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Abstract
The field of energy disaggregation deals with the approximation of appliance electric con-
sumption using only the aggregate consumption measurement of a mains meter. Recent 
research developments have used deep neural networks and outperformed previous meth-
ods based on Hidden Markov Models. On the other hand, deep learning models are com-
putationally heavy and require huge amounts of data. The main objective of the current 
paper is to incorporate the attention mechanism into neural networks in order to reduce 
their computational complexity. For the attention mechanism two different versions are uti-
lized, named Additive and Dot Attention. The experiments show that they perform on par, 
while the Dot mechanism is slightly faster. The two versions of self-attentive neural net-
works are compared against two state-of-the-art energy disaggregation deep learning mod-
els. The experimental results show that the proposed architecture achieves faster or equal 
training and inference time and with minor performance drop depending on the device or 
the dataset.

Keywords Energy disaggregation · Non-intrusive load monitoring · Artificial neural 
networks · Self attention

1 Introduction

Energy disaggregation, also known as non-intrusive load monitoring (NILM), aims to sep-
arate appliance-level electric data from the total power consumption of a electrical instal-
lation. The main benefit of NILM is the possible improvement of electrical energy man-
agement. In the long term, the unnecessary waste of energy will be avoided, positively 
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affecting the global warming and the climate change problems. Further analysis on the tar-
gets’ consumption may identify functionality inefficiencies.

Due to the rise of Internet of Things (IoT), the usage of smart meters in residential 
buildings increases (Mahapatra and Nayyar 2019). As a result, NILM is becoming popular 
among the energy data analytics techniques of the residential and small commercial sector 
(Armel et al. 2013). Home energy management systems (HEMS) are capable of monitor-
ing and management of electrical appliances in many smart houses (Ruano et  al. 2019). 
There are two ways the appliance load monitoring (ALM) can be developed; either with 
intrusive or non-intrusive methods (Naghibi and Deilami 2014; Zoha et al. 2012). Against 
intrusive-loading monitoring (ILM), NILM is cheaper and more straightforward because it 
depends only on measurements from a single mains meter, without the use of extra equip-
ment. On the contrary, ILM provides better accuracy than NILM, being more expensive 
and demanding in terms of installation.

The contribution of the current paper to the research field of energy disaggregation 
could be summarized as follows. A novel lightweight recurrent neural network architec-
ture is designed. The attention mechanism, a technique borrowed from Natural Language 
Processing sector, is inserted in a typical NILM architecture, by significantly reducing it’s 
complexity. A set of baseline results and a meticulous analysis are presented, emphasiz-
ing not only the performance but also the efficiency of the models. It should be noted that 
the current research extends the work published by Virtsionis Gkalinikis et al. (2020). An 
ablation study is performed to highlight the fact that the attention mechanism boosts the 
network in on/off events detection. Extended experiments on more devices of a different 
data set, alongside comparisons with one more popular state-of-the-art architecture, lead 
to significant insights on which components are more suitable for designing lightweight 
and efficient NILM architectures. A knowledge transfer scenario is demonstrated, using the 
extracted features of complicate devices to simpler appliance disaggregation. Overall, the 
current study reveals that the proposed model can perform on par with the state-of-the-art 
models on most occasions, achieving stronger generalization properties in scalable training 
and inference times.

The anatomy of this article is as follows. As a starting point, there is a brief presentation 
of the related work on NILM and energy disaggregation. Secondly, the attention mecha-
nism is analyzed. The third section presents a concise explanation of Attention operators. 
Sect. 4, includes a thorough explanation of the purpose and operation of each individual 
part of the proposed architecture. Sect.  5 includes a description of the methodology of 
experiments. The most important of the results are presented in Sect. 6. In Sect. 7, an abla-
tion study is demonstrated. Last but not least, conclusions and future work proposals are 
introduced.

2  Related work

Energy disaggregation was firstly introduced by Hart in mid 80s as Non Intrusive Load 
Monitoring. Later, Hart proposed a combinatorial technique to tackle the problem of NILM 
Hart (1992). This method extracts the optimal states of the target devices in such a way that 
the sum of appliance power consumptions would be the same as the meter reading of total 
power. The drawback of the combinatorial method is that it can be applied only on simple 
devices with finite number of operation states.
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Before the rise of deep learning, the most popular techniques for NILM included Facto-
rial Hidden Markov Models (FHMM) (Kim et al. 2011; Kolter et al. 2012; Parson et al. 
2012). A FHMM architecture is essentially a set of multiple independent Hidden Markov 
Models. A combination of all the individual hidden states constitutes the observed output 
of the model. Kolter et al. (2012) proposed an additive novel FHMMs, where as output the 
sum of the individual HMMs is calculated.

Recent developments on hardware engineering opened the door for the rapid evolution 
of machine and deep learning. New approaches and algorithms thrive in complex tasks 
from the sectors of Natural language processing (NLP), Computer Vision and Time Series 
Analysis. Hence, NILM research started to focus on adjusting many of these techniques for 
the problem of energy disaggregation alongside developing new ones. Motivated by the 
current trends, Kelly and Knottenbelt (2015) designed three deep neural networks; a recur-
rent architecture, a denoising autoencoder (DAE) and a ANN model to regress start/end 
time and power. The results on the UK-DALE (Jack and William 2015) data set were more 
than promising, with the novel models outperforming both Hart’s method and FHMM. 
A similar architecture with LSTM recurrent neurons is in Mauch and Yang (2015). This 
method was tested on real data from REDD (Kolter et al. 2011) alongside with synthetic 
data, achieving good results for appliances with cycling motives in power consumption.

A state-of-the-art architecture called Sequence-to-Point was implemented by Zhang 
et al. (2018) only with the use of convolutional neural network (CNN) and dense layers. 
The name Sequence-to-Point comes from the fact that this technique uses a sliding win-
dow of aggregate data measurements to disaggregate the appliance consumption on a sin-
gle midpoint time step. The latter constitutes a core difference versus the other methods 
presented by Kelly and Knottenbelt (2015) and Mauch and Yang (2015). Krystalakos et al. 
(2018) used a different sliding window technique, utilizing Gated Recurrent Units (GRUs), 
a variation of LSTMs, in combination with dropout layers to improve previous RNN archi-
tectures in terms of performance and efficiency. As the popularity of RNN architectures 
grew, authors propose more variants of these methods (Kaselimi et al. (2019); Fang et al. 
2019).

Recently, the attention mechanism was introduced in the NILM sector. A variant of 
Google’s Transformer (Vaswani et al. 2017), Bert4NILM (Yue et al. 2020) was adjusted 
to the problem of disaggregation. The model achieves great results, but it has a large num-
ber of parameters, which affects training and inference. An encoder-decoder type of model 
with temporal attention is proposed by Piccialli and Sudoso (2021). The results show that 
the attention helps in event detection, resulting to good generalization in unseen data.

To successfully compare various methods and models, Symeonidis et al. (2019), synthe-
sized a benchmark methodology. Also, an exploration of the Stacking method of five well 
known models is conducted, providing good results on simple 2-state appliances. Never-
theless, regarding the reproducibility and comparability of energy disaggregation frame-
works, a standardization of the assessment procedures is recommended (Klemenjak et al. 
2020; Nalmpantis and Vrakas 2019).

Despite the breakthroughs that Deep Learning brought in NILM research, deployment 
issues remain. The main reason is the training and inference duration, due to the massive 
number of parameters of the state-of-the-art architectures. Moreover, for years the centre 
of attention of the NILM field of study was the development of one model per device. 
Hence, a complete energy disaggregation system should be consisted of a number of mod-
els equal to the number of devices the target electrical installation contains. In real time 
cases, energy measurements output massive quantities of data even at low sampling rates, 
which makes deploying NILM on embedded devices a challenging task. In order to do so, 
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a number of steps should be taken. The development of lightweight architectures is the first 
one. Next, it is suggested that multi-label machine learning models should be designed. 
Multi-label models are trained in order to estimate the electrical power consumption of 
more than one appliances, making the relation of ”models per device” in ”1-to-many” 
situation.

Basu et al. (2012); Basu et.al. (2013) introduced the multi-label classification in energy 
disaggregation using algorithms such as decision trees and boosting. Recently an article 
on multi-label disaggregation was published by Nalmpantis and Vrakas (2020), proposing 
a novel framework called multi-NILM. This approach combines a dimensionality reduc-
tion technique called Signal2vec (Nalmpantis et al. 2019) with a lightweight disaggrega-
tion model, showcasing promising results. A different approach on reducing computational 
resources constitutes a family of methods known as transfer learning. Transfer learning is 
used in NILM research with some success in D’Incecco et al. (2020); Houidi et al. (2021). 
Kukunuri et al. (2020) proposed various compression methods in order to make deep neu-
ral networks suitable for deployment on the edge, alongside a multi-task method based on a 
hard parameter sharing approach, in a similar approach as transfer learning methods.

3  Attention mechanism

The extraction of input-output relations is a common task in machine learning and pattern 
recognition, with uses in image captioning, machine translation etc. Sequence to sequence 
models (seq2seq) consist a go-to approach regarding the Deep Learning techniques. In Sut-
skever et al. (2014) the original seq2seq 3 model, as proposed by Sutskever et al., contains 
two major components; the encoder and the decoder. Essentially these components are two 
RNNs. The role of the encoder is the compression of the sequence input into a vector of 
fixed length, known as the context. The intuition is that this vector suppresses the most 
important information of the source input. Given the same context vector, the decoder is 
capable to re-construct the source sequence. The drawback of this architecture is that it 
fails to process very long sequences, due to the fixed length of the context vector.

To improve the efficiency of seq2seq architecture, Bahdanau et  al. (2015) proposed 
Attention. This mechanism gives the decoder the power to concentrate on the parts of 
the input that matter the most, in relation to the corresponding output. At each time step 
of the decoder, Attention calculates the relations between the entire input sequence and 
the decoder output. These calculations create an alignment vector, that contains the score 
between the input’s sequence and the decoder’s output at the corresponding step. The 
resulting context vector is a combination of both the alignment vector and the encoder’s 
output.

Considering how the scores and alignments are calculated, the most popular types of 
attention are the Additive (Bahdanau et al. 2015) and the Multiplicative/Dot (Luong et al. 
2015). In a different setting called Self-Attention Cheng et al. (2016), the attention mecha-
nism is applied on the same sequence, in order to relate different parts of it. Self-Attention 
can integrate either Bahdanau’s or Luong’s scoring methods. The proposed architecture in 
the current research uses Additive and Dot attention mechanisms. As inputs to an Attention 
layer three kinds of vectors are given; a query, a key and a value. The layer output is calcu-
lated as described bellow. A summary of the steps is shown in Fig. 1.

To begin with, the similarity between a query (q) and a key ( ki ) is calculated, estimating 
for each query-key pair, a score ( ai).
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Next, a softmax function is used to normalize the scores in order to sum up to one. The 
attention weights are obtained as follows.

The final output is the weighted sum of the values (v):

Between Additive and Dot attention mechanisms the scoring function differs. Specifically, 
the dot scores are given by the dot product of keys and queries. On the other hand, the 
additive scoring function is a non-linear sum.

4  Self attentive network topology

The development of a computationally light neural network is the main objective of the 
current research. To design a lightweight model, inspiration was draught by the architec-
ture known as Window GRU (WGRU) (Krystalakos et al. 2018).

WGRU (Krystalakos et al. 2018) is composed of the following ANN layers: a convolu-
tional layer, two Bidirectional GRU layers and one Dense layer before the output. Dropout 
technique (Srivastava et al. 2014) is used between layers against overfitting problems. In 
order to approximate the appliance power consumption at a single time step, a sliding win-
dow of past aggregate data points is used. The core element of the WGRU architecture, is 
the GRU layer, a variation of the LSTM recurrent layer.

Instead of using two GRU layers back to back, the novel network contains an Attention 
layer before one GRU layer. The proposed model is called Self-Attentive-Energy-Disaggre-
gation (SAED) and, comparing to the WGRU, achieves up to 7.5 times faster training and 
up to 6.5 times faster inference. In terms of performance, there is a trivial trade-off which is 
explored thoroughly in upcoming sections.

(1)ai = score(q, ki)

(2)bi =
exp(ai)∑
j exp(aj)

(3)output =

n∑

i=1

bivi

Fig. 1  Inside attention mecha-
nism
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SAED architecture is a synthesis of four different types of ANNs. In order to extract 
new features from the input a 1D convolution layer is used. This type of layer is time invar-
iant; it can learn local patterns found at certain positions of the sequence, which is able to 
identify at different spots of other sequences. Using Attention, the network learns to focus 
on the most crucial of those features. Next the output of the attention layer is provided to a 
GRU layer, to recognize possible sequential patterns. The final result is given after passing 
through a dense layer, functioning as a regressor. A graphical representation of the archi-
tecture is depicted in Fig. 2. Two important notes must be highlighted. Firstly, the Atten-
tion layer operates as a Self-Attention mechanism given as input the output of the CNN 
layer. Secondly, SAED comes in two variations concerning the attention mechanism; with 
either Additive or Dot attention, mentioned as SAED-add and SAED-dot correspondingly.

The proposed network was developed with Python 3.8 and Tensorflow 2.2.0. Tensorflow 
provides two Attention layers; Attention and AdditiveAttention which corresponds to Dot 
Attention and Additive Attention. Adam optimization algorithm (Kingma and Ba 2015) 
and MSE loss were used for the training. The experiments were executed on a Nvidia GPU 
GTX-1060 6Gb. NILMTK framework (Batra et al. 2014) was used for data loading.

5  Structure of experiments

For the experiments only real measurements were considered. The sampling period was 
6 seconds and the batch size 1024. Seven electric devices were chosen for the experi-
ments; dish washer (DW), fridge (FZ), kettle (KT), microwave (MW), washing machine 
(WM), television (TV) and computer (PC). The optimal size of the sliding windows 
depends on the device and on the algorithm (Krystalakos et  al. 2018). At the current 
research, time window was 50 samples for all the target appliances and models with 
the exception of washing machine, where a window of 100 samples was used. The 
experiments were conducted comparing three different architectures; the proposed 
SAED architecture, the WGRU (Krystalakos et  al. 2018) and the Seq2Point (Zhang 
et  al. 2018) as implemented by Krystalakos et  al.  (2018). The number of learnable 
parameters of all the models are presented in Table 1. SAED models have 65 and 6.5 

Fig. 2  Architecture of the attention model

Table 1  Learnable parameters 
and size of the models

Model Parameters Size (MB)

WGRU 270 k 3.3
Seq2Point 2600 k 31.3
SAED-dot 40 k 0.54
SAED-add 42 k 0.54
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times less parameters than the Seq2Point and WGRU accordingly, resulting to consid-
erably smaller space storage requirements on deployment. It should be noted that for 
the devices television and computer, the dropout ratio for the Seq2Point model was 
25%. For all the models the training duration was 5 epochs, while the benchmark basis 
described in Symeonidis et  al. (2019) was followed. In this methodology the experi-
ments are divided in four distinct categories; Single Building NILM, Single Building 
learning and generalization on same dataset, Multi building learning and generalization 
on same dataset and Generalization to different dataset.

The first category of experiments is about training and inference on the same house at 
different time periods. Therefore, the models are evaluated in the same environment where 
training was executed. Models with low performance in these experiments are probably 
weak (Symeonidis et al. 2019). In the second category of experiments training and infer-
ence happen on different houses of the same dataset. These experiments serve the purpose 
of measuring the generalization potential of the model on different buildings. Briefly, dif-
ferent buildings lead to divergent energy patterns that derive from multiple factors such as 
the different habits of the residents, the use of other electric devices. Nevertheless, similari-
ties between measurements of the same data set are also expected. Properties like electric-
ity grid, weather conditions and regionality are some of the possible reasons for this fact. 
Hence, in addition to this category more experiments are needed in order to explore the 
generalization ability of the models in a greater detail.

The third category is about experiments where training data is collected from different 
buildings and testing is executed on an unseen building. All the measurements for this cat-
egory belong in the same dataset. On the other hand, even though in the fourth category of 
experiments training data is also collected from different houses, the inference is executed 
on houses of a different dataset. The purpose of the last two categories of experiments is 
to evaluate the sufficiency of an algorithm in learning from a variety of sources. Natu-
rally, the challenge for the model rises even more in the fourth category, because the infer-
ence is done on unknown data from a completely different dataset. Due to these challenges, 
models that succeed in the last two categories of experiments could be considered strong 
(Symeonidis et al. 2019).

Due to the number of devices that were used, we divided them in two groups based on 
the data sets used for training and inference. In the first group of devices the experiments 
operated on UK-DALE (Jack and William 2015) and REDD (Kolter et al. 2011) data sets, 
whereas in the second group REFIT (Firth et al. 2017) and UK-DALE data sets were used. 
It should be noted that UK-DALE and REDD contain power consumption measurements 
of households in UK and USA correspondingly, while REFIT contains power readings of 
20 residential houses in UK, with a wider range of devices than the UK-DALE.

For the devices of the first group (dish washer, fridge, kettle, microwave and washing 
machine), categories of experiments 1-3 were executed on the UK-DALE data set, while 
for category 4 inference was evaluated on the REDD data set. Due to the lack of kettle 
device data in the REDD data set, the fourth category of experiments on kettle was not 
conducted. Training for categories 1 and 2 of experiments was conducted on house 1 of 
UK-DALE during the first 9 months of 2013 while the last 3 months of the same year were 
used for testing. Regarding the experiments of categories 3 and 4, the ratio of training ver-
sus inference data depends on the device.

For the remaining electric devices (television, computer) REFIT (Firth et  al. 2017) was 
used for training, while data from UK-DALE were used for inference. Concerning the experi-
ments on this device group, three months of data from REFIT was used, while the inference 
was executed on measurements of length 1 month. These experiments may highlight how the 
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models perform in the case of limited data. Thus, the models do not perform great in some 
categories of experiments. All the experiments are summed up in Table 2.

For the evaluation and comparison of the models, the following metrics are calculated; F1 
score, Relative Error in Total Energy (RETE) and Mean Absolute Error (MAE). The ability of 
model to detect on/off energy states is evaluated with F1 score. As seen in Eq. 4, F1 score is 
computed as the harmonic mean of Precision and Recall, presented in Eqs. 5 and 6. Precision 
measures the ratio of the actual true positives (TP) versus the total predicted positives. In addi-
tion, Recall is the percentage of TP versus the actual positives.

On the other hand, MAE (measured in Watts) and RETE (dimensionless) evaluate the 
capability of the models to estimate the actual electric power consumption of the device. MAE 
and RETE are given in Eqs.  7 and 8, where E′ is the predicted total energy, E is the true value 
of total energy, T is the length of the predicted sequence, yt′ the estimated electrical power 
consumption and yt the true value of active power consumption at moment t.

In an effort to investigate the generalization properties of the proposed SAED model even 
further, the use of more metrics is inevitable. As proposed by Klemenjak et  al. (2019), 

(4)F1 =2
Precision ∗ Recall

Precision + Recall

(5)RETE =
|E� − E|
max(E�,E)

(6)MAE =
1

T

∑
|y�

t
− yt|

(7)Precision =
TP

TP + FP

(8)Recall =
TP

TP + FN

Table 2  Buildings used for train and test

For the first 4 devices: In Categories 1–3, UK-DALE was used for training and testing. In Category 4, UK-
DALE was used for training and REDD was used for testing. For the last 3 devices: In Categories 1–3, 
REFIT was used for training and testing. In Category 4, REFIT was used for training and UK-DALE was 
used for testing

Device Category1 Category2 Category3 Category4

Train Test Train Test Train Test Train Test

DW 1 1 1 2,5 1,2 5 1,2 1,2,3,4,6
FZ 1 1 1 2,4,5 1,2,4 5 1,2,4 1,2,3,5,6
KT 1 1 1 2,3,4,5 1,2,3,4 5 - -
MW 1 1 1 2,3,5 1,2 5 1,2 1,2,3,5
WM 1 1 1 2,4,5 1,5 2 1,5 1,2,3,4,5,6
TV 6 6 6 14,17,19 6,17 14,19 6,17 1,5
PC 6 6 6 16,17,19 6,17 16,19 6,17 5
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the amount of seen and unseen installations where a model is evaluated should be taken 
upon consideration. Thus, the idea of generalization loss (G-loss) was proposed. The intui-
tion is that between seen and unseen installations there may be a change in the value of a 
metric. This indicates a change in the performance of the model when tested on unseen 
data. Whether the metric is used to evaluate event detection or power approximation, the 
G-loss is calculated as described in Eqs. 9 or 10, where u stands for unseen and s for seen 
installations.

For example, a calculated G-loss of 15% on F1 score means that the measured F1 score on 
the unseen house data is 15% lower than on the seen data, where the training took place. On 
the contrary, 10% G-loss on MAE denotes that the error measured on the unseen data is 10% 
higher than the error measured on the seen building measurements.

The mean of all the G-losses calculated for the unseen houses resembles the mean gener-
alization loss (MGL), which represents the overall performance loss. In order to evaluate the 
the generalization properties of an architecture, accuracy on unseen houses (AUH) and error 
on unseen houses (EUH) can be calculated also. The above metrics are given by Eqs. 11–13, 
where N is the number of the unseen building.

A different aspect of generalization was suggested by D’Incecco et al. (2020). The intuition 
is that extracted features learned on training ”complex” devices could be used to disag-
gregate appliances with ”simpler” electric signatures. The main benefit of this idea offers 
is the speed up of training, thus the need of less computational resources. The authors 
proposed two scenarios of model knowledge transfer; appliance (ATL) and cross domain 
transfer learning (CTL). In CTL schema, a model is trained and tested on different data 
sets, in similar way as in the benchmark method described in Symeonidis et al. (2019). On 
the other hand, in ATL scenario, the model is trained and fine-tuned before the final infer-
ence. In the current article we compare the models on the ATL scenario.

(9)G − loss =100

(
1 −

F1u

F1s

)

(10)G − loss =100(
MAEu

MAEs

− 1)

(11)MGL =
1

N

N∑

i

G − lossi

(12)AUH =
1

N

N∑

i

F1ui

(13)EUH =
1

N

N∑

i

MAEui



4090 Machine Learning (2023) 112:4081–4100

1 3

6  Results and comparisons

The models are compared on 3 levels. At first, in terms of performance on the four cat-
egories of experiments. Next, on generalization by computing the generalization loss on 
unseen data. Furthermore, on the possible knowledge transfer of latent learned features. 
Finally, inference speed on different sizes of data is computed in order to compare the scal-
ability of the models.

6.1  Performance comparison

The most important results are summarized in Tables  3, 4, 5, where the mean training 
epoch time in seconds is noted as time/ep and the best values are highlighted. The com-
plete python code and the produced results are contained in: https://github.com/Virtsionis/
SelfAttentiveEnergyDisaggregator.

As shown in Table 3, in Category 1 of Dish Washer the SAED models perform on par 
with WGRU and Seq2Point. Concerning training time per epoch, SAED is up to 7.1 times 
faster than WGRU, but with almost same speed as Seq2Point. In Category 2, SAED-dot is 
the clear winner with similar metric values as the SAED-add model, but with almost half 
the training time per epoch versus the WGRU. In Category 3 of the same device, the SAED 
models show similar performance with the Seq2Point but the WGRU is better in the error 
metrics. In terms of speed, SAED-dot is the fastest. In Category 4 the SAED-add achieves 
better F1 score and MAE, while SAED-add has the lowest RETE. The general conclusion 
is that SAED shows promising results on Dish Washer in comparison to the WGRU and 
the Seq2point, with faster training and better performance in Categories 2 and 4.

In Category 1 of Washing M., SAED-dot is 7.5 times faster than WGRU trading of max-
imum 10% performance regarding the metrics F1 and MAE. In Category 2, SAED-dot per-
forms on par with WGRU but with 7.5 times faster training time per epoch. The SAED-add 
has best F1 score in Category 3, while Seq2Point achieves the lowerst RETE. In terms of 
MAE in this category of experiments, the SAED models are better. In the fourth category, 
the SAED models are trained faster with lower RETE and MAE values.

It is notable that disaggregating Dish Washer and Washing Machine, the SAED models 
have comparable or better performance with the state-of-the-art models while training time 
per epoch was up to 7.5 times faster than the WGRU. Also, Seq2Point shows lower perfor-
mance when disaggregating the Washing Machine.

Results for the Fridge are summed also in Table  3. In Categories 1 and 2, the state-of-
the-art models achieve greater F1 score, while SAED-add shows promising results with the 
smallest RETE and MAE, reaching up to 4 times faster training times versus the WGRU. 
On the other hand, in Categories 3 and 4 all the models perform the same, indicating the 
good generalization capabilities of the SAED method.

In Categories 1 and 2 of the Kettle, shown in Table 4, the models have comparable 
RETE and MAE values, but the WGRU achieves the best F1 score in 7.7 slower train-
ing time than the SAED-dot. In the third category of experiments, the WGRU is the 
winner in terms of F1 and RETE, whereas in MAE all the models perform the same. 
These results reveal that, comparing to the WGRU, the SAED models show difficulties 
in disaggregating devices with simple behavior, such as the Fridge and the Kettle. The 
Kettle is a two-state device, while the Fridge has a finite number of states and repetitive 
time series. Especially, in Categories 1-2 of the Fridge and the Kettle the SAED has low 
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Table 3  Performance comparison for dish washer (DW), washing M. (WM), fridge (FZ)

Device Cat. Train Test Model F1s RETE MAE Time/ep

DW 1 1 1 WGRU 0.33 0.17 13.22 550
Seq2Point 0.31 0.35 15.44 79
SAED-dot 0.28 0.31 13.03 77
SAED-add 0.25 0.17 12.03 141

DW 2 1 2 WGRU 0.26 0.77 37.47 550
Seq2Point 0.35 0.83 41.77 79
SAED-dot 0.63 0.62 33.48 77
SAED-add 0.6 0.63 34.31 141

DW 3 1,2 5 WGRU 0.33 0.34 20.75 575
Seq2Point 0.35 0.7 40.52 108
SAED-dot 0.33 0.57 26.45 74
SAED-add 0.25 0.62 31.01 138

DW 4 1,2 4 WGRU 0.3 0.65 8.6 575
Seq2Point 0.31 0.2 13.1 101
SAED-dot 0.45 0.1 12.71 74
SAED-add 0.53 0.77 8.6 138

WM 1 1 1 WGRU 0.54 0.12 16.55 1097
Seq2Point 0.25 0.15 18.5 150
SAED-dot 0.51 0.26 18.51 147
SAED-add 0.45 0.29 28.55 416

WM 2 1 2 WGRU 0.34 0.43 10.45 1097
Seq2Point 0.1 0.66 20.57 150
SAED-dot 0.3 0.34 13.1 147
SAED-add 0.3 0.53 22.01 416

WM 3 1,5 2 WGRU 0.12 0.36 22.74 585
Seq2Point 0.14 0.16 17.2 147
SAED-dot 0.19 0.36 14.66 81
SAED-add 0.2 0.21 15.18 81

WM 4 1,5 1 WGRU 0.26 0.66 43.65 585
Seq2Point 0.22 0.54 42.22 147
SAED-dot 0.18 0.39 50.65 84
SAED-add 0.18 0.7 41.93 81

FZ 1 1 1 WGRU 0.63 0.27 33.29 562
Seq2Point 0.63 0.3 33.2 78
SAED-dot 0.59 0.17 32.78 73
SAED-add 0.59 0.13 30.56 145

FZ 2 1 2 WGRU 0.82 0.13 28.46 562
Seq2Point 0.91 0.13 33.43 78
SAED-dot 0.82 0.21 26.86 73
SAED-add 0.84 0.23 27.33 145

FZ 3 1,2,4 2 WGRU 0.52 0.18 51.18 519
Seq2Point 0.52 0.03 49.52 74
SAED-dot 0.52 0.29 51.35 69
SAED-add 0.52 0.22 50.52 70
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values on F1 score, but it achieves good results in Categories 3-4 of the Fridge. The low 
values of F1 score indicate the difficulty of the models to identify the On/Off states of 
the test devices. Also, it is notable that SAED performs better than the Seq2Point on the 
Kettle Categories 1 and 2 and in a tad bit faster training times.

Table 3  (continued)

Device Cat. Train Test Model F1s RETE MAE Time/ep

FZ 4 1,2,4 1 WGRU 0.53 0.32 52.57 519

Seq2Point 0.42 0.27 60.06 72

SAED-dot 0.49 0.29 50.89 69

SAED-add 0.5 0.33 51.39 70

Table 4  Performance comparison for Kettle (KT), microwave (MW), television (TV)

Device Cat. Train Test Model F1s RETE MAE Time/ep

KT 1 1 1 WGRU 0.65 0.09 7.35 563
Seq2Point 0.28 0.24 17.6 79
SAED-dot 0.44 0.14 8.57 73
SAED-add 0.34 0.26 9.46 143

KT 2 1 2 WGRU 0.9 0.31 14.04 563
Seq2Point 0.39 0.36 29.8 79
SAED-dot 0.62 0.3 19.03 73
SAED-add 0.49 0.28 17.35 143

KT 3 1,2,3,4 5 WGRU 0.41 0.05 9.92 1096
Seq2Point 0.41 0.56 10.44 150
SAED-dot 0.27 0.27 12.24 141
SAED-add 0.31 0.18 10.95 271

MW 1 1 1 WGRU 0.32 0.09 6.29 560
Seq2Point 0.22 0.35 6.01 79
SAED-dot 0.16 0.14 7.51 74
SAED-add 0.18 0.16 7.61 144

MW 2 1 2 WGRU 0.44 0.25 4.36 560
Seq2Point 0.37 0.54 5.29 79
SAED-dot 0.25 0.19 5.97 74
SAED-add 0.26 0.17 5.98 144

MW 3 1,2 5 WGRU 0.08 0.59 60.53 440
Seq2Point 0.1 0.555 59.61 41
SAED-dot 0.21 0.58 56.93 41
SAED-add 0.22 0.51 59.36 41

MW 4 1,2 1 WGRU 0.41 0.19 23.53 440
Seq2Point 0.36 0.08 22.68 74
SAED-dot 0.34 0.2 25.67 41
SAED-add 0.34 0.15 25.13 41
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The results of the experiments on the Microwave are also displayed in Table 4. In Cate-
gories 1-2 the WGRU is the clear winner. In the third category of experiments SAED mod-
els outperform both the WGRU and Seq2Point, where in Category 4 the WGRU achieves 
17% better F1 score than the SAED in 10 times slower training time. Considering that the 
Microwave is a multi-state device with variable power consumption and on-state duration, 
the SAED models show descent performance comparing with the state-of-the-art.

Overall, the SAED models achieve good performance in disaggregating multi-state 
devices instead of simpler devices. Furthermore, the SAED performs good in experiments 
of Categories 3-4, a fact that reveals the great generalization capability of the proposed 
models. In addition, Seq2Point seems to perform on par with the WGRU showing faster 
training times.

Table 5  Performance comparison for television (TV), computer (PC)

Device Cat. Train Test Model F1s RETE MAE Time/ep

TV 1 6 6 WGRU 0.68 0.49 40.38 145
Seq2Point 0.68 0.52 42.63 54
SAED-dot 0.67 0.5 35.68 54
SAED-add 0.65 0.41 31.67 102

TV 2 6 17 WGRU 0.79 0.36 32.06 144
Seq2Point 0.8 0.4 32.94 57
SAED-dot 0.75 0.34 32.41 53
SAED-add 0.72 0.24 30.15 101

TV 3 6,17 14 WGRU 0.31 0.65 36.5 164
Seq2Point 0.31 0.65 36.3 102
SAED-dot 0.47 0.6 14.37 62
SAED-add 0.39 0.67 15.08 114

TV 4 6, 17 1 WGRU 0.14 0.79 42.21 165
Seq2Point 0.14 0.72 36.4 102
SAED-dot 0.56 0.52 9.02 62
SAED-add 0.49 0.35 9.66 112

PC 1 6 6 WGRU 0.34 0.33 45.97 148
Seq2Point 0.54 0.46 40.44 53
SAED-dot 0.43 0.5 44.2 52
SAED-add 0.51 0.44 40.1 101

PC 2 6 17 WGRU 0.78 0.54 36.52 145
Seq2Point 0.62 0.62 46.72 50
SAED-dot 0.67 0.65 52 51
SAED-add 0.62 0.62 48 100

PC 3 6,17 16 WGRU 0.27 0.7 40.2 169
Seq2Point 0.27 0.62 30.66 105
SAED-dot 0.37 0.37 17.05 63
SAED-add 0.34 0.51 20.52 112

PC 4 6,17 5 WGRU 0.54 0.1 45.36 167
Seq2Point 0.54 0.19 55.95 105
SAED-dot 0.71 0.2 32.41 62
SAED-add 0.62 0.2 35,84 112
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As shown in Table 4, in Category 1 of Television the SAED models perform bet-
ter than the state-of-the-art models showing identical F1 scores alongside with lower 
MAE errors and faster training times. Furthermore, in Category 2 of experiments, 
all the models perform on par, with Seq2Point scoring 5% higher F1 measure, while 
SAED-add achieved lower RETE and MAE alongside with faster training per epoch. It 
is notable that all the models show better performance in this category of experiments 
than in the situation where the training and testing was on the same house (Category 
1). In Category 3 SAED-dot achieves 34% higher F1 score than the state-of-the-art 
models. In terms of RETE all the models perform on par, although concerning the 
MAE, SAED models score up to 60% lower errors. In the fourth category of experi-
ments, the SAED models show better performance in overall.

Concerning the experiments on the Computer, the results are displayed in Table 5. 
In Category 1 the SAED-add and Seq2Point perform on par in terms of identifying the 
On/Off events with up to 35% better F1 score than the WGRU. Regarding the RETE 
values, WGRU performs better, whereas the MAE scores of all models are nearly the 
same. Comparing the SAED models results that the SAED-add performs 10% better 
than the SAED-dot, but with a slower training time per epoch. In Category 2, WGRU 
shows slightly better performance in comparison to the SAED models. Specifically, 
in terms of F1 score WGRU achieves 14% better values with maximum value of 66%. 
In addition, the WGRU achieves lower RETE and MAE values. In Categories 3 and 4 
of the same target device, SAED-dot model is a clear winner achieving better F1 and 
MAE scores, while WGRU shows lower RETE value. In terms of training time per 
epoch, the SAED-dot is almost two times faster than the SAED-add and up to three 
times faster than the WGRU in all the categories of experiments. On the contrary, 
Seq2Point achieves almost equal training times with the SAED-dot, even though it 
consists of a huge number of parameters.

6.2  Generalization evaluation

To explore on a deeper level the generalization ability of the SAED, in comparison to 
the WGRU and Seq2Point, a computation of more metrics took place. Table 6 presents 
the values of AUH, EUH alongside with the corresponding MGL calculations. These 
metrics are calculated using the F1 scores and MAE measured in the Category 1 of 
experiments. Because of the size of experiments only some of the measurements are 
used. To compare the models the interest concentrates on MGL values, where lower 
means better.

In terms of MGL and Classification Accuracy, the SAED models achieve the lowest 
values on all the test devices, except the Computer. Thus, SAED shows great generali-
zation ability when detecting on/off events. Also, the negative values of MGL indicate 
that the SAED models perform better on the unseen houses than on the seen house. 
Regarding the MGL and Estimation Accurary, mixed results are observed with the 
SAED showing finer values than the state-of-the-art models on Washing Machine and 
Television. As a result, on these test devices, SAED seems to generalize better than the 
WGRU in terms of power estimation levels. On the Dish Washer and Kettle, Seq2Point 
shows lower values. The above results strongly highlight the generalization power of 
the SAED approach in the task of NILM.
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Table 6  Classification and estimation accuracy of the SAED in comparison to the WGRU and the 
Seq2Point

Seen and Unseen houses are noted as S and U correnspondingly

Device S|U Model Classification accuracy Estimation accuracy

F1s AUH MGL[%] MAEs EUH[W] MGL[%]

DW 1|2,5 WGRU 0.33 0.26 19.3 13.22 31.29 136.7
Seq2Point 0.32 0.32 −4.85 15.44 31.4 103.35
SAED-dot 0.28 0.48 −72.5 13.03 30.42 133.6
SAED-add 0.25 0.45 -82 12.03 31.72 163.6

WM 1|2,5 WGRU 0.54 0.29 46.9 16.55 25.02 51.2
Seq2Point 0.25 0.12 54 18.55 29.14 57.5
SAED-dot 0.51 0.27 48.1 18.51 23.56 27.3
SAED-add 0.45 0.26 43.4 28.55 35.1 22.9

FZ 1|2,5 WGRU 0.63 0.69 −9.8 33.3 34.08 2.3
Seq2Point 0.63 0.67 −5.55 33.2 37.46 12.85
SAED-dot 0.59 0.69 −18.4 32.78 32.85 3.25
SAED-add 0.59 0.7 -19.65 30.56 32.68 6.89

KT 1|2,5 WGRU 0.66 0.59 9.9 7.35 24.44 232.5
Seq2Point 0.24 0.3 −7.15 17.6 27.85 58.25
SAED-dot 0.44 0.45 −2 8.57 23.49 174.1
SAED-add 0.33 0.37 -10.4 9.46 21.05 122.5

MW 1|2,5 WGRU 0.32 0.33 −1.7 6.29 12.79 103.5
Seq2Point 0.22 0.28 −25 6.01 13.34 125.05
SAED-dot 0.16 0.26 -68.6 7.5 18.07 140.9
SAED-add 0.18 0.28 −53.9 7.61 17.59 131.2

TV 6|1,17 WGRU 0.68 0.52 24.25 40.38 24.27 −39.05

Seq2Point 0.68 0.49 28.7 42.63 32.67 −23.35

SAED-dot 0.67 0.55 18.7 35.68 21.75 -39.7
SAED-add 0.65 0.53 18.45 31.67 20.67 −34.7

PC 6|16,17 WGRU 0.34 0.54 -58.8 45.97 30.74 -33.15
Seq2Point 0.54 0.51 5.55 40.44 31.92 −21.1

SAED-dot 0.43 0.51 −18.6 44.2 34.75 −21.4

SAED-add 0.51 0.49 3.9 40.1 31.81 −20.65

Table 7  Knowledge 
transferability comparison for 
kettle (KT), on UK-DALE house 
1 data

Device Model F1 RETE MAE

KT WGRU 0.66 0.07 9.04
Seq2Point 0.54 0.1 8.14
SAED-dot 0.33 0.18 7.25
SAED-add 0.56 0.19 7.55



4096 Machine Learning (2023) 112:4081–4100

1 3

6.3  Knowledge transferability comparison

To explore the knowledge transfer capacity of the SAED method, a transfer learning 
schema was executed. At first the models are trained on the WM appliance. Then, fine-
tuning of the network was applied on the target device. Finally, inference was performed on 
unseen data of the target device. The data for all the stages of this experiment was the same 
as the Category 1 described in Table 2. The results on KT are presented on Table 7. In 
comparison to the results of Table 5, WGRU shows similar performance, whereas SAED-
add and Seq2Point achieved better results. It should be noted that fine-tuning and testing 
on other devices showed unsatisfying results, indicating that this method should involve 
devices with similar electric signatures.

6.4  Scalability comparison

An important and frequently neglected parameter when comparing models is the inference 
time. Large scale applications involve feeding a disaggregation models with batches of data 
from many houses. The cost of this application is critical and depends heavily on the scal-
ability of inference time of the model. The scalability is simulated by increasing the time 
period of disaggregation from one day to 3 months and measuring the inference time for 
the various sizes of test data. From observing the results in Fig. 3, it is obvious that the 
SAED models achieve similar inference times as the Seq2Point, whereas the WGRU is a 
lot slower.

7  Ablation study

As demonstrated in the previous sections of this article, the attention mechanism provides 
great generalization capabilities and performance gain to a lightweight neural network. 
To quantify these enhancements, an ablation experiment was conducted, where the same 

Fig. 3  Inference time versus inference time period for fridge, where 1 day of data is equal to 14400 samples
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network (Baseline) is tested on some situations without the attention mechanism. Specifi-
cally, the models were compared side by side on experiments of Categories 1 and 2, as 
described in Table 2. The results are shown in Fig. 4. In overall, the SAED models achieved 
better F1 scores than the Baseline model on both categories of experiments. In addition, 
the SAED-dot model achieves the best F1 scores on Category 1, whereas on Category 2 
SAED-add achieves best scores on MW and FZ appliances. Regarding the MAE errors, 
there are mixed results, with the Baseline showing similar performance to the SAED mod-
els. The differences between SAED and Baseline models on F1 scores, highlight the fact 
that the attention mechanism assists the network in the energy changes detection task. Thus 
the SAED method are more capable on detecting on/off events than the Baseline.

8  Conclusions and proposals for future work

Comparing the proposed SAED models to the lightweight state-of-the art WGRU leads 
to promising conclusions. In general, the results of the SAED models were comparable 
and, in some cases, better than the WGRU. Concerning the disaggregation on different 
devices, SAED achieved better performance on complex devices than on devices with sim-
ple time series, although this is not the case when disaggregating Television. Experiments 
on a wider range of target devices may provide more insights on this topic. In addition, 
the proposed architecture possesses good generalization capabilities, as pointed out by the 
results on the Categories 3 and 4 of experiments. Interestingly, in cases of limited data, 
SAED models show encouraging results, performing better than the WGRU in the major-
ity of cases. The fact that the proposed architecture is faster in training and inference than 
the WGRU, causes the deployment of SAED models on embedded systems to be more 
feasible.

After inspecting the performance between SAED method and Seq2Point, interesting 
conclusions occurred. SAED models perform on par or even better than the Seq2Point in 
many cases of the experiments. One of the strengths of SAED is the ability to generalize 
on out-of-distribution data. In terms of speed, Seq2Point achieves almost the same train-
ing times per epoch with the SAED-dot (the fastest of the two SAED models), whereas 
Seq2Point achieves faster inference times. On the other hand, in terms of model size, 

F1 scores on same house (Cat1). F1 scores on different houses (Cat2).

Fig. 4  Performance comparison of SAED models to a baseline model
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SAED is significantly smaller. The explanation hides in the structural differences between 
Convolutional and Recurrent Neural Networks.

Concisely, using the Attention mechanism on lightweight ANN architectures led to the 
creation of fast-trainable models with good generalization capabilities. As a result, Atten-
tion may be a powerful tool in the task of energy disaggregation with Neural Network 
architectures. In order to achieve even faster training-inference times, Attention could be 
combined with CNN layers instead of RNNs.
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