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Abstract
We propose an approach for learning optimal tree-based prescription policies directly from 
data, combining methods for counterfactual estimation from the causal inference literature 
with recent advances in training globally-optimal decision trees. The resulting method, 
Optimal Policy Trees, yields interpretable prescription policies, is highly scalable, and han-
dles both discrete and continuous treatments. We conduct extensive experiments on both 
synthetic and real-world datasets and demonstrate that these trees offer best-in-class perfor-
mance across a wide variety of problems.

Keywords Machine learning · Decision trees · Prescriptive decision making

1 Introduction

The ever-increasing availability of high-quality and granular data is driving a shift away 
from one-size-fits-all policies towards personalized and data-driven decision making. In 
medicine, different treatment courses can be recommended based on individual patient 
characteristics rather than following general rules of thumb. In insurance, underwriting 
decisions could be made at the individual level, rather than relying on aggregate popula-
tions and actuarial tables. In e-commerce, consumers may experience a personalized ver-
sion of a website, tailored to their shopping tastes. In all domains, the ability to understand 
the underlying phenomena in the data to aid decision making is critical.

In this paper, we consider the problem of determining the best prescription policy 
for assigning treatments to a given observation (e.g. a customer or a patient) as a func-
tion of the observation’s features. A common context is that we have observational data 
of the form 

{
(xi, yi, zi)

}n

i=1
 consisting of n observations. Each observation i consists of 
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features xi ∈ ℝ
p , an applied prescription zi , and an observed outcome yi ∈ ℝ . Depend-

ing on the scenario, the prescription may be one choice from a set of m available treat-
ments ( zi ∈ {1,… ,m} , noting that discrete treatments in higher dimensions can be flat-
tened and numbered 1 to m without loss of generality), or could be the dosage of one or 
more continuous treatments ( zi ∈ ℝ

m ). Our prescriptive task is to develop a policy that, 
given x , prescribes the treatment z that results in the best outcome y.

Decision trees are an appealing class of model to apply to this problem, as their inter-
pretability and transparency allows humans to inspect and understand the decision-mak-
ing process, to both develop their understanding of the underlying phenomenon and to 
identify and correct flaws in the model. The interpretability is arguably more important 
in prescriptive problems than in predictive problems, as a prescriptive model recom-
mends actions with direct and often significant consequences, requiring more transpar-
ency and justification than models that simply make predictions.

One of the key difficulties in learning from observational data is the lack of complete 
information. In the data, we only observe the outcome corresponding to the treatment 
that was applied. Crucially, we do not observe what would have happened if we had 
applied other treatments to each observation, the so-called counterfactual outcomes.

Previous approaches  (Bertsimas et  al. 2019; Kallus 2017) for decision tree-based 
prescriptions from observational data dealt with the lack of information by embedding 
a counterfactual estimation model inside the prescriptive decision tree, combining the 
tasks of estimating the counterfactuals and learning the optimal prescription policy. 
While this approach has the attractive property of learning from the data in a single 
step, it also makes the learning problem more complicated and thus limits the complex-
ity of counterfactual estimation to approaches than can be practically embedded in a 
tree-training process.

Some recent works (Biggs et al. 2020; Zhou et al. 2018) have proposed decision tree 
approaches to this problem that separate the counterfactual estimation and policy learn-
ing steps. Instead of a single learning step, the counterfactuals are first estimated using 
a method that models the data well, and than a decision tree is trained against these 
estimates to learn an optimal prescription policy (see Table  1 for an example of the 
counterfactual estimation process). These approaches use greedy heuristics to train the 

Table 1  Example reward estimation problem

 The table on the left is the observed data, which is the input to the reward estimation process. The table on 
the right is the output of this procedure, which is the estimated reward that should be attributed to the deci-
sion to assign a given treatment to any observation. We use these estimated rewards as input when training 
Optimal Policy Trees
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decision trees, rather than aiming for global optimality (Zhou et al. 2018 also include an 
exhaustive tree search, which does not scale beyond shallow trees and small datasets).

The limitations of such a greedy search are well-known in the literature, evidenced by 
the extensive research into approaches for training decision trees that are globally-optimal, 
particularly in recent years (see Carrizosa et  al. 2021 for a survey covering many such 
methods). Experiments on both synthetic datasets and real-world applications have shown 
that modern optimization techniques can be applied to such problems and achieve solutions 
that achieve performance comparable to black-box methods while maintaining the inter-
pretability of a single decision tree.

In this paper, we propose an approach that extends our earlier work on training globally-
optimal trees to construct policy trees that are interpretable, highly scalable, handle both 
discrete and continuous treatments, and have best-in-class performance on both synthetic 
and real-world datasets. Specifically, we summarize our contributions in this paper:

– We extend the Optimal Trees framework of Bertsimas and Dunn (2017, 2019); Bert-
simas et al. (2019) to the problem of learning prescription policies based on complete 
counterfactual information estimated using state-of-the-art approaches from the causal 
inference literature. The resulting Optimal Policy Trees are interpretable and highly 
scalable, and can handle problems where we must choose one treatment from a set of 
possible options, as well as problems where we need to prescribe continuous-valued 
doses for one or more treatments.

– We demonstrate through comprehensive synthetic experiments and number of real-
world applications that Optimal Policy Trees have best-in-class performance, outper-
forming prescriptive tree approaches by a significant margin, and also offering signifi-
cant performance gains over the existing greedy policy tree approaches.

The structure of the paper is as follows. In Sect. 2, we review related literature in decision 
tree induction and general policy learning from observational data. In Sect. 3, we present 
Optimal Policy Trees and algorithm we propose for training these trees in greater detail, 
including a summary of the methods used for counterfactual estimation. In Sect.  4, we 
conduct comprehensive experiments with synthetic data to compare the performance of 
Optimal Policy Trees to other methods across a variety of problem classes. In Sect. 5, we 
present a number of applications of Optimal Policy Trees to real-world problems. Finally, 
in Sect. 6 we summarize our conclusions.

2  Related literature

Decision tree methods like CART (Breiman et al. 1984) are one of the most popular meth-
ods for machine learning, primarily due to their interpretability. Because they split on a 
single feature at a time, it is simple for a human to follow the decision logic of the tree. 
However, the performance of these trees is often much weaker than approaches that sacri-
fice interpretability by aggregating multiple trees, such as random forests (Breiman 2001) 
or gradient boosting  (Friedman 2001), forcing practitioners to choose between interpret-
ability or performance.

Recent advances in modern optimization have led to approaches that eschew the tra-
ditional greedy heuristics used to train decision trees in favor of approaches rooted in 
global optimization. A variety of methodologies have been proposed to solve this problem, 
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including linear programming  (Bennett 1992), integer programming  (Verwer and Zhang 
2017), constraint programming  (Nijssen and Fromont 2010; Verhaeghe et  al. 2020), and 
branch-and-bound search  (Aglin et  al. 2020), among many others (see Carrizosa et  al. 
(2021) for a survey covering many such works in great detail). Many works have prom-
ising performance gains compared to their greedy counterpart, but are often limited in 
the scalability where the trees are limited to depth 4 or 5 and the datasets are limited to 
1000 observations (Verwer and Zhang 2017). One such approach is Optimal Classification 
Trees (Bertsimas and Dunn 2017), later extended to a general-purpose framework in Bert-
simas and Dunn (2019). The Optimal Trees framework solves a mixed-integer optimization 
formulation of the decision tree problem using coordinate descent, permitting optimization 
of decision trees according to an arbitrary loss function, and has tailored algorithms for 
tuning its hyperparameters to avoid overfitting. Moreover, this approach also scales well to 
datasets with millions of observations and thousands of features, making it one of the more 
practical options for learning optimal decision trees. Comprehensive experiments on syn-
thetic and real-world datasets have shown that these Optimal Trees achieve performance 
levels comparable to black-box methods without sacrificing interpretability.

There have been a number of tree-based approaches to prescriptive decision making. 
Personalization trees  (Kallus 2017) use a greedy approach to simultaneously estimate 
counterfactuals and learn the optimal prescription policy directly from the data. These per-
sonalization trees can also be aggregated into personalization forests that improve perfor-
mance at the cost of interpretability. Optimal Prescriptive Trees  (Bertsimas et  al. 2019) 
are similar to personalization trees, and apply the Optimal Trees framework to a similar 
problem modified to incorporate the accuracy of the counterfactual estimation in the objec-
tive function. Both personalization trees and Optimal Prescriptive Trees offer the ability to 
estimate the counterfactuals and learn the optimal prescription policy from data in a single 
step, but this has the limitation that the class of model used for counterfactual estimation is 
limited to what can be embedded in a tree-learning procedure without sacrificing tractabil-
ity. In particular, Optimal Prescriptive Trees can estimate the counterfactuals as piecewise-
constant or piecewise-linear function s, but the structure of the outcomes is often more 
complicated in practice. Another drawback is that embedding the counterfactual estima-
tion inside the tree can detract from the interpretability of the prescription policy, as the 
splits of the tree are used not just to develop the prescription policy, but also to refine and 
improve the counterfactual estimates. As such, it can be difficult to understand which parts 
of the tree relate directly to the prescription policy alone. Finally, the trees rely on having 
enough data in each leaf to estimate the outcome for each treatment, which can mean that a 
lot of data is required if the number of possible treatments is high.

Recent works have proposed separating the counterfactual estimation and policy 
learning tasks, using a decision tree for the latter to construct an interpretable prescrip-
tion policy. In contrast to prescriptive trees, which simultaneously predict counterfactual 
outcomes and prescribe the corresponding optimal treatment assignments, these policy 
trees only learn to prescribe the best treatment assignment. Zhou et al. (2018) use dou-
bly-robust estimators from the causal inference literature (Dudík et al. 2011) to estimate 
the counterfactual outcomes from observational data with discrete treatments. Their use 
of this doubly-robust estimator is important, as it is able to account for treatment assign-
ment bias in the observed data, whereas a naive approach that predicts the outcomes 
directly may lead to biased estimates that can mislead any subsequent prescription pol-
icy. Using these estimates, they proceed to learn a tree-based prescription policy, con-
sidering both a greedy approach and an exhaustive optimal approach to training trees, 
with the latter unsurprisingly exhibiting poor scalability (results from this exhaustive 
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method are only shown for trees with three splits). Another approach for greedy policy 
trees is proposed by Biggs et al. (2020), where a black-box model is trained to predict 
the outcomes from observational data with continuous treatments. This model is used to 
estimate the counterfactual outcomes under possible candidate treatment options, and 
used to feed a greedy tree-learning process. Both of these approaches share the common 
approach of using the best model available for counterfactual estimation, and then using 
a decision tree to learn an interpretable prescription policy based on these estimates. 
They also share the common limitation that using a greedy heuristic for training trees is 
likely to result in sub-optimal policies that do not attain maximum performance and also 
likely results in larger trees that are harder to interpret.

In addition to interpretable decision trees, there are a number of black-box methods 
that can be used for prescription in this setting, including the aforementioned personali-
zation forests as well as causal forests (Wager and Athey 2018), causal boosting (Powers 
et al. 2018), and causal MARS (Powers et al. 2018), although these causal approaches 
only deal with the case where the treatment is a binary decision. These methods give 
high-quality estimates of the treatment effect, which can be used for prescription based 
on whether the predicted effect is positive or negative, but offer no further insight into 
the reasons behind prescriptions.

Another class of black-box methods is the so-called regress-and-compare approach, 
which involves training models for each treatment option to predict the outcome func-
tion under that treatment. To make a prescription for a new observation, these models 
are used to predict the outcome under each candidate treatment option, and the treat-
ment with the best predicted outcome is prescribed. A recent example of this method is 
Bertsimas et al. (2017), where in the context of diabetes management a k-nearest-neigh-
bors approach is used to estimate the counterfactual outcomes under a range of different 
treatment options, and the combination of drugs with the best outcome is prescribed. 
Unlike the doubly-robust estimator used by Zhou et al. (2018), the regress-and-compare 
method is susceptible to treatment assignment bias in the observed data, and as a result 
may not be able to correctly identify causal relationships in the data. Unfortunately, it is 
not possible to use the doubly-robust estimates in a regress-and-compare setting, as they 
are only meaningful when used in aggregate to compare alternative policies, and should 
not be interpreted on a per-observation basis  (Dudík et al. 2011). It is also difficult to 
interpret the results of a regress-and-compare approach, because we have to investigate 
the details of each of the treatment models in order to understand why a given treat-
ment has the best prediction. Another limitation is that this approach spreads the data 
across separate learning tasks for each treatment option, which can limit the amount of 
data available for learning and prohibits joint learning across all treatments together, 
which may affect the accuracy of the outcome estimates and in turn impact the quality 
of the resulting prescriptions. In particular, because the determination of the optimal 
prescription is made separately for each observation, the policy is very sensitive to over-
fitting, as even a single low-quality outcome estimate can lead to suboptimal prescrip-
tion for the corresponding observation. In contrast, encoding the prescription policy as 
a decision tree may help to regularize the prescriptions and reduce their sensitivity to 
the input data and training process. Finally, it can be a problem that the outcome estima-
tion models are trained separately from the policy evaluation task, as they may focus on 
predicting the outcomes in areas that are not as relevant for deciding which treatment 
is best. This can lead to less efficient use of data compared to other methods that focus 
directly on learning the decision boundary.
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3  Optimal policy trees

In this section, we introduce Optimal Policy Trees and detail the algorithm that we propose 
for training these trees.

Suppose we have n observations in the training data, { xi}ni=1 , and there are m possible 
treatment options (in the case of continuous treatments, this can be achieved by discretiz-
ing, as discussed in Sect. 3.2). Further, assume we are given the reward that is attained for 
every observation i under every prescription option t, denoted Γit . Without loss of general-
ity, assuming lower reward is better, the problem we seek to solve is

where �(x) is a policy that assigns prescriptions to observations based solely on their fea-
tures x , and 1{.} is the indicator function that takes value 1 if its argument is true, and 0 
otherwise.

If we knew the outcome for every observation under each prescription option, we could 
simply use these outcomes as the rewards Γit . Of course, in reality we often do not know 
the outcomes for every observation under each prescription. In particular, for observational 
data, we only have the outcome corresponding to the treatment that was applied in the his-
torical data. Nevertheless, we will proceed with solving Problem (1) assuming that these 
rewards are known. In Sect.  3.2 we will discuss strategies for estimating these rewards 
when they are not known.

3.1  Learning optimal policy trees

We will now solve Problem (1) using a decision tree-based model. Specifically, our pre-
scription policy function �(x) will make prescriptions following a decision tree that seeks 
to optimize the total overall cost of the policy according to the rewards.

The splits of this tree will use the feature values to direct observations to one of the 
leaves of the tree, and each leaf will assign the same prescription to all observations that 
fall into the leaf. An example of such a tree, which we call policy trees, is shown in Fig. 1.

While the tree looks similar to a classification tree, there is an important difference in 
how they are trained. A classification tree focuses only on whether the predicted label is 
correct, whereas the policy tree uses the rewards to take into account the relative cost of 
each treatment option. For instance, consider a setting with three treatment options and 
an observation with rewards under these treatments of [1, 2, 10]. Assuming that we seek 
to minimize the rewards, a classification view of this problem would deem that the first 
treatment (with the lowest reward) is the “correct” label, and we would get equal penalty 
for prescribing the second or third treatments. In contrast, the policy view of the problem 
would incur a relative penalty of 1 and 9 for prescribing the second and third treatments, 
respectively. In this way, the policy tree makes use of the relative values of the rewards 
rather than simply focusing on which treatment gives the best reward for each observation.

We denote the leaf of the tree into which an observation x falls as v(x) , and the prescrip-
tion made in each leaf � as z

�
 . Without loss of generality, we can assume the treatments are 

enumerated as 1, 2,… ,m so that z
�
∈ {1, 2,… ,m} . We can then express the prescription 

policy in terms of the leaf assignment function v(x) as

(1)min
�(.)

n∑

i=1

m∑

t=1

1{�(xi) = t} ⋅ Γit,
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Combining (1) and (2) yields the following optimization problem:

Specifically, for each observation i, we identify the leaf � = v(xi) containing this observa-
tion, and use the reward Γiz

�
 corresponding to the prescription in this leaf.

To solve Problem (3), we note that it is separable in the leaves of the problem:

This means that given a tree structure v(x) , we can find the optimal prescription in each leaf 
� by solving the following problem:

which can be solved simply by enumerating the possible prescription options.
Note that this problem formulation is equivalent to the classification tree problem 

under misclassification loss, with the addition of per-observation, per-class losses Γiz
�
 . 

We can thus use any approach for training classification trees to solve this problem, pro-
vided that they support the specification of such custom loss weights.

(2)�(x) =
∑

𝓁

1{v(x) = 𝓁} ⋅ z
𝓁
.

(3)min
v(.),z

n∑

i=1

∑

𝓁

1{v(xi) = 𝓁} ⋅ Γiz
𝓁

(4)min
v(.),z

∑

�

∑

i∶v(xi)=�

Γiz
�

(5)z
�
= argmin

t

∑

i∶v(xi)=�

Γit,

Fig. 1  Example of a policy tree 
that prescribes one of two treat-
ment options based on feature 
values
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≥ 1.532
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< -1.413

Prescribe A

≥ -1.413

Prescribe B
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In this case, we will utilize the Optimal Trees framework (Bertsimas and Dunn 2019) 
to optimize the tree structure and determine v(x) . Our particular choice of optimal deci-
sion tree learning algorithm is based both on the scalability and performance of the Opti-
mal Trees approach, as well as our existing familiarity with this particular method. This 
approach uses a coordinate descent algorithm to optimize an arbitrary objective function 
that depends only on the tree assignment function v(x) . Concretely, the objective we opti-
mize is Problem (3), and at each step of the coordinate descent process, we use the current 
tree structure to evaluate the currently-optimal values of z

�
 according to Eq. (5). Plugging 

these values of z
�
 back into (3) yields the current objective value, guiding the coordinate 

descent procedure. The full details of the general-purpose tree optimization algorithm used 
by Optimal Trees are presented in Section 8.3 of Bertsimas and Dunn (2019), but for clar-
ity, the exact problem being solved is

where numsplits(v) is the number of splits in the tree v, and depth(v) is the depth of the tree. 
There are three hyperparameters that control the size of the resulting trees to prevent over-
fitting, and must be specified by the user:

– Dmax : the maximum depth of the tree;
– � : the complexity parameter that controls the tradeoff between training accuracy and 

tree complexity;
– nmin : the minimum number of samples required in each leaf.

The first two of these are the most critical parameters to tune, and the Optimal Trees frame-
work details a tailored tuning algorithm for determining these parameters in Section 8.4 
of  (Bertsimas and Dunn 2019). For example, Dmax is tuned using a normal grid search 
over discrete values, whereas � is tuned using a pruning procedure based on generating 
a sequence of related trees and finding the value of � that would minimize the validation 
error.

As noted earlier, Problem (3) is also solved in the same fashion with a tree-based model 
by Biggs et al. (2020) and Zhou et al. (2018), but in both cases a greedy heuristic is used 
to train the tree. For other problem classes like classification and regression, there are sig-
nificant performance and interpretability advantages to training trees with globally optimal 
methods rather than greedily (Bertsimas and Dunn 2017, 2019; Bertsimas et al. 2019). Our 
experiments in Sects. 4 and 5.1 demonstrate that this is also the case for the optimal policy 
problem.

3.2  Estimating rewards

In Sect. 3.1, we assumed that we had access to reward information Γit for every observa-
tion i and every treatment option t. In some cases, we have access to this full informa-
tion about the problem (see Sect. 5.3 for an example), but often we have observational 
data and thus only observe the outcome for the treatment that was applied in the data. In 

(6)

min
v(.),z

(∑

𝓁

∑

i∶v(xi)=𝓁

Γiz
𝓁

)
+ � ⋅ numsplits(v)

s.t. depth(v) ≤ Dmax

|{i ∶ v(xi) = 𝓁}| ≥ nmin ∀l
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these cases, we will need to estimate the missing counterfactual outcomes. The method 
we use to estimate depends on the type of prescription decision being made.

3.2.1  Estimating rewards for discrete treatments

When the prescription is a choice of one treatment from a set of possible options, we 
draw on the causal inference literature and use doubly-robust estimates  (Dudík et  al. 
2011) for the outcomes, as outlined by Zhou et al. (2018) and Athey and Wager (2017).

For clarity, we present the estimation process here. There are three steps: 

1. Propensity score estimation We train a model to estimate the probability p̂it that a given 
observation i is assigned a given treatment t. We use the features xi and the assigned 
treatments zi observed in the data to train a multi-class classification model (such as 
random forests or boosting), and use this model to estimate treatment assignment prob-
abilities. To avoid overfitting to the data, a k-fold cross-validation process is used for 
estimation, where the probabilities for the data in each fold are estimated using a model 
trained on the remaining data not in the fold.

2. Outcome estimation We train a model to estimate the outcome r̂it for each observation 
i under each treatment option t. For each treatment t, we train a regression model on the 
subset of training data that received this treatment, and predict the observed outcomes 
yi as a function of the features xi . We then use these models to estimate the outcomes 
r̂it for all observations under all treatments. As for propensity score estimation, random 
forests and boosting models can be used for this prediction. A variant approach combin-
ing random forests with multiple causal forests is also presented in Zhou et al. (2018).

3. Doubly-robust estimation Finally, the estimated propensity scores p̂it and outcomes r̂it 
are combined to give the final doubly-robust estimates: 

Using these estimated values Γit in Eq. (1) results in a so-called doubly-robust estimate 
of the policy quality. This means that the estimated total reward under the policy has 
low bias if at least one of the propensity score or outcome sub-estimators has low bias, 
thus the name doubly-robust  (Dudík et al. 2011).

Compared to using the outcome estimates directly as the rewards, an important 
advantage of the doubly-robust estimator is the ability to correct for treatment assign-
ment bias in the observed data. Treatments in observational data are often not assigned 
at random, and this bias can influence the outcome estimation process, leading to poor 
estimates if not accounted for. For instance, consider a medical example where a spe-
cific treatment is typically given to sicker patients. This means that the group receiving 
this treatment is composed of sicker patients to begin with, and thus despite receiving 
the treatment, we might see that the outcomes in the treated group are lower than in 
the untreated group. This could cause the outcome estimator to predict lower outcomes 
when the treatment is applied, whereas in reality the treatment might still be helpful, as 
the outcomes in the treated group would be even worse without the treatment applica-
tion. Combining the propensity scores with the outcome estimates helps to correct for 
any such treatment assignment bias in the data, to ensure that the estimated rewards are 
fair.

Γit =
yi − r̂it

p̂it
⋅ 1

{
zi = t

}
+ r̂it
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3.2.2  Estimating rewards for continuous treatments

When the prescription is choosing the dosing level for one or more treatments, we estimate 
the counterfactual outcomes with a regression model.

We denote by zit the dose of each treatment t for each observation i, and treat the dose 
for each treatment as a separate continuous feature in the dataset. We then train a regres-
sion model (such as random forests or boosting) to predict the outcome yi based on the fea-
tures xi and the treatment doses zit . Given this trained model, we can estimate rewards by 
predicting the outcome under any combination of treatment doses for a given observation i 
with features xi . In practice, we discretize the range of possible treatment doses to create a 
set of candidate doses, and estimate the outcome under each such set. The policy tree will 
then learn to prescribe one of the candidate doses works best in any given situation.

Note that if the outcomes yi are binary (e.g. denoting a success or failure), then a classi-
fication model can be used for estimation in place of regression. In this case, the estimated 
probabilities from the classification model can be used as the estimated outcomes.

3.3  Estimation and evaluation procedure in practice

To train and evaluate Optimal Policy Trees from observational data, we combine the 
approaches in Sects. 3.1 and 3.2. The exact workflow is: 

1. Given observational data ( �
�
, yi, zi ), split into training and testing sets

2. On the training set, conduct reward estimation following Sect. 3.2 to estimate the reward 
Γit for every observation i under each treatment option t

3. Train Optimal Policy Tree using the training set features �
�
 and the estimated rewards Γit 

from the previous step (further splitting the data into training/validation sets to validate 
hyperparameters as necessary)

4. Evaluate the trained policy tree on the training set by summing the reward corresponding 
to the prescribed treatment for each observation.

5. On the testing set, conduct reward estimation following Sect. 3.2 to estimate the reward 
Γit for every observation i under each treatment option t. It is necessary that this estima-
tion step is separate to the reward estimation on the training set, to avoid information 
leaking between the training and testing sets.

6. Evaluate the trained policy tree on the testing set by summing the reward corresponding 
to the prescribed treatment for each observation. This constitutes a fair out-of-sample 
evaluation of the quality of the prescription policy.

To select the class of model and their associated hyperparameters for the reward estima-
tion procedures in Steps 2 and 5, we recommend considering a range of model classes (e.g. 
boosted decision trees, random forests, linear regression) and using cross-validation to tune 
hyperparameters for each such model, before selecting the model class with the best esti-
mated out-of-sample performance, so as to lead to high-quality reward estimates. Empiri-
cally, we have found that the highest estimated out-of-sample performance generally comes 
from boosted decision trees or random forests.

Note that in Step 5, training a separate estimation model in the test data purely serves the 
purpose of obtaining an unbiased evaluation of the policies, which is not necessary if the 
purpose is only for inference. In online settings where new observations arrive one-by-one, 
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the Optimal Policy Tree model can still make prescriptions for these new observations, but 
we may not be able to provide a fair estimate of the policy performance for this new data.

3.4  Weighted‑loss classification

Throughout this section, we have assumed that the reward Γit for a given observation can 
depend on the features xi as well as the observed outcome yi and observed treatment zi . We 
note that a special case of this problem is when Γit depends only on the observed treatment 
zi . This gives rise to a weighted-loss classification problem, where there is a penalty matrix 
L , where Ljk specifies the penalty when an observation of class j is assigned to class k by 
the model. If L has zeros on the diagonal and ones everywhere else, the problem is equiva-
lent to standard multi-class misclassification.

4  Performance on synthetic data

In this section, we conduct a number of experiments on synthetically-generated data in 
order to evaluate the relative performance of optimal policy trees against other methods for 
prescriptive decision making.

Our experimental setup follows that used in Powers et al. (2018) and Bertsimas et al. 
(2019). We generate n data points xi, i = 1,… , n where each xi ∈ ℝ

d , with d = 10 . Each xi 
is generated i.i.d. with the odd-numbered coordinates j sampled xij ∼ Normal(0, 1) and the 
even-numbered coordinates j sampled xij ∼ Bernoulli(0.5).

4.1  Binary treatment

First, we consider scenarios with a single binary treatment. We define a baseline function 
that generates the baseline outcome for each observation, and an effect function that mod-
els the effect of the treatment being applied. The different functional forms we consider 
are presented in Table 2. Each function is further centered and scaled so that the generated 

Table 2  Functions used for discrete-treatment synthetic experiments
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values have zero mean and unit variance. In each experiment, we model the outcomes 
under “no treatment” and “treatment” ( Y0 and Y1 , respectively) as

We will adopt the convention that lower outcomes are desirable for all experiments. We 
assign treatments in a biased way to simulate an observational study where observations 
are more likely to receive the treatment option with the better outcome. Concretely, we 
assign the treatment with probability

The outcomes in the training set have additional i.i.d. noise added in the form 
�i ∼ Normal(0, 0.1).

In summary, for each xi , we calculate the outcome under each treatment as Y0(xi) and 
Y1(xi) . For the training set, we assign a treatment zi to 0 or 1 at random following the distri-
bution above, and then finally assign the observed outcome as (1 − zi)Y0(xi) + ziY1(xi) + �i . 
These triplets (xi, yi, zi) constitute the training data for each experiment.

To explore performance of the methods in a variety of scenarios, we consider seven 
different experiments, with different configurations of the baseline and effect functions as 
shown in Table 3.

For each experiment, we generate training data with n from 100 to 5,000 to observe the 
effect of the increasing amount of training data on the model performance. We train mod-
els on the training set and evaluate on a testing set with n = 60, 000 where we know the 
true outcomes for each prescription. We evaluate the mean regret of the model’s prescrip-
tions on the testing set, defined as the difference between the outcome under the prescribed 
treatment and the outcome under the optimal treatment, averaged across all points in the 
testing set. Each experiment was repeated 100 times and the results averaged.

We compare the following methods:

– Prescriptive Trees We include both greedy and optimal prescriptive trees as presented 
in Bertsimas et al. (2019). We set � = 0.5 and consider trees up to depth 5, using vali-
dation to select the best depth and complexity parameter �.

– Policy Trees We include both greedy and optimal policy trees as presented in Sect. 3. 
We consider trees up to depth 5, using validation to select the best depth and complex-
ity parameter � . We estimate rewards on the training set using the doubly-robust estima-

Y0(x) = baseline(x) −
1

2
effect(x), Y1(x) = baseline(x) +

1

2
effect(x).

ℙ(Z = 1|X = x) =
eY0(x)

1 + eY0(x)

Table 3  Experiment design 
for synthetic experiments with 
binary treatments

Experiment Baseline Effect

1 f
5
(x) f

2
(x)

2 f
4
(x) f

3
(x)

3 f
7
(x) f

4
(x)

4 f
3
(x) f

5
(x)

5 f
1
(x) f

6
(x)

6 f
2
(x) f

7
(x)

7 f
6
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8
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tor with random forests for propensity estimation and causal forests for outcome estima-
tion (following the process described in Zhou et al. (2018)). All forests used 100 trees.

– Regress & Compare We include a regress-and-compare approach using random for-
ests. We train a random forest with 100 trees to predict the outcome under each pre-
scription, and then for each point in the test set we prescribe the option that has the 
lowest predicted outcome.

– Causal Forests Because there is just a single treatment, we can include causal for-
ests (Wager and Athey 2018) to predict the treatment effect. If this predicted treatment 
effect is negative, we prescribe the treatment, otherwise we prescribe no treatment. To 
match the other methods, we use 100 trees in the forest, with all other parameters taking 
their default values.

When validation is used, the original training data is further split 70%/30% into training 
and validation sets to determine the optimal hyperparameter values. These tuned values are 
then used to train the final model on the combined training and validation sets.

Figure 2 presents the results of the experiments. We make the following observations:

– Experiment 1 Here the baseline function is linear, while the effect is piecewise-con-
stant with two pieces. We see that the policy tree approaches perform strongest and 
quickly reach zero regret, as they simply have to learn the structure of the effect func-
tion, which is a tree with a single split. Causal forests also achieve zero regret but 
require more training data. R&C and prescriptive tree approaches exhibit much slower 
improvement in regret, due to having to also learn and model the linear baseline func-
tion.

– Experiment 2 The baseline function is piecewise-constant and the effect function is 
linear in a single feature. Policy trees again exhibit fast convergence to zero regret, 
as the optimal policy is simply to prescribe based on the sign of x1 which is achieved 
by a tree with a single split. Causal forests also converge to zero regret quickly, as do 
the other methods with much more training data. In particular, since both baseline 
and effect functions can be modeled using a tree structure, the prescriptive trees can 
approach zero regret.

– Experiment 3 The baseline function is quadratic and the effect function is piecewise-
constant. Since the effect function can be modeled by a tree structure, the policy trees 
converge quickly to zero regret, followed closely by causal forests. The other methods 
struggle due to the complexity of modeling the non-linearity of the baseline function.

– Experiment 4 Both baseline and effect functions are linear. In this case, policy trees 
do not converge as quickly as before since the effect function is not modeled exactly 
through a tree structure. In fact, both flavors of trees have to learn linear functions in 
this case, but we can see that the policy approaches make better use of the data, and 
the optimal policy tree performs significantly stronger than the greedy approach. Both 
R&C and causal forests can more quickly learn the linear structure in the data, and 
exhibit similar performance.

– Experiment 5 The baseline function is constant and the effect function is piecewise lin-
ear. Here, prescriptive and policy trees face exactly the same problem structure due to 
the absence of a baseline function. We can see that both optimal tree methods converge 
towards zero regret, with the prescriptive approach converging slightly faster. Causal 
forests also exhibit slow convergence to zero, while R&C performs the strongest.

– Experiment 6 The baseline function is piecewise-constant with two pieces and the 
effect function is quadratic. Again, prescriptive and policy trees face very similar 
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problems as the non-linearity of the effect function dominates the complexity of the 
problem compared to the simple baseline. All tree methods converge to the same 
non-zero regret, whereas R&C and causal forests converge to much lower values due 
to being able to better model the non-linearity.

– Experiment 7 Both baseline and effect functions are piecewise-linear. While 
the nature of the function is the same for prescriptive and policy trees, the policy 
approach performs much stronger due to only having to learn the effect part of this 

Fig. 2  Results for synthetic experiments with binary treatments
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piecewise-linear function. The policy, R&C and causal forests exhibit roughly simi-
lar convergence, with optimal policy trees outpe rforming the greedy alternative.

To summarize the results, the performance of policy trees depends on the nature of the effect 
function, but is largely independent of the baseline function. This is because the policy tree 
only considers the relative effects of each treatment and does not need to estimate the raw 
outcome under each treatment, and therefore does not depend on the complexity of the under-
lying baseline function. When the effect function can be modeled well by a tree structure, 
the policy trees pe rform among the best methods, with the optimal approach outperforming 
the greedy method when the solution is non-trivial. On the other hand, the performance of 
prescriptive trees depends heavily on the complexity of both baseline and effect functions, 
and perform worse than policy trees when the baseline is non-trivial. R&C and causal forests 
perform well in most cases, but suffer from a lack of interpretability and in some cases exhibit 
slower convergence than policy trees.

4.2  Multiple treatments

In this section, we extend the previous experiment setup to consider problems with more than 
two treatment options. We again borrow the setup from Bertsimas et al. (2019) and add an 
additional experiment. In this case, the outcomes are generated as

The treatments are assigned so that the “no treatment” option is more likely to be assigned 
when the baseline is small, and treatments 1 and 2 are equally likely to be assigned:

The experiments we consider as shown in Table 4. As before, the outcomes in the training 
set have additional i.i.d. noise added in the form �i ∼ Normal(0, 0.1) . We again report the 
mean regret for each method on the testing set. Because there are multiple treatments, we 
do not include causal forests.

Figure 3 presents the results of the experiments. We make the following observations:

– Experiment 1 The baseline function is piecewise-linear and the effect functions are piece-
wise-constant and quadratic. R&C performs the strongest as it is best able to model the 
complicated non-linear effect function of the second treatment. Policy trees are capable 

Y0(x) = baseline(x),

Y1(x) = baseline(x) + effect1(x),

Y2(x) = baseline(x) + effect2(x).

ℙ(Z = 0|X = x) =
1

1 + eY0(x)

ℙ(Z = 1|X = x) = ℙ(Z = 2|X = x) =
1

2
(1 − ℙ(Z = 0|X = x))

Table 4  Experiment design 
for synthetic experiments with 
multiple discrete treatments

Experiment Baseline Effect of Treat-
ment 1

Effect of 
Treat-
ment 2
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of easily learning the first effect function, and do not have to worry about the baseline, so 
the optimal policy trees outperform the prescriptive methods. Due to the complexity of 
the second effect function, the optimal policy tree approach significantly outpe rforms the 
greedy approach.

– Experiment 2 The baseline function is quadratic and the effect functions are both 
piecewise-constant. The policy tree approaches converge towards zero regret as they 
are capable of learning both effect functions exactly. The optimal approach performs 
slightly better than the greedy method. The prescriptive approaches and R&C exhibit 
slower convergence as they additionally have to deal with the complexity of learning 
the quadratic baseline.

To summarize, these results mirror those of the binary treatment case. The policy trees 
approach depends solely on the complexity of the effect functions, and the baseline func-
tion is not important. In the case where the effect functions are non-trivial, the optimal 
policy trees outpe rform the greedy method as they are better at learning these difficult 
functions.

4.3  Continuous treatment

Now, we consider experiments where the outcomes are a continuous function of the treat-
ment. In this case, our prescription is the dose level of the treatment to apply, rather than 
choosing one treatment option from the available set.

For these experiments, we define an outcome function y(x, z) that depends on both the 
features x of the datapoint and the treatment dose z that is applied. Table 5 shows the func-
tional forms that we consider. We consider treatment doses between −4 and 4, and again 
treat lower outcomes as more desirable.

We generate the training and testing data as before. We assign treatment doses to the 
training data in a biased fashion similar to before so that better treatment assignments are 
more likely. Concretely, for each point we sample five candidate doses tk ∼ Uniform(−4, 4) 
and calculate the outcome under each such dose, y(x, tk) . We then assign the treatments 
according to a softmax probability:

Fig. 3  Results for synthetic experiments with multiple discrete treatments
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As before, the outcomes in the training set have additional i.i.d. noise added in the form 
�i ∼ Normal(0, 0.1) . For the test set, we assign the dose that minimizes the outcome func-
tion for the given x.

We consider four experiments as detailed in Table 6.
For consistency, we provide the same dosing options to all methods. We discretize the 

(−4, 4) interval into 10 evenly spaced values and use these as the candidate doses for meth-
ods to prescribe. We consider the following methods:

– Prescriptive Trees We include both greedy and optimal prescriptive trees. We round 
all observed doses in the training data to the nearest candidate dose before training, and 
use the candidate doses as the prescription options. We set � = 0.5 and consider trees 
up to depth 5, using validation to select the best depth and complexity parameter �.

– Policy Trees We include both greedy and optimal policy trees as presented in Sect. 3. 
We consider trees up to depth 5, using validation to select the best depth and com-
plexity parameter � . We estimate rewards on the training set by first training an 
XGBoost (Chen and Guestrin 2016) model to predict the outcome as a function of the 
features x and the treatment z, and then using this model to predict the outcome under 
each candidate dose for each observation to use as the rewards matrix. We ran XGBoost 
for 100 rounds with default parameters.

– Regress & Compare We include a regress-and-compare approach using XGBoost. We 
use the training data to train an XGBoost model with default parameters for 100 rounds 
to predict the outcome as a function of the features x and the treatment z. For each point 
in the test set we prescribe the candidate dose that has the lowest predicted outcome.

ℙ(Z = tk�X = x) =
e−y(x,tk)

∑
j e

−y(x,tj)

Table 5  Functions used for continuous-treatment synthetic experiments
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synthetic experiments with a 
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Experiment Outcome

1 g
1
(x, z)

2 g
2
(x, z)

3 g
3
(x, z)

4 g
4
(x, z)



2758 Machine Learning (2022) 111:2741–2768

1 3

The results are shown in Fig. 4. We make the following observations:

– Experiment 1 The optimal dose is to prescribe z = x1 , so the learned dosing function 
should be linear. The policy tree approaches learn this linear function increasingly well 
as the size of the training data increases, matching R&C. The prescriptive trees learn 
much more slowly.

– Experiment 2 Here the optimal dose is either −4 or 4 based on the sign of x1 , so the 
optimal prescription policy should be a tree with a single split. Indeed, the policy tree 
and R&C approaches quickly reach zero regret, but prescriptive trees require much 
more data to discover this optimal policy.

– Experiment 3 The optimal dose in this setting is given by a piecewise-constant func-
tion. All methods eventually converge to zero regret, but the prescriptive approaches 
require more data to achieve this performance.

– Experiment 4 The optimal dose follows a piecewise-linear function. The prescriptive 
tree approaches have regrets above 2 for all training set sizes, significantly worse than 
the remaining methods (thus are not shown in the figure). The policy tree approaches 
have similar convergence to R&C, with the greedy policy trees performing slightly 
worse than the optimal approach due to the complexity of the outcome function.

Fig. 4  Results for synthetic experiments with a single continuous-dose treatment. For Experiment 4, greedy 
and optimal prescriptive trees have regret between 2 and 5 and are omitted from display to avoid axis distor-
tion
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In summary, we see that the policy approaches are significantly more efficient with the 
training data than prescriptive approaches. The optimal policy tree approach matches the 
R&C approach in all cases, but provides an interpretable policy in addition to performance.

4.4  Multiple continuous treatments

Our final set of experiments consider cases with multiple continuous-dose treatments. For 
these experiments, we define an outcome function y(x, t1, t2) that depends on both the fea-
tures x and on two treatment doses t1 and t2 that are applied. We consider doses between −4 
and 4 for both treatments, with lower outcomes more desirable. We consider two experi-
ments as outlined in Table 7.

We follow a similar approach to Sect. 4.3 to assign treatments in the training data. First, 
we randomly draw five candidate doses (tk1 , tk2 ) where both tk1 , tk2 are drawn independently 
from Uniform(−4, 4) , and evaluate the outcome function y(x, tk1 , tk2 ) . We then assign the 
treatment using softmax probabilities over these five options.

The same methods are used as in Sect. 4.3, modified appropriately to account for two 
treatment options. We discretize each treatment dose into six values, giving a total of 36 
possible dose combinations over the two treatments.

Figure 5 shows the results. We make the following observations:

– Experiment 1 This experiment combines experiments 1 and 2 from Sect. 4.3, so the 
optimal doses for the treatments are linear and piecewise-constant functions, respec-

Table 7  Experiment design 
for synthetic experiments with 
multiple continuous treatments

Experiment Outcome
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)

Fig. 5  Results for synthetic experiments with multiple continuous-dose treatments. For Experiment 2, 
greedy and optimal prescriptive trees have regret between 8 and 10 and are omitted from display to avoid 
axis distortion
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tively. The policy trees and R&C learn this structure very quickly. The prescriptive 
trees learn much more slowly, due to the data being thinned across the 36 possible treat-
ment options.

– Experiment 2 This experiment combines experiments 3 and 4 from Sect. 4.3, so the 
optimal doses for the treatments are piecewise-constant and piecewise-linear functions, 
respectively. The prescriptive tree approaches are unable to learn from this data and 
have regret above 8 regardless of the training set size, significantly higher than the other 
approaches (thus are not shown in the figure). The policy tree approaches converge 
similarly to R&C, with the optimal policy trees performing stronger than the greedy 
approach, due to the complexity of the problem structure.

In summary, the prescriptive approaches are particularly inefficient for problems of this 
nature, as the discretization of the treatment options thins the data and makes learning sig-
nificantly more difficult. In contrast, the policy tree approaches can learn from the data 
equally well regardless of the number of treatment options, and match the performance 
of the regress-and-compare approach, with the optimal method outperforming the greedy 
method when the outcome function is non-trivial.

4.5  Runtime comparison

In addition to the relative performance of each method, we are also interested in compar-
ing their runtimes. Table 8 shows the mean runtime in seconds for each method on each 
of the synthetic experiments discussed earlier. These reported runtimes are for the largest 
instance of each problem with n = 5, 000 training points, and measure the complete time to 

Table 8  Mean runtime (in seconds) for each method on each of the synthetic experiments with n = 5, 000 
training points. The methods are abbreviated as GPrT (Greedy Prescriptive Trees), OPrT (Optimal Prescrip-
tive Trees), GPoT (Greedy Policy Trees), OPoT (Optimal Policy Trees), R&C (Regress and Compare), and 
CF (Causal Forest)

Treatment Type Experiment GPrT OPrT GPoT OPoT R&C CF

Discrete (Binary) 1 0.2 42.9 25.1 35.0 21.1 1.9
2 0.2 46.1 24.9 33.3 28.8 1.8
3 0.3 40.0 32.0 44.0 34.1 2.7
4 0.2 52.5 21.6 54.7 19.5 1.6
5 0.2 41.4 22.3 44.6 21.7 2.0
6 0.2 40.5 25.0 54.5 21.5 2.7
7 0.2 40.0 24.6 49.2 22.2 1.8

Discrete (Multiple) 1 0.2 44.3 27.6 48.4 25.6 –
2 0.3 52.1 32.1 52.7 36.7 –

Continuous (Single) 1 0.5 91.1 1.8 23.1 1.8 –
2 0.5 94.8 1.6 17.3 1.7 –
3 0.6 68.0 2.3 25.3 2.1 –
4 0.6 102.4 2.2 73.4 2.0 –

Continuous (Multiple) 1 1.8 294.4 2.4 45.0 5.2 –
2 2.0 248.7 3.0 109.4 6.0 –
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run each method, including training, validation, and reward estimation for the policy tree 
methods.

In the case of discrete treatments, we see that the greedy prescriptive trees are the fast-
est, while the greedy policy trees have times similar to R&C. This is because the greedy 
policy tree runtime includes the time for reward estimation, which like R&C involves train-
ing separate random forests for each treatment and dominates the runtime. As we might 
expect, the optimal tree methods take more time to run than their greedy variants. The 
runtimes for both optimal tree methods are roughly equivalent, and are typically are slower 
than R&C by a factor of between 1.5 and 2.5.

For the problems with continuous treatments, we see that again the greedy trees have 
the lowest runtimes, with greedy policy trees again having similar runtime to R&C. We 
see that the cost of R&C and reward estimation is much lower in the continuous treatment 
setting, with R&C being roughly an order of magnitude faster compared to the discrete 
treatments. The optimal policy trees have similar runtimes to the discrete treatment case, 
whereas the optimal prescriptive trees have higher runtimes. In particular, the runtimes for 
optimal prescriptive trees with multiple continuous treatments are much higher than for 
a single continuous treatment, indicating that this approach is not as suited to handling 
problems with so many treatment options, compared to the policy tree approach which has 
much lower runtimes.

In all of these cases, the optimal policy trees have runtimes on the order of minutes on 
these moderately-sized problems with n = 5, 000 and up to 36 treatment options, which 
demonstrates the scalability of this approach.

4.6  Summary of synthetic experiments

In this section we conducted a number of experiments covering both discrete and continu-
ous dose treatments, as well as multiple treatments. The common theme seen in the results 
was that the policy tree approach performed similarly to the black-box regress-and-com-
pare methods, whereas the prescriptive tree method often struggled. In the case of discrete 
treatments, the performance of policy trees was related to the complexity of the treatment 
effect alone, whereas for prescriptive trees, the performance depended on the complexity 
of the entire outcome function. For continuous dose treatments, the policy trees learned 
efficiently regardless of the number of treatment doses considered, whereas the prescriptive 
trees suffered if the data was spread too thinly across the doses. In both cases, the optimal 
policy trees approach outperformed the greedy approach when the relevant treatment func-
tion was non-trivial to learn.

5  Performance on real‑world data

In this section, we consider three applications of Optimal Policy Trees in real-world appli-
cations. First, we consider the problem of pricing in a grocery store setting, where the price 
is a single continuous-dose treatment to optimize. Second, we consider diabetes manage-
ment, where the task is to determine the optimal doses for multiple drug options. Finally, 
we consider the task of pricing financial instruments, where there are many existing pricing 
strategies that are used to construct prices based on the current market state, and we want 
to determine which pricing strategies work best in different conditions, thus framing the 
task as a prescriptive problem with multiple discrete treatment options.
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5.1  Grocery pricing

In this section, we apply Optimal Policy Trees to the problem of grocery store pric-
ing, using a publicly available dataset collated by the analytics firm Dunnhumby. The 
dataset has detailed transaction, household, and product information on over 200,000 
shopping trips. This dataset was studied in Biggs et  al. (2020) where they showed an 
estimated 67% increase in predicted revenue for strawberries under a greedy tree-based 
pricing algorithm. We treat this problem as a prescriptive problem with the price as a 
continuous-dose treatment, and compare the performance of Optimal Policy Trees to 
other methods.

We followed the same data preparation as described in Biggs et  al. (2020), where 
each row refers to a shopping trip with detailed information on the household, the 
unit price of the strawberries (ranging from $1.99 to $5.00, with most of the prices in 
50-cent increments), and the outcome (whether the strawberries was purchased or not). 
Similar to the previous analysis, if the household did not purchase any strawberries, 
the price was imputed using an average of previous transactions. The data was split 
into 50% training and 50% testing, with an independent XGBoost model estimating the 
rewards under each pricing scenario in the testing data.

To apply Optimal Policy Trees, we first estimated the expected revenue under each 
price option on the training data . To achieve this, we used XGBoost to predict the 
purchase probability as a function of household features and continuous price, and then 
for each training point and price option, we multiplied the price by the estimated pur-
chase probability under this price to get the expected revenue. We then fit an Optimal 
Policy Tree on the household features and these revenue estimates. For a fair compari-
son to Biggs et  al. (2020), we also trained a greedy policy tree on the same revenue 
estimates. We also compare against Optimal Prescriptive Trees, by treating each 50-cent 
price point as a discrete treatment and the observed revenue as the outcome. For all 
three methods, we used cross-validation to tune the depth of the decision trees, up to a 
maximum of 6.

The results are shown in Table 9, where we show the increase in revenue under each 
model, which is calculated as the difference between the estimated revenue under pre-
scribed price vs. current price. We see that the Optimal Policy Trees has the best per-
formance among the three, with over 77% improvement in revenue. The greedy pol-
icy tree approach achieved an improvement in revenue of 66%, which is similar to the 
result reported in Biggs et al. (2020) (where the small difference is likely attributable 
to a different training/testing split). The improvement of over 11% for Optimal Policy 
Trees over the greedy approach demonstrates the significant performance gains we can 
achieve by training the tree with a view to global optimality.

We also observe that both policy tree approaches outperform Optimal Prescriptive 
Trees, which shows an estimated revenue improvement of 62%. This reinforces the 

Table 9  Comparison of different 
methods in the grocery pricing 
example

Method Increase 
in revenue 
(%)

Optimal Prescriptive Trees 61.5
Policy Trees (greedy) 65.9
Policy Trees (optimal) 77.1
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results of Sect. 4.3 that separating the reward estimation and policy learning tasks pro-
vides an edge when faced with outcomes that are a complex function of a continuous 
dose treatment.

A trimmed version the Optimal Policy Tree is shown in Fig. 6 as an example. The tree 
splits based on marital status, home ownership, age, income level, household composition, 
etc., where generally it prescribes lower prices for households with lower income and vice 
versa. We note that we recommend the highest price of $5.00 in one of the leaves, which is 
defined by a younger population ( ≤ 34 years old), that are two adults with no children, own 
their house, and have a high income level (above $125k). This is consistent with intuition 
that this demographic group can be price insensitive.

Note that in practice, an individual-based pricing policy may not be feasible due to reg-
ulatory and operational constraints, but this approach could be easily adapted to the store 
level pricing decisions based on aggregate demographic features for the region, and still 
deliver an improvement in revenue.

5.2  Diabetes management

In this section, we apply our algorithms to personalized diabetes management using 
patient-level data from Boston Medical Center, under a multi-treatment continuous dos-
ing setup. This dataset was first considered by Bertsimas et al. (2017), where the authors 
propose a k-nearest neighbors (kNN) regress-and-compare approach, and was revisited by 
Bertsimas et al. (2019) with Optimal Prescriptive Trees.

This dataset consists of electronic medical records for more than 1.1 million patients 
from 1999 to 2014. We consider more than 100,000 patient visits for patients with type 
2 diabetes during this period. The features of each visit include demographic informa-
tion (sex, race, gender etc.), treatment history, and diabetes progression. The goal is to 

Fig. 6  Optimal Policy Tree with continuous dosing for grocery store pricing
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recommend a treatment regimen for each patient, where a regimen is a combination of oral, 
insulin, and metformin drugs and their dosages.

In the previous studies, the regress-and-compare and Optimal Prescriptive Trees 
approaches were limited to considering discrete treatments, so the treatment options were 
discretized into 13 different combinations, from which the method had to prescribe one 
choice to the patient. This has the unfortunate side effect of removing information about 
the proximity of different drug combinations. For instance, the combinations “insulin + 
metformin” and “insulin + metformin + 1 oral” are similar prescriptions, and it is plausible 
we may be able to learn shared information from patients that received either of these. On 
the other hand, “insulin” and “metformin + 2 oral” are very unrelated and we should not 
expect to use the patients receiving one of these to learn about the other.

When the treatments are discretized, all treatments are completely disjoint, and the 
rewards are learned separately, with no ability for shared learning where appropriate. 
Another approach is to view this problem as multiple continuous dose treatments. In this 
way, the treatment decision becomes the doses of insulin, metformin and oral drugs to 
apply, which we can view as a vector (zinsulin, zmetformin, zoral) . From this perspective, the 
combinations “insulin + metformin”, (1, 1, 0), and “insulin + metformin + 1 oral”, (1, 1, 
1), are indeed closer than “insulin”, (1, 0, 0) and “metformin + 2 oral”, (0, 1, 2), and thus 
we might expect that viewing the problem in this way could lead to more efficient learning 
due to the ability to share information across treatments.

We consider applying Optimal Policy Trees to this problem, both with 13 discrete treat-
ment options and also with the continuous dosing model described earlier, to examine 
whether this more accurate model of the treatments indeed leads to better data efficiency. 
We used boosting to estimate the rewards in both the discrete and continuous-dose treat-
ment models. To ensure fairness, the continuous-dose Optimal Policy Trees were required 
to prescribe from the same 13 treatment options, so any difference comes from better esti-
mation due to a more accurate model of reality.

We follow the same experimental design as in Bertsimas et al. (2017). The quality of the 
predictions on the testing data is evaluated using a random-forest approach to impute the 
counterfactuals on the test set. We use the same three metrics to evaluate the various meth-
ods: the mean HbA1c improvement relative to the standard of care; the percentage of visits 
for which the algorithm’s recommendations differed from the observed standard of care; 
and the mean HbA1c benefit relative to standard of care for patients where the algorithm’s 
recommendation differed from the observed care. These metrics were selected because the 
reduction in HbA1c is considered clinically relevant.

We varied the number of training samples between 1,000 and 50,000 (with the test set 
fixed) to examine the effect of the amount of training data on out-of-sample performance. 
In addition to both Optimal Prescriptive Trees and Optimal Policy Trees (with both dis-
crete and continuous treatment models), we consider the performance of a baseline method 
that continues the current line of care, and an oracle method that prescribes the best treat-
ment for each patient is selected according to the estimated counterfactuals on the test set.

In Fig. 7, we show the performance across these methods. We observe that while all 
three tree methods converge to roughly the same performance as all the data is used, the 
Optimal Policy Trees achieve much better results when the training set is smaller. In addi-
tion, the Optimal Policy Trees based on the continuous-dose reward model outperform 
those based on the discrete treatment reward model. In fact, we see that the performance 
of the continuous-dose policy trees is roughly constant regardless of the size of the train-
ing set, indicating it is extremely efficient with the data, and only requires 1,000 samples 
to deliver performance equivalent to the Optimal Prescriptive Trees with 50,000 samples. 
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This is very strong evidence that separating the counterfactual estimation and policy learn-
ing steps and permitting shared learning across treatments enable extremely efficient use of 
data.

We show an example of the Optimal Policy Tree (continuous dosing) output in Fig. 8 
trained with 1,000 data points. We can see that it uses the patient’s recent HbA1c history, 
age, current line of treatment, years since previous diagnosis, and BMI to prescribe from 
the variety of treatments. This tree, with 10 leaves, is significantly smaller than the best 
Optimal Prescriptive Tree, which had 21 leaves, with similar performance. This is strong 
evidence that separating the counterfactual estimation from the policy learning results in 
more concise trees that focus solely on the factors that affect treatment assignment. In con-
trast, the Optimal Prescriptive Trees are larger because the splits in the tree serve two pur-
poses: refining the counterfactual estimation and determining the optimal treatment policy.

Fig. 7  Comparison of methods for personalized diabetes management. The leftmost plot shows the over-
all mean change in HbA1c across all patients (lower is better). The center plot shows the mean change in 
HbA1c across only those patients whose prescription differed from the standard-of-care. The rightmost plot 
shows the proportion of patients whose prescription was changed from the standard-of-care

Fig. 8  Optimal Policy Tree with continuous dosing for personalized diabetes management
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5.3  Pricing financial instruments

In this section, we apply Optimal Policy Trees to develop a new interpretable pricing 
methodology for exchange-traded financial instruments (e.g. stocks, bonds, etc.). For 
commercial sensitivity reasons, some details of the study are omitted and the tree we 
show is illustrative.

The problem we consider is predicting the future price of an asset at some time in the 
near future (on the order of minutes). The data available for prediction is the transac-
tion history of this and other assets as well as all buy/sell orders on the market and their 
price points.

There are many approaches to predict future prices from this information. For 
instance, a common calculation is the mid-price, which is the average price of the high-
est “buy” (bid price) and lowest “sell” (ask price) orders. Another is the weighted mid-
price, which is similar but weights the average by the size of the orders. There are many 
such pricing formulae that consider various aspects of the historical data (e.g. historical 
transaction prices, momentum prices, high-liquidity prices, etc.), and these are often 
highly-complex non-linear formulae that have been hand-designed based on domain 
expertise. In collaboration with domain experts, we identified nearly 200 such pricing 
formulae that are regularly used. It is known that different formulae perform well in 
some market conditions and poorly in others, but this is based loosely on human intui-
tion and not directly understood in a quantitative fashion. Given the work and experi-
ence that has gone into carefully crafting these highly non-linear formulae, instead of 
trying to construct our own pricing formula from scratch, we decided to treat each for-
mula as a distinct treatment option and attempt to learn which formula to apply in differ-
ent market scenarios to achieve the best price predictions.

We applied Optimal Policy Trees to develop a policy for which pricing methodology 
is best to use under different market conditions. Mathematically, each observation i con-
sists of market features xi ∈ ℝ

p , and we have a set of m pricing methodologies to choose 
from. For every observation i and every pricing methodology t, we derive the rewards 
Γit by computing the absolute difference between the actual future price and the price 
calculated by method t given market features xi . The reward matrix Γ is therefore fully 
known and does not need to be inferred. We train Optimal Policy Trees against these 
errors to learn which pricing strategy is most accurate in different market conditions.

An example of the Optimal Policy Trees learned on the data is shown in Fig. 9. We 
observe that the tree prescribes the mid-price when liquidity is low: this is consist-
ent with the intuition that in such conditions, most of the market signals are noisy and 
the best choice is to simply average the bid and ask prices. On the other hand, in high 
liquidity conditions, the tree then splits on order imbalance, picking the weighted mid-
price as the best estimator when the number of orders on the buy and sell sides are simi-
lar and the market is balanced. On the other hand, if the sizes of buy and sell orders are 
highly imbalanced, the tree then splits on the direction of the disparity to either assign 
the ask price if the bias is towards the “buy” side, or the bid price if the bias is towards 
the “sell” side, mirroring the fundamental dynamics of supply and demand. Together, 
the splits of this tree provide a clear and understandable formalization of when each 
price is best that is aligned with human intuition.

In comprehensive out-of-sample testing, the pricing approaches developed using 
Optimal Policy Trees consistently outperformed the existing approaches to pricing by 
up to 2% in terms of accuracy of future price predictions, and the interpretability and 
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transparency of the models allow humans to derive insights and further their own under-
standing of the problem.

6  Conclusions

In this paper, we presented an interpretable approach for learning optimal prescrip-
tion policies, combining the state-of-the-art in counterfactual estimation from the causal 
inference literature with the power of modern techniques for global decision tree opti-
mization. The resulting Optimal Policy Trees are highly interpretable and scalable, and 
our experiments showed that they offer best-in-class performance, outperforming similar 
greedy approaches, and make extremely efficient use of data compared to prescriptive tree 
methods.

Finally, we showed in a number of real-world applications that this approach results in 
prescription policies of significantly higher quality when compared to existing approaches.

This framework of learning prescription policies is very general and invites many paths 
for potential future work. For example, one might consider multi-output scenarios where 
a prescription could affect several outputs at once. Another avenue could be considering 
constraints on which treatments can be applied to each observation depending on their 
features.

Funding The work was conducted by the authors while employed by Interpretable AI LLC.

Availability of data and material The dataset used in Section 4.1 is publicly available. The datasets used in 
Sections 4.2 and 4.3 are confidential.

Code availability The code implementing the experiments is available upon request. The code implementing 
the Optimal Policy Tree algorithm is available under a free academic license from Interpretable AI LLC.
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