
Vol.:(0123456789)

Machine Learning (2022) 111:2297–2322
https://doi.org/10.1007/s10994-021-06124-1

1 3

Fast spectral analysis for approximate nearest neighbor
search

Jing Wang1 · Jie Shen2

Received: 4 March 2020 / Revised: 23 September 2021 / Accepted: 3 November 2021 /
Published online: 7 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
In large-scale machine learning, of central interest is the problem of approximate near-
est neighbor (ANN) search, where the goal is to query particular points that are close to
a given object under certain metric. In this paper, we develop a novel data-driven ANN
search algorithm where the data structure is learned by fast spectral technique based on s
landmarks selected by approximate ridge leverage scores. We show that with overwhelm-
ing probability, our algorithm returns the (1 + �∕4)-ANN for any approximation param-
eter � ∈ (0, 1) . A remarkable feature of our algorithm is that it is computationally efficient.
Specifically, learning k-length hash codes requires O((s3 + ns2) log n) running time and
O(d2) extra space, and returning the (1 + �∕4)-ANN of the query needs O(k log n) running
time. The experimental results on computer vision and natural language understanding
tasks demonstrate the significant advantage of our algorithm compared to state-of-the-art
methods.

Keywords Approximate nearest neighbor search · Spectral analysis · Hashing · Noise ·
Subspace

1 Introduction

Nearest neighbor search is one of the most fundamental problems in computational geom-
etry and machine learning. It has been broadly investigated in a large body of real-world
scenarios such as data compression (Gersho and Gray, 2012), speech recognition (Makhoul
et al., 1985), and information retrieval (Jegou et al., 2011). As a concrete example, for

Editor: Gustavo Batista.

 * Jing Wang
 jjinw@amazon.com

 Jie Shen
 jie.shen@stevens.edu

1 Amazon, New York City, NY, USA
2 Stevens Institute of Technology, Hoboken, NJ, USA

http://orcid.org/0000-0003-2065-1102
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06124-1&domain=pdf

2298 Machine Learning (2022) 111:2297–2322

1 3

customers without any shopping history, it is often plausible to look up the customers in
the database with similar profiles to help make recommendation on the items.

There are many early works for (exact) nearest neighbor search, such as k-d tree and
R-tree (Bentley, 1975; Samet, 1990, 2006). These methods perform very well when the
data lie in a low-dimensional space, say three dimensions, while suffering computational
intractability in a high-dimensional space (Arya et al., 1995). In fact, an early attempt
from Dobkin and Lipton (1976) provided the first algorithm for nearest neighbor search
in d-dimensional space which takes double-exponential time of O(n2d+1) for preprocessing
and O(2d log n) for retrieval. Such problem is known as the curse of dimensionality, and
to tackle the problem in high dimensions, the notion of approximate nearest neighbor was
proposed as a practical alternative (Arya and Mount, 1993). To be a little formal, given any
approximation factor 𝜖 > 0 , we say that a point p is an �-nearest neighbor of a given query
q if the ratio of distances from p to q and from q to its exact nearest neighbor is at most
(1 + �).

We consider the data in real-world applications which are usually perturbed with noise
(Abdullah et al., 2014). Formally, the observed data set P = {p1,⋯ , pn} is generated by a
clean data set X = {x1,⋯ , xn} with random noise corruption, that is

The query q is a superposition of the clean query point y corrupted by the same type of
noise, i.e., q = y + t . Suppose x∗ is the (exact) nearest neighbor of y , that is

where ‖⋅‖2 denotes the �2-norm. We will consider that the noise is bounded, in the sense
that max{��ti��2, ‖t‖2} ≤ �∕16 . Though it seems that the most natural assumption on the
noise is Gaussian, we note that both Gaussian and bounded random variables are sub-
Gaussian. So they admit the same tail bound. Under this smoothed problem setting, Indyk
and Motwani (1998) proposed the celebrated locality-sensitive hashing (LSH) algorithm
that achieves sub-linear query time. Under the locality-sensitive hashing framework, there
have been a large body of works showing efficient computation is possible (Andoni and
Indyk, 2008; Andoni et al., 2014, 2018). Notably, the construction of the hashing functions
in LSH is independent of the data.

On the other spectrum, algorithms that incorporate machine learning techniques to
learn the hash functions from the data have attracted a lot of interest in recent years (Kulis
and Darrell, 2009; Liu et al., 2011; Kong and Li, 2012). For example, spectral graph has
been widely studied to learn the binary codes that preserve the similarity structure of the
database (Weiss et al., 2009; Abdullah et al., 2014). Supervised hashing methods learn the
binary code representations of samples that are correlated with their labels (Shen et al.,
2015). Recent works on representation learning using deep neural networks have shown
practical values in various tasks, which motivates a surge of works to utilize convolutional
neural networks as hash functions; see, for example, Çakir et al. (2018).

Though the learning based approaches outperform the locality-sensitive hashing based
methods in many applications (Jegou et al., 2011; Xia et al., 2015), there seems a lack of
theoretical understanding of the success of many of the existing algorithms. In this paper,
we propose a data-dependent learning algorithm for approximate nearest neighbor search,
and we aim to resolve two important technical barriers: (1) approximate the low-dimen-
sional space efficiently; and (2) provide the theoretical guarantee that the mutual distance
is preserved in the low-dimensional space. That is, if the data points are neighbors in the

(1)pi = xi + ti, ∀ i = 1,⋯ , n.

(2)‖y − x∗‖2 ≤ 1 and ∀x ∈ X ⧵ {x∗}, ‖y − x‖2 ≥ 1 + �,

2299Machine Learning (2022) 111:2297–2322

1 3

original space, they should be close to each other in the low-dimensional space. Abdul-
lah et al. (2014) provided the first justification for this disparity, which directly utilized
principal component analysis with preprocessing time O(nd2 + d3) . In our algorithm, we
learn the projection matrix by leverage score based sampling which is more computation-
ally efficient (Alaoui and Mahoney, 2015; Musco and Musco, 2015; Cohen et al., 2016;
Musco and Musco, 2017). In addition,it is demonstrated that leverage score based sam-
pling approaches often give the strong provable guarantees for subspace approximation
and statistical performance in downstream applications (Alaoui and Mahoney, 2015; Rudi
et al., 2015; Gittens and Mahoney, 2016).

1.1 Summary of our contributions

In this work, we present a learning-to-hash algorithm based on ridge leverage score: it pro-
duces the hash function provably matching the accuracy of principal component analysis
methods and the obtained low-dimensional subspace preserves the geometry structure of
the database. The advantage of our method is twofold. First, approximating the low-dimen-
sional space is significantly more efficient than many existing spectral methods (Weiss
et al., 2009; Abdullah et al., 2014), as our sampling techniques used for subspace learning
is performed on s landmark points. The preprocessing, in particular, takes time O(n ⋅ s2) ,
where s ≪ min(n, d) is the number of landmarks. Second, we show that (1 + �∕4)-approxi-
mate nearest neighbor of the query can be obtained with high probability.

In terms of empirical results, we evaluate the performance of our algorithm on real-
world applications: computer vision and natural language understanding. The experiments
are conducted on real-world data sets, including MNIST, Stanford Sentiment Treebank
(SST-2) (Socher et al., 2013) (SST-2), Corpus of Linguistic Acceptability (CoLA) (War-
stadt et al., 2019), Microsoft Paraphrase Corpus (MRPC) (Dolan and Brockett, 2005),
Stanford Question Answering Natural Language Inference Corpus (QNLI) (Rajpurkar
et al., 2016), and Glove (Pennington et al., 2014). Our algorithm achieves the best perfor-
mance with various hash code lengths on all the data sets compared with the state-of-the-
art algorithms.

1.2 Roadmap

In Sect. 2, we present a more concrete literature review and state the connection to this
work. Section 3 gives the main algorithm with performance guarantee in Sect. 4. A com-
prehensive empirical study is carried out in Sect. 5. We conclude the paper in Sect. 6. The
proof details can be found in the “Appendix”.

Notation. We use lowercase letters to denote vectors and capital letters for matrices. For
a vector q , we denote its �2-norm by ‖q‖2 . We reserve P ∈ ℝ

n×d for the database with n
data points in d-dimensional feature space. We use p⊤

i
∈ ℝ

d to denote the i-th row of P ,
that is, the i-th sample in P . We use two matrix norms: the Frobenius norm and spectral
norm, defined as ‖P‖F =

�∑d

i=1
�i(P)

2 and ‖P‖2 = �1(P) respectively, where �i(P) repre-
sents the singular value of P in descending order (�1(P) ≥ �2(P) ≥ ⋯ ≥ �d(P) ≥ 0). The
distance between a data point q and the subspace U is defined as
d(q,U) ∶= infy∈U ‖q − y‖2 = ��q − qU

��2 , where qU is the orthogonal projection onto the
subspace U . When we say a subspace is k-dimensional, we mean its intrinsic dimension is
k.

2300 Machine Learning (2022) 111:2297–2322

1 3

2 Related works

The core of nearest neighbor search is to find the data point most close to the query in
the database, while the approximate nearest neighbor search returns the data points
within (1 + �)dist of the query, where dist is the distance between the query and the near-
est neighbor. In either category, the search is usually performed on a collection of data
points; the process to organize the database into certain data structure is called data pro-
cessing, which is assumed to be independent of the number of queries. As the straight-
forward search is brute force which takes O(n) time for 1-dimensional space, more effi-
cient searching algorithms usually construct a data structure to make the query efficient
in terms of space and time cost in processing and retrieval. For example, binary search
method formed the balanced binary tree with time O(n log n) and answered the query in
⌊log n⌋ + 1 time (Knuth, 1973). A plethora of related algorithms have been proposed in the
literature, such as k-d trees, R-trees (Bentley, 1975; Samet, 1990; Sellis et al., 1997; Samet,
2006). These approaches are usually based on computational geometry. However, if the
number of dimensions exceeds 20, searching in k-d trees and related structures requires
the inspection of a large fraction of the database, thereby doing no better than brute-force
linear search Gionis et al. (1999). Therefore, the approximate nearest neighbor search has
attracted attention for practical problems with high-dimensional data.

Existing algorithms for approximated nearest neighbor search could be categorized as
locality-sensitive-hashing families and learning based hashing, depending on how the data
structure is constructed. Indyk and Motwani (1998) introduced the idea of locality-sensitive
hashing. There are many related works discussing how to chose the parameters L (the num-
ber of buckets), r1 (the radius of the ball centered at q) and k (the length of hash code) to
achieve the low failure probability guarantee. For example, Andoni and Indyk (2008) pro-
posed an algorithm that utilized linear random projection to reduce the feature dimension
to k (k = O(log n)), then the approximated nearest neighbors could be returned in sublinear
query time using nearly-linear space. Andoni et al. (2014) proposed a data-dependent hash-
ing function with Johnson-Lindenstrauss dimension reduction procedure and got a better
result. Andoni et al. (2018) presented a data structure for general symmetric norms. Very
recently, Andoni et al. (2021) showed improved data structures for the high-dimensional
approximate nearest neighbor search for �p distances for large values of p and for general-
ized Hamming distances. The details of related space and time bounds for Euclidean dis-
tance are summarized in Table 1.

Learning based hashing has seen a recent surge of interest (Gong and Lazebnik, 2011;
Weiss et al., 2012; Erin Liong et al., 2015; Han et al., 2015; Liu et al., 2016). Much of this

Table 1 Summary of state-of-the-art results in terms of space and time bounds for approximate nearest
neighbor search. k is the length of hash code, s is the number of landmarks, d is the original feature dimen-
sion of database with n data points

Work Space Time

Andoni and Indyk (2008) n1+1∕c
2+O(1) + dn dn1∕c

2+O(1)

Andoni et al. (2014) n1∕c
2

+ d log n n1+1∕c
2

+ d log n

Andoni et al. (2018) dO(1)n1+1∕c dO(1)n1∕c

Our results d2 + kn (ns2 + k) log n

2301Machine Learning (2022) 111:2297–2322

1 3

excitement centers around the discovery that these approaches achieve outstanding perfor-
mance in real-world applications, such as computer vision (Xia et al., 2015) and informa-
tion retrieval (Jegou et al., 2011). There are some works focusing on supervised binary
code projection methods (Liu et al., 2014; Shen et al., 2015). For example, sparse projec-
tion (SP) introduced the sparse projections for binary encoding which involved minimiz-
ing the distortion and adopted the variable-splitting techniques in optimization (Xia et al.,
2015). The spectral analysis based unsupervised methods have attracted a lot of attention
since the labeled data is precious. For example, Spectral Hashing utilized a subset of thres-
holded eigenvectors of the graph Laplacian matrix (Weiss et al., 2009). Iterative quantiza-
tion (ITQ) proposed an efficient way to find the hash code by minimizing the quantiza-
tion error of mapping the data to the vertices of a zero-centered binary hypercube (Gong
and Lazebnik, 2011). Jegou et al. (2011) decomposed the space into a Cartesian product
of low dimensional subspace and the hash code is composed of its subspace quantization
indices. Liu et al. (2011) assumed that the data reside in a low-dimensional manifold and
proposed a graph-based hashing method. Isotropic hashing (ISO) found the hash projec-
tion function with equal variances for different dimensions, called isotropic hashing (Kong
and Li, 2012). Multidimensional Spectral Hashing (MDSH) learned the binary codes based
on reconstructing the affinity between data points, rather than computing their distances
(Weiss et al., 2012). bilinear projection based binary codes (BPBC) learned the similarity-
preserving binary codes by compact bilinear projections instead of a single large projec-
tion matrix (Gong et al., 2013). The algorithm utilizes a spectral relaxation where the bits
are mapped by thresholded eigenvectors of the affinity matrix. Circulant binary embed-
ding (CBE) learned the data-dependent circulant projects by minimizing the objective in
original and Fourier domains (Yu et al., 2014). Scalable graph hashing (SGH) is proposed
to approximate the whole graph without explicitly computing the similarity graph matrix,
but optimizing a sequential learning function to learn the compact hash codes in a bit-
wise manner (Jiang and Li, 2015). We follow this line of research and propose an inexact
spectral analysis for approximate nearest neighbor search. The experimental results dem-
onstrate the superiority of our algorithm compared with the state-of-the-art learning based
hashing approaches mentioned in this section.

3 Main algorithm

In this section, we elaborate on our approach, which consists of two steps: Algorithm 1
samples the landmark points for the construction of data structure that can be used for effi-
cient retrieval, and Algorithm 2 performs approximate nearest neighbor search.

3.1 Overview

Our pipeline consists of learning the hash codes and retrieval, where the primary idea is
to find a good embedding of all original data points under which the mutual distance is
well controlled with overwhelming probability. To this end, it seems that a straightforward
approach is to utilizing principal component analysis (PCA). However, it is known that
finding the exact principal components is computationally slow for large-scale problems.
Therefore, we propose to first select a manageable number of landmark points followed by
PCA. The selection process is based on the ridge leverage score which is a good measure
of the importance of data points (Alaoui and Mahoney, 2015).

2302 Machine Learning (2022) 111:2297–2322

1 3

Definition 1 (Ridge leverage score) For any 𝜆 > 0 , the �-ridge leverage score of the row of
P ∈ ℝ

n×d is defined as:

where � is the n × n identity matrix.

To be more concrete, when constructing the principal components of the training
set, our algorithm runs in multiple iterations, where in each iteration a fraction of the
training data are sampled and some of them will be selected as landmarks. The low-
dimensional subspace is learned based on selected landmarks. The algorithm terminates
when all the training data have been evaluated. When a new query comes in, it will be
projected onto the learned subspace, through which retrieval is efficient.

(3)li = pi(P
⊤P + 𝜆�)−1p⊤

i
,

2303Machine Learning (2022) 111:2297–2322

1 3

3.2 Learning to hash

Algorithm 1 learns a low-dimensional projection matrix Z ∈ ℝ
d×k that can be applied

to embed the data. It consists of two major steps: Phase I selects the landmark points as
indicated by the matrix ̃S ∈ Rd×s , and Phase II runs PCA on selected landmark points
to return the low-dimensional projection matrix. The algorithm starts with checking if
the problem is in large scale, that is, whether the number of samples in P is greater than
192 log(1∕�) . If not, we could use PCA to get Z directly; otherwise, the algorithm enters
Phase I in the while loop to sample important data points.

The key observation of our sampling approach is that uniform sampling is practical,
but it only enjoys theoretical guarantees under strong regularity or incoherence assump-
tions on the data (Gittens, 2011). On the other hand, ridge leverage scores evaluate the
importance of data points which have shown practical impact in downstream appli-
cations. However, the calculation of exact ridge leverage score is often slow. In this
regard, we propose to combine these two widely used schemes.

First, note that we aim to approximately estimate the ridge leverage score of all data
points in an iterative manner, and each data point is evaluated only once. To this end,
the number of iterations T is initialized as O(log n) . In each iteration, we randomly draw
half of the data points that have not been accessed. The iteration terminates when the
size of the remaining data is less than 192 log(1∕�).

In particular, in each iteration, we construct uniform sampling matrix ̄S by select-
ing data points uniformly at random with probability 1/2, and ̃S is the sampling matrix
learned by approximated ridge leverage scores. Each column of ̃S has one nonzero ele-
ment that indicates the index of selected sample. In each iteration, we uniformly sample
a subset Ji and approximate the ridge leverage score of the j-th sample as

Equation (4) is a good approximation of the original ridge leverage score computed as in
Definition 1. With the fact P⊤ ̃S ̃S

⊤

P ⪯ P⊤P , l̃
i
 is an upper bound of the ridge leverage score

l
i
 , i.e.

Then we compute the sampling probability of data points based on the approximated lever-
age score as follows:

The data points are selected as landmarks with probability �i . The corresponding column
of the landmark point in the sampling matrix S is weighted by 1∕

√
�
i . S is assigned to ̃S as

the final selected sampling matrix in the current iteration. Then we get the next round data
partition Jt by uniform sampling. We output a partition of data set {J1,⋯ ,JT} at the end
of the algorithm.

(4)l̃
i
= p

i
(P⊤ ̃S ̃S

⊤

P + 𝜆�)−1p⊤
i
.

(5)l̃
i
= p

i
(P⊤ ̃S ̃S

⊤

P + 𝜆�)−1p⊤
i
≥ p

i
(P⊤P + 𝜆�)−1p⊤

i
= l

i
.

(6)𝜂
i
= min(1, 16l̃

i
log(

∑

i

l̃
i
∕𝛿)).

2304 Machine Learning (2022) 111:2297–2322

1 3

Phase II seeks for a low-dimensional projection matrix Z based on the selected land-
marks. A straightforward approach to learn Z is to optimize the following objective
function:

As Z always lies in the column span of P⊤ , it can be represented by constructing a
matrix Y ∈ ℝ

n×k , such that Z = P⊤Y . We re-parameterize by writing Y = K−1∕2W where
K = PP⊤ , thus Z = PK−1∕2W . Recall that Phase I selects s landmarks denoted by S . Let
Φ be the orthogonal projection onto the row span of S⊤P . We can approximate the data-
base matrix as ̃P

def
=PΦ , where Φ = P⊤S(S⊤PP⊤S)+S⊤P . Since Φ is an orthogonal projec-

tion, ΦΦ⊤ = Φ2 = Φ , we can approximate K as ̃K = ̃P ̃P
⊤

= KS(S⊤KS)+S⊤K = P . So, the
projection matrix is in the form Z = ΦP ̃K

−1∕2
̃W = P⊤S(S⊤PP⊤S)+S⊤P ̃W , where ̃W mini-

mizes the following function:

The optimization of (7) is equivalent to minimizing the above objective function which is
standard in the literature (Woodruff et al., 2014). Since W can be taken as the top k eigen-
vectors of K , we approximate it by performing singular value decomposition on PP⊤S and
assign it to Σk in Algorithm 1.

3.3 Retrieval

In the retrieval phase, it is easy to learn the hash code of the data points by the projection
matrix Z , that is, the hash code of data point p⊤ ∈ ℝ

d is h(p) = sign(p⊤ × Z) . We can get
the hash code of the query in the same way. The near neighbors of the query include the
data points that conflict with the query in terms of the hash code. The neighbors could also
be retrieved with Hamming distance within certain radius. The search procedure is per-
formed on each data subset of {J1,⋯ ,JT} in parallel.

As shown in Algorithm 2, we set m as the desired number of approximate nearest neigh-
bors to return. First, we learn the hash code of the data points in P and the query data
point by projection matrix Z . Then the data points conflict with the query is considered as
the near neighbors of the query point. As the data set P is partitioned to several data sub-
sets {Ji}

T
i
 (T = O(log n)). The search in each subset could be implemented simultaneously.

The search procedure terminates when the desired number of neighbors are returned. We
ensure that the approximated nearest neighbor can be returned in low-dimensional query
with high probability as shown in Theorem 3.

(7)min
Z

‖‖‖P − PZZ⊤‖‖‖
2

F
.

(8)tr (̃K) − tr (WW⊤ ̃KWW⊤).

2305Machine Learning (2022) 111:2297–2322

1 3

3.4 Time and memory cost

Phase I in Algorithm 1 performs at most T = O(log n) iterations in total. After O(log n) itera-
tions, all data points will be identified by certain group. The time cost in the iterative procedure
is dominated by the ridge leverage score computation which takes O(ns2) time. Since n is cut
in half at each level of iteration, the total run time is O(ns2 + ns2

2
+

ns2

4
+⋯) = O(ns2) . The

computation of top k eigenvectors of PP⊤S is O(ns2) . Since S has O(k
�

log
k

��

) columns, the
computation of eigenvectors to get a low-dimensional projection matrix Z can be performed
very efficiently. The construction of Z takes O(s3 + s2) . Hence, the total time complexity of
Algorithm 1 is O((s3 + ns2) ⋅ log n) . Recall that the time cost of spectral analysis is usually
polynomial in n or d, such as O(nd2 + d3) (Abdullah et al., 2014). Clearly, our algorithm is
more efficient. In terms of memory cost, the storage of P⊤P requires O(d2) extra space which
will be used in the ridge leverage score estimation. To search for the neighbors of the query
data point as in Algorithm 2, it requires saving all the binary code of training data with space
O(nk) and query time O(k ⋅ log n).

3.5 Hyper‑parameter setting

Algorithm 1 learns low-dimensional projection matrix Z ∈ ℝ
d×k , where d is the feature

dimension of data P and k is the dimension of projected space, k < d . The while-loop in Phase
I terminates in T = O(log n) iterations as the uniform sampling will select a half of samples
at each iteration from Ω . We assume that data P lives in low-dimensional space and k is rank
of the data matrix. After data projection, we utilize sign function to get the hash code, hence
k equals the length of hash code. The parameter k is tuned in the range of [0, d]. The input
parameters of Algorithm 1 � =

�

k

∑n

i=k+1
�i(K) , � , � which are used to get sampling matrix

S ∈ ℝ
n×s , s is the number of sampled data points which is in the order of k

�

log
k

��

 . The reason
is that s ≤ 2

∑
i �i with probability 1 − � by following Lemma 6. If the ridge leverage score is

computed exactly, we bound
∑

i li ≤
2k

�

 as shown in Lemma 9 of “Appendix A”. Accordingly, ∑
i �i ≤ 32

k

�

log
k

��

 as designed.
If the number of data points n < 192 log(1∕𝛿) , the while-loop is skipped. The 192 log(1∕�)

number of samples is set following the simplified Chernoff bounds in (Mitzenmacher and
Upfal, 2017). That is, when n ≥ 192 log(1∕�) , �|S̄| ≥ 96 log(1∕𝛿) , we have:

(9)Pr(1 ≤ |S̄| ≤ 0.56n) ≥ 1 − 𝛿,

2306 Machine Learning (2022) 111:2297–2322

1 3

as long as � ≤ 1∕32 . Then the while-loop continues on the index set Ω of size ≥ 1 and
≤ 0.56n . Accordingly, Theorem 1 holds for all data set J with size between 1 and n − 1
with probability 1 − �.

� is the parameter to approximate ridge leverage score which is initialized as
𝜖

k

∑n

i=k+1
𝜎i(PP

⊤) . Then we get the (1 + 2�) relative Frobenius error guarantee among the
approximated low-rank space and ground-truth. The quantity 192 log(1∕�) is the minimum
number of sampled set to compute leverage score. We assume that the number of samples
in P is larger than 192 log(1∕�) , otherwise the low-rank matrix could be computed by sin-
gular value decomposition directly.

4 Performance guarantee

In this section, we use the following notations. Let S⊤P denote the data matrix with s sam-
ples selected by weighted sampling matrix S from database P . We write K = PP⊤ ∈ ℝ

n×n .
Note that the Nyström approximation of K based on S is ̃K = KS(S⊤KS)+S⊤K.

Lemma 1 For any � ∈ (0, 1∕32) , with probability (1 − 3�) , Algorithm 1 returns S with s
columns that satisfies:

We remark that Lemma 1 is a direct corollary of Lemma 6 and matrix Bernstein
inequality.

Lemma 2 For any � ∈ (0, 1∕32) , let S ∈ ℝ
n×s be returned by Algorithm 1 with

s ≤ 384 ⋅ � log(�∕�) , where � = tr (K(K + ��)−1) is the effective dimension of K = PP⊤
with parameter � . Denote Nyström approximation of K by ̃K = KS(S⊤KS)+S⊤K . With
probability 1 − 3� , the following holds:

Proof By Lemma 1, we get

for a weighted sampling matrix S . If we remove the weight from S so that it has all unit
entries, by Lemma 5 and Nyström approximation, ̃K satisfies:

as claimed. ◻

Now, we are ready to use Lemma 1 and Lemma 2 to give an efficient method to approxi-
mate the principal components of the data matrix P.

Theorem 1 Let S ∈ ℝ
n×s returned by Algorithm 1 with 𝜆 =

𝜀

k

∑n

i=k+1
𝜎i(PP

⊤) and
� ∈ (0, 1∕8) . V ∈ ℝ

d×k contains optimal top k row principal components of data matrix P .

1

2
(P⊤P + 𝜆�) ⪯ (P⊤SS⊤P + 𝜆�) ⪯

3

2
(P⊤P + 𝜆�).

̃K ⪯ K ⪯ ̃K + 𝜆�.

1

2
(P⊤P + 𝜆�) ⪯ (P⊤SS⊤P + 𝜆�) ⪯

3

2
(P⊤P + 𝜆�),

̃K ⪯ K ⪯ ̃K + 𝜆�

2307Machine Learning (2022) 111:2297–2322

1 3

From P⊤S , we can compute a matrix X ∈ ℝ
n×s such that if we set Z = P⊤SX , with prob-

ability 1 − �:

with s = O(
k

�

log
k

��

).

The proof is presented in “Appendix B”. In the following, we demonstrate that the
nearest neighbor can be retrieved in the learned data structure. To this end, we first show
that the nearest neighbor of the query remains consistent even corrupted with noise.

Lemma 3 If the query y and its nearest neighbor x∗ are corrupted with noise t , that is,
q = y + t , p∗ = x∗ + t , the nearest neighbor of q is p∗.

Proof Recalling that the noise is bounded, that is ‖t‖2 ≤ � . Hence for all i ∈ [0, n] , we have

By the triangle inequality,

Then, for any other data point in the data set P , that is p ∈ P and p ≠ p∗ , we get

Then we get the guarantee that distances between data and low-dimensional subspace are
bounded. ◻

Theorem 2 Let Z ∈ ℝ
d×k be the projection matrix learned by Algorithm 1, ̃U be the cor-

responding subspace, then we have:

where �i is the i-th singular value of P.

Proof Let V ∈ ℝ
d×k contain the projection matrix obtained by singular value decomposi-

tion of P and U be corresponding k-dimensional subspace. The distance between a data
point and subspace can be computed as:

Combining with Theorem 1, we show that

‖‖‖P − PZZ⊤‖‖‖
2

F
≤ (1 + 2𝜖)

‖‖‖P − PVV⊤‖‖‖
2

F
,

��pi − xi
��2 ≤ ‖t‖2 ≤ �.

‖q − p∗‖2 ≤ ‖q − y‖2 + ‖y − x∗‖2 + ‖x∗ − p∗‖2
≤ ‖y − x∗‖2 + 2�.

‖q − p‖2 ≥ ‖y − x∗‖2 + � − 2�.

∑

p∈Pi

d(p, ̃U)2 ≤ (1 + 2𝜖)

n∑

i=k+1

𝜎i(P),

�

p∈P

d(p,U)2 =
�

p∈P

inf
w∈U

‖p − w‖2
2
=
���P − PVV⊤���

2

F
.

�

p∈P

d(p, ̃U)2 =
�

p∈P

inf
w∈ ̃U

‖p − w‖2
2
=
���P − PZZ⊤���

2

F
.

2308 Machine Learning (2022) 111:2297–2322

1 3

where �i is the i-th singular value of P . For the case that k is close to the rank of P , ∑n

i=k+1
�i can be very small.

With Theorem 2, we can easily prove that the similarity among data points is preserved
in the projected low-dimensional space as Lemma 4, which we defer to “Appendix C”.
Then we get our main result Theorem 3, that the nearest neighbor will be returned in the
low-dimensional space.

Lemma 4 Suppose the nearest neighbor of q is p∗ in d-dimensional feature space. In the
k-dimensional subspace projected by Z ∈ ℝ

d×k which is learned by Algorithm 1, the near-
est neighbor of q is p∗.

Theorem 3 Algorithm 2 returns data point p∗ from database P as a (1 + �∕4)-approximate
nearest neighbor of query point q.

Proof Recall that noisy data p ∈ P is permuted from clean data x ∈ X with noise t
(p = x + t), and so is the query data q (q = y + t with y as clean data). Let the nearest
neighbor of y be x∗ ∈ X which corresponds to p∗ in P . Assume that p∗ is the returned
nearest neighbor of q . Fix x ≠ x∗ , using the triangle inequality to write

The third inequality is derived from Theorem 2. Following the proof of Theorem 2, ∑n

i=k+1
�i can be as small as possible and � ∈ (0, 1) . Here we let (1 + 2�)

∑n

i=k+1
�i ≤ 2� to

get the last inequality. Similarly for x∗ , we have

Using the triangle inequality, we get

and

With � set as 16∕� , we can bound ‖‖‖q − p∗
̃U

‖‖‖2 , which implies

‖‖‖P − PZZ⊤‖‖‖
2

F
≤ (1 + 2𝜖)

‖‖‖P − PVV⊤‖‖‖
2

F
≤ (1 + 2𝜖)

n∑

i=k+1

𝜎i(P),

��x − p ̃U
��2 ≤ ‖x − p‖2 + ��p − p ̃U

��2
≤ ‖t‖2 + (1 + 2𝜖)��p − pU

��2

≤ 𝛼 + (1 + 2𝜖)

n�

i=k+1

𝜎i ≤ 3𝛼.

‖‖‖x
∗ − p∗

̃U

‖‖‖2 ≤ 3𝛼.

���q − p∗
̃U

���2 ≤ ‖q − y‖2 + ‖y − x‖2 +
���x − p∗

̃U

���2
≤ ‖y − x‖2 + 3𝛼,

��q − p ̃U
��2 ≥ ‖y − x‖2 − ‖y − q‖2 − ��p ̃U − x��2

≥ ‖y − x‖2 − 3𝛼.

2309Machine Learning (2022) 111:2297–2322

1 3

By using Pythagoras’ Theorem (recall both p ̃U, p
∗
̃U
∈ ̃U),

Hence, p∗ is reported as the nearest neighbor of q in the low-dimensional subspace. ◻

5 Experiments

In this section, we perform experiments on benchmark data sets to demonstrate the effec-
tiveness of our algorithm. First, we describe our experimental settings.

5.1 Experimental setting

5.1.1 Baseline algorithms

We illustrate the effectiveness of our algorithm by comparing it with the celebrated data-
independent hashing algorithm of locality-sensitive hashing (LSH) (Andoni and Indyk,
2008), and state-of-the-art data-dependent algorithms, including anchor graph hashing
(AGH) (Liu et al., 2011), circulant binary embedding (CBE) (Yu et al., 2014), iterative
quantization (ITQ) (Gong and Lazebnik, 2011), Isotropic hashing (ISO) (Kong and Li,
2012), multidimensional spectral hashing (MDSH) (Weiss et al., 2012), supervised discrete
hashing (SDH) (Shen et al., 2015), scalable graph hashing (SGH) (Jiang and Li, 2015),
spectral hashing (Weiss et al., 2009), sparse projection (SP) (Xia et al., 2015) and bilinear
projection based binary codes (BPBC) (Gong et al., 2013). The parameters are set as sug-
gested in the original works. We refer to our algorithm as Inexact Subspace Analysis for
approximate Nearest Neighbor Search (ISANNS).

5.1.2 Data sets

We consider data sets from both computer vision and and natural language processing. In
particular, for the computer vision application, we apply all the compared algorithms to the

��q − p ̃U
��2

���q − p∗
̃U

���2
=

‖y − x‖2 ± 4 ⋅ 𝛼

‖y − x∗‖2 ± 4 ⋅ 𝛼
=

‖y − x‖2 ±
1

4
𝜖

‖y − x∗‖2 ±
1

4
𝜖

≥
‖y − x‖2 −

1

4
𝜖

‖y − x∗‖2 +
1

4
𝜖

≥
‖y − x∗‖2 +

3

4
𝜖

‖y − x∗‖2 +
1

4
𝜖

> 1 +
1

4
𝜖.

‖‖q ̃U − p ̃U
‖‖
2

2

‖‖‖q ̃U − p∗
̃U

‖‖‖
2

2

=
‖‖q − p ̃U

‖‖
2

2
− ‖‖q − q ̃U

‖‖
2

2

‖‖‖q − p∗
̃U

‖‖‖
2

2
− ‖‖q − q ̃U

‖‖
2

2

> (1 +
1

4
𝜖)2.

2310 Machine Learning (2022) 111:2297–2322

1 3

handwritten digit recognition data set MNIST1, which consists of 70,000 digit images. We
randomly sample 69,000 images for training and the left 1000 images for test where each
image is represented as a 784-dimensional vector (i.e. the raw pixels).

For the natural language processing task, we use four data sets from the GLUE (Gen-
eral Language Understanding Evaluation) benchmark (Wang et al., 2019) and Glove (Pen-
nington et al., 2014), a word representation data set for Wikipedia’s entries. The data sets
of GLUE benchmark include Stanford Sentiment Treebank (SST-2) (Socher et al., 2013)
(SST-2), Corpus of Linguistic Acceptability (CoLA) (Warstadt et al., 2019), Microsoft
Paraphrase Corpus (MRPC) (Dolan and Brockett, 2005) and Stanford Question Answer-
ing Natural Language Inference Corpus (QNLI) (Rajpurkar et al., 2016). More specifi-
cally, SST-2 consists of movie reviews, the sentiment of which is either positive or nega-
tive. CoLA consists of English sentences from books and journal articles. The sentences
are grammatically acceptable or not. MRPC is formed by sentence pairs from online news
sources. The label of the sentence pair represents whether the two sentences is semantically
equivalent or not. QNLI is the data set with pairs of a question and the context sentence,
the label of which represents whether the context sentence contains the answer to the ques-
tion. We compute the representations for sentences and paragraphs with sentence trans-
formers (Reimers and Gurevych, 2019) based on pretrained STS (Semantic Textual Simi-
larity) model “stsb-roberta-base”2. Each example is represented with a 768-dimensional
dense vector. The statistics of data sets is shown in Table 2.

5.1.3 Evaluation metrics

The performance of the methods are evaluated by two common metrics: Hamming dis-
tance ranking and hash table lookup. We retrieve the items within Hamming distance 2 and
report related precision, recall and mean average precision (MAP). We also return the top
500 retrieved items and report and mean average precision as well as time complexity.

To compute the precision and recall, let k denote the elements within the Hamming
radius 2, and n denote the total number of relevant items in the database, then

(10)Precision =
#relevant seen

k
, Recall =

#relevant seen

n
.

Table 2 Statistics of experimental data sets. #Train and #Test are the size of training and testing sets,
respectively

Data set Description Domain #Train #Test

MNIST Handwritten digit images Images 69k 1k
SST-2 Sentiment with positive or negative value Movie reviews 67k 872
CoLA Sentences with grammatical correctness indicator Linguistic publications 8.5k 1k
MRPC paraphrase from online news sources News 3.7k 408
QNLI Question answering/textual entailment Wikipedia 105k 5.5k
Glove vector representations for words Wikipedia 1183k 10k

2 https:// github. com/ UKPLab/ sente nce- trans forme rs.

1 http:// yann. lecun. com/ exdb/ mnist/.

https://github.com/UKPLab/sentence-transformers
http://yann.lecun.com/exdb/mnist/

2311Machine Learning (2022) 111:2297–2322

1 3

We show the performance with various lengths of hash code.

5.2 Empirical results

Figure 1 shows the precision and recall on the MNIST data set when we tune the hash code
length. In terms of precision (left panel), our algorithm always outperforms the baselines,
especially when the data are encoded with more bits. Perhaps more surprising, the increase
of code length degrades the performance of baseline algorithms, while improves our algo-
rithm. It demonstrates the effective of our algorithm in low-dimensional subspace.

The superiority of our algorithm is outstanding compared with baseline algorithms in
terms of both precision and recall in almost all cases. Table 3 lists the hash table lookup
results for 10-bit, 16-bit and 20-bit hash codes on MNIST data set. We observe that our

10 12 14 16 18
#number of bits

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

MNIST

AGH
CBE
ITQ
ISO
LSH
MDSH
SDH
SGH
SH
SP
BPBC
ISANNS

10 12 14 16 18
#number of bits

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

MNIST

AGH
CBE
ITQ
ISO
LSH
MDSH
SDH
SGH
SH
SP
BPBC
ISANNS

Fig. 1 Performance of precision and recall with the increase of hash code length on MNIST data set

Table 3 Results in terms of
MAP of Hamming distance 2
(the column “MAP”), MAP of
top 500 samples (the column
“MAP@500”) and training time
(s) on MNIST data set with hash
code lengths 10 and 16 bits,
respectively

Methods MAP MAP@500 Training Time

10-bit 16-bit 10-bit 16-bit 10-bit 16-bit

AGH 0.4319 0.4132 0.6074 0.7025 0.6969 0.7018
CBE 0.4422 0.3940 0.5812 0.6881 0.7395 0.7202
ITQ 0.3988 0.4142 0.5410 0.7193 0.7166 0.6550
ISO 0.3965 0.4156 0.5389 0.6966 0.6840 0.6791
LSH 0.4071 0.4022 0.6037 0.6941 0.6548 0.6259
MDSH 0.3997 0.4054 0.6351 0.7178 0.7156 0.6330
SDH 0.4071 0.4149 0.5901 0.7233 0.6669 0.7561
SGH 0.4267 0.4205 0.6006 0.7215 0.6711 0.6423
SH 0.4110 0.4303 0.5974 0.7426 0.6609 0.6657
SP 0.4221 0.4256 0.6310 0.7236 0.6848 0.7342
BPBC 0.4241 0.3958 0.6254 0.7035 0.6560 0.6697
ISANNS 0.7528 0.8843 0.7312 0.8724 0.1054 0.0962

2312 Machine Learning (2022) 111:2297–2322

1 3

10 12 14 16 18
#number of bits

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

SST-2

AGH
CBE
ITQ
ISO
LSH
MDSH
SDH
SGH
SH
SP
BPBC
ISANNS

10 12 14 16 18
#number of bits

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

SST-2

AGH
CBE
ITQ
ISO
LSH
MDSH
SDH
SGH
SH
SP
BPBC
ISANNS

10 12 14 16 18
#number of bits

0

0.2

0.4

0.6

0.8

P
re

ci
si

on

CoLA

AGH
CBE
ITQ
ISO
LSH
MDSH
SDH
SGH
SH
SP
BPBC
ISANNS

10 12 14 16 18
#number of bits

0

0.2

0.4

0.6

0.8

R
ec

al
l

CoLA

AGH
CBE
ITQ
ISO
LSH
MDSH
SDH
SGH
SH
SP
BPBC
ISANNS

10 12 14 16 18
#number of bits

0

0.2

0.4

0.6

0.8

P
re

ci
si

on

MRPC

AGH
CBE
ITQ
ISO
LSH
MDSH
SDH
SGH
SH
SP
BPBC
ISANNS

10 12 14 16 18
#number of bits

0

0.2

0.4

0.6

0.8

R
ec

al
l

MRPC

AGH
CBE
ITQ
ISO
LSH
MDSH
SDH
SGH
SH
SP
BPBC
ISANNS

10 12 14 16 18
#number of bits

0

0.1

0.2

0.3

0.4

0.5

0.6

P
re

ci
si

on

QNLI

AGH
CBE
ITQ
ISO
LSH
MDSH
SDH
SGH
SH
SP
BPBC
ISANNS

10 12 14 16 18
#number of bits

0

0.1

0.2

0.3

0.4

0.5

0.6

R
ec

al
l

QNLI

AGH
CBE
ITQ
ISO
LSH
MDSH
SDH
SGH
SH
SP
BPBC
ISANNS

Fig. 2 Performance of precision and recall with the increase of hash code length for GLUE benchmark

2313Machine Learning (2022) 111:2297–2322

1 3

algorithm dramatically outperforms the compared algorithms. Specifically, in terms of
16-bit hash codes on MNIST data set, the MAP of our algorithm is up to 0.8843 while the
others are below 0.5 with Hamming radius 2. In terms of MAP with top 500 retrieved data
points, our algorithm achieves significant superiority compared with baseline approaches.
Our algorithm also enjoys the best time efficiency. With the increase of hash code length,
it requires more time to learn the hash codes. With more information, the performance of
models is also improved. The experimental results in Figure 1 and Table 3 show the advan-
tage of our algorithm in all cases.

Table 4 Results in terms of MAP of Hamming distance 2 for GLUE benchmark with hash code length
10-bit and 16-bit

Methods SST-2 CoLA MRPC QNLI

10-bit 16-bit 10-bit 16-bit 10-bit 16-bit 10-bit 16-bit

AGH 0.5619 0.5607 0.5765 0.5776 0.5661 0.5623 0.5007 0.5007
CBE 0.5560 0.5529 0.5766 0.5769 0.5660 0.5650 0.5008 0.5008
ITQ 0.5637 0.5744 0.5769 0.5775 0.5643 0.5625 0.5008 0.5011
ISO 0.5531 0.5534 0.5762 0.5775 0.5626 0.5638 0.5007 0.5007
LSH 0.5754 0.5352 0.5779 0.5769 0.5633 0.5642 0.5008 0.5008
MDSH 0.5593 0.5564 0.5764 0.5778 0.5663 0.5654 0.5008 0.5009
SDH 0.5617 0.5638 0.5763 0.5776 0.5665 0.5642 0.5007 0.5009
SGH 0.5621 0.5614 0.5774 0.5768 0.5660 0.5627 0.5008 0.5009
SH 0.5869 0.5634 0.5765 0.5770 0.5638 0.5649 0.5008 0.5005
SP 0.5708 0.5736 0.5767 0.5769 0.5637 0.5652 0.5006 0.5009
BPBC 0.5687 0.5555 0.5769 0.5779 0.5646 0.5632 0.5010 0.5008
ISANNS 0.8714 0.8796 0.7415 0.7463 0.7257 0.7323 0.6841 0.6787

Table 5 Results in terms of MAP of top 500 retrieved samples for GLUE benchmark with hash code
lengths 10-bit and 16-bit

Methods SST-2 CoLA MRPC QNLI

10-bit 16-bit 10-bit 16-bit 10-bit 16-bit 10-bit 16-bit

AGH 0.6876 0.7012 0.5751 0.5786 0.5747 0.5756 0.5081 0.5088
CBE 0.6586 0.6981 0.5784 0.5777 0.5766 0.5791 0.5081 0.5083
ITQ 0.6729 0.7113 0.5747 0.5811 0.5749 0.5750 0.5077 0.5099
ISO 0.6707 0.7029 0.5758 0.5805 0.5744 0.5778 0.5086 0.5080
LSH 0.6774 0.6731 0.5780 0.5782 0.5749 0.5766 0.5088 0.5087
MDSH 0.6908 0.6940 0.5753 0.5800 0.5776 0.5800 0.5081 0.5086
SDH 0.6838 0.7078 0.5736 0.5800 0.5770 0.5781 0.5080 0.5096
SGH 0.6891 0.6876 0.5803 0.5784 0.5781 0.5765 0.5075 0.5089
SH 0.6985 0.7012 0.5761 0.5787 0.5759 0.5757 0.5088 0.5077
SP 0.6878 0.7066 0.5765 0.5801 0.5737 0.5749 0.5072 0.5093
BPBC 0.6812 0.6837 0.5774 0.5826 0.5778 0.5760 0.5074 0.5094
ISANNS 0.8188 0.8165 0.6934 0.6952 0.6657 0.6519 0.5484 0.5366

2314 Machine Learning (2022) 111:2297–2322

1 3

Figure 2 shows the precision and recall of compared algorithms on GLUE benchmark
with the increase of hash code length. Table 4 and Table 5 show MAP within Hamming
radius 2 and MAP of top 500 retrieved samples for 10-bit and 16-bit hash code. It is shown
that our algorithm achieves the best performance in all listed GLUE benchmark in almost
all the cases.

Table 3 also lists the time cost of learning the hash projection matrix for different methods
on MNIST data set referred as “training time”. We report the training time cost on GLUE
benchmark in Table 6 with hash code length 10-bit and 16-bit. We observe that our algorithm
is efficient as the low-rank projection matrix is performed on the sampled matrix instead of
the global data matrix. In terms of query time cost, the nearest neighbors in the experiments
are computed based on the Hamming distance with radius 2. The dominant query time cost is
the computation of the Hamming distance matrix between training data points and the testing
data points. Hence, the query time complexity of various methods is same for certain data sets,
such as 0.71 s for MNIST, 0.73 s for SST-2, 0.11 s for CoLA, 0.13 s for MRPC, and 10 s for
QNLI.

Table 7 presents recall and training time cost of compared algorithms on Glove data set.
There are memory issues while implementing AGH, SDH and SH on Glove data set, hence
the results of these methods are not included. The experimental results show the advantage of
our algorithm in terms of both Recall and training cost. Though SP achieves comparable per-
formance in terms of Recall, our algorithm enjoys higher training efficiency.

Table 6 Training time cost (s) for GLUE benchmark with hash code length 10-bit and 16-bit

Methods SST-2 CoLA MRPC QNLI

10-bit 16-bit 10-bit 16-bit 10-bit 16-bit 10-bit 16-bit

AGH 0.9178 0.8638 0.1596 0.1498 0.1712 0.1057 1.376 1.587
CBE 0.8760 0.8837 0.1395 0.1532 0.0927 0.0908 1.881 1.920
ITQ 0.8642 0.9195 0.2016 0.1469 0.1104 0.1791 2.758 1.778
ISO 0.8705 0.9088 0.1433 0.1675 0.0893 0.1014 2.932 1.959
LSH 0.8803 0.8789 0.1529 0.1447 0.0974 0.0927 1.722 1.915
MDSH 0.9757 0.8795 0.1406 0.1434 0.0906 0.0921 3.070 1.490
SDH 0.8807 0.8962 0.1716 0.1548 0.0881 0.1006 2.460 1.923
SGH 0.8889 0.9262 0.2187 0.1637 0.1114 0.0890 1.749 1.975
SH 0.8805 0.9828 0.1505 0.1334 0.1091 0.1052 2.071 2.046
SP 0.9064 0.8940 0.1574 0.1448 0.0974 0.0980 2.275 2.076
BPBC 0.8736 0.9946 0.1972 0.1681 0.1121 0.0891 3.245 4.341
ISANNS 0.5884 0.6245 0.0483 0.0716 0.0227 0.0261 1.409 1.599

Table 7 Recall and training time cost (s) on Glove with hash code length 8-bit

CBE ITQ ISO LSH MDSH SGH SP BPBC ISANNS

Recall 0.9132 0.9704 0.9902 0.8112 0.8872 0.9810 0.9908 0.9628 1.0
Time cost (s) 174.39 183.91 102.88 75.79 105.40 104.96 106.24 105.99 22.32

2315Machine Learning (2022) 111:2297–2322

1 3

In a nutshell, the experimental results on the computer vision and natural language under-
standing tasks show the practical values of our algorithm.

6 Conclusion

For the approximate nearest neighbor search problem, the high-dimensional and large-scale
data raises various challenges. In this paper, we have proposed a spectral analysis for near-
est neighbor search method that is based on inexact subspace estimation. Given the data set
P ∈ ℝ

n×d and the query q , we have reduced the feature space of the data from d to k with
k < log n . By comparing the time complexity of our method and the spectral analysis based
on principal component analysis, it is not hard to see that the computational cost of ours is
proportional to ns2 while that of PCA scales with nd2 . We have further provided the theo-
retical analysis that the (1 + �∕4)-approximate neighbors retrieved in the low-dimensional
space are the data points close to the query in the original space. The experimental results
have shown the significant improvement of our algorithm over state-of-the-art approaches.

Appendix A: Useful lemmas

Note that by Definition 1, the ridge leverage score equals the diagonal entry of
P(P⊤P + 𝜆�)−1P⊤ , that is:

The computation is expensive when P is a large data matrix. We thus define a sampling
matrix S to select some rows from P to approximate P⊤P . The approximated ridge leverage
score is computed as:

Leverage score based sampling approaches have long been known to give strong theoreti-
cal guarantees for Nyström approximation, and here is the well studied spectral norm guar-
antee: Lemma 5 is from Gittens and Mahoney (2016) and Lemma 6 is from Musco and
Musco (2017).

Lemma 5 Suppose 𝜆 > 0 , � ∈ (0, 1∕8) , the sampling matrix ̃S ∈ ℝ
n×s is obtained by Algo-

rithm 1 with ridge leverage score approximations l̃ and data sampling probability � , then
with probability (1 − �) , the kernel K = PP⊤ and approximation ̃K = K ̃S(̃S

⊤

K ̃S)+ ̃S
⊤

K
satisfy:

with
∑

i 𝜂i = O(
∑

i l̃i log(
∑

i l̃i∕𝛿)) and the number of sampled data points s ≤ 2
∑

i �i.

Lemma 6 Suppose 𝜆 > 0 , � ∈ (0, 1∕8) , the sampling matrix S ∈ ℝ
n×s is obtained by sam-

pling the standard basis vectors independently with probability �i and rescaled with 1∕
√
�i ,

then with probability (1 − �) , 1∕2 ⋅
∑

i �i ≤ s ≤ 2
∑

i �i and:

(11)li = (P(P⊤P + 𝜆�)−1P⊤)i,i.

(12)l̃i = (P(P⊤SS⊤P + 𝜆�)−1P⊤)i,i.

̃K ⪯ K ⪯ ̃K + 𝜆�,

2316 Machine Learning (2022) 111:2297–2322

1 3

Corollary 1 With probability 1 − � , Algorithm 1 run with ridge parameter �� returns
S ∈ ℝ

n×s such that s = O(
�

�

log
�

��

) with � = tr (K(K + ���)−1) , K = PP⊤ and
̃K = KS(S⊤KS)+S⊤K satisfy ̃K ⪯ K ⪯ ̃K + 𝜖𝜆�.

Proof This follows from Lemma 5 by noting tr (K(K + ���)−1) ≤
1

�

tr (K(K + ��)−1) since
(K + ���)−1 ⪯

1

�

(K + ��)−1 . ◻

Lemma 7 For any � ∈ (0, 1) , � ∈ (0, 1∕8) , Algorithm 1 runs with ridge parameter
� =

�

k

∑n

i=k+1
�i(K) returns matrix S ∈ ℝ

n×s , where K = PP⊤ , �(K) is the singular value of
K . Then with probability 1 − � , 1∕2

∑
i �i ≤ s ≤ 2

∑
i �i , ̃K = KS(S⊤KS)+S⊤K satisfies, for

any rank k orthogonal projection W and a positive constant c independent of W:

When ridge leverage scores are computed exactly,
∑

i �i = O(
k

�

log
k

��

).

Proof Set c = tr (K) − tr (̃K) , which is ≥ 0 since ̃K ⪯ K by Lemma 5. By linearity of trace:

So to obtain (14) it suffices to show:

W is a rank k orthogonal projection, we can write W = VV⊤ where V ∈ ℝ
n×k has orthonor-

mal columns. Applying the cyclic property of the trace, and the spectral bound of Lemma
5:

This gives us the upper bound of (16). For the lower bound we apply Corollary 1:

Finally, tr (K) =
∑n

i=1
�i(K) and tr (WKW) ≤

∑k

i=1
�i(K) , by the Eckart-Young theorem,

we get k�� = �

∑n

i=k+1
�i(K) ≤ � tr (K −WKW) . Plugging into (18) gives (16). The proof

is complete. ◻

Lemma 8 Algorithm 1 runs with ridge parameter � =
�

k

∑n

i=k+1
�i(K) returns ̃S ,

let K = PP⊤ and ̃K = KS(S⊤KS)+S⊤K . Suppose W∗ is the optimal solution for
argmin tr (̃K −WW⊤ ̃KWW⊤) , for ̃K and let W be an approximately optimal solution
satisfying:

Then, if W∗ is the optimal cluster indicator matrix for K:

(13)
1

2
(P⊤P − 𝜆�) ⪯ P⊤SS⊤P ⪯

3

2
(P⊤P + 𝜆�).

(14)tr (K −WKW) ≤ tr (̃K −W ̃KW) + c ≤ (1 + 𝜖) tr (K −WKW).

(15)tr (̃K −W ̃KW) + c = tr (K) − tr (W ̃KW).

(16)tr (WKW) − 𝜖 tr (K −WKW) ≤ tr (W ̃KW) ≤ tr (WKW).

(17)tr (W ̃KW) = tr (V⊤ ̃KV) =

k∑

i=1

v⊤
i
̃Kvi ≤

k∑

i=1

v⊤
i
Kvi = tr (V⊤KV) = tr (WKW).

(18)tr (W ̃KW) =

k∑

i=1

v⊤
i
̃Kvi ≥

k∑

i=1

v⊤
i
Kvi − k𝜖𝜆 = tr (WKW) − k𝜖𝜆.

(19)tr (̃K − ̃W ̃W
⊤
̃K ̃W ̃W

⊤

) ≤ (1 + 𝛾) tr (̃K − ̃W∗
̃W
⊤

∗
̃K ̃W∗

̃W
⊤

∗
).

2317Machine Learning (2022) 111:2297–2322

1 3

 ◻

Lemma 9 If the ridge leverage score in Algorithm 1 is computed exactly, the sum of
approximated leverage scores is bounded as

∑
i li ≤

2k

�

.

Proof

 ◻

Appendix B: Proof for Theorem 1

Proof Z contains orthonormal columns such that the value of the following objective
function:

is as small as possible. The above function equals:

(20)tr (K − ̃W ̃W
⊤

K ̃W ̃W
⊤

) ≤ (1 + 𝛾)(1 + 𝜖) tr (K −W∗W
⊤

∗
KW∗W

⊤

∗
).

(21)

tr (K − ̃W ̃W
⊤

K ̃W ̃W
⊤

) ≤ tr(̃K − ̃W ̃W
⊤
̃K ̃W ̃W

⊤

) + c (Lemma 7)

≤ (1 + 𝛾) tr (̃K − ̃W∗
̃W
⊤

∗
̃K ̃W∗

̃W
⊤

∗
) + (1 + 𝛾)c (by assumption)

≤ (1 + 𝛾) tr (̃K −W∗W
⊤

∗
̃KW∗W

⊤

∗
) + (1 + 𝛾)c (optimality of ̃W∗)

≤ (1 + 𝛾) tr (̃K −W∗W
⊤

∗
̃KW∗W

⊤

∗
) + c (since c ≥ 0)

≤ (1 + 𝛾)(1 + 𝜖) tr (K −W∗W
⊤

∗
KW∗W

⊤

∗
) (Lemma 7).

(22)

�

i

li = tr (K(K + ��)−1)

= tr (K

�
K +

�

k

n�

i=k+1

�i(K)�

�−1

) (� =
�

k

n�

i=k+1

�i(K) in Theorem 5)

≤
1

�

tr (K

�
K +

1

k

n�

i=k+1

�i(K)�

�−1

)

=
1

�

n�

i=1

�i(K)

�i(K) +
1

k

∑n

i=k+1
�i(K)

=
1

�

�
k�

i=1

�i(K)

�i(K) +
1

k

∑n

i=k+1
�i(K)

+

n�

i=k+1

�i(K)

�i(K) +
1

k

∑n

i=k+1
�i(K)

�

≤
1

�

�
k +

n�

i=k+1

�i(K)

1

k

∑n

i=k+1
�i(K)

�
=

2k

�

.

(23)‖‖‖P − PZZ⊤‖‖‖
2

F

2318 Machine Learning (2022) 111:2297–2322

1 3

Note that Z lies in the column span of P , we represent it by introducing a matrix Y such
that Z = P⊤Y . Let K denote the linear kernel of data set, that is K = PP⊤ , then minimizing
(24) is equivalent to minimizing

It follows from the fact that Z is orthonormal as (P⊤Y)⊤P⊤Y = Y⊤KY = � . Then we design
a matrix W ∈ ℝ

n×k with orthonormal columns, and introduce

From the cyclic and linearity property of the trace, we can rewrite (25) as:

Let ̃W = argminW tr (̃K) − tr (WW⊤ ̃KWW⊤) , and
W∗ = argminW tr (K) − tr (WW⊤KWW⊤) , where ̃K = KS(S⊤KS)†S⊤K . Following argu-
ment in Lemma 8, we have

as W is an n × k matrix with orthonormal columns. Our problem is reduced to a low-rank
approximation problem that looks like the k-means problem and W is the cluster indicator
matrix. Hence ̃W can be taken to equal the top k eigenvectors of ̃K which can be solved by
performing singular value decomposition of ̃K with time cost O(n ⋅ s2).

According to (26), we can get Z = P⊤K−1∕2 ̃W . However, Z cannot be represented effi-
ciently and projecting new vectors to Z requires n kernel evaluations to multiply by P⊤ .
Recalling that K = PP⊤ , S selects s data points S⊤P and we approximate P using its projec-
tion onto these points. Informally, let Φ ∈ ℝ

d×d be the orthogonl projection onto the row
span of S⊤P . We approximate P by ̃P

def
=PΦ . We can write Φ = P⊤S(S⊤PP⊤S)+S⊤P . Since

it is an orthogonal projection, ΦΦ⊤ = Φ2 = Φ , and we can write:

̃Z is orthonormal as ̃Z⊤
̃Z = ̃W

⊤
̃K
−1∕2

P⊤ΦP ̃K
−1∕2

̃W = � . We argue that the approximated
principal components offers a good solution to (24) as Z = P⊤K−1∕2 ̃W . To this end, we
substitute Z with ̃Z in (24) and get:

Compare the objective function values of (23) obtained from ̃Z = ΦP⊤ ̃K
−1∕2

̃W and
Z = P⊤K−1∕2 ̃W:

(24)tr (PP⊤ − (PZZ⊤)(PZZ⊤)⊤).

(25)tr (K − KYY⊤K).

(26)Y = K−1∕2W, then Z = P⊤K−1∕2W

(27)
tr (K − KYY⊤K) = tr (K) − tr (Y⊤KKY) = tr (K) − tr (W⊤KW) = tr (K) − tr (WW⊤KWW⊤).

(28)
tr (K) − tr (̃W ̃W

⊤

K ̃W ̃W
⊤

) ≤ (1 + 𝜖)(tr (K) − tr (W∗W
⊤

∗
KW∗W

⊤

∗
))

= (1 + 𝜖)

n∑

i=k+1

𝜎i(K),

̃Z = ΦP⊤ ̃K
−1∕2

̃W

(29)

tr (K − PΦP⊤ ̃K
−1∕2

̃W ̃W
⊤
̃K
−1∕2

PΦP⊤) = tr (K) − tr (̃W ̃W
⊤
̃K
−1∕2

PΦP⊤PΦP⊤ ̃K
−1∕2

)

= tr (K) − tr (̃W ̃W
⊤
̃K
−1∕2

̃K
2
̃K
−1∕2

)

= tr (K) − tr (̃W ̃W
⊤
̃K).

2319Machine Learning (2022) 111:2297–2322

1 3

The last step follows from Lemma 2 that K − ̃K ⪯ 𝜖𝜆� . We rewrite (30) as:

This gives the result. Note that ΦP⊤ ̃K
−1∕2

̃W = P⊤S(S⊤K⊤S)+S⊤ ̃K
1∕2

̃W , we set:

The solution of (24) can be represented as ̃Z = P⊤SX . ◻

Appendix C: Proof for Lemma 4

Proof Let p ̃U , p∗
̃U
 and q ̃U denote the data points p , p∗ and q in Z projected k-dimensional

subspace. For the nearest neighbor of the query, we have the projected distance bounded as

Then, for any other data point in the data set P , we get

(30)

tr (̃K) − tr (̃W ̃W
⊤
̃K ̃W ̃W

⊤

) −
[
tr (̃K) − tr (̃W ̃W

⊤
̃K)
]
= tr (̃W

⊤

(K − ̃K) ̃W)

=

k∑

i=1

w⊤

i
(K − ̃K)wi

≤ 𝜖

k∑

i=1

𝜎i(K).

tr (̃K) − tr (̃W ̃W
⊤
̃K ̃W ̃W

⊤

) ≤ (tr (̃K) − tr (̃W ̃W
⊤
̃K)) + 𝜖

k∑

i=1

𝜎i(K)

≤ (1 + 2𝜖)

n∑

i=k+1

𝜎i(K).

X =(S⊤K⊤S)†S⊤ ̃K
1∕2

̃W,

̃K
1∕2

=(KS(S⊤KS)†S⊤K)1∕2

=(PP⊤S(S⊤PP⊤S)†S⊤PP⊤)1∕2

=PP⊤S(S⊤P)† = P.

���q ̃U − p∗
̃U

���2 ≤
���(q − p∗)ZZ⊤���2

≤ ‖q − p∗‖2
���ZZ

⊤���2
≤ ‖q − p∗‖2.

��q ̃U − p ̃U
��2 =

���(q − p)ZZ⊤���2
≥
���q − qZZ⊤���2 −

���q − pZZ⊤���2
≥ ‖q − p‖2 −

���q − qZZ⊤���2 −
���p − pZZ⊤���2.

2320 Machine Learning (2022) 111:2297–2322

1 3

According to Theorem 2 that the distance between data and the projected space is bounded,
we get

For the case that k is close to the rank of P ,
∑n

k+1
�i can be as small as possible. Hence, in

the low-dimensional subspace, the nearest neighbor of q is p∗ . ◻

Declarations

 Funding Jie Shen is supported by NSF-IIS-1948133 and the startup funding of Stevens Institute of Technol-
ogy.

 Conflicts of interest/competing interests The authors have no relevant financial or non-financial interests
to disclose.

Availability of data and material All the data sets used in the paper are publicly available, and have been
cited in the main text.

 Code availability All the codes will be release on the authors’ personal websites after acceptance.

Authors’ contributions All authors contributed to the work. The paper was written together by Jie Shen and
Jing Wang. Jing Wang designed and ran the experiments and Jie Shen commented on ways for improvements.

 Ethics approval Not applicable.

 Consent to participate Not applicable.

 Consent for publication. Not applicable.

References

Abdullah, A., Andoni, A., Kannan, R. & Krauthgamer, R. (2014). Spectral approaches to nearest neighbor
search. In Annual symposium on foundations of computer science (pp. 581–590).

Alaoui, A., & Mahoney, M. W. (2015). Fast randomized kernel ridge regression with statistical guarantees.
In Advances in neural information processing systems (pp. 775–783).

Andoni, A., & Indyk, P. (2008). Near-optimal hashing algorithms for approximate nearest neighbor in high
dimensions. Communications of the ACM, 51(1), 117–122.

Andoni, A., Indyk, P., Nguyen, H.L. & Razenshteyn, I. (2014). Beyond locality-sensitive hashing. In Pro-
ceedings of the 2014 ACM-SIAM symposium on discrete algorithms, SIAM (pp. 1018–1028).

Andoni, A., Naor, A., Nikolov, A., Razenshteyn, I., & Waingarten, E. (2018). Data-dependent hashing
via nonlinear spectral gaps. In Annual ACM SIGACT symposium on theory of computing. ACM (pp.
787–800).

��q ̃U − p ̃U
��2 ≥ ‖q − p‖2 − 2 ⋅ (2 + 𝜖)

n�

i=k+1

𝜎i.

2321Machine Learning (2022) 111:2297–2322

1 3

Andoni, A,. Nikolov, A., Razenshteyn, I., & Waingarten, E. (2021). Approximate nearest neighbors beyond
space partitions. In Proceedings of the 2021 ACM-SIAM symposium on discrete algorithms (pp. 1171–
1190) SIAM.

Arya, S., & Mount, D.M. (1993). Approximate nearest neighbor queries in fixed dimensions. In Proceed-
ings of the fourth annual ACM/SIGACT-SIAM symposium on discrete algorithms (pp. 271–280).

Arya, S., Mount, D. M., & Narayan, O. (1995). Accounting for boundary effects in nearest neighbor
searching. In Proceedings of the eleventh annual symposium on computational geometry, Vancou-
ver (pp. 336–344).

Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching. Communica-
tions of the ACM 18(9), 509–517.

Çakir, F., He, K., Sclaroff, S. (2018). Hashing with binary matrix pursuit. In European conference on
computer vision (pp. 344–361).

Cohen, M.B., Musco, C., & Pachocki, J.W. (2016). Online row sampling. In Approximation, rand-
omization, and combinatorial optimization. algorithms and techniques, APPROX/RANDOM (pp
7:1–7:18).

Dobkin, D. P., & Lipton, R. J. (1976). Multidimensional searching problems. SIAM Journal on Comput-
ing 5(2), 181–186.

Dolan, W.B., & Brockett, C. (2005). Automatically constructing a corpus of sentential paraphrases. In
Proceedings of the third international workshop on paraphrasing.

Erin Liong, V., Lu, J., Wang, G., Moulin, P., Zhou, J. (2015). Deep hashing for compact binary codes
learning. In IEEE conference on computer vision and pattern recognition (pp. 2475–2483).

Gersho, A., & Gray, R. M. (2012). Vector quantization and signal compression, vol 159. Springer.
Gionis, A., Indyk, P., & Motwani, R. (1999). Similarity search in high dimensions via hashing. Interna-

tional Conference on Very Large Data Bases, 99, 518–529.
Gittens, A. (2011). The spectral norm error of the naive nystrom extension. arXiv preprint arXiv: 11105

305
Gittens, A., & Mahoney, M. W. (2016). Revisiting the nyström method for improved large-scale machine

learning. The Journal of Machine Learning Research, 17(1), 3977–4041.
Gong, Y., & Lazebnik, S. (2011). Iterative quantization: A procrustean approach to learning binary

codes. In IEEE conference on computer vision and pattern recognition (pp. 817–824).
Gong, Y., Kumar, S., Rowley, H. A., & Lazebnik, S. (2013). Learning binary codes for high-dimensional

data using bilinear projections. In IEEE conference on computer vision and pattern recognition (pp.
484–491).

Han, X., Leung, T., Jia, Y., Sukthankar, R., & Berg, A. C. (2015). Matchnet: Unifying feature and metric
learning for patch-based matching. In The 28th IEEE conference on computer vision and pattern
recognition (pp. 3279–3286).

Indyk, P., & Motwani, R. (1998). Approximate nearest neighbors: Towards removing the curse of dimen-
sionality. In Annual ACM symposium on theory of computing, ACM (pp. 604–613).

Jegou, H., Douze, M., & Schmid, C. (2011). Product quantization for nearest neighbor search. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 33(1), 117–128.

Jiang, Q., &Li, W. (2015). Scalable graph hashing with feature transformation. In International joint
conference on artificial intelligence (pp. 2248–2254).

Knuth, D. E. (1973). Sorting and searching. The art of computer programming 3:Ch–6.
Kong, W., & Li, W. J. (2012). Isotropic hashing. In Annual conference on neural information processing

systems (pp. 1646–1654).
Kulis, B., & Darrell, T. (2009). Learning to hash with binary reconstructive embeddings. In Annual con-

ference on neural information processing systems (pp. 1042–1050).
Liu, H., Wang, R., Shan, S., & Chen, X. (2016). Deep supervised hashing for fast image retrieval. In

IEEE conference on computer vision and pattern recognition (pp. 2064–2072).
Liu, W., Wang, J., Kumar, S., & Chang, S. F. (2011). Hashing with graphs. In International conference

on machine learning (pp. 1–8).
Liu, W., Mu, C., Kumar, S., & Chang, S. (2014). Discrete graph hashing. In Annual conference on neu-

ral information processing systems (pp. 3419–3427).
Makhoul, J., Roucos, S., & Gish, H. (1985). Vector quantization in speech coding. Proceedings of the

IEEE, 73(11), 1551–1588.
Mitzenmacher, M., & Upfal, E. (2017). Probability and computing: Randomization and probabilistic

techniques in algorithms and data analysis. Cambridge University Press
Musco, C., & Musco, C. (2015). Randomized block krylov methods for stronger and faster approximate

singular value decomposition. In Annual conference on neural information processing systems (pp.
1396–1404).

http://arxiv.org/abs/11105305
http://arxiv.org/abs/11105305

2322 Machine Learning (2022) 111:2297–2322

1 3

Musco, C., & Musco, C. (2017). Recursive sampling for the nystrom method. In Advances in neural
information processing systems (pp. 3836–3848).

Pennington J., Socher R., & Manning C. D. (2014). GloVe: Global Vectors for Word Representation. In
Proceedings of the 2014Conference on Empirical Methods in Natural Language Processing (pp.
1532–1543).

Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). Squad: 100, 000+ questions for machine compre-
hension of text. In J. Su, X. Carreras, K. Duh (Eds.) Proceedings of the 2016 conference on empirical
methods in natural language processing (pp. 2383–2392).

Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. In:
K. Inui, J. Jiang, V. Ng, X. Wan (Eds.) Proceedings of the 2019 conference on empirical methods in
natural language processing and the 9th international joint conference on natural language process-
ing, (pp. 3980–3990).

Rudi, A., Camoriano, R., & Rosasco, L. (2015). Less is more: Nyström computational regularization. In
Annual conference on neural information processing systems (pp. 1648–1656).

Samet, H. (1990). The design and analysis of spatial data structures (Vol. 85). Addison-Wesley.
Samet, H. (2006). Foundations of multidimensional and metric data structures
Sellis, T. K., Roussopoulos, N., & Faloutsos, C. (1997). Multidimensional access methods: Trees have

grown everywhere. In Proceedings of 23rd international conference on very large data bases (pp.
13–14).

Shen, F., Shen, C., Liu, W., & Shen, H. T. (2015). Supervised discrete hashing. In IEEE conference on com-
puter vision and pattern recognition (pp. 37–45).

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C.D., Ng, A.Y., & Potts, C. (2013). Recursive deep
models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 confer-
ence on empirical methods in natural language processing (pp. 1631–1642).

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. R. (2019). GLUE: A multi-task bench-
mark and analysis platform for natural language understanding. In Proceedings of the 7th international
conference on learning representations.

Warstadt, A., Singh, A., & Bowman, S. R. (2019). Neural network acceptability judgments. Trans Assoc
Comput Linguistics, 7, 625–641.

Weiss, Y., Torralba, A., & Fergus, R. (2009). Spectral hashing. In Annual conference on neural information
processing systems (pp. 1753–1760).

Weiss, Y., Fergus, R., & Torralba, A. (2012). Multidimensional spectral hashing. In European conference on
computer vision (pp. 340–353).

Woodruff, D. P., et al. (2014). Sketching as a tool for numerical linear algebra. Foundations and Trends in
Theoretical Computer Science, 10(1–2), 1–157.

Xia, Y., He, K., Kohli, P., & Sun, J. (2015). Sparse projections for high-dimensional binary codes. In IEEE
conference on computer vision and pattern recognition (pp. 3332–3339).

Yu, F. X., Kumar, S., Gong, Y., & Chang, S. (2014). Circulant binary embedding. In Proceedings of the
31th international conference on machine learning (pp. 946–954).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Fast spectral analysis for approximate nearest neighbor search
	Abstract
	1 Introduction
	1.1 Summary of our contributions
	1.2 Roadmap

	2 Related works
	3 Main algorithm
	3.1 Overview
	3.2 Learning to hash
	3.3 Retrieval
	3.4 Time and memory cost
	3.5 Hyper-parameter setting

	4 Performance guarantee
	5 Experiments
	5.1 Experimental setting
	5.1.1 Baseline algorithms
	5.1.2 Data sets
	5.1.3 Evaluation metrics

	5.2 Empirical results

	6 Conclusion
	References

