
Vol.:(0123456789)

Machine Learning (2022) 111:2885–2904
https://doi.org/10.1007/s10994-022-06135-6

1 3

Clustered and deep echo state networks for signal noise
reduction

Laercio de Oliveira Junior1,2 · Florian Stelzer3,4,5 · Liang Zhao1

Received: 1 May 2021 / Revised: 11 November 2021 / Accepted: 6 February 2022 /
Published online: 11 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022

Abstract
Echo State Networks (ESNs) are Recurrent Neural Networks with fixed input and internal
(hidden) weights, and adaptable output weights. The hidden part of an ESN can be consid-
ered as a discrete-time dynamical system, called reservoir. In classical ESNs, the internal
connections are obtained from an Erdős-Rényi graph. A recent study proposed ESNs with
clustered adjacency matrices (CESNs), where the clusters are either Erdős-Rényi graphs
or Barabási-Albert-like graphs. In this work, we investigate the effectiveness of CESNs
and apply them for signal denoising. In addition, we introduce and study deep CESNs with
multiple clustered layers. We found that CESNs and deep CESNs can compete with deep
ESNs for all tasks that we considered.

Keywords Echo state networks · Reservoir computing · Complex networks · Noise
reduction

Editor: Annalisa Appice, Sergio Escalera, Jose A. Gamez, Heike Trautmann.

 * Laercio de Oliveira Junior
 laercio00@outlook.com

 Florian Stelzer
 florian.stelzer@ut.ee

 Liang Zhao
 zhao@usp.br

1 Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo (USP),
Ribeirão Preto, SP, Brazil

2 Meta Platforms Inc, London, UK
3 Institute of Computer Science, University of Tartu, Tartu, Estonia
4 Department of Mathematics, Humboldt University of Berlin, Berlin, Germany
5 Institute of Mathematics, Technical University of Berlin, Berlin, Germany

http://orcid.org/0000-0001-6734-0622
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06135-6&domain=pdf

2886 Machine Learning (2022) 111:2885–2904

1 3

1 Introduction

Artificial Neural Networks (ANNs) are computing systems consisting of connected units,
commonly called neurons or nodes. ANNs are inspired by biological neural systems
(McCulloch and Pitts 1943; Hebb 1949) and constitute a class of powerful machine learn-
ing tools for a wide range of applications (Lecun et al. 2015; Schmidhuber 2015; Abiodun
et al. 2018; Tealab 2018; Goodfellow et al. 2016). Recurrent Neural Networks (RNNs) are
ANNs, which are useful to process sequential data. They contain at least three layers: an
input layer, representing the input data, a hidden layer with recurrent connections, and an
output layer. A given sequence of input data is fed into the RNN step by step. The recurrent
connections of the hidden layer ensure that the network keeps information about past input
elements.

A standard method to train RNNs is gradient descent, where the gradient is computed
by backpropagation through time (Robinson and Fallside 1987; Mozer 1989; Goodfel-
low et al. 2016). This training method can suffer from vanishing or exploding gradients
(Mozer 1989; Kolen and Kremer 2001; Goodfellow et al. 2016), which can be avoided by
using advanced RNN models, such as long short-term memories (LSTMs) (Hochreiter and
Schmidhuber 1997) or gated recurrent units (GRUs) (Cho et al. 2014). LSTMs and GRUs
perform well, even on challenging tasks (Sak et al. 2014; Uhlich et al. 2017; Takahashi
et al. 2018; Ravanelli et al. 2018), but are sophisticated and rather difficult to implement.

Another, earlier and elegantly simple approach to overcome the problem of vanishing or
exploding gradients, are Echo State Networks (ESNs) (Jaeger 2001, 2002; Lu et al. 2017).
ESNs are RNNs with fixed, randomly chosen input and internal weights and adaptable out-
put weights. Since only the output weights are trained, there is no need to employ gradient
descent. Instead, one can use a simple regression method. Fixed input and internal weights
come at the price that ESNs perform worse than advanced methods, such as LSTMs or
GRUs, on challenging tasks. But for solving rather simple or moderately challenging tasks,
ESNs should still be considered as a possible solution due to their simplicity and their
fast training process. ESNs have been successfully applied to chaotic signal prediction (Lu
et al. 2017; Pathak et al. 2017), signal separation (Krishnagopal et al. 2020), stock price
prediction (Lin et al. 2009), and for the simulation of cardiac electrical waves (Zimmer-
mann and Parlitz 2018).

Furthermore, ESNs are a subclass of reservoir computing, which is the principle of
employing an input driven dynamical system, called reservoir, with an adaptable readout
transformation for machine learning problems. The hidden layer of an ESN can be con-
sidered as a discrete-time dynamical system and serves as the reservoir; the ESN’s output
layer realizes the readout transformation. The ESN is the reservoir computing concept that
was introduced first. Meanwhile, there are further concepts, e.g., time-delay reservoir com-
puting (Appeltant et al. 2011; Larger et al. 2012; Schumacher et al. 2013; Brunner et al.
2013).

Classical ESNs possess only one hidden layer, which obtains its connections from an
Erdős-Rényi graph (Erdös and Renyi 1961). In addition, deep ESNs have been introduced
(Gallicchio and Micheli 2016; Gallicchio et al. 2018; Gallicchio and Micheli 2020; Dettori
et al. 2020). Deep ESNs possess multiple hidden layers, which are internally recurrent, but
coupled to each other in a feed-forward way.

In spite of decent results obtained from ESNs with simple Erdős-Rényi topology, there
is an interest in employing complex network topologies for further improvements. Com-
plex networks are graphs with nontrivial connection patterns and provide a powerful tool

2887Machine Learning (2022) 111:2885–2904

1 3

for modeling complex systems by unifying spatial, topological, functional, and evolution-
ary properties. One of their salient features is the presence of communities forming a clus-
tered structure. While a community is a group of densely connected nodes, the connections
between nodes of different communities are sparse. Interestingly, such clustered structures
have been found in, e.g., the brains of humans and animals (Martens et al. 2017; Berry
and Tkacik 2020). Data on both anatomical and functional connectomes have shown a
small-world structure with highly clustered modules at different scales (Akiki and Abdal-
lah 2019; Gleiser and Spoormaker 2010; Hagmann et al. 2008).

Various concepts of clustered ESNs (CESNs), i.e., ESNs with a reservoir described by a
complex network with community structure, have been proposed, including geometrically
motivated (Deng and Zhang 2007), data driven (Li et al. 2015), and knowledge-based (Yu
et al. 2011) methods. The recent work (Oliveira et al. 2020) introduced two further types
of CESNs, where the clusters are defined by equally sized blocks in the adjacency matrix.
These blocks are generated using the Erdős-Rényi model or a Barabási-Albert-like model,
respectively. However, only simple time-series prediction and frequency filtering problems
on artificial datasets have been considered to evaluate the effectiveness of these methods.

In this article, we show that the CESNs from Oliveira et al. (2020) can also be applied
for signal denoising. Specifically, we reconstruct signals from their noisy versions, which
are corrupted by Gaussian, impulse, or ECG noise. To demonstrate the effectiveness of
CESNs, we compare them to classical ESNs and to the Wiener filter (Wiener 1949). Fur-
thermore, we introduce deep CESNs, i.e., ESNs with multiple clustered layers.

Our results show that CESNs and deep CESNs perform significantly better than the
Wiener filter and classical ESNs. ESNs, in particular CESNs and deep CESNs, are a robust
method providing a decent performance in signal denoising.

2 Review of echo state networks

In this section, we provide a general definition of ESNs and explain how to train them
using ridge regression. We describe classical ESNs with a random Erdős-Rényi network
topology as introduced in Jaeger (2001), which we call random ESN throughout this arti-
cle. Further, we describe deep ESNs (Gallicchio and Micheli 2016, 2020).

We use the term adjacency matrix for the matrix indicating the number of connections
between two nodes of a directed graph (including self-connections). The entries of an adja-
cency matrix are in general non-negative integers. In ESNs there is at most one connection
per direction between two nodes, i.e., the reservoir’s adjacency matrix contains only ones
and zeros. Matrices describing weighted connections are referred to as weight matrix. We
call the matrix of the weighted connections inside the reservoir hidden weight matrix.

2.1 General definition of echo state networks

ESNs are RNNs consisting of an input layer u(t), an output layer s(t), and one or multiple
hidden layers defining the reservoir x(t), where t = 0, 1,… , tmax is a time index.

The input layer u(t) represents a sequence of input vectors with dimension M ∈ ℕ ,
which are inserted step by step into the reservoir x(t). The reservoir itself is a high-dimen-
sional nonlinear discrete-time dynamical system with states in ℝN , where N ≫ M . The
high dimensionality ensures that a sufficiently large number of input elements can be stored
(Jaeger 2002).

2888 Machine Learning (2022) 111:2885–2904

1 3

The dynamics of the reservoir is described by the equation

where 0 < 𝛼 ≤ 1 is a leakage rate, A ∈ ℝ
N×N is the hidden weight matrix, W in ∈ ℝ

N×M is
the input weight matrix, u(t) ∈ ℝ

M is the input vector at time t, and �� is a bias vector,
where � ∈ ℝ is the bias strength and � ∈ ℝ

N denotes a vector filled with ones. The leakage
rate � is a fixed hyperparameter that controls how fast the system state changes. If the ESN
contains multiple hidden layers, they can all be described by just a single hidden weight
matrix A with a certain block structure. See Sect. 2.5 about deep ESNs for details.

The output of an ESN is a time series with elements of dimension P ∈ ℕ given by the
equation

where Wout ∈ ℝ
P×N is the output weight matrix and c ∈ ℝ

P is a vector containing output
bias weights.

All types of ESNs considered in this article differ only in the structure of the hidden weight
matrix A. Consequently, they can all be trained with the same training procedure.

2.2 Training process

ESNs are applied for supervised sequential machine learning problems. That is, in addition to
the sequence of inputs u(t), we are given a sequence of target vectors s(t) ∈ ℝ

P . The training
process aims to find a good estimator ŝ(t) to approximate the target sequence s(t). This is done
by fitting the variables Wout and c using a regression method.

The work Lu et al. (2017) explains how to optimize Wout and c by ridge regression. We
use the same method for our numerical studies presented below. For the purpose of self-con-
tainedness, we repeat the explanations from Lu et al. (2017).

For the training process, we assign the negative time index t0 < 0 to the initial state x(t0)
of the system. We solve Eq. (1) iteratively, to generate the system states x(t). Only the states
x(1),… , x(tmax) need to be stored. The period up to t = 0 is called initial wash out phase and
ensures that the training results do not depend on the initial state (Jaeger 2001; Lu et al. 2017).

To perform the actual regression, we calculate the element-wise mean x̄ ∈ ℝ
N of the

reservoir states x(1),… , x(tmax) and the element-wise mean s̄ ∈ ℝ
P of the target states

s(1),… , s(tmax) , i.e.,

Let �X be a matrix with N rows and tmax columns, where the tth column is the vector
x(t) − x̄ ∈ ℝ

N . Analogously, let �S be a matrix with P rows and tmax columns, where the
tth column is the vector s(t) − s̄ ∈ ℝ

P . Then, the output weight matrix Wout ∈ ℝ
P×N can be

calculated using the equation

where I is the identity matrix and � is the ridge regression parameter. The output bias vec-
tor c ∈ ℝ

P is calculated by

(1)x(t + 1) = (1 − �)x(t) + �f (Ax(t) +W inu(t) + ��),

(2)ŝ(t) = Woutx(t) + c,

(3)x̄ =
1

tmax

tmax
∑

t=1

x(t), s̄ =
1

tmax

tmax
∑

t=1

s(t).

(4)Wout = �S�XT(�X�XT + �I)−1,

2889Machine Learning (2022) 111:2885–2904

1 3

The required computational time for the training process is of order O(N2tmax) , which is
the computational complexity of the matrix multiplication of �X with �XT.

The required memory space corresponds to the size of the largest matrix used by the
algorithm and is of order O(Ntmax) . In particular due to the memory requirement, it can be
advisable to truncate the training signal if a large amount of training data is available. This
way the length of the training sequence tmax can be limited to a moderate value.

2.3 The Erdős‑Rényi model

Below, we explain several types of ESNs that differ in the graph used for the construction
of their hidden weight matrix A. Several of these ESN types, including the classical model
introduced in Jaeger (2001), are based on Erdős-Rényi graphs (Erdös and Renyi 1961),
which we briefly describe here.

Erdős-Rényi graphs are directed graphs with sparse connectivity, which are randomly
generated. First, we choose two parameters: the number of nodes N and an average node
degree D. The edges of the graph are randomly chosen in such a way that all possible con-
nections can occur with the same probability. In practice, this means that we generate the
random adjacency matrix of an Erdős-Rényi graph, which is contains the entries 1 and 0
to indicate whether there is a directed connection between two nodes or not. We call this
adjacency matrix an Erdős-Rényi matrix.

Precisely speaking, there are two equally common ways to define an Erdős-Rényi
matrix. One can either set all entries of the matrix independently of each other to one or
zero with probability D/N or 1 − D∕N , respectively; or one can set the number of connec-
tions to exactly ND and choose them randomly. In this work, we use the second version.

2.4 Random echo state networks

We refer to the classical ESN model, introduced in Jaeger (2001), as random ESN. As
illustrated in Fig. 1, random ESNs contain one hidden layer. An Erdős-Rényi matrix is
employed as the adjacency matrix of the reservoir. Thus, the reservoir’s connectivity is in
general sparse and all possible connections occur with the same probability. We need to
specify two parameters to generate the adjacency matrix: the number of hidden nodes N
and the average node degree D ≤ N . The adjacency matrix is then obtained by the algo-
rithm described in Sect. 2.3.

(5)c = −(Wout x̄ − s̄).

Fig. 1 Illustration of a random
ESN. The reservoir is illustrated
by a box containing the hidden
nodes (black circles). The con-
nections inside the reservoir are
drawn randomly from an Erdős-
Rényi graph. The ESN also con-
tains multiple input nodes (red
circles) and output nodes (blue
circles) (Color figure online)

2890 Machine Learning (2022) 111:2885–2904

1 3

For the hidden weight matrix A, we need to specify one further parameter: the spectral
radius �A of the matrix. In order to generate the weight matrix, we draw the weights for all
connections (given by the adjacency matrix) from a uniform distribution on the interval
[−1, 1] . Then we compute the spectral radius �init of the obtained matrix and multiply the
matrix with the factor �A∕�init . This way we obtain a hidden weight matrix A with Erdős-
Rényi topology, uniformly distributed random weights, and the desired spectral radius �A.

2.5 Deep echo state networks

Deep Echo State Networks (deep ESNs) are ESNs with multiple hidden layers (Gallic-
chio and Micheli 2016; Gallicchio et al. 2018; Gallicchio and Micheli 2020; Dettori et al.
2020), as illustrated in Fig. 2. We consider deep ESNs with equally sized layers, i.e., the
total number of nodes N of a deep ESN is a multiple of the number of hidden layers L and
the number of nodes per hidden layer is NL = N∕L , which is usually the case for deep
ESNs. Although deep ESNs can have differently sized hidden layers, it requires the intro-
duction of new parameters to the model and, therefore, this topic is left as a future work.
The adjacency matrix of a deep ESN is a block matrix consisting of blocks with dimen-
sion NL × NL . The hidden layers are given by the main-diagonal blocks, and the inter-layer
connections are given by the blocks directly below the main diagonal. All other blocks are
zeros matrices. Thus, the layers are connected in a feed-forward manner, i.e., the ith hidden
layer is forward-connected to the i + 1-st hidden layer, for i = 1,… , L − 1.

The main-diagonal blocks are generated by the Erdős-Rényi model with a given mean
degree D ≤ NL . Also, the block determining the inter-layer connections are Erdős-Rényi
matrices with a given mean degree Dinter ≤ NL.

Once we obtained the whole N × N adjacency matrix of the deep ESN’s reservoir, the
weights of the connections are drawn from a uniform distribution on the interval [−1, 1] .
Again, we rescale the resulting matrix to obtain a hidden weight matrix A with the desired
spectral radius �A.

The input layer is only connected to the first hidden layer, i.e., only the first NL rows of
the input weight matrix W in have non-zero entries. All nodes of the reservoir (i.e., of all

Fig. 2 Illustration of a deep ESN with three hidden layers. The reservoir is indicated by the large outer box
and contains three hidden layers (smaller rectangles inside the box). Each hidden layer contains multiple
nodes (black circles) which are recurrently connected inside the layers. The hidden layers are connected to
each other in a feed-forward manner. The input nodes (red circles) are connected to the first hidden layer,
and the output nodes (blue circles) are connected all hidden layers, i.e., to the whole reservoir (Color figure
online)

2891Machine Learning (2022) 111:2885–2904

1 3

hidden layers) are connected to the output layer. Hence, there are no restrictions for the
output weight matrix Wout.

For the numerical tests presented in Sect. 5, we sometimes did not use exactly equally
sized layers, but layers which can differ in size by one node. This way, the number of layers
L could be chosen more flexibly.

3 Clustered echo state networks

Multiple works Deng and Zhang (2007), Li et al. (2015), Yu et al. (2011) and Oliveira et al.
(2020) have proposed new types of ESNs based on complex networks: Clustered Echo
State Networks (CESNs). Instead of choosing a simple random Erdős-Rényi graph to define
the reservoir, connection patterns with clusters were chosen. See Fig. 3 for an illustration.

In this section, we focus on the models from Oliveira et al. (2020). The clusters are
represented by equally sized blocks in the adjacency matrix, and the internal connections
of each cluster are either realized using the Erdős-Rényi model or a custom model which
is similar to the Barabási-Albert model. These new ESN types are called Erdős-Rényi
CESN or Barabási-Albert-like CESN, respectively. Moreover, we propose a combination
of CESNs and deep ESNs: deep ESNs with clustered layers, which we call deep CESNs.

For all CESNs and deep CESNs defined below, we denote the total number of hidden
nodes by N. We let D be the mean degree of the hidden layer(s). We consider deep CESNs
with L equally sized hidden layers, each consisting of NL = N∕L nodes. Further, let C ∈ ℕ
be the number of clusters per hidden layer. Also the clusters are equally sized, i.e., N (or
NL , respectively) must be a multiple of C. Let Pin ∈ [0, 1] be the share of cluster-internal
connections and Pout = 1 − Pin be the share of inter-cluster-connections within a hidden
layer.

Since D is the mean degree of the hidden layer(s) and N (or NL , for the deep case) is the
number of nodes per hidden layer, one hidden layer contains ND (or NLD) connections:
specifically, NDPin (or NLDPin) cluster-internal connections and NDPout (or NLDPout)
inter-cluster connections.

Fig. 3 Illustration of a clustered ESN. The reservoir (large box) contains three clusters, where the nodes
belonging to the same cluster are drawn in the same color (green, purple or orange). The inter-cluster con-
nectivity is sparser than the connectivity inside the clusters. The input and the output layer of the clustered
ESN (red and blue) are connected to all clusters in the reservoir (Color figure online)

2892 Machine Learning (2022) 111:2885–2904

1 3

3.1 Erdős‑Rényi clustered echo state networks

The clustered network topology of an Erdős-Rényi CESN is described by an adjacency
matrix which is partitioned into blocks of size NC × NC . Each cluster is represented by
a block on the main-diagonal. The off-diagonal blocks contain the connections between
nodes of different clusters. The connections inside the main-diagonal blocks are deter-
mined by an Erdős-Rényi graph with NC nodes and NDPin∕C edges. To realize the inter-
cluster connections, we randomly set NDPout entries of the off-diagonal blocks to 1.

The adjacency matrix of an Erdős-Rényi CESN is similar to a stochastic block model
(Holland et al. 1983). It is, however, not exactly the same because the main-diagonal and
off-diagonal blocks are constructed following different rules.

Given the adjacency matrix, we obtain the weight matrix of the reservoir by drawing
random U([0, 1])-distributed weights and rescaling them to achieve the desired spectral
radius.

3.2 Barabási‑Albert‑like clustered echo state network

The reservoir of a Barabási-Albert-like CESN is described by a block matrix, which
has the same block structure as the adjacency matrix of the Erdős-Rényi CESN defined
above. However, the main-diagonal blocks, which represent the clusters, are obtained from
a different graph model, and have themselves a clustered structure. This graph model is
inspired by the model introduced in Bollobas et al. (2003) and the well-known Barabási-
Albert model Barabási and Albert (1999). We apply a modified model instead of the origi-
nal Barabási-Albert model or the model from Bollobas et al. (2003) because we require
directed graphs and we are given an exact number of connections.

To generate the main-diagonal blocks, we initialize all NC nodes of a cluster at once (in
contrast to the models from Barabási and Albert (1999) and Bollobas et al. (2003)). We
seed the graph with one connection from one node to itself (a loop). Then we repeat the
following procedure until the graph contains NDPin∕C directed edges:

1. With probability P1 do: (a) Choose a node u with uniform probability. (b) Choose a node
v with a probability proportional to the node’s in-degree. (c) Add an edge from u to v.

2. With probability P2 do: (a) Choose a node u with a probability proportional to the node’s
out-degree. (b) Choose a node v with a probability proportional to the node’s in-degree.
(c) Add an edge from u to v.

3. With probability P3 do: (a) Choose a node u with a probability proportional to the node’s
out-degree. (b) Choose a node v with uniform probability. (c) Add an edge from u to v.

Per step only one of the procedures 1), 2) or 3) is conducted; note that the probabilities
add up to 1. If there is already an edge between the randomly selected nodes, we do not
add another edge with the same direction. Here, we choose P1 = 0.41 , P2 = 0.54 , and
P3 = 0.05.

Subsequently, we add inter-cluster connections in two steps:

1. We construct a graph with C nodes and NDPout edges using the modified Barabási-
Albert-like model, described above, with one difference: this time we allow multiple
edges per direction between two nodes. That is, the entries of the resulting adjacency

2893Machine Learning (2022) 111:2885–2904

1 3

matrix can be any non-negative integer. Moreover, we do not allow loops in this case,
i.e., the entries on the diagonal are zeros.

2. According to the adjacency matrix generated in step 1), we decide how many connec-
tions we draw from one cluster to another. Recall that the reservoir’s adjacency matrix
is a block matrix with C × C blocks of size NC × NC . If the adjacency matrix obtained in
step 1) has the entry n at position (i, j), we generate the block with the index (i, j) of the
reservoir’s adjacency matrix using the Erdős-Rényi model with NC nodes and n edges.

Again, the hidden weight matrix A is obtained by drawing the weights from a uniform dis-
tribution on [0, 1] and rescaling.

3.3 Deep clustered echo state networks

We propose combinations of deep ESNs and CESNs: deep Erdős-Rényi CESNs and deep
Barabási-Albert-like CESNs. The basic structure of these networks is the same as for the
deep ESN defined in Sect. 2.5: the hidden weight matrix is a block matrix consisting of
L × L blocks of size NL × NL , where NL = N∕L . The main-diagonal blocks, which repre-
sent the hidden layers, are constructed according to the models described in the Sects. 3.1
and 3.2, respectively. That is, each hidden layer has a clustered Erdős-Rényi or Barabási-
Albert-like structure, and is itself a block matrix. The connections between the hidden lay-
ers are constructed in the same way as for the classical deep ESN, Sect. 2.5.

Note that equally sized clusters and layers require the total number of nodes N to be a
multiple of L, and NL to be a multiple of C. For a more flexible choice of these parameters,
we allowed the clusters and layers to differ in size by one node for our numerical test pre-
sented in Sect. 5.

4 Materials and tasks

The performance of the ESN methods described above was evaluated using three differ-
ent tasks—two based on artificial data and the third based on real-world signals. These
tasks are: Gaussian noise reduction We add Gaussian noise with mean � = 0 and stand-
ard deviation � = 1 to a randomly generated wave signal. The wave signal consists of four
sine signals with random phases, slow frequencies 0.005, 0.01, 0.02, 0.03, and fluctuating
(between 0.5 and 1.5) amplitudes determined by randomly generated envelope functions.
The objective of the task is to remove the noise and to reconstruct the original artificial
wave signal. For training and testing we use the same parameters for the noise, frequen-
cies, and amplitude, but independent realization of the randomly generated signal. Impulse
noise reduction We use the same kind of randomly generated wave signal as for task 1), but
we add impulse noise instead of Gaussian noise. For a given number ndp ∈ ℕ and a given
noise amplitude 𝛿 > 0 , we randomly choose ndp data points and deviate each of them by a
random value drawn from a uniform distribution on the interval [−�, �] . For our numerical
tests, we chose � = 1 and ndp = K∕20 , where K is the number of data points of the original
discrete-time signal. Again, the objective of the task is to reconstruct the original wave
signal. For training and testing we use the same parameters for the noise, frequencies, and
amplitude, but independent realization of the randomly generated signal.

ECG signal noise reduction For this task, we were using the dataset from Lugovaya
(2005); Goldberger et al. (2000), which contains ECG records from 90 persons

2894 Machine Learning (2022) 111:2885–2904

1 3

(multiple records per person). Each record consists of two different signals: the noisy,
raw ECG signal, and a filtered signal without noise. The signals have a length of 20
seconds and were recorded with a sampling rate of 500 Hz. The amplitude was meas-
ured in units of mV. The raw signals serve as input and the filtered signals serve as
target signals.

In order to take account of non-causal relationships between input and target data,
i.e., the fact that s(t) may depend on u(t�) with t′ > t , we introduce the delay parameter
d. If d > 0 , the input signals are shifted by d time steps relative to the target signal.
Consequently, the ESN methods can take into account d input data points ahead of the
target signal.

For the ECG signal noise reduction task, we did not use the complete dataset.
Instead we randomly selected 50 records as training dataset, and 20 records as test
dataset. All records were taken from different people. For the training process, we con-
catenated the 50 training signals to one long sequence of data points. The test signals
were processed in the same way. Each of the 50 training records contains 10,000 data
points, i.e., the complete training signal contains 500,000 data points, of which 5000
are used for the initial wash out phase and 495,000 contribute directly to the train-
ing. This amount of data is sufficient to train an ESN. It might be possible to increase
the prediction performance for the ECG signal noise reduction task by increasing
the amount of training data. However, the right choice of this amount is a trade-off
between prediction performance and memory requirement (see Sect. 2.2).

Note that for all tasks we have one-dimensional input and target time series, i.e.,
M = 1 and P = 1 . Thus, the input and output matrices W in ∈ ℝ

N×M and Wout ∈ ℝ
P×N

become vectors and the output bias vector c ∈ ℝ
P is actually a scalar. Other variables

than W in , Wout and c are not affected by the input dimension M or the target dimen-
sion P. In particular, the hidden weight matrix A does not depend on M or P. There-
fore, adapting our approach to multivariate time series is straightforward. Ref. Lu et al.
(2017) contains examples of random ESNs applied to multivariate time series. Since
the other ESN types described in Sect. 2 and 3 differ only in the choice of A, they can
be easily applied to multivariate time series too.

5 Experimental results

We applied the CESNs and deep CESNs, described in Sect. 3, to the tasks from Sect. 4,
and compared them to the classical ESN methods, described in Sect. 2. We used the
hyperbolic tangent as the activation function f. The default parameters for our experi-
ments are listed in Table 1. The results were evaluated by the Normalized Root Mean
Squared Error (NRMSE) of the output signal ŝ(t) in comparison to the target signal
s(t):

where Var(s) is the variance of the target signal and ttest is the number of time steps of the
test time series. All presented results are an average over 8 executions.

(6)NRMSE(ŝ, s) =

�

∑ttest
t=1

(ŝ(t) − s(t))2

Var(s)ttest

2895Machine Learning (2022) 111:2885–2904

1 3

5.1 Gaussian noise reduction

We conducted numerical tests to compare the ESN methods to each other and to the causal
Wiener filter. We applied the Wiener filter implementation from scipy.signal.wiener with
optimal window size and noise power parameter. We found that the random ESN performs
as good as the Wiener filter on Gaussian noise reduction and that all other ESN methods
perform even better if their parameters are properly chosen.

Figure 4 shows the performance of various ESN methods on the Gaussian noise reduc-
tion task for different leakage rate values � . For all methods, we need rather large values of
� to obtain good results. This can be explained by the fact that for removing Gaussian noise
from our artificially created time series the local structure of the time series is more impor-
tant than its states in the more distant past. The leakage rate controls how fast the system
state changes: a larger leakage rate leads to a faster changing system state which makes the
ESN more sensitive to short-term fluctuations of the input time series. The Wiener filter
achieved an NRMSE of approximately 0.23. For � ≥ 0.95 , the deep ESN and the CESNs

Table 1 Default parameters for the numerical experiments

aRandom ESN
bDeep ESN
cErdős-Rényi CESN
dBarabási-Albert-like CESN
eDeep Erdős-Rényi CESN
fDBarabási-Albert-like CESN
gGaussian noise reduction
hImpulse noise reduction
iECG noise reduction

Parameter Default value

Total number of hidden nodes N 1050
Mean degree of the hidden layer(s) D 20a,b,c,d , 15e,f

Mean deg. of deep ESN’s inter-layer connections 20b , 5e,f

Spectral radius �A 1.1
Number of layers for the deep ESN L 4
Number of clusters C (Erdős-Rényi CESN) 6g,i, 42h

No. of clusters C (Barabási-Albert-like CESN) 25g,i , 3h

No. of clusters C (deep CESN) 6e , 3f

Ratio of connections inside the clusters Pin 0.98c,e , 0.82d,f

Ratio of connections outside the clusters Pout 0.02c,e , 0.18d,f

Leakage rate � 0.95g,h , 0.2i

Bias strength � 0.1
Max. amplitude of the random input weights 0.1
Delay parameter d 16g,i , 4h

Length of the training time series (excluding washout phase) tmax 50,000g,h , 495,000 i

Length of the test time series (excluding washout phase) ttest 30,000g,h, 195,000 i

Number of steps for the initial washout phase −t0 5000
Ridge regression parameter � 2 × 10−7

2896 Machine Learning (2022) 111:2885–2904

1 3

yield better results than the Wiener filter. Moreover, we found that the deep ESN and the
CESNs yield better results than the classical random ESN for all �.

Figure 5a shows the NRMSE obtained from the deep ESN with different values of the
delay parameter d and � . One can see that it is important to set d not too small. The results
for � correspond to the results shown in Fig. 4.

Figure 6 compares the performance of the Erdős-Rényi and the Barabási-Albert-like
CESN for different numbers of clusters C. Both CESN methods work similarly well if C
is at least 15. The performance of the Barabási-Albert-like CESN drops strongly when we
decrease C. For the Erdős-Rényi CESN we obtain a similar NRMSE over the whole range
of C.

Moreover, we evaluated the performance of the deep ESN and deep CESNs for different
numbers of hidden layers L. The results are presented in Fig. 7. All three methods achieve
similar NRMSEs, mostly between 0.2 and 0.21, which is significantly better than the Wie-
ner filter’s NRMSE. The choice of the parameter L does not have a strong influence on the

Fig. 4 Gaussian noise reduction NRMSE depending on � for the random ESN (red), the Erdős-Rényi CESN
(green), the Barabási-Albert-like CESN (purple), and the deep ESN (blue). For comparison, the Wiener
filter’s NRMSE is indicated by a dashed black line. The deep ESN and the CESNs perform better than the
Wiener filter if the leakage rate is large enough. The random ESN’s performance is similar to that of the
Wiener filter if � = 1 (Color figure online)

(a) (b)

Fig. 5 NRMSE of the deep ESN for different values of � and d for a the Gaussian noise reduction task, and
b the impulse noise reduction task. For both tasks, optimal results are achieved for a relatively wide range
of the delay parameter d. Only if d is very small, the performance drops significantly. The leakage rate �
should be larger than 0.8 to obtain optimal results for the Gaussian noise reduction tasks and larger than 0.6
for the impulse noise reduction task. The NRMSE minima are indicated by red squares (Color figure online)

2897Machine Learning (2022) 111:2885–2904

1 3

performance, but one can notice a slight trend that the deep CESNs do better with a larger
number of hidden layers.

5.2 Impulse noise reduction

As for the reduction of Gaussian noise, we require sufficiently large values of � for the
impulse noise reduction task; see Fig. 8. With � ≥ 0.7 , we obtain near optimal results for
the deep ESN and the CESNs. For the random ESN � should be near 1 to obtain good
results. Again, we can explain the need for a rather large leakage rate by the local nature of
the task. For any choice of � , the deep ESN and the CESNs perform better than the random
ESN.

A 2D plot showing the NRMSE of the deep ESN for the impulse noise reduction task
for different values of � and d is presented in Fig. 5b. In comparison to the Gaussian

Fig. 6 Gaussian noise reduction performance of the CESNs depending on the number of clusters C. For the
Erdős-Rényi CESN (green), the NRMSE remains almost unchanged if we vary C. The Barabási-Albert-like
CESN (purple) has a high NRMSE for small C, but can compete with the Erdős-Rényi CESN when C is
sufficiently large. The Wiener filter’s NRMSE is indicated by a dashed black line (Color figure online)

Fig. 7 Gaussian noise reduction with the deep ESN (blue), the deep Erdős-Rényi CESN (orange) and the
deep Barabási-Albert-like CESN (brown). The NRMSE tends to be slightly better for a larger number of
layers L (Color figure online)

2898 Machine Learning (2022) 111:2885–2904

1 3

noise reduction task, a smaller delay parameter d is sufficient. Further, the NRMSE
remains small for a wider range of � , which corresponds to the findings shown in Fig. 8.

Figure 9 shows how the CESNs perform depending on the number of clusters C. For
the Erdős-Rényi CESN, C should be large, whereas for the Barabási-Albert-like CESN,
fewer clusters are beneficial. Overall, we obtained significantly better results from the
Barabási-Albert-like CESN.

We tested the deep ESN and deep CESNs with different numbers of layers L; see
Fig. 10. In all cases, the NRMSE is widely independent of L. Moreover, the results are
not better than the results obtained from the CESNs (Fig. 9). These findings suggest
that the classical deep ESN, CESNs and deep CESNs are equally suitable for removing
impulse noise.

Fig. 8 Impulse noise reduction NRMSE depending on the leakage rate � for the random ESN (red), the
deep ESN (blue), the Erdős-Rényi CESN (green), and the Barabási-Albert-like CESN (purple). The deep
ESN and the CESN methods perform substantially better than the random ESN over the whole range of � .
For all methods, � should be chosen to be rather large (Color figure online)

Fig. 9 Impulse noise reduction performance of the CESNs depending on the number of clusters C. For the
Erdős-Rényi CESN (green), the NRMSE decreases as the number of clusters increases. In contrast, for the
Barabási-Albert-like CESN (purple), we obtained the best NRMSE for the rather small value C = 3 . Over
the whole range of C, the Barabási-Albert-like CESN performs as good or better than the Erdős-Rényi
CESN (Color figure online)

2899Machine Learning (2022) 111:2885–2904

1 3

5.3 ECG signal noise reduction

The numerical studies presented above have been conducted using artificially generated
data. To demonstrate that the investigated ESN methods are also useful for real world prob-
lems, we apply them for the reduction of ECG noise (Lugovaya 2005; Goldberger et al.
2000).

Figure 11 shows the NRMSE obtained from the random ESN, the deep ESN, and the
CESNs depending on the leakage rate � . The deep ESN and the CESNs show a similar
behavior. For these methods, � = 0.2 is optimal and yields an NRMSE of roughly 0.4. For
the random ESN larger values of � are needed and the optimal NRMSE is about 0.45. In
contrast to the Gaussian and impulse noise removal tasks which we considered above, the
ECG signal noise reduction task requires a smaller leakage rate for optimal results. This
indicates that considering a wider time window of the noisy input improves the quality of

Fig. 10 Impulse noise reduction with the deep ESN (blue), the deep Erdős-Rényi CESN (orange) and the
deep Barabási-Albert-like CESN (brown). All methods perform similarly well and the NRMSE seems not
to depend on L (Color figure online)

Fig. 11 ECG noise reduction NRMSE depending on the leakage rate � for the random ESN (red), the deep
ESN (blue), the Erdős-Rényi CESN (green), and the Barabási-Albert-like CESN (purple). The deep ESN
and the CESNs achieve an optimal NRMSE for � = 0.2 . The random ESN requires a larger value for � for
an optimal NRMSE and performs slightly worse than the other methods (Color figure online)

2900 Machine Learning (2022) 111:2885–2904

1 3

the prediction of the signal without noise. Although these results are not competitive to
more advanced methods, they show that ESNs are in principle suitable for real world tasks.

5.4 Computing time

ESNs are trained by processing a training input series once and using linear regression
to fit the ESN’s output to a given target series. See Sect. 2.2 for a detailed explanation of
the training process. For the tasks with artificial time series (Gaussian and impulse noise
reduction), the length of the training time series is 50,000 and the CPU time needed for
the training is between 4.3 and 4.8 seconds for all tested ESN models. For the ECG noise
reduction tasks, the length of the training time series is 495,000 and the measured CPU
time for the training is between 38 and 42 seconds for all models.

Regarding the inference time ESNs do not offer a speed benefit. As inference time for
the artificial datasets (test series length 30,000) we measured 2.2 to 2.5 seconds for each
ESN model, for the ECG noise reduction task (test series length 195,000) we measured
14.5 to 15.6 seconds.

In summary, ESNs are in many cases a suitable method when fast training is required.
The CPU time measurements were performed on a HP Z1 computer with Intel Core

i7-10700 processor.

5.5 Comparison of echo state networks to alternative methods

We performed numerical tests with a selection of alternative denoising methods: a low pass
filter implemented using fast Fourier transform (FFT filter), the wavelet filter (implemented
in skimage.restoration.denoise_wavelet) (Kohler 2005), and the Wiener filter (scipy.signal.
wiener). In Table 2 we compare the results of these classical methods with the results of
the ESN methods.

Table 2 Average NRMSE of the ESNs and classical methods for each task

Bold values indicate optimal results
For the ESN methods we applied the parameters listed in Table 1. For the three additional filter methods we
were using optimal parameters found by grid search
aLowest NRMSE of all considered ESN methods
bLowest NRMSE of all considered classical methods

Gaussian Noise Impulse Noise ECG

Random ESN 0.2315 0.0531 0.5817
Deep ESN 0.2174 0.0295 �.����

a

Erdős-Rényi CESN 0.2206 0.0360 0.4134
Barabási-Albert-like CESN 0.2226 �.����

a 0.4131
Deep Erdős-Rényi CESN �.����

a 0.0379 0.7547
Deep Barabási-Albert-like CESN 0.2000 0.0398 0.8124
FFT �.����

b
�.����

b 0.9117
Wavelet 0.2362 0.0307 �.����

b

Wiener filter 0.2365 0.0424 0.9119

2901Machine Learning (2022) 111:2885–2904

1 3

For the tasks based on artificial time series data (Gaussian and impulse noise reduc-
tion), the FFT fiter has the best performance among all considered methods. This result
is expected because the target time series for these tasks are obtained by discretization of
signal with a discrete frequency spectrum containing only 4 frequencies. For the Gaussian
and the impulse noise reduction tasks, ESNs perform similarly well as the Wiener filter and
the wavelet filter.

It is noteworthy that the ESN methods perform significantly better than the classical
filters if we consider real world data (the ECG noise reduction task). These results show
that the ESN methods are quite robust to deal with real-world problems where the signals
usually contain wide noise frequency bands and the frequency bands vary from one signal
to another.

6 Conclusion

We demonstrated that Echo State Networks (ESNs), deep ESNs, and the Erdős-Rényi and
Barabási-Albert-like clustered Echo State Networks (CESNs), introduced in Oliveira et al.
(2020), are adequate tools to denoise time series. Further, we introduced deep CESNs,
which are CESNs with multiple hidden layers.

All considered ESN methods can compete with the Wiener filter and the wavelet filter
in removing Gaussian noise and impulse noise from an artificial wave signal. Moreover,
ESN reveal significantly better results in comparison to classical denoising methods for
the ECG noise reduction task. In comparison to common machine learning methods for
sequential data, such as LSTMs, ESNs are significantly simpler in terms of their architec-
ture and training process, which makes an implementation from scratch easier. Taking the
ESN method’s simplicity into account, we also obtained satisfactory results on the ECG
noise reduction task. Overall, the deep ESN, the CESNs, and the deep CESNs have shown
a significantly better performance than the classical ESN with simple Erdős-Rényi connec-
tivity. This implies that ESNs can be benefited from both clustered and layered structures
of the internal network. For the deep ESN, this result was expected because prior studies
have shown its advantage over classical ESNs (Gallicchio and Micheli 2016, 2020). Our
contribution is the finding that CESNs perform as good as deep ESNs for certain tasks.
Hence, CESNs may be considered as an equivalent alternative to deep ESNs. Moreover, in
some situations deep CESNs can provide an additional benefit over deep ESNs or CESNs.
Despite the optimal NRMSE of deep CESNs is similar to the results obtained by deep
ESNs and CESNs for the tasks that we investigated, deep CESNs are able to achieve this
NRMSE with a smaller number of total connections within and in between the hidden lay-
ers (see Table 1). Using algorithms for sparse matrices, this leads to faster computation
during inference time.

Author Contributions LOJ, FS and LZ designed this research, made the analysis, and revised the paper. LOJ
and FS implemented the solution, conducted the computational simulations, and wrote the paper.

Funding This work was carried out at the Center for Artificial Intelligence (C4AI-USP), with support by
the Sao Paulo Research Foundation (FAPESP) under Grant Number: 2019/07665-4 and by the IBM Cor-
poration. This work is also supported in part by FAPESP under Grant Numbers 2015/50122-0, the Ministry
of Science and Technology of China under Grant Number:G20200226015, and the Deutsche Forschungsge-
meinschaft (DFG) in the framework of IRTG 1740.

2902 Machine Learning (2022) 111:2885–2904

1 3

Availability of data and materials The script to generate the artificial datasets used and/or analyzed during
the current study are available from the corresponding author on reasonable request. The ECG dataset used
is available in the PhysioNet repository, https:// doi. org/ 10. 13026/ C2J01F

Declaration

Conflict of interest The authors declare that they have no conflict of interest.

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Code availability The code used for experiments and/or analysis is available at https://github.com/laerc/esn-
noise-filtering.

References

Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-
the-art in artificial neural network applications: A survey. Heliyon, 4(11), e00938. https:// doi. org/ 10.
1016/j. heliy on. 2018. e00938.

Akiki, T. J., & Abdallah, C. G. (2019). Determining the hierarchical architecture of the human brain using
subject-level clustering of functional networks. Science and Reports, 9, 19290.

Appeltant, L., Soriano, M., Van Der Sande, G., Danckaert, J., Massar, S., Dambre, J., et al. (2011). Informa-
tion processing using a single dynamical node as complex system. Nature Communications, 2, 1–6.

Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439),
509–512.

Berry, M. J., & Tkacik, G. (2020). Clustering of neural activity: A design principle for population codes.
Frontiers in Computational Neuroscience, 14, 20.

Bollobas, B., Borgs, C., Chayes, J., & Riordan, O. (2003). Directed scale-free graphs. In Proceedings of the
14th annual ACM-SIAM symposium on discrete algorithms (SODA), pp. 132–139.

Brunner, D., Soriano, M. C., Mirasso, C. R., & Fischer, I. (2013). Parallel photonic information processing
at gigabyte per second data rates using transient states. Nature Communications, 4, 1364. https:// doi.
org/ 10. 1038/ ncomm s2368.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014).
Learning phrase representations using rnn encoder-decoder for statistical machine translation.

Deng, Z., & Zhang, Y. (2007). Collective behavior of a small-world recurrent neural system with scale-free
distribution. IEEE Transactions on Neural Networks, 18(5), 1364–1375. https:// doi. org/ 10. 1109/ TNN.
2007. 894082.

Dettori, S., Matino, I., Colla, V., & Speets, R. (2020). Deep echo state networks in industrial applications. In
I. Maglogiannis, L. Iliadis, & E. Pimenidis (Eds.), Artificial Intelligence Applications and Innovations
(pp. 53–63). Cham: Springer International Publishing.

Erdös, P., & Renyi, A. (1961). On the strength of connectedness of a random graph. Acta Mathematica Hun-
garica, 12, 261–267.

Gallicchio, C., & Micheli, A. (2016) Deep reservoir computing: A critical analysis. In ESANN 2016 pro-
ceedings, European symposium on artificial neural networks, computational intelligence and machine
learning.

Gallicchio, C., & Micheli, A. (2020). Deep echo state network (deepesn): A brief survey.
Gallicchio, C., Micheli, A., & Pedrelli, L. (2018). Design of deep echo state networks. Neural Networks,108,

33–47. https:// doi. org/ 10. 1016/j. neunet. 2018. 08. 002, https:// www. scien cedir ect. com/ scien ce/ artic le/
pii/ S0893 60801 83022 23.

Gleiser, P. M., & Spoormaker, V. I. (2010). Modelling hierarchical structure in functional brain networks.
Philosophical Transactions of the Royal Society A, 368, 5633–5644.

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., et al. (2000).
PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex phys-
iologic signals. Circulation, 101(23), e215–e220.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. Cambridge, MA: MIT Press.

https://doi.org/10.13026/C2J01F
https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.1038/ncomms2368
https://doi.org/10.1038/ncomms2368
https://doi.org/10.1109/TNN.2007.894082
https://doi.org/10.1109/TNN.2007.894082
https://doi.org/10.1016/j.neunet.2018.08.002
https://www.sciencedirect.com/science/article/pii/S0893608018302223
https://www.sciencedirect.com/science/article/pii/S0893608018302223

2903Machine Learning (2022) 111:2885–2904

1 3

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., & Sporns, O. (2008).
Mapping the structural core of human cerebral cortex. PLoS Biology, 6, e156.

Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. New York, NY: Wiley.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9, 1735–80.

https:// doi. org/ 10. 1162/ neco. 1997.9. 8. 1735.
Holland, P. W., Laskey, K. B., & Leinhardt, S. (1983). Stochastic block models: First steps. Social Net-

works, 5(2), 109–137.
Jaeger, H. (2001). The “echo state” approach to analysing and training recurrent neural networks—with

an erratum note. Bonn, Germany: German National Research Center for Information Technology
GMD Technical Report 148.

Jaeger, H. (2002). Short term memory in echo state networks.
Kohler, D. (2005). A comparison of denoising methods for one dimensional time series.
Kolen, J. F., & Kremer, S. C. (2001). Gradient flow in recurrent nets: The difficulty of learning long term

dependencies, pp. 237–243. Wiley. https:// doi. org/ 10. 1109/ 97804 70544 037. ch14.
Krishnagopal, S., Girvan, M., Ott, E., & Hunt, B. (2020). Separation of chaotic signals by reservoir

computing. Chaos: An Interdisciplinary Journal of Nonlinear Science. https:// doi. org/ 10. 1063/1.
51327 66.

Larger, L., Soriano, M., Brunner, D., Appeltant, L., Gutierrez, J., Pesquera, L., Mirasso, C., & Fischer,
I. (2012). Photonic information processing beyond Turing: An optoelectronic implementation of
reservoir computing. Optics Express, 20(3).

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https:// doi. org/
10. 1038/ natur e14539.

Li, X., Zhong, L., Xue, F., & Zhang, A. (2015). A priori data-driven multi-clustered reservoir generation
algorithm for echo state network. PLoS ONE, 10(4), 1–15.

Lin, X., Yang, Z., & Song, Y. (2009). Short-term stock price prediction based on echo state networks.
Expert Systems with Applications, 36, 7313–7317.

Lu, Z., Pathak, J., Hunt, B., Girvan, M., Brockett, R., & Ott, E. (2017). Reservoir observers: Model-free
inference of unmeasured variables in chaotic systems. Chaos An Interdisciplinary Journal of Non-
linear Science, 27(4), 041102. https:// doi. org/ 10. 1063/1. 49796 65.

Lugovaya, T. S. (2005). Biometric human identification based on electrocardiogram. Master’s thesis,
Faculty of Computing Technologies and Informatics, Electrotechnical University “LETI”, Saint-
Petersburg, Russian Federation.

Martens, M., Meier, J., Hillebrand, A., Tewarie, P., & Mieghem, P. (2017). Brain network clustering with
information flow motifs. Applied Network Science, 2. https:// doi. org/ 10. 1007/ s41109- 017- 0046-z.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The
Bulletin of Mathematical Biophysics, 5(4), 115–133. https:// doi. org/ 10. 1007/ BF024 78259.

Mozer, M. C. (1989). A focused backpropagation algorithm for temporal pattern recognition. Complex
Systems,3(4).

Oliveira, L., Jr., Stelzer, F., & Zhao, L. (2020). Clustered echo state networks for signal observation and
frequency filtering. Mining and LearningAnais do VIII symposium on knowledge discovery (pp.
25–32). Porto Alegre, RS, Brasil: SBC.

Pathak, J., Lu, Z., Hunt, B. R., Girvan, M., & Ott, E. (2017). Using machine learning to replicate cha-
otic attractors and calculate Lyapunov exponents from data. Chaos: An Interdisciplinary Journal of
Nonlinear Science. https:// doi. org/ 10. 1063/1. 50103 00.

Ravanelli, M., Brakel, P., Omologo, M., & Bengio, Y. (2018). Light gated recurrent units for speech rec-
ognition. IEEE Transactions on Emerging Topics in Computing, 2 . https:// doi. org/ 10. 1109/ TETCI.
2017. 27627 39.

Robinson, A. J., & Fallside, F. (1987). The utility driven dynamic error propagation network. Tech. rep.:
Engineering Department, Cambridge University, Cambridge, UK.

Sak, H., Senior, A., & Beaufays, F. (2014). Long short-term memory recurrent neural network architec-
tures for large scale acoustic modeling. Proceedings of the annual conference of the international
speech communication association, INTERSPEECH, pp. 338–342.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.
https:// doi. org/ 10. 1016/j. neunet. 2014. 09. 003.

Schumacher, J., Toutounji, H., & Pipa, G. (2013). An analytical approach to single node delay-coupled
reservoir computing. Conference: 23rd international conference on artificial neural networks.

Takahashi, N., Goswami, N., & Mitsufuji, Y. (2018). Mmdenselstm: An efficient combination of con-
volutional and recurrent neural networks for audio source separation. In 2018 16th International
workshop on acoustic signal enhancement (IWAENC), pp. 106–110. https:// doi. org/ 10. 1109/
IWAENC. 2018. 85213 83.

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/9780470544037.ch14
https://doi.org/10.1063/1.5132766
https://doi.org/10.1063/1.5132766
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1063/1.4979665
https://doi.org/10.1007/s41109-017-0046-z
https://doi.org/10.1007/BF02478259
https://doi.org/10.1063/1.5010300
https://doi.org/10.1109/TETCI.2017.2762739
https://doi.org/10.1109/TETCI.2017.2762739
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1109/IWAENC.2018.8521383
https://doi.org/10.1109/IWAENC.2018.8521383

2904 Machine Learning (2022) 111:2885–2904

1 3

Tealab, A. (2018). Time series forecasting using artificial neural networks methodologies: A systematic
review. Future Computing and Informatics Journal, 3(2), 334–340. https:// doi. org/ 10. 1016/j. fcij.
2018. 10. 003.

Uhlich, S., Porcu, M., Giron, F., Enenkl, M., Kemp, T., Takahashi, N., & Mitsufuji, Y. (2017). Improv-
ing music source separation based on deep neural networks through data augmentation and net-
work blending. In 2017 IEEE international conference on acoustics, speech and signal processing
(ICASSP), pp. 261–265. https:// doi. org/ 10. 1109/ ICASSP. 2017. 79521 58.

Wiener, N. (1949). Extrapolation, interpolation, and smoothing of stationary time series. Wiley.
Yu, P., Miao, L., & Jia, G. (2011). Clustered complex echo state networks for traffic forecasting with prior

knowledge. In 2011 IEEE international instrumentation and measurement technology conference, pp.
1–5.

Zimmermann, R. S., & Parlitz, U. (2018). Observing spatio-temporal dynamics of excitable media using
reservoir computing. Chaos: An Interdisciplinary Journal of Nonlinear Science. https:// doi. org/ 10.
1063/1. 50222 76.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1016/j.fcij.2018.10.003
https://doi.org/10.1016/j.fcij.2018.10.003
https://doi.org/10.1109/ICASSP.2017.7952158
https://doi.org/10.1063/1.5022276
https://doi.org/10.1063/1.5022276

	Clustered and deep echo state networks for signal noise reduction
	Abstract
	1 Introduction
	2 Review of echo state networks
	2.1 General definition of echo state networks
	2.2 Training process
	2.3 The Erdős-Rényi model
	2.4 Random echo state networks
	2.5 Deep echo state networks

	3 Clustered echo state networks
	3.1 Erdős-Rényi clustered echo state networks
	3.2 Barabási-Albert-like clustered echo state network
	3.3 Deep clustered echo state networks

	4 Materials and tasks
	5 Experimental results
	5.1 Gaussian noise reduction
	5.2 Impulse noise reduction
	5.3 ECG signal noise reduction
	5.4 Computing time
	5.5 Comparison of echo state networks to alternative methods

	6 Conclusion
	References

