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Abstract
Disentanglement is a highly desirable property of representation owing to its similarity to 
human understanding and reasoning. Many works achieve disentanglement upon information 
bottlenecks. Despite their elegant mathematical foundations, the IB branch usually exhibits 
lower performance. In order to provide an insight into the problem, we develop an annealing 
test to calculate the information freezing point (IFP), which is a transition state to freeze infor-
mation into the latent variables. We also explore this clue or inductive bias for separating the 
entangled factors according to the differences in the IFP distributions. We found the existing 
approaches suffer from the information diffusion problem, according to which the increased 
information diffuses in all latent variables. Based on this insight, we propose a novel disen-
tanglement framework, termed the distilling entangled factor (DEFT), to address the informa-
tion diffusion problem by scaling backward information. DEFT applies a multistage training 
strategy, including multigroup encoders with different learning rates and piecewise pressure, 
to disentangle the factors stage by stage. We evaluate DEFT on three variants of dSprites and 
SmallNORB, which shows low-variance and high-level disentanglement scores. Furthermore, 
the experiment under the correlative factors demonstrates incapable of TC-based approaches. 
DEFT also exhibits a competitive performance in the unsupervised setting.

Keywords  Disentanglement · Information Bottleneck · VAE · Representation learning · 
Information diffusion

1  Introduction

An understanding and reasoning about the world based on a limited set of observations is 
important in the field of artificial intelligence. For instance, we can infer the movement of 
a ball in motion at a single glance, as the human brain is capable of disentangling positions 
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from a set of images without supervision. Therefore, disentanglement learning is highly 
desirable to build intelligent applications. A disentangled representation has been proposed 
to be beneficial for a large variety of downstream tasks (Schölkopf et al., 2012). Accord-
ing to Kim and Mnih (2018), a disentangled representation promotes interpretable seman-
tic information, resulting in substantial advancement, which includes but is not limited to 
reducing the performance gap between humans and AI approaches (Higgins et al., 2018b; 
Tenenbaum, 2018). Other instances of disentangled representations include semantic 
image understanding and generation (Lample et al. 2017), zero-shot learning (Zhu et al., 
2019), and reinforcement learning (Higgins et al., 2017b).

As depicted in the seminal paper by Bengio et al. (2013), humans can understand and 
reason from a complex observation, after which they can induce the explanatory factors. 
The observations are generated by explanatory ground-truth factors c , which are invisible 
from the observations. The task of disentanglement learning aims to obtain a disentangled 
representation that separates these factors from the observations. The notion of disentan-
glement remains an open topic (Do and Tran, 2020; Higgins et al., 2018a), and we follow 
a strict version of discourse that one and only one latent variable zi represents one corre-
sponding factor, cj (Burgess et al., 2017).

Locatello et  al. (2019) proved the impossibility of disentanglement learning without 
inductive biases on the model and data. One popular inductive bias on the model assumes 
that the latent variables are independent. These approaches, penalizing total correlation 
(TC), dominate visual disentanglement learning (Chen et al., 2018; Kumar et al., 2018). 
This assumption is correct when the factors are sampled uniformly; however, the inde-
pendent factors show statistical relevance in reality (Träuble et al., 2021). For instance, we 
observe that men are more likely to have short hair, and based on the observations, there is 
a correlation between gender and hair length. However, a man who is not bald may grow 
long hair if desired. In other words, sex does not determine hair length, and they are two 
independent factors. Therefore, the exploration of disentanglement approaches beyond the 
independence assumption is vital to reality applications.

Another popular research approaches are based on information theory (Jeon et al., 2021; 
Chen et al., 2016). They hypothesize that the gradually increased information bottleneck 
(IB) leads to a better disentanglement (Burgess et al., 2017; Dupont, 2018). Unfortunately, 
in practice, the approaches based on IB usually exhibit lower performance than those 
penalizing the TC (Locatello et al., 2019). However, it is important to understand whether 
this means that the total correlation beats the IB. It is believed that the answer is nega-
tive. In this research, we investigate the reason for which IBs fall behind TC in practice. 
We found that the information diffusion (ID) problem is an invisible hurdle that should be 
addressed in the IB community.

Information diffusion indicates that one factor’s information diffuses into two or more 
latent variables; thus, the disentanglement scores fluctuate during training. Figure 1 shows 
the disentanglement scores of three approaches with the best hyperparameter settings, and 
it is observed that numerous trials have a high variance1. We bridge the ID problem with 
the instability of the current approaches in Sect. 3.

In this paper, we trace the ID problem by measuring the NMI1 and the NMI2, see Equa-
tion  8. The learned information may diffuse into other latent variables when IB-based 
approaches, such as AnnealedVAE (Burgess et al., 2017) and CascadeVAEC (Jeong and 

1  We use the pretrained models in disentanglement lib by Locatello et al. .
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Song, 2019), learn new information. It is crucial to detect the components with different 
contributions to the objective for increasing the IB gradually. To do that, we have devel-
oped the annealing test to measure information freezing point (IFP) that the critical value 
for learning information from inputs. We also find that one factor is easy to be disentangled 
if the IFP distribution is distinguished from others.

Inspired by distillation2 in chemistry, we can divide the training process into several 
stages and disentangle one component at each stage. In particular, we propose a framework, 
called the distilling entangled factor (DEFT), to disentangle factors stage-by-stage. DEFT 
chooses selective pressure to enable some information to pass through the IB according to 
the IFP distribution at each stage. In addition, DEFT reduces the backward information of 
the first m − 1 sub-encoders by scaling the learning rate to relieve the ID problem at the m
-th stage. We evaluate DEFT on four datasets, which shows robust performances. We also 
examine DEFT on the dataset with correlative factors. Our codes and all experimental set-
tings are published in dlib for PyTorch forked from disentanglement lib. Our contributions 
are summarized in the following:

•	 We hypothesize that the ID problem is one reason for the low performances of IB-
based approaches.

•	 We propose DEFT, a multistage disentangling framework, to address the ID problem by 
blocking partial information and scaling the backward information.

2 � Preliminary

2.1 � Disentanglement approaches

Variational autoencoder In variational inference, posterior p(z|x) is intractable. The 
variational autoencoder (VAE) (Kingma and Welling, 2014) uses a neural network 
q�(z|x) (encoder) to approximate the posterior p(z|x) . The other neural network p�(x|z) 

Fig. 1   The distribution of beta VAE metric, MIG, and DCI disentanglement on dSprites. Models are abbre-
viated (V=�-VAE, TV=�-TCVAE, AV=AnnealedVAE), and 50 trials are run with different random seeds

2  Distillation is the process of separating a mixture into its components by heating at an appropriate tem-
perature, such that components boil and freeze into the target containers.
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(decoder) rebuilds the observations. The objective of the VAE is to optimize the evi-
dence lower bound (ELBO):

�-VAEHiggins et al. discovered the relationship between the disentanglement and the Kull-
back-Liebler (KL) divergence penalty strength. They proposed the �-VAE to introduce an 
additional pressure on the KL term:

where � controls the pressure for the posterior q�(z|x) to match the factorized unit Gaussian 
prior p(z) . However, there is a trade-off between the quality of the reconstructed images 
and the performance of disentanglement.

AnnealedVAE Burgess et al. (2017) proposed the AnnealedVAE, which progressively 
increases the information capacity of the latent variables while training:

where � is a sufficiently large constant (usually 1, 000) to constrain the latent information, 
and C controls the capacity that gradually increases from zero to a large number.

�-TCVAE The TC  (Watanabe, 1960) quantifies the dependency among variables. �
-TCVAE (Chen et al., 2018) decomposed the KL term into three parts: mutual informa-
tion (MI), total correlation (TC), and dimensional-wise KL (DWKL). The TC can be 
penalized to achieve both high reconstruction quality and disentanglement:

CascadeVAEC Jeong and Song provided another total correlation penalization through 
information cascading. They proved that TC(z) =

∑d

i=2
I(z1∶i−1;zi) . CascadeVAEC, the 

continuous version, sequentially relieves one latent variable at one stage, encouraging the 
model to disentangle one factor during the i-th stage:

where �l is a small value for opening the information flow, �h is a large value for blocking 
information, and d is the number of dimensions.

Relevant but not compared approaches ICA (Comon, 1994) and PCA (Wold et  al., 
1987) guarantee the independence mathematically, and the nonlinear versions are help-
ful to disentanglement (Sorrenson et al., 2020). However, they require the factors satis-
fying a factorized prior distribution. Learning factorial codes  (Schmidhuber, 1992) is 
limited in the cases with binary codes. Merely encouraging independence is insufficient 

(1)L(�,�) = �q�(�|�)[log p�(x|z)] − DKL(q�(z|x)||p(z)).

(2)L
1(�,�;�) = �q�(�|�)[log p�(x|z)] − �DKL(q�(z|x)||p(z)),

(3)L
2(�,�;C) = �q�(�|�)[log p�(x|z)] − �
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to disentangle factors theoretically, and the inductive biases on the data and the model 
should be explored explicitly (Locatello et al., 2019).

2.2 � Disentanglement evaluation

Several metrics have been proposed to evaluate the disentanglement, including the Beta-
VAE metric (Higgins et  al., 2017a), FactorVAE metric (Kim and Mnih, 2018), MI gap 
(Chen et  al., 2018), modularity (Ridgeway and Mozer, 2018), DCI (Eastwood and Wil-
liams, 2018), and SAP score (Kumar et al., 2018). Shannon MI is an information-theoretic 
quantity that measures the amount of information shared between two variables. Based on 
that, the MIG (Chen et al., 2018) measures the gap between the top two latent variables 
with the highest MI to evaluate the performance of disentanglement:

where NMI(ck,m) is the m-th largest normalized MI (NMI) between zj and ck . The calcula-
tion can be:

where z is the vector of latent variables, c is the vector of ground-truth factors, and jm 
denotes the index of the m-th largest element ( j1 = argmax iI(zi;ck) ). NMI(ck, 1) measures 
how best one variable can learn for the factor ck , and NMI(ck, 2) indicates the diffused 
information into other variables. Therefore, the gap of NMI(ck, 1) and NMI(ck, 2) should be 
large for the disentanglement.

(6)MIG =
1

‖c‖

‖c‖�

i=1

NMI(ci, 1) − NMI(ci, 2),

(7)NMI(ck,m) =
1

H
(
ck
) I(zjm ;ck),

Fig. 2   Disentanglement fluctuation of the IB-based approaches. AnnealedVAE and CascadeVAEC could 
degenerate into lower disentanglement scores
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3 � Motivation

Locatello et  al. conducted a survey of current disentanglement approaches, and the 
results show that these approaches have a high variance of disentanglement scores. 
They concluded that “tuning hyperparameters matters more than the choice of the 
objective function” (See Fig. 7 in their paper). A reliable and robust approach should 
therefore have a consistently high performance and low variance. We investigated the 
performance of �-VAE ( � = 4 ), �-TCVAE ( � = 6 ), and AnnealedVAE ( C = 25 ) on 
dSprites, and traced the disentanglement scores through the training processes. Fig. 2 
shows the curves of three metrics (beta VAE metric, MIG, and DCI disentanglement) 
for four models ( �-VAE, �-TCVAE, CascadeVAEC, and AnnealedVAE). Annealed-
VAE, CascadeVAEC, and �-TCVAE show significant improvements in the very first 
iteration. However, CascadeVAEC has a sharp decrement in the 10, 000 iteration, and 
AnnealedVAE shows a downward trend after 10, 000 iteration. The training process did 
not consistently enhance the model being disentangled, resulting in poor performance.

One solution to address fluctuation is to block some information by using a narrow 
information bottleneck and then assign the increased information to a new latent variable 
by increasing the bottleneck. AnnealedVAE and CascadeVAEC follow this concept; how-
ever, they differ in terms of expanding the IB. AnnealedVAE directly controls the capacity 
of the latent variables by an annealed increasing parameter, C . CascadeVAEC increases 
the capacity by relieving the pressure on the i-th latent variable at the i-th stage, opening 
the information flow. Ideally, these approaches that are based on IB should have a steady 
growth of disentanglement; however, they also show fluctuation.

A perfect disentangled representation should project one factor into one latent var-
iable. In other words, the largest NMI ( NMI(c, 1) ) reaches the maximum 1 , and the 
second largest NMI ( NMI(c, 2) ) is close to 0 . Therefore, the decrement of NMI(c, 1) 
implies that the information of one factor diffuses into another latent variable, which 
we define as information diffusion (ID). The representation can be said to re-entangle 
in the case of an ID.

(a) (b)

Fig. 3   The change of NMI over training process on dSprites. The NMIs on many factors decrease gradually 
after the largest values have been captured at the early stage, especially on the factor scale
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Though the final disentanglement score is desirable, it is insufficient to indicate the 
problems in the learning process. Monitoring of metrics probably clears the way to 
reveal the hidden problems on disentanglement during training the model. To do that, 
we monitored NMI(c, 1) and NMI(c, 2) during training with AnnealedVAE on dSprites 
(training details in Sect. 5.1), as shown in Fig. 3. We computed the NMIs for the five 
factors every 10, 000 iterations and presented them in one row. Ideally, the expanded 
capacity would promote the model to learn new information. Oppositely, NMI(c, 1) 
(scale) decreased after 5e4 iterations. AnnealedVAE suffered the ID problem, which 
caused the low performance.

4 � Method

4.1 � Information freezing

Burgess et  al. proposed that the value of beta in �-VAE controls the IB between inputs 
and latent variables, similar to the role of temperature in distillation; a low value of beta 
encourages the MI I(x;z) , and more information condenses on the latent space. The IFP is 
a critical point at which the model starts to learn information from observations. It is an 
intrinsic property of a dataset and almost invariant. Thus, different factors can be identified 
by IFPs.

Definition 1  The IFP is the maximum value of � , such that I(x;z) > 0 for the �-VAE 
objective.

We introduce the annealing test to determine the IFP for a given dataset. The objective 
of the annealing test is the same as that of �-VAE, except that it uses an annealing � from a 
high value to 1 (i.e., it starts with value 200 and ends with value 1). While the pressure of 
the KL term decays, there exists a critical point where I(x;z) increases and the reconstruc-
tion error decreases. For example, we trained the model with an annealing � from 200 to 
0 in 100,000 iterations in Fig. 4. One can see that the IFP is approximately 32 at iteration 

Fig. 4   Information freezing. The model starts to learn information at iteration 7500 ( � = 32 ), where KL 
increases and the reconstruction error decreases
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7400. Roughly, we regard the IFP as the value of beta where the model learns information 
( I(x;z) is over 0.1).

4.2 � DEFT

Distillation is the process of separating a mixture into its components by heating to an 
appropriate temperature, such that components boil and freeze into the target containers. 
Inspired by distillation in chemistry, this paper proposes a novel disentanglement approach 
based on �-VAE, which distills independent components into several isolated sub-encod-
ers. There exists a suitable pressure on � that makes one component with high IFP being 
separated from the components with lower IFP. Therefore, an iterative algorithm is con-
cluded to Distill (disentangle) the Entangled FacTor, named DEFT. Specifically, it splits 
the latent variables into G groups which per group has K latent variables, and there are G 
× K latent variables in total. The decoder takes the concatenation of latent variables of all 
groups as inputs, which is the same as the conventional decoder. DEFT also divides the 
training process into G stages, so that the model extracts components according to IFPs 
per stage by assigning a different � , � i for the i-th stage. Apart from that, DEFT scales the 
gradients of the old sub-encoders to prevent the ID problem; that is, the backward gradients 
of the first i − 1 sub-encoders are scaled by multiplying a scaling coefficient � . Overall, 
the architecture of DEFT ( G = 2, K = 2 ) at stage 2 is shown in Fig. 5. The forward part 
of DEFT takes one image as inputs to two isolated sub-encoders and then concatenates 
the outputs of two groups of sub-encoders into a four-dimensional vector which is fed to 
the decoder. The backward part of the DEFT scales the backward gradients for the old 
variables. For example, ∇z1 = �∇z1∶2,∇z

2 = ∇z3∶4 at stage 2. In addition, the algorithm of 
DEFT is shown in Algorithm 1, where q�i

(zi|x) denotes one sub-encoder, p�(x|z) denotes 
the decoder, and L denotes the �-VAE objective.

DEFT chooses a suitable value of beta to separate factors, that act as like the tempera-
ture, such that the desired factor’s information passes the bottleneck and freezes into the 
latent variables. Furthermore, backward information scaling is performed for these old var-
iables to prevent the information from diffusing into others. 

(a) (b)

Fig. 5   Illustration of DEFT with two sub-encoders (G = 2), and each sub-encoder has K = 2 latent vari-
ables. DEFT has isolated sub-encoders and scales partial backward information
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5 � Experiment

5.1 � Settings

In this work, there are two types (standard and lite) of sub-encoders and one type of 
decoder architecture, as shown in Table 1. For the encoder part, DEFT uses the lite archi-
tecture—the dimension of z is K × G in total; the other approaches use the standard archi-
tecture. All models use the same decoder architecture. All layers are activated by ReLU. 
The optimizer is Adam with a learning rate of 5e-4, �1 = 0, �2 = 0.99 . The batch size is 
256, which accelerates the training process.

Table 1   Lite encoder, standard encoder, and decoder architecture for all experiments. For dSprites and 
SmallNORB, c = 1 . For Color and Scream, c = 3

Lite Encoder Standard Encoder Decoder

4 × 4 conv. Eight Stride 2 4 × 4 conv. 32 stride 2 FC.256
4 × 4 conv. Eight Stride 2 4 × 4 conv. 32 stride 2 FC. 4 × 4 × 64

4 × 4 conv. Sixteen stride 2 4 × 4 conv. 64 stride 2 4 × 4 upconv. 64 stride 2
4 × 4 conv. Sixteen stride 2 4 × 4 conv. 64 stride 2 4 × 4 upconv. 32 stride 2
FC. 64 FC. 256 4 × 4 upconv. 32 stride 2
FC. K FC. K × G 4 × 4 upconv. c stride 2
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5.2 � Supervised problem

Dataset detail We compared DEFT with others on dSprites (Matthey et al., 2017), color 
dSprites (color for short), scream dSprites (scream for short) (Locatello et  al., 2019), 
and SmallNORB (LeCun et al., 2004). The images of dSprites are strictly generated by 
the five factors. It has three shapes: square, ellipse, and heart; six scale values: 0.5, 0.6, 
0.7, 0.8, 0.9, and 1.0, 40 orientation values in [0, 2 pi], 32 position X values, and 32 
position Y values. Two variants of dSprites (Color and Scream), which introduce ran-
dom noise, were closer to the true situation. SmallNORB is generated from 3D objects 
and is much more complex than 2D shapes. It contains five generic categories, namely, 
four-legged animals, human figures, airplanes, trucks, and cars; nine elevation values, 
i.e., 30, 35, 40, 45, 50, 55, 60, 65, and 70; eighteen azimuth values, 0, 20, 40, ..., 340; 
and six lighting conditions.

Information freezing point The ideal situation is to find a set of � to isolate IFPs into 
several parts without overlaps. To obtain the distribution of IFPs with respect to a fac-
tor ci , we enumerate all possible values of factor ci for a random sample, and calculate its 
IFP using the algorithm introduced in Sect. 4.1. Then, we repeated the above procedure 
50 times to estimate the IFP distribution of ci . We measured the IFPs of the factors on the 
four datasets, as shown in Fig. 6. dSprites and Color had more separable IFPs than Scream 
and SmallNORB. Although the three variants of dSprites have the same factors, their IFPs 
are different. The difference in IFP distributions explains why current approaches fail to 
transfer hyperparameters across different problems in Locatello et al. (2019). Note that the 
IFP distributions of factors are almost separable for dSprites and Color; the ground-truth 
factors are independent of the four datasets. In summary, four datasets are all independent; 
Scream and SmallNORB are inseparable. Based on the distribution of IFPs, we summarize 

Fig. 6   The distribution of IFP on four datasets. The red number denotes the pressure required to separate 
these factors. There are four factors on SmallNORB—category: CAT, elevation: EL, azimuth: AZ, and 
lighting condition: LT. There are five factors on three variants of dSprites—shape: SHP, scale: SC, orienta-
tion: ORIEN, position X: posX, position Y: posY
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the optimal training settings for the DEFT in Table  2. We tune the hyperparameters of 
compared approaches with the highest MIG and show these settings in Table 3.

5.3 � Performance

We trained each model 50 times and compared our model with the other four disentangle-
ment approaches on dSprites, Color, Scream, and SmallNORB.

Disentanglement metric We show the performances of disentanglement metrics in 
Fig. 7. All approaches have a lower performance on Scream and SmallNORB, where the 
distributions of IFP are inseparable. �-VAE and �-TCVAE have similar performances on 
four datasets. CascadeVAEC shows high performances on three variants of dSprites but 
has high variances for most cases. DEFT outperforms others for most cases and has lower 
variances. A downside of DEFT is the reduction of the searching space for more possible 
solutions, better or worse. As a result, DEFT has lower performances for the best models. 
The distributions of MIG at different stages are shown in Fig. 8. All experimental results 
on the four datasets reveal that DEFT obtains low scores at the first stage and gradually 
improves disentanglement in the following stages.

Reconstruction quality We also show the distributions of the reconstruction error in 
Fig. 9. CascadeVAEC and DEFT generally have higher qualities on rebuild images. Note 
that, though CascadeVAEC beats DEFT in some cases (dSprites and SmallNORB), the 
improved values are negligible compared with the overall errors (10% for dSprites, 2% for 
SmallNORB), and the differences are merely indistinguishable to human eyes. In general, 
DEFT reduces the variance by blocking partial information and achieves both a high image 
quality and disentanglement.

Failure rate We define the failure rate as the percentage of models that fail to learn a 
disentangled representation if the MIG score is lower than 0.1. Table 4 shows the failure 
rate. It can be seen that DEFT has the lowest average failure rates. Although AnnealedVAE 

Table 2   Experimental settings for DEFT. � is always 0.1 , see in Sect.  5.6. The number of iterations per 
stage (N) is sufficiently large such that the objective converges. The number of latents per sub-encoder (K) 
is not less than the size of the newly learned factors. The number of sub-encoders (G) is determined by the 
number of separable areas in Fig. 6

G K N � i

Color 4 3 20, 000 160,105,30,4
dSprites 4 3 20, 000 70,30,12,4
SmallNORB 2 5 40, 000 50,1
Scream 2 5 40, 000 140,1

Table 3   Experimental settings 
for the compared approaches

Color dSprites Scream SmallNORB

C (AnnealedVAE) 10 5 25 5
� ( �-TCVAE) 10 10 6 1
� ( �-VAE) 16 16 6 1
�h (CascadeVAEC) 10 10 10 10
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success to disentangle factors on three datasets, it fails to disentangle factors on Scream for 
most cases. Note that it is possible to reduce the failure rate for AnnealedVAE on Scream, 
but we have tried six settings, and none of them outperforms on all datasets. Overall, the 
failure rates of DEFT are lower than others. From the IFP distributions in Fig. 6, we can 
see that SmallNORB has a separable factor that is easy to be disentangled. That causes 

Fig. 7   The performances of three disentanglement metrics (Factor VAE (Kim and Mnih, 2018), MIG (Chen 
et  al., 2018), DCI dis.  (Eastwood and Williams, 2018)) for five approaches (V=�-VAE, TV=�-TCVAE, 
AV=AnnealedVAE, CV=CascadeVAEC, DF=DEFT) on four datasets (Color, dSprites, SmallNORB, 
Scream)

(a) (b)

(c) (d)

Fig. 8   MIG distribution of DEFT on four datasets for different stages
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SmallNORB to have a high lower bound of disentanglement but get a low overall score. 
Generally, DEFT significantly decreased the failure rate compared to the other approaches.

Visualization Higgins et  al. (2017a) introduced the latent traversal to visualize the 
generated images through the traversal of a single latent zi . Fig.  10 shows the latent 
traversal of the best model with the highest MIG score. One can see the intrinsic rela-
tionship between IFP and disentanglement. Orientation has the lowest IFP among all 
factors; meanwhile, it is the hardest one to be disentangled for all approaches. For 
SmallNORB, the lighting condition is separable with others, which is easy to be dis-
entangled. For Scream, three factors have similar IFP distributions, and it is also a hard 
problem for the disentanglement approaches.

Fig. 9   Reconstruction error for different approaches and datasets. Five approaches respectively denote V=�
-VAE, TV=�-TCVAE, AV=AnnealedVAE, CV=CascadeVAEC, DF=DEFT

Table 4   Failure rate (%) for each approach (column) and dataset (row)

DEFT �-VAE �-TCVAE AnnealedVAE CascadeVAEC

Color 0 24 0 0 8
dSprites 8 16 2 0 0
SmallNORB 0 0 0 0 10
Scream 12 12 26 80 25

(a) (b) (c) (d)

Fig. 10   Latent traversal of DEFT on four datasets (MIG score). Each column shows the images of travers-
ing a latent variablezi representing a factor and its VIR (last row) (Suter et al. 2019). We choose the vari-
able having the highest MI for the factor. The same variable has the highest MI for both elevation and light 
condition
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5.4 � Correlative but separable

To demonstrate the superiority of the IB approaches, we built a dataset of a triangle with 
three factors (posX, posY, and orientation), where posX and posY are independent, and 
the triangle always points to the center of the canvas � = arctan(posY − 16, posX − 16) . 
Figure 11a shows the samples from this toy dataset. We trained CascadeVAEC, �-TCVAE 
( � = 6 ), and DEFT ( K = 2, G = 2 ) within 10,000 steps and repeated 10 times. From 
Fig. 11 (b), all three approaches disentangle posX and posY successfully. However, only 
DEFT extracts orientation information ( I(z4;orientation) is high, I(z4;posX) and I(z4;posY) 
are low). DEFT has higher disentanglement scores for all three metrics, as shown in 
Fig.  11c. The latent traversal in Fig.  12 shows that DEFT has a high image quality and 
separated orientation information. The correlation makes it difficult for �-VAE to disentan-
gle orientation.

5.5 � Unsupervised problem

3D Chairs (Aubry et al., 2014) is an unlabeled dataset containing 1394 3D models from the 
Internet.

(a) (b)

(c)

Fig. 11   a Dataset visualization. b NMI matrix I(zi;cj) for three approaches. c Disentanglement scores for 
different approaches
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Annealing  test without supervision The label information is unavailable for com-
mon situations. Therefore, the factor’s IFP distribution is hard to be obtained. Alter-
natively, we calculate the upper bound of IFP distribution for the unsupervised setting. 
Intuitively, the rate of information increment changes if there is a new factor starting 
to freeze. We conducted an annealing test on dSprites and 3D chairs without labels 
and plotted the curves of beta vs. ΔI(x;z) in Fig. 13. This method is in agreement with 
the upper bound of the IFP distribution for position and scaling, as shown in Fig. 13a. 
One can recognize four points where the latent information suddenly increases: 36 and 
16 from Fig.  13b. Though this method needs human participation, we only show the 
potency to develop a fully unsupervised procedure for the separations. Therefore, we set 
G = 3,K = 3, �j = {36, 16, 1} for 3D Chairs and trained the DEFT 20 epochs per stage. 
We compared the performance with �-TCVAE and CascadeVAEC on 3D Chairs, as 
shown in Fig. 14. We notice that DEFT can learn one additional interpretable property 
compared with CascadeVAEC— leg orientation.

5.6 � Analysis

We introduce the following metrics to evaluate the problems on disentanglement during 
training in detail:

NMI1 denotes the major information representing the factors, which should be as large 
as possible (1 at maximal). In contrast, NMI2 indicates the diffused information from the 
major latent variables, which should be as small as possible (0 at minimal).

(8)NMI1 =
1

‖c‖

‖c‖�

i=1

NMI(ci, 1), NMI2 =
1

‖c‖

‖c‖�

i=1

NMI(ci, 2).

(a) (b) (c)

Fig. 12   Latent traversal of CascadeVAEC, �-TCVAE and DEFT on the separable but correlative dataset. 
Each column denotes the rebuild images by traversing the variable from -2 to 2
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To analyze the effects of techniques applied in DEFT, a simple model with only two 
stages is examined on dSprites. Experiments use the same setting at the first stage and 
apply specific settings for different purposes. At the first stage, the model with �1 = 70 was 
trained 15, 000 iterations so that the model could only learn a disentangled representation 
of posX and posY according to the IFP distribution in Fig. 6.

12

30

18
36

70

16

36
75

(a) (b)

Fig. 13   Information increment variability. The broken line denotes the tendency of the growth increment of 
mutual information. The dot denotes the mutation point of the mutual information increment. The star point 
denotes the selective separation of the IFP distributions

Fig. 14   Latent traversal on 3D Chairs. Each row shows the rebuild images by traversing the corresponding 
variable from -2 to 2. We show two samples for each factor separated by a line
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Piecewise pressure At the second stage, the model was trained 15, 000 iterations with 
different values of �2 . The experimental results in Fig. 15 show that a lower �2 helps the 
model to learn the insignificant factors with small IFPs (shape and orientation) but violates 
the model to improve the factors with high IFPs (scale, posX, and posY). �2 plays the role 
of a valve for passing information, and impure information is harmful to the disentangle-
ment. Note that, increasing the �2 brings the problem of the larger NMI(c, 2) , which is 
incapable of improving the disentanglement solely.

Backward information scaling At the second stage, we train the model with �2 = 30 for 
15, 000 iterations across different values of � . As shown in Fig. 16, the diffused information 
(scale) is descending as reducing � , relieving the ID problem. However, NMI(c, 1) reaches 
the lowest value when all backward information is clipped � = 0 , violating the model to 
extract new factors. NMI(c, 2) and � are simultaneously increased; A small value of � is 
sufficient to learn the majority information, and it also prevents information from diffusing 
into another variable. In conclusion, � controls the passing information, and a large one is 
used to generate pure information; � retards the increment of NMI2; the disentanglement 
can benefit from both two techniques by relieving the ID problem.

Comparison To see the overall effects of DEFT, we compare DEFT with AnnealedVAE 
and CascadeVAEC on dSprites 10 times, see details in Table 2. Note that we use a standard 
DEFT in this part. From Fig. 17a, one can see that there is a declination of NMI1 during 
iteration 1, 000 to 3, 000 for AnnealedVAE and an overall low level of NMI1 for Cascade-
VAEC. DEFT shows a steady improvement and a high level on NMI1. We also show the 

(a) (b)

Fig. 15   Each row shows the NMI(c, 1) or NMI(c, 2) in an independent trail with different values of �

(a) (b)

Fig. 16   Each row shows the NMI(c, 1) or NMI(c, 2) in an independent trail with different values of �
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NMI2 with four values of � : 0, 0.1, 0.5, 1, in Fig. 17b. The curves with error regions from 
10 trails demonstrate that � = 0.1 achieves a lower NMI2.

5.7 � Complexity

The difference between DEFT and other approaches is mainly in the encoder part: DEFT 
uses a fractional encoder that has several sub-encoders. We assume that W(G×K)×M repre-
sents the parameters of a normal encoder, and Wi

K×M
 represents the parameters of a sub-

encoder in a fractional encoder, where M is the dimension of inputs. The computational 
costs for both should be the same ideally, J(Wx) =

∑G

i=1
J(Wix) . However, there are some 

extra operations, such as the iterative loop and the concatenation of the latent variables. To 
make a fair comparison, we set the dimension of latent variables to 1, 000 and change the 
number of channels in convolutional layers so that the total parameters of the fractional 
encoder and the normal one are equal. Each trail generates a batch of samples (256) ran-
domly and then runs a forward and a backward process. Table 5 shows the mean and the 
standard deviation of runtime (second) for 100 trails. Overall, the increased cost of the 
fractional encoder is only about 6.9% for G = 100, which is acceptable in practice. The 
extra computational cost is acceptable for the common disentanglement tasks, which usu-
ally have less than ten ground-truth factors.

6 � Conclusion

Based on existing studies involving IBs, we have developed new insights into the reason 
for which these approaches have lower performances than the TC-based ones. In particular, 
we identified the IFP distribution for each factor by performing an annealing test, and a 
dataset was easily disentangled if the IFP distributions were separable. Furthermore, we 

(a) (b)

Fig. 17   Comparison of three models and four values of �

Table 5   The computational cost (second) for the normal encoder and the fractional encoder

G 10 100 500 1, 000

Normal 0.044 ± 0.002 0.058 ± 0.003 0.121 ± 0.034 0.225 ± 0.069
Fractional 0.046 ± 0.004 0.062 ± 0.004 0.314 ± 0.026 0.622 ± 0.057
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found that the ID problem is an invisible hurdle that prevents steady improvements in dis-
entanglement. We proposed DEFT to retain the learned information by blocking partial 
information. In addition, scaling the backward information is also helpful to relieve the ID 
problem. Our results show that approaches that are based on IBs are competitive and have 
the potential to solve problems with correlative factors.

We verified the ID problem that causes the low performance of IB-based approaches. 
However, as a plain solution, the DEFT method still needs to be further improved. In the 
future, an automatic way to adjust the best separation of IFP distribution is highly required.

Author Contributions  Jiantao conceived of the presented idea, carried out the experiments, and wrote the 
manuscript with support from Lin, Bo, Chunxiuzi, and Jin. Lin encouraged Jiantao to investigate the ID 
problem and supervised the findings of this work. Lin, Bo, and Jin provided funding supports for this pro-
ject. Fanqi processed the experimental data and designed the figures. Chunxiuzi also provided constructive 
advice for improving the manuscript and the experimental design. All authors provided critical feedback and 
helped shape the research, analysis, and manuscript. We confirm that all authors agree with the results and 
contributed to the final manuscript.

Funding  This work was supported by National Natural Science Foundation of China under Grant No. 
61872419, No. 62072213, No. 61873324, No. 61903156. Shandong Provincial Natural Science Foundation 
No. ZR2020KF006, No. ZR2019MF040, No. ZR2018LF005. Taishan Scholars Program of Shandong Prov-
ince, China, under Grant No. tsqn201812077. “New 20 Rules for University” Program of Jinan City under 
Grant No. 2021GXRC077

Data availability  We confirm that all data are openly available in public repositories. Specifically, dSprites 
is included in Matthey et al. (2017); Color and Scream are included in Locatello et al. (2019); SmallNORB 
is included in LeCun et al. (2004).

Declarations 

Conflicts of interest  We wish to confirm that there are no known conflicts of interest associated with this 
publication and there has been no significant financial support for this work that could have influenced its 
outcome.

Ethics approval  Not Applicable.

Consent to participate  We confirm that the manuscript has been read and approved by all named authors and 
that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm 
that the order of authors listed in the manuscript has been approved by all of us.

Consent for publication  We confirm that we have given due consideration to the protection of intellectual 
property associated with this work and that there are no impediments to publication, including the timing of 
publication, with respect to intellectual property. In so doing we confirm that we have followed the regula-
tions of our institutions concerning intellectual property.

 Code availability  Our codes and all experimental settings are published in DistillationVAE, depending on 
dlib for PyTorch.

References

Aubry, M., Maturana, D., Efros, A.A., Russell, B.C., & Sivic, J. (2014). Seeing 3d chairs: Exemplar part-
based 2d-3d alignment using a large dataset of CAD models. In 2014 IEEE Conference on Computer 
Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014 (pp 3762–3769). 
IEEE Computer Society.



2294	 Machine Learning (2022) 111:2275–2295

1 3

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828.

Burgess, C.P., Higgins, I., Pal, A., Matthey, L., Watters, N., Desjardins, G., & Lerchner, A. (2017). Under-
standing disentangling in �-vae. In Workshop on Learning Disentangled Representations at the 31st 
Conference on Neural Information Processing Systems 2017, NeurIPS 2017, December 4–9, 2017, 
Long Beach, CA, USA.

Chen, T.Q., Li, X., Grosse, R.B., & Duvenaud, D. (2018). Isolating sources of disentanglement in varia-
tional autoencoders. In Advances in Neural Information Processing Systems 31: Annual Conference 
on Neural Information Processing Systems 2018, NeurIPS 2018, December 3–8, 2018, Montréal, 
Canada (pp 2615–2625).

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. (2016). Infogan: Interpret-
able representation learning by information maximizing generative adversarial nets. In Advances in 
Neural Information Processing Systems 29: Annual Conference on Neural Information Processing 
Systems 2016, December 5–10, 2016, Barcelona, Spain (pp 2172–2180).

Comon, P. (1994). Independent component analysis, a new concept? Signal Processing, 36(3), 287–314.
Do, K., & Tran, T. (2020). Theory and evaluation metrics for learning disentangled representations. 

In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 
April 26-30, 2020. https://​openr​eview.​net/

Dupont, E. (2018). Learning disentangled joint continuous and discrete representations. In Advances in 
Neural Information Processing Systems 31: Annual Conference on Neural Information Processing 
Systems 2018, NeurIPS 2018, December 3–8, 2018, Montréal, Canada (pp 708–718).

Eastwood, C., & Williams, C.K.I. (2018). A framework for the quantitative evaluation of disentangled 
representations. In 6th International Conference on Learning Representations, ICLR 2018, Van-
couver, BC, Canada, April 30–May 3, 2018, Conference Track Proceedings. https://​openr​eview.​net/

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., & Lerchner, A. 
(2017a). beta-vae: Learning basic visual concepts with a constrained variational framework. In 5th 
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24–26, 
2017, Conference Track Proceedings. https://​openr​eview.​net/

Higgins, I., Pal, A., Rusu, AA., Matthey, L., Burgess, C., Pritzel, A., Botvinick, M., Blundell, C., & 
Lerchner, A. (2017b). DARLA: Improving zero-shot transfer in reinforcement learning. In Proceed-
ings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Aus-
tralia, 6–11 August 2017, PMLR (Vol. 70, pp 1480–1490).

Higgins, I., Amos, D., Pfau, D., Racanière, S., Matthey, L., Rezende, D.J., & Lerchner, A. (2018a). 
Towards a definition of disentangled representations. arXiv preprint arXiv:​1812.​02230

Higgins, I., Sonnerat, N., Matthey, L., Pal, A., Burgess, C.P., Bosnjak, M., Shanahan, M., Botvinick, M., 
Hassabis, D., & Lerchner, A. (2018b). SCAN: Learning hierarchical compositional visual concepts. 
In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 
April 30–May 3, 2018, Conference Track Proceedings. https://​openr​eview.​net/

Jeon, I., Lee, W., Pyeon, M., & Kim, G. (2021). Ib-gan: Disengangled representation learning with infor-
mation bottleneck generative adversarial networks. In Artificial Intelligence/33rd Conference on 
Innovative Applications of Artificial Intelligence/11th Symposium on Educational Advances in Arti-
ficial Intelligence(AAAI), ASSOC Advancement Artificial Intelligence (pp 7926–7934).

Jeong, Y., & Song, HO. (2019). Learning discrete and continuous factors of data via alternating dis-
entanglement. In Proceedings of the 36th International Conference on Machine Learning, ICML 
2019, 9-15 June 2019, Long Beach, California, USA, PMLR (Vol. 97, pp. 3091–3099).

Kim, H., & Mnih, A. (2018). Disentangling by factorising. In Proceedings of the 35th International 
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10–15, 
2018, PMLR (Vol. 80, pp. 2654–2663).

Kingma, D.P., & Welling, M. (2014). Auto-encoding variational bayes. In 2nd International Conference 
on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14–16, 2014. Conference Track 
Proceedings.

Kumar, A., Sattigeri, P., & Balakrishnan, A. (2018). Variational inference of disentangled latent con-
cepts from unlabeled observations. In 6th International Conference on Learning Representations, 
ICLR 2018, Vancouver, BC, Canada, April 30–May 3, 2018, Conference Track Proceedings. https://​
openr​eview.​net/

Lample, G., Zeghidour, N., Usunier, N., Bordes, A., Denoyer, L., & Ranzato, M. (2017). Fader net-
works: Manipulating images by sliding attributes. In Advances in Neural Information Processing 
Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4–9, 
2017, Long Beach, CA, USA (pp 5967–5976).

https://openreview.net/
https://openreview.net/
https://openreview.net/
http://arxiv.org/abs/1812.02230
https://openreview.net/
https://openreview.net/
https://openreview.net/


2295Machine Learning (2022) 111:2275–2295	

1 3

LeCun, Y., Huang, F.J., & Bottou, L. (2004). Learning methods for generic object recognition with 
invariance to pose and lighting. In 2004 IEEE Computer Society Conference on Computer Vision 
and Pattern Recognition (CVPR 2004), with CD-ROM, 27 June–2 July 2004, Washington, DC, 
USA. IEEE Computer Society.

Locatello, F., Bauer, S., Lucic, M., Rätsch, G., Gelly, S., Schölkopf, B., & Bachem, O. (2019). Chal-
lenging common assumptions in the unsupervised learning of disentangled representations. In Pro-
ceedings of the 36th International Conference on Machine Learning, ICML 2019, 9–15 June 2019, 
Long Beach, California, USA, PMLR (Vol. 97, pp 4114–4124).

Matthey, L., Higgins, I., Hassabis, D., & Lerchner, A. (2017). dsprites: Disentanglement testing sprites 
dataset. https://​github.​com/​deepm​ind/​dspri​tes-​datas​et/

Ridgeway, K., & Mozer, M.C. (2018). Learning deep disentangled embeddings with the f-statistic loss. 
In Advances in Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December 3–8, 2018, Montréal, Canada (pp 
185–194).

Schmidhuber, J. (1992). Learning factorial codes by predictability minimization. Neural Computation, 
4(6), 863–879.

Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., & Mooij, J.M. (2012). On causal and 
anticausal learning. In Proceedings of the 29th International Conference on Machine Learning, 
ICML 2012, Edinburgh, Scotland, UK, June 26–July 1, 2012. https://​icml.​cc/

Sorrenson, P., Rother, C., & Köthe, U. (2020). Disentanglement by nonlinear ICA with general incom-
pressible-flow networks (GIN). In 8th International Conference on Learning Representations, ICLR 
2020, Addis Ababa, Ethiopia, April 26–30, 2020. https://​openr​eview.​net/

Suter, R., Miladinovic, Đ., Schölkopf, B., & Bauer, S. (2019). Robustly disentangled causal mecha-
nisms: Validating deep representations for interventional robustness. In Proceedings of the 36th 
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, Califor-
nia, USA, PMLR (Vol. 97, pp. 6056–6065).

Tenenbaum, J. (2018). Building machines that learn and think like people. In Proceedings of the 17th 
International Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2018, Stock-
holm, Sweden, July 10–15 (p. 5).

Träuble, F., Creager, E., Kilbertus, N., Locatello, F., Dittadi, A., Goyal, A., Schölkopf, B., Bauer, S. 
(2021). On disentangled representations learned from correlated data. In Proceedings of the 38th 
International Conference on Machine Learning, ICML 2021, 18–24 July 2021, Virtual Event, 
PMLR (Vol. 139, pp. 10401–10412).

Watanabe, S. (1960). Information theoretical analysis of multivariate correlation. IBM Journal of Research 
and Development, 4, 66–82.

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent 
Laboratory Systems, 2(1–3), 37–52.

Zhu, Y., Xie, J., Liu, B., Elgammal, A. (2019). Learning feature-to-feature translator by alternating back-
propagation for generative zero-shot learning. In 2019 IEEE/CVF International Conference on Com-
puter Vision, ICCV 2019, Seoul, Korea (South), October 27–November 2, 2019 (pp. 9843–9853). 
IEEE.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://github.com/deepmind/dsprites-dataset/
https://icml.cc/
https://openreview.net/

	DEFT: distilling entangled factors by preventing information diffusion
	Abstract
	1 Introduction
	2 Preliminary
	2.1 Disentanglement approaches
	2.2 Disentanglement evaluation

	3 Motivation
	4 Method
	4.1 Information freezing
	4.2 DEFT

	5 Experiment
	5.1 Settings
	5.2 Supervised problem
	5.3 Performance
	5.4 Correlative but separable
	5.5 Unsupervised problem
	5.6 Analysis
	5.7 Complexity

	6 Conclusion
	References




