
Vol.:(0123456789)

Machine Learning (2022) 111:2741–2768
https://doi.org/10.1007/s10994-022-06128-5

1 3

Optimal policy trees

Maxime Amram1 · Jack Dunn1 · Ying Daisy Zhuo1

Received: 5 November 2020 / Revised: 4 October 2021 / Accepted: 13 December 2021 /
Published online: 9 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022

Abstract
We propose an approach for learning optimal tree-based prescription policies directly from
data, combining methods for counterfactual estimation from the causal inference literature
with recent advances in training globally-optimal decision trees. The resulting method,
Optimal Policy Trees, yields interpretable prescription policies, is highly scalable, and han-
dles both discrete and continuous treatments. We conduct extensive experiments on both
synthetic and real-world datasets and demonstrate that these trees offer best-in-class perfor-
mance across a wide variety of problems.

Keywords Machine learning · Decision trees · Prescriptive decision making

1 Introduction

The ever-increasing availability of high-quality and granular data is driving a shift away
from one-size-fits-all policies towards personalized and data-driven decision making. In
medicine, different treatment courses can be recommended based on individual patient
characteristics rather than following general rules of thumb. In insurance, underwriting
decisions could be made at the individual level, rather than relying on aggregate popula-
tions and actuarial tables. In e-commerce, consumers may experience a personalized ver-
sion of a website, tailored to their shopping tastes. In all domains, the ability to understand
the underlying phenomena in the data to aid decision making is critical.

In this paper, we consider the problem of determining the best prescription policy
for assigning treatments to a given observation (e.g. a customer or a patient) as a func-
tion of the observation’s features. A common context is that we have observational data
of the form

{
(xi, yi, zi)

}n

i=1
 consisting of n observations. Each observation i consists of

Editor: Hendrik Blockeel.

 * Jack Dunn
 jack@interpretable.ai

 Maxime Amram
 maxime@interpretable.ai

 Ying Daisy Zhuo
 daisy@interpretable.ai

1 Interpretable AI, Cambridge, MA 02142, USA

http://orcid.org/0000-0002-6936-4502
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06128-5&domain=pdf

2742 Machine Learning (2022) 111:2741–2768

1 3

features xi ∈ ℝ
p , an applied prescription zi , and an observed outcome yi ∈ ℝ . Depend-

ing on the scenario, the prescription may be one choice from a set of m available treat-
ments (zi ∈ {1,… ,m} , noting that discrete treatments in higher dimensions can be flat-
tened and numbered 1 to m without loss of generality), or could be the dosage of one or
more continuous treatments (zi ∈ ℝ

m). Our prescriptive task is to develop a policy that,
given x , prescribes the treatment z that results in the best outcome y.

Decision trees are an appealing class of model to apply to this problem, as their inter-
pretability and transparency allows humans to inspect and understand the decision-mak-
ing process, to both develop their understanding of the underlying phenomenon and to
identify and correct flaws in the model. The interpretability is arguably more important
in prescriptive problems than in predictive problems, as a prescriptive model recom-
mends actions with direct and often significant consequences, requiring more transpar-
ency and justification than models that simply make predictions.

One of the key difficulties in learning from observational data is the lack of complete
information. In the data, we only observe the outcome corresponding to the treatment
that was applied. Crucially, we do not observe what would have happened if we had
applied other treatments to each observation, the so-called counterfactual outcomes.

Previous approaches (Bertsimas et al. 2019; Kallus 2017) for decision tree-based
prescriptions from observational data dealt with the lack of information by embedding
a counterfactual estimation model inside the prescriptive decision tree, combining the
tasks of estimating the counterfactuals and learning the optimal prescription policy.
While this approach has the attractive property of learning from the data in a single
step, it also makes the learning problem more complicated and thus limits the complex-
ity of counterfactual estimation to approaches than can be practically embedded in a
tree-training process.

Some recent works (Biggs et al. 2020; Zhou et al. 2018) have proposed decision tree
approaches to this problem that separate the counterfactual estimation and policy learn-
ing steps. Instead of a single learning step, the counterfactuals are first estimated using
a method that models the data well, and than a decision tree is trained against these
estimates to learn an optimal prescription policy (see Table 1 for an example of the
counterfactual estimation process). These approaches use greedy heuristics to train the

Table 1 Example reward estimation problem

 The table on the left is the observed data, which is the input to the reward estimation process. The table on
the right is the output of this procedure, which is the estimated reward that should be attributed to the deci-
sion to assign a given treatment to any observation. We use these estimated rewards as input when training
Optimal Policy Trees

z
1

z
2

z
3

�
�

y
1

? ?
�
�

? y
2

?
�
�

? ? y
3

z
1

z
2

z
3

�
�

Γ
11

Γ
12

Γ
13

�
�

Γ
21

Γ
22

Γ
23

�
�

Γ
31

Γ
32

Γ
33

2743Machine Learning (2022) 111:2741–2768

1 3

decision trees, rather than aiming for global optimality (Zhou et al. 2018 also include an
exhaustive tree search, which does not scale beyond shallow trees and small datasets).

The limitations of such a greedy search are well-known in the literature, evidenced by
the extensive research into approaches for training decision trees that are globally-optimal,
particularly in recent years (see Carrizosa et al. 2021 for a survey covering many such
methods). Experiments on both synthetic datasets and real-world applications have shown
that modern optimization techniques can be applied to such problems and achieve solutions
that achieve performance comparable to black-box methods while maintaining the inter-
pretability of a single decision tree.

In this paper, we propose an approach that extends our earlier work on training globally-
optimal trees to construct policy trees that are interpretable, highly scalable, handle both
discrete and continuous treatments, and have best-in-class performance on both synthetic
and real-world datasets. Specifically, we summarize our contributions in this paper:

– We extend the Optimal Trees framework of Bertsimas and Dunn (2017, 2019); Bert-
simas et al. (2019) to the problem of learning prescription policies based on complete
counterfactual information estimated using state-of-the-art approaches from the causal
inference literature. The resulting Optimal Policy Trees are interpretable and highly
scalable, and can handle problems where we must choose one treatment from a set of
possible options, as well as problems where we need to prescribe continuous-valued
doses for one or more treatments.

– We demonstrate through comprehensive synthetic experiments and number of real-
world applications that Optimal Policy Trees have best-in-class performance, outper-
forming prescriptive tree approaches by a significant margin, and also offering signifi-
cant performance gains over the existing greedy policy tree approaches.

The structure of the paper is as follows. In Sect. 2, we review related literature in decision
tree induction and general policy learning from observational data. In Sect. 3, we present
Optimal Policy Trees and algorithm we propose for training these trees in greater detail,
including a summary of the methods used for counterfactual estimation. In Sect. 4, we
conduct comprehensive experiments with synthetic data to compare the performance of
Optimal Policy Trees to other methods across a variety of problem classes. In Sect. 5, we
present a number of applications of Optimal Policy Trees to real-world problems. Finally,
in Sect. 6 we summarize our conclusions.

2 Related literature

Decision tree methods like CART (Breiman et al. 1984) are one of the most popular meth-
ods for machine learning, primarily due to their interpretability. Because they split on a
single feature at a time, it is simple for a human to follow the decision logic of the tree.
However, the performance of these trees is often much weaker than approaches that sacri-
fice interpretability by aggregating multiple trees, such as random forests (Breiman 2001)
or gradient boosting (Friedman 2001), forcing practitioners to choose between interpret-
ability or performance.

Recent advances in modern optimization have led to approaches that eschew the tra-
ditional greedy heuristics used to train decision trees in favor of approaches rooted in
global optimization. A variety of methodologies have been proposed to solve this problem,

2744 Machine Learning (2022) 111:2741–2768

1 3

including linear programming (Bennett 1992), integer programming (Verwer and Zhang
2017), constraint programming (Nijssen and Fromont 2010; Verhaeghe et al. 2020), and
branch-and-bound search (Aglin et al. 2020), among many others (see Carrizosa et al.
(2021) for a survey covering many such works in great detail). Many works have prom-
ising performance gains compared to their greedy counterpart, but are often limited in
the scalability where the trees are limited to depth 4 or 5 and the datasets are limited to
1000 observations (Verwer and Zhang 2017). One such approach is Optimal Classification
Trees (Bertsimas and Dunn 2017), later extended to a general-purpose framework in Bert-
simas and Dunn (2019). The Optimal Trees framework solves a mixed-integer optimization
formulation of the decision tree problem using coordinate descent, permitting optimization
of decision trees according to an arbitrary loss function, and has tailored algorithms for
tuning its hyperparameters to avoid overfitting. Moreover, this approach also scales well to
datasets with millions of observations and thousands of features, making it one of the more
practical options for learning optimal decision trees. Comprehensive experiments on syn-
thetic and real-world datasets have shown that these Optimal Trees achieve performance
levels comparable to black-box methods without sacrificing interpretability.

There have been a number of tree-based approaches to prescriptive decision making.
Personalization trees (Kallus 2017) use a greedy approach to simultaneously estimate
counterfactuals and learn the optimal prescription policy directly from the data. These per-
sonalization trees can also be aggregated into personalization forests that improve perfor-
mance at the cost of interpretability. Optimal Prescriptive Trees (Bertsimas et al. 2019)
are similar to personalization trees, and apply the Optimal Trees framework to a similar
problem modified to incorporate the accuracy of the counterfactual estimation in the objec-
tive function. Both personalization trees and Optimal Prescriptive Trees offer the ability to
estimate the counterfactuals and learn the optimal prescription policy from data in a single
step, but this has the limitation that the class of model used for counterfactual estimation is
limited to what can be embedded in a tree-learning procedure without sacrificing tractabil-
ity. In particular, Optimal Prescriptive Trees can estimate the counterfactuals as piecewise-
constant or piecewise-linear function s, but the structure of the outcomes is often more
complicated in practice. Another drawback is that embedding the counterfactual estima-
tion inside the tree can detract from the interpretability of the prescription policy, as the
splits of the tree are used not just to develop the prescription policy, but also to refine and
improve the counterfactual estimates. As such, it can be difficult to understand which parts
of the tree relate directly to the prescription policy alone. Finally, the trees rely on having
enough data in each leaf to estimate the outcome for each treatment, which can mean that a
lot of data is required if the number of possible treatments is high.

Recent works have proposed separating the counterfactual estimation and policy
learning tasks, using a decision tree for the latter to construct an interpretable prescrip-
tion policy. In contrast to prescriptive trees, which simultaneously predict counterfactual
outcomes and prescribe the corresponding optimal treatment assignments, these policy
trees only learn to prescribe the best treatment assignment. Zhou et al. (2018) use dou-
bly-robust estimators from the causal inference literature (Dudík et al. 2011) to estimate
the counterfactual outcomes from observational data with discrete treatments. Their use
of this doubly-robust estimator is important, as it is able to account for treatment assign-
ment bias in the observed data, whereas a naive approach that predicts the outcomes
directly may lead to biased estimates that can mislead any subsequent prescription pol-
icy. Using these estimates, they proceed to learn a tree-based prescription policy, con-
sidering both a greedy approach and an exhaustive optimal approach to training trees,
with the latter unsurprisingly exhibiting poor scalability (results from this exhaustive

2745Machine Learning (2022) 111:2741–2768

1 3

method are only shown for trees with three splits). Another approach for greedy policy
trees is proposed by Biggs et al. (2020), where a black-box model is trained to predict
the outcomes from observational data with continuous treatments. This model is used to
estimate the counterfactual outcomes under possible candidate treatment options, and
used to feed a greedy tree-learning process. Both of these approaches share the common
approach of using the best model available for counterfactual estimation, and then using
a decision tree to learn an interpretable prescription policy based on these estimates.
They also share the common limitation that using a greedy heuristic for training trees is
likely to result in sub-optimal policies that do not attain maximum performance and also
likely results in larger trees that are harder to interpret.

In addition to interpretable decision trees, there are a number of black-box methods
that can be used for prescription in this setting, including the aforementioned personali-
zation forests as well as causal forests (Wager and Athey 2018), causal boosting (Powers
et al. 2018), and causal MARS (Powers et al. 2018), although these causal approaches
only deal with the case where the treatment is a binary decision. These methods give
high-quality estimates of the treatment effect, which can be used for prescription based
on whether the predicted effect is positive or negative, but offer no further insight into
the reasons behind prescriptions.

Another class of black-box methods is the so-called regress-and-compare approach,
which involves training models for each treatment option to predict the outcome func-
tion under that treatment. To make a prescription for a new observation, these models
are used to predict the outcome under each candidate treatment option, and the treat-
ment with the best predicted outcome is prescribed. A recent example of this method is
Bertsimas et al. (2017), where in the context of diabetes management a k-nearest-neigh-
bors approach is used to estimate the counterfactual outcomes under a range of different
treatment options, and the combination of drugs with the best outcome is prescribed.
Unlike the doubly-robust estimator used by Zhou et al. (2018), the regress-and-compare
method is susceptible to treatment assignment bias in the observed data, and as a result
may not be able to correctly identify causal relationships in the data. Unfortunately, it is
not possible to use the doubly-robust estimates in a regress-and-compare setting, as they
are only meaningful when used in aggregate to compare alternative policies, and should
not be interpreted on a per-observation basis (Dudík et al. 2011). It is also difficult to
interpret the results of a regress-and-compare approach, because we have to investigate
the details of each of the treatment models in order to understand why a given treat-
ment has the best prediction. Another limitation is that this approach spreads the data
across separate learning tasks for each treatment option, which can limit the amount of
data available for learning and prohibits joint learning across all treatments together,
which may affect the accuracy of the outcome estimates and in turn impact the quality
of the resulting prescriptions. In particular, because the determination of the optimal
prescription is made separately for each observation, the policy is very sensitive to over-
fitting, as even a single low-quality outcome estimate can lead to suboptimal prescrip-
tion for the corresponding observation. In contrast, encoding the prescription policy as
a decision tree may help to regularize the prescriptions and reduce their sensitivity to
the input data and training process. Finally, it can be a problem that the outcome estima-
tion models are trained separately from the policy evaluation task, as they may focus on
predicting the outcomes in areas that are not as relevant for deciding which treatment
is best. This can lead to less efficient use of data compared to other methods that focus
directly on learning the decision boundary.

2746 Machine Learning (2022) 111:2741–2768

1 3

3 Optimal policy trees

In this section, we introduce Optimal Policy Trees and detail the algorithm that we propose
for training these trees.

Suppose we have n observations in the training data, { xi}ni=1 , and there are m possible
treatment options (in the case of continuous treatments, this can be achieved by discretiz-
ing, as discussed in Sect. 3.2). Further, assume we are given the reward that is attained for
every observation i under every prescription option t, denoted Γit . Without loss of general-
ity, assuming lower reward is better, the problem we seek to solve is

where �(x) is a policy that assigns prescriptions to observations based solely on their fea-
tures x , and 1{.} is the indicator function that takes value 1 if its argument is true, and 0
otherwise.

If we knew the outcome for every observation under each prescription option, we could
simply use these outcomes as the rewards Γit . Of course, in reality we often do not know
the outcomes for every observation under each prescription. In particular, for observational
data, we only have the outcome corresponding to the treatment that was applied in the his-
torical data. Nevertheless, we will proceed with solving Problem (1) assuming that these
rewards are known. In Sect. 3.2 we will discuss strategies for estimating these rewards
when they are not known.

3.1 Learning optimal policy trees

We will now solve Problem (1) using a decision tree-based model. Specifically, our pre-
scription policy function �(x) will make prescriptions following a decision tree that seeks
to optimize the total overall cost of the policy according to the rewards.

The splits of this tree will use the feature values to direct observations to one of the
leaves of the tree, and each leaf will assign the same prescription to all observations that
fall into the leaf. An example of such a tree, which we call policy trees, is shown in Fig. 1.

While the tree looks similar to a classification tree, there is an important difference in
how they are trained. A classification tree focuses only on whether the predicted label is
correct, whereas the policy tree uses the rewards to take into account the relative cost of
each treatment option. For instance, consider a setting with three treatment options and
an observation with rewards under these treatments of [1, 2, 10]. Assuming that we seek
to minimize the rewards, a classification view of this problem would deem that the first
treatment (with the lowest reward) is the “correct” label, and we would get equal penalty
for prescribing the second or third treatments. In contrast, the policy view of the problem
would incur a relative penalty of 1 and 9 for prescribing the second and third treatments,
respectively. In this way, the policy tree makes use of the relative values of the rewards
rather than simply focusing on which treatment gives the best reward for each observation.

We denote the leaf of the tree into which an observation x falls as v(x) , and the prescrip-
tion made in each leaf � as z

�
 . Without loss of generality, we can assume the treatments are

enumerated as 1, 2,… ,m so that z
�
∈ {1, 2,… ,m} . We can then express the prescription

policy in terms of the leaf assignment function v(x) as

(1)min
�(.)

n∑

i=1

m∑

t=1

1{�(xi) = t} ⋅ Γit,

2747Machine Learning (2022) 111:2741–2768

1 3

Combining (1) and (2) yields the following optimization problem:

Specifically, for each observation i, we identify the leaf � = v(xi) containing this observa-
tion, and use the reward Γiz

�
 corresponding to the prescription in this leaf.

To solve Problem (3), we note that it is separable in the leaves of the problem:

This means that given a tree structure v(x) , we can find the optimal prescription in each leaf
� by solving the following problem:

which can be solved simply by enumerating the possible prescription options.
Note that this problem formulation is equivalent to the classification tree problem

under misclassification loss, with the addition of per-observation, per-class losses Γiz
�
 .

We can thus use any approach for training classification trees to solve this problem, pro-
vided that they support the specification of such custom loss weights.

(2)�(x) =
∑

𝓁

1{v(x) = 𝓁} ⋅ z
𝓁
.

(3)min
v(.),z

n∑

i=1

∑

𝓁

1{v(xi) = 𝓁} ⋅ Γiz
𝓁

(4)min
v(.),z

∑

�

∑

i∶v(xi)=�

Γiz
�

(5)z
�
= argmin

t

∑

i∶v(xi)=�

Γit,

Fig. 1 Example of a policy tree
that prescribes one of two treat-
ment options based on feature
values

Feature 9

< -1.796

Prescribe B

≥ -1.796

Feature 5

< 1.532

Feature 7

≥ 1.532

Prescribe A

< -1.413

Prescribe A

≥ -1.413

Prescribe B

2748 Machine Learning (2022) 111:2741–2768

1 3

In this case, we will utilize the Optimal Trees framework (Bertsimas and Dunn 2019)
to optimize the tree structure and determine v(x) . Our particular choice of optimal deci-
sion tree learning algorithm is based both on the scalability and performance of the Opti-
mal Trees approach, as well as our existing familiarity with this particular method. This
approach uses a coordinate descent algorithm to optimize an arbitrary objective function
that depends only on the tree assignment function v(x) . Concretely, the objective we opti-
mize is Problem (3), and at each step of the coordinate descent process, we use the current
tree structure to evaluate the currently-optimal values of z

�
 according to Eq. (5). Plugging

these values of z
�
 back into (3) yields the current objective value, guiding the coordinate

descent procedure. The full details of the general-purpose tree optimization algorithm used
by Optimal Trees are presented in Section 8.3 of Bertsimas and Dunn (2019), but for clar-
ity, the exact problem being solved is

where numsplits(v) is the number of splits in the tree v, and depth(v) is the depth of the tree.
There are three hyperparameters that control the size of the resulting trees to prevent over-
fitting, and must be specified by the user:

– Dmax : the maximum depth of the tree;
– � : the complexity parameter that controls the tradeoff between training accuracy and

tree complexity;
– nmin : the minimum number of samples required in each leaf.

The first two of these are the most critical parameters to tune, and the Optimal Trees frame-
work details a tailored tuning algorithm for determining these parameters in Section 8.4
of (Bertsimas and Dunn 2019). For example, Dmax is tuned using a normal grid search
over discrete values, whereas � is tuned using a pruning procedure based on generating
a sequence of related trees and finding the value of � that would minimize the validation
error.

As noted earlier, Problem (3) is also solved in the same fashion with a tree-based model
by Biggs et al. (2020) and Zhou et al. (2018), but in both cases a greedy heuristic is used
to train the tree. For other problem classes like classification and regression, there are sig-
nificant performance and interpretability advantages to training trees with globally optimal
methods rather than greedily (Bertsimas and Dunn 2017, 2019; Bertsimas et al. 2019). Our
experiments in Sects. 4 and 5.1 demonstrate that this is also the case for the optimal policy
problem.

3.2 Estimating rewards

In Sect. 3.1, we assumed that we had access to reward information Γit for every observa-
tion i and every treatment option t. In some cases, we have access to this full informa-
tion about the problem (see Sect. 5.3 for an example), but often we have observational
data and thus only observe the outcome for the treatment that was applied in the data. In

(6)

min
v(.),z

(∑

𝓁

∑

i∶v(xi)=𝓁

Γiz
𝓁

)
+ � ⋅ numsplits(v)

s.t. depth(v) ≤ Dmax

|{i ∶ v(xi) = 𝓁}| ≥ nmin ∀l

2749Machine Learning (2022) 111:2741–2768

1 3

these cases, we will need to estimate the missing counterfactual outcomes. The method
we use to estimate depends on the type of prescription decision being made.

3.2.1 Estimating rewards for discrete treatments

When the prescription is a choice of one treatment from a set of possible options, we
draw on the causal inference literature and use doubly-robust estimates (Dudík et al.
2011) for the outcomes, as outlined by Zhou et al. (2018) and Athey and Wager (2017).

For clarity, we present the estimation process here. There are three steps:

1. Propensity score estimation We train a model to estimate the probability p̂it that a given
observation i is assigned a given treatment t. We use the features xi and the assigned
treatments zi observed in the data to train a multi-class classification model (such as
random forests or boosting), and use this model to estimate treatment assignment prob-
abilities. To avoid overfitting to the data, a k-fold cross-validation process is used for
estimation, where the probabilities for the data in each fold are estimated using a model
trained on the remaining data not in the fold.

2. Outcome estimation We train a model to estimate the outcome r̂it for each observation
i under each treatment option t. For each treatment t, we train a regression model on the
subset of training data that received this treatment, and predict the observed outcomes
yi as a function of the features xi . We then use these models to estimate the outcomes
r̂it for all observations under all treatments. As for propensity score estimation, random
forests and boosting models can be used for this prediction. A variant approach combin-
ing random forests with multiple causal forests is also presented in Zhou et al. (2018).

3. Doubly-robust estimation Finally, the estimated propensity scores p̂it and outcomes r̂it
are combined to give the final doubly-robust estimates:

Using these estimated values Γit in Eq. (1) results in a so-called doubly-robust estimate
of the policy quality. This means that the estimated total reward under the policy has
low bias if at least one of the propensity score or outcome sub-estimators has low bias,
thus the name doubly-robust (Dudík et al. 2011).

Compared to using the outcome estimates directly as the rewards, an important
advantage of the doubly-robust estimator is the ability to correct for treatment assign-
ment bias in the observed data. Treatments in observational data are often not assigned
at random, and this bias can influence the outcome estimation process, leading to poor
estimates if not accounted for. For instance, consider a medical example where a spe-
cific treatment is typically given to sicker patients. This means that the group receiving
this treatment is composed of sicker patients to begin with, and thus despite receiving
the treatment, we might see that the outcomes in the treated group are lower than in
the untreated group. This could cause the outcome estimator to predict lower outcomes
when the treatment is applied, whereas in reality the treatment might still be helpful, as
the outcomes in the treated group would be even worse without the treatment applica-
tion. Combining the propensity scores with the outcome estimates helps to correct for
any such treatment assignment bias in the data, to ensure that the estimated rewards are
fair.

Γit =
yi − r̂it

p̂it
⋅ 1

{
zi = t

}
+ r̂it

2750 Machine Learning (2022) 111:2741–2768

1 3

3.2.2 Estimating rewards for continuous treatments

When the prescription is choosing the dosing level for one or more treatments, we estimate
the counterfactual outcomes with a regression model.

We denote by zit the dose of each treatment t for each observation i, and treat the dose
for each treatment as a separate continuous feature in the dataset. We then train a regres-
sion model (such as random forests or boosting) to predict the outcome yi based on the fea-
tures xi and the treatment doses zit . Given this trained model, we can estimate rewards by
predicting the outcome under any combination of treatment doses for a given observation i
with features xi . In practice, we discretize the range of possible treatment doses to create a
set of candidate doses, and estimate the outcome under each such set. The policy tree will
then learn to prescribe one of the candidate doses works best in any given situation.

Note that if the outcomes yi are binary (e.g. denoting a success or failure), then a classi-
fication model can be used for estimation in place of regression. In this case, the estimated
probabilities from the classification model can be used as the estimated outcomes.

3.3 Estimation and evaluation procedure in practice

To train and evaluate Optimal Policy Trees from observational data, we combine the
approaches in Sects. 3.1 and 3.2. The exact workflow is:

1. Given observational data (�
�
, yi, zi), split into training and testing sets

2. On the training set, conduct reward estimation following Sect. 3.2 to estimate the reward
Γit for every observation i under each treatment option t

3. Train Optimal Policy Tree using the training set features �
�
 and the estimated rewards Γit

from the previous step (further splitting the data into training/validation sets to validate
hyperparameters as necessary)

4. Evaluate the trained policy tree on the training set by summing the reward corresponding
to the prescribed treatment for each observation.

5. On the testing set, conduct reward estimation following Sect. 3.2 to estimate the reward
Γit for every observation i under each treatment option t. It is necessary that this estima-
tion step is separate to the reward estimation on the training set, to avoid information
leaking between the training and testing sets.

6. Evaluate the trained policy tree on the testing set by summing the reward corresponding
to the prescribed treatment for each observation. This constitutes a fair out-of-sample
evaluation of the quality of the prescription policy.

To select the class of model and their associated hyperparameters for the reward estima-
tion procedures in Steps 2 and 5, we recommend considering a range of model classes (e.g.
boosted decision trees, random forests, linear regression) and using cross-validation to tune
hyperparameters for each such model, before selecting the model class with the best esti-
mated out-of-sample performance, so as to lead to high-quality reward estimates. Empiri-
cally, we have found that the highest estimated out-of-sample performance generally comes
from boosted decision trees or random forests.

Note that in Step 5, training a separate estimation model in the test data purely serves the
purpose of obtaining an unbiased evaluation of the policies, which is not necessary if the
purpose is only for inference. In online settings where new observations arrive one-by-one,

2751Machine Learning (2022) 111:2741–2768

1 3

the Optimal Policy Tree model can still make prescriptions for these new observations, but
we may not be able to provide a fair estimate of the policy performance for this new data.

3.4 Weighted‑loss classification

Throughout this section, we have assumed that the reward Γit for a given observation can
depend on the features xi as well as the observed outcome yi and observed treatment zi . We
note that a special case of this problem is when Γit depends only on the observed treatment
zi . This gives rise to a weighted-loss classification problem, where there is a penalty matrix
L , where Ljk specifies the penalty when an observation of class j is assigned to class k by
the model. If L has zeros on the diagonal and ones everywhere else, the problem is equiva-
lent to standard multi-class misclassification.

4 Performance on synthetic data

In this section, we conduct a number of experiments on synthetically-generated data in
order to evaluate the relative performance of optimal policy trees against other methods for
prescriptive decision making.

Our experimental setup follows that used in Powers et al. (2018) and Bertsimas et al.
(2019). We generate n data points xi, i = 1,… , n where each xi ∈ ℝ

d , with d = 10 . Each xi
is generated i.i.d. with the odd-numbered coordinates j sampled xij ∼ Normal(0, 1) and the
even-numbered coordinates j sampled xij ∼ Bernoulli(0.5).

4.1 Binary treatment

First, we consider scenarios with a single binary treatment. We define a baseline function
that generates the baseline outcome for each observation, and an effect function that mod-
els the effect of the treatment being applied. The different functional forms we consider
are presented in Table 2. Each function is further centered and scaled so that the generated

Table 2 Functions used for discrete-treatment synthetic experiments

Name Function Nature

f
1
(x) 0 Constant

f
2
(x) 5 ⋅ 1{x

1
> 1} − 5 PW-constant

f
3
(x) 2x

1
− 4 Linear

f
4
(x) x

2
x
4
x
6
+ 2x

2
x
4
(1 − x

6
) + 3x

2
(1 − x

4
)x

6
+ PW-constant

4x
2
(1 − x

4
)(1 − x

6
) + 5(1 − x

2
)x

4
x
6
+ 6(1 − x

2
)x

4
(1 − x

6
)+

7(1 − x
2
)(1 − x

4
)x

6
+ 8(1 − x

2
)(1 − x

4
)(1 − x

6
)

f
5
(x) x

1
+ x

3
+ x

5
+ x

7
+ x

9
− 2 Linear

f
6
(x) 4 ⋅ 1{x

1
> 1} ⋅ 1{x

3
> 0} + 4 ⋅ 1{x

5
> 1} ⋅ 1{x

7
> 0} + 2x

8
x
9

PW-linear
f
7
(x) 1

2
(x2

1
+ x

2
+ x2

3
+ x

4
+ x2

5
+ x

6
+ x2

7
+ x

8
+ x2

9
− 11) Quadratic

f
8
(x) 1√

2

�
f
4
(x) + f

5
(x)

� PW-linear

2752 Machine Learning (2022) 111:2741–2768

1 3

values have zero mean and unit variance. In each experiment, we model the outcomes
under “no treatment” and “treatment” (Y0 and Y1 , respectively) as

We will adopt the convention that lower outcomes are desirable for all experiments. We
assign treatments in a biased way to simulate an observational study where observations
are more likely to receive the treatment option with the better outcome. Concretely, we
assign the treatment with probability

The outcomes in the training set have additional i.i.d. noise added in the form
�i ∼ Normal(0, 0.1).

In summary, for each xi , we calculate the outcome under each treatment as Y0(xi) and
Y1(xi) . For the training set, we assign a treatment zi to 0 or 1 at random following the distri-
bution above, and then finally assign the observed outcome as (1 − zi)Y0(xi) + ziY1(xi) + �i .
These triplets (xi, yi, zi) constitute the training data for each experiment.

To explore performance of the methods in a variety of scenarios, we consider seven
different experiments, with different configurations of the baseline and effect functions as
shown in Table 3.

For each experiment, we generate training data with n from 100 to 5,000 to observe the
effect of the increasing amount of training data on the model performance. We train mod-
els on the training set and evaluate on a testing set with n = 60, 000 where we know the
true outcomes for each prescription. We evaluate the mean regret of the model’s prescrip-
tions on the testing set, defined as the difference between the outcome under the prescribed
treatment and the outcome under the optimal treatment, averaged across all points in the
testing set. Each experiment was repeated 100 times and the results averaged.

We compare the following methods:

– Prescriptive Trees We include both greedy and optimal prescriptive trees as presented
in Bertsimas et al. (2019). We set � = 0.5 and consider trees up to depth 5, using vali-
dation to select the best depth and complexity parameter �.

– Policy Trees We include both greedy and optimal policy trees as presented in Sect. 3.
We consider trees up to depth 5, using validation to select the best depth and complex-
ity parameter � . We estimate rewards on the training set using the doubly-robust estima-

Y0(x) = baseline(x) −
1

2
effect(x), Y1(x) = baseline(x) +

1

2
effect(x).

ℙ(Z = 1|X = x) =
eY0(x)

1 + eY0(x)

Table 3 Experiment design
for synthetic experiments with
binary treatments

Experiment Baseline Effect

1 f
5
(x) f

2
(x)

2 f
4
(x) f

3
(x)

3 f
7
(x) f

4
(x)

4 f
3
(x) f

5
(x)

5 f
1
(x) f

6
(x)

6 f
2
(x) f

7
(x)

7 f
6
(x) f

8
(x)

2753Machine Learning (2022) 111:2741–2768

1 3

tor with random forests for propensity estimation and causal forests for outcome estima-
tion (following the process described in Zhou et al. (2018)). All forests used 100 trees.

– Regress & Compare We include a regress-and-compare approach using random for-
ests. We train a random forest with 100 trees to predict the outcome under each pre-
scription, and then for each point in the test set we prescribe the option that has the
lowest predicted outcome.

– Causal Forests Because there is just a single treatment, we can include causal for-
ests (Wager and Athey 2018) to predict the treatment effect. If this predicted treatment
effect is negative, we prescribe the treatment, otherwise we prescribe no treatment. To
match the other methods, we use 100 trees in the forest, with all other parameters taking
their default values.

When validation is used, the original training data is further split 70%/30% into training
and validation sets to determine the optimal hyperparameter values. These tuned values are
then used to train the final model on the combined training and validation sets.

Figure 2 presents the results of the experiments. We make the following observations:

– Experiment 1 Here the baseline function is linear, while the effect is piecewise-con-
stant with two pieces. We see that the policy tree approaches perform strongest and
quickly reach zero regret, as they simply have to learn the structure of the effect func-
tion, which is a tree with a single split. Causal forests also achieve zero regret but
require more training data. R&C and prescriptive tree approaches exhibit much slower
improvement in regret, due to having to also learn and model the linear baseline func-
tion.

– Experiment 2 The baseline function is piecewise-constant and the effect function is
linear in a single feature. Policy trees again exhibit fast convergence to zero regret,
as the optimal policy is simply to prescribe based on the sign of x1 which is achieved
by a tree with a single split. Causal forests also converge to zero regret quickly, as do
the other methods with much more training data. In particular, since both baseline
and effect functions can be modeled using a tree structure, the prescriptive trees can
approach zero regret.

– Experiment 3 The baseline function is quadratic and the effect function is piecewise-
constant. Since the effect function can be modeled by a tree structure, the policy trees
converge quickly to zero regret, followed closely by causal forests. The other methods
struggle due to the complexity of modeling the non-linearity of the baseline function.

– Experiment 4 Both baseline and effect functions are linear. In this case, policy trees
do not converge as quickly as before since the effect function is not modeled exactly
through a tree structure. In fact, both flavors of trees have to learn linear functions in
this case, but we can see that the policy approaches make better use of the data, and
the optimal policy tree performs significantly stronger than the greedy approach. Both
R&C and causal forests can more quickly learn the linear structure in the data, and
exhibit similar performance.

– Experiment 5 The baseline function is constant and the effect function is piecewise lin-
ear. Here, prescriptive and policy trees face exactly the same problem structure due to
the absence of a baseline function. We can see that both optimal tree methods converge
towards zero regret, with the prescriptive approach converging slightly faster. Causal
forests also exhibit slow convergence to zero, while R&C performs the strongest.

– Experiment 6 The baseline function is piecewise-constant with two pieces and the
effect function is quadratic. Again, prescriptive and policy trees face very similar

2754 Machine Learning (2022) 111:2741–2768

1 3

problems as the non-linearity of the effect function dominates the complexity of the
problem compared to the simple baseline. All tree methods converge to the same
non-zero regret, whereas R&C and causal forests converge to much lower values due
to being able to better model the non-linearity.

– Experiment 7 Both baseline and effect functions are piecewise-linear. While
the nature of the function is the same for prescriptive and policy trees, the policy
approach performs much stronger due to only having to learn the effect part of this

Fig. 2 Results for synthetic experiments with binary treatments

2755Machine Learning (2022) 111:2741–2768

1 3

piecewise-linear function. The policy, R&C and causal forests exhibit roughly simi-
lar convergence, with optimal policy trees outpe rforming the greedy alternative.

To summarize the results, the performance of policy trees depends on the nature of the effect
function, but is largely independent of the baseline function. This is because the policy tree
only considers the relative effects of each treatment and does not need to estimate the raw
outcome under each treatment, and therefore does not depend on the complexity of the under-
lying baseline function. When the effect function can be modeled well by a tree structure,
the policy trees pe rform among the best methods, with the optimal approach outperforming
the greedy method when the solution is non-trivial. On the other hand, the performance of
prescriptive trees depends heavily on the complexity of both baseline and effect functions,
and perform worse than policy trees when the baseline is non-trivial. R&C and causal forests
perform well in most cases, but suffer from a lack of interpretability and in some cases exhibit
slower convergence than policy trees.

4.2 Multiple treatments

In this section, we extend the previous experiment setup to consider problems with more than
two treatment options. We again borrow the setup from Bertsimas et al. (2019) and add an
additional experiment. In this case, the outcomes are generated as

The treatments are assigned so that the “no treatment” option is more likely to be assigned
when the baseline is small, and treatments 1 and 2 are equally likely to be assigned:

The experiments we consider as shown in Table 4. As before, the outcomes in the training
set have additional i.i.d. noise added in the form �i ∼ Normal(0, 0.1) . We again report the
mean regret for each method on the testing set. Because there are multiple treatments, we
do not include causal forests.

Figure 3 presents the results of the experiments. We make the following observations:

– Experiment 1 The baseline function is piecewise-linear and the effect functions are piece-
wise-constant and quadratic. R&C performs the strongest as it is best able to model the
complicated non-linear effect function of the second treatment. Policy trees are capable

Y0(x) = baseline(x),

Y1(x) = baseline(x) + effect1(x),

Y2(x) = baseline(x) + effect2(x).

ℙ(Z = 0|X = x) =
1

1 + eY0(x)

ℙ(Z = 1|X = x) = ℙ(Z = 2|X = x) =
1

2
(1 − ℙ(Z = 0|X = x))

Table 4 Experiment design
for synthetic experiments with
multiple discrete treatments

Experiment Baseline Effect of Treat-
ment 1

Effect of
Treat-
ment 2

1 f
7
(x) f

4
(x) f

2
(x)

2 f
6
(x) f

2
(x) f

7
(x)

2756 Machine Learning (2022) 111:2741–2768

1 3

of easily learning the first effect function, and do not have to worry about the baseline, so
the optimal policy trees outperform the prescriptive methods. Due to the complexity of
the second effect function, the optimal policy tree approach significantly outpe rforms the
greedy approach.

– Experiment 2 The baseline function is quadratic and the effect functions are both
piecewise-constant. The policy tree approaches converge towards zero regret as they
are capable of learning both effect functions exactly. The optimal approach performs
slightly better than the greedy method. The prescriptive approaches and R&C exhibit
slower convergence as they additionally have to deal with the complexity of learning
the quadratic baseline.

To summarize, these results mirror those of the binary treatment case. The policy trees
approach depends solely on the complexity of the effect functions, and the baseline func-
tion is not important. In the case where the effect functions are non-trivial, the optimal
policy trees outpe rform the greedy method as they are better at learning these difficult
functions.

4.3 Continuous treatment

Now, we consider experiments where the outcomes are a continuous function of the treat-
ment. In this case, our prescription is the dose level of the treatment to apply, rather than
choosing one treatment option from the available set.

For these experiments, we define an outcome function y(x, z) that depends on both the
features x of the datapoint and the treatment dose z that is applied. Table 5 shows the func-
tional forms that we consider. We consider treatment doses between −4 and 4, and again
treat lower outcomes as more desirable.

We generate the training and testing data as before. We assign treatment doses to the
training data in a biased fashion similar to before so that better treatment assignments are
more likely. Concretely, for each point we sample five candidate doses tk ∼ Uniform(−4, 4)
and calculate the outcome under each such dose, y(x, tk) . We then assign the treatments
according to a softmax probability:

Fig. 3 Results for synthetic experiments with multiple discrete treatments

2757Machine Learning (2022) 111:2741–2768

1 3

As before, the outcomes in the training set have additional i.i.d. noise added in the form
�i ∼ Normal(0, 0.1) . For the test set, we assign the dose that minimizes the outcome func-
tion for the given x.

We consider four experiments as detailed in Table 6.
For consistency, we provide the same dosing options to all methods. We discretize the

(−4, 4) interval into 10 evenly spaced values and use these as the candidate doses for meth-
ods to prescribe. We consider the following methods:

– Prescriptive Trees We include both greedy and optimal prescriptive trees. We round
all observed doses in the training data to the nearest candidate dose before training, and
use the candidate doses as the prescription options. We set � = 0.5 and consider trees
up to depth 5, using validation to select the best depth and complexity parameter �.

– Policy Trees We include both greedy and optimal policy trees as presented in Sect. 3.
We consider trees up to depth 5, using validation to select the best depth and com-
plexity parameter � . We estimate rewards on the training set by first training an
XGBoost (Chen and Guestrin 2016) model to predict the outcome as a function of the
features x and the treatment z, and then using this model to predict the outcome under
each candidate dose for each observation to use as the rewards matrix. We ran XGBoost
for 100 rounds with default parameters.

– Regress & Compare We include a regress-and-compare approach using XGBoost. We
use the training data to train an XGBoost model with default parameters for 100 rounds
to predict the outcome as a function of the features x and the treatment z. For each point
in the test set we prescribe the candidate dose that has the lowest predicted outcome.

ℙ(Z = tk�X = x) =
e−y(x,tk)

∑
j e

−y(x,tj)

Table 5 Functions used for continuous-treatment synthetic experiments

Name Function Nature of Solution

g
1
(x, z) |x

1
− z| Linear

g
2
(x, z) x

1
⋅ z PW-constant

g
3
(x, z) |z − 4| ⋅ x

2
x
4
x
6
+ |z − 3| ⋅ x

2
x
4
(1 − x

6
)+ PW-constant

|z − 2| ⋅ x
2
(1 − x

4
)x

6
+ |z − 1| ⋅ x

2
(1 − x

4
)(1 − x

6
)+

|z + 1| ⋅ (1 − x
2
)x

4
x
6
+ |z + 2| ⋅ (1 − x

2
)x

4
(1 − x

6
)+

|z + 3| ⋅ (1 − x
2
)(1 − x

4
)x

6
+ |z + 4| ⋅ (1 − x

2
)(1 − x

4
)(1 − x

6
)

g
4
(x, z) |z − 2| ⋅ 1{x

1
> 1} ⋅ 1{x

3
> 0}+ PW-linear

|z + 2| ⋅ 1{x
5
> 1} ⋅ 1{x

7
> 0} + 2|x

9
− z|

Table 6 Experiment design for
synthetic experiments with a
single continuous treatments

Experiment Outcome

1 g
1
(x, z)

2 g
2
(x, z)

3 g
3
(x, z)

4 g
4
(x, z)

2758 Machine Learning (2022) 111:2741–2768

1 3

The results are shown in Fig. 4. We make the following observations:

– Experiment 1 The optimal dose is to prescribe z = x1 , so the learned dosing function
should be linear. The policy tree approaches learn this linear function increasingly well
as the size of the training data increases, matching R&C. The prescriptive trees learn
much more slowly.

– Experiment 2 Here the optimal dose is either −4 or 4 based on the sign of x1 , so the
optimal prescription policy should be a tree with a single split. Indeed, the policy tree
and R&C approaches quickly reach zero regret, but prescriptive trees require much
more data to discover this optimal policy.

– Experiment 3 The optimal dose in this setting is given by a piecewise-constant func-
tion. All methods eventually converge to zero regret, but the prescriptive approaches
require more data to achieve this performance.

– Experiment 4 The optimal dose follows a piecewise-linear function. The prescriptive
tree approaches have regrets above 2 for all training set sizes, significantly worse than
the remaining methods (thus are not shown in the figure). The policy tree approaches
have similar convergence to R&C, with the greedy policy trees performing slightly
worse than the optimal approach due to the complexity of the outcome function.

Fig. 4 Results for synthetic experiments with a single continuous-dose treatment. For Experiment 4, greedy
and optimal prescriptive trees have regret between 2 and 5 and are omitted from display to avoid axis distor-
tion

2759Machine Learning (2022) 111:2741–2768

1 3

In summary, we see that the policy approaches are significantly more efficient with the
training data than prescriptive approaches. The optimal policy tree approach matches the
R&C approach in all cases, but provides an interpretable policy in addition to performance.

4.4 Multiple continuous treatments

Our final set of experiments consider cases with multiple continuous-dose treatments. For
these experiments, we define an outcome function y(x, t1, t2) that depends on both the fea-
tures x and on two treatment doses t1 and t2 that are applied. We consider doses between −4
and 4 for both treatments, with lower outcomes more desirable. We consider two experi-
ments as outlined in Table 7.

We follow a similar approach to Sect. 4.3 to assign treatments in the training data. First,
we randomly draw five candidate doses (tk1 , tk2) where both tk1 , tk2 are drawn independently
from Uniform(−4, 4) , and evaluate the outcome function y(x, tk1 , tk2) . We then assign the
treatment using softmax probabilities over these five options.

The same methods are used as in Sect. 4.3, modified appropriately to account for two
treatment options. We discretize each treatment dose into six values, giving a total of 36
possible dose combinations over the two treatments.

Figure 5 shows the results. We make the following observations:

– Experiment 1 This experiment combines experiments 1 and 2 from Sect. 4.3, so the
optimal doses for the treatments are linear and piecewise-constant functions, respec-

Table 7 Experiment design
for synthetic experiments with
multiple continuous treatments

Experiment Outcome

1 g
1
(x, t

1
) + g

2
(x, t

2
)

2 g
3
(x, t

1
) + g

4
(x, t

2
)

Fig. 5 Results for synthetic experiments with multiple continuous-dose treatments. For Experiment 2,
greedy and optimal prescriptive trees have regret between 8 and 10 and are omitted from display to avoid
axis distortion

2760 Machine Learning (2022) 111:2741–2768

1 3

tively. The policy trees and R&C learn this structure very quickly. The prescriptive
trees learn much more slowly, due to the data being thinned across the 36 possible treat-
ment options.

– Experiment 2 This experiment combines experiments 3 and 4 from Sect. 4.3, so the
optimal doses for the treatments are piecewise-constant and piecewise-linear functions,
respectively. The prescriptive tree approaches are unable to learn from this data and
have regret above 8 regardless of the training set size, significantly higher than the other
approaches (thus are not shown in the figure). The policy tree approaches converge
similarly to R&C, with the optimal policy trees performing stronger than the greedy
approach, due to the complexity of the problem structure.

In summary, the prescriptive approaches are particularly inefficient for problems of this
nature, as the discretization of the treatment options thins the data and makes learning sig-
nificantly more difficult. In contrast, the policy tree approaches can learn from the data
equally well regardless of the number of treatment options, and match the performance
of the regress-and-compare approach, with the optimal method outperforming the greedy
method when the outcome function is non-trivial.

4.5 Runtime comparison

In addition to the relative performance of each method, we are also interested in compar-
ing their runtimes. Table 8 shows the mean runtime in seconds for each method on each
of the synthetic experiments discussed earlier. These reported runtimes are for the largest
instance of each problem with n = 5, 000 training points, and measure the complete time to

Table 8 Mean runtime (in seconds) for each method on each of the synthetic experiments with n = 5, 000
training points. The methods are abbreviated as GPrT (Greedy Prescriptive Trees), OPrT (Optimal Prescrip-
tive Trees), GPoT (Greedy Policy Trees), OPoT (Optimal Policy Trees), R&C (Regress and Compare), and
CF (Causal Forest)

Treatment Type Experiment GPrT OPrT GPoT OPoT R&C CF

Discrete (Binary) 1 0.2 42.9 25.1 35.0 21.1 1.9
2 0.2 46.1 24.9 33.3 28.8 1.8
3 0.3 40.0 32.0 44.0 34.1 2.7
4 0.2 52.5 21.6 54.7 19.5 1.6
5 0.2 41.4 22.3 44.6 21.7 2.0
6 0.2 40.5 25.0 54.5 21.5 2.7
7 0.2 40.0 24.6 49.2 22.2 1.8

Discrete (Multiple) 1 0.2 44.3 27.6 48.4 25.6 –
2 0.3 52.1 32.1 52.7 36.7 –

Continuous (Single) 1 0.5 91.1 1.8 23.1 1.8 –
2 0.5 94.8 1.6 17.3 1.7 –
3 0.6 68.0 2.3 25.3 2.1 –
4 0.6 102.4 2.2 73.4 2.0 –

Continuous (Multiple) 1 1.8 294.4 2.4 45.0 5.2 –
2 2.0 248.7 3.0 109.4 6.0 –

2761Machine Learning (2022) 111:2741–2768

1 3

run each method, including training, validation, and reward estimation for the policy tree
methods.

In the case of discrete treatments, we see that the greedy prescriptive trees are the fast-
est, while the greedy policy trees have times similar to R&C. This is because the greedy
policy tree runtime includes the time for reward estimation, which like R&C involves train-
ing separate random forests for each treatment and dominates the runtime. As we might
expect, the optimal tree methods take more time to run than their greedy variants. The
runtimes for both optimal tree methods are roughly equivalent, and are typically are slower
than R&C by a factor of between 1.5 and 2.5.

For the problems with continuous treatments, we see that again the greedy trees have
the lowest runtimes, with greedy policy trees again having similar runtime to R&C. We
see that the cost of R&C and reward estimation is much lower in the continuous treatment
setting, with R&C being roughly an order of magnitude faster compared to the discrete
treatments. The optimal policy trees have similar runtimes to the discrete treatment case,
whereas the optimal prescriptive trees have higher runtimes. In particular, the runtimes for
optimal prescriptive trees with multiple continuous treatments are much higher than for
a single continuous treatment, indicating that this approach is not as suited to handling
problems with so many treatment options, compared to the policy tree approach which has
much lower runtimes.

In all of these cases, the optimal policy trees have runtimes on the order of minutes on
these moderately-sized problems with n = 5, 000 and up to 36 treatment options, which
demonstrates the scalability of this approach.

4.6 Summary of synthetic experiments

In this section we conducted a number of experiments covering both discrete and continu-
ous dose treatments, as well as multiple treatments. The common theme seen in the results
was that the policy tree approach performed similarly to the black-box regress-and-com-
pare methods, whereas the prescriptive tree method often struggled. In the case of discrete
treatments, the performance of policy trees was related to the complexity of the treatment
effect alone, whereas for prescriptive trees, the performance depended on the complexity
of the entire outcome function. For continuous dose treatments, the policy trees learned
efficiently regardless of the number of treatment doses considered, whereas the prescriptive
trees suffered if the data was spread too thinly across the doses. In both cases, the optimal
policy trees approach outperformed the greedy approach when the relevant treatment func-
tion was non-trivial to learn.

5 Performance on real‑world data

In this section, we consider three applications of Optimal Policy Trees in real-world appli-
cations. First, we consider the problem of pricing in a grocery store setting, where the price
is a single continuous-dose treatment to optimize. Second, we consider diabetes manage-
ment, where the task is to determine the optimal doses for multiple drug options. Finally,
we consider the task of pricing financial instruments, where there are many existing pricing
strategies that are used to construct prices based on the current market state, and we want
to determine which pricing strategies work best in different conditions, thus framing the
task as a prescriptive problem with multiple discrete treatment options.

2762 Machine Learning (2022) 111:2741–2768

1 3

5.1 Grocery pricing

In this section, we apply Optimal Policy Trees to the problem of grocery store pric-
ing, using a publicly available dataset collated by the analytics firm Dunnhumby. The
dataset has detailed transaction, household, and product information on over 200,000
shopping trips. This dataset was studied in Biggs et al. (2020) where they showed an
estimated 67% increase in predicted revenue for strawberries under a greedy tree-based
pricing algorithm. We treat this problem as a prescriptive problem with the price as a
continuous-dose treatment, and compare the performance of Optimal Policy Trees to
other methods.

We followed the same data preparation as described in Biggs et al. (2020), where
each row refers to a shopping trip with detailed information on the household, the
unit price of the strawberries (ranging from $1.99 to $5.00, with most of the prices in
50-cent increments), and the outcome (whether the strawberries was purchased or not).
Similar to the previous analysis, if the household did not purchase any strawberries,
the price was imputed using an average of previous transactions. The data was split
into 50% training and 50% testing, with an independent XGBoost model estimating the
rewards under each pricing scenario in the testing data.

To apply Optimal Policy Trees, we first estimated the expected revenue under each
price option on the training data . To achieve this, we used XGBoost to predict the
purchase probability as a function of household features and continuous price, and then
for each training point and price option, we multiplied the price by the estimated pur-
chase probability under this price to get the expected revenue. We then fit an Optimal
Policy Tree on the household features and these revenue estimates. For a fair compari-
son to Biggs et al. (2020), we also trained a greedy policy tree on the same revenue
estimates. We also compare against Optimal Prescriptive Trees, by treating each 50-cent
price point as a discrete treatment and the observed revenue as the outcome. For all
three methods, we used cross-validation to tune the depth of the decision trees, up to a
maximum of 6.

The results are shown in Table 9, where we show the increase in revenue under each
model, which is calculated as the difference between the estimated revenue under pre-
scribed price vs. current price. We see that the Optimal Policy Trees has the best per-
formance among the three, with over 77% improvement in revenue. The greedy pol-
icy tree approach achieved an improvement in revenue of 66%, which is similar to the
result reported in Biggs et al. (2020) (where the small difference is likely attributable
to a different training/testing split). The improvement of over 11% for Optimal Policy
Trees over the greedy approach demonstrates the significant performance gains we can
achieve by training the tree with a view to global optimality.

We also observe that both policy tree approaches outperform Optimal Prescriptive
Trees, which shows an estimated revenue improvement of 62%. This reinforces the

Table 9 Comparison of different
methods in the grocery pricing
example

Method Increase
in revenue
(%)

Optimal Prescriptive Trees 61.5
Policy Trees (greedy) 65.9
Policy Trees (optimal) 77.1

2763Machine Learning (2022) 111:2741–2768

1 3

results of Sect. 4.3 that separating the reward estimation and policy learning tasks pro-
vides an edge when faced with outcomes that are a complex function of a continuous
dose treatment.

A trimmed version the Optimal Policy Tree is shown in Fig. 6 as an example. The tree
splits based on marital status, home ownership, age, income level, household composition,
etc., where generally it prescribes lower prices for households with lower income and vice
versa. We note that we recommend the highest price of $5.00 in one of the leaves, which is
defined by a younger population (≤ 34 years old), that are two adults with no children, own
their house, and have a high income level (above $125k). This is consistent with intuition
that this demographic group can be price insensitive.

Note that in practice, an individual-based pricing policy may not be feasible due to reg-
ulatory and operational constraints, but this approach could be easily adapted to the store
level pricing decisions based on aggregate demographic features for the region, and still
deliver an improvement in revenue.

5.2 Diabetes management

In this section, we apply our algorithms to personalized diabetes management using
patient-level data from Boston Medical Center, under a multi-treatment continuous dos-
ing setup. This dataset was first considered by Bertsimas et al. (2017), where the authors
propose a k-nearest neighbors (kNN) regress-and-compare approach, and was revisited by
Bertsimas et al. (2019) with Optimal Prescriptive Trees.

This dataset consists of electronic medical records for more than 1.1 million patients
from 1999 to 2014. We consider more than 100,000 patient visits for patients with type
2 diabetes during this period. The features of each visit include demographic informa-
tion (sex, race, gender etc.), treatment history, and diabetes progression. The goal is to

Fig. 6 Optimal Policy Tree with continuous dosing for grocery store pricing

2764 Machine Learning (2022) 111:2741–2768

1 3

recommend a treatment regimen for each patient, where a regimen is a combination of oral,
insulin, and metformin drugs and their dosages.

In the previous studies, the regress-and-compare and Optimal Prescriptive Trees
approaches were limited to considering discrete treatments, so the treatment options were
discretized into 13 different combinations, from which the method had to prescribe one
choice to the patient. This has the unfortunate side effect of removing information about
the proximity of different drug combinations. For instance, the combinations “insulin +
metformin” and “insulin + metformin + 1 oral” are similar prescriptions, and it is plausible
we may be able to learn shared information from patients that received either of these. On
the other hand, “insulin” and “metformin + 2 oral” are very unrelated and we should not
expect to use the patients receiving one of these to learn about the other.

When the treatments are discretized, all treatments are completely disjoint, and the
rewards are learned separately, with no ability for shared learning where appropriate.
Another approach is to view this problem as multiple continuous dose treatments. In this
way, the treatment decision becomes the doses of insulin, metformin and oral drugs to
apply, which we can view as a vector (zinsulin, zmetformin, zoral) . From this perspective, the
combinations “insulin + metformin”, (1, 1, 0), and “insulin + metformin + 1 oral”, (1, 1,
1), are indeed closer than “insulin”, (1, 0, 0) and “metformin + 2 oral”, (0, 1, 2), and thus
we might expect that viewing the problem in this way could lead to more efficient learning
due to the ability to share information across treatments.

We consider applying Optimal Policy Trees to this problem, both with 13 discrete treat-
ment options and also with the continuous dosing model described earlier, to examine
whether this more accurate model of the treatments indeed leads to better data efficiency.
We used boosting to estimate the rewards in both the discrete and continuous-dose treat-
ment models. To ensure fairness, the continuous-dose Optimal Policy Trees were required
to prescribe from the same 13 treatment options, so any difference comes from better esti-
mation due to a more accurate model of reality.

We follow the same experimental design as in Bertsimas et al. (2017). The quality of the
predictions on the testing data is evaluated using a random-forest approach to impute the
counterfactuals on the test set. We use the same three metrics to evaluate the various meth-
ods: the mean HbA1c improvement relative to the standard of care; the percentage of visits
for which the algorithm’s recommendations differed from the observed standard of care;
and the mean HbA1c benefit relative to standard of care for patients where the algorithm’s
recommendation differed from the observed care. These metrics were selected because the
reduction in HbA1c is considered clinically relevant.

We varied the number of training samples between 1,000 and 50,000 (with the test set
fixed) to examine the effect of the amount of training data on out-of-sample performance.
In addition to both Optimal Prescriptive Trees and Optimal Policy Trees (with both dis-
crete and continuous treatment models), we consider the performance of a baseline method
that continues the current line of care, and an oracle method that prescribes the best treat-
ment for each patient is selected according to the estimated counterfactuals on the test set.

In Fig. 7, we show the performance across these methods. We observe that while all
three tree methods converge to roughly the same performance as all the data is used, the
Optimal Policy Trees achieve much better results when the training set is smaller. In addi-
tion, the Optimal Policy Trees based on the continuous-dose reward model outperform
those based on the discrete treatment reward model. In fact, we see that the performance
of the continuous-dose policy trees is roughly constant regardless of the size of the train-
ing set, indicating it is extremely efficient with the data, and only requires 1,000 samples
to deliver performance equivalent to the Optimal Prescriptive Trees with 50,000 samples.

2765Machine Learning (2022) 111:2741–2768

1 3

This is very strong evidence that separating the counterfactual estimation and policy learn-
ing steps and permitting shared learning across treatments enable extremely efficient use of
data.

We show an example of the Optimal Policy Tree (continuous dosing) output in Fig. 8
trained with 1,000 data points. We can see that it uses the patient’s recent HbA1c history,
age, current line of treatment, years since previous diagnosis, and BMI to prescribe from
the variety of treatments. This tree, with 10 leaves, is significantly smaller than the best
Optimal Prescriptive Tree, which had 21 leaves, with similar performance. This is strong
evidence that separating the counterfactual estimation from the policy learning results in
more concise trees that focus solely on the factors that affect treatment assignment. In con-
trast, the Optimal Prescriptive Trees are larger because the splits in the tree serve two pur-
poses: refining the counterfactual estimation and determining the optimal treatment policy.

Fig. 7 Comparison of methods for personalized diabetes management. The leftmost plot shows the over-
all mean change in HbA1c across all patients (lower is better). The center plot shows the mean change in
HbA1c across only those patients whose prescription differed from the standard-of-care. The rightmost plot
shows the proportion of patients whose prescription was changed from the standard-of-care

Fig. 8 Optimal Policy Tree with continuous dosing for personalized diabetes management

2766 Machine Learning (2022) 111:2741–2768

1 3

5.3 Pricing financial instruments

In this section, we apply Optimal Policy Trees to develop a new interpretable pricing
methodology for exchange-traded financial instruments (e.g. stocks, bonds, etc.). For
commercial sensitivity reasons, some details of the study are omitted and the tree we
show is illustrative.

The problem we consider is predicting the future price of an asset at some time in the
near future (on the order of minutes). The data available for prediction is the transac-
tion history of this and other assets as well as all buy/sell orders on the market and their
price points.

There are many approaches to predict future prices from this information. For
instance, a common calculation is the mid-price, which is the average price of the high-
est “buy” (bid price) and lowest “sell” (ask price) orders. Another is the weighted mid-
price, which is similar but weights the average by the size of the orders. There are many
such pricing formulae that consider various aspects of the historical data (e.g. historical
transaction prices, momentum prices, high-liquidity prices, etc.), and these are often
highly-complex non-linear formulae that have been hand-designed based on domain
expertise. In collaboration with domain experts, we identified nearly 200 such pricing
formulae that are regularly used. It is known that different formulae perform well in
some market conditions and poorly in others, but this is based loosely on human intui-
tion and not directly understood in a quantitative fashion. Given the work and experi-
ence that has gone into carefully crafting these highly non-linear formulae, instead of
trying to construct our own pricing formula from scratch, we decided to treat each for-
mula as a distinct treatment option and attempt to learn which formula to apply in differ-
ent market scenarios to achieve the best price predictions.

We applied Optimal Policy Trees to develop a policy for which pricing methodology
is best to use under different market conditions. Mathematically, each observation i con-
sists of market features xi ∈ ℝ

p , and we have a set of m pricing methodologies to choose
from. For every observation i and every pricing methodology t, we derive the rewards
Γit by computing the absolute difference between the actual future price and the price
calculated by method t given market features xi . The reward matrix Γ is therefore fully
known and does not need to be inferred. We train Optimal Policy Trees against these
errors to learn which pricing strategy is most accurate in different market conditions.

An example of the Optimal Policy Trees learned on the data is shown in Fig. 9. We
observe that the tree prescribes the mid-price when liquidity is low: this is consist-
ent with the intuition that in such conditions, most of the market signals are noisy and
the best choice is to simply average the bid and ask prices. On the other hand, in high
liquidity conditions, the tree then splits on order imbalance, picking the weighted mid-
price as the best estimator when the number of orders on the buy and sell sides are simi-
lar and the market is balanced. On the other hand, if the sizes of buy and sell orders are
highly imbalanced, the tree then splits on the direction of the disparity to either assign
the ask price if the bias is towards the “buy” side, or the bid price if the bias is towards
the “sell” side, mirroring the fundamental dynamics of supply and demand. Together,
the splits of this tree provide a clear and understandable formalization of when each
price is best that is aligned with human intuition.

In comprehensive out-of-sample testing, the pricing approaches developed using
Optimal Policy Trees consistently outperformed the existing approaches to pricing by
up to 2% in terms of accuracy of future price predictions, and the interpretability and

2767Machine Learning (2022) 111:2741–2768

1 3

transparency of the models allow humans to derive insights and further their own under-
standing of the problem.

6 Conclusions

In this paper, we presented an interpretable approach for learning optimal prescrip-
tion policies, combining the state-of-the-art in counterfactual estimation from the causal
inference literature with the power of modern techniques for global decision tree opti-
mization. The resulting Optimal Policy Trees are highly interpretable and scalable, and
our experiments showed that they offer best-in-class performance, outperforming similar
greedy approaches, and make extremely efficient use of data compared to prescriptive tree
methods.

Finally, we showed in a number of real-world applications that this approach results in
prescription policies of significantly higher quality when compared to existing approaches.

This framework of learning prescription policies is very general and invites many paths
for potential future work. For example, one might consider multi-output scenarios where
a prescription could affect several outputs at once. Another avenue could be considering
constraints on which treatments can be applied to each observation depending on their
features.

Funding The work was conducted by the authors while employed by Interpretable AI LLC.

Availability of data and material The dataset used in Section 4.1 is publicly available. The datasets used in
Sections 4.2 and 4.3 are confidential.

Code availability The code implementing the experiments is available upon request. The code implementing
the Optimal Policy Tree algorithm is available under a free academic license from Interpretable AI LLC.

Fig. 9 Example Optimal Policy
Tree that prescribes the best
pricing method based on market
conditions

2768 Machine Learning (2022) 111:2741–2768

1 3

Declarations

 Conflict of interest The authors have financial interests in Interpretable AI LLC.

References

Aglin, G., Nijssen, S., & Schaus, P. (2020). Learning optimal decision trees using caching branch-and-
bound search. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 3146–3153.

Athey, S., & Wager, S. (2017) Efficient policy learning. arXiv: 1702. 02896
Bennett, K.P. (1992). Decision tree construction via linear programming. In Evans, M. (ed.) Proceedings of

the 4th Midwest Artificial Intelligence and Cognitive Science Society Conference, pp. 97–101.
Bertsimas, D., & Dunn, J. (2019). Machine learning under a modern optimization lens. Dynamic Ideas LLC.
Bertsimas, D., & Dunn, J. (2017). Optimal classification trees. Machine Learning, 106(7), 1039–1082.
Bertsimas, D., Dunn, J., & Mundru, N. (2019). Optimal prescriptive trees. INFORMS Journal on Optimiza-

tion, 1(2), 164–183.
Bertsimas, D., Kallus, N., Weinstein, A. M., & Zhuo, Y. D. (2017). Personalized diabetes management

using electronic medical records. Diabetes Care, 40(2), 210–217.
Biggs, M., Sun, W., & Ettl, M. (2020). Model distillation for revenue optimization: Interpretable personal-

ized pricing. arXiv: 2007. 01903.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. Boca

Raton: CRC Press.
Carrizosa, E., Molero-Río, C., & Morales, D. R. (2021). Mathematical optimization in classification and

regression trees. Top, 29(1), 5–33.
Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm

sigkdd international conference on knowledge discovery and data mining, pp. 785–794.
Dudík, M., Langford, J., & Li, L. (2011). Doubly robust policy evaluation and learning. arXiv: 1103. 4601.
Friedman, J.H. (2001). Greedy function approximation: A gradient boosting machine. Annals of statistics

pp. 1189–1232.
Kallus, N. (2017). Recursive partitioning for personalization using observational data. In International Con-

ference on Machine Learning, PMLR, pp. 1789–1798.
Nijssen, S., & Fromont, E. (2010). Optimal constraint-based decision tree induction from itemset lattices.

Data Mining and Knowledge Discovery, 21(1), 9–51.
Powers, S., Qian, J., Jung, K., Schuler, A., Shah, N. H., Hastie, T., & Tibshirani, R. (2018). Some meth-

ods for heterogeneous treatment effect estimation in high dimensions. Statistics in Medicine, 37(11),
1767–1787.

Verhaeghe, H., Nijssen, S., Pesant, G., Quimper, C. G., & Schaus, P. (2020). Learning optimal decision trees
using constraint programming. Constraints, 25(3), 226–250.

Verwer, S., & Zhang, Y. (2017). Learning decision trees with flexible constraints and objectives using inte-
ger optimization. In International Conference on AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, Springer, pp. 94–103.

Wager, S., & Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using random
forests. Journal of the American Statistical Association, 113(523), 1228–1242.

Zhou, Z., Athey, S., & Wager, S. (2018). Offline multi-action policy learning: Generalization and optimiza-
tion. arXiv: 1810. 04778.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1702.02896
http://arxiv.org/abs/2007.01903
http://arxiv.org/abs/1103.4601
http://arxiv.org/abs/1810.04778

	Optimal policy trees
	Abstract
	1 Introduction
	2 Related literature
	3 Optimal policy trees
	3.1 Learning optimal policy trees
	3.2 Estimating rewards
	3.2.1 Estimating rewards for discrete treatments
	3.2.2 Estimating rewards for continuous treatments

	3.3 Estimation and evaluation procedure in practice
	3.4 Weighted-loss classification

	4 Performance on synthetic data
	4.1 Binary treatment
	4.2 Multiple treatments
	4.3 Continuous treatment
	4.4 Multiple continuous treatments
	4.5 Runtime comparison
	4.6 Summary of synthetic experiments

	5 Performance on real-world data
	5.1 Grocery pricing
	5.2 Diabetes management
	5.3 Pricing financial instruments

	6 Conclusions
	References

