
Vol.:(0123456789)

Machine Learning (2022) 111:651–684
https://doi.org/10.1007/s10994-021-06104-5

1 3

Multi‑target prediction for dummies using two‑branch
neural networks

Dimitrios Iliadis1  · Bernard De Baets1 · Willem Waegeman1

Received: 22 June 2021 / Revised: 4 September 2021 / Accepted: 13 October 2021 /
Published online: 6 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
Multi-target prediction (MTP) serves as an umbrella term for machine learning tasks that
concern the simultaneous prediction of multiple target variables. Classical instantiations
are multi-label classification, multivariate regression, multi-task learning, dyadic predic-
tion, zero-shot learning, network inference, and matrix completion. Despite the significant
similarities, all these domains have evolved separately into distinct research areas over the
last two decades. This led to the development of a plethora of highly-engineered meth-
ods, and created a substantially-high entrance barrier for machine learning practitioners
that are not experts in the field. In this work we present a generic deep learning methodol-
ogy that can be used for a wide range of multi-target prediction problems. We introduce a
flexible multi-branch neural network architecture, partially configured via a questionnaire
that helps end users to select a suitable MTP problem setting for their needs. Experimental
results for a wide range of domains illustrate that the proposed methodology manifests a
competitive performance compared to methods from specific MTP domains.

Keywords  Multi-target prediction · Multi-label classification · Multivariate regression ·
Matrix completion · Multi-task learning · Dyadic prediction

Editor: Joao Gama.

 *	 Dimitrios Iliadis
	 dimitrios.iliadis@ugent.be

	 Bernard De Baets
	 bernard.debaets@UGent.be

	 Willem Waegeman
	 willem.waegeman@ugent.be

1	 KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure
links 653, 9000 Ghent, Belgium

http://orcid.org/0000-0002-3676-5940
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06104-5&domain=pdf

652	 Machine Learning (2022) 111:651–684

1 3

1  Introduction

Over the last decade, multi-target prediction (MTP) has emerged as a novel umbrella term,
unifying supervised learning techniques that are concerned with predicting multiple target
variables at the same time. In principle, these targets can be of different types, such as
nominal, ordinal, or real-valued. Driven by tutorials and workshops at international confer-
ences, such as ICML 2013 and ECML/PKDD 2014, 2015 and 2018, the area of MTP has
attracted significant interest in the machine learning community. Its applicability potential
is continuously increasing, as more and more real-world problems require the simultaneous
prediction of multiple targets.

In the field of machine learning one can identify many classical examples of MTP tasks,
such as the image tagging task from the area of computer vision (Wang et al. 2016; Wei
et al. 2015; Yan et al. 2019), the document tagging task from the field of text mining (Chen
et al. 2017; Huang et al. 2019), as well as the product recommendation task that is preva-
lent in online retailing (Fu et al. 2018; Wei et al. 2017). In addition to these typical exam-
ples, one can also identify instances of MTP-related applications that are less well known
yet important. In the field of climate science, forecasting the weather in different areas of
the world at the same time is a quite complicated task that necessitates the modeling of
relationships between various atmospheric processes (Papagiannopoulou et al. 2018). In
medicine, patients can usually be associated with multiple interacting pathologies at the
same time (Baltruschat et al. 2019; Kumar et al. 2018; Chen et al. 2019a). Finally, the
emergence of the latest pandemic has highlighted the importance of rapid drug discovery
(Pliakos et al. 2019; Rifaioglu et al. 2020; Jin et al. 2017). In this field, the initial goal is
to find a set of chemical compounds that show high binding affinity with a biological tar-
get, so the use of automated multi-target prediction methods can provide a much-needed
speedup.

All these applications are usually encountered in machine learning papers as use cases
for specialized techniques. These techniques typically belong to well-known subfields like
multi-label classification (Yeh et al. 2017; Read et al. 2009; Tsoumakas et al. 2010; Yu
et al. 2014; Rokach et al. 2014), multivariate regression (De’Ath 2002; Du and Xu 2017;
Xu et al. 2013), multi-task learning (Sener and Koltun 2018; Misra et al. 2016; Liu et al.
2019), dyadic prediction (Menon and Elkan 2011, 2010; Schäfer and Hüllermeier 2015),
hierarchical multi-label classification (Wehrmann et al. 2018; Cerri et al. 2014), zero-shot
learning (Romera-Paredes and Torr 2015; Norouzi et al. 2013), matrix completion (Jain
et al. 2013; Shan and Banerjee 2010), and hybrid matrix completion (Strub et al. 2016;
Dong et al. 2017), which from a distance all look quite different from one another. A recent
survey (Waegeman et al. 2019) reviewed not less than 100 methods from these subfields
from a general multi-target prediction perspective. In addition, a formal mathematical
framework to gather those subfields under a single umbrella was expounded.

The said mathematical framework will be the point of departure for the goal of the
present paper, which is the development of a general deep learning methodology for
multi-target prediction problems. Instead of introducing a method that achieves state-
of-the-art performance for a narrow range of problems, we present a flexible two-branch
neural network architecture that is applicable in a wide range of MTP problems. This
type of architecture shows some resemblance with a few deep learning methods that
have been recently proposed for specific tasks, such as collaborative filtering (He et al.
2017; Wang et al. 2019) and metric learning (Hoffer and Ailon 2015; Yi et al. 2014;
Mueller and Thyagarajan 2016). However, we are the first to make this architecture

653Machine Learning (2022) 111:651–684	

1 3

generally accessible for a wide range of multi-target prediction problems. We make the
methodology user friendly by introducing a small questionnaire that supports a semi-
automated configuration of the two-branch neural network by means of small modifi-
cations in its architecture, loss function and inputs. In this way we unlock multi-target
prediction to a wide range of users with basic machine learning expertise.

Our can see some parallels between our work and an ongoing trend in deep learn-
ing research towards the development of general-purpose neural network architectures
instead of architectures that are only useful for a specific problem setting. For example,
the chapter on recurrent and recursive nets in the book of Goodfellow et al. (2016) dis-
cusses general deep learning architectures for sequence modelling tasks, of which one-
to-one, one-to-many, and many-to-many architectures of equal or different length are
specific instantiations. Other well-known examples of general-purpose machine learn-
ing methodologies are structured support vector machines (Wang et al. 2009; Zhang
and Gales 2011), conditional random fields (Lafferty et al. 2001; Zheng et al. 2015) and
probabilistic graphical models (Frey and Jojic 2005). Especially in statistics it is very
common to develop general-purpose frameworks, see e.g. generalized linear models
(McCullagh and Nelder 2019). Those models can be applied to various types of super-
vised learning problems, such as binary and multi-class classification problems, as well
as regression problems involving real-valued, ordinal and count-based targets.

This paper is organized as follows. Section 2 quickly reviews the mathematical
framework of Waegeman et al. (2019), which unifies a wide range of multi-target pre-
diction problems. That section also discusses the inner workings of our proposed ques-
tionnaire. Section 3 explains several examples of real-world tasks and details how the
questionnaire can help with selecting the most suitable MTP problem setting. Section 4
presents a detailed view of the two-branch neural network architecture while empha-
sizing the main characteristics of its flexibility. Section 5 gives a summary of closely-
related work. Section 6 showcases that the proposed methodology works well for a wide
range of problems, by comparisons with 15 different methods on 21 different datasets,
across 6 MTP problem settings. In the last section, we formulate a conclusion and some
future perspectives, discussing the current limitations of our work.

2 � Towards a rule‑based system for MTP problem setting selection

In this section we introduce the MTP framework, as well as the novel questionnaire we
designed in order to identify the proper problem setting. We also detail the four valida-
tion settings that are used in the area of MTP.

2.1 � The MTP prediction framework

Let us start with the formal definition of a multi-target prediction problem, as intro-
duced in Waegeman et al. (2019).

Definition 1  A multi-target prediction problem is characterized by instances � ∈ X and
targets � ∈ T with the following properties:

654	 Machine Learning (2022) 111:651–684

1 3

	(P1)	 A training dataset D is comprised of triplets (�i, �j, yij) , where �i represents an instance
( i ∈ {1,… , n} ), �j represents a target ( j ∈ {1,… ,m} ), and yij ∈ Y is the score that
quantifies their relationship. This dataset can be arranged in an n × m matrix � that
is usually incomplete.

	(P2)	 The score set Y consists of nominal, ordinal or real values.
	(P3)	 The objective is to predict the score for any instance-target couple (�, �) ∈ X × T .

Intentionally, this definition is kept very general in order to cover a wide range of MTP
settings. In Waegeman et al. (2019) also formal definitions are given for the most common
settings, grouped into three categories:

•	 MTP settings without any kind of usable features (side information) for the targets: this
includes the more conventional settings, such as multi-label classification, multivariate
regression and multi-task learning.

•	 MTP settings with side information for targets: this includes settings such as hierarchi-
cal multi-label classification, dyadic prediction, multi-task learning with task features,
zero-shot learning and matrix completion with side information.

•	 Non-MTP settings: these are settings that could be expressed as multi-target prediction
settings, but are not covered for technical reasons. Two such cases are multi-class clas-
sification and structured output prediction.

We do not repeat all those definitions here, but refer the interested reader to Appendix
A. However, going over the various definitions is not unimportant in view of understanding
the purpose of the questionnaire that is introduced next. So, let us see what we get for by
far the most popular setting in literature, namely multi-label classification.

Definition 2  The multi-label classification setting is an instance of the MTP framework
with the following additional properties:

	(P4)	 All targets are observed during training ( |T| = m).
	(P5)	 No side information is available for targets, thus we identify them with natural num-

bers ( �j = j).
	(P6)	 The score matrix � is fully observed.
	(P7)	 The score set is Y = {0, 1}.

One can see that for multi-label classification three additional properties appear, in addi-
tion to the four general properties that hold for all MTP problems. In Appendix A we pro-
vide similar definitions for multivariate regression, multi-task learning, hierarchical multi-
label classification, dyadic prediction, zero-shot learning, and matrix completion with and
without side information. All those settings have some specific properties, and the purpose
of the questionnaire will be to map the answers of users to such properties.

2.2 � The rule‑based system

We are able to propose the appropriate MTP problem setting using a rule-based system
deployed on-top of a purpose-built questionnaire. The questionnaire is partly answered
automatically with our framework from the characteristics of the dataset. There are also

655Machine Learning (2022) 111:651–684	

1 3

questions that currently can only be answered by the user and that have been carefully
designed to extract his/her intentions about the given problem. We imagine that by using
a graphical interface that accepts the test set, a future version can automatically detect
whether the user expects a generalization to unseen instances or targets. In the current
stage of development, we use the following questions:

Q1:	� Is it expected to encounter novel instances during testing? (yes/no)
Q2:	� Is it expected to encounter novel targets during testing? (yes/no)
Q3:	� Is there side information available for the instances? (yes/no)
Q4:	� Is there side information available for the targets? (yes/no)
Q5:	� Is the score matrix fully observed? (yes/no)
Q6:	� What is the type of the target variable? (binary/nominal/ordinal/real-valued)

These questions are designed to determine the possibility of encountering novel
instances or targets during the test phase, the availability of usable side information in
the form of relations or representations for instances and targets, the sparsity of the score
matrix and the type of values inside the matrix. The aforementioned questions generate
128 different combinations. We have internally annotated the most popular cases with
the appropriate multi-target prediction setting (see Table 1), thus transferring our expert
knowledge into the rule-based system. There are, however, some specific combinations of
characteristics that make the resulting example unable to be annotated. These examples
usually try to generalize to novel instances or targets without providing the appropriate side
information.

The mentioned differences in the availability of side information that is traditionally
associated with each MTP problem setting has led to the distinction of several validation
settings. In order to support the different inference cases of all the MTP problem settings,
we define the following four experimental settings (see Fig. 1) under which one can make
predictions for new couples (�i, �j):

•	 Setting A: Both �i and �j are observed during training.
•	 Setting B: All targets �j are observed during training and the goal is to make predictions

for unseen instances �i.
•	 Setting C: All instances �i are observed during training and the goal is to make predic-

tions for unseen targets �j.
•	 Setting D: Neither �i nor �j is observed during training.

Problems like multi-label classification, multivariate regression, and multi-task learning
are mainly associated with Setting B, as they are inductive w.r.t. instances and transduc-
tive w.r.t. the targets. This means that during testing, the model is expected to encounter
previously-unseen instances, while all targets will be known beforehand. This character-
istic informs us about the user’s intentions and is determined by two of the questions in
our questionnaire, specifically Q1 and Q2. But, despite the intentions of the user, his/her
answers to questions Q3 and Q4 are what determines the feasibility of generalization. A
basic rule one can use is that if we want to achieve generalization to new instances (tar-
gets), appropriate side information should be available for those instances (targets). This is
why Setting A is usually associated with matrix completion, as in this problem setting no
side information is available for instances or targets and thus no generalization is possible
for either of them. Finally, Setting D is considered the most challenging of the settings, as

656	 Machine Learning (2022) 111:651–684

1 3

Ta
bl

e 
1  

A
 su

m
m

ar
y

of
 sp

ec
ifi

c
co

m
bi

na
tio

ns
 o

f a
ns

w
er

s t
o

ou
r p

ur
po

se
-b

ui
ld

 q
ue

sti
on

na
ire

 fo
r w

hi
ch

 a
n

M
TP

 p
ro

bl
em

 se
tti

ng
 c

an
 b

e
as

si
gn

ed

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

M
TP

 m
et

ho
d

Ye
s

N
o

Ye
s

N
o

Ye
s

B
in

ar
y

M
ul

ti-
la

be
l c

la
ss

ifi
ca

tio
n

(Y
an

 e
t a

l.
20

19
; H

ua
 e

t a
l.

20
20

; B
au

m
el

 e
t a

l.
20

18
)

Ye
s

N
o

Ye
s

N
o

Ye
s

Re
al

-v
al

ue
d

M
ul

tiv
ar

ia
te

 re
gr

es
si

on
 (R

aj
 e

t a
l.

20
20

; Q
i a

nd
 R

oe
 2

01
6)

Ye
s

N
o

Ye
s

N
o

N
o

–
M

ul
ti-

ta
sk

 le
ar

ni
ng

Ye
s

N
o

Ye
s

Ye
s (

hi
er

ar
ch

y)
Ye

s
B

in
ar

y
H

ie
ra

rc
hi

ca
l m

ul
ti-

la
be

l c
la

ss
ifi

ca
tio

n
(W

eh
rm

an
n

et
 a

l.
20

18
; Z

ha
ng

 e
t a

l.
20

17
; C

he
n

et
 a

l.
20

19
a)

Ye
s

N
o

Ye
s

Ye
s

N
o

–
D

ya
di

c
pr

ed
ic

tio
n

(J
in

 e
t a

l.
20

17
; L

iu
 e

t a
l.

20
17

c)
Ye

s
Ye

s
Ye

s
Ye

s
N

o
–

Ze
ro

-s
ho

t l
ea

rn
in

g
(R

om
er

a-
Pa

re
de

s a
nd

 T
or

r 2
01

5;
 M

is
hr

a
et

 a
l.

20
18

)
N

o
N

o
N

o
N

o
N

o
–

M
at

rix
 c

om
pl

et
io

n
(Z

ha
o

et
 a

l.
20

16
)

N
o

N
o

Ye
s

Ye
s

N
o

–
H

yb
rid

 M
at

rix
 c

om
pl

et
io

n
(D

el
dj

oo
 e

t a
l.

20
19

)
Ye

s
Ye

s
Ye

s
Ye

s
N

o
–

C
ol

d-
st

ar
t C

ol
la

bo
ra

tiv
e

fil
te

rin
g

(W
ei

 e
t a

l.
20

16
)

Ye
s

N
o

Ye
s

N
o

Ye
s

N
om

in
al

/c
at

eg
or

ic
al

M
ul

ti-
di

m
en

si
on

al
 c

la
ss

ifi
ca

tio
n

(J
ia

 a
nd

 Z
ha

ng
 2

02
0;

 B
ie

lz
a

et
 a

l.
20

11
; S

ha
tk

ay
 e

t a
l.

20
08

)

657Machine Learning (2022) 111:651–684	

1 3

the goal is to make predictions for pairs of unseen instances and targets. In the literature on
multi-task and transfer learning, this setting is known as zero-shot learning.

3 � From real‑world problems to MTP problem settings

This section details real-world examples that map to four of the most popular MTP prob-
lem settings (multi-label classification, dyadic prediction, matrix completion, and multi-
task learning). For each of these examples, we explain how specific characteristics of the
datasets and common requests from the end-user provide answers to the queries of our
purpose-built questionnaire. Readers already familiar with the various MTP settings might
consider to skip this section.

3.1 � Multi‑label classification

A typical example of a multi-label classification problem is that of image tagging shown
in Fig. 2. A user of our framework who wishes to solve a similar problem will have to pos-
sess a dataset that contains images (instances) and their known annotations from a set of
possible tags (targets). His/her goal will be to annotate new images (Q1=yes) with the tags
that were available in the training set (Q2=no, Setting B). The pixel values of the images

Setting C

Setting BSetting A

Setting D

Fig. 1   The four validation settings supported by the DeepMTP framework visualized for the same interac-
tion matrix. Each row corresponds to a different instance �i and each column to a different target �j . Cells
coloured in green correspond to known values yi,j present in the training set. The grey cells represent the
missing values or values belonging to the test set. Every black cell in setting D is purposely excluded from
both train and test sets. In Setting A the test set is formed by randomly sampling couples (�i, �j) from the
interaction matrix. In Setting B the test set is comprised of entire rows of the interaction matrix, which
translates to all possible couples (�i, �j) for specific targets �j . Setting C can be seen as the converse of Set-
ting B, as in this case the test set includes all possible couples (�i, �j) for specific instances. Finally, in Set-
ting D the test set has to contain couples (�i, �j) of which both instance and target are excluded from the
train set

658	 Machine Learning (2022) 111:651–684

1 3

constitute the side information for the instances (Q3=yes) in our DeepMTP framework.
At the same time, because the tags usually do not contain any kind of side information
(Q4=no), we have to produce one-hot encoded vectors in order to feed the corresponding
branch of our neural network. The one-hot encoded vectors have the same length as the
total number of targets and all the positions except one are filled with zeros. The position
that maps to the unique id of a target is filled with a one. The problem is considered as a
classification problem because the tags have a binary relationship with a given image; they
can either be associated with that image or not (Q6=binary). The combination of all those
characteristics and the specific answers they correspond to in our questionnaire leads us to
the identification of the task as a multi-label classification problem.

It is important to point out that there are also instances of similar image tagging tasks
that also offer a tag hierarchy (Q4=yes=hierarchy). In such an example, all the other char-
acteristics are the same as what we presented in the paragraph above. Instead of creating a
standard one-hot encoded vector, we use the position of each target inside the given hier-
archy to create a new vector that is passed to the corresponding branch. The availability of
additional side information for the targets sets this task apart as a hierarchical multi-label
classification problem. Information in the form of a hierarchy might also appear in other
MTP problem settings such as multivariate regression, but we are not aware of any pub-
licly-available datasets or even research areas with appropriate naming.

3.2 � Dyadic prediction

Dyadic prediction problems can be found in the field of drug discovery and, more specifi-
cally, in the task of predicting the interaction between chemical compounds and proteins
(shown in Fig. 3 and known as drug-target interaction prediction or DTI). A typical data-
set in this area contains interaction information in the form of real-valued affinity scores
(Q6=real-valued) between proteins (instances) and chemical compounds (targets). Usu-
ally, both of these types of molecules are described by vector representations (Q3=yes,
Q4=yes) that can be found in popular databases (PubChem Kim et al. (2021), DrugBank
Wishart et al. (2006), ChEMBL Gaulton et al. (2012)). In a real-world environment, a user,

Fig. 2   Example of a multi-label
classification problem from the
area of image tagging. Rows
represent the different images
and columns represent all the
possible labels that can be associ-
ated with an image. The interac-
tion matrix is fully observed
with binary values (1 if the label
is associated with the image, 0
otherwise). Side information for
the instances corresponds to the
raw pixel values of the image.
Additionally, because tags are
usually not described by side
information, we automatically
generate one-hot encoded vec-
tors. After the model is trained,
testing involves predicting for a
new image whether each of the
tags should be associated with it

659Machine Learning (2022) 111:651–684	

1 3

usually a scientist working on a particular disease, identifies a new protein as a potential
target for that disease. His/her goal is to check the degree of interaction of that new protein
(Q1=yes) with every chemical compound in the aforementioned chemical library (Q2=no,
Setting B). The combination of the dataset’s properties with the needs of the user leads us
to characterize the task as a dyadic prediction problem. It is useful to note that we could
easily interchange the role of the proteins and the chemical compounds in our framework,
while still considering it a dyadic prediction problem.

3.3 � Matrix completion

The wide-spread acceptance of e-commerce by companies and customers alike has already
generated a significant amount of data that can be used to individualize product recom-
mendations. This has resulted in rapid advancements in the area of recommender systems,
which aim to predict the users’ interests and recommend items that are likely to be interest-
ing to them. A typical dataset from this area of matrix completion contains some kind of
interaction between users (instances) and items (targets). This interaction can be expressed
in terms of a binary value (someone bought a product or not) (Q6=binary) or a real value
(someone gave a rating to a movie) (Q6=ordinal).

Another characteristic of this type of dataset is that there is information for only a subset
of all the possible pairs (Q5=no). For example, it is only natural that a user cannot rate
every movie in a library of thousands. The objective of this task is to make recommenda-
tions by completing the interaction matrix that the already seen users (Q1=no) and items
(Q2=no) create, while no side information is known for either of them (Fig. 4). When
side information is available (user’s profile page and/or general information about the
movie-series) it can be used to potentially improve the performance in the completion task
(Hybrid Matrix Completion).

An extension of this formulation leads to the Cold-start Collaborative filtering problem
that can be seen as the result of the continuously-evolving nature of the user-base of many
companies. This necessitates the prediction of interactions for new users that were not pre-
sent in the dataset that the original model was trained on (Q1=yes). By reversing the role

Fig. 3   Example of a dyadic
prediction problem from the field
of drug-target interaction predic-
tion. Rows represent the different
proteins and columns represent
the chemical compound library
that a pharmaceutical company
might have. The interaction
matrix is fully observed and
every real value corresponds to
the binding affinity of the drug-
protein pair

660	 Machine Learning (2022) 111:651–684

1 3

of instances and targets, the same argument could be made for new items (Q2=yes) that
are added to the database of a company. For example, when a new movie is available on a
platform, the objective could be to first predict the expected rating of each user, and then
suggest it to the ones that would give high ratings. Such a generalization is only possible if
the appropriate side information becomes available (Q1=yes and Q3=yes; or Q2=yes and
Q4=yes).

3.4 � Multi‑task learning

In contrast to well-defined MTP problem settings like multi-label classification and mul-
tivariate regression, multi-task learning contains multiple sub-categories of problems. It
thus is more challenging to give a concise definition. A large proportion of work published
in this area actually works on problems containing different types of variables for each
task (heterogeneous tasks). The pairwise manner in which DeepMTP performs training
combined with the use of a single type of loss function during the entire training phase
makes the heterogeneous setting incompatible. For example, if our architecture was trained
for a multi-task learning problem with two heterogeneous tasks (one binary and one real-
valued), we would need two different loss funtions (BCE for the values in the binary task
and MSE for the real values in the regression task). This is currently not possible; in the
next section, we will explain that our neural network architecture optimizes only one loss
per problem.

Fig. 4   Example of a matrix completion problem from the broader area of collaborative filtering. Rows rep-
resent the different users of a streaming company and columns represent digital content that belongs to its
library. Values inside the interaction matrix represent the ratings that the users have given to the content.
In this problem, it is expected that the interaction matrix has mainly missing values as it is impossible for
a user to rate every movie and series of the company’s library. In the standard matrix completion setting,
users and movies are not described by side information, so our framework uses their unique id to construct
one-hot encoded vectors. The absence of side information also limits the model to only predict ratings for
pairs with known users and movies. When side information is actually available, it is possible to extend pre-
diction to pairs with previously unknown users or movies

661Machine Learning (2022) 111:651–684	

1 3

A task that suits this setting’s characteristics can be found in the area of crowdsourced
annotation (Liu et al. 2018). The quality of training data has been a major limiting factor for
the improvement of performance in supervised and semi-supervised tasks. The increasing
size of datasets, combined with the high cost of annotating, has led many researchers and
companies to crowdsourcing. A user that has a dataset that needs to be annotated can use a
crowdsourcing service in order to obtain labels. The resulting dataset he/she will get back
could be arranged in an interaction matrix, where the instances map to the original sam-
ples of the dataset and the targets map to the annotators. Figure 5 shows a similar example
where the instances correspond to documents for which we have the raw text (Q3=yes),
and the targets correspond to users that are identified by their id (Q4=no). Depending on
the number of possible labels that a user can assign to a document, the interaction matrix
can have binary (Fig. 5, left) (Q6=binary) or nominal (Fig. 5, right) (Q6=nominal) val-
ues. Such a dataset with binary annotations leads to a binary multi-task learning problem,
while multi-class annotations lead to a multi-class multi-task learning problem.

A binary multi-task version can also be created if we replace every user’s original anno-
tation with a binary value that expresses whether the annotation is correct. Because the
size of datasets that need to be annotated is usually close to hundreds of thousands or even
millions, it is not feasible for every user to annotate every sample (Q5=no). Finally, during
inference, the goal could be to predict how every known user (Q2=no) would annotate a
new, previously unseen document or even if these annotations would be correct.

4 � A two‑branch neural network architecture for MTP

The baseline architecture of our framework was first popularized by the neural collabo-
rative filtering (NCF) framework (He et al. 2017) in the field of recommender systems.
The architecture successfully approximated standard matrix factorization techniques and

Fig. 5   Examples of multi-task learning problems from the field of crowdsourced annotation. The figure
on the left maps to a binary multi-task learning problem because the values in the interaction matrix are
binary. The figure on the right represents a multi-class multi-task learning problem, as the values in the
interaction matrix are nominal. All the other characteristics in both figures are identical

662	 Machine Learning (2022) 111:651–684

1 3

showed state-of-the-art performance on benchmark datasets. In this work, we show how
we can enhance the basic principles of the NCF framework in order to build a generalized
framework that achieves a competitive performance in all the settings that fall under the
umbrella of MTP.

In the proposed architecture shown in Fig. 6, the network uses two branches to encode
the inputs. More specifically, the bottom input layer of each branch is comprised of two
feature vectors �i and �j , which describe the instance and target of a sample in an MTP
problem. Both vectors can be customized to support a range of different MTP formula-
tions. For example, in a typical multi-label classification problem, a one-hot encoded vec-
tor will be generated to represent a specific target and used as input to the corresponding
branch. Using the same principles, in a typical matrix completion problem, we will have to
generate one-hot encoded vectors for both instances and targets using their unique ids, very
similar to what NCF does.

Above the input layer, we extend the NCF framework by using different types of layers
or even entire sub-architectures to better encode the different kinds of inputs the framework

Fig. 6   Detailed view of the two-branch neural network. The specific example shows an image tagging
problem where the one-hot encoded vectors for the pixel values and the tag are fed into the corresponding
branches, transformed into embedding vectors, and then passed to an MLP that outputs the predicted inter-
action score

663Machine Learning (2022) 111:651–684	

1 3

may encounter. In cases where no side information is provided (for example, the labels
in a multi-label classification problem), we use a single fully-connected layer to project
the sparse one-hot encoded input vector to a dense embedding. Otherwise, when explicit
side information is available, we have multiple options, depending on the type of input,
from several fully-connected layers (tabular health record data, Fig. 7, left) to more spe-
cialized architectures based on convolutional neural networks (Fig. 7, right) or graph neu-
ral networks (hierarchies). The goal of the embedding layer in both cases is to project the
instances and targets to a lower-dimensional latent space, similarly to what is done with the
users and items in the product recommendation problem in NCF (He et al. 2017).

The instance embedding �� and target embedding �� are then concatenated and passed
through a multi-layer neural network architecture that maps the embeddings to the pre-
dicted target value in the following way:

where � , � and � correspond to the weight matrix, bias vector and activation function
of the final multi-layer perceptron (MLP) layer. We mainly use the leaky rectified linear
unit (Leaky ReLU) as activation function in our framework, but because we also perform
experiments with custom architectures from third parties instead of the branches, other
activation functions may also be utilized (for example, standard ReLU in Resnet He et al.
2016).

This MLP architecture is able to model more complex, non-linear instance-target rela-
tionships compared to a simpler dot product. Even though this idea was popularized by
the NCF framework and widely adopted by the CF community, there has been recent work
proposing that the dot product may be highly competitive and cheaper to train (Rendle

(1)

�1 = 𝜙1(��, ��) =

[
��
��

]
,

𝜙2(�1) = 𝛼2(�
T
2
�1 + �2) ,

......

𝜙L(�L−1) = 𝛼L(�
T
L
�L−1 + �L) ,

ŷ�� = 𝜎(�T𝜙L(�L−1)) ,

Fig. 7   Examples of different architectures that can be used in the branches of the multi-branch neural net-
work. In the left figure, we use a conventional fully connected neural network because the input consists
of tabular user-related features, whereas in the right figure, we use a convolutional architecture because
the input is in the form of images. Both versions of our dual branch architecture utilize a final multi-layer
perceptron (MLP) that takes as input the vector obtained by concatenating the instance embedding vector ��
and the target embedding vector ��

664	 Machine Learning (2022) 111:651–684

1 3

et al. 2020; Dacrema et al. 2021). Regardless, we decided that all the experiments shown
below should use an MLP and that we will investigate whether the dot product can be a
viable alternative for the MTP settings in future work.

The final output layer consists of a single node that outputs the predicted score ŷ�� . In
the classification-related MTP settings a sigmoid function is used before the output in order
to restrict it to [0, 1]. We facilitate training using different loss functions to accommodate
the different categories of MTP problem settings. In classification problems, training is
achieved using the binary cross-entropy loss function:

On the other hand, in problems that fall into the regression category, we use the squared
error loss:

In both loss functions, D denotes the set of known interactions in the training set.
In order to make it more accessible to the reader how training and inference work in our

architecture, we make a comparison with a standard neural network in the popular multi-
label classification case shown in Fig. 6. The basic neural network will have as many input
nodes as instance features and as many output nodes as there are labels (six in the exam-
ple). This means that for the example in Fig. 6, the neural network will use the pixel values
of an image as input and then output the prediction for every label simultaneously. This
procedure is followed during training as well as inference. In our architecture, training and
inference are performed in a pairwise manner. Instead of working with all the labels of an
image simultaneously, we process each instance-target pair separately. Thus, for the same
example we detailed earlier, our network will have to input the same image six times to the
instance branch and modify the one-hot encoded vector that is passed to the target branch.

It is also important to point out that there are cases in which additional side information
is available. These features are usually available for every couple (�i, �j) in the dataset and
have been coined dyadic features in the literature (Van Peer et al. 2017). Such information
requires an extension of our two-branch architecture by a third branch that allows to encode
those dyadic features (Fig. 8, right). Similar architectures have been successfully deployed
in tensor factorization applications (Wu et al. 2018; Schreiber et al. 2020). In this setting,
training and inference remain largerly unchanged, the only difference being the concatena-
tion of three embedding vectors �� , �� and �� instead of just two.

Finally, our neural network architecture, combined with the pairwise manner in which
we train our models, allows to make predictions for all four validation settings shown in

(2)LBCE = −
∑

(�,�,y)∈D

y log ŷ�� + (1 − y) log (1 − ŷ��) .

(3)LMSE =
∑

(�,�,y)∈D

(y − ŷ��)
2 .

Fig. 8   General two-branch architecture (left) and tri-branch architecture (right)

665Machine Learning (2022) 111:651–684	

1 3

Fig. 1 (Settings A, B, C and D) without having to make modifications in the core training
and inference steps. The only stages in the pipeline that need to be adapted are the prepara-
tion of the dataset splitting as well as the computation of the performance metrics. In the
experiments presented in Sect. 6, we only report results for Settings A and B, as they are
the most frequently encountered ones. In future work, we intend to also report the perfor-
mance for the two other settings and discuss the differences between them.

5 � Related work

This section’s goal is to discuss related work. The literature on multi-target prediction is
vast, so we will focus on deep learning approaches for multi-target prediction. First, we
review two-branch neural network architectures that have been introduced for specific
problem settings (some of thse settings fall under the MTP umbrella). Those architectures
are often very similar to the architecture we propose. Second, we review other deep learn-
ing methods that can be used for multi-target prediction, i.e. architectures that are not based
on two branches. Third, we briefly discuss some well-known MTP methods that are not at
all based on neural networks.

Two-branch neural network architectures have been developed for distance metric learn-
ing, similarity learning and object matching problems. In these application domains, such
architectures are often referred to as Siamese neural networks (Bromley et al. 1993). The
architecture typically consists of two identical branches, which are both capable of learning
the hidden representation of an input vector. The two outputs are then compared, usually
through cosine similarity, and the output of such a network can be thought of as the seman-
tic similarity between the two embedding vectors. Siamese neural networks have found
extensive use in video analysis (Ryoo et al. 2018; Liu et al. 2017b), but also in audio pro-
cessing (Pitt et al. 2005; Chen and Salman 2011) and natural language processing (Yih
et al. 2011; Marelli et al. 2014; Das et al. 2016). For a more extensive review of the appli-
cation of Siamese networks, we refer to Chicco (2021).

Two-branch neural networks can also be used to learn the similarity between two objects
of a different type. In this setting, the two branches will have a different architecture, simi-
lar to our framework. In computer vision one can find several papers that adopt such an
idea for different applications, without a focus on developing general-purpose tools. Con-
volutions are used in the branch that encodes images, while other layer types are considered
in the second branch. As representative examples, let us discuss three papers a bit more in
detail. Wang et al. (2018) investigate two-branch neural networks to learn the similarity
between image and text modalities for the purpose of phrase localization and bi-directional
image-sentence retrieval. Shao and Qian (2019) consider a two-branch convolutional neu-
ral network to classify facial expressions. The first branch takes as input the raw image and
extracts global features, while the second uses local binary pattern features to extract local
texture features. As a third example, Pan et al. (2018) introduce DualCNN for various low-
level vision problems like super-resolution, noise/artifact removal, image deraining, and
dehazing. Their architecture consists of two branches, one shallow sub-network to estimate
the structures of the input image and one deep sub-network to estimate the details.

In recent years two-branch neural networks have also been introduced in recommender
systems. In fact, the neural collaborative filtering framework of He et al. (2017), which has
been explained in Sect. 4, has become one of the most popular neural-network-based matrix
factorization methods. One of the methods proposed in He et al. (2017), called generalized

666	 Machine Learning (2022) 111:651–684

1 3

matrix factorization, computes the dot product between the two branches, but this is only
possible when the learned embeddings of the two branches have the same dimensionality.
Moreover, the dot-product is not parameterized by any additional (learnable) parameters,
which might hamper the predictive performance. That is why they also suggest a modifica-
tion that is used in our work in which the learned embeddings are concatenated to a sin-
gle vector that serves as input for another fully-connected feed-forward neural network. As
another alternative, He et al. (2018) use an outer product to explicitly model the pairwise
correlations between the dimensions of the embedding space. The outer product creates a
two-dimensional interaction map that is then processed by a convolutional neural network
to learn high-order correlations among the embedding dimensions effectively.

A natural extension of the use of two branches for matrix factorization is the inclusion
of a third branch that can encode a third dimension and thus be used for tensor factori-
zation. Wu et al. (2019) introduce a neural-network-based tensor factorization model that
contains a third (LSTM-based) branch to characterize the multi-dimensional temporal
interactions for relational data. For some applications, we believe that it is also relevant to
include a third branch in our MTP framework, and this is something we will experiment
with in the future.

In multi-label classification, several deep learning methods that do not consider two
branches have been presented. Gong et al. (2013) used a convolutional architecture, sim-
ilar to what we did for any task that involved images and experimented using different
ranking-based loss functions. He demonstrated that the weighted approximated ranking
loss, which specifically optimizes the top-‖ accuracy (not possible with the current ver-
sion of our work), works well for multi-label annotation problems. Nam et al. (2017) pro-
pose a sequence-to-sequence recurrent neural network as an alternative to the well-known
classifier chains method. Similar to other chaining methods, this neural network is mainly
useful for optimizing the subset zero-one loss (not considered in this paper). In the area
of multi-label image classification, Wang et al. (2016) combine deep convolutional and
recurrent neural networks in a framework that is able to learn a joint image-label embed-
ding that exploits label dependencies. Because this approach uses LSTMs, a predefined
label ordering is required during training, something that is usually not available. For that
reason, Chen et al. (2018) investigate the effectiveness of a deep learning model that com-
bines a visual attention model with an LSTM and thus does not require any predetermined
label ordering. Huynh and Elhamifar (2020) consider a shared multi-attention mechanism
that predicts all seen and unseen labels in an image, something that other attention-based
approaches are unable to do. Finally, custom architectures have also been proposed for
cases in which the number of labels becomes very large (extreme multi-label classifica-
tion). Liu et al. (2017a) used deep convolutional neural networks for multi-label text clas-
sification and showed a competitive performance for datasets with up to 670k labels. In the
same area, Zhang et al. (2018) established an explicit label graph to better model the label
space of extreme multi-label classification datasets. Our approach is able to scale linearly
with the number of labels, but further work will be needed to improve speed and make
experimentation with larger datasets feasible.

Lastly, as far as software packages go, we could not find any work that provides
methods for more than two MTP problem settings. Tsoumakas et al. (2011) devel-
oped an open-source Java library that implements several transformation methods like
binary relevance, label powerset, and other multi-label algorithms like multi-label k
nearest neighbors, random k-labelsets, the hierarchy of multi-label learners algorithm,
and back-propagation multi-label learning. In contrast to the command-line interface
of Mulan, MEKA Read et al. (2016) is another popular Java library that provides a

667Machine Learning (2022) 111:651–684	

1 3

graphical interface and inherits methods implemented in Weka Hall et al. (2009).
Another open-source library that was introduced more recently and is written in python
is called scikit-multilearn (Szymański and Kajdanowicz 2017). This library can utilize
methods from scikit-learn and provides an interface for MEKA, but the set of methods
included is limited. Finally, the MLC toolbox (Kimura et al. 2017) offered multi-label
classification methods for MATLAB/OCTAVE users.

6 � Experimental results on various MTP problems

This section’s main goal is to convey that our architecture is flexible enough to train
and make predictions with minimal configuration changes for multiple MTP prob-
lem settings. We also want to showcase that our approach is quite competitive with
methods that are usually purpose-built for only one of the problem settings. Of course,
for the same reason, we do not expect and is generally not our goal to outperform all
the methods we are comparing with. At the end of this section, we anticipate that our
framework will constitute a viable benchmark for future methods that will be devel-
oped for any of the MTP problems settings we have explored. The experimental setup
as well as the hyperparameter space of the methods we compare with are located in the
Appendix.

6.1 � Multi‑label classification

For the multi-label classifcation problem setting, we selected methods that are avail-
able in the scikit-learn (Pedregosa et al. 2011) and scikit-multilearn (Szymański and
Kajdanowicz 2017) libraries. More specifically, we compare with a standard neural
network in which the number of output nodes is equal to the number of targets, two
instances of a binary relevance approach that has a support vector machine (SVM) and
a neural network as base classifier, a nearest neighbors method adapted for multi-label
classification (MLkNN) (Zhang and Zhou 2007), a multi-output decision tree classifier
(DT), and an ensemble of classifier chains (ECC) (Read et al. 2009) that uses an SVM
as the base classifier. Experiments were performed using four benchmark datasets from
Mulan’s GitHub repository (Tsoumakas et al. 2011). Table 2 lists these datasets along
with their main statistics. Because there is no target side information in this setting, our
framework uses one-hot encoded vectors as inputs for the corresponding branch.

The hyperparameters of the methods we compare with were optimized through a grid
search. The performance metric of choice for this problem setting is the widely used
Hamming loss, which the majority of methods can explicitly optimize for. The impor-
tance of this characteristic was originally explored in Dembczyński et al. (2010) and
influenced the selection of the methods we compare with. The results shown in Table 2
illustrate the competitiveness of the DeepMTP framework, as it achieves comparable
performance to the other baselines on all four datasets.The experimental section for this
MTP problem setting is not as extensive as other papers that are exclusively focused on
this area, both in terms of datasets and methods. This is done purposely, as we have to
consider many other MTP settings. For extensive comparisons in this area, we refer to
work by Madjarov et al. (2012); Tsoumakas and Katakis (2007).

668	 Machine Learning (2022) 111:651–684

1 3

6.2 � Multivariate regression

Similarly to the previous setting, all the selected methods were obtained from the scikit-
learn library (Pedregosa et al. 2011). The methods selected in this setting include a
typical multilayer perceptron (MLP), popular single-target approaches [support vector
regression (SVR), Kernel ridge regression (KRR), decision tree regression], as well as
an ensemble of 50 regressor chain models that use a support vector regressor as base
model. We also selected the seven datasets listed in Table 3 from a repository that
accompanied (Melki et al. 2017).

Table 2   The four multi-label
classification data sets used in
this study and reported Hamming
loss of every method for these
datasets

Results shown in bold indicate the best performance for every dataset

Yeast Scene Bibtex Corel5k

Data properties
No. of instances 2417 2407 7395 5000
No. of instance features 103 294 1836 499
No. of targets 14 6 159 374
No. of target features 14 6 159 374
Hamming loss
BR (SVM) 0.1935 0.0733 0.0130 0.0146
BR (MLP) 0.2223 0.0993 0.0142 0.0201
MLP 0.2406 0.0897 0.0198 0.0183
MLkNN 0.202 0.0885 0.0146 0.0162
DT 0.261 0.1301 0.0137 0.0151
ECC (SVM) 0.2841 0.1312 0.0148 0.0152
DeepMTP 0.2309 0.0839 0.0157 0.0114

Table 3   The seven multivariate regression data sets used in this study and reported aRRMSE of every
method for these datasets

Results shown in bold indicate the best performace for every dataset

Enb Jura Water quality Oes97 Oes10 Puma8nh Puma32h

Data properties
No. of instances 768 359 1060 323 403 8192 8192
No. of instance features 8 11 16 263 298 8 32
No. of targets 2 7 14 16 16 3 6
No. of target features 2 7 14 16 16 3 6
aRRMSE
SVR/target 0.1161 0.5747 0.9493 0.5394 0.3410 0.8818 0.9634
DTR 0.1629 0.7587 1.0310 0.7620 0.5024 0.9590 1.0949
KRR/target 0.1606 0.5785 0.9500 0.5312 0.3468 0.8625 1.0001
MLP 0.0933 0.6334 0.9809 0.7885 0.3946 0.8750 1.0008
ECC (SVR) 0.1231 0.5751 0.9472 0.5393 0.3409 0.8780 0.9633
DeepMTP 0.0954 0.6614 0.9279 0.4843 0.4292 0.8509 1.002

669Machine Learning (2022) 111:651–684	

1 3

The hyperparameters of the methods we compare with were optimized through a grid
search. The performance metric used in this setting is the commonly-used average relative
root mean square error (aRRMSE). The results shown in Table 3 indicate that our approach
is quite competitive, outperforming the other methods on three out of the six available data-
sets. The DeepMTP framework’s performance closely resembles that of the standard neu-
ral network and becomes more competitive when the number of training samples increases.

6.3 � Hierarchical multi‑label classification

For the hierarchical multi-label classification problem problem setting, we selected two
image classification datasets that included hierarchical information for the targets, which
in this case corresponds to tags that can be associated with an image. More specifically,
these datasets are the MSCOCO and the VOC 2007, two really popular benchmarks in the
area of multi-label classification. Microsoft COCO (Lin et al. 2014) is a benchmark that
contains 82081 images in the training set and 40504 images in the validation set. There are
also 80 different labels that can be associated with an image with the actual average being
2.9 labels per image.

The second dataset used in this setting comes from the PASCAL Visual Object Classes
Challenge (VOC 2007) (Everingham et al. 2010) and is divided into train, validation and
test sets. This benchmark contains 9963 images and 20 different tags that are organized in
the hierarchy shown in Fig. 9. In our experiments, the methods were trained on both the
train and validation sets and the evaluation was done using the test set.

In terms of the configuration of our framework for this problem, we decided to use a
pre-trained version of the ResNet-101 architecture, similar to what is shown in the right
of Fig. 6, as well as Fig. 2. For the branch that encodes the targets, we experimented with
two different versions. In the first one, we create standard one-hot encoded vectors, simi-
larly to what we do when no side information is available. In the second version, we utilize
the available tag relations by constructing sparse vectors that encode the given hierarchy.
For example, inspecting the hierarchy for the VOC 2007 dataset in Fig. 9, we count nine
categories and 20 final classes-tags. To construct a vector that encodes the hierarchy, we
first create a 29-dimensional vector populated by zeros. Each position of the vector maps
to a different category or tag. Then, to represent a specific tag we start from the root of the

Fig. 9   Hierarchy of the 20 categories present in the VOC 2007 dataset

670	 Machine Learning (2022) 111:651–684

1 3

hierarchy and traverse it until we arrive at that tag. For each node we encounter, we assign
a one to the corresponding position in the vector.

In terms of methods, we decided to compare with a graph-convolution-based approach
that was proposed in Chen et al. (2019b). In the latter paper, the authors present exper-
iments with the two datasets presented above. Even if theoretically the use of the same
train-test split would not necessitate re-running their experiments in order to compare with
our framework, we decided to do so using their published implementation. The results on
MS-COCO and VOC2007 are shown in Table 4. In terms of metrics, we decided to use the
same as in Chen et al. (2019b). More specifically, we computed the macro-wise (macro-P,
macro-R, macro-F1) and instance-wise (inst-P, inst-R, inst-F1) versions of recall, precision
and F1 score.

From the results presented above, we observe that the DeepMTP framework shows
a competitive performance with the ML-GNC method. It is also important to mention
that in our experiments ML-GNC achieved a slightly worse performance across all six
metrics compared to what is reported in Chen et al. (2019b). The same paper makes
comparisons with multiple other methods, for which we could not find any implemen-
tation. We hypothesize that this is also the reason why some performance values are
missing from their table of results (the source papers report a subset of the six metrics
they use, so they could not copy these results). This is the reason why we do not include
these methods in the present work. Finally, we report that our experiments with the two
different versions of target features did not result in a significant difference in perfor-
mance. This can be explained by the fact that both of the used hierarchies are quite shal-
low, and thus do not offer useful information compared to the standard one-hot encoded
features. We believe that the ability of our framework to easily include or disregard the

Table 4   Comparison of the
ML-GNC and DeepMTP
methods in terms of multiple
performance metrics on the
MS-COCO dataset

Results shown in bold indicate the best performace for every met-
ric and dataset

MS-COCO VOC2007

Instance-precision
ML-GNC 0.858 0.8725
DeepMTP 0.8344 0.8612
Instance-recall
ML-GNC 0.754 0.9107
DeepMTP 0.6559 0.8035
Instance-F1
ML-GNC 0.803 0.8912
DeepMTP 0.7345 0.8313
Macro-precision
ML-GNC 0.851 0.8602
DeepMTP 0.7885 0.8364
Macro-recall
ML-GNC 0.72 0.8947
DeepMTP 0.6144 0.8004
Macro-F1
ML-GNC 0.78 0.8771
DeepMTP 0.6807 0.8137

671Machine Learning (2022) 111:651–684	

1 3

hierarchical information boosts the potential of our framework for the hierarchical clas-
sification setting.

6.4 � Matrix completion

For this task, we decided to compare with methods that are available in Microsoft’s
repository of recommender systems (Microsoft 2018). Because we do not support a
ranking loss at this stage, we only included methods that optimize for regression. These
methods include a matrix factorization approach by alternating least squares (MF-
ALS), a neural network approach that is really similar to ours but uses a dot product
to combine the instance and target embedding vectors (fastai), the Riemannian Low-
rank Matrix Completion (rlrmc), and another neural network approach that trains a wide
linear model as well as a deep neural network (wide & deep). In terms of datasets, we
decided to use two versions of the widely-used movielens dataset, one with 100 ratings
(movielens100k) and one with one million ratings (movielens1M). The dataset contains
ratings that users gave to movies, exactly as shown in Fig. 4. The test set is formed by
randomly selecting 25% of the known ratings (Setting A). Because we do not have any
side information available for either users (instances) or movies (targets), we generate
one-hot encoded vectors for both of them. Similarly to what we see with all the other
MTP problem settings, the DeepMTP framework is quite competitive. For both versions
of the movielens dataset, the performance is quite similar to or even outperforms that of
the other methods (Table 5).

Table 5   Comparison of the
collaborative filtering approaches
in terms of multiple regression
performance metrics for
movielens100k and movielens1M

Results shown in bold indicate the best performace for every metric
and dataset

Movielens100k Movielens1M

RMSE
MF-ALS 0.9628 0.8593
Fastai 0.9431 0.8745
Rlrmc 1.0441 0.8640
Wide and deep 0.9491 0.9574
DeepMTP 0.9391 0.8782
MAE
MF-ALS 0.7488 0.6783
Fastai 0.7443 0.6954
Rlrmc 0.7961 0.6751
Wide and deep 0.7561 0.7771
DeepMTP 0.7421 0.6904
R2
MF-ALS 0.2590 0.4133
Fastai 0.2853 0.3869
Rlrmc 0.1240 0.4016
Wide and deep 0.2762 0.2651
DeepMTP 0.2913 0.3817

672	 Machine Learning (2022) 111:651–684

1 3

6.5 � Multi‑task learning

For the multi-task learning problem setting, we decided to experiment with crowdsourc-
ing datasets, in a very similar setup as described in Fig. 5. This was partly done because
contemporary research in multi-task learning works on heterogeneous interaction matrices,
something that our framework does not support at this moment.

The datasets we used in this setting were first introduced in Liu et al. (2018). These
include two image datasets that are labeled by users. The first one contains 800 images of
dogs and 52 annotators that have to label each image with one of four available breeds. The
second dataset contains 2000 images of 10 different types of birds that were labeled by 65
annotators. In both datasets, the majority of possible image-user pairs is missing, as it is
challenging for a user to annotate thousands of images. To simplify the problem, we used
the correct annotations that were supplied for every image to transform the original mul-
ticlass, multi-task learning problem into a binary one. A given cell in the final interaction
matrix shows whether or not the user labeled an image correctly (Fig. 5, left).

In terms of methods we decided to compare with, we chose two baselines. The first one
simply predicts the majority class. For example, if the majority of a user’s annotations is
correct, we predict that he/she will also label all the test set images correctly. The second
approach is the standard single-task approach in which we train a single model for every
task separately. Because the side information of the instances corresponds to raw images,
we chose the VGG architecture instead of the corresponding branch in our two-branch neu-
ral network. More specifically, we used a pre-trained version of the VGG-11 architecture
that had every layer’s weights, except for the last one, freezed. This was intentionally done
to improve running time and also because both datasets did not have enough instances to
train such a massive architecture.

In terms of results (see Table 6), it is clear that the datasets used are not large enough to
train the neural networks. In terms of accuracy, the majority voting approach is competi-
tive as the test sets in most cases were comprised of only a few samples. The single-target
Resnet approach was unable to properly train and was only predicting the majority class. In
terms of AUROC and AUPR, and for both datasets, our approach clearly outperforms the
other two methods.

6.6 � Dyadic prediction

For the dyadic prediction problem setting, we chose to compare with a network inference
approach that uses an ensemble of bi-clustering trees (eBICT) Pliakos and Vens (2019) on
datasets that are used in that paper. Although the implementation of the eBICT method
is not available online, it was kindly provided to us by the authors upon simple request.
The four datasets (see Table 7) that we include in our work are heterogeneous interaction
networks that are publicly available and commonly used in the field of bioinformatics. For
each dataset, the interaction matrix is populated by binary values and side information is
available for both instances and targets. Two of the datasets correspond to drug-protein
interaction networks and were originally introduced, together with two additional datasets,
as a gold standard in the area of DTI prediction. Side information for the drugs amounts to
vectors that code for the similarity of their chemical structure, while side information for
the proteins comes in terms of similarities based on the alignments of their sequences. The
original four datasets were differentiated by the category of the target protein they include:

673Machine Learning (2022) 111:651–684	

1 3

nuclear receptors (NR), G-protein-coupled receptors (GR), ion channels (IC), and enzymes
(E). In this work, we excluded two of the datasets (NR and GR) because of their very small
size, both in terms of number of instances as well as in terms of number of targets.

The remaining two datasets that we used in our work corresponds to regulatory net-
works for two different micro-organisms. The first dataset concerns an E. coli regula-
tory network (ERN) that contains pairs of transcription factors and genes of the E. coli
bacterium. The second dataset representes a similar network but with genes from the

Table 6   Reported accuracy,
AUROC, AUPR of every method
on the two multi-task datasets

Results shown in bold indicate the best performance for every metric
and dataset

Dogs Birds

Data properties
No. of instances 800 2000
No. of instance features 3*224*224 3*224*224
No. of targets 52 65
No. of target features 52 65
Macro-accuracy
Majority voting 0.7461 0.6809
Single-target Resnet 0.7043 0.6588
DeepMTP 0.6621 0.7027
AUROC
Majority voting 0.5 0.5
Single-target Resnet 0.5123 0.5105
DeepMTP 0.611 0.6637
AUPR
Majority voting 0.7406 0.6192
Single-target Resnet 0.7421 0.6585
DeepMTP 0.8071 0.7555

Table 7   Reported micro-
AUROC and micro-AUPR of
every method on the four dyadic
prediction datasets

Results shown in bold indicate the best performace for every metric
and dataset

DPI-E DPI-IC SRN ERN

Data properties
No. of instances 664 204 1821 1164
No. of instance features 664 204 9884 445
No. of targets 445 210 113 154
No. of target features 445 210 1685 445
Micro-AUROC
eBICT 0.8053 0.8338 0.8169 0.8536
DeepMTP 0.8571 0.8312 0.8166 0.8874
Micro-AUPR
eBICT 0.555 0.4248 0.1686 0.4450
DeepMTP 0.45 0.4289 0.162 0.4295

674	 Machine Learning (2022) 111:651–684

1 3

Saccharomyces cerevisiae yeast. Here, the side information for both instances and targets
consists of expression values.

In terms of performance metrics, we follow what was proposed in Pliakos and Vens
(2019). These include the micro-average versions of the area under the precision recall
curve (AUPR), as well as the area under the receiver operating characteristic curve
(AUROC). Concerning the hyperparameters for the eBICT method, we used the defaults
that were proposed in the corresponding paper. The results shown in Table 7 demonstrate
the competitiveness of our approach. In terms of AUROC, we outperform the eBICT
method on two out of the four datasets and show a similar performance on the remaining
two. In terms of AUPR, we manage to outperform the eBICT method on only one dataset,
but we remain competitive on the other three. At this point, it is important to state that we
only report results for only one of the four validation settings (Setting B) even though in
Pliakos and Vens (2019) the authors also experiment with Settings C and D. We argue that
this is similar to what can happen in real-world situations, as a user can choose only one
type of generalization despite more options being available. In future work, we expect to
also compare our performance for the other three settings (A, C, and D), similar to what
the eBICT paper presents.

7 � Conclusions and future work

In this paper, we proposed a new framework that aims to make all the problem settings that
fall under the umbrella of MTP more accessible to the end-user. In order to do so, we intro-
duced a novel, purpose-built questionnaire that distils our understanding of the commonali-
ties and differences that the MTP problem settings display. We also showed examples of
how the characteristics of specific real-world problem settings and datasets lead to specific
combinations of answers to our questionnaire and ultimately to a specific MTP problem
setting being identified.

We then explained how we use the selected MTP setting information to configure a flex-
ible multi-branch neural network. We also showcased all the different modifications we
can perform in the network’s architecture, starting from how we handle different types of
input data to what losses we can use depending on the different types of output values each
problem setting offers. Finally, we provided extensive experimental results for five popular
MTP problem settings, covering 21 different datasets and 19 different methods. From those
results, we are able to show that our architecture can be quite competitive in all five MTP
problem settings with minimal modifications, while facing different types of input and out-
put data, different dimensionalities of input features, and different validation strategies. To
conclude, we believe that this architecture can be used as a reliable benchmark in future
work related to all MTP problem settings.

In terms of limitations, we would like to point out some variations of MTP problem set-
tings that are not recommended for our framework. Our multi-task experiments included
datasets with binary values for all the included targets (binary multi-task learning). Data-
sets with multiple classes (multi-class multi-task learning) could be tackled by replacing
the single output node with a number of nodes that is equal to the number of classes. MTP
problem settings like multi-dimensional classification could be tackled using the same con-
figuration for the output layer. Also, similarly to the work by Jia and Zhang (2020), com-
parisons can be made using modified multivariate regression datasets and baseline meth-
ods that are used in multi-label classification (Binary Relevance, Classifier chains, Label

675Machine Learning (2022) 111:651–684	

1 3

Powerset). Datasets that combine heterogeneous targets (for example, binary, multi-class,
and real-valued simultaneously) are not suitable for our architecture as the use of a single
loss function limits us to multi-task learning problems with homogeneous targets.

Structured output and multi-class prediction problems are settings that many may con-
sider in the multi-target prediction framework. Multi-class problems could be included
using the 1-versus-rest decomposition reduction technique. Following this approach, pre-
dicting an instance’s output boils down to a set of binary prediction tasks even though we
remain interested in a single prediction, not multiple ones. Similarly to Waegeman et al.
(2019) we argue that for structured output prediction problems, the target space is often
infinitely large, and the structure of the target space needs to be exploited for computa-
tional reasons during training and inference. Our framework cannot be used for structured
output prediction problems where the target space cannot be enumerated (because every
potential output will represent a column in the matrix representation used). As a result, we
do not recommend to use our framework for problems of that kind.

Despite the extent of this work, there are still many directions we intend to explore in
the future. The immediate next step will be to automate the process of hyperparameter tun-
ing in our model. Our architecture displays unusual characteristics, like branches that can
have different dimensionalities and types of sub-architectures. For that reason, the process
of finding the optimal architecture using a simple technique like grid search or random
search becomes practically infeasible. Another direction we could explore is related to the
performance difference that is expected when validating in the four settings we discussed
in Sect. 2.2.

Furthermore, even though in Sect. 4 we describe both a two-branch and a tri-branch
architecture, we only report experimental results using two branches. This interesting, but
at the same time quite underdeveloped area of dyadic information could be an option for
our future work. The collection of MTP datasets that also contain dyadic information, com-
bined with benchmark results produced by our DeepMTP framework, would give the nec-
essary boost to other researchers to engage in this task.

Finally, the current version of our framework optimizes specific versions of loss func-
tions that are cell-decomposable (Hamming loss). However, in our results section, we
also compared with other methods that do not optimize of the same loss as DeepMTP. An
attractive next step for our work would also be to extend the range of loss functions that our
DeepMTP framework allows to optimize.

Appendix A

The standard MTP problem settings include multi-label classification, multivariate regres-
sion and multi-task learning and are formally defined below.

Definition 3  The multi-label classification setting is an instance of the MTP framework
with the following additional properties:

	(P4)	 All targets are observed during training ( |T| = m).
	(P5)	 No side information is available for targets, thus we identify them with natural num-

bers ( �j = j).
	(P6)	 The score matrix � is fully observed.

676	 Machine Learning (2022) 111:651–684

1 3

	(P7)	 The score set is Y = {0, 1}.

Definition 4  The multivariate regression setting is an instance of the MTP framework
with the following additional properties:

	(P4)	 All targets are observed during training ( |T| = m).
	(P5)	 No side information is available for targets, thus we identify them with natural num-

bers ( �j = j).
	(P6)	 The score matrix � is fully observed.
	(P7a)	 The score set is Y = ℝ.

Definition 5  The multi-task learning setting is an instance of the MTP framework with
the following additional properties:

	(P4)	 All targets are observed during training ( |T| = m).
	(P5)	 No side information is available for targets, thus we identify them with natural num-

bers ( �j = j).
	(P6a)	 The score matrix � has missing values.
	(P7a)	 The score set is homogeneous across the columns of �.

From the properties of the three definitions presented above, we see that multi-task
learning can be interpreted as a generalization of multi-label classification and multivariate
regression, the main difference being the missing values in the score matrix � . A common
characteristic of the three settings presented above is that they do not use side information
for the targets. The utilization of such information leads to the establishment of extensions
for these three standard settings with new titles and separate research areas.

The following definitions correspond to MTP problem settings that are able to utilize
side information about the target space.

Definition 6  The hierarchical multi-label classification setting is an instance of the MTP
framework that shares all the properties of multi-label classification with the following
updates:

	(P5*)	 Side information is available for the targets ( T = {�1,… , �m} ) in the form of target
relations (usually hierarchies).

Definition 7  The dyadic prediction setting is an instance of the MTP framework that
shares all the properties of multi-task learning with the following updates:

	(P5*)	 Side information is available for the targets ( T = {�1,… , �m} ) in the form of a struc-
tured representation.

Definition 8  The zero-shot learning setting is an instance of the MTP framework that
shares all the properties of dyadic prediction setting with the following updates:

677Machine Learning (2022) 111:651–684	

1 3

	(P4*)	 Novel targets are expected at prediction time ( |T| = m∗ > m).

Properties P5 and P6 introduce the notion of inductiveness and transductiveness for
instances and targets. For example, the three standard MTP problem settings are inductive
w.r.t. instances and transductive w.r.t. targets, as predictions need to be produced for novel
instances but not for novel targets. The utilization of side information for the targets is what
gives the extended MTP problem settings the ability to generate predictions for novel targets.
The following definitions showcase MTP problem settings that arise from the availability of
side information for both instances and targets, as well as the intent to generalize to novel
instances and/or targets.

Definition 9  The matrix completion setting is an instance of the MTP framework that
shares properties P4, P5 and P6a with the standard MTP problem settings but also has the
following additional properties:

	(P8)	 All instances are observed during training ( |X| = n).
	(P9)	 No side information is available for instances, thus we identify them with natural

numbers ( X = {1,… , n}).

In the matrix completion setting side information for instances and targets is missing, so
the only achievable task is to complete the missing scores between instances and targets that
are already observed during training. In these cases, matrix factorization methods utilize the
structure of the score matrix � in order to make predictions.

Definition 10  The hybrid matrix completion setting is an instance of the MTP frame-
work that updates all the properties of the standard matrix completion setting:

	(P4*)	 Novel targets are expected at prediction time ( |T| = m∗ > m).
	(P5*)	 Side information is available for the targets ( T = {�1,… , �m} ) in the form of structured,

hierarchical or feature representations.
	(P8*)	 Novel instances are expected at prediction time ( |X| = n∗ > n).
	(P9*)	 Side information is available for the targets ( X = {�1,… , �n} ) in the form of struc-

tured, hierarchical or feature representations.

Hybrid matrix completion extends the standard matrix completion setting by generalizing
to novel instances and targets using the structure of the score matrix as well as side informa-
tion. Both versions of the matrix completion method have been considered with great success
in areas such as recommender systems, social network analysis and biological network infer-
ence. This wide adoption has also resulted in the establishment of new terms like collaborative
filtering and link prediction.

678	 Machine Learning (2022) 111:651–684

1 3

Appendix B: Experimental setup and hyper‑parameters

In the following section, we detail the methods we are comparing with, the datasets we use
in a per MTP problem setting manner, and the hyperparameter space we explore. Simi-
lar to other papers in the area of deep learning, we decided to complete all the experi-
ments using a train-test (75–25%) split. In papers predating the deep learning era, 5-fold or
10-fold cross-validation is usually the standard, but this has become less popular recently
for problems that involve feature learning. Especially in many of the older multi-label clas-
sification papers, which often analyze low-dimensional datasets, cross-validation is often
used. The choice for train-test splitting led us to rerun all the experiments for the methods
we are comparing with. As a consequence we could only compare to methods that have an
implementation available online.

For some of the methods included in our comparison, we performed hyperparameter
optimization through a grid search, and for others, we used the default values included
in their implementation. In the cases where such optimization was performed, we created
an internal validation set to facilitate the process. The same strategy was used to perform
early stopping in the training process of the DeepMTP framework, so that we eliminate any
chance of information leaking from the original test set.

Multi‑label classification

•	 Multilabel k Nearest Neighbours:

•	 Number of neighbours of each input instance to take into account (k): [1–10]
•	 Smoothing parameter (s): [0.5, 0.7, 1]

•	 Binary Relevance (support vector machine):

•	 Regularization parameter (C): [0.01, 0.1, 1, 10, 100]
•	 Kernel: [linear, rbf]

•	 Binary Relevance (Multilayer Perceptron):

•	 Learning rate: [0.001, 0.01, 0.1]
•	 Solver: [stochastic gradient decent, adam]
•	 hidden sizes: [(32), (64), (128), (256), (512)]

•	 Multilayer Perceptron:

•	 Learning rate: [0.001, 0.01, 0.1]
•	 Solver: [stochastic gradient decent, adam]
•	 hidden sizes: [(32), (64), (128), (256), (512), (32,32), (64,64), (128,128), (256,256),

(512,512)]

•	 Multioutput Decision Tree Classifier:

•	 Split criterion: [gini, random]
•	 Splitting strategy: [best, random]
•	 The minimum number of samples required to be at a leaf node: [1, 2, 3, 4, 5]

•	 Ensemble of Classifier Chains (ECC(support vector machine)):

•	 size of ensemble: 50
•	 Regularization parameter (C): [0.01, 0.1, 1, 10, 100]

679Machine Learning (2022) 111:651–684	

1 3

•	 Kernel: [linear, rbf]

Multivariate regression

•	 Support Vector Regressor/target:

•	 Regularization parameter (C): [0.01, 0.1, 1, 10, 100]

•	 Kernel Ridge Regressor/target:

•	 Regularization strength (a): [0.01, 0.1, 1, 10, 100]
•	 Gamma parameter: [0.01, 0.1, 1, 10, 100]
•	 kernel: rbf

•	 Multilayer Perceptron:

•	 Learning rate: [0.001, 0.01, 0.1]
•	 Solver: [stochastic gradient decent, adam]
•	 hidden sizes: [(32), (64), (128), (256), (512), (32,32), (64,64), (128,128), (256,256),

(512,512)]

•	 Multioutput Decision Tree Regressor:

•	 Split criterion: [mse, mae]
•	 Splitting strategy: [best, random]
•	 The minimum number of samples required to be at a leaf node: [1, 2, 3, 4, 5]

•	 Ensemble of Regressor Chains (ERC (support vector regressor)):

•	 Regularization parameter (C): [0.01, 0.1, 1, 10, 100]

Hierarchical multi‑label classification

•	 ML-GCN: used the provided default parameters

Matrix completion

Used the default parameters provided in Microsoft (2018) for the following methods:

•	 Matrix factorization approach by alternating least squares (MF-ALS)
•	 Fastai
•	 Riemannian Low-rank Matrix Completion (rlrmc)
•	 Wide & deep

Multi‑task learning

•	 majority voting: no parameters to tune
•	 single-target Resnet: used the default parameters

680	 Machine Learning (2022) 111:651–684

1 3

Dyadic prediction

•	 eBICT:

•	 number of trees: 200

Author Contributions  All authors contributed equally to this work.

Funding  This research received funding from the Flemish Government under the “Onderzoeksprogramma
Artificiële Intelligentie (AI) Vlaanderen” programme.

Availability of data and materials  The data used for the experiments are available online, see Sect. 6 for
more details.

Code availability  The code used to run the experiments can be found on github (https://​github.​ugent.​be/​dilia​
dis/​deepM​TP_​compa​risons). The implementation of deepMTP will also be uploaded to the same repository
in the near future.

Declarations 

 Conflict of interest  The authors declare that they have no confict of interest.

References

Baltruschat, I. M., Nickisch, H., Grass, M., Knopp, T., & Saalbach, A. (2019). Comparison of deep learning
approaches for multi-label chest X-ray classification. Scientific Reports, 9(1), 1–10.

Baumel, T., Nassour-Kassis, J., Cohen, R., Elhadad, M., & Elhadad, N. (2018). Multi-label classification of
patient notes a case study on ICD code assignment. In AAAI workshop on health intelligence.

Bielza, C., Li, G., & Larranaga, P. (2011). Multi-dimensional classification with Bayesian networks. Inter-
national Journal of Approximate Reasoning, 52(6), 705–727.

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., & Shah, R. (1993). Signature verification using a “Sia-
mese” time delay neural network. Advances in Neural Information Processing Systems, 6, 737–744.

Cerri, R., Barros, R. C., & De Carvalho, A. C. (2014). Hierarchical multi-label classification using local
neural networks. Journal of Computer and System Sciences, 80(1), 39–56.

Chen, G., Ye, D., Xing, Z., Chen, J., & Cambria, E. (2017). Ensemble application of convolutional and
recurrent neural networks for multi-label text categorization. In 2017 International joint conference
on neural networks (IJCNN) (pp. 2377–2383). IEEE.

Chen, H., Miao, S., Xu, D., Hager, G. D., & Harrison, A. P. (2019). Deep hierarchical multi-label classifica-
tion of chest X-ray images. In International conference on medical imaging with deep learning (pp.
109–120). PMLR.

Chen, K., & Salman, A. (2011). Extracting speaker-specific information with a regularized Siamese deep
network. In NIPS (vol. 201, pp. 298–306).

Chen, S. F., Chen, Y. C., Yeh, C. K., & Wang, Y. C. (2018). Order-free RNN with visual attention for multi-
label classification. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32).

Chen, Z. M., Wei, X. S., Wang, P., & Guo, Y. (2019). Multi-label image recognition with graph convolu-
tional networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion (pp. 5177–5186).

Chicco, D. (2021). Siamese neural networks: An overview. In Artificial neural networks (pp. 73–94).
Dacrema, M. F., Boglio, S., Cremonesi, P., & Jannach, D. (2021). A troubling analysis of reproducibility

and progress in recommender systems research. ACM Transactions on Information Systems (TOIS),
39(2), 1–49.

https://github.ugent.be/diliadis/deepMTP_comparisons
https://github.ugent.be/diliadis/deepMTP_comparisons

681Machine Learning (2022) 111:651–684	

1 3

Das, A., Yenala, H., Chinnakotla, M., & Shrivastava, M. (2016). Together we stand: Siamese networks
for similar question retrieval. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. 378–387).

De’Ath, G. (2002). Multivariate regression trees: A new technique for modeling species-environment
relationships. Ecology, 83(4), 1105–1117.

Deldjoo, Y., Dacrema, M. F., Constantin, M. G., Eghbal-Zadeh, H., Cereda, S., Schedl, M., et al. (2019).
Movie genome: Alleviating new item cold start in movie recommendation. User Modeling and
User-Adapted Interaction, 29(2), 291–343.

Dembczyński, K., Waegeman, W., Cheng, W., & Hüllermeier, E. (2010). Regret analysis for perfor-
mance metrics in multi-label classification: The case of Hamming and subset zero-one loss. In
Joint European conference on machine learning and knowledge discovery in databases (pp. 280–
295). Springer.

Dong, X., Yu, L., Wu, Z., Sun, Y., Yuan, L., & Zhang, F. (2017). A hybrid collaborative filtering model
with deep structure for recommender systems. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence (Vol. 31).

Du, J., & Xu, Y. (2017). Hierarchical deep neural network for multivariate regression. Pattern Recogni-
tion, 63, 149–157.

Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2010). The Pascal visual
object classes (VOC) challenge. International Journal of Computer Vision, 88(2), 303–338.

Frey, B. J., & Jojic, N. (2005). A comparison of algorithms for inference and learning in probabilis-
tic graphical models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(9),
1392–1416.

Fu, M., Qu, H., Yi, Z., Lu, L., & Liu, Y. (2018). A novel deep learning-based collaborative filtering
model for recommendation system. IEEE Transactions on Cybernetics, 49(3), 1084–1096.

Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., et al. (2012). Chembl: A large-
scale bioactivity database for drug discovery. Nucleic Acids Research, 40(D1), D1100–D1107.

Gong, Y., Jia, Y., Leung, T., Toshev, A., & Ioffe, S. (2013). Deep convolutional ranking for multilabel
image annotation. arXiv preprint arXiv:​1312.​4894.

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1). Cambridge: MIT
Press.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The week data
mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1), 10–18.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition (pp. 770–778).

He, X., Du, X., Wang, X., Tian, F., Tang, J., & Chua, T. S. (2018). Outer product-based neural collabo-
rative filtering. arXiv preprint arXiv:​1808.​03912.

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S. (2017). Neural collaborative filtering. In Pro-
ceedings of the 26th international conference on world wide web (pp. 173–182).

Hoffer, E., & Ailon, N. (2015). Deep metric learning using triplet network. In International workshop on
similarity-based pattern recognition (pp. 84–92). Springer.

Hua, Y., Mou, L., & Zhu, X. X. (2020). Relation network for multilabel aerial image classification. IEEE
Transactions on Geoscience and Remote Sensing, 58(7), 4558–4572.

Huang, W., Chen, E., Liu, Q., Chen, Y., Huang, Z., Liu, Y., Zhao, Z., Zhang, D., & Wang, S. (2019).
Hierarchical multi-label text classification: An attention-based recurrent network approach. In
Proceedings of the 28th ACM international conference on information and knowledge manage-
ment (pp. 1051–1060).

Huynh, D., & Elhamifar, E. (2020). A shared multi-attention framework for multi-label zero-shot learn-
ing. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp.
8776–8786).

Jain, P., Netrapalli, P., & Sanghavi, S. (2013). Low-rank matrix completion using alternating minimization.
In Proceedings of the forty-fifth annual ACM symposium on theory of computing (pp. 665–674).

Jia, B. B., & Zhang, M. L. (2020). Multi-dimensional classification via stacked dependency exploitation.
Science China Information Sciences, 63(12), 1–14.

Jin, B., Yang, H., Xiao, C., Zhang, P., Wei, X., & Wang, F. (2017). Multitask dyadic prediction and its
application in prediction of adverse drug-drug interaction. In Proceedings of the AAAI conference
on artificial intelligence (Vol. 31).

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., et al. (2021). Pubchem in 2021: New data
content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388–D1395.

Kimura, K., Sun, L., & Kudo, M. (2017). Mlc toolbox: A matlab/octave library for multi-label classifica-
tion. arXiv preprint arXiv:​1704.​02592.

http://arxiv.org/abs/1312.4894
http://arxiv.org/abs/1808.03912
http://arxiv.org/abs/1704.02592

682	 Machine Learning (2022) 111:651–684

1 3

Kumar, P., Grewal, M., & Srivastava, M. M. (2018). Boosted cascaded convents for multilabel classifi-
cation of thoracic diseases in chest radiographs. In International conference image analysis and
recognition (pp. 546–552). Springer.

Lafferty, J., Mccallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic models for
segmenting and labeling sequence data (pp. 282–289).

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In European conference on computer vision (pp.
740–755). Springer.

Liu, J., Chang, W. C., Wu, Y., & Yang, Y. (2017). Deep learning for extreme multi-label text classifica-
tion. In Proceedings of the 40th international ACM SIGIR conference on research and develop-
ment in information retrieval (pp. 115–124).

Liu, S., Chen, C., Lu, Y., Ouyang, F., & Wang, B. (2018). An interactive method to improve crowd-
sourced annotations. IEEE Transactions on Visualization and Computer Graphics, 25(1),
235–245.

Liu, S., Johns, E., & Davison, A. J. (2019). End-to-end multi-task learning with attention. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1871–1880).

Liu, X., Liu, W., Mei, T., & Ma, H. (2017). Provid: Progressive and multimodal vehicle reidentification
for large-scale urban surveillance. IEEE Transactions on Multimedia, 20(3), 645–658.

Liu, Y., Qiu, S., Zhang, P., Gong, P., Wang, F., Xue, G., & Ye, J. (2017). Computational drug discovery
with dyadic positive-unlabeled learning. In Proceedings of the 2017 SIAM international confer-
ence on data mining (pp. 45–53). SIAM.

Madjarov, G., Kocev, D., Gjorgjevikj, D., & Džeroski, S. (2012). An extensive experimental comparison
of methods for multi-label learning. Pattern Recognition, 45(9), 3084–3104.

Marelli, M., Menini, S., Baroni, M., Bentivogli, L., Bernardi, R., Zamparelli, R., et al. (2014). A sick cure
for the evaluation of compositional distributional semantic models. In Lrec (pp. 216–223). Reykjavik.

McCullagh, P., & Nelder, J. A. (2019). Generalized linear models. London: Routledge.
Melki, G., Cano, A., Kecman, V., & Ventura, S. (2017). Multi-target support vector regression via cor-

relation regressor chains. Information Sciences, 415, 53–69.
Menon, A. K., & Elkan, C. (2010). A log-linear model with latent features for dyadic prediction. In 2010

IEEE international conference on data mining (pp. 364–373). IEEE.
Menon, A. K., & Elkan, C. (2011). Link prediction via matrix factorization. In Joint European confer-

ence on machine learning and knowledge discovery in databases (pp. 437–452). Springer.
Microsoft (2018). recommenders. https://​github.​com/​micro​soft/​recom​mende​rs.
Mishra, A., Krishna Reddy, S., Mittal, A., & Murthy, H. A. (2018). A generative model for zero shot

learning using conditional variational autoencoders. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops (pp. 2188–2196).

Misra, I., Shrivastava, A., Gupta, A., & Hebert, M. (2016). Cross-stitch networks for multi-task learning.
In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3994–4003).

Mueller, J., & Thyagarajan, A. (2016). Siamese recurrent architectures for learning sentence similarity.
In Proceedings of the AAAI conference on artificial intelligence (Vol. 30).

Nam, J., Mencía, E. L., Kim, H. J., & Fürnkranz, J. (2017). Maximizing subset accuracy with recurrent
neural networks in multi-label classification. In Proceedings of the 31st international conference
on neural information processing systems (pp. 5419–5429).

Norouzi, M., Mikolov, T., Bengio, S., Singer, Y., Shlens, J., Frome, A., Corrado, G. S., & Dean, J. (2013).
Zero-shot learning by convex combination of semantic embeddings. arXiv preprint arXiv:​1312.​5650.

Pan, J., Liu, S., Sun, D., Zhang, J., Liu, Y., Ren, J., Li, Z., Tang, J., Lu, H., Tai, Y. W., et al. (2018).
Learning dual convolutional neural networks for low-level vision. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition (pp. 3070–3079).

Papagiannopoulou, C., Miralles, D. G., Demuzere, M., Verhoest, N. E., & Waegeman, W. (2018). Global
hydro-climatic biomes identified via multitask learning. Geoscientific Model Development, 11(10),
4139–4153.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-
learn: Machine learning in Python. The Journal of Machine Learning Research, 12, 2825–2830.

Pitt, M. A., Johnson, K., Hume, E., Kiesling, S., & Raymond, W. (2005). The buckeye corpus of conver-
sational speech: Labeling conventions and a test of transcriber reliability. Speech Communication,
45(1), 89–95.

Pliakos, K., & Vens, C. (2019). Network inference with ensembles of bi-clustering trees. BMC Bioinfor-
matics, 20(1), 1–12.

Pliakos, K., Vens, C., & Tsoumakas, G. (2019). Predicting drug-target interactions with multi-label classifi-
cation and label partitioning. IEEE/ACM Transactions on Computational Biology and Bioinformatics.

https://github.com/microsoft/recommenders
http://arxiv.org/abs/1312.5650

683Machine Learning (2022) 111:651–684	

1 3

Qi, D., & Roe, B. E. (2016). Household food waste: Multivariate regression and principal components anal-
ysis of awareness and attitudes among us consumers. PloS One, 11(7), e0159250.

Raj, A., Shah, N. A., Tiwari, A. K., & Martini, M. G. (2020). Multivariate regression-based convolutional
neural network model for fundus image quality assessment. IEEE Access, 8, 57810–57821.

Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2009). Classifier chains for multi-label classification. In
Joint European conference on machine learning and knowledge discovery in databases (pp. 254–
269). Springer.

Read, J., Reutemann, P., Pfahringer, B., & Holmes, G. (2016). Meka: A multi-label/multi-target extension to
weka. JMLR, 17, 1–5.

Rendle, S., Krichene, W., Zhang, L., & Anderson, J. (2020). Neural collaborative filtering vs. matrix factori-
zation revisited. In Fourteenth ACM conference on recommender systems (pp. 240–248).

Rifaioglu, A. S., Nalbat, E., Atalay, V., Martin, M. J., Cetin-Atalay, R., & Doğan, T. (2020). Deepscreen:
High performance drug-target interaction prediction with convolutional neural networks using 2-d
structural compound representations. Chemical Science, 11(9), 2531–2557.

Rokach, L., Schclar, A., & Itach, E. (2014). Ensemble methods for multi-label classification. Expert Systems
with Applications, 41(16), 7507–7523.

Romera-Paredes, B., & Torr, P. (2015). An embarrassingly simple approach to zero-shot learning. In Inter-
national conference on machine learning (pp. 2152–2161). PMLR.

Ryoo, M., Kim, K., & Yang, H. (2018). Extreme low resolution activity recognition with multi-Siamese
embedding learning. In Proceedings of the AAAI conference on artificial intelligence (Vol. 32).

Schäfer, D., & Hüllermeier, E. (2015). Dyad ranking using a bilinear Plackett–Luce model. In Joint Euro-
pean conference on machine learning and knowledge discovery in databases (pp. 227–242). Springer.

Schreiber, J., Durham, T., Bilmes, J., & Noble, W. S. (2020). Avocado: A multi-scale deep tensor factoriza-
tion method learns a latent representation of the human epigenome. Genome Biology, 21(1), 1–18.

Sener, O., & Koltun, V. (2018). Multi-task learning as multi-objective optimization. In Bengio, S., Wallach,
H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (Eds.), Advances in neural informa-
tion processing systems (Vol. 31). Curran Associates, Inc. https://​proce​edings.​neuri​ps.​cc/​paper/​2018/​
file/​432ac​a3a1e​345e3​39f35​a30c8​f65ed​ce-​Paper.​pdf

Shan, H., & Banerjee, A. (2010). Generalized probabilistic matrix factorizations for collaborative filtering.
In 2010 IEEE international conference on data mining (pp. 1025–1030). IEEE.

Shao, J., & Qian, Y. (2019). Three convolutional neural network models for facial expression recognition in
the wild. Neurocomputing, 355, 82–92.

Shatkay, H., Pan, F., Rzhetsky, A., & Wilbur, W. J. (2008). Multi-dimensional classification of biomedi-
cal text: Toward automated, practical provision of high-utility text to diverse users. Bioinformatics,
24(18), 2086–2093.

Strub, F., Gaudel, R., & Mary, J. (2016). Hybrid recommender system based on autoencoders. In Proceed-
ings of the 1st workshop on deep learning for recommender systems (pp. 11–16).

Szymański, P., & Kajdanowicz, T. (2017). A scikit-based Python environment for performing multi-label
classification. ArXiv e-prints.

Tsoumakas, G., & Katakis, I. (2007). Multi-label classification: An overview. International Journal of Data
Warehousing and Mining (IJDWM), 3(3), 1–13.

Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Random k-labelsets for multilabel classification. IEEE
Transactions on Knowledge and Data Engineering, 23(7), 1079–1089.

Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., & Vlahavas, I. (2011). Mulan: A JAVA library for
multi-label learning. The Journal of Machine Learning Research, 12, 2411–2414.

Van Peer, G., De Paepe, A., Stock, M., Anckaert, J., Volders, P. J., Vandesompele, J., De Baets, B., & Wae-
geman, W. (2017). miSTAR: miRNA target prediction through modeling quantitative and qualitative
mirna binding site information in a stacked model structure. Nucleic Acids Research, 45(7), e51–e51.

Waegeman, W., Dembczyński, K., & Hüllermeier, E. (2019). Multi-target prediction: A unifying view on
problems and methods. Data Mining and Knowledge Discovery, 33(2), 293–324.

Wang, D., Shi, L., & Heng, P. A. (2009). Automatic detection of breast cancers in mammograms using
structured support vector machines. Neurocomputing, 72(13–15), 3296–3302.

Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., & Xu, W. (2016). CNN-RNN: A unified framework for
multi-label image classification. In Proceedings of the IEEE conference on computer vision and pat-
tern recognition (pp. 2285–2294).

Wang, L., Li, Y., Huang, J., & Lazebnik, S. (2018). Learning two-branch neural networks for image-text
matching tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(2), 394–407.

Wang, X., He, X., Wang, M., Feng, F., & Chua, T. S. (2019). Neural graph collaborative filtering. In Pro-
ceedings of the 42nd international ACM SIGIR conference on research and development in informa-
tion retrieval (pp. 165–174).

https://proceedings.neurips.cc/paper/2018/file/432aca3a1e345e339f35a30c8f65edce-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/432aca3a1e345e339f35a30c8f65edce-Paper.pdf

684	 Machine Learning (2022) 111:651–684

1 3

Wehrmann, J., Cerri, R., & Barros, R. (2018). Hierarchical multi-label classification networks. In Interna-
tional conference on machine learning (pp. 5075–5084). PMLR.

Wei, J., He, J., Chen, K., Zhou, Y., & Tang, Z. (2017). Collaborative filtering and deep learning based rec-
ommendation system for cold start items. Expert Systems with Applications, 69, 29–39.

Wei, S., Zheng, X., Chen, D., & Chen, C. (2016). A hybrid approach for movie recommendation via tags
and ratings. Electronic Commerce Research and Applications, 18, 83–94.

Wei, Y., Xia, W., Lin, M., Huang, J., Ni, B., Dong, J., et al. (2015). Hcp: A flexible CNN framework for
multi-label image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence,
38(9), 1901–1907.

Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., & Woolsey, J.
(2006). DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic
Acids Research, 34(suppl_1), D668–D672.

Wu, X., Shi, B., Dong, Y., Huang, C., & Chawla, N. (2018). Neural tensor factorization. arXiv preprint
arXiv:​1802.​04416.

Wu, X., Shi, B., Dong, Y., Huang, C., & Chawla, N. V. (2019). Neural tensor factorization for temporal
interaction learning. In Proceedings of the Twelfth ACM international conference on web search and
data mining (pp. 537–545).

Xu, S., An, X., Qiao, X., Zhu, L., & Li, L. (2013). Multi-output least-squares support vector regression
machines. Pattern Recognition Letters, 34(9), 1078–1084.

Yan, Z., Liu, W., Wen, S., & Yang, Y. (2019). Multi-label image classification by feature attention network.
IEEE Access, 7, 98005–98013.

Yeh, C. K., Wu, W. C., Ko, W. J., & Wang, Y. C. F. (2017). Learning deep latent space for multi-label clas-
sification. In Proceedings of the AAAI conference on artificial intelligence (Vol. 31).

Yi, D., Lei, Z., Liao, S., & Li, S. Z. (2014). Deep metric learning for person re-identification. In 2014 22nd
international conference on pattern recognition (pp. 34–39). IEEE.

Yih, W. t., Toutanova, K., Platt, J. C., & Meek, C. (2011). Learning discriminative projections for text simi-
larity measures. In Proceedings of the fifteenth conference on computational natural language learn-
ing (pp. 247–256).

Yu, Y., Pedrycz, W., & Miao, D. (2014). Multi-label classification by exploiting label correlations. Expert
Systems with Applications, 41(6), 2989–3004.

Zhang, L., Shah, S. K., & Kakadiaris, I. A. (2017). Hierarchical multi-label classification using fully asso-
ciative ensemble learning. Pattern Recognition, 70, 89–103.

Zhang, M. L., & Zhou, Z. H. (2007). Ml-knn: A lazy learning approach to multi-label learning. Pattern rec-
ognition, 40(7), 2038–2048.

Zhang, S. X., & Gales, M. J. (2011). Structured support vector machines for noise robust continuous speech
recognition. In Twelfth annual conference of the international speech communication association.

Zhang, W., Yan, J., Wang, X., & Zha, H. (2018). Deep extreme multi-label learning. In Proceedings of the
2018 ACM on international conference on multimedia retrieval (pp. 100–107).

Zhao, L., Lu, Z., Pan, S. J., Yang, Q., & Xu, W. (2016). Matrix factorization+ for movie recommendation.
In IJCAI (pp. 3945–3951).

Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., & Torr, P. H. (2015).
Conditional random fields as recurrent neural networks. In Proceedings of the IEEE international
conference on computer vision (pp. 1529–1537).

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1802.04416

	Multi-target prediction for dummies using two-branch neural networks
	Abstract
	1 Introduction
	2 Towards a rule-based system for MTP problem setting selection
	2.1 The MTP prediction framework
	2.2 The rule-based system

	3 From real-world problems to MTP problem settings
	3.1 Multi-label classification
	3.2 Dyadic prediction
	3.3 Matrix completion
	3.4 Multi-task learning

	4 A two-branch neural network architecture for MTP
	5 Related work
	6 Experimental results on various MTP problems
	6.1 Multi-label classification
	6.2 Multivariate regression
	6.3 Hierarchical multi-label classification
	6.4 Matrix completion
	6.5 Multi-task learning
	6.6 Dyadic prediction

	7 Conclusions and future work
	References

