselves 
solely on the observed data, and do not consider the hidden states that are predicted by the 
model. A more hybrid example is de  Bézenac et  al. (2018), corresponding to our PKnI 
baseline, where they propose to learn a forecasting system in the partially observable case, 
where part of the differential equation is known, and the other is approximated using the 
data, which allows the network hidden state to ressemble the true hidden state.

As mentioned in the introduction, machine learning as been part of geophysics mod-
eling for the past decades. Most machine learning methodologies have been aplied to geo-
physics and remote sensing. We will focus here on recent developments in the field. The 
last few years have seen an exponentially increasing number of deep learning applications 
to geophysics through the use of Earth observation data. We then highlight a few represent-
ative applications. Kalinicheva et al. (2020) perform change detection for satellite image 
time series using autoencoders. One of the first papers for extreme weather event detection 
is considered in Racah et al. (2017). Convolutional LSTMs were introduced in Shi et al. 
(2015) for nowcasting. Karpatne et al. (2017) is one of the first papers constraining neural 
networks to be consistent with physics and using prior physical knowledge for a prediction 
task, the application is lake temperature modeling. Vandal et  al. (2018) makes use of a 
super resolution convolutional neural network with multi-scale input channels for statistical 
downscaling of climate variables. de Bézenac et al. (2018) used as a baseline in this paper 
introduces physical knowldge under the form of an advection-diffusion equation in order to 
predict sea surface temperature. Ouala et al. (2018) also tackle the forecasting and assimi-
lation of geophysical fields and consider sea surface temperature as an application.
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Moreover, during the last few years, a link has been made between residual networks 
and dynamical systems (Weinan, 2017): a residual block ht+1 = ht + f (ht, �t) can be seen as 
the explicit Euler discretization of the following system: dht

dt
= f (ht, �t) . Adopting this view-

point, time t corresponds to the neural network’s layer index, the initial condition h(0) to the 
network’s input, and the forward pass as the time integration h(T) = h(0) + ∫ T

0
f (h(t), �t) dt , 

where h(T) corresponds to its output. Chen et al. (2018) propose computing this intractable 
integral using an ordinary differential equation (ODE) solver. During training, in order to 
compute the derivative with respect to the neural network parameters, the corresponding 
adjoint state equation is solved backward in time. Note that in our work, instead of consid-
ering the evolution of the inner dynamics of the neural throughout its layers, we consider 
the dynamics of the studied process itself, in the context of partially observed states.

3  Learning the dynamics of partially observable systems

Let us first formulate the task of learning partially observed dynamics as an optimization 
problem and then introduce a training algorithm.

3.1  Partially observable systems: hypothesis

We assume that only partial measurements of the system’s state are available.
Our hypothesis are the following:

• We have a dataset {Y (i)}i = 1…N corresponding to N sequences of observations. Here, 
Y
(i)

l
 denote the available measurement at time l from the i− th sample sequence, and Y (i)

l∶m
 

the sub-sequence of observations from time l to m. For simplicity, the superscript (i) 
may be omitted.

• There exists a stationary, deterministic and differentiable function H and a vector field 
X satisfying equation (1) such that H(X) = Y .

H represents the loss of information between the state X describing the system and obser-
vations Y. Note that in our experiments H will be a projection operator, i.e. Yt is a subset 
of the variables in Xt . A first question is whether it is always possible to reconstruct the 
state X from the observations, for any function H . This is not the case in general: if H has a 
constant value for all inputs for example. However, the Takens theorem, see Takens (1981) 
for the original statement and Robinson (2010) for a more recent version, states that, for 
a dense set of observation functions H , there exists an integer K such that Yt−K+1∶t can 
be transoformed into Xt.1 In the following, we suppose that H is such a function. In other 
words, there exists K and a function g such that Xt = g(Yt−K+1∶t) . In practice, K is treated as 
a hyper-parameter of our models.

Another question regards the uniqueness of the state X. Indeed, H represents a 
loss of information and is not injective. This implies that there could exist many state 

1 We have voluntarily stated the theorem in loose terms as there are many versions of it in many different 
settings and the involved technicalities are beyond the scope of the heuristical argument we present here.
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representations which induce the same observations Y.2 Our experiments are performed 
on simulated data, providing access to all the variables of the system. We will denote by 
canonical state, the true state of the physical model, which is not available for training in 
our context but known from the simulations. Having access to this ground truth will allow 
us to measure how much of the ground truth state information has been learned by our 
model. Of course this analysis is performed here for evaluation purpose and is not feasible 
in real situations where we have no access to state variables.

3.2  Optimization problem

We want to learn a state representation and its evolution dynamics from sequences of par-
tial observations. A natural formulation as an optimization problem is the following:

where we take

taking the L2 norm over the compact spatial domain Ω ⊂ ℝ
d over which the vector fields 

are defined here and where the dataset is a set of the form {(Y (i)

−k+1
,… , Y

(i)

0
,… , Y

(i)

T
)}i , 

where all observations Y (i) are supposed to be generated through the same underlying 
dynamical system, with different initial conditions. g� is a function to be learned for pre-
dicting an initial state X0 from past observations Y−k+1∶0.

The difficulty and originality in our context stems from the combination of multiple fac-
tors: the incomplete information setting, the complexity of the considered dynamics and 
the high-dimensional, raw spatial data provided as observations. Classical non-linear sys-
tem identification do not handle this type of data (Voss et al., 2004). Closer to us, neural 
differential equation solvers, e.g., Sirignano and Spiliopoulos (2018), Raissi et al. (2019) 
or Chen et al. (2018), all assume having access to the full states and not only to incom-
plete observations as we do here. Sirignano and Spiliopoulos (2018), Raissi et al. (2019) 
furthermore assume that the form of the differential equation is known. Solving problem 
(3) in this context requires a specific parametrization of the model: we choose F� and g� 
to be deep convolutional networks, which allows us to learn complex spatial differential 
operators from data like advection or diffusion terms present in Navier–Stokes (Ruthotto 
and Haber, 2018) unsupervisedly. The time evolution is obtained by solving the forward 
equation parametrized by F�.

While this model can (and will) be discretized, it is continuous in nature and can thus be 
related to the equations used in standard physical models. Here, � is the variable control-
ling the learning and contains the parameters for both F and g.

(3)

minimize
�

�Y∈Dataset[J(Y ,H(X))]

subject to
dXt

dt
= F�(Xt)

X0= g�(Y−k+1∶0),

(4)J(Y , Ỹ) = ∫
T

0

‖Yt − Ỹt‖2L2 ,

2 We give a more rigorous statement regarding the more particular situation of interest in this work in 
Sect. 5.
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3.3  Training and inference algorithms

The formulation above closely resembles control problems where a given controllable 
dynamical system is constrained to optimize a certain objective. However, our aim here 
is different as our goal is to find the dynamical system fitting a certain set of constraints, 
here provided through the observations Y. In practice, the optimization problem defined 
here can be solved using gradient descent methods. There are many methods to calcu-
late the gradient and we briefly recall in Sect. 4 the adjoint method used in our experi-
ments. In general, F� and g� can be parameterized as a neural network or as another 
parametric family, the only constraint being that it is differentiable almost everywhere 
with respect to �.

The (general) training algorithm adopted here is Algorithm 1 below. 

For inference, the parameters being learnt and fixed, we simply calculate 
X0 = g�(Y−k+1∶0) then use it as an initial condition to solve the equation parametrized by 
F� which gives us Xt for any t.

The following section details the important step of gradient computation.

4  Calculating the gradient

We start by briefly recalling the adjoint state equation and the corresponding general 
algorithm. We then discuss the two main methods used to discretize it, and then end 
the section by discussing stability and robustness properties of the resulting gradient. 
The definition of the adjoint state equation and the general algorithm highlighted in 
theorem 1 are classical results, recalled here for completeness since they underlie our 
approach.

When the dynamics are learned as it is the case in our work, there are no closed formu-
lae for the forward equation which must be discretized, thus inducing discretization errors. 
Propositions  3 and  4 presented in the Appendix, Sect.  A, show that the gradient is still 
well-defined and doesn’t amplify errors.
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4.1  The adjoint state equation

In what follows, all considered functions are supposed to be twice continuously differenti-
able in all variables and we will use the notation �uf (u0) to denote the differential of f with 
respect to u i.e.:

By hypothesis, we consider this differential operator to be always continuous. ⟨⋅, ⋅⟩ is the 
scalar product associated to the L2 space over the compact spatial domain Ω ⊂ ℝ

d over 
which the vector fields are defined.

In order to construct a gradient descent algorithm to solve equation (3), we need to find 
the gradient of the cost functional under the given constraints, i.e. the differential of 
� → �YJ(Y ,H(X�)) . However, this implies calculating �X

�

��
 , which is often computation-

ally demanding, as it implies solving dim(�) forward equations, which is high in our case. 
The adjoint state method avoids those costly computations by considering the Lagrangian 
formulation of the constrained optimization problem. A classical calculation gives the 
expression stated in the following theorem:

Theorem 1 (Adjoint State Equation)

where � is solution of

solved backwards, starting with �T = 0 , and where

and

Here, M⋆ denotes the adjoint operator of the linear operator M.

For completeness, a proof of this result is provided in the Appendix, Sect. B.1.

4.2  Approximate solutions

Theorem  1 gives us a way to calculate, for a given value of � , the gradient of the con-
strained problem being solved. However, solving the forward and backward equations, 
namely Eqs. (2) and (6) isn’t generally straightforward. They do not yield a closed form 

f (u0 + �u) = f (u0) + �uf (u0) ⋅ �u + o(�u)

(5)∇�J =

(
−∫

T

0

⟨
�t,

�F�(X
�
t
)

��i

⟩
dt −

⟨
�0,

�g�

��i

⟩)

i

(6)
d�t

dt
= At�t + Bt

At = −(𝜕XF𝜃(X
𝜃
t
))⋆

Bt = 2(𝜕XH(X𝜃
t
))⋆(H(X𝜃

t
) − Yt).
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solution and we must content ourselves with approximations. There are essentially two 
different ways to tackle this problem (Gunzburger, 2002): the differentiate-then-discretize 
approach, and the discretize-then-differentiate approach.3

In the differentiate-then-discretize approach, one directly approximates the equations 
using numerical schemes. Here, the approximation error to the gradient comes from the 
discretization error made in the solver for both the forward and backward equations. This 
method is used in the black box solvers in Chen et al. (2018). It has the advantage of allow-
ing the use of non-differentiable steps in the solver. However, it can yield inconsistent gra-
dients of the cost functional J  , the discretization of the adjoint equations depends on the 
studied problem and therefore must be carefully selected and tuned (Bocquet, 2012).

In a discretize-then-differentiate approach, a differentiable solver for the forward equa-
tions is used, e.g., using an explicit Euler scheme X�

t+�t
≈ X�

t
+ �tF�(X

�
t
) . Based on the 

solver’s sequence of operations for the forward equations, the backward equations and the 
gradient can be directly obtained using automatic differentiation software  (Paszke et  al., 
2017). This algorithm is actually equivalent to backpropagation (LeCun et al., 1988) which 
can be derived as a special case of it: As the step-size approaches zero, the forward and 
backward equations are recovered.

While the two methods are consistent and both converge to the equations derived in 
Theorem 1, they do not always yield the same results as they proceed differently. In our 
experience, the second one proved more stable and the fact that we were limited to dif-
ferentiable solvers wasn’t an obstacle. Moreover, in the Appendix, Sect. A, we derive some 
properties of the adjoint equation and the corresponding gradient which are reassuring 
regarding its stability and robustness to approximation errors.

5  Analyzing the hidden dynamics

In this section, we show that the optimization problem defined above is ill-posed and 
admits non-canonical state representations as optimal solutions. We then outline two set-
tings where we analyze the induced state representation.

5.1  Learning an ill‑posed problem

For all of the following, we will consider the more specific (but still broad) situation where 
we take Y and X to be vector-valued spatio-temporal fields with values respectively in ℝl 
and ℝd where l ≤ d , thus reflecting the loss of information through H . This last operator is 
taken as a linear projection. Without loss of generality, we can thus consider Y to be consti-
tuted by the first l components of X.

Given the remarks in Sect. 3.1, the following result shows that there is usually an infi-
nite number of solutions to the optimisation problem.

Proposition 1 If l < d and the unobserved part of the state is non trivial, the non-para-
metric version of the optimization problem equation (3) admits an infinite number of null 
loss solutions which are distinct from canonical state representations.

3 The differentiate-then-discretize method is often referred to as the continuous adjoint method, and the 
discretize-then-differentiate approach as the discrete adjoint method (Sirkes and Tziperman, 1997).
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A proof is given in the Appendix, Sect. B.2.
Moreover, as a corollary, if the chosen parametric families are universal approximators, 

which is true in our case, this means that we can obtain state representations which are non-
canonical with arbitrary low losses over observations. In other words, this result shows that 
solving the optimization problem defining our model doesn’t necessarily leads to a state 
space that is physically interpretable, even when observations are accurately forecasted.

In the following, we introduce two settings for analyzing the learned hidden states and 
help understanding what information has been learned. As we show in Sect. 7, the proper-
ties of those two settings can be useful when dealing with real world data.

5.2  Setting 1: Jointly trained (JT) states

In this setting we fix the architectures of g� and F� and train the model. The dataset used 
is only composed of observations and is of the form {(Y (i)

−k+1
,… , Y

(i)

0
,… , Y

(i)

T
)}i . The states 

learned in this setting will be referred to as Jointly Trained (JT) states.
We can’t expect JT states to have any particular structure for its d − l hidden compo-

nents as we don’t prescribe any in the loss nor in the formulation of the problem. However, 
two questions can still be asked:

• Is this model able to learn dynamics which can generate accurate observation forecasts?
• Do the JT states contain the same information as canonical ones? In other words, can 

we transform JT states into canonical ones?

Intuitively, any method which sucessfully forecasts observations up to arbitrary forecasting 
horizons and for different initial conditions using some state representation should have 
stored the relevant information into the learned state representation. The following proposi-
tion makes a more precise statement of this intuition:

Proposition 2 There exists an invertible function e which transforms jointly learned 
states into canonical states.

A proof is given in the Appendix, Sect. B.3.
This implies that when a model is trained without any supervision or prior informa-

tion about the true states, it is still able to capture the information present in the canonical 
states.

5.3  Setting 2: Feeding in a canonical initial condition

In this second setting, we inject some prior information to constrain the learned state 
space. There are several ways to do that. One may for example add terms to the loss that 
reflect physical constraints, constrain the parametrization of F to follow some predefined 
dynamics, etc. However, all those methods would be problem specific. We chose here to 
inject prior information by prescribing an initial state with canonical structure instead of 
using g as above. This comes at a cost: the algorithm now has to take a full state as input 
for each sequence of observations. Thus, in this setting, the dataset used is of the form 
{(X

(i)

0
, Y

(i)

1
,… , Y

(i)

T
)}i . This is an idealized setting since usually true state information will 

not be available, but it is used here as a simple and generic way to inject prior information.
There are also two main questions to ask in this setting:
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• Are we still able to forecast accurately observations with this additional constraint? 
How does it compare to the JT setting?

• Can we find a way to conserve the structure of the initial state throughout time-steps so 
that we unsupervisedly learn the dynamics of the hidden components of the state?

A first fact is that, for the same reasons outlined in the proof of proposition 5, there still are 
infinitely many possible state representations which produce accurate forecasts for observa-
tions, even when X0 is fed as an input to the model. The idea here is that if the evolution 
term F was chosen to be structurally conservative, meaning that it would preserve through 
time the way information is encoded canonically, as it is in X0 , then we could hope to keep 
the canonical structure throughout state forecasts and thus learn unsupervisedly the hidden 
canonical dynamics.

This is one of the reasons we choose to parametrize F as a residual network in our 
experiments: ResNets tend to modify only slightly their input (see Hauser, 2019 or Jastrz-
kebski et al., 2017 for example) and we use this property successfully in Sect. 6.5 to learn 
canonical state representations in the case of the Navier–Stokes equations.

6  Experiments on the Navier–Stokes equations

In this section, we present experiments conducted on simulations of the two-dimensional 
incompressible Navier–Stokes equation. The dataset is the result of a simulation, thus giv-
ing us a controlled environment for experimentation and giving us a way to test our model 
and its properties. Moreover, those equations are fundamental for modeling transport phe-
nomena in the atmosphere and in the ocean including the data generated for the more com-
plex Glorys2v4 experiment (Sect. 7).

6.1  A short reminder about the Navier–Stokes equations

A modern and thorough presentation of the incompressible Navier–Stokes equations and 
the underlying mathematical objects can be found in Foias et al. (2001) for example.

Those equations are

where ∇⋅ is the divergence operator, u corresponds to the flow velocity vector, p to the 
pressure, and � to the density.

The Navier–Stokes equations are not of the form of Eq. (1) as we still have the pressure 
variable p as well as the null divergence constraint. However, the Helmholz-Leray decom-
position result (Foias et al., 2001), states that for any vector field a, there exists b and c 
such that

(7)

�u

�t
+ (u ⋅ ∇)u = −

∇p

�
+ g + �∇2u,

��

�t
+ (u ⋅ ∇)� = 0,

∇ ⋅ u = 0,
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and

Moreover, this pair is unique up to an additive constant for b. Thus, we can define a linear 
operator ℙ by:

This operator is a continuous linear projector which is the identity for divergence-free vec-
tor fields and vanishes for those deriving from a potential.

By applying ℙ on the first line of Eq. (7), we have, as u is divergence free from the third 
equation and as g derives from a potential:

where permuting derivation and ℙ is justified by the continuity of the operator.4
Thus, if u is solution to Eq. (7), it is also a solution of:

which is of the form of Eq. (1).
Conversely, the solution of the above system is such that:

which gives, by exchanging ℙ and the integral5:

so that u is automatically of null divergence by definition of ℙ . The two systems are thus 
equivalent.

In conclusion, we have:

Moreover, u is generally a two or three-dimensional spatial field while � is a scalar field.

a = ∇b + c

∇ ⋅ c = 0

ℙ(a) = c

�u

�t
= −ℙ[(u ⋅ ∇)u] + �ℙ(∇2u)

�u

�t
= −ℙ[(u ⋅ ∇)u] + �ℙ(∇2u)

��

�t
= −(u ⋅ ∇)�

ut = ∫
�u

�t
= ∫ −ℙ[(u ⋅ ∇)u] + �ℙ(∇2u)

ut = ℙ

[
∫ −(u ⋅ ∇)u + �∇2u

]

X =

(
u

�

)
, and H(X) = �

4 One can use a finite difference approximation to show it for example.
5 To prove this, we can take a sum approximation to the integral and use again the linearity then the conti-
nuity of ℙ.
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6.2  Implementation and dataset details

6.2.1  The dataset

We have taken the observations to be the density of the fluid while the hidden components 
are the two-dimensional velocity field.

We have produced 600 separate simulations with independently and randomly gen-
erated initial conditions,6 with the 2D spatial domain containing 64 × 64 points. The 
simulations were conducted with Δt = 0.5s then subsampled 5 times. This means that the 
frames in the figures and tables, both in the training supervision loss and during inference, 
are separated by 2.5s. The total length was 50 time-steps per simulation. Regarding turbu-
lence, the fluid has been chosen with relatively low viscosity, close from the Euler equa-
tions in the velocity regime we sampled from, with a Reynolds number of 10000.

We have taken 300 from those simulations to construct the training set, 200 for valida-
tion and 100 for test. In particular, this means that the sequences used in the test results 
we present and analyze below are produced by initial conditions the model has never 
seen. For both settings, this gives us a total of 15000 observations for the training set and 
10000 for the test set. In setting 1, for the restructuring of JT states experiment, we used 
500 additional full states to train the transformation. In setting 2, we use an additional 2500 
full states for training and 1666 for testing where each full state is the full initial state for a 
certain trajectory.7

As stated before, one also has to choose a training horizon T, to construct the used data-
set of the form {(Y (i)

−k+1
,… , Y

(i)

0
,… , Y

(i)

T
)}i for setting 1 and {(X(i)

0
, Y

(i)

1
,… , Y

(i)

T
)}i for set-

ting 2. We have treated T as a hyperparameter of the model and have chosen it to be equal 
to 6. An important observation is that the higher T, the more memory demanding the train-
ing will be and the more carefully the gradient descent has to be done, especially at the first 
steps (by tuning the learning rate, scheduled sampling, ...). However, we have observed that 
models with higher horizons tend to generalize better and forecast more accurately for far-
ther time horizons, which makes sense as it makes the model take into account long term 
effects.

Another misconception to avoid is to confuse the training horizon T with the inference 
horizons at test time: For example, a model which is trained for sequences with T = 6 can 
be very accurate for longer time horizons as we show in the results below.

6.2.2  Implementation

In practice, the cost functional J  is estimated on a minibatch of sequences from the dataset 
and optimized using stochastic gradient descent. Throughout all the experiments, F� is a 
standard residual network (He et al., 2016), with 2 downsampling layers, 6 residual blocks, 
and bilinear up-convolutions instead of transposed convolutions.

In the experiments for setting 1, we parametrize g� as a UNet (Ronneberger et al., 2015). 
More precisely, we have used a modified variant of the FlowNetS architecture of Dosovits-
kiy et al. (2015) with:

6 For each, we have chosen a random location where we put a concentric density, as well as a random 
velocity field.
7 This means in particular that the supervision loss is still only calculated w.r.t. observations.
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• three double convolution steps, each double step having a two-strided first convolu-
tion then a one-strided second one, with all convolutions having kernels of size 3 
and batch normalization;

• non linearities are Leaky ReLU with parameter 0.1;
• the last two deconvolution steps are replaced with convolutions so that the desired 

number of output channels is obtained (in our case, we start with four input channels 
and output two).

Note that all experiments were conducted with the same architectures, showing the 
genericity of our approach: while adapting the parametrization can improve quantitative 
results, it doesn’t fundamentally alter our conclusions and shows that the cost of experi-
mentation when developping a model for a new dataset can be decreased.

To discretize the forward equation (2) in time, we use a simple Euler scheme. Note 
that the discretization step-size may differ from the time interval between consecutive 
observations; in our case, we apply 3 Euler steps between two observations, thus giving 
us i.e. �t = 1

3
× 2.5s . For the spatial discretization, we use the standard grid discretiza-

tion induced by the dataset.
The weights of the residual network � are initialized using an orthogonal initializa-

tion. Our model is trained using a scheduled sampling scheme with exponential decay, 
along with the Adam optimizer, with a learning rate set to 1 × 10−5 . We use the Pytorch 
deep learning library  (Paszke et  al., 2017). The use of a small learning rate was vol-
untary: in conjunction with the orthogonal initialization, this ensures that the weight 
matrices do not deviate too much from the orthogonality condition during training thus 
allowing for good gradient propagation and stable learning dynamics. We have also 
observed that those choices allow for results which are robust across different runs.

Training usually took a few hours on the datasets we describe here, which is compara-
ble to other baselines (although PRNN took a few more hours to converge satisfyingly).

6.2.3  Baselines and metrics

We compare our models to two different baselines:

• PKnI It is a physics-informed deep learning model described in de Bézenac et al. 
(2018), where prior physical knowledge is integrated: it uses an advection-diffusion 
equation to link the velocity with the observed temperatures, and uses a neural net-
work to estimate the velocities.

• PRNN (Wang et al., 2018) It is a heavy-weight, state of the art model used for video 
prediction tasks. It is based on a Spatiotemporal Convolutional LSTM that models 
spatial deformations and temporal variations simultaneously.

We use a renormalized relative squared error as a metric for observations:

To evaluate the quality of the hidden states, we use cosine similarity between the model’s 
hidden state and the true hidden state of the system:

(8)1

T

1

�Ω�
T�

k=1

�
x∈Ω

‖H(Xk(x)) − Yk(x)‖2
‖Yk(x)‖2
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where the ui are the horizontal and vertical components of the velocity field u.
The cosine similarity is relevant for the comparison with PKnI: the norm of its hidden 

state may not correspond to the ground truth norm.
For the velocity vector field representation, color represents the angle, and the intensity 

the magnitude of the associated vectors. More specifically, we represent the velocity fields 
into an image by using the Middlebury color code from the flowlib library (for which there 
is a code here: https:// github. com/ liruo teng/ Optic alFlo wTool kit/ blob/ master/ lib/ flowl ib. 
py).

6.3  Forecasting observations

Figure  1 shows a sample of the predictions of our system over the test set for the 
Navier–Stokes equations for both settings 1 and 2. The good results it shows are confirmed 
by Table  1. Our model is able to predict observations up to a long forecasting horizon 
(results are shown for up to 30 steps in Fig. 1 and 50 steps in Table 1), which means that 
it has managed to learn the dynamical system. Note that for setting 2 in Fig. 1, the initial 
states used at test time have never been seen at training time which means that the opti-
mization problem was solved correctly without over-fitting. Recall that the supervision is 
done here only at the level of observations, in accordance with our setting. An interesting 
remark is to observe that the jointly trained model (setting 1) is slightly less accurate than 
the one given X0 (setting 2), which makes sense as this last algorithm is given a few addi-
tional full states when JT isn’t given any.

Visually, as can be seen in Fig. 1 by looking at the small features of the observations, 
our model manages to capture many details which are important to robust long term fore-
casts while the PRNN model, which proves to be a strong baseline at the level of obser-
vations even though it doesn’t produce meaningful hidden states, for the first few steps, 
produces less sharp predictions which explains its worse performance when evaluated on 
long term predictions. Additional samples shown in Figs. 2 and 3 confirm this observation.

6.4  Restructuring jointly trained states

Proposition 2 shows that there must exist a way to transform JT states into canonical ones, 
which would make them more palatable and easier to interpret. In order to confirm this 
theoretical result empirically, we did the following: 

1. We took a small set of full canonical states from the Navier–Stokes dataset, correspond-
ing to 10 sequences (to be compared to 300 sequences of observations used for training) 
and computed the corresponding JT states.

2. We used it as a training set to learn the invertible transformation between JT states XJT 
and canonical ones Xcan , which boils down to a regression problem where we want to 
predict Xcan from XJT.

Figure  4 shows an example of the output from the transformation this transformation 
yields: it allows us to transform the non-structured hidden states of the jointly trained 

(9)1

K

K∑
k=1

1

|Ω|
∑
x∈Ω

⟨
u1(x), u2(x)

⟩
‖‖u1(x)‖‖‖‖u2(x)‖‖

https://github.com/liruoteng/OpticalFlowToolkit/blob/master/lib/flowlib.py
https://github.com/liruoteng/OpticalFlowToolkit/blob/master/lib/flowlib.py
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model into interpretable states corresponding to the canonical representation. From a quan-
titative point of view, after 5 predictions, the average cosine similarity over the whole test 
set goes from 0.192 in the jointly trained representation to 0.582 when transformed. While 
this result is far from perfect,8 it still shows promise and demonstrates that this approach 
could be applied in many cases.

6.5  Imposing the initial condition prescribes the hidden dynamics

Figure 1 shows that in setting 2, when we add a full initial state, our model is able to fore-
cast not only observations but also the dynamics of the hidden components of the state. 

Fig. 1  Forecasting the Navier–Stokes equations 30 time-steps ahead with different models, starting from a 
given initial condition. In this figure as well as in the following ones, the velocity field is represented using 
the Middlebury Color Code as implemented in the flowlib library https:// github. com/ liruo teng/ Optic alFlo 
wTool kit/ blob/ master/ lib/ flowl ib. py

8 In particular, the choice of the regression algorithm isn’t obvious and the size of the needed dataset will 
depend on this choice as well as on the desired accuracy, as with any regression problem.

Table 1  Relative MSE as in Eq. 
(8) for our model and different 
baselines, at different temporal 
horizons on the Navier–Stokes 
equations.

Note that the Setting 2 model uses a full, true initial state as X
0
 while 

the Setting 1 one only relies on observations
Bold values indicate that the best score for a given column

Model T = 5 T = 10 T = 50

Ours (Setting 1) 0.152 0.243 0.650
Ours (Setting 2) 0.118 0.180 0.483
PKnI (de Bézenac et al., 2018) 0.194 0.221 0.752
PRNN (Wang et al., 2018) 0.170 0.227 0.719

https://github.com/liruoteng/OpticalFlowToolkit/blob/master/lib/flowlib.py
https://github.com/liruoteng/OpticalFlowToolkit/blob/master/lib/flowlib.py
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This is a surprising result: even though this model gets additional structured information 
at the input, there are still an infinite number of ways to transport that information through 
time-steps and to store it into the state representation. Table 2, shows the mean cosine simi-
larity between target and predicted states for our model in setting 2. This similarity is high 
(around 0.8) for short term prediction (5 steps) and still substantial for long term prediction 
(around 0.5 for 50 steps). For comparison, we also indicate in Table 2 the values obtained 
with the PKnI model.

Fig. 2  Setting 2: Forecasting the Navier–Stokes equations, starting from a given initial condition  (not 
shown here). We forecast 42 time-steps ahead and compare results with the ground truth simulation

Fig. 3  Setting 2: Forecasting the Navier–Stokes equations, starting from a given initial condition  (not 
shown here). We forecast 42 time-steps ahead and compare results with the ground truth simulation
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In order to see if this is a property of the particular architecture used here, we conduct 
a series of ablation studies where we try to remove different components of the model and 
see how it behaves (numerical results are shown in Table 3):

ResNet. Here we simply use a residual network, with the exact same architecture as 
the one used to parameterize our model. The difference is that here we use it directly, not 
through an Euler solver. The results are notably less accurate for observations but, more 
importantly, this model turns out to be completely unable to forecast hidden states cor-
responding to the true ones. This shows that the way our model is structured around a 
solver which takes into account the differential structure of the studied problem is a strong 
regularizer.

ResNet no skip. This last argument may remind us that a residual network closely 
resembles the non-uniform discretization of an ODE. Thus, this should help it perform well 
and explains the relatively good results on observations for the ResNet and, by getting rid 
of the skip connections while keeping all layers untouched, which leads to a CNN, the per-
formance should worsen. This is indeed what happens in our tests.

UNet. We tried using this other classical architecture, which is often used for regres-
sion problems, with roughly the same number of parameters as in our parameterization. It 
proved to be weak against our model for both observations and hidden states.

Ours, Projection. Here, we seek to check whether our results depend of our particu-
lar choice of H : we change it and make it project to the first dimension of the velocity 
field  (instead of the density). We use our model in setting 2  (we give X0 as input). The 
results, while slightly less good, are quite robust to this change, considering that we haven’t 
changed the hyper-parameters of the model.

6.6  Discussion of the results

Those experiments lead us to the following conclusions:

• In the case of the Navier–Stokes equations, our model, with a simple solver for an 
equation parametrized through a residual network, allows us to learn unsupervisedly 
the dynamics of the hidden dynamics of the state.

• This result is robust to a change to the dimension H project onto.
• The fact that a solver is used, instead of a direct regression model, appears to be very 

important, as comparisons to other standard powerful architectures show, even when 
the exact same parametrizations are used.

Fig. 4  Setting 1: Example of a sequence of hidden states transformed by the calculated conjugacy
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However, this still doesn’t explain why this works for the hidden components, as the prob-
lem is ill-posed nonetheless. We hypothesize that the architecture of the network used to 
parametrize the equation is biased towards preservation of the input code, which happens 
to be that of the canonical state because X0 is fed into it. A similar kind of phenomenon is 
also empirically observed in the unsupervised domain translation field with the success 
of the CycleGAN model which is explored from this point of view in (de Bézenac et al., 
2019).9

In those first experiments, we have studied two separate settings with different levels 
of supervision over the full state: Setting 1 supposes that none is available while Setting 2 
allows to initialize with a fully known state. In practice, systems of interest may present a 
hybrid setting, the following will study an example of such a situation for a more complex, 
more realistic dynamical system.

7  Forecasting ocean circulation dynamics from satellite images

In this section, we use our model to study Sea Surface Temperatures dynamics as modeled 
by the Glorys2v4 simulations. We suppose access to part of the hidden components of the 
state for the initial condition. This places us in a hybrid setting when compared to the two 
settings used for Navier–Stokes equations. This allows us to leverage the properties of both 
while remaining in a realistic context. We first describe this realistic, state-of-the-art simu-
lation of ocean circulation, we then propose two instances of our model and compare them 
to standard baselines.

Table 2  Cosine similarity as in Eq. (9) scores for our models and a baseline, at different temporal horizons 
on the Navier–Stokes equations

Bold values indicate that the best score for a given column

Model T = 5 T = 10 T = 50

Ours (Setting 2) 0.798 0.679 0.483
PKnI 0.243 0.207 0.098

Table 3  Ablation study for our model, at different temporal horizons on the Navier–Stokes equations

Model T = 5 T = 10 T = 50

MSE Cosine MSE Cosine MSE Cosine

Ours (Setting 2) 0.118 0.798 0.180 0.679 0.628 0.483
Ours (Setting 2—projection) 0.191 0.732 0.288 0.620 0.49 0.534
Resnet 0.288 0.604 0.391 0.333 0.73 0.032
UNet 0.659 0.069 0.692 0.028 0.84 0.023
Resnet no skip 0.615 0.162 0.71 0.060 0.897 − 0.04

9 Obviously, the jointly trained model can’t be expected to learn a state corresponding to the canonical one 
as it is never provided with any structure.
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7.1  The Glorys2v4 dataset

The Glorys2v4 product is a reanalysis of the global Ocean (and the Sea Ice, not considered 
in this work). The numerical ocean model is NEMOv3.1  (Madec, 2008) constrained by 
partial real observations of Temperature, Salinity and Sea Level. Oceanic output variables 
of this model are daily means of Temperature, Salinity, Currents, Sea Surface Height at a 
resolution of 1/4 degree horizontal resolution.

The NEMO model describes the ocean by the primitive equations (Navier–Stokes equa-
tions together with an equation of states). Let (�, �, �) the 3D basis vectors, U the vector 
velocity, � = �h + w� (the subscript h denotes the local horizontal vector, i.e. over the (�, �) 
plane), T the potential temperature, S the salinity, � the in situ density. The vector invari-
ant form of the primitive equations in the (�, �, �) vector system provides the following six 
equations (namely the momentum balance, the hydrostatic equilibrium, the incompressibil-
ity equation, the heat and salt conservation equations and an equation of state):

where � is the in situ density, �0 is a reference density, p the pressure, f = 2Ω.� is the 
Coriolis acceleration. DU , DT and DS are the parameterizations of small-scale physics for 
momentum, temperature and salinity, and FU , FT and FS surface forcing terms.

As in Sect. 6, the divergence-free constraint can be enforced through the Leray operator. 
Moreover, � is a function of other state variables so that the state can be written as

where T  is the daily mean surface temperature derived from the instantaneous potential 
temperature T in the model.

The level of supervision for the initial state here is hybrid when compared to the two 
settings described in the previous sections: in addition to the temperature observations, it is 
possible to access an estimation of the velocity field w̃0.

7.2  Models

This dataset is much more challenging and represents a leap from the fully simulated 
one presented before. One reason is obviously the high dimensionality of the system 

��h

�t
= −

[
(�.∇)�

]

h

− f� × �h −
1

�0
∇hp + D� + F�,

�p

�z
= −�g,

∇.� = 0,

�T

�t
= −∇.(T�) + DT + FT ,

�S

�t
= −∇.(S�) + DS + FS,

� = �(T , S, p),

X =

⎛
⎜⎜⎜⎝

U

p

S

T

⎞⎟⎟⎟⎠
and H(X) = T ,
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and the absence of a full state as initial input to our system as we only have a proxy 
over the velocity field. A second one is the fact that the neural network model is trained 
over sequences where only a local spatial region is observed (see Fig. 6) correspond-
ing to fixed size zones of the ocean. The physical model, on the other hand, simulates 
the dynamics over a larger area on the ocean. This means that informations from the 
neighboring areas beyond the fixed size zone is not available to the neural network. This 
makes the dynamics for the coresponding zone non-stationary as boundary conditions 
are constantly shifting, thus violating an assumption of our method and making it dif-
ficult to make long term forecasts with a reasonable number of observations. We can 
hope for the dynamics to be locally stationary so that the model can work well for a few 
steps.

In other words, the initial temperatures T0  (since we observe the temperatures, 
Y0 = T0 ) and the proxy of the velocity field w̃0 provided as initial input are insufficient to 
represent the full state. Taking this fact into account, we build on the results obtained in 
the case of the Navier–Stokes equations and propose two variants of our model:

• Ours, which is the same as before, taking as initial state 

• Ours, with Estimation where we use past observations Y−K∶0 in order to infer the 
unknown part of the initial state, similarly to what is done in the JT model: 

Here, E� is an encoder neural network. Using it allows us to encode available informa-
tion from the observations Y−K∶0 which is not contained in w̆0 nor in T0 . For E� , we use 
the UNet architecture (Ronneberger et al., 2015).

7.3  Results and conclusions

We have used the same hyper-parameters to build and train our architectures as for the 
Navier–Stokes simulations  (described in Sect.  6.2). We also consider the same base-
lines. As a reviewer of this paper suggested, we also compute a persistence score which 
is produced by simply considering a constant output corresponding to the initial value. 
This is meaningful as it allows to evaluate the “memory” of the ocean over the time-
scales considered here.

Regarding the forecasting of observations, we can clearly see, as expected, from 
Figs. 5, 6 and 7 as well as Table 4 that this task is more challenging, with lower perfor-
mances for all models when compared to those obtained in the case of the Navier–Stokes 
equations, even though we evaluate for shorter time horizons. Nevertheless, the two var-
iants of our model still perform better than the two powerful Deep Learning baselines 
we test against, as well as against the persistence score which does underperform all 
other baselines.

X0 =

⎛⎜⎜⎝

Y0
w̆0

0

⎞⎟⎟⎠
;

X0 = g𝜃(Y−K∶0, w̃0) = E𝜃(Y−K∶0, w̃0) +

⎛⎜⎜⎝

Y0
w̆0

0

⎞⎟⎟⎠
.
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We also observe, from the cosine similarity results, that our models are still able to 
reproduce some coherent dynamics for the hidden components of the state for which the 
initial condition was given. Using an additional estimation, while lowering the accuracy 
for observations, also helps with improving the cosine similarity for those dynamics. 
However, comparing to the persistence baseline shows that our models are not really 
doing better than simply preserving the structure of the velocity field.

8  Discussion

In the machine learning community, the forecasting problem is often seen as a learning 
a neural network mapping consecutive states in time. In this work, we take an alter-
nate approach, and use the neural network to express the rate of change of the states 
instead. This task is intrinsically simpler for the network, and is in fact the natural way 
to model time varying processes. This also allows to accommodate irregularly acquired 
observations as showed in Chen et al. (2018), and can also allow interpolation between 
observations.

In Sect. 5, we explore avenues in order to constrain the hidden dynamics. Typically, 
in Setting 1 (Sect. 5.2), if we have access to a small amount of observations of the full 
state, it is possible to map the hidden states learned by the neural network onto the 
canonical coordinate system. This opens up interesting directions for future exploration, 
as it possible to predict quantities of interest (velocity, pressure, etc...) from the states of 
the network, rendering the hidden dynamics of the network more interpretable.

Although the theoretical foundations of Setting 1 are well understood  (Coudène, 
2016), it is not the case for the setting 2. The fact that we learn dynamics closely 
resembling the dynamics of the underlying system by only giving as input the initial 

Fig. 5  Forecasting sea surface temperatures 10 time-steps ahead with different models, starting from a 
given initial condition
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condition  (see Sect.  6.5) is intriguing. We have conducted an ablation study in order 
to better understand this phenomenon (Sect. 6.5), showing that the success in predict-
ing the hidden states correctly without direct supervision is due to the proposed con-
tinuous-time framework and the particular architecture we used. However, the exact 
underpinnings are not entirely understood. As future work, we wish to develop the 

Fig. 6  Forecasting Glorys2v4 10 time-steps ahead, starting from a given, full state, initial condition  (not 
shown here), wthout the estimation

Fig. 7  Forecasting Glorys2v4 10 time-steps ahead, starting from a given, full state, initial condition  (not 
shown here), without the estimation

Table 4  Relative MSE and 
cosine similarity scores for our 
models and different baselines, 
at different temporal horizons on 
the Glorys2v4 dataset

State estimation is not available for PRNN which is based on a recur-
rent network, hence the crosses in the “cosine” columns
Bold values indicate that the best score for a given column

Model T = 5 T = 10

MSE cosine MSE cosine

Persistence 0.476 0.788 0.842 0.666
Ours 0.306 0.671 0.402 0.589
Ours, Est. 0.364 0.718 0.490 0.670
PKnI 0.411 0.448 0.494 0.368
PRNN 0.423 XX 0.546 XX
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theoretical aspects and implications of these results in order to shed light on the under-
lying mechanisms.

9  Conclusion

We present in this paper a general data-driven model for space-time processes when the 
state is only partially observable. We show that partial observability introduces ill-posed-
ness in the determination of an interpretable state representation then propose two methods 
to solve this issue: This allows to demonstrate that non-structured states can be interpreted 
when correctly transformed and that the model, when fed with a structured interpret-
able state with a well parametrized evolution term, can forecast unsupervisedly the hid-
den dynamics of the state. The theoretical analysis is confirmed through experiments on 
raw simulations of the Navier–Stokes equations and comparisons with two competitive 
data-sets.

Appendix A: Properties of the adjoint equation

In this section, we derive some properties of the adjoint equation of Theorem 1.
Let us start by stating a version of the Gronwall lemma:

Lemma 1 (Gronwall) Let u be solution to:

with uT = 0 . Then:

We can then prove a first stability result for the gradient calculated by the adjoint 
method:

Proposition 3 (Stability of the gradient) Under the hypothesis in Theorem 1, � is defined 
and bounded over [0, T]. Thus, �

��
J(Y ,H(X�)) is also well-defined and bounded.

Proof Using the lemma above, we have, using the same notations as in Theorem 1, that:

Moreover, by the hypothesis above, �XF� , �XH and H are continuous and [0,T] × Ω is com-
pact so that A and B are bounded. Combining this fact with the inequality above gives us 
the boundedness of � . Finally, g� and ��F� are continuous as well so that �

��
J(Y ,H(X�)) is 

also bounded.   ◻

�tut = �tut + �t

‖ut‖ ≤ �
T

t

‖�s‖ds + �
T

t �
T

s

‖�r‖dr‖�s‖ exp
�
�

s

t

‖�r‖dr
�
ds

∀t, ‖�t‖ ≤ �
T

t

‖Bs‖ds + �
T

t �
T

s

‖Br‖dr‖As‖ exp
�
�

s

t

‖Ar‖dr
�
ds
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This is a minimal requirement for the descent algorithm we use to be meaningful: The 
solution of the adjoint equation has to be well-defined and the gradient has to be stable 
enough.

In the following, we denote ‖f‖∞ = sup(t,x)∈[0,T]×Ω ‖f (t, x)‖ for any function defined over 
[0,T] × Ω . Then we have:

Proposition 4 (Robustness of the gradient) Consider a perturbed solution X̃ of the for-
ward equation.10 Then:

for a real number M.

Proof We have, taking � = �̃ − �:

We know that � is bounded. Moreover:

and:

Combining all those inequalities, we then have L such that:

Taking �t = Ãt , �t = (Ãt − At)�t + B̃t − Bt and recalling that �T = �̃T − �T = 0 , we can then 
apply the Grönwall lemma to conlude.  ◻

In other words, the gradient calculated through the adjoint method is robust in the sense 
that it doesn’t amplify perturbations of the forward equation. This is important from a prac-
tical point of view as there is bound to be approximation errors when solving the forward 
equation. Moreover, noise in the data would also result in a perturbation of the resulting 
solution of the forward equation and has thus to be controlled.

Appendix B: Proofs

Proof of Theorem 1

Theorem 2 (Adjoint State Equation)

‖�̃ − �‖∞ ≤ M‖X̃ − X‖∞

�t�t = Ãt�t + (Ãt − At)�t + B̃t − Bt

‖Ãt − At‖ ≤ ‖�2
XX
F�‖∞‖X̃ − X‖∞

‖B̃t − Bt‖ ≤ 2‖�2
XX
H‖∞‖H(X̃t) −H(X)t‖ ≤ 2‖�2

XX
H‖∞‖�XH‖∞‖X̃ − X‖∞

‖�t‖ ≤ L‖X̃ − X‖∞

(10)��J(Y ,H(X�)) = −∫
T

0

�
�t, ��F�(X

�
t
)
�
dt − ⟨�0, ��g�⟩

10 The perturbation can for example model approximation errors in solving the equation.
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where � is solution of:

solved backwards, starting with �T = 0 , and where:

and

where M⋆ denotes the adjoint operator of linear operator M.

Proof Let us define:

As, for any � , X� satisfies the constraints by definition, we can now write:

which gives:

Straightforward calculus gives us:

Let us fix � and a variation �� . Then, we have, by definition:

and, for any X and any �X:

and:

so that:

Then, because F is twice continuously differentiable:

(11)�t�t = At�t + Bt

At = −(𝜕XF𝜃(X
𝜃
t
))⋆

Bt = 2(𝜕XH(X𝜃
t
))⋆(H(X𝜃

t
) − Yt)

(12)
L(X, �,�, �) = J(X) + ∫

T

0

�
�t,

dXt

dt
− F�(Xt)

�
dt

+ ⟨�,X0 − g�⟩

∀�, �,�, L(X� , �,�, �) = J(Y ,H(X�))

∀�,�, ��L(X
� , �,�, �) = ��J(X

�)

��J(X
�
t
) = ∫

T

0

2
⟨
�XH(X�

t
) ⋅ ��X

�
t
,H(X�

t
) − Yt

⟩
dt

X�+�� = X�
t
+ ��X

�
t
⋅ �� + o(��)

F�(X + �X) = F�(X) + �XF�(X) ⋅ �X + o(�X)

F�+��(X) = F�(X) + ��F�(X) ⋅ �� + o(��)

F�+��(X
�+��
t

) = F�(X
�+��
t

) + ��F�(X
�+��
t

) ⋅ �� + o(��)
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and:

Moreover, as all differential operators below are continuous by hypothesis, we have that:

so that:

We now have all elements to conclude calculating the derivative of L , with some more 
easy calculus:

By the Schwarz theorem, as X is twice continuously differentiable, we have that 
���tX

�
t
= �t��X

�
t
 . Integrating by parts, we get:

Putting all this together and arranging it, we get:

We can now define:

and

��F�(X
�+��
t

) = ��F�

(
X�
t
+ ��X

�
t
⋅ �� + o(��)

)

= ��F�(X
�
t
) + �X��F�(X

�
t
) ⋅ ��X

�
t
⋅ ��

+ o(��)

F�(X
�+��
t

) = F�

(
X�
t
+ ��X

�
t
⋅ �� + o(��)

)

= F�(X
�
t
) + �XF�(X

�
t
) ⋅ ��X

�
t
⋅ �� + o(��)

‖(�X��F�(X
�
t
) ⋅ ��X

�
t
⋅ ��) ⋅ ��‖ ≤ ‖�X��F�(X

�
t
)‖ ‖��X�

t
‖ ‖��‖2

F�+��(X
�+��
t

)

= F�(X
�
t
) +

(
�XF�(X

�
t
) ⋅ ��X

�
t
+ ��F�(X

�
t
)
)
⋅ �� + o(��)

��L = ∫
T

0

(
2
⟨
�XH(X�

t
) ⋅ ��X

�
t
,H(X�

t
) − Yt

⟩
+

⟨
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�
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and, recalling that � can be freely chosen, impose that � is solution of:

with final condition �T = 0 . We also choose � = �0 so that, finally, we have:

which concludes the proof.  ◻

Proof of Proposition 5

Proposition 5 If l < d and the unobserved part of the state is non trivial, the non-para-
metric version of the optimization problem equation (3) admits an infinite number of null 
loss solutions which are distinct from canonical state representations.

Proof Let us suppose we have an equation F along with a state X perfectly fitting all obser-
vations so that the loss is null and that we can write, because all observations are perfectly 
fit, Xt =

(
Yt, Zt

)
 where Z is an ℝd−l-valued spatio-temporal field. We also write the ℝd to ℝd 

function F as (F(1),F(2)) so that we have:

Let � be a smooth diffeomorphism of ℝd−l , meaning that it is a smooth invertible function 
with a smooth inverse,11 and let 𝜙♯X be defined as:

We then have:

so that:

where F� is defined by:

Bt = 2(𝜕XH(X𝜃
t
))⋆(H(X𝜃

t
) − Yt)

�t�t = At�t + Bt

��L = −∫
T

0

�
�t, ��F�(X

�
t
)
�
dt − ⟨�0, ��g�⟩

dXt

dt
=

(
dYt

dt
,
dZt

dt

)
= F(Xt) =

(
F(1)(Xt),F

(2)(Xt)
)

∀t, (𝜙♯X)t =
(
Yt,𝜙(Zt)

)

d�(Zt)

dt
= �Z�(Zt) ⋅

dZt

dt
= �Z�(Zt) ⋅ F

(2)(Xt)

d(𝜙♯X)t

dt
= F𝜙

(
(𝜙♯X)t

)

F𝜙(W) =
(
F(1)

(
(𝜙−1)♯(X)

)
,

𝜕Z𝜙
(
P(2)

(
(𝜙−1)♯(W)

))
⋅ F(2)

(
(𝜙−1)♯(W)

))

11 Smoothness may depend on the considered system but here we need it at least to be of class C3 so that F� 
can be C2 as needed for the gradient descent algorithm.
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with P(2) being the projection associating to a vector of ℝd the vector of its last d − l 
components.

Moreover, 𝜙♯X fits all observations as H(𝜙♯X) = H(X) by construction. Thus, 𝜙♯X is 
also a null loss solution. Finally, whenever � is not the identity over the range of Z, which 
is for an infinite number of transformations because by assumption the range of Z is non 
trivial, 𝜙♯X ≠ X which gives us an infinite number of null loss solutions.

By construction, the canonical state Xcan along with the canonical ODE which has gen-
erated the dataset perfectly fits the observations and thus has a null loss. From this, we can 
thus generate an infinite number of null loss solutions which are distinct from Xcan by the 
arguments above.   ◻

Proof of Proposition 2

Proposition 6 There exists an invertible function g which transforms jointly learned 
states into canonical states.

Proof Let Xcan , resp. XJT , be the canonical state, resp. the jointly learned state, which 
dynamics are described by Fcan , resp. FJT . Let Φcan , resp. ΦJT , denote the flow of the cor-
responding ODEs so that Φcan

t,X
 , resp. ΦJT

t,X
 , is the value of the canonical state, resp. jointly 

learned state, at time t if it was of value X at time 0. Remember that Φt,⋅ is invertible at 
every t for both states. Finally, let us denote Scan , resp. SJT , the space spanned by all canoni-
cal states, resp. jointly learned states.

By construction, there is a function e and an integer K such that XJT
t

= e(Yt−K+1,⋯ , Yt) . 
Then, if we denote by j the function:

we have that:

Let us now suppose that two different canonical states, X and X′ are such that j(X) = j(X�) . 
Then, applying j then the flow ΦJT then H , we see that those two states generate the same 
sequence of observations, as, again by construction, we always have H(Xcan) = H(XJT) . 
This means that the two states are the same, as those are two canonical states generating 
the exact same sequences of observations. Thus j is injective.

Moreover, all possible observations can be generated by canonical states by defi-
nition and thus for any XJT

t
∈ SJT there is a sequence of observations such that 

XJT
t

= e(Yt−KΔt+1,… , Yt) and then taking the corresponding canonical state Xcan
t

 we have 
that XJT

t
= j(Xcan

t
) . Thus j is surjective.  ◻
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