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Abstract
Probabilistic model checking has been developed for verifying systems that have stochastic 
and nondeterministic behavior. Given a probabilistic system, a probabilistic model checker 
takes a property and checks whether or not the property holds in that system. For this rea-
son, probabilistic model checking provide rigorous guarantees. So far, however, probabil-
istic model checking has focused on propositional models where a state is represented by 
a symbol. On the other hand, it is commonly required to make relational abstractions in 
planning and reinforcement learning. Various frameworks handle relational domains, for 
instance, STRIPS planning and relational Markov Decision Processes. Using propositional 
model checking in relational settings requires one to ground the model, which leads to the 
well known state explosion problem and intractability. We present pCTL-REBEL, a lifted 
model checking approach for verifying pCTL properties of relational MDPs. It extends 
REBEL, a relational model-based reinforcement learning technique, toward relational pCTL 
model checking. PCTL-REBEL is lifted, which means that rather than grounding, the model 
exploits symmetries to reason about a group of objects as a whole at the relational level. 
Theoretically, we show that pCTL model checking is decidable for relational MDPs that 
have a possibly infinite domain, provided that the states have a bounded size. Practically, we 
contribute algorithms and an implementation of lifted relational model checking, and we 
show that the lifted approach improves the scalability of the model checking approach.

Keywords Model checking · Probabilistic computation tree logic (pCTL) · First-order 
logic · Lifted inference · Relational MDPs

1 Introduction

Probabilistic model checking aims at deciding whether a stochastic model satisfies a given 
probabilistic property  (Baier and Katoen 2008; Forejt et  al. 2011). By doing so, it pro-
vides rigorous guarantees about the model. Markov Decision Processes (MDPs) and Prob-
abilistic Computational Tree Logic (pCTL) (Forejt et al. 2011; Kwiatkowska et al. 2011; 
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Dehnert et al. 2017) are standard formalisms for specifying the model and the properties, 
respectively. MDPs are commonly used for modeling sequential decision making prob-
lems where the actions have stochastic effects. PCTL is a temporal logic that expresses 
model properties over time and allows for probabilistic quantification. A property can be 
the machine gives a warning before shutting down with a probability higher than 0.95, or 
the probability is higher than 0.9 that the emergency power supply, after giving a warning, 
continues to function for at least 10 more minutes.

It is common in planning and reinforcement learning to make abstraction of the domain 
elements in order to compactly define models and speed up the computation. However, 
model checking methods most often operate on explicit-state MDPs  (Baier and Katoen 
2008) thus do not allow for such abstractions. This is undesirable since the number of 
states increases exponentially with the domain size, making it infeasible to explicitly trav-
erse the state space  (Slaney and Thiébaux 2001). In such large domains, it is impracti-
cal to apply model checking techniques as they lead to a state explosion  (Otterlo 2004). 
For instance, the well known blocks world has 501 states for 5 blocks but over 58 million 
states for only 10 blocks (Slaney and Thiébaux 2001). In this paper, we aim at mitigating 
such state explosions in probabilistic model checking by making relational abstractions and 
using lifted inference.

Lifting is the key to scalablility in relational domains (Kersting 2012; Van den Broeck 
et  al. 2011; de Salvo Braz et  al. 2007). It is also central to statistical relational AI (Sta-
rAI) (De Raedt et al. 2016). Lifting implies reasoning about a group of objects as a whole 
at the first-order level, and exploiting the shared relational structures and symmetries in the 
model. This is done by making abstraction of irrelevant details of the objects. As an illus-
tration, an object’s full identity (e.g. a block’s ID number) can be left out as long as it satis-
fies the property description (e.g. blue). There has been a significant interest in such rela-
tional representations in reinforcement learning and planning. For instance, Džeroski et al. 
(2001) introduced Relational Markov Decision Processes (RMDP), a first-order generaliza-
tion of MDPs that succinctly formulates relational models by implicitly defining states in 
terms of objects and relations (Džeroski et al. 2001; Otterlo 2004). RMDPs have been used 
in reinforcement learning and planning to compute first-order policies without explicitly 
constructing the underlying state space (Džeroski et al. 2001; Kersting et al. 2004; Wang 
et  al. 2008; Kersting and De Raedt 2004; Driessens and Džeroski 2004; Boutilier et  al. 
2001; Sanner and Boutilier 2009; Yoon et al. 2012). One especially interesting example is 
REBEL (Kersting et al. 2004), the RElational BELlman operator, which we will extend in 
this paper. REBEL is a model-based reinforcement learning technique for constructing an 
optimal policy in a given RMDP. It is also a lifted inference technique that alleviates state 
explosions.

Motivated by the success of temporal logics and MDPs in probabilistic model checking 
and in planning, we investigate whether it is possible to lift these approaches to RMDPs. 
We show that the answer is positive by introducing pCTL-REBEL, a new framework that 
augments REBEL (Kersting et al. 2004) with pCTL. More specifically, pCTL-REBEL is 
a relational model checking approach that checks relational pCTL formulae in RMDPs. 
In addition to mitigating state explosions, it is important to take one step further to inves-
tigate lifted probabilistic model checking for infinite models. Although model checking 
for infinite models is generally undecidable  (Gabbay 2003), a rich body of research has 
discussed the state-boundedness assumption that yields decidable verification of infinite 
systems  (Bagheri  Hariri et  al. 2013; Belardinelli et  al. 2011, 2012; De  Giacomo et  al. 
2012; Calvanese et al. 2018). These studies almost exclusively focus on non-probabilistic 
actions. Nevertheless, they provide great insight into relational model checking with pCTL 
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properties. We extend the work of Belardinelli et al. (2012) to the probabilistic setting to 
obtain the decidability of the model checking problem for a subclass of infinite MDPs.

The key contribution of this paper is twofold. First, we introduce a lifted model check-
ing algorithm, pCTL-REBEL, to mitigate the state explosion problem of checking rela-
tional MDPs. PCTL-REBEL is fully automated and provides a complete, lifted solution 
for relational model checking. In order to adapt to the model checking framework, pCTL-
REBEL introduces an alternative interpretation of REBEL (Kersting et al. 2004) in which 
a state value corresponds to the probability that a given formula is satisfied by executions 
starting from that state. Second, while model checking is generally undecidable for infi-
nite MDPs, we provide decidability results for a class of infinite MDPs under the state-
boundedness condition. In particular, we prove that a finite relational abstraction exists for 
RMDPs that have an infinitely large domain, and that checking the relational abstraction is 
equivalent to checking the infinite MDP. This means that strong guarantees for such infinite 
MDPs can be provided via lifted model checking, as implemented in pCTL-REBEL.

This paper is structured as follows. Section 2 provides an overview on basic notions of 
relational MDPs. Section 3 reviews basic notions of model checking and introduces rela-
tional pCTL. Section 3.3 defines the problem statement of this paper, that is, probabilistic 
model checking for relational MDPs. Section 4 defines a relational Bellman update opera-
tor (a generalization of REBEL (Kersting et al. 2004)) for relational value iteration. Based 
on Sect.  4, Sect.  5 introduces the main algorithm, pCTL-REBEL, for relational model 
checking. Section 6 provides theoretic results about obtaining decidability for a subclass 
of infinite MDPs. Section 7 reports on experimental evaluation. Section 8 discusses related 
work and Sect. 9 highlights the link between relational model checking and safe reinforce-
ment learning. Finally, Sect. 10 concludes the work.

2  Relational notions and relational MDPs

This section defines the basic notions of relational MDPs. These notions will be used in 
the remainder of this paper with the blocks world running example. We closely follow the 
notions of the standard first-order logic  (Nienhuys-Cheng and Wolf 1997) and relational 
MDPs (Kersting et al. 2004).

2.1  Relational logic

Relational logic generalizes propositional logic with variables such that a variable repre-
sents a set of constants. This section provides an overview of relational logic, following the 
notions of Nienhuys-Cheng and Wolf (1997).

An alphabet is a tuple Σ = ⟨R,D⟩ where R is a finite set of relation symbols and D 
is a possibly infinite set of constants. Each relation symbol � ∈ R has an arity m ≥ 0 . 
An atom �(��, ..., ��) is a relation symbol � followed by an m-tuple of terms �� . A term 
is a variable � or a constant � . A variable (resp. constant) is expressed by a string that 
starts with an upper (resp. lower) case letter. A conjunction is a set of atoms, which is 
implicitly assumed to be existentially quantified. A definite clause H ← B consists of an 
atom H and a conjunction B, stating that H is true if B is true. Given an expression � , 
vars(�) (resp. consts(�) , terms(�) ) denotes the set of all variables (resp. constants, terms) 
in � . An expression is called ground if it contains no variables. We shall make the 
unique name assumption, that states all constants are unequal, that is, �� ≠ �� holds for 
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different constants �� and �� . A substitution � is a set of bindings {��∕��, ..., ��∕��} that 
assigns terms �� to variables �� . A grounding substitution � assigns constants to vari-
ables in an expression � such that �� contains no variables.

We shall use the Object Identity subsumption framework (OI-subsumption)  (Ferilli 
et al. 2002), which means that any two terms in an expression are unequal, and the pair-
wise inequalities should be added. For instance, under OI-subsumption, the conjunction 
{��(�), ��(�, �)} denotes the expression {��(�) , ��(�, �) , � ≠ � , � ≠ � , � ≠ �} . For ease 
of writing, when the context is clear, we shall not write these inequalities explicitly. 
A conjunction � is OI-subsumed by conjunction � , denoted by � ⪯� � , if there exists a 
substitution � such that �𝜃 ⊆ � . Only substitutions that satisfy the inequality constraints 
are allowed.

A unifier � of two conjunctions � and � under OI-subsumption is a substitution such 
that �� = �� . For example, the conjunctions {��(�), ��(�, �)} and {��(�), ��(�, �)} have 
a unifier {�∕�, �∕�} . A maximally general specialization (mgs) of two conjunctions � 
and � under OI-subsumption is a conjunction that is OI-subsumed by � and � , and is 
not OI-subsumed by any other specializations. The mgs operation is not always unique 
under OI-subsumption. For example, the conjunctions {��(�)} and {��(�, �)} have maxi-
mally general specializations {��(�), ��(�, �)} and {��(�), ��(�, �)} that do not OI-sub-
sume one another.

The Herbrand base of an alphabet Σ = ⟨R,D⟩ , denoted by HBΣ , is the set of all 
ground atoms that can be constructed from Σ . A Herbrand interpretation s is a subset of 
HBΣ where all atoms in s are true and all others are false . The set of all Herbrand inter-
pretations determined by Σ is denoted by SΣ . We shall write S instead of SΣ when the 
context is clear. When the domain D is infinite, the set of all Herbrand interpretations SΣ 
must be infinite.

2.2  Relational MDP

Relational MDPs (RMDPs) generalize explicit-state MDPs in a twofold manner. First, 
RMDPs have structured states. More specifically, an RMDP state is represented by a con-
junction of ground atoms whereas an explicit state is represented by a single constant. 
Second, RMDPs allows variables in the state description. In consequence, a set of RMDP 
states can be represented by one single abstract state, which enables reasoning about a set 
of states as a whole. In this paper, an RMDP is a variant of the standard RMDP (Kersting 
et al. 2004; Boutilier et al. 2001) that varies by allowing the domain to be infinite. This sec-
tion formally defines RMDPs, following the notions of Kersting et al. (2004).

An RMDP is a tuple K = ⟨Σ,�⟩ where the alphabet Σ = ⟨R,D⟩ contains a set of rela-
tions and a domain, and � is a finite set of abstract transitions. The alphabet Σ determines 
the state space. A state s ∈ SΣ is a Herbrand interpretation. An abstract state s′ is then 
a conjunction of atoms, representing a set of states, denoted by s�Θ = {s ∈ SΣ|s ⪯� s

�}.

Example 1 Consider a blocks world with the alphabet Σ = ⟨R,D⟩ where the rela-
tions are R = {��∕�, ��∕�} and the domain is D = {�, �, �} , the abstract state 
s = {��(�), ��(�), ��(�, �)} represents the following six ground states.
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An abstract action � ∉ R is an atom for an action relation. An abstract transi-
tion � ∈ � (based on an abstract action � ) is a finite set of probabilistic transition rules 
� = {H1

p1∶�
←����������������� B, ...,Hn

pn∶�
←����������������� B} where B (resp. Hi ) is an abstract state, representing the 

precondition (resp. postcondition), and pi ∈ [0, 1] is the transition probability. These transi-
tion rules � denote a proper probability distribution over Hi , that is, 

∑n

i=1
pi = 1 . To ensure 

that all abstract transitions rely only on information in the current state, we assume that all 
variables in Hi are also in B, that is, vars(Hi) ⊆ vars(B).

Example 2 A blocks world is defined by an RMDP K = ⟨Σ,�⟩ where Σ = ⟨R,D⟩ , 
R = {��∕�, ��∕�} and � contains the following abstract transition ����(�, �, �).

The abstract action ����(�, �, �) expresses moving block � to block � from block � . The 
action succeeds with probability 0.9 and fails with probability 0.1. When the action fails, 
the state stays the same. A graphical illustration is in Fig. 1.

2.3  Grounding an RMDP

The semantics of an RMDP is defined at the ground level such that any RMDP (includ-
ing the infinite ones) implicitly defines an underlying ground MDP. This section formally 
defines the construction of the underlying ground MDP. In the end of this section, we will 
briefly discuss the decidability issue of infinite RMDPs.

Given an RMDP K = ⟨Σ,�⟩ , the underlying ground MDP is a tuple M = ⟨S,A, T⟩ where 
S is a set of ground states, A is a set of ground actions and T ∶ S × A × S → [0, 1] is a ground 
transition function. Every ground state s ∈ S is a Herbrand interpretation of Σ . A ground state 
s has a set of available ground actions, denoted by A(s) ⊆ A . These ground actions A(s) are 
defined by grounding the abstract actions. Formally,

sΘ = {{��(�),��(�),��(�,�)}, {��(�),��(�),��(�,�)},

{��(�),��(�),��(�,�)}, {��(�),��(�),��(�,�)},

{��(�),��(�),��(�,�)}, {��(�),��(�),��(�,�)}}

�����

{
��(�),��(�),��(�, �)

�.�∶����(�,�,�)
←������������������������������������������������������ ��(�),��(�),��(�, �)

��(�),��(�),��(�, �)
�.�∶����(�,�,�)
←������������������������������������������������������ ��(�),��(�),��(�, �)

A(s) ∶= {��|Hi

pi∶�
←��������������� B ∈ �, s ⪯� B}

Fig. 1  The abstract transition 
����(�, �, �) moves block � to 
block � from block � with prob-
ability 0.9. It fails to move the 
block with probability 0.1
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Similarly, given a ground state s and a ground action �� ∈ A(s) , the set of ground transi-
tions T(s, ��) are defined by grounding the abstract transitions. Formally,

After taking action �� in state s, the transition probability distribution over all ground 
states s� ∈ S is then

Since � is a proper abstract transition function, T must be a proper probability distribution, 
i.e. 

∑
s�∈S T(s, ��)(s

�) = 1.

Example 3 Consider a blocks world defined by an RMDP K = ⟨Σ,�⟩ where Σ = ⟨R,D⟩ , 
R = {��∕�, ��∕�} , D = {�, �, �, �, �} and � = {����(�, �, �)} (see Fig. 1). The RMDP K 
defines the underlying MDP M = ⟨S,A, T⟩ . One of the resulting ground transitions is as 
follows. Let a ground state be s = {��(�) , ��(�) , ��(�) , ��(�, �) , ��(�, �)} ∈ S , and let an 
action be ����(�, �, �) ∈ A(s) , the resulting next state must be s� = {��(�) , ��(�) , ��(�) , 
��(�, �) , ��(�, �)} ∈ S . By taking the ����(�, �, �) action in state s, the probability of 
reaching s′ is 0.9, and the probability of staying in s is 0.1, as illustrated in Fig. 2.

In general, for an RMDP that has an infinite domain, the underlying ground MDP has an 
infinitely large state space and action space. Hence, it is infeasible to explicitly traverse the 
state space. Moreover, such RMDPs have an unbounded branching behavior such that a state 
has infinitely many available actions, leading to infinitely many other states. For example, one 
can move a clear block to any of the (infinitely many) other clear blocks. Therefore, the model 
checking problem for infinite RMDPs is generally undecidable. To obtain decidability, we will 
later identify a special class of infinite RMDPs such that the branching behavior is bounded. 
More details are in Sect. 6.

3  Model checking for relational MDPs

This section defines the problem statement of this paper, namely the model checking prob-
lem of relational MDPs. More specifically, Sect. 3.1 reviews the fundamentals of model 
checking, Sect. 3.2 defines the relational pCTL language that will be used to specify prop-
erties throughout this paper, and Sect.  3.3 defines the main problem statement. Later, 
Sects. 4 and 5 will provide a solution for the problem in Sect. 3.3.

T(s, ��) ∶= {hi
pi∶��
←������������������� s|Hi

pi∶�
←��������������� B ∈ �, s ⪯� B, hi = (s�B�) ∪ Hi�}

T(s, ��)(s�) ∶= pi, where s
� = (s�B�) ∪ Hi�

Fig. 2  The ground action 
����(�, �, �) moves block � to 
block � from block � with prob-
ability 0.9. The action fails with 
probability 0.1
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3.1  Probabilistic reachability

This section defines the probabilistic reachability property, the most fundamental prop-
erty in model checking. The probabilistic reachability refers to the maximum probability 
of reaching a set of goal states from a given initial state. This property is required to define 
the relational pCTL language in Sect. 3.2. The content of this section is standard in model 
checking (Baier and Katoen 2008; Kwiatkowska et al. 2011) and is included to make this 
paper self-contained.

We first define paths in an MDP and their probability assignment. Given an MDP 
M = ⟨S,A, T⟩ , a path of length n is denoted by �n = s1

a1
��������→ s2

a2
��������→ ⋯

an−1
���������������→ sn where 

si ∈ S , ai ∈ A(si) and T(si, ai)(si+1) > 0 . Similarly, an infinite path is denoted by 
� = s1

a1
��������→ s2

a2
��������→ ⋯ . The set of all finite (resp. infinite) paths is denoted by FPathM 

(resp. IPathM ), and the set of all finite (resp. infinite) paths starting from state s is 
denoted by FPathM,s (resp. IPathM,s ). We denote all paths starting from s in M as 
PathM,s=FPathM,s ∪ IPathM,s . The i-th state of a path � is denoted by �(i) . The last state of 
a path � is denoted by last(�) . To project a set of paths PathM,s to a probability space, it is 
required to remove nondeterministic actions by a policy. A policy � ∶ FPathM × A → [0, 1] 
takes a finite path �n and specifies a probability distribution over all available actions 
A(last(�n)) . We write �(�n) to denote all possible actions selected by the policy, and we 
write �(�n, a) to denote the probability of action a being selected.

Definition 1 [cf. Forejt et  al. (2011)] Given an MDP M and a policy � , the probability 
P�
M
(�n) of a finite path �n = s1

a1
��������→ s2

a2
��������→ ⋯

an−1
���������������→ sn ∈ FPathM,s1

 is inductively defined by

where �k denotes �n ’s prefix of length k. Let C�n
∈ IPathM,s1

 be the set of all infinite paths 
that have a prefix �n (also known as the basic cylinder), the probability P�

M
(C�n

) is then 
defined as the probability of �n , i.e. P�

M
(C�n

) = P�
M
(�n).

After defining the probability for an MDP path, we can now formally define probabilis-
tic reachability.

Definition 2 [cf. Forejt et al. (2011)] Given an MDP M = ⟨S,A, T⟩ , an initial state s ∈ S 
and a set of goal states G ⊆ S , the set of all paths from s to G, denoted by PathM,s(G) , is 
formally defined as follows.

By following an optimal policy � , one can generate a path from s to G with a maximum 
probability. Any other policies in the policy space Π does not achieve a probability larger than 
the optimal policy � does. The maximum reachability is defined as follows.

In general, Pmax
M

(⋅) denotes the maximum reachability in M.

(1)
P�
M
(�1) = 1

P�
M
(�k) = P�

M
(�k−1)

∑

a∈�(�k−1)

�(�k−1, a)T(sk−1, a)(sk)

PathM,s(G) ∶= {� ∈ PathM,s|∃i ∈ ℕ, �(i) ∈ G}

(2)Pmax
M

(PathM,s(G)) ∶= sup
�∈Π

P�
M
(PathM,s(G))
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It is known that a deterministic, stationary �-optimal policy suffices to achieve the maxi-
mum probabilistic reachability in a finite MDP (Baier and Katoen 2008). This means the pol-
icy will simplify to a function � ∶ S → A that maps a path’s last state to a single action. For 
an infinite RMDP that has a finite abstraction (cf. Sect. 6), we assume there exists an optimal 
deterministic, stationary policy for the maximum probabilistic reachability.

3.2  Relational pCTL

This section introduces Relational Probabilistic Computational Tree Logic (relational pCTL), 
a temporal logic that describes system behavior over time and allows for probabilistic quanti-
fication. We will use relational pCTL to specify properties of an RMDP. Relational pCTL is a 
variant of the standard pCTL [cf. Forejt et al. (2011), Baier and Katoen (2008)] that varies by 
allowing variables in atoms and only allowing negations in front of atoms.

The syntax of the relational pCTL is as follows. A property is always specified by a state 
formula �.

where l is an atom (that can contain variables), � is a probability such that 0 ≤ � ≤ 1 , � ∈ ℕ 
is a step bound and ⋈ ∈ {≤,<,≥,>} . Here, relational pCTL generalizes the standard 
pCTL by letting l be a relational atom instead of a constant.

The semantics of the relational pCTL resembles the standard pCTL  (Baier and Katoen 
2008). A state either satisfies or violates a state formula � , resulting in a boolean evaluation 
for each state. The � operator stands for next, and the � stands for until. A path formula �� is 
satisfied if � is satisfied in the next state; �1�

≤��2 is satisfied if �2 is satisfied within � steps 
and �1 holds before then; �1��2 is satisfied if �2 is eventually satisfied and �1 holds before 
then.

The semantics of the relational pCTL is defined at the ground level. Given an RMDP 
K = ⟨Σ,�⟩ that defines a ground MDP M = ⟨S,A, T⟩ , we say a ground state s ∈ S satisfies 
a state formula � , denoted by s ⊧ 𝜙 , if and only if there exists a grounding substitution � for 
all free variables in � such that s satisfies � under � , i.e. s ⊧ 𝜙 ⇔ ∃𝜃.s ⊧𝜃 𝜙 . All substitutions 
must respect OI-subsumption, i.e. any two terms ��, �� in a conjunction must be unequal. For-
mally, the pCTL satisfiability relation ⊧𝜃 is inductively defined as follows.

where

state formula � ∶∶= ���� | l | ¬l | � ∧ � | �
⋈�[�]

path formula � ∶∶= � � | � �≤� � | � � �

s ⊧𝜃 ����

s ⊧𝜃 l ⇔ s ⪯𝜃 l

s ⊧𝜃 ¬l ⇔ s 𝜃 l

s ⊧𝜃 𝜙1 ∧ 𝜙2 ⇔ s ⊧𝜃 𝜙1 ∧ s ⊧𝜃 𝜙2

s ⊧𝜃 𝜙1 ∨ 𝜙2 ⇔ s ⊧𝜃 𝜙1 ∨ s ⊧𝜃 𝜙2

s ⊧𝜃 �
⋈�[𝜓] ⇔ Pmax

M
({𝜌 ∈ PM,s|𝜌 ⊧ 𝜓}) ⋈ �
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With the aforementioned operators, additional operators can be defined as follows where � 
stands for eventually.

Example 4 Consider a formula � = ¬��(�) that states “there exists an unclear block � in the 
state”. The satisfiability relation s ⊧ 𝜙 can be rewritten as follows.

For the ground state s1 = {��(�)} , the above evaluates to false as no � exists for the satisfi-
ability relation. For another ground state s2 = {��(�), ��(�, �)} , the above evaluates to true 
with � = {�∕�}.

Example 5 Consider a formula � = �≥0.9[� ��(�)] that states “there exists a block � that can 
become clear in the next state with a probability ≥ 0.9”. The satisfiability relation s ⊧ 𝜙 can 
be rewritten as follows.

For the ground state s = {��(�) , ��(�, �)} , the above evaluates to true with � = {�∕�} as 
block � can be clear after taking the action ����(�, ��, �) where �� stands for floor.

It is assumed that the scope of OI-subsumption is within the conjunction. That is, 
no term inequalities are assumed across different conjunctions. For example, the for-
mula �≥0.7[� ��(�)] ∧ �≥0.95[� ��(�, �)] has two conjunctions, and term inequalities such 
as � = � or � ≠ � do not exist, but � ≠ � holds under OI-subsumption.

3.3  The relational model checking problem

This section defines the model checking problem for RMDPs, using the definition of 
RMDP (Sect. 2.2) and relational pCTL (Sect. 3.2). Later, Sects. 4 and 5 will illustrate 
techniques for solving this model checking problem.

Relational model checking resembles the standard model checking problem  (Baier 
and Katoen 2008). Given a model M and a pCTL formula � , relational model checking 
computes all states in M that satisfy � , denoted by SatM(�) . The significance of rela-
tional model checking is that it computes SatM(�) at a lifted level by using relational 
states to represent groups of underlying ground states. Hence, relational model checking 
finds a set of abstract states that represents SatM(�).

𝜌 ⊧ � 𝜙 ⇔ 𝜌(2) ⊧ 𝜙

𝜌 ⊧ 𝜙1 �
≤� 𝜙2 ⇔ ∃i≤k + 1.[𝜌(i) ⊧ 𝜙2 ∧ ∀j<i.𝜌(j) ⊧ 𝜙1]

𝜌 ⊧ 𝜙1 � 𝜙2 ⇔ ∃i∈ℕ.[𝜌(i) ⊧ 𝜙2 ∧ ∀j<i.𝜌(j) ⊧ 𝜙1]

����� ≡ ¬���� �≤� � ≡ ���� �≤� � � � ≡ ���� � �

s ⊧ ¬��(�)

⇔ ∃𝜃 ⋅ s ⊧𝜃 ¬��(�)

⇔ ∃𝜃 ⋅ s 𝜃 ��(�)

s ⊧ �≥0.9[� ��(�)]

⇔ ∃𝜃 ⋅ s ⊧𝜃 �≥0.9[� ��(�)]

⇔ ∃𝜃 ⋅ s ⊧𝜃 Pmax
M

({𝜌 ∈ PathM,s|𝜌(2) ⊧ ��(�)}) ≥ 0.9
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Definition 3 Given an RMDP K = ⟨Σ,�⟩ that defines the underlying MDP M = ⟨S,A, T⟩ 
and a relational pCTL formula � , the relational model checking problem is to determine all 
ground states SatM(𝜙) ⊆ S that satisfy � , i.e. SatM(𝜙) = {s ∈ S|s ⊧ 𝜙} . It does so by find-
ing a set of abstract states SatK(�) in K that represents SatM(�) . Formally,

In this work, we will solve the relational model checking problem of two types of 
RMDPs. The first type is the RMDPs that have a finite domain (i.e. finite RMDPs). 
The second type is a special class of RMDPs that have an infinite domain (i.e. infinite 
RMDPs).

We discuss the decidability of these two types of RMDPs. The model checking prob-
lem for a finite RMDP is decidable. This is because when the domain is finite, the state 
space is also finite, i.e. the underlying ground MDP is finite. One can thus enumerate all 
states and collect the states that satisfy the given property. In contrast, an infinite RMDP 
contains infinitely many states, which makes enumerating all states infeasible. In this 
case, we focus on a class of infinite RMDPs that have a finite abstraction. More details 
are given in Sect. 6.

4  PCTL relational Bellman operator

This section defines the pCTL relational Bellman operator (pCTL-REBEL), the essen-
tial building block for solving the relational model checking problem. Given a pCTL 
formula �

⋈p
[�] and an RMDP, pCTL-REBEL evaluates a function Vp ∶ S → [0, 1] 

that assigns a probability to each RMDP state. A probability Vp(s) represents the 
probability that state s satisfies the path formula � . If the probability is within the 
bound, i.e. Vp(s) ⋈ � , then state s satisfies �

⋈p
[�] and belongs to the solution set, i.e. 

s ∈ SatK(�⋈p[�]).
At this point, it is important to remark that PCTL-REBEL is a variant of REBEL, but 

does not consider a reward structure. Indeed, REBEL  (Kersting et  al. 2004) is a model-
based relational reinforcement learning technique that operates on a reward structure 
and computes an optimal policy for reaching a set of goal states, which can be seen as 
a reward-based reachability property. However, since we do not consider a reward struc-
ture and are interested in probabilistic properties, an alternative interpretation of REBEL 
is required. Section 4.1 introduces an alternative interpretation of the relational Bellman 
operator. Based on which, Sects. 4.2–4.4 respectively describe in detail the three compo-
nents of pCTL-REBEL. Section 4.5 then gives an illustration of pCTL-REBEL with an 
example.

4.1  PCTL relational Bellman operator

Given an RMDP and a pCTL formula �
⋈�[�] , the task of pCTL-REBEL is to compute a 

state probability function Vp ∶ S → [0, 1] that assigns a probability to each state. Similar to 
the original REBEL, pCTL-REBEL takes an initial state probability function Vp

0
 and itera-

tively computes Vp

1
,V

p

2
 , etc for a number of steps, depending on the given formula. When 

the formula has a step bound � , then Then pCTL-REBEL is applied for � times.1 When the 

s ∈ SatM(�) ⇔ ∃s� ∈ SatK(�).s ⪯� s
�

1 A step bound is commonly called a finite horizon in AI.
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formula is unbounded, pCTL-REBEL is applied for arbitrarily many times until the prob-
abilities converge.

The state probability function Vp is similar to REBEL’s state value function V but inter-
prets state values as probabilities rather than as expected rewards. In a similar way, the 
state-action probability function Qp is related to REBEL’s Q function but interprets state-
action values as probabilities. More details will be given later. In order to maintain the con-
nection to the original REBEL and to leave room for extending the present model checking 
approach to incorporate rewards, we use the same notation V and Q for these functions as 
in REBEL. For clarification, we add a superscript p to denote that Vp and Qp interpret val-
ues as probabilities. We now formally define these functions and the pCTL relational Bell-
man operator, following the notations of Kersting et al. (2004).

Definition 4 [cf. Kersting et al. (2004)] A state probability function Vp ∶ S → [0, 1] is an 
ordered set of Vp-rules of the form of c ← B where B is an abstract state and c ∈ [0, 1] , rep-
resenting the probability of reaching a goal state from B. The value Vp(s) of a ground state 
s is assigned by the first rule that subsumes s, i.e. s ⪯� B.

Given an abstract goal state G, the initial state probability function Vp

0
 is defined as

The first rule expresses that any ground state subsumed by the goal state G, by definition, 
satisfies G with probability 1. The second rule expresses that any other states that are not 
captured by the first rule satisfy G with probability 0. The rule of 0 ← ∅ ensures that all 
states are assigned a value. Hence, it is often the last Vp-rule to capture the states that are 
not captured by any previous rules.

Definition 5 [cf.  Kersting et  al. (2004)] A state-action probability function 
Qp ∶ S × A → [0, 1] is an ordered set of Qp-rules of the form of c ∶ A ← B where A is an 
abstract action and B is an abstract state, representing the probability of reaching a goal 
state when A is taken in B. The value Qp(s, a) of a ground state s and an action a is assigned 
by the first rule that subsumes s and a, i.e. s ⪯� B and a ⪯� A.

The pCTL-REBEL operator is listed in Eq. (3). By iteratively applying pCTL-REBEL, 
we compute the state probability functions Vp

1
,V

p

2
 , etc. Notice that pCTL-REBEL is a spe-

cial case of the original REBEL that sets the discount factor to 1, has no reward struc-
ture, and connects a single reward 1 to the target condition.2 As a result, all Vp values are 
interpreted as probabilities in [0, 1]. This alternative interpretation allows to capture the 
probability that a formula is satisfied, which is essential for adapting the original REBEL 
framework into a model checking setting.

1.0 ← G

0 ← ∅

2 Our work addresses a special case of relational model-based reinforcement learning. More details will be 
given in Sect. 9.
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PCTL-REBEL [Eq.  (3)] is implemented by OneIteration (Algorithm 1). This algo-
rithm makes use of the following three components. 

①  Regression (Algorithm 2): Deriving the abstract states s in Vp

t+1

②  QpRules (Algorithm 3): Computing Qp

t+1
(s, a) for all actions a ∈ A(s)

③  VpRules (Algorithm 4): Updating Vp

t+1
 by maximizing over Qp

t+1
(s, a).

 These three components modify the algorithms of Kersting et al. (2004) to provide sup-
port to pCTL operators. The modified parts in the algorithms will be marked blue. We now 
describe these components in detail in Sects. 4.2–4.4, respectively. 

4.2  Logical regression

Logical regression is a standard technique that reasons about abstract transitions at the 
relational level (Boutilier et al. 2001; Kersting et al. 2004; Sanner and Boutilier 2009). This 
technique is essential to scalability as it mitigates state explosions by operating on the rela-
tional state space instead of the underlying ground state space. Concretely, logical regres-
sion searches backwards the possible pre-states that can reach a given state after taking a 
number of transitions.

This section extends the standard logical regression to implement Eq. (3) ①. The task 
is to identify the pre-states that can reach a given state by taking one transition, which is 
related to computing pCTL formulae with a step bound 1. These formulae are of the form 
of [� ��] , [�≤���] or [�� �≤���] . These three formulae are different in terms of constraints. 
First, [�≤���] is a reachability property that does not impose any constraints. This formula 
is the basis for the other two formulae. Second, [� ��] imposes the constraint that “ �� must 
be reached after taking exactly one transition”. Finally, [�� �≤���] is a constrained reach-
ability property that imposes the constraint that “ �� must be reached by going through only 
the states where �� holds”.

Example 6 To illustrate logical regression, consider an abstract state {��(�, �)} and the fol-
lowing ������ transition rule (also shown in Fig. 1).

(3)V
p

t+1
(s)

⏟⏟⏟

1

=

3
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

max
a∈A(s)

∑

s�

T(s, a, s�)V
p

t (s
�)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2

= max
a∈A(s)

Qp
t+1(s, a)



3809Machine Learning (2022) 111:3797–3838 

1 3

By applying the substitution � = {�∕�, �∕�} to ������ , we obtain the following rule. This 
rules describes that {��(�, �)} can be reached from any ground state that is subsumed by 
{��(�), ��(�), ��(�, �)} after taking the action ����(�, �, �).

Logical regression can be applied multiple times. For example, by applying twice the 
������ transition rule, we obtain all abstract states that can reach {��(�, �)} within 2 steps, as 
shown in Fig. 3.

Logical regression is implemented in Regression (Algorithm  2) that identifies all 
states that can reach a goal state after taking one transition. Regression generalizes the 
WEAKESTPRE algorithm in REBEL (Kersting et al. 2004) in two ways (marked blue, line 
6–9). First, it provides support to until formulae [�� � ��] by ensuring that all pre-states 
satisfy �� . Second, it provides support to infinite RMDPs by filtering out the pre-states that 
exceed a given state bound b. More details will be given in Sect. 6.3.3 

������ ∶ ��(�),��(�),��(�, �)
�.�∶����(�,�,�)
←������������������������������������������������������ ��(�),��(�),��(�, �)

��(�, �)
�.�∶����(�,�,�)
←���������������������������������������������������� ��(�), ��(�), ��(�, �)

Fig. 3  The figure shows the 
derived paths by applying two 
logical regressions on {��(�, �)} 
with the �

move
1

 transition rule. 
The abstract states from left to 
right reach {��(�, �)} after 2, 1, 
and 0 steps respectively

3 The state bound b ∈ ℕ is for infinite RMDPs. More details in Sect. 6.
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4.3  Qp‑Rules generation

Given a state probability function Vp , this section computes Qp probabilities for state-action 
pairs (cf. Eq. (3) ②). Qp(s, a) denotes the probability that a formula is satisfied by a path 
that starts from s and has the first action a. Similar to the state probability function Vp , the 
Qp function is an ordered set of Qp-rules. These Qp-rules are an intermediate representation, 
from which we can compute the next state probability function (cf. Sect. 4.4).

Deriving a Qp function is complex for two reasons. First, we must consider all transi-
tion rules that indicate different action postconditions. For example, action ����∕3 has two 
possible outcomes, namely succeeding and failing. As could be expected, it is not sufficient 
to consider only the case where the action always succeeds as in Fig. 3. We must consider 
all transition rules in order to correctly calculate the Qp-rules. Second, an abstract action 
can diverge and produce multiple preconditions. For example, Fig. 3 shows three different 
preconditions are derived by applying different substitutions to the ������ transition. It is 
required to consider all these preconditions. Fortunately, to resolve these issues, we could 
follow the procedure provided by the original REBEL, with limited adaptions.

QpRules (Algorithm 3) implements the procedure of computing a set of Qp-rules (cf. 
Eq. (3) ②). The process is as the follows. First, for each transition rule and current states in 
V
p

t  , QpRules computes a set of partial rules (cf. line 2–5). This procedure results in multi-
ple sets of partial rules, and each set considers one single postcondition of the action. Then, 
we must combine these partial rule sets to get a complete Qp-rule set. This is done by uni-
fying the partial rules (cf. line 6–14). Finally, QpRules returns a set of complete Qp-rules.

QpRules modifies the QRULES algorithm in REBEL  (Kersting et  al. 2004) in 
two ways  (marked blue, line 4, 5 and 12). First, it provides support to the until formu-
lae [�� � ��] by passing an extra parameter �� to Algorithm 2 (cf. Sect. 4.2). Second, it 
achieves the probabilistic interpretation of the Bellman operator by discarding the reward 
component and setting the discount factor to 1. 
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4.4  Vp‑Rules generation

This section calculates the new state probability function Vp

t+1
 , given Qp

t+1 , by maximizing 
over the actions (cf. Eq. (3) ③). Recall that Qp

t+1 is an ordered set of Qp-rules of the form 
of qp ∶ A ← S . The task is to derive Vp

t+1
 , an ordered set of Vp-rules of the form of vp ← S.

Trivially, turning Qp
t+1 into Vp

t+1
 takes three steps. First, the Qp-rules must be sorted 

such that a rule connected to a high probability has a high priority as we are interested in 
the maximum probability [as defined by Eq. (2)]. Second, the redundant Qp-rules must be 
removed. A Qp-rule is redundant if it is subsumed by another Qp-rule that has a higher prior-
ity. Third, the remaining Qp-rules are turned into Vp-rules by removing the action in the rule.

VpRules (Algorithm 4) implements Eq. (3) ③. The process is as follows. First, the Qp

-rules are ordered decreasingly so that a state is always assigned a maximum probability 
(line 2). Second, to remove redundant Qp-rules, an absorbing rule is required when the 
formula has an absorbing goal in that no more transitions occur after the goal is reached. 
Hence, given an absorbing goal, any rule concerning transitions that start from the goal is 
redundant and should be removed. Concretely, an until formula [�� � ��] has an absorbing 
goal �� such that an execution stops once �� is reached. Hence, an absorbing rule 1.0 ← �� 
must be inserted to the beginning of the Qp-rules. On the other hand, a next formula [� ��] 
does not have an absorbing goal as it is possible to follow exactly one transition from �� 
to another state where �� may or may not hold. Therefore, no absorbing rules are inserted. 
Finally, redundant rules in the ordered set are removed (line 6–10).
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VpRules generalizes the VRULES algorithm in REBEL (Kersting et al. 2004) to handle 
non-absorbing next formulae [� ��] as the original REBEL considers only absorbing goals. 
The generalized part is marked blue (i.e. line 3–5).

4.5  PCTL‑REBEL illustration

This section illustrates pCTL-REBEL (cf. Eq. (3)), namely, taking a state probability func-
tion Vp

t  to compute the next state probability function Vp

t+1
 . Clearly, different pCTL formu-

lae require different numbers of iterations. That is, [� ��] requires one iteration, [�� �≤���] 
requires � iterations, and [�� � ��] requires an arbitrary number iterations to obtain an 
accurate enough approximation. For simplicity, we illustrate with path formulae (without 
probabilities) that require one iteration. Section 5 will cover the full pCTL language.

Formula 1 �1 = [� ��(�, �)] : find all states that reach {��(�, �)} after 1 step.
Formula 2 �2 = [��(�, �) �≤���(�, �)] : find all states that reach {��(�, �)} within 1 step 
by going through only the states where {��(�, �)} holds.

We consider the ����� transition in the blocks world (also in Fig. 1).

4.5.1  PCTL‑REBEL on Formula 1: [� ��(�, �)]

For the formula �1 = [� ��(�, �)] , the initial function Vp

0
 is

������ ∶ ��(�),��(�),��(�, �)
�.�∶����(�,�,�)
←������������������������������������������������������ ��(�),��(�),��(�, �)

������ ∶ ��(�),��(�),��(�, �)
�.�∶����(�,�,�)
←������������������������������������������������������ ��(�),��(�),��(�, �)
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1.0 ← ��(�, �).
0.0 ← ∅.

①Regression Given the initial state probability function Vp

0
 , to obtain all possible pre-

states, Regression is called with all combinations of transition rules and Vp-rules, e.g. 
Regression(������ , ∅ , ��(�, �)).4 This results in two sets of partial Qp-rules such that 
each set considers one outcome of the ���� action. The resulting partial Qp-rules are listed 
below. The ⟨1⋅⟩ rules correspond to the successful outcome (i.e. ������ ) and the ⟨2⋅⟩ rules 
correspond to the unsuccessful outcome (i.e. ������ ). Table 1 shows the the corresponding 
transitions and states. All partial Qp-rules respect OI-subsumption.

② QpRules To compute the Qp-rules, the two sets of partial Qp-rules must be combined. 
To do so, we consider all possible combinations of ⟨1⋅⟩ and ⟨2⋅⟩ . The resulting Qp-rules are 
listed as follows, along with how they are created. All rules respect OI-subsumption.

⟨1a⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �)

⟨1b⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨1c⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨1d⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨1e⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �)

⟨2a⟩ 0.1 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �)

⟨2b⟩ 0.1 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨2c⟩ 0.1 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨2d⟩ 0.1 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨2e⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �)

Table 1  Different combinations of transition rules and states result in different partial Qp-rules ⟨1a⟩–⟨2e⟩ . 
The states on the leftmost column comes from Vp

0

������ ������

��(�, �) ⟨1a⟩⟨1b⟩⟨1c⟩⟨1d⟩ ⟨2a⟩⟨2b⟩⟨2c⟩⟨2d⟩
∅ ⟨1e⟩ ⟨2e⟩

4 The second argument is ∅ as the � operator is not absorbing.
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 The Qp-rules must be ordered by their probabilities as above. The rules ⟨1⟩–⟨3⟩ are inter-
changeable as they have the same probability. Similarly, ⟨4⟩–⟨7⟩ and ⟨8⟩–⟨11⟩ are inter-
changeable, respectively.

③ VpRules Now we can derive the new Vp-rules by removing redundant Qp-rules and 
dropping the action components. The resulting Vp-rules are shown below where the num-
bering inherits the one of the Qp-rules. Rules ⟨5⟩-⟨7⟩ are redundant because they are sub-
sumed by ⟨1⟩-⟨3⟩ , respectively. Similarly, rules ⟨9⟩-⟨11⟩ are redundant as they are subsumed 
by ⟨1⟩–⟨3⟩ , respectively.

Given �1 = [� ��(�, �)] , and the initial state probability function Vp

0
 , we have applied 

pCTL-REBEL and obtained Vp

1
 , which assigns to all states a maximum probability of 

reaching ��(�, �) after exactly one step.

4.5.2  PCTL‑REBEL on Formula 2: [��(�, �) �≤���(�, �)]

For the formula �2 = [��(�, �) �≤���(�, �)] , the initial probability function Vp

0
 is

1.0 ← ��(�, �)

0.0 ← ∅

① Regression Given the initial state probability function Vp

0
 , to obtain all possible pre-

states, Regression is called with all combinations of transition rules and Vp-rules, e.g. 
Regression(������ , ��(�, �) , ��(�, �)) . This results in two sets of partial Qp-rules such 
that each set considers one outcome of the ���� action. We list some of the resulting par-
tial Qp-rules below. The ⟨1⋅⟩ rules correspond to the successful outcome (i.e. ������ ) and the 

⟨1⟩ 1.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1b⟩+⟨2b⟩
⟨2⟩ 1.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1c⟩+⟨2c⟩
⟨3⟩ 1.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1d⟩+⟨2d⟩
⟨4⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �) ⟨1a⟩+⟨2e⟩
⟨5⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1b⟩+⟨2e⟩
⟨6⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1c⟩+⟨2e⟩
⟨7⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1d⟩+⟨2e⟩
⟨8⟩ 0.1 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �) ⟨1e⟩+⟨2a⟩
⟨9⟩ 0.1 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1e⟩+⟨2b⟩
⟨10⟩ 0.1 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1e⟩+⟨2c⟩
⟨11⟩ 0.1 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1e⟩+⟨2d⟩
⟨12⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �) ⟨1e⟩+⟨2e⟩

⟨1⟩ 1.0 ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨2⟩ 1.0 ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨3⟩ 1.0 ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨4⟩ 0.9 ← ��(�), ��(�), ��(�, �)

⟨8⟩ 0.1 ← ��(�), ��(�), ��(�, �)

⟨12⟩ 0.0 ← ��(�), ��(�), ��(�, �)



3815Machine Learning (2022) 111:3797–3838 

1 3

⟨2⋅⟩ rules correspond to the unsuccessful outcome (i.e. ������ ). Table 2 shows the the cor-
responding transitions and states. All partial Qp-rules respect OI-subsumption.

② QpRules To compute the Qp-rules, the two sets of partial Qp-rules must be combined. 
To do so, we consider all possible combinations of ⟨1⋅⟩ and ⟨2⋅⟩ . Some of the resulting Qp

-rules are listed below, along with how they are created. All rules respect OI-subsumption.

The Qp-rules must be ordered by their probabilities as above.

⟨1a⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨1b⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨1c⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨1d⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⋯

⟨1l⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨1m⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �)

⟨1n⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨1o⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨2a⟩ 0.1 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨2b⟩ 0.1 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⋯

⟨2m⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �)

⟨2n⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨2o⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨1⟩ 1.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1c⟩+⟨2a⟩
⟨2⟩ 1.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1d⟩+⟨2b⟩
⋯

⟨10⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1a⟩+⟨2n⟩
⟨11⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1b⟩+⟨2o⟩
⋯

⟨33⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �) ⟨1m⟩+⟨2m⟩
⟨34⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1n⟩+⟨2n⟩
⟨35⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1o⟩+⟨2o⟩

Table 2  Different combinations 
of transition rules and states 
result in different partial Qp-rules 
⟨1a⟩–⟨2o⟩

The states on the leftmost column comes from Vp

0

������ ������

��(�, �) ⟨1a⟩-⟨1k⟩ ⟨2a⟩-⟨2k⟩
∅ ⟨1l⟩-⟨1o⟩ ⟨2l⟩-⟨2o⟩
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③ VpRules Now we can derive the new Vp-rules. Since [��(�, �)] is absorbing, the fol-
lowing absorbing rule must be inserted to the beginning of the Qp-rule set.

After removing redundant Qp-rules and dropping the action components in the rules, we 
obtain the resulting Vp-rules below. The numbering of the Vp-rules inherits the one of the 
Qp-rules. Most redundant rules are subsumed by the absorbing rule ⟨0⟩.

5  Main contribution: a relational model checker

This section introduces the main algorithm in this paper, the relational model checking 
algorithm, that solves the relational model checking problem (Sect. 3.3). Formally, given 
a pCTL formula � and an RMDP K, the relational model checker identifies the set SatK(�) 
of abstract states that represent all ground states that satisfy � . Since the relational model 
checker is based on PCTL-REBEL (Sect. 4), it operates at the relational level.

Different from Sect. 4 that computes one single iteration, this section allows for full rela-
tional pCTL formulae that requires multiple iterations and can be nested. It is standard prac-
tice to represent a nested pCTL formula as a parse tree (Baier and Katoen 2008). In a parse 
tree, each leaf node is an abstract state and each inner node contains exactly one operator.

Example 7 A nested relational pCTL formula example is as follows.

The nested formula ������� is complex at first sight, however, it can be represented as a 
parse tree in Fig. 4. A state s satisfies ������� if and only if s satisfies all the following three 

⟨0⟩ 1.0 ∶ � ← ��(�, �)

⟨0⟩ 1.0 ← ��(�, �)

⟨10⟩ 0.9 ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨11⟩ 0.9 ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨33⟩ 0.0 ← ��(�), ��(�), ��(�, �)

⟨34⟩ 0.0 ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨35⟩ 0.0 ← ��(�), ��(�), ��(�, �), ��(�, �)

������� =�≥�.�[��(�) �
≤�(��(�, �)∧�≥�.�[�≥�.�[� ��(�)] �≤��(�, �)])]

Fig. 4  The parse tree of ������� . Each inner node of the parse tree is annotated with a subformula �
i
 and 

handles one operator. �
1

 handles � , �
2

 handles �≤� , �
3

 handles ∧ and �
4

 handles �≤�
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conditions. (1) A path starting from s must reach {��(�, �)} within 4 steps with a prob-
ability greater than or equal to 0.5 by going through the states where {��(�)} holds. (2) 
Then, the path must reach {��(�, �)} within 2 steps with a probability greater than or equal 
to 0.8 by going through the states that satisfy �≥�.�[� ��(�)] . (3) The states that satisfy 
�≥�.�[� ��(�)] are the ones that can transition to {��(�)} with a probability greater than or 
equal to 0.9 after exactly one step.

PCTL-REBEL always use a parse tree to evaluate a given formula. A parse tree is recur-
sively evaluated upwards. That is, an inner node considers its child leaf nodes to evaluate a 
subformula �i , resulting in a set of states Sat(�i) . Then, the inner node folds the sub-tree so 
that its parent node can be activated. The final set of states Sat(�) is produced by the root. 
For example, in Fig. 4, an intermediate state set Sat(�i) is used to evaluate Sat(�i+1) . The 
state set Sat(�4) is returned as the solution.

Section 5.1 defines the pCTL-REBEL model checking algorithm, which is composed of 
3 mutually recursive algorithms. Then, Sect. 5.2 gives an overview of the properties of the 
model checking algorithm.

5.1  The pCTL‑REBEL model checking algorithm

The pCTL-REBEL model checking algorithm reforms the satisfiability relation ⊧𝜃 (cf. 
Sect. 3.2). Given an RMDP K and a pCTL formula � , the pCTL-REBEL model checker 
SatK(�) , i.e. all states in K that satisfy � . The model checker consists of 3 algorithms 
Check, CheckUntil and CheckNext that call one another recursively. In particular, 
Check is the main algorithm and is mutually recursive with the other two algorithms. 
CheckUntil handles the until formulae of the form of �

⋈p[�1

U≤k�
2

] . CheckNext 
handles the next formulae of the form of �

⋈p
[�

2

].
Given a formula � , Check (Algorithm 5) evaluates � in a recursive fashion as fol-

lows. If � is a relation atom l (resp. ¬l ), it returns a single abstract state {l} (resp. {¬l }) 
(line 1–2). If � is a conjunction of the form of �1 ∧ �2 , it first computes �1 and �2 sepa-
rately to get two sets of abstract states Sat1 and Sat2 (line 4–5). Then, for each possible 
pair of abstract states s1 ∈ Sat1 and s2 ∈ Sat2 , it collects all maximally general speciali-
zations mgs(s1, s2) (line 6). Since all mgs(s1, s2) are OI-subsumed by s1 and s2 by defini-
tion, they automatically satisfy �1 ∧ �2 . If � is a disjunction of the form of �1 ∨ �2 , it 
returns the union of the solutions to �1 and �2 (line 7–8). If � is an until formula, it calls 
CheckUntil (Algorithm 6) (line 9–10). If � is a next formula, it calls CheckNext 
(Algorithm 7) (line 11–12). 



3818 Machine Learning (2022) 111:3797–3838

1 3

CheckUntil (Algorithm 6) is mutually recursive with Check (Algorithm 5). It 
computes a formula of the form of �

⋈p[�1

U≤k�
2

] or �
⋈p[�1

U≤k�
2

] where �
1

 and �
2

 
are pCTL formulae. To begin the process, CheckUntil computes �

1

 and �
2

 sepa-
rately to get two sets of abstracts states (line 1–2). Then, it sets the step bound for 
pCTL-REBEL (line 3). When the given formula has a bounded �≤� operator, the step 
bound is � . Otherwise, the step bound is set to infinity and an arbitrary number of 
pCTL-REBEL iterations are applied until convergence (line 5–11). The convergence 
condition is twofold. First, the abstract states in the probability function do not change, 
i.e. states in Vp

t  and Vp

t−1
 are the same. Second, the state probabilities have converged 

with respect to a given threshold � , i.e. maxs∈Vp
t
|Vp

t (s) − V
p

t−1
(s)| < 𝜖 . Then, Check-

Until collects and returns the abstract states in Vp

t  that satisfy the given probability 
threshold ⋈ � (line 12–14). 
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CheckNext (Algorithm 7) is mutually recursive with Check (Algorithm 5). It com-
putes a formula of the form of � = �

⋈�[� ��] where �2 is another pCTL formula. Check-
Next is a similar but simpler than CheckUntil. It performs one single value iteration to 
obtain the probability function Vp

1
 (line 2–3). Then it collects and returns the abstract states 

in Vp

1
 that satisfy the given probability threshold ⋈ � (line 4–6). CheckNext needs only 

one iteration as it considers exactly one transition. 

5.2  Properties of PCTL‑REBEL

PCTL-REBEL is a relational model checking algorithm that finds all states that satisfy a 
given pCTL formula. We discuss the properties of pCTL-REBEL.

Lifted. instead of operating at the ground level, pCTL-REBEL performs lifted inference 
as both the formula and the states are specified at an abstract level using relational rep-
resentations. Using lifted inference allows pCTL-REBEL to exploit relational symme-
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tries in the model and make abstraction of the domain, hence mitigate the state explo-
sion problem. The lifted inference was discussed in detail in Sect. 4.
Sound for step-bounded pCTL formulae. PCTL-REBEL is sound for finite RMDPs 
(that have a finite domain) and any step-bounded pCTL formulae. PCTL-REBEL is 
not sound for indefinite-horizon formulae (e.g. � ), just like many other value iteration 
algorithms. This is because pCTL-REBEL uses a naive termination criterion with some 
arbitrary convergence threshold � (see CheckUntil, Algorithm  6). Although this 
naive termination criterion is not sound, it achieves precise approximation in practice. 
For further details, please refer to Haddad and Monmege (2014).
Complete. PCTL-REBEL is complete for finite RMDPs such that the state probability 
function Vp assigns a probability to all states. PCTL-REBEL captures the entire state 
space by using an ordered set of relational Vp-rules. Those states that are not captured by 
any other Vp-rules are guaranteed to be covered by the last Vp-rule 0 ← ∅ (see Sect. 4.1).

6  Relational model checking for infinite MDPs

It is clear that when the domain is finite, the model checking problem is decidable as 
one can enumerates all states in the model, as discussed in Sect. 3.3. However, when the 
domain is infinite, the state space is typically infinite, making enumerating all states infea-
sible. In this section, we obtain decidability for a special class of infinite RMDPs. We will 
prove that under the state-boundedness condition (Belardinelli et al. 2011), a finite abstrac-
tion of such RMDPs can be constructed checked by pCTL-REBEL. The main idea is to 
generate a finite abstraction that captures all relevant information of the underlying infinite 
RMDP with respect to a pCTL formula. Accordingly, checking the abstraction is equiva-
lent to checking the infinite RMDP. By checking the finite abstraction, the model checking 
problem becomes decidable. This section adopts the approach of Belardinelli et al. (2011) 
to construct finite abstractions of infinite RMDPs. Furthermore, we show that pCTL-
REBEL can naturally handle such abstractions as they are structurally similar to RMDPs.

Section 6.1 defines the state-boundedness condition and under which, the finite abstrac-
tion of an infinite RMDP. Section 6.2 proves that checking a pCTL formula � against the 
finite abstraction is equivalent to checking � against the corresponding infinite RMDP. 
Section 6.3 discusses properties of pCTL-REBEL when handling such infinite RMDPs.

6.1  Abstract MDP: a finite abstraction of an infinite RMDP

Given an infinite RMDP, the relational model checking problem is generally undecidable 
due to the possibly infinite domain. To obtain decidability, this section constructs a finite 
abstraction of a given infinite RMDP, called an abstract RMDP (ARMDP). The purpose of 
an ARMDP is to use a finite model to capture all relevant information about a pCTL for-
mula. An ARMDP must be constructed under the state-boundedness condition.

The state-boundedness condition states that any state concerns only a finite number of 
objects. For example, consider a blocks world that has infinitely many blocks and a table 
with a capacity b. An agent can take a block away or put a new block to the table, but no 
more than b blocks can be on the table at any moment. Hence, the state bound is b. Since 
any two states can describe totally different blocks, the model still contains infinitely many 
states. We say the blocks on the table are in the active domain. We now formally define 
active domain and state-boundedness.
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Definition 6 A bounded state sb is a finite subset of a ground state s in some RMDP, i.e. 
sb ⊆ s . The active domain of sb , denoted adom(sb) , is the set of all domain objects in sb.

An active domain adom(sb) is by definition finite as a bounded state sb is finite. A 
bounded state is similar to a ground state but concerns only a finite number of objects. 
That is, all atoms in sb are true and all the others are false.

Definition 7 Given an RMDP K = ⟨Σ,�⟩ , its underlying MDP M = ⟨S,A, T⟩ , a state 
bound b, and a starting state s0 such that |adom(s0)| ≤ b , an MDP Mb = ⟨Sb,Ab, Tb⟩ can be 
defined by including all states that are reachable from s0 and contain at most b constants. 
Formally, Mb = ⟨Sb,Ab, Tb⟩ is defined as

If b ∈ ℕ , then Mb is called state-bounded or b-bounded.

A b-bounded MDP Mb is uniquely defined by an RMDP and a state bound. Roughly 
speaking, Mb a sub-MDP of M that concerns at most b objects in any state.

Example 8 Consider a blocks world K = ⟨Σ,�⟩ with Σ = ⟨R,D⟩ where R = {��∕�, ��∕�} , 
D = {���|i ∈ ℕ} is infinite, and � contains the following rules (as in Fig. 1).

Given a state bound b, the RMDP K defines a b-bounded MDP Mb = ⟨Sb,Ab, Tb⟩ such that 
each bounded state sb ∈ Sb contains at most b blocks. We will use this blocks world exam-
ple throughout this section.

Having defined state-boundedness, let us now move on to constructing an abstract 
MDP (ARMDP). With respect to a pCTL formula, some domain objects in an MDP are 
irrelevant. For example, �≥�.�[� ��(�)] does not concern any particular blocks other than 
block � . By abstracting away irrelevant objects of a pCTL formula � , we can construct 
an ARMDP M� that captures all necessary information to check � . Concretely, to con-
struct an ARMDP, all �-relevant domain objects are preserved, and all other objects are 
abstracted using variables. A domain object is �-relevant if and only if it is in � or in a 
transition rule. Furthermore, if a formula � concerns a finite number of objects, the cor-
responding ARMDP M� is finite. In this paper, we assume all formulae contain at most b 
objects where b is the state bound.

Definition 8 For a b-bounded MDP Mb = ⟨Sb,Ab, Tb⟩ of an RMDP K = ⟨Σ,�⟩ and a rela-
tional pCTL formula � , a b-bounded abstract RMDP M� = ⟨S�,Σ,�,W⟩ is defined where

Sb ∶= {s | s ∈ S, |adom(s)| ≤ b}

Tb ∶= {h
p∶a
←������������� b ∈ T|h ∈ Sb, b ∈ Sb}

Ab ∶= {a|h
p∶a
←������������� b ∈ Tb}

������ ∶ ��(�),��(�),��(�, �)
�.�∶����(�,�,�)
←������������������������������������������������������ ��(�),��(�),��(�, �)

������ ∶ ��(�),��(�),��(�, �)
�.�∶����(�,�,�)
←������������������������������������������������������ ��(�),��(�),��(�, �)
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and W is a set of b − |consts(�) ∪ consts(�)| distinct variables. All terms in s� ∈ S� are 
from a finite set of terms

It is assumed that vars(�) ∈ W . It is assumed that states in S� are not syntactic variants, 
that is, they are not a variable renaming of one another.

An ARMDP is finite as only a finite number of terms are allowed in the state descrip-
tion. An ARMDP is b-bounded as each state s� ∈ S� contains at most b terms, i.e. 
|terms(s�)| ≤ b . Since an ARMDP state is b-bounded, it has bounded branching behavior 
such that the number of available actions in any state is finite. The finite state space of 
ARMDPs is crucial to obtaining decidability.

An ARMDP has a similar structure as an RMDP but has a more abstract state space. 
That is, unlike RMDPs, the state space of an ARMDP is not connected to an explicit 
domain as any ARMDP state concerns only �-relevant constants and variables. By replac-
ing the variables by domain constants, an ARMDP state can enumerate infinitely many 
ground states in the underlying RMDP.

Example 9 (Cont. Example  8) A b-bounded MDP Mb = ⟨Sb,Ab, Tb⟩ and the formula 
� = ��(�) defines an ARMDP M� = ⟨S�,Σ,�,W⟩ . A state sb ∈ Sb concerns at most 
b terms, namely {���, ���, ..., ���−�, �} . The abstract states s1 = {��(�)} ∈ S� and 
s2 = {��(���)} ∈ S� represent the set of all infinitely many ground states that have at least 
one clear block. These ground states can be enumerated by assigning domain objects to 
���.

This section has shown that given a state-bounded MDP and a pCTL formula, an finite 
abstraction can be constructed. Such abstraction is called an ARMDP. An ARMDP is simi-
lar to an RMDP but is state-bounded, finite, and captures only �-relevant information. The 
next section will show that checking an ARMDP is equivalent to checking the underlying 
model.

6.2  Decidable model checking for ARMDPs

This section proves the decidability of the model checking problem for a special class of 
infinite RMDPs, namely, the ARMDP, defined in Sect.  6.1. Decidability is obtained by 
proving that checking the ARMDP yields equivalent results as checking the underlying 
infinite, state-bounded MDP, namely, Theorem 1.

Theorem  1 For a b-bounded MDP Mb and its corresponding ARMDP M� based on a 
pCTL sentence �, checking � against M� is equivalent to checking � against Mb, formally,

S𝜙 = {s𝜙|∃s ∈ Sb. s ⪯𝜃 s𝜙,

consts(s𝜙) ⊆ consts(𝜙) ∪ consts(𝛥),

vars(s𝜙) ⊆ W}

terms(s�) ∶= W ∪ consts(�) ∪ consts(�)

Mb ⊧ 𝜙 ⇔ M𝜙 ⊧ 𝜙
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Theorem  1 is proven by using probabilistic bisimulation. Probabilistic bisimula-
tion is a standard model checking technique that compares two probabilistic transition 
systems (Baier and Katoen 2008). Given a pCTL formula � , if two states from different 
transition systems are probabilistic bisimilar, then their behaviors are indistinguishable. 
Hence, checking � in either system yields identical results. Theorem 1 extends the theorem 
by Belardinelli et al. (2011)[Theorem 2] for the probabilistic setting.5

We prove Theorem 1 in two steps. First, we define indistinguishable states (Definition 9) 
and probabilistic bisimulation (Definition 10). Second, we show that an ARMDP and its 
underlying state-bounded MDP actually define a probabilistic bisimulation (Propositions 1 
and 2).

Definition 9 Given the b-bounded MDP Mb = ⟨Sb,Ab, Tb⟩ of a RMDP K = ⟨Σ,�⟩ 
and a pCTL sentence � , consider two ground states s1 and s2 in Sb such that 
C1 = consts(s1) ⊂ D and C2 = consts(s2) ⊂ D . Let C be the set of all �-relevant domain 
objects C ∶= consts(𝜙) ∪ consts(𝛥) ⊆ C1 ∩ C2 . The two states s1 and s2 are called indistin-
guishable6 under C, if and only if s1 and s2 are renamings of one another under a bijection 
f ∶ C1⧵C ↦ C2⧵C . The bijection f renames �-irrelevant domain objects. Formally,

We abuse the notation and let f (s1) be the state obtained by renaming constants in s1.

Definition 9 has defined indistinguishable states under a pCTL formula � . Indistinguish-
able states are essentially renamings of one another and share the same properties with 
respect to a formula � , hence, they can be represented by one abstract state in an ARMDP. 
That is, an ARMDP state represents infinitely many indistinguishable states in the underly-
ing MDP.

Example 10 (Cont. Example  9) Consider a state-bounded MDP Mb = ⟨Sb,Ab, Tb⟩ 
with a state bound b = 2 , a pCTL formula � = ��(�) and two ground states 
s3 = {��(�), ��(�, �))} ∈ Sb and s4 = {��(�), ��(�, �))} ∈ Sb . States s3 and s4 are variable 
renamings of each other thus indistinguishable under � . They both express some block is 
on block � and can be represented by the abstract state s5 = {��(���), ��(���, �)}.

Now we must define probabilistic bisimulation.

Definition 10 [cf. Baier and Katoen (2008)] Consider a b-bounded MDP Mb = ⟨Sb,Ab, Tb⟩ , 
a pCTL formula � and the finite set C of �-relevant constants, R ⊆ Sb × Sb is a probabilis-
tic bisimulation if for any pair of states ⟨s1, s2⟩ ∈ R : 

1. s1 and s2 are indistinguishable under C, i.e. s1 ∼C s2
2. s1 and s2 have the identical probabilities of going to any other distinguishable states, i.e. 

∀a ∈ A ∶ T(s1, a)(s) = T(s2, a)(s) for each s ∈ S∕R

s1 ∼C s2 ⟺ f (s1) = s2

5 More specifically, as compared to their work, this paper uses RMDPs instead of artifact systems, MDPs 
instead of Kripke structures, ground states instead of databases, and probabilistic bisimulation instead of 
bisimulation.
6 Indistinguishable states are also commonly called isomorphic states.
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States s1 and s2 are called probabilistic bisimilar.
To prove Theorem 1, we must prove that M� and Mb indeed form a probabilistic bisimu-

lation. Propositions 1 and 2 will together prove Theorem 1, i.e. checking an ARMDP is 
equivalent to checking its underlying state-bounded MDP.

Proposition 1 For an ARMDP M� = ⟨S�,Σ,�,W⟩ based on a b-bounded MDP 
Mb = ⟨Sb,A,b Tb⟩ and a pCTL sentence � , if two states are indistinguishable, then they 
either both can fire a transition rule or both cannot fire a transition rule. Formally, for any 
transition rule of the form

if s1 ∼C s2 , then

for two indistinguishable substitutions �1 and �2.

Proposition 2 For an ARMDP M� = ⟨S�,Σ,�,W⟩ based on a b-bounded MDP 
Mb = ⟨Sb,Ab, Tb⟩ and a pCTL sentence � , if two states are indistinguishable, then they 
have the identical probabilities of going to any other distinguishable states. Formally, for 
any transition rule � ∈ � of the form

if s1 ∼C s2 , then they define two sets of ground transition rules T(s1, ��1) and T(s2, ��2) that 
share the same transition probabilities.

Propositions  1 and 2 have shown that the indistinguishable relation ∼C between an 
ARMDP and its underlying state-bounded MDP is a probabilistic bisimulation. ∼C is an 
equivalence relation such that two probabilistic bisimilar states exhibit identical behavior. 
In other words, the ARMDP and the underlying MDP denote a mutual, step-wise simula-
tion of indistinguishable states. With a similar reasoning as in Belardinelli et al. (2011), we 
conclude that the model checking problem for infinite, state-bounded MDPs is decidable as 
it can be done on its corresponding finite ARMDP.

6.3  PCTL‑REBEL for infinite MDPs

PCTL-REBEL can handle an infinite, state-bounded RMDP by reasoning about its finite 
abstraction. More formally, given an infinite RMDP with a step bound and a pCTL for-
mula, a finite ARMDP can be constructed and naturally checked by pCTL-REBEL. In 
fact, as an ARMDP is just like an RMDP that concerns at most b objects in a state (see 
Sect. 6.1), pCTL-REBEL requires only one adaption to restrict the state size. That is, all 

Hi

pi∶�
←��������������� B

s1 ⪯�1
B ⟺ s2 ⪯�2

B

{H1

p1∶�
←����������������� B, ...,Hn

pn∶�
←����������������� B}

T(s1, ��1) ∶= {h1,i
pi∶��1
←���������������������� s1|Hi

p∶�
←������������� B ∈ �, s1 ⪯�1

B,

h1,i = (s1�B�1) ∪ Hi�1}

T(s2, ��2) ∶= {h2,i
pi∶��2
←���������������������� s2|Hi

p∶�
←������������� B ∈ �, s2 ⪯�2

B,

h2,i = (s2�B�2) ∪ Hi�2}
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states that have more than b objects must be eliminated. The number of objects in a state 
bound is simply obtained by counting all variables and constants as OI-subsumption is 
imposed. The adaption of maintaining the state bound is implemented in Regression 
(Algorithm 2).

PCTL-REBEL for an infinite, state-bounded MDP is lifted and complete, just as like 
pCTL-REBEL for a finite RMDP (see Sect. 5.2). We discuss properties of pCTL-REBEL 
for state-bounded MDPs in detail.

Lifted. PCTL-REBEL checks a state-bounded, infinite RMDP that has a finite abstrac-
tion (namely, an ARMDP) at a lifted level. Specifically, pCTL-REBEL operates on the 
ARMDP that is bisimilar to the underlying ground MDP. Checking an ARMDP is the 
same as checking an RMDP, except that the state bound must be maintained.
Sound for step-bounded pCTL formulae. PCTL-REBEL is sound for step-bounded 
pCTL formulae in an ARMDP. This is a consequence of Theorem 1 that shows check-
ing an ARMDP yields exactly the same results as checking its underlying MDP. PCTL-
REBEL is not sound for indefinite-horizon formulae but it achieves precise approxima-
tion in practice.
Complete. PCTL-REBEL is complete for checking ARMDPs as all states are assigned 
a probability. PCTL-REBEL captures the entire state space by using an ordered set of 
relational Vp-rules.

7  Experiments

We aim to answer the following questions in this section. Q1 and Q2 focus on the benefits 
of pCTL-REBEL, and Q3-Q5 focus on the limitations of pCTL-REBEL.

Q1 What formulae can pCTL-REBEL check in practice?
Q2 How does pCTL-REBEL compare with state-of-the-art model checkers?
Q3 How well does pCTL-REBEL handle indefinite-horizon formulae?
Q4 How well does pCTL-REBEL handle a complex relational transition function?
Q5 What are the computational costs of different pCTL operators?

We implemented and validated an unoptimized pCTL-REBEL research prototype using 
SWI-Prolog 8.0.2, with the constraint handling rules library. Experiments were run on a 
2.4 GHz Intel i5 processor. We use the blocks world dataset7 and the box world dataset.8 
We compare pCTL-REBEL with the state-of-the-art model checkers PRISM (Kwiatkowska 
et al. 2011) and STORM (Dehnert et al. 2017).9 We set a time-out of 1800 s for all model 
checkers. PCTL-REBEL’s state bound is sometimes referred as number of blocks/cities so 
as to provide a direct comparison with PRISM and STORM that operate on ground models.

The blocks world and the box world datasets originate from IPPC-200810 and are 
originally specified in the ppddl language. STORM and PRISM operate on the converted 

7 https:// qcomp. org/ bench marks/# block sworld.
8 https:// qcomp. org/ bench marks/# boxwo rld.
9 The experiments will be made public once the paper is accepted.
10 http:// ippc- 2008. loria. fr/ wiki/ index. php/ Resul ts. html# Fully_ Obser vable_ Non- Deter minis tic_. 28FOND. 
29_ track_2.

https://qcomp.org/benchmarks/#blocksworld
https://qcomp.org/benchmarks/#boxworld
http://ippc-2008.loria.fr/wiki/index.php/Results.html#Fully_Observable_Non-Deterministic_.28FOND.29_track_2
http://ippc-2008.loria.fr/wiki/index.php/Results.html#Fully_Observable_Non-Deterministic_.28FOND.29_track_2
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prism-format files,11 and pCTL-REBEL operates on the converted prolog-format files.12 
We discard the reward structure in the model. The blocks world dataset is simplified to 
have the relations ��∕�, �����∕� and the action ����∕� that has a success probability of 
0.9. The box world dataset has the relations ���∕�, ��∕�, ���∕�, ���−�����∕� and the 
actions �����∕�, ����∕�, ������∕� . In the box world, ���(�, �) expresses a box is in a 
city, ��(�, �) expresses a box is on a truck, and ���(�, �) expresses a truck is in a city. An 
atom ���−�����(��, ��) expresses a road that directly connects �� and �� . A box can be 
loaded on ( ����(�, �) ) or unloaded from a truck ( ������(�, �) ). A truck can travel from a 
city to another ( �����(�, ��, ��) ). The ����∕� and ������∕� actions succeed with prob-
ability 0.9. The �����∕� action succeeds with probability 0.8.

7.1  Q1: What formulae can pCTL‑REBEL check in practice?

Although pCTL-REBEL can check any formulae of the pCTL language as discussed in 
Sect.  3.2, in practice, some formulae are more costly than others. This experiment aims 
at evaluating the computational costs of different pCTL formulae. Table  3 includes for-
mulae ranging from classic planning properties, i.e. reachability properties (Kersting et al. 
2004; Boutilier et  al. 2001; Sanner and Boutilier 2009), to more complex, nested pCTL 
properties, e.g. the following �������(i, j) formula. Recall that �������(4, 2) was discussed in 
Example 7, and its parse tree is in Fig. 4. Table 3 also includes a formula that has an indefi-
nite horizon, namely Property 5.

We now discuss Table 3 in detail. First, all formulae in Table 3 are checked against models 
that have infinitely many objects, which is possible only because pCTL-REBEL uses lifted 
inference. Second, pCTL-REBEL can handle classic planning tasks by formulating them 
as reachability formulae (Property 1, 2, 5, Table 3) or constrained reachability formulae 
(Property 3,6, Table 3). For example, Fig. 5 visualizes the solution to Property 2 in Table 3. 
Third, pCTL-REBEL can check, in an infinite model, formulae that have an infinite hori-
zon (Property 5, Table  3). This property cannot be evaluated by an explicit-state model 

�������(i, j) = �≥�.�[��(�)�
≤�(��(�, �)∧�≥�.�[�≥�.�[� ��(�)]�≤��(�, �)])]

Table 3  PCTL-REBEL can perform a range of pCTL properties in the infinite blocks and box worlds under 
a time-out of 1800 seconds

Kersting et al. (2004) reported a runtime of roughly 10 min for this task

Domain Property Formula Runtime (s)

Blocks Bounded reachability with det. actions �≥�.�[�
≤����(�, �)] 11

Blocks Bounded reachability �≥�.�[�
≤����(�, �)] 226

Blocks Bounded constrained reachability �≥�.�[��(�, �)�
≤���(�, �)] 7.1

Blocks Nested �������(3, 1) 1554
Box Unbounded reachability �≥�.�[� ���(��, �����)] 0.7
Box Bounded constrained reachability �≥�.�[���(��, �����)�

≤����(��, �����)] 0.365

11 The ppddl models are first converted to the jani format by the ppddl2jani tool (attached in the datasets), 
then converted to the prism format by ePMC (Hahn et al. 2014).
12 The ppddl models are translated to prolog models as PCTL-REBEL is implemented in prolog.
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checker as state space is infinite. Finally, pCTL-REBEL can handle nested formulae such 
as �������(i, j) (Property 4, Table  3). Under a time-out of 1800 seconds, pCTL-REBEL 
can compute �������(3, 1) , which is cheaper than computing �������(4, 2) . Nonetheless, 
Fig. 6 visualizes the results of �������(4, 2) by relaxing the time-out. More discussion about 
nested formulae will be in Q5.

7.2  Q2: How does pCTL‑REBEL compare with state‑of‑the‑art model checkers?

State-of-the-art model checkers STORM and PRISM do not operate on an RMDP as in Q1. 
They require the RMDP to be grounded, which leads to a state explosion. This experiment 

Fig. 5  The abstracts states that 
satisfy �≥�.�[�≤����(�, �)] . Any 
state subsumed by {��(�, �)} is a 
goal state thus has a value 1. The 
states that are further away from 
the upper-left corner require 
more successful actions to reach 
{��(�, �)} thus have a smaller 
probability

Fig. 6  Similar to Fig. 5, this 
illustrates the abstract states that 
satisfy �������(4, 2) in the blocks 
world
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evaluates how well STORM and PRISM handle such state explosions in practice. In par-
ticular, we show that pCTL-REBEL, by lifting, performs better in mitigating state explo-
sions in relational domains. While Q1 assumes that the given RMDP has an infinitely large 
domain, in order to compare pCTL-REBEL with STORM and PRISM, this section consid-
ers finite domains such that explicit-state models can be generated. Furthermore, we incre-
ment the domain size by 1 to track the trends in computation time for all model checkers.

The state explosion problem is illustrated in Fig.  7, showing the number of ground 
states  (Slaney and Thiébaux 2001) and the corresponding ground transitions13 grow 
much faster than the minimum number of abstract states.14 Even though all numbers grow 

Fig. 7  The blocks world stats. 
When the number of blocks 
grows, the number of ground 
states and the number of nonde-
terministic transitions explode 
more than the minimum number 
of abstract states

Fig. 8  The property 
�≥�.�[�

≤����(�, �)] of is checked 
by three model checkers. With 
a time-out of 1800 seconds, 
PRISM can handle at most 8 
blocks with the explicit engine, 
STORM can handle at most 9 
blocks with the sparse engine, 
and pCTL-REBEL can handle 
15 blocks

13 The number of ground transitions is obtained from the STORM model checker.
14 The minimum number of abstract states is the number of integer partitions that capture all rela-
tional structures. For example, for three blocks, there are three abstract states {��(�), ��(�), ��(�)} , 
{��(�), ��(�), ��(�, �)} and {��(�), ��(�, �), ��(�, �)}.
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exponentially, the minimum number of abstract states is the most resistant to the growth of 
the domain size.

We compare the scalability of the three model checkers (including 4 PRISM engines 
and 3 STORM engines) in the blocks world. We could essentially select any pCTL prop-
erty for the comparison. Nonetheless, for simplicity, we use a simple reachability property 
�≥�.�[�

≤����(�, �)] (Property 2, Table 3). We measure how the runtime grows with respect 
to the domain size, shown in Fig.  8. The results show that pCTL-REBEL is more scal-
able than any PRISM or STORM engine in relational domains. Under a time-out of 1800 
seconds, pCTL-REBEL can handle 15 blocks (6.6e13 ground states) whereas PRISM can 
handle at most 8 blocks (4.0e5 ground states) and STORM can handle at most 9 blocks 
(4.6e6 ground states).

We analyze Fig.  8 to compare lifting with other optimization techniques. Observe 
that Fig. 8 categorizes all engines in three groups: (1) relational model checking: pCTL-
REBEL, (2) symbolic model checking: PRISM’s mtbdd, sparse, hybrid engines and 
STORM’s dd, hybrid engines, and (3) explicit-state model checking: PRISM’s explicit 
engine and STORM’s sparse engine. Compared to pCTL-REBEL, not only the explicit-
state approaches but also the symbolic approaches are much less resilient to the growth of 
the domain size. Clearly, although symbolic model checking methods are known to be able 
to handle large domains, their ability of handling state explosions in relational domains is 
limited. Furthermore, unlike other engines, the runtime of pCTL-REBEL saturates when 
the domain grows to a certain extent. This phenomenon is a consequence of lifted infer-
ence, reflecting that the number of relational structures will eventually saturate.

7.3  Q3: How well does pCTL‑REBEL handle indefinite‑horizon formulae?

PCTL-REBEL suffers from runtime explosions when checking a formula that has an indef-
inite horizon. In specific, the runtime grows exponentially with respect to the horizon. This 

Fig. 9  The results obtained from checking the reachability property �≥�.�[� ��(�, �)] in the blocks world. a 
The runtime increases exponentially to the number of required iterations. Most of the runtime is taken by 
the value convergence stage. b The later iterations are more expensive than the earlier iterations
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experiment aims at analyzing the cause of the runtime explosion. We use the reachability 
property �≥�.�[� ��(�, �)] that has an indefinite horizon.

To analyze the cause of the runtime explosion, we split the iterations of checking an 
indefinite-horizon formula into two stages: (1) the state recognition stage and (2) the value 
convergence stage. In the state recognition stage, pCTL-REBEL identifies new satisfying 
states in each iteration. This stage ends when no more new satisfying states are found. In 
the value convergence stage, pCTL-REBEL does not discover new states, and only updates 
probabilities of all identified states until convergence. Notice that these two stages are just 
for analyzing purposes as pCTL-REBEL conducts exactly the same computation in all iter-
ations in both stages.

We show the runtime growth of �≥�.�[� ��(�, �)] in Fig. 9 with respect to the domain 
size. Fig. 9a shows the runtime explodes with respect to the number of required iterations, 
and illustrates that most of the runtime is taken by the value convergence stage. Moreover, 
Fig. 9b shows that within one checking process, later iterations are more expensive than 
earlier iterations. This means that although the job of the value convergence state is seem-
ingly easier than the state recognition stage, in practice, it takes more time. This extra com-
putation time comes from pCTL-REBEL’s attempts at identifying new states in the value 
convergence stage.

In summary, pCTL-REBEL suffers from a runtime explosion when handling indefinite 
formulae. The main cause is the redundant computation conducted in the value conver-
gence stage. That is, pCTL-REBEL performs the same computation without being aware 
of the two-stage nature of the model checking process. This problem can be mitigated by 
optimizing the algorithm so as to reduce the time taken by the second stage. The optimiza-
tion should benefit all indefinite-horizon formulae.

7.4  Q4: How well does pCTL‑REBEL handle a complex relational transition function?

The use of abstract actions is key to the scalability of RMDPs as it allows for reasoning about 
a large group of ground actions as a whole. Roughly speaking, the more ground actions an 
abstract action captures, the more scalable pCTL-REBEL can be. For example, the blocks 
world domain has a simple ���� abstract action (see Fig. 1) that captures countless ground 
actions. Therefore, pCTL-REBEL is very scalable to the growth of the domain size. How-
ever, it is common to have constraints on the action, which significantly harms scalability. An 
action constraint harms scalability by prohibiting certain substitutions for an abstract action. 
In other words, it forces the abstract action to depend on the true identity of some objects. 
Action constraints break relational structures and result in non-symmetric transition func-
tions. The resulting transition function consists of more rules and cannot be represented as 
compactly anymore. We call this constrained transition functions relationally complex.

The following example illustrates action constraints. Consider a box world domain 
where the action �����(�, ��, ��) is constrained by the underlying road map below.15 A 
truck � can drive from �� to �� only if ���−�����(��, ��) exists. 

15 The road networks are automatically generated by the box world dataset.
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can-drive(city0,city2).
can-drive(city0,city1).
can-drive(city0,city6).
can-drive(city1,city0).
can-drive(city1,city6).
can-drive(city1,city3).
can-drive(city1,city4).
can-drive(city1,city2).
can-drive(city1,city5).
can-drive(city2,city0).

can-drive(city2,city1).
can-drive(city2,city6).
can-drive(city3,city1).
can-drive(city3,city6).
can-drive(city3,city4).
can-drive(city3,city5).
can-drive(city4,city1).
can-drive(city4,city3).
can-drive(city4,city6).
can-drive(city4,city5).

can-drive(city5,city4).
can-drive(city5,city1).
can-drive(city5,city3).
can-drive(city6,city0).
can-drive(city6,city1).
can-drive(city6,city2).
can-drive(city6,city3).
can-drive(city6,city4).

This experiment examines how well pCTL-REBEL handles complex relational 
transition functions. We use the reachability property � = �≥�.�[� ���(��, �����)] and 
automatically generated road maps. Figure  10 shows the results that pCTL-REBEL 
can handle a road map containing at most 8 cities under a time-out of 1800 seconds. 
The runtime increases exponentially with respect to the size of the road network. 
Recall that without a road network, it takes only 0.7 seconds to check � (see Property 
5, Table 3). Since the road network makes the model dynamics more complex, more 
transition rules are required, resulting in runtime explosions. In short, pCTL-REBEL 
works the best when the dynamics of the objects is simple, e.g. in the blocks world or 
in the box world without a road map.

Fig. 10  The results obtained from checking the reachability property �≥�.�[� ���(��, �����)] in the box 
world. The runtime increases exponentially when the transition structure becomes more complex
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7.5  Q5: What are the computational costs of different pCTL operators?

It is crucial to know what kind of formulae pCTL-REBEL can handle efficiently when 
designing properties for a model. This experiment aims at giving insight into how dif-
ferent factors affect pCTL-REBEL’s performance.

Some path operators are more costly than others. e.g. the � operator is the cheap-
est since it requires only one iteration. The reachability operator � is generally more 
expensive than the constrained reachability operator � since � is a stricter operator that 
prunes out more states. For example, checking �≤�.�[�≤� ��(�, �)] (18.494 seconds) is 
more costly than checking �≤�.�[��(�, �) �≤� ��(�, �)] (0.733 seconds). A nested formula 
is more costly than a flat formula since it requires several recursive checking processes.

The formula structure also influences runtime. Specifically, changing an inner step 
bound has a larger impact than changing an outer step bound. Taking the formula 
�������(i, j) (defined in Q1) for example, the parameters � and � are both step bounds for 
� formulae, but � is attached to an outer subformula and � is attached to the inner sub-
formula. Hence, the total runtime is more sensitive to the change in � than to the change 
in � , as shown in Fig.  11. The cause of this difference is that the inner formulae are 
computed before the outer formulae. By changing an inner step bound, the number of 
satisfying states for the inner subformula changes, which directly influence the overhead 
of computing the outer subformulae.

8  Related work

We have introduced pCTL-REBEL, a relational model checking technique that reasons 
at the relational level and mitigates the state explosion problem in relational MDPs. 
PCTL-REBEL extends existing frameworks. First, pCTL-REBEL extends pCTL model 
checking with relational representations. As far as the authors know, pCTL-REBEL is 
the first relational technique for pCTL model checking. Second, pCTL-REBEL extends 
the decidability results of infinite, state-bounded MDPs to the probabilistic setting.

Fig. 11  The runtime of 
�������(i, j) for different values of 
i and j. The argument i is the step 
bound of the outer � operator, 
and j is the step bound of the 
inner � operator. The runtime 
grows exponentially when either 
step bound increases. However, 
the runtime is more sensitive to 
the inner step bound j
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To mitigate the state explosion problem in model checking, several grouping tech-
niques have been proposed. Different from our work, the following methods exploit 
various types of symmetries other than relational structures. Symbolic model check-
ing  (McMillan 1993) is a form of model checking that symbolically represents the 
state space and the set of states in which a formula holds. Symbolic model checking is 
often implemented using BDDs that are Boolean formulae in canonical form, in which 
isomorphic subformulae are shared, to allow efficient operations on the sets of states 
that they represent. Symbolic model checking has been first used for model checking 
of plain non-probabilistic finite state systems  (McMillan 1993), then later adapted to 
the probabilistic case in Forejt et al. (2011). Contrary to our algorithm, these symbolic 
methods only apply to finite state MDPs. Another method to mitigate the state explosion 
problem is abstraction-refinement, which successively generates abstractions by parti-
tioning the state space into regions. Therefore, the model checking algorithms handle 
regions instead of individual states  (de Alfaro and Roy 2007; Roy et  al. 2008). These 
techniques focus on grouping states into regions which have similar local properties but 
such regions are usually not exact as the states in a region can have different dynamics 
and future evaluations. Similarly, Marthi (2007) uses abstract MDP to aggregate not 
only states but also actions by exploiting the temporal dependency of actions. In addi-
tion, game-based abstraction techniques construct abstractions of MDPs by merging 
concrete transitions into abstract transitions (Kattenbelt et al. 2008). Different from our 
work, for the abstractions, they calculate approximate upper and lower bounds instead 
of exact values.

Many studies integrate model checking techniques into other AI fields. In planning, authors 
compute the optimal policy at the first-order level using value iteration (Boutilier et al. 2001; 
Sanner and Boutilier 2009; Kersting et al. 2004), which can be seen as a probabilistic reacha-
bility task, namely a special case of the general probabilistic model checking problem. PCTL-
REBEL generalizes this special case with a temporal logic thus fits in the Planning as Model 
Checking paradigm (Giunchiglia and Traverso 2000). In robotics, model checking techniques 
are used for online motion planning (Lahijanian et al. 2012; Maly et al. 2013; He et al. 2015) 
where the states are labeled with propositions. These propositions result in a multidimensional 
state space that grows exponentially with the domain size (He et al. 2015), which is the exact 
problem that this paper tackles. Generally, our work can be applied a wide range of frame-
works that have a large model, particularly in relational domains.

There is a fruitful literature on theoretical results of infinite systems. Particularly, the state-
boundedness condition for decidable verification has been defined in first-order mu-calcu-
lus (Bagheri Hariri et al. 2013; Calvanese et al. 2018; De Giacomo et al. 2012; De Giacomo 
et al. 2015) and first-order CTL (Belardinelli et al. 2011, 2012). However, these studies focus 
on the non-probabilistic setting. Our work contributes to extending the theoretical results to 
stochastic models by introducing the abstract relational MDP. A limitation of the relational 
pCTL language is that it does not support quantification across conjunctions, which could be 
investigated as described in the work of Belardinelli et al. (2013).

9  Towards safe reinforcement learning

Recently, a converging interest has emerged about the pursuit of general dynamic 
systems that can autonomously reason and learn by interacting with the environ-
ment  (Giacomo 2019). Since such systems require the ability of reasoning about 
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first-order state representations and safety (Amodei et al. 2016), pCTL-REBEL fits in 
as a first-order model checking technique that is also particularly relevant in safe rein-
forcement learning.

Safe reinforcement learning is the process of learning a policy that maximizes the 
expected reward in domains where safety constraints must be respected. In particular, 
safe exploration, i.e. guaranteeing an agent’s safety in the exploration phase, is a non-
trivial problem. Commonly used exploration strategies such as �-greedy and softmax 
sometimes select a random action, which can result in catastrophic situations (Amodei 
et al. 2016). Existing research recognizes the importance of providing safety guaran-
tees in reinforcement learning (Garcia and Fernández 2015; Pecka and Svoboda 2014; 
Lahijanian et  al. 2012; Teichteil-Königsbuch 2012; Sprauel et  al. 2014; Giunchiglia 
and Traverso 2000; Mason et  al. 2018; Hasanbeig et  al. 2019; Alshiekh et  al. 2018; 
Jansen et al. 2020). However, most studies are based on techniques that require explicit 
state exploration whereas only few studies touch on safe exploration in relational 
domains  (Driessens and Džeroski 2004; Martínez et  al. 2017) Furthermore, several 
studies have investigated augmenting reinforcement learning with model checking 
techniques, including preventing the agent from taking risky actions  (Alshiekh et  al. 
2018; Jansen et al. 2020; Fulton and Platzer 2018), synthesizing an initial safe partial 
policy for learning (Leonetti et al. 2012), learning a policy that maximizes the proba-
bility of satisfying a temporal formula (Hasanbeig et al. 2019), and shaping the reward 
function based on a temporal formula (De Giacomo et al. 2019). These approaches can 
be augmented with our work for scalability in large relational domains.

PCTL-REBEL can be used as a safe model-based reinforcement learning algorithm 
as it performs value iteration in a setting where goal states and safety constraints are 
formulated as pCTL formulae. More precisely, it derives the states in an RMDP that 
satisfy a given (relational) pCTL formula that encodes goal states and safety con-
straints. Indeed, pCTL-REBEL tackles a special safe reinforcement learning task 
where the reward is 1 for goal states and 0 for all other states, and the discount factor 
is 1 (Kersting et al. 2004; Yoon et al. 2012; Otterlo 2004). Formally, pCTL-REBEL in 
this paper

is a special case of the standard Bellman operator

where r is a reward value in ℝ.
It is an interesting avenue for further research to investigate representing general 

reward functions within this framework. Furthermore, pCTL-REBEL can be naturally 
combined with relational reinforcement learning (Džeroski et al. 2001) to achieve safe 
relational reinforcement learning as both frameworks use relational representations 
and work at an abstract level rather than at the ground level.
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10  Conclusions

We have introduced a framework for lifted model checking in relational domains. To this 
aim, relational Markov Decision Processes have been integrated with model checking prin-
ciples for pCTL. The result is a very expressive framework for model checking in proba-
bilistic planning domains that are relational, that is, involve objects as well as the relations 
among them. The framework is lifted in that it does not require to first ground the relational 
MDP and then exhaustively check all possible paths, but rather works at a more abstract 
relational level where variables are only instantiated whenever needed. The resulting algo-
rithm is based on the relational Bellman operator REBEL. It is quite complex but manages 
to rather compactly compress enormous spaces of ground states in a couple of 10s of rules. 
The algorithm has not yet been optimized, and one route for further work is to combine 
pCTL-REBEL with expressive first order decision diagrams  (Wang et  al. 2008) to gain 
efficiency and to further compress the abstract states. Another route for further work is 
to explore the use of pCTL-REBEL for reasoning and reinforcement learning in safety-
critical contexts.
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