
Vol.:(0123456789)

Machine Learning (2022) 111:3797–3838
https://doi.org/10.1007/s10994-021-06102-7

1 3

Lifted model checking for relational MDPs

Wen‑Chi Yang1 · Jean‑François Raskin2 · Luc De Raedt3

Received: 19 May 2020 / Revised: 30 September 2021 / Accepted: 14 October 2021 /
Published online: 23 June 2022
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022

Abstract
Probabilistic model checking has been developed for verifying systems that have stochastic
and nondeterministic behavior. Given a probabilistic system, a probabilistic model checker
takes a property and checks whether or not the property holds in that system. For this rea-
son, probabilistic model checking provide rigorous guarantees. So far, however, probabil-
istic model checking has focused on propositional models where a state is represented by
a symbol. On the other hand, it is commonly required to make relational abstractions in
planning and reinforcement learning. Various frameworks handle relational domains, for
instance, STRIPS planning and relational Markov Decision Processes. Using propositional
model checking in relational settings requires one to ground the model, which leads to the
well known state explosion problem and intractability. We present pCTL-REBEL, a lifted
model checking approach for verifying pCTL properties of relational MDPs. It extends
REBEL, a relational model-based reinforcement learning technique, toward relational pCTL
model checking. PCTL-REBEL is lifted, which means that rather than grounding, the model
exploits symmetries to reason about a group of objects as a whole at the relational level.
Theoretically, we show that pCTL model checking is decidable for relational MDPs that
have a possibly infinite domain, provided that the states have a bounded size. Practically, we
contribute algorithms and an implementation of lifted relational model checking, and we
show that the lifted approach improves the scalability of the model checking approach.

Keywords Model checking · Probabilistic computation tree logic (pCTL) · First-order
logic · Lifted inference · Relational MDPs

1 Introduction

Probabilistic model checking aims at deciding whether a stochastic model satisfies a given
probabilistic property (Baier and Katoen 2008; Forejt et al. 2011). By doing so, it pro-
vides rigorous guarantees about the model. Markov Decision Processes (MDPs) and Prob-
abilistic Computational Tree Logic (pCTL) (Forejt et al. 2011; Kwiatkowska et al. 2011;

Editors: Nikos Katzouris, Alexander Artikis, Artur d’Avila Garcez, Ute Schmid, Jay Pujara.

 * Wen-Chi Yang
 wenchi.yang@kuleuven.be

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06102-7&domain=pdf

3798 Machine Learning (2022) 111:3797–3838

1 3

Dehnert et al. 2017) are standard formalisms for specifying the model and the properties,
respectively. MDPs are commonly used for modeling sequential decision making prob-
lems where the actions have stochastic effects. PCTL is a temporal logic that expresses
model properties over time and allows for probabilistic quantification. A property can be
the machine gives a warning before shutting down with a probability higher than 0.95, or
the probability is higher than 0.9 that the emergency power supply, after giving a warning,
continues to function for at least 10 more minutes.

It is common in planning and reinforcement learning to make abstraction of the domain
elements in order to compactly define models and speed up the computation. However,
model checking methods most often operate on explicit-state MDPs (Baier and Katoen
2008) thus do not allow for such abstractions. This is undesirable since the number of
states increases exponentially with the domain size, making it infeasible to explicitly trav-
erse the state space (Slaney and Thiébaux 2001). In such large domains, it is impracti-
cal to apply model checking techniques as they lead to a state explosion (Otterlo 2004).
For instance, the well known blocks world has 501 states for 5 blocks but over 58 million
states for only 10 blocks (Slaney and Thiébaux 2001). In this paper, we aim at mitigating
such state explosions in probabilistic model checking by making relational abstractions and
using lifted inference.

Lifting is the key to scalablility in relational domains (Kersting 2012; Van den Broeck
et al. 2011; de Salvo Braz et al. 2007). It is also central to statistical relational AI (Sta-
rAI) (De Raedt et al. 2016). Lifting implies reasoning about a group of objects as a whole
at the first-order level, and exploiting the shared relational structures and symmetries in the
model. This is done by making abstraction of irrelevant details of the objects. As an illus-
tration, an object’s full identity (e.g. a block’s ID number) can be left out as long as it satis-
fies the property description (e.g. blue). There has been a significant interest in such rela-
tional representations in reinforcement learning and planning. For instance, Džeroski et al.
(2001) introduced Relational Markov Decision Processes (RMDP), a first-order generaliza-
tion of MDPs that succinctly formulates relational models by implicitly defining states in
terms of objects and relations (Džeroski et al. 2001; Otterlo 2004). RMDPs have been used
in reinforcement learning and planning to compute first-order policies without explicitly
constructing the underlying state space (Džeroski et al. 2001; Kersting et al. 2004; Wang
et al. 2008; Kersting and De Raedt 2004; Driessens and Džeroski 2004; Boutilier et al.
2001; Sanner and Boutilier 2009; Yoon et al. 2012). One especially interesting example is
REBEL (Kersting et al. 2004), the RElational BELlman operator, which we will extend in
this paper. REBEL is a model-based reinforcement learning technique for constructing an
optimal policy in a given RMDP. It is also a lifted inference technique that alleviates state
explosions.

Motivated by the success of temporal logics and MDPs in probabilistic model checking
and in planning, we investigate whether it is possible to lift these approaches to RMDPs.
We show that the answer is positive by introducing pCTL-REBEL, a new framework that
augments REBEL (Kersting et al. 2004) with pCTL. More specifically, pCTL-REBEL is
a relational model checking approach that checks relational pCTL formulae in RMDPs.
In addition to mitigating state explosions, it is important to take one step further to inves-
tigate lifted probabilistic model checking for infinite models. Although model checking
for infinite models is generally undecidable (Gabbay 2003), a rich body of research has
discussed the state-boundedness assumption that yields decidable verification of infinite
systems (Bagheri Hariri et al. 2013; Belardinelli et al. 2011, 2012; De Giacomo et al.
2012; Calvanese et al. 2018). These studies almost exclusively focus on non-probabilistic
actions. Nevertheless, they provide great insight into relational model checking with pCTL

3799Machine Learning (2022) 111:3797–3838

1 3

properties. We extend the work of Belardinelli et al. (2012) to the probabilistic setting to
obtain the decidability of the model checking problem for a subclass of infinite MDPs.

The key contribution of this paper is twofold. First, we introduce a lifted model check-
ing algorithm, pCTL-REBEL, to mitigate the state explosion problem of checking rela-
tional MDPs. PCTL-REBEL is fully automated and provides a complete, lifted solution
for relational model checking. In order to adapt to the model checking framework, pCTL-
REBEL introduces an alternative interpretation of REBEL (Kersting et al. 2004) in which
a state value corresponds to the probability that a given formula is satisfied by executions
starting from that state. Second, while model checking is generally undecidable for infi-
nite MDPs, we provide decidability results for a class of infinite MDPs under the state-
boundedness condition. In particular, we prove that a finite relational abstraction exists for
RMDPs that have an infinitely large domain, and that checking the relational abstraction is
equivalent to checking the infinite MDP. This means that strong guarantees for such infinite
MDPs can be provided via lifted model checking, as implemented in pCTL-REBEL.

This paper is structured as follows. Section 2 provides an overview on basic notions of
relational MDPs. Section 3 reviews basic notions of model checking and introduces rela-
tional pCTL. Section 3.3 defines the problem statement of this paper, that is, probabilistic
model checking for relational MDPs. Section 4 defines a relational Bellman update opera-
tor (a generalization of REBEL (Kersting et al. 2004)) for relational value iteration. Based
on Sect. 4, Sect. 5 introduces the main algorithm, pCTL-REBEL, for relational model
checking. Section 6 provides theoretic results about obtaining decidability for a subclass
of infinite MDPs. Section 7 reports on experimental evaluation. Section 8 discusses related
work and Sect. 9 highlights the link between relational model checking and safe reinforce-
ment learning. Finally, Sect. 10 concludes the work.

2 Relational notions and relational MDPs

This section defines the basic notions of relational MDPs. These notions will be used in
the remainder of this paper with the blocks world running example. We closely follow the
notions of the standard first-order logic (Nienhuys-Cheng and Wolf 1997) and relational
MDPs (Kersting et al. 2004).

2.1 Relational logic

Relational logic generalizes propositional logic with variables such that a variable repre-
sents a set of constants. This section provides an overview of relational logic, following the
notions of Nienhuys-Cheng and Wolf (1997).

An alphabet is a tuple Σ = ⟨R,D⟩ where R is a finite set of relation symbols and D
is a possibly infinite set of constants. Each relation symbol � ∈ R has an arity m ≥ 0 .
An atom �(��, ..., ��) is a relation symbol � followed by an m-tuple of terms �� . A term
is a variable � or a constant � . A variable (resp. constant) is expressed by a string that
starts with an upper (resp. lower) case letter. A conjunction is a set of atoms, which is
implicitly assumed to be existentially quantified. A definite clause H ← B consists of an
atom H and a conjunction B, stating that H is true if B is true. Given an expression � ,
vars(�) (resp. consts(�) , terms(�)) denotes the set of all variables (resp. constants, terms)
in � . An expression is called ground if it contains no variables. We shall make the
unique name assumption, that states all constants are unequal, that is, �� ≠ �� holds for

3800 Machine Learning (2022) 111:3797–3838

1 3

different constants �� and �� . A substitution � is a set of bindings {��∕��, ..., ��∕��} that
assigns terms �� to variables �� . A grounding substitution � assigns constants to vari-
ables in an expression � such that �� contains no variables.

We shall use the Object Identity subsumption framework (OI-subsumption) (Ferilli
et al. 2002), which means that any two terms in an expression are unequal, and the pair-
wise inequalities should be added. For instance, under OI-subsumption, the conjunction
{��(�), ��(�, �)} denotes the expression {��(�) , ��(�, �) , � ≠ � , � ≠ � , � ≠ �} . For ease
of writing, when the context is clear, we shall not write these inequalities explicitly.
A conjunction � is OI-subsumed by conjunction � , denoted by � ⪯� � , if there exists a
substitution � such that �𝜃 ⊆ � . Only substitutions that satisfy the inequality constraints
are allowed.

A unifier � of two conjunctions � and � under OI-subsumption is a substitution such
that �� = �� . For example, the conjunctions {��(�), ��(�, �)} and {��(�), ��(�, �)} have
a unifier {�∕�, �∕�} . A maximally general specialization (mgs) of two conjunctions �
and � under OI-subsumption is a conjunction that is OI-subsumed by � and � , and is
not OI-subsumed by any other specializations. The mgs operation is not always unique
under OI-subsumption. For example, the conjunctions {��(�)} and {��(�, �)} have maxi-
mally general specializations {��(�), ��(�, �)} and {��(�), ��(�, �)} that do not OI-sub-
sume one another.

The Herbrand base of an alphabet Σ = ⟨R,D⟩ , denoted by HBΣ , is the set of all
ground atoms that can be constructed from Σ . A Herbrand interpretation s is a subset of
HBΣ where all atoms in s are true and all others are false . The set of all Herbrand inter-
pretations determined by Σ is denoted by SΣ . We shall write S instead of SΣ when the
context is clear. When the domain D is infinite, the set of all Herbrand interpretations SΣ
must be infinite.

2.2 Relational MDP

Relational MDPs (RMDPs) generalize explicit-state MDPs in a twofold manner. First,
RMDPs have structured states. More specifically, an RMDP state is represented by a con-
junction of ground atoms whereas an explicit state is represented by a single constant.
Second, RMDPs allows variables in the state description. In consequence, a set of RMDP
states can be represented by one single abstract state, which enables reasoning about a set
of states as a whole. In this paper, an RMDP is a variant of the standard RMDP (Kersting
et al. 2004; Boutilier et al. 2001) that varies by allowing the domain to be infinite. This sec-
tion formally defines RMDPs, following the notions of Kersting et al. (2004).

An RMDP is a tuple K = ⟨Σ,�⟩ where the alphabet Σ = ⟨R,D⟩ contains a set of rela-
tions and a domain, and � is a finite set of abstract transitions. The alphabet Σ determines
the state space. A state s ∈ SΣ is a Herbrand interpretation. An abstract state s′ is then
a conjunction of atoms, representing a set of states, denoted by s�Θ = {s ∈ SΣ|s ⪯� s

�}.

Example 1 Consider a blocks world with the alphabet Σ = ⟨R,D⟩ where the rela-
tions are R = {��∕�, ��∕�} and the domain is D = {�, �, �} , the abstract state
s = {��(�), ��(�), ��(�, �)} represents the following six ground states.

3801Machine Learning (2022) 111:3797–3838

1 3

An abstract action � ∉ R is an atom for an action relation. An abstract transi-
tion � ∈ � (based on an abstract action �) is a finite set of probabilistic transition rules
� = {H1

p1∶�
←����������������� B, ...,Hn

pn∶�
←����������������� B} where B (resp. Hi) is an abstract state, representing the

precondition (resp. postcondition), and pi ∈ [0, 1] is the transition probability. These transi-
tion rules � denote a proper probability distribution over Hi , that is,

∑n

i=1
pi = 1 . To ensure

that all abstract transitions rely only on information in the current state, we assume that all
variables in Hi are also in B, that is, vars(Hi) ⊆ vars(B).

Example 2 A blocks world is defined by an RMDP K = ⟨Σ,�⟩ where Σ = ⟨R,D⟩ ,
R = {��∕�, ��∕�} and � contains the following abstract transition ����(�, �, �).

The abstract action ����(�, �, �) expresses moving block � to block � from block � . The
action succeeds with probability 0.9 and fails with probability 0.1. When the action fails,
the state stays the same. A graphical illustration is in Fig. 1.

2.3 Grounding an RMDP

The semantics of an RMDP is defined at the ground level such that any RMDP (includ-
ing the infinite ones) implicitly defines an underlying ground MDP. This section formally
defines the construction of the underlying ground MDP. In the end of this section, we will
briefly discuss the decidability issue of infinite RMDPs.

Given an RMDP K = ⟨Σ,�⟩ , the underlying ground MDP is a tuple M = ⟨S,A, T⟩ where
S is a set of ground states, A is a set of ground actions and T ∶ S × A × S → [0, 1] is a ground
transition function. Every ground state s ∈ S is a Herbrand interpretation of Σ . A ground state
s has a set of available ground actions, denoted by A(s) ⊆ A . These ground actions A(s) are
defined by grounding the abstract actions. Formally,

sΘ = {{��(�),��(�),��(�,�)}, {��(�),��(�),��(�,�)},

{��(�),��(�),��(�,�)}, {��(�),��(�),��(�,�)},

{��(�),��(�),��(�,�)}, {��(�),��(�),��(�,�)}}

�����

{
��(�),��(�),��(�, �)

�.�∶����(�,�,�)
←�� ��(�),��(�),��(�, �)

��(�),��(�),��(�, �)
�.�∶����(�,�,�)
←�� ��(�),��(�),��(�, �)

A(s) ∶= {��|Hi

pi∶�
←��������������� B ∈ �, s ⪯� B}

Fig. 1 The abstract transition
����(�, �, �) moves block � to
block � from block � with prob-
ability 0.9. It fails to move the
block with probability 0.1

3802 Machine Learning (2022) 111:3797–3838

1 3

Similarly, given a ground state s and a ground action �� ∈ A(s) , the set of ground transi-
tions T(s, ��) are defined by grounding the abstract transitions. Formally,

After taking action �� in state s, the transition probability distribution over all ground
states s� ∈ S is then

Since � is a proper abstract transition function, T must be a proper probability distribution,
i.e.

∑
s�∈S T(s, ��)(s

�) = 1.

Example 3 Consider a blocks world defined by an RMDP K = ⟨Σ,�⟩ where Σ = ⟨R,D⟩ ,
R = {��∕�, ��∕�} , D = {�, �, �, �, �} and � = {����(�, �, �)} (see Fig. 1). The RMDP K
defines the underlying MDP M = ⟨S,A, T⟩ . One of the resulting ground transitions is as
follows. Let a ground state be s = {��(�) , ��(�) , ��(�) , ��(�, �) , ��(�, �)} ∈ S , and let an
action be ����(�, �, �) ∈ A(s) , the resulting next state must be s� = {��(�) , ��(�) , ��(�) ,
��(�, �) , ��(�, �)} ∈ S . By taking the ����(�, �, �) action in state s, the probability of
reaching s′ is 0.9, and the probability of staying in s is 0.1, as illustrated in Fig. 2.

In general, for an RMDP that has an infinite domain, the underlying ground MDP has an
infinitely large state space and action space. Hence, it is infeasible to explicitly traverse the
state space. Moreover, such RMDPs have an unbounded branching behavior such that a state
has infinitely many available actions, leading to infinitely many other states. For example, one
can move a clear block to any of the (infinitely many) other clear blocks. Therefore, the model
checking problem for infinite RMDPs is generally undecidable. To obtain decidability, we will
later identify a special class of infinite RMDPs such that the branching behavior is bounded.
More details are in Sect. 6.

3 Model checking for relational MDPs

This section defines the problem statement of this paper, namely the model checking prob-
lem of relational MDPs. More specifically, Sect. 3.1 reviews the fundamentals of model
checking, Sect. 3.2 defines the relational pCTL language that will be used to specify prop-
erties throughout this paper, and Sect. 3.3 defines the main problem statement. Later,
Sects. 4 and 5 will provide a solution for the problem in Sect. 3.3.

T(s, ��) ∶= {hi
pi∶��
←������������������� s|Hi

pi∶�
←��������������� B ∈ �, s ⪯� B, hi = (s�B�) ∪ Hi�}

T(s, ��)(s�) ∶= pi, where s
� = (s�B�) ∪ Hi�

Fig. 2 The ground action
����(�, �, �) moves block � to
block � from block � with prob-
ability 0.9. The action fails with
probability 0.1

3803Machine Learning (2022) 111:3797–3838

1 3

3.1 Probabilistic reachability

This section defines the probabilistic reachability property, the most fundamental prop-
erty in model checking. The probabilistic reachability refers to the maximum probability
of reaching a set of goal states from a given initial state. This property is required to define
the relational pCTL language in Sect. 3.2. The content of this section is standard in model
checking (Baier and Katoen 2008; Kwiatkowska et al. 2011) and is included to make this
paper self-contained.

We first define paths in an MDP and their probability assignment. Given an MDP
M = ⟨S,A, T⟩ , a path of length n is denoted by �n = s1

a1
��������→ s2

a2
��������→ ⋯

an−1
���������������→ sn where

si ∈ S , ai ∈ A(si) and T(si, ai)(si+1) > 0 . Similarly, an infinite path is denoted by
� = s1

a1
��������→ s2

a2
��������→ ⋯ . The set of all finite (resp. infinite) paths is denoted by FPathM

(resp. IPathM), and the set of all finite (resp. infinite) paths starting from state s is
denoted by FPathM,s (resp. IPathM,s). We denote all paths starting from s in M as
PathM,s=FPathM,s ∪ IPathM,s . The i-th state of a path � is denoted by �(i) . The last state of
a path � is denoted by last(�) . To project a set of paths PathM,s to a probability space, it is
required to remove nondeterministic actions by a policy. A policy � ∶ FPathM × A → [0, 1]
takes a finite path �n and specifies a probability distribution over all available actions
A(last(�n)) . We write �(�n) to denote all possible actions selected by the policy, and we
write �(�n, a) to denote the probability of action a being selected.

Definition 1 [cf. Forejt et al. (2011)] Given an MDP M and a policy � , the probability
P�
M
(�n) of a finite path �n = s1

a1
��������→ s2

a2
��������→ ⋯

an−1
���������������→ sn ∈ FPathM,s1

 is inductively defined by

where �k denotes �n ’s prefix of length k. Let C�n
∈ IPathM,s1

 be the set of all infinite paths
that have a prefix �n (also known as the basic cylinder), the probability P�

M
(C�n

) is then
defined as the probability of �n , i.e. P�

M
(C�n

) = P�
M
(�n).

After defining the probability for an MDP path, we can now formally define probabilis-
tic reachability.

Definition 2 [cf. Forejt et al. (2011)] Given an MDP M = ⟨S,A, T⟩ , an initial state s ∈ S
and a set of goal states G ⊆ S , the set of all paths from s to G, denoted by PathM,s(G) , is
formally defined as follows.

By following an optimal policy � , one can generate a path from s to G with a maximum
probability. Any other policies in the policy space Π does not achieve a probability larger than
the optimal policy � does. The maximum reachability is defined as follows.

In general, Pmax
M

(⋅) denotes the maximum reachability in M.

(1)
P�
M
(�1) = 1

P�
M
(�k) = P�

M
(�k−1)

∑

a∈�(�k−1)

�(�k−1, a)T(sk−1, a)(sk)

PathM,s(G) ∶= {� ∈ PathM,s|∃i ∈ ℕ, �(i) ∈ G}

(2)Pmax
M

(PathM,s(G)) ∶= sup
�∈Π

P�
M
(PathM,s(G))

3804 Machine Learning (2022) 111:3797–3838

1 3

It is known that a deterministic, stationary �-optimal policy suffices to achieve the maxi-
mum probabilistic reachability in a finite MDP (Baier and Katoen 2008). This means the pol-
icy will simplify to a function � ∶ S → A that maps a path’s last state to a single action. For
an infinite RMDP that has a finite abstraction (cf. Sect. 6), we assume there exists an optimal
deterministic, stationary policy for the maximum probabilistic reachability.

3.2 Relational pCTL

This section introduces Relational Probabilistic Computational Tree Logic (relational pCTL),
a temporal logic that describes system behavior over time and allows for probabilistic quanti-
fication. We will use relational pCTL to specify properties of an RMDP. Relational pCTL is a
variant of the standard pCTL [cf. Forejt et al. (2011), Baier and Katoen (2008)] that varies by
allowing variables in atoms and only allowing negations in front of atoms.

The syntax of the relational pCTL is as follows. A property is always specified by a state
formula �.

where l is an atom (that can contain variables), � is a probability such that 0 ≤ � ≤ 1 , � ∈ ℕ
is a step bound and ⋈ ∈ {≤,<,≥,>} . Here, relational pCTL generalizes the standard
pCTL by letting l be a relational atom instead of a constant.

The semantics of the relational pCTL resembles the standard pCTL (Baier and Katoen
2008). A state either satisfies or violates a state formula � , resulting in a boolean evaluation
for each state. The � operator stands for next, and the � stands for until. A path formula �� is
satisfied if � is satisfied in the next state; �1�

≤��2 is satisfied if �2 is satisfied within � steps
and �1 holds before then; �1��2 is satisfied if �2 is eventually satisfied and �1 holds before
then.

The semantics of the relational pCTL is defined at the ground level. Given an RMDP
K = ⟨Σ,�⟩ that defines a ground MDP M = ⟨S,A, T⟩ , we say a ground state s ∈ S satisfies
a state formula � , denoted by s ⊧ 𝜙 , if and only if there exists a grounding substitution � for
all free variables in � such that s satisfies � under � , i.e. s ⊧ 𝜙 ⇔ ∃𝜃.s ⊧𝜃 𝜙 . All substitutions
must respect OI-subsumption, i.e. any two terms ��, �� in a conjunction must be unequal. For-
mally, the pCTL satisfiability relation ⊧𝜃 is inductively defined as follows.

where

state formula � ∶∶= ���� | l | ¬l | � ∧ � | �
⋈�[�]

path formula � ∶∶= � � | � �≤� � | � � �

s ⊧𝜃 ����

s ⊧𝜃 l ⇔ s ⪯𝜃 l

s ⊧𝜃 ¬l ⇔ s 𝜃 l

s ⊧𝜃 𝜙1 ∧ 𝜙2 ⇔ s ⊧𝜃 𝜙1 ∧ s ⊧𝜃 𝜙2

s ⊧𝜃 𝜙1 ∨ 𝜙2 ⇔ s ⊧𝜃 𝜙1 ∨ s ⊧𝜃 𝜙2

s ⊧𝜃 �
⋈�[𝜓] ⇔ Pmax

M
({𝜌 ∈ PM,s|𝜌 ⊧ 𝜓}) ⋈ �

3805Machine Learning (2022) 111:3797–3838

1 3

With the aforementioned operators, additional operators can be defined as follows where �
stands for eventually.

Example 4 Consider a formula � = ¬��(�) that states “there exists an unclear block � in the
state”. The satisfiability relation s ⊧ 𝜙 can be rewritten as follows.

For the ground state s1 = {��(�)} , the above evaluates to false as no � exists for the satisfi-
ability relation. For another ground state s2 = {��(�), ��(�, �)} , the above evaluates to true
with � = {�∕�}.

Example 5 Consider a formula � = �≥0.9[� ��(�)] that states “there exists a block � that can
become clear in the next state with a probability ≥ 0.9”. The satisfiability relation s ⊧ 𝜙 can
be rewritten as follows.

For the ground state s = {��(�) , ��(�, �)} , the above evaluates to true with � = {�∕�} as
block � can be clear after taking the action ����(�, ��, �) where �� stands for floor.

It is assumed that the scope of OI-subsumption is within the conjunction. That is,
no term inequalities are assumed across different conjunctions. For example, the for-
mula �≥0.7[� ��(�)] ∧ �≥0.95[� ��(�, �)] has two conjunctions, and term inequalities such
as � = � or � ≠ � do not exist, but � ≠ � holds under OI-subsumption.

3.3 The relational model checking problem

This section defines the model checking problem for RMDPs, using the definition of
RMDP (Sect. 2.2) and relational pCTL (Sect. 3.2). Later, Sects. 4 and 5 will illustrate
techniques for solving this model checking problem.

Relational model checking resembles the standard model checking problem (Baier
and Katoen 2008). Given a model M and a pCTL formula � , relational model checking
computes all states in M that satisfy � , denoted by SatM(�) . The significance of rela-
tional model checking is that it computes SatM(�) at a lifted level by using relational
states to represent groups of underlying ground states. Hence, relational model checking
finds a set of abstract states that represents SatM(�).

𝜌 ⊧ � 𝜙 ⇔ 𝜌(2) ⊧ 𝜙

𝜌 ⊧ 𝜙1 �
≤� 𝜙2 ⇔ ∃i≤k + 1.[𝜌(i) ⊧ 𝜙2 ∧ ∀j<i.𝜌(j) ⊧ 𝜙1]

𝜌 ⊧ 𝜙1 � 𝜙2 ⇔ ∃i∈ℕ.[𝜌(i) ⊧ 𝜙2 ∧ ∀j<i.𝜌(j) ⊧ 𝜙1]

����� ≡ ¬���� �≤� � ≡ ���� �≤� � � � ≡ ���� � �

s ⊧ ¬��(�)

⇔ ∃𝜃 ⋅ s ⊧𝜃 ¬��(�)

⇔ ∃𝜃 ⋅ s 𝜃 ��(�)

s ⊧ �≥0.9[� ��(�)]

⇔ ∃𝜃 ⋅ s ⊧𝜃 �≥0.9[� ��(�)]

⇔ ∃𝜃 ⋅ s ⊧𝜃 Pmax
M

({𝜌 ∈ PathM,s|𝜌(2) ⊧ ��(�)}) ≥ 0.9

3806 Machine Learning (2022) 111:3797–3838

1 3

Definition 3 Given an RMDP K = ⟨Σ,�⟩ that defines the underlying MDP M = ⟨S,A, T⟩
and a relational pCTL formula � , the relational model checking problem is to determine all
ground states SatM(𝜙) ⊆ S that satisfy � , i.e. SatM(𝜙) = {s ∈ S|s ⊧ 𝜙} . It does so by find-
ing a set of abstract states SatK(�) in K that represents SatM(�) . Formally,

In this work, we will solve the relational model checking problem of two types of
RMDPs. The first type is the RMDPs that have a finite domain (i.e. finite RMDPs).
The second type is a special class of RMDPs that have an infinite domain (i.e. infinite
RMDPs).

We discuss the decidability of these two types of RMDPs. The model checking prob-
lem for a finite RMDP is decidable. This is because when the domain is finite, the state
space is also finite, i.e. the underlying ground MDP is finite. One can thus enumerate all
states and collect the states that satisfy the given property. In contrast, an infinite RMDP
contains infinitely many states, which makes enumerating all states infeasible. In this
case, we focus on a class of infinite RMDPs that have a finite abstraction. More details
are given in Sect. 6.

4 PCTL relational Bellman operator

This section defines the pCTL relational Bellman operator (pCTL-REBEL), the essen-
tial building block for solving the relational model checking problem. Given a pCTL
formula �

⋈p
[�] and an RMDP, pCTL-REBEL evaluates a function Vp ∶ S → [0, 1]

that assigns a probability to each RMDP state. A probability Vp(s) represents the
probability that state s satisfies the path formula � . If the probability is within the
bound, i.e. Vp(s) ⋈ � , then state s satisfies �

⋈p
[�] and belongs to the solution set, i.e.

s ∈ SatK(�⋈p[�]).
At this point, it is important to remark that PCTL-REBEL is a variant of REBEL, but

does not consider a reward structure. Indeed, REBEL (Kersting et al. 2004) is a model-
based relational reinforcement learning technique that operates on a reward structure
and computes an optimal policy for reaching a set of goal states, which can be seen as
a reward-based reachability property. However, since we do not consider a reward struc-
ture and are interested in probabilistic properties, an alternative interpretation of REBEL
is required. Section 4.1 introduces an alternative interpretation of the relational Bellman
operator. Based on which, Sects. 4.2–4.4 respectively describe in detail the three compo-
nents of pCTL-REBEL. Section 4.5 then gives an illustration of pCTL-REBEL with an
example.

4.1 PCTL relational Bellman operator

Given an RMDP and a pCTL formula �
⋈�[�] , the task of pCTL-REBEL is to compute a

state probability function Vp ∶ S → [0, 1] that assigns a probability to each state. Similar to
the original REBEL, pCTL-REBEL takes an initial state probability function Vp

0
 and itera-

tively computes Vp

1
,V

p

2
 , etc for a number of steps, depending on the given formula. When

the formula has a step bound � , then Then pCTL-REBEL is applied for � times.1 When the

s ∈ SatM(�) ⇔ ∃s� ∈ SatK(�).s ⪯� s
�

1 A step bound is commonly called a finite horizon in AI.

3807Machine Learning (2022) 111:3797–3838

1 3

formula is unbounded, pCTL-REBEL is applied for arbitrarily many times until the prob-
abilities converge.

The state probability function Vp is similar to REBEL’s state value function V but inter-
prets state values as probabilities rather than as expected rewards. In a similar way, the
state-action probability function Qp is related to REBEL’s Q function but interprets state-
action values as probabilities. More details will be given later. In order to maintain the con-
nection to the original REBEL and to leave room for extending the present model checking
approach to incorporate rewards, we use the same notation V and Q for these functions as
in REBEL. For clarification, we add a superscript p to denote that Vp and Qp interpret val-
ues as probabilities. We now formally define these functions and the pCTL relational Bell-
man operator, following the notations of Kersting et al. (2004).

Definition 4 [cf. Kersting et al. (2004)] A state probability function Vp ∶ S → [0, 1] is an
ordered set of Vp-rules of the form of c ← B where B is an abstract state and c ∈ [0, 1] , rep-
resenting the probability of reaching a goal state from B. The value Vp(s) of a ground state
s is assigned by the first rule that subsumes s, i.e. s ⪯� B.

Given an abstract goal state G, the initial state probability function Vp

0
 is defined as

The first rule expresses that any ground state subsumed by the goal state G, by definition,
satisfies G with probability 1. The second rule expresses that any other states that are not
captured by the first rule satisfy G with probability 0. The rule of 0 ← ∅ ensures that all
states are assigned a value. Hence, it is often the last Vp-rule to capture the states that are
not captured by any previous rules.

Definition 5 [cf. Kersting et al. (2004)] A state-action probability function
Qp ∶ S × A → [0, 1] is an ordered set of Qp-rules of the form of c ∶ A ← B where A is an
abstract action and B is an abstract state, representing the probability of reaching a goal
state when A is taken in B. The value Qp(s, a) of a ground state s and an action a is assigned
by the first rule that subsumes s and a, i.e. s ⪯� B and a ⪯� A.

The pCTL-REBEL operator is listed in Eq. (3). By iteratively applying pCTL-REBEL,
we compute the state probability functions Vp

1
,V

p

2
 , etc. Notice that pCTL-REBEL is a spe-

cial case of the original REBEL that sets the discount factor to 1, has no reward struc-
ture, and connects a single reward 1 to the target condition.2 As a result, all Vp values are
interpreted as probabilities in [0, 1]. This alternative interpretation allows to capture the
probability that a formula is satisfied, which is essential for adapting the original REBEL
framework into a model checking setting.

1.0 ← G

0 ← ∅

2 Our work addresses a special case of relational model-based reinforcement learning. More details will be
given in Sect. 9.

3808 Machine Learning (2022) 111:3797–3838

1 3

PCTL-REBEL [Eq. (3)] is implemented by OneIteration (Algorithm 1). This algo-
rithm makes use of the following three components.

① Regression (Algorithm 2): Deriving the abstract states s in Vp

t+1

② QpRules (Algorithm 3): Computing Qp

t+1
(s, a) for all actions a ∈ A(s)

③ VpRules (Algorithm 4): Updating Vp

t+1
 by maximizing over Qp

t+1
(s, a).

 These three components modify the algorithms of Kersting et al. (2004) to provide sup-
port to pCTL operators. The modified parts in the algorithms will be marked blue. We now
describe these components in detail in Sects. 4.2–4.4, respectively.

4.2 Logical regression

Logical regression is a standard technique that reasons about abstract transitions at the
relational level (Boutilier et al. 2001; Kersting et al. 2004; Sanner and Boutilier 2009). This
technique is essential to scalability as it mitigates state explosions by operating on the rela-
tional state space instead of the underlying ground state space. Concretely, logical regres-
sion searches backwards the possible pre-states that can reach a given state after taking a
number of transitions.

This section extends the standard logical regression to implement Eq. (3) ①. The task
is to identify the pre-states that can reach a given state by taking one transition, which is
related to computing pCTL formulae with a step bound 1. These formulae are of the form
of [� ��] , [�≤���] or [�� �≤���] . These three formulae are different in terms of constraints.
First, [�≤���] is a reachability property that does not impose any constraints. This formula
is the basis for the other two formulae. Second, [� ��] imposes the constraint that “ �� must
be reached after taking exactly one transition”. Finally, [�� �≤���] is a constrained reach-
ability property that imposes the constraint that “ �� must be reached by going through only
the states where �� holds”.

Example 6 To illustrate logical regression, consider an abstract state {��(�, �)} and the fol-
lowing ������ transition rule (also shown in Fig. 1).

(3)V
p

t+1
(s)

⏟⏟⏟

1

=

3
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

max
a∈A(s)

∑

s�

T(s, a, s�)V
p

t (s
�)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2

= max
a∈A(s)

Qp
t+1(s, a)

3809Machine Learning (2022) 111:3797–3838

1 3

By applying the substitution � = {�∕�, �∕�} to ������ , we obtain the following rule. This
rules describes that {��(�, �)} can be reached from any ground state that is subsumed by
{��(�), ��(�), ��(�, �)} after taking the action ����(�, �, �).

Logical regression can be applied multiple times. For example, by applying twice the
������ transition rule, we obtain all abstract states that can reach {��(�, �)} within 2 steps, as
shown in Fig. 3.

Logical regression is implemented in Regression (Algorithm 2) that identifies all
states that can reach a goal state after taking one transition. Regression generalizes the
WEAKESTPRE algorithm in REBEL (Kersting et al. 2004) in two ways (marked blue, line
6–9). First, it provides support to until formulae [�� � ��] by ensuring that all pre-states
satisfy �� . Second, it provides support to infinite RMDPs by filtering out the pre-states that
exceed a given state bound b. More details will be given in Sect. 6.3.3

������ ∶ ��(�),��(�),��(�, �)
�.�∶����(�,�,�)
←�� ��(�),��(�),��(�, �)

��(�, �)
�.�∶����(�,�,�)
←�� ��(�), ��(�), ��(�, �)

Fig. 3 The figure shows the
derived paths by applying two
logical regressions on {��(�, �)}
with the �

move
1

 transition rule.
The abstract states from left to
right reach {��(�, �)} after 2, 1,
and 0 steps respectively

3 The state bound b ∈ ℕ is for infinite RMDPs. More details in Sect. 6.

3810 Machine Learning (2022) 111:3797–3838

1 3

4.3 Qp‑Rules generation

Given a state probability function Vp , this section computes Qp probabilities for state-action
pairs (cf. Eq. (3) ②). Qp(s, a) denotes the probability that a formula is satisfied by a path
that starts from s and has the first action a. Similar to the state probability function Vp , the
Qp function is an ordered set of Qp-rules. These Qp-rules are an intermediate representation,
from which we can compute the next state probability function (cf. Sect. 4.4).

Deriving a Qp function is complex for two reasons. First, we must consider all transi-
tion rules that indicate different action postconditions. For example, action ����∕3 has two
possible outcomes, namely succeeding and failing. As could be expected, it is not sufficient
to consider only the case where the action always succeeds as in Fig. 3. We must consider
all transition rules in order to correctly calculate the Qp-rules. Second, an abstract action
can diverge and produce multiple preconditions. For example, Fig. 3 shows three different
preconditions are derived by applying different substitutions to the ������ transition. It is
required to consider all these preconditions. Fortunately, to resolve these issues, we could
follow the procedure provided by the original REBEL, with limited adaptions.

QpRules (Algorithm 3) implements the procedure of computing a set of Qp-rules (cf.
Eq. (3) ②). The process is as the follows. First, for each transition rule and current states in
V
p

t , QpRules computes a set of partial rules (cf. line 2–5). This procedure results in multi-
ple sets of partial rules, and each set considers one single postcondition of the action. Then,
we must combine these partial rule sets to get a complete Qp-rule set. This is done by uni-
fying the partial rules (cf. line 6–14). Finally, QpRules returns a set of complete Qp-rules.

QpRules modifies the QRULES algorithm in REBEL (Kersting et al. 2004) in
two ways (marked blue, line 4, 5 and 12). First, it provides support to the until formu-
lae [�� � ��] by passing an extra parameter �� to Algorithm 2 (cf. Sect. 4.2). Second, it
achieves the probabilistic interpretation of the Bellman operator by discarding the reward
component and setting the discount factor to 1.

3811Machine Learning (2022) 111:3797–3838

1 3

4.4 Vp‑Rules generation

This section calculates the new state probability function Vp

t+1
 , given Qp

t+1 , by maximizing
over the actions (cf. Eq. (3) ③). Recall that Qp

t+1 is an ordered set of Qp-rules of the form
of qp ∶ A ← S . The task is to derive Vp

t+1
 , an ordered set of Vp-rules of the form of vp ← S.

Trivially, turning Qp
t+1 into Vp

t+1
 takes three steps. First, the Qp-rules must be sorted

such that a rule connected to a high probability has a high priority as we are interested in
the maximum probability [as defined by Eq. (2)]. Second, the redundant Qp-rules must be
removed. A Qp-rule is redundant if it is subsumed by another Qp-rule that has a higher prior-
ity. Third, the remaining Qp-rules are turned into Vp-rules by removing the action in the rule.

VpRules (Algorithm 4) implements Eq. (3) ③. The process is as follows. First, the Qp

-rules are ordered decreasingly so that a state is always assigned a maximum probability
(line 2). Second, to remove redundant Qp-rules, an absorbing rule is required when the
formula has an absorbing goal in that no more transitions occur after the goal is reached.
Hence, given an absorbing goal, any rule concerning transitions that start from the goal is
redundant and should be removed. Concretely, an until formula [�� � ��] has an absorbing
goal �� such that an execution stops once �� is reached. Hence, an absorbing rule 1.0 ← ��
must be inserted to the beginning of the Qp-rules. On the other hand, a next formula [� ��]
does not have an absorbing goal as it is possible to follow exactly one transition from ��
to another state where �� may or may not hold. Therefore, no absorbing rules are inserted.
Finally, redundant rules in the ordered set are removed (line 6–10).

3812 Machine Learning (2022) 111:3797–3838

1 3

VpRules generalizes the VRULES algorithm in REBEL (Kersting et al. 2004) to handle
non-absorbing next formulae [� ��] as the original REBEL considers only absorbing goals.
The generalized part is marked blue (i.e. line 3–5).

4.5 PCTL‑REBEL illustration

This section illustrates pCTL-REBEL (cf. Eq. (3)), namely, taking a state probability func-
tion Vp

t to compute the next state probability function Vp

t+1
 . Clearly, different pCTL formu-

lae require different numbers of iterations. That is, [� ��] requires one iteration, [�� �≤���]
requires � iterations, and [�� � ��] requires an arbitrary number iterations to obtain an
accurate enough approximation. For simplicity, we illustrate with path formulae (without
probabilities) that require one iteration. Section 5 will cover the full pCTL language.

Formula 1 �1 = [� ��(�, �)] : find all states that reach {��(�, �)} after 1 step.
Formula 2 �2 = [��(�, �) �≤���(�, �)] : find all states that reach {��(�, �)} within 1 step
by going through only the states where {��(�, �)} holds.

We consider the ����� transition in the blocks world (also in Fig. 1).

4.5.1 PCTL‑REBEL on Formula 1: [� ��(�, �)]

For the formula �1 = [� ��(�, �)] , the initial function Vp

0
 is

������ ∶ ��(�),��(�),��(�, �)
�.�∶����(�,�,�)
←�� ��(�),��(�),��(�, �)

������ ∶ ��(�),��(�),��(�, �)
�.�∶����(�,�,�)
←�� ��(�),��(�),��(�, �)

3813Machine Learning (2022) 111:3797–3838

1 3

1.0 ← ��(�, �).
0.0 ← ∅.

①Regression Given the initial state probability function Vp

0
 , to obtain all possible pre-

states, Regression is called with all combinations of transition rules and Vp-rules, e.g.
Regression(������ , ∅ , ��(�, �)).4 This results in two sets of partial Qp-rules such that
each set considers one outcome of the ���� action. The resulting partial Qp-rules are listed
below. The ⟨1⋅⟩ rules correspond to the successful outcome (i.e. ������) and the ⟨2⋅⟩ rules
correspond to the unsuccessful outcome (i.e. ������). Table 1 shows the the corresponding
transitions and states. All partial Qp-rules respect OI-subsumption.

② QpRules To compute the Qp-rules, the two sets of partial Qp-rules must be combined.
To do so, we consider all possible combinations of ⟨1⋅⟩ and ⟨2⋅⟩ . The resulting Qp-rules are
listed as follows, along with how they are created. All rules respect OI-subsumption.

⟨1a⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �)

⟨1b⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨1c⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨1d⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨1e⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �)

⟨2a⟩ 0.1 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �)

⟨2b⟩ 0.1 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨2c⟩ 0.1 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨2d⟩ 0.1 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨2e⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �)

Table 1 Different combinations of transition rules and states result in different partial Qp-rules ⟨1a⟩–⟨2e⟩ .
The states on the leftmost column comes from Vp

0

������ ������

��(�, �) ⟨1a⟩⟨1b⟩⟨1c⟩⟨1d⟩ ⟨2a⟩⟨2b⟩⟨2c⟩⟨2d⟩
∅ ⟨1e⟩ ⟨2e⟩

4 The second argument is ∅ as the � operator is not absorbing.

3814 Machine Learning (2022) 111:3797–3838

1 3

 The Qp-rules must be ordered by their probabilities as above. The rules ⟨1⟩–⟨3⟩ are inter-
changeable as they have the same probability. Similarly, ⟨4⟩–⟨7⟩ and ⟨8⟩–⟨11⟩ are inter-
changeable, respectively.

③ VpRules Now we can derive the new Vp-rules by removing redundant Qp-rules and
dropping the action components. The resulting Vp-rules are shown below where the num-
bering inherits the one of the Qp-rules. Rules ⟨5⟩-⟨7⟩ are redundant because they are sub-
sumed by ⟨1⟩-⟨3⟩ , respectively. Similarly, rules ⟨9⟩-⟨11⟩ are redundant as they are subsumed
by ⟨1⟩–⟨3⟩ , respectively.

Given �1 = [� ��(�, �)] , and the initial state probability function Vp

0
 , we have applied

pCTL-REBEL and obtained Vp

1
 , which assigns to all states a maximum probability of

reaching ��(�, �) after exactly one step.

4.5.2 PCTL‑REBEL on Formula 2: [��(�, �) �≤���(�, �)]

For the formula �2 = [��(�, �) �≤���(�, �)] , the initial probability function Vp

0
 is

1.0 ← ��(�, �)

0.0 ← ∅

① Regression Given the initial state probability function Vp

0
 , to obtain all possible pre-

states, Regression is called with all combinations of transition rules and Vp-rules, e.g.
Regression(������ , ��(�, �) , ��(�, �)) . This results in two sets of partial Qp-rules such
that each set considers one outcome of the ���� action. We list some of the resulting par-
tial Qp-rules below. The ⟨1⋅⟩ rules correspond to the successful outcome (i.e. ������) and the

⟨1⟩ 1.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1b⟩+⟨2b⟩
⟨2⟩ 1.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1c⟩+⟨2c⟩
⟨3⟩ 1.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1d⟩+⟨2d⟩
⟨4⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �) ⟨1a⟩+⟨2e⟩
⟨5⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1b⟩+⟨2e⟩
⟨6⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1c⟩+⟨2e⟩
⟨7⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1d⟩+⟨2e⟩
⟨8⟩ 0.1 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �) ⟨1e⟩+⟨2a⟩
⟨9⟩ 0.1 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1e⟩+⟨2b⟩
⟨10⟩ 0.1 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1e⟩+⟨2c⟩
⟨11⟩ 0.1 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1e⟩+⟨2d⟩
⟨12⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �) ⟨1e⟩+⟨2e⟩

⟨1⟩ 1.0 ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨2⟩ 1.0 ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨3⟩ 1.0 ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨4⟩ 0.9 ← ��(�), ��(�), ��(�, �)

⟨8⟩ 0.1 ← ��(�), ��(�), ��(�, �)

⟨12⟩ 0.0 ← ��(�), ��(�), ��(�, �)

3815Machine Learning (2022) 111:3797–3838

1 3

⟨2⋅⟩ rules correspond to the unsuccessful outcome (i.e. ������). Table 2 shows the the cor-
responding transitions and states. All partial Qp-rules respect OI-subsumption.

② QpRules To compute the Qp-rules, the two sets of partial Qp-rules must be combined.
To do so, we consider all possible combinations of ⟨1⋅⟩ and ⟨2⋅⟩ . Some of the resulting Qp

-rules are listed below, along with how they are created. All rules respect OI-subsumption.

The Qp-rules must be ordered by their probabilities as above.

⟨1a⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨1b⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨1c⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨1d⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⋯

⟨1l⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨1m⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �)

⟨1n⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨1o⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨2a⟩ 0.1 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨2b⟩ 0.1 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⋯

⟨2m⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �)

⟨2n⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨2o⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨1⟩ 1.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1c⟩+⟨2a⟩
⟨2⟩ 1.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1d⟩+⟨2b⟩
⋯

⟨10⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1a⟩+⟨2n⟩
⟨11⟩ 0.9 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1b⟩+⟨2o⟩
⋯

⟨33⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �) ⟨1m⟩+⟨2m⟩
⟨34⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1n⟩+⟨2n⟩
⟨35⟩ 0.0 ∶ ����(�, �, �) ← ��(�), ��(�), ��(�, �), ��(�, �) ⟨1o⟩+⟨2o⟩

Table 2 Different combinations
of transition rules and states
result in different partial Qp-rules
⟨1a⟩–⟨2o⟩

The states on the leftmost column comes from Vp

0

������ ������

��(�, �) ⟨1a⟩-⟨1k⟩ ⟨2a⟩-⟨2k⟩
∅ ⟨1l⟩-⟨1o⟩ ⟨2l⟩-⟨2o⟩

3816 Machine Learning (2022) 111:3797–3838

1 3

③ VpRules Now we can derive the new Vp-rules. Since [��(�, �)] is absorbing, the fol-
lowing absorbing rule must be inserted to the beginning of the Qp-rule set.

After removing redundant Qp-rules and dropping the action components in the rules, we
obtain the resulting Vp-rules below. The numbering of the Vp-rules inherits the one of the
Qp-rules. Most redundant rules are subsumed by the absorbing rule ⟨0⟩.

5 Main contribution: a relational model checker

This section introduces the main algorithm in this paper, the relational model checking
algorithm, that solves the relational model checking problem (Sect. 3.3). Formally, given
a pCTL formula � and an RMDP K, the relational model checker identifies the set SatK(�)
of abstract states that represent all ground states that satisfy � . Since the relational model
checker is based on PCTL-REBEL (Sect. 4), it operates at the relational level.

Different from Sect. 4 that computes one single iteration, this section allows for full rela-
tional pCTL formulae that requires multiple iterations and can be nested. It is standard prac-
tice to represent a nested pCTL formula as a parse tree (Baier and Katoen 2008). In a parse
tree, each leaf node is an abstract state and each inner node contains exactly one operator.

Example 7 A nested relational pCTL formula example is as follows.

The nested formula ������� is complex at first sight, however, it can be represented as a
parse tree in Fig. 4. A state s satisfies ������� if and only if s satisfies all the following three

⟨0⟩ 1.0 ∶ � ← ��(�, �)

⟨0⟩ 1.0 ← ��(�, �)

⟨10⟩ 0.9 ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨11⟩ 0.9 ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨33⟩ 0.0 ← ��(�), ��(�), ��(�, �)

⟨34⟩ 0.0 ← ��(�), ��(�), ��(�, �), ��(�, �)

⟨35⟩ 0.0 ← ��(�), ��(�), ��(�, �), ��(�, �)

������� =�≥�.�[��(�) �
≤�(��(�, �)∧�≥�.�[�≥�.�[� ��(�)] �≤��(�, �)])]

Fig. 4 The parse tree of ������� . Each inner node of the parse tree is annotated with a subformula �
i
 and

handles one operator. �
1

 handles � , �
2

 handles �≤� , �
3

 handles ∧ and �
4

 handles �≤�

3817Machine Learning (2022) 111:3797–3838

1 3

conditions. (1) A path starting from s must reach {��(�, �)} within 4 steps with a prob-
ability greater than or equal to 0.5 by going through the states where {��(�)} holds. (2)
Then, the path must reach {��(�, �)} within 2 steps with a probability greater than or equal
to 0.8 by going through the states that satisfy �≥�.�[� ��(�)] . (3) The states that satisfy
�≥�.�[� ��(�)] are the ones that can transition to {��(�)} with a probability greater than or
equal to 0.9 after exactly one step.

PCTL-REBEL always use a parse tree to evaluate a given formula. A parse tree is recur-
sively evaluated upwards. That is, an inner node considers its child leaf nodes to evaluate a
subformula �i , resulting in a set of states Sat(�i) . Then, the inner node folds the sub-tree so
that its parent node can be activated. The final set of states Sat(�) is produced by the root.
For example, in Fig. 4, an intermediate state set Sat(�i) is used to evaluate Sat(�i+1) . The
state set Sat(�4) is returned as the solution.

Section 5.1 defines the pCTL-REBEL model checking algorithm, which is composed of
3 mutually recursive algorithms. Then, Sect. 5.2 gives an overview of the properties of the
model checking algorithm.

5.1 The pCTL‑REBEL model checking algorithm

The pCTL-REBEL model checking algorithm reforms the satisfiability relation ⊧𝜃 (cf.
Sect. 3.2). Given an RMDP K and a pCTL formula � , the pCTL-REBEL model checker
SatK(�) , i.e. all states in K that satisfy � . The model checker consists of 3 algorithms
Check, CheckUntil and CheckNext that call one another recursively. In particular,
Check is the main algorithm and is mutually recursive with the other two algorithms.
CheckUntil handles the until formulae of the form of �

⋈p[�1

U≤k�
2

] . CheckNext
handles the next formulae of the form of �

⋈p
[�

2

].
Given a formula � , Check (Algorithm 5) evaluates � in a recursive fashion as fol-

lows. If � is a relation atom l (resp. ¬l), it returns a single abstract state {l} (resp. {¬l })
(line 1–2). If � is a conjunction of the form of �1 ∧ �2 , it first computes �1 and �2 sepa-
rately to get two sets of abstract states Sat1 and Sat2 (line 4–5). Then, for each possible
pair of abstract states s1 ∈ Sat1 and s2 ∈ Sat2 , it collects all maximally general speciali-
zations mgs(s1, s2) (line 6). Since all mgs(s1, s2) are OI-subsumed by s1 and s2 by defini-
tion, they automatically satisfy �1 ∧ �2 . If � is a disjunction of the form of �1 ∨ �2 , it
returns the union of the solutions to �1 and �2 (line 7–8). If � is an until formula, it calls
CheckUntil (Algorithm 6) (line 9–10). If � is a next formula, it calls CheckNext
(Algorithm 7) (line 11–12).

3818 Machine Learning (2022) 111:3797–3838

1 3

CheckUntil (Algorithm 6) is mutually recursive with Check (Algorithm 5). It
computes a formula of the form of �

⋈p[�1

U≤k�
2

] or �
⋈p[�1

U≤k�
2

] where �
1

 and �
2

are pCTL formulae. To begin the process, CheckUntil computes �

1

 and �
2

 sepa-
rately to get two sets of abstracts states (line 1–2). Then, it sets the step bound for
pCTL-REBEL (line 3). When the given formula has a bounded �≤� operator, the step
bound is � . Otherwise, the step bound is set to infinity and an arbitrary number of
pCTL-REBEL iterations are applied until convergence (line 5–11). The convergence
condition is twofold. First, the abstract states in the probability function do not change,
i.e. states in Vp

t and Vp

t−1
 are the same. Second, the state probabilities have converged

with respect to a given threshold � , i.e. maxs∈Vp
t
|Vp

t (s) − V
p

t−1
(s)| < 𝜖 . Then, Check-

Until collects and returns the abstract states in Vp

t that satisfy the given probability
threshold ⋈ � (line 12–14).

3819Machine Learning (2022) 111:3797–3838

1 3

CheckNext (Algorithm 7) is mutually recursive with Check (Algorithm 5). It com-
putes a formula of the form of � = �

⋈�[� ��] where �2 is another pCTL formula. Check-
Next is a similar but simpler than CheckUntil. It performs one single value iteration to
obtain the probability function Vp

1
 (line 2–3). Then it collects and returns the abstract states

in Vp

1
 that satisfy the given probability threshold ⋈ � (line 4–6). CheckNext needs only

one iteration as it considers exactly one transition.

5.2 Properties of PCTL‑REBEL

PCTL-REBEL is a relational model checking algorithm that finds all states that satisfy a
given pCTL formula. We discuss the properties of pCTL-REBEL.

Lifted. instead of operating at the ground level, pCTL-REBEL performs lifted inference
as both the formula and the states are specified at an abstract level using relational rep-
resentations. Using lifted inference allows pCTL-REBEL to exploit relational symme-

3820 Machine Learning (2022) 111:3797–3838

1 3

tries in the model and make abstraction of the domain, hence mitigate the state explo-
sion problem. The lifted inference was discussed in detail in Sect. 4.
Sound for step-bounded pCTL formulae. PCTL-REBEL is sound for finite RMDPs
(that have a finite domain) and any step-bounded pCTL formulae. PCTL-REBEL is
not sound for indefinite-horizon formulae (e.g. �), just like many other value iteration
algorithms. This is because pCTL-REBEL uses a naive termination criterion with some
arbitrary convergence threshold � (see CheckUntil, Algorithm 6). Although this
naive termination criterion is not sound, it achieves precise approximation in practice.
For further details, please refer to Haddad and Monmege (2014).
Complete. PCTL-REBEL is complete for finite RMDPs such that the state probability
function Vp assigns a probability to all states. PCTL-REBEL captures the entire state
space by using an ordered set of relational Vp-rules. Those states that are not captured by
any other Vp-rules are guaranteed to be covered by the last Vp-rule 0 ← ∅ (see Sect. 4.1).

6 Relational model checking for infinite MDPs

It is clear that when the domain is finite, the model checking problem is decidable as
one can enumerates all states in the model, as discussed in Sect. 3.3. However, when the
domain is infinite, the state space is typically infinite, making enumerating all states infea-
sible. In this section, we obtain decidability for a special class of infinite RMDPs. We will
prove that under the state-boundedness condition (Belardinelli et al. 2011), a finite abstrac-
tion of such RMDPs can be constructed checked by pCTL-REBEL. The main idea is to
generate a finite abstraction that captures all relevant information of the underlying infinite
RMDP with respect to a pCTL formula. Accordingly, checking the abstraction is equiva-
lent to checking the infinite RMDP. By checking the finite abstraction, the model checking
problem becomes decidable. This section adopts the approach of Belardinelli et al. (2011)
to construct finite abstractions of infinite RMDPs. Furthermore, we show that pCTL-
REBEL can naturally handle such abstractions as they are structurally similar to RMDPs.

Section 6.1 defines the state-boundedness condition and under which, the finite abstrac-
tion of an infinite RMDP. Section 6.2 proves that checking a pCTL formula � against the
finite abstraction is equivalent to checking � against the corresponding infinite RMDP.
Section 6.3 discusses properties of pCTL-REBEL when handling such infinite RMDPs.

6.1 Abstract MDP: a finite abstraction of an infinite RMDP

Given an infinite RMDP, the relational model checking problem is generally undecidable
due to the possibly infinite domain. To obtain decidability, this section constructs a finite
abstraction of a given infinite RMDP, called an abstract RMDP (ARMDP). The purpose of
an ARMDP is to use a finite model to capture all relevant information about a pCTL for-
mula. An ARMDP must be constructed under the state-boundedness condition.

The state-boundedness condition states that any state concerns only a finite number of
objects. For example, consider a blocks world that has infinitely many blocks and a table
with a capacity b. An agent can take a block away or put a new block to the table, but no
more than b blocks can be on the table at any moment. Hence, the state bound is b. Since
any two states can describe totally different blocks, the model still contains infinitely many
states. We say the blocks on the table are in the active domain. We now formally define
active domain and state-boundedness.

3821Machine Learning (2022) 111:3797–3838

1 3

Definition 6 A bounded state sb is a finite subset of a ground state s in some RMDP, i.e.
sb ⊆ s . The active domain of sb , denoted adom(sb) , is the set of all domain objects in sb.

An active domain adom(sb) is by definition finite as a bounded state sb is finite. A
bounded state is similar to a ground state but concerns only a finite number of objects.
That is, all atoms in sb are true and all the others are false.

Definition 7 Given an RMDP K = ⟨Σ,�⟩ , its underlying MDP M = ⟨S,A, T⟩ , a state
bound b, and a starting state s0 such that |adom(s0)| ≤ b , an MDP Mb = ⟨Sb,Ab, Tb⟩ can be
defined by including all states that are reachable from s0 and contain at most b constants.
Formally, Mb = ⟨Sb,Ab, Tb⟩ is defined as

If b ∈ ℕ , then Mb is called state-bounded or b-bounded.

A b-bounded MDP Mb is uniquely defined by an RMDP and a state bound. Roughly
speaking, Mb a sub-MDP of M that concerns at most b objects in any state.

Example 8 Consider a blocks world K = ⟨Σ,�⟩ with Σ = ⟨R,D⟩ where R = {��∕�, ��∕�} ,
D = {���|i ∈ ℕ} is infinite, and � contains the following rules (as in Fig. 1).

Given a state bound b, the RMDP K defines a b-bounded MDP Mb = ⟨Sb,Ab, Tb⟩ such that
each bounded state sb ∈ Sb contains at most b blocks. We will use this blocks world exam-
ple throughout this section.

Having defined state-boundedness, let us now move on to constructing an abstract
MDP (ARMDP). With respect to a pCTL formula, some domain objects in an MDP are
irrelevant. For example, �≥�.�[� ��(�)] does not concern any particular blocks other than
block � . By abstracting away irrelevant objects of a pCTL formula � , we can construct
an ARMDP M� that captures all necessary information to check � . Concretely, to con-
struct an ARMDP, all �-relevant domain objects are preserved, and all other objects are
abstracted using variables. A domain object is �-relevant if and only if it is in � or in a
transition rule. Furthermore, if a formula � concerns a finite number of objects, the cor-
responding ARMDP M� is finite. In this paper, we assume all formulae contain at most b
objects where b is the state bound.

Definition 8 For a b-bounded MDP Mb = ⟨Sb,Ab, Tb⟩ of an RMDP K = ⟨Σ,�⟩ and a rela-
tional pCTL formula � , a b-bounded abstract RMDP M� = ⟨S�,Σ,�,W⟩ is defined where

Sb ∶= {s | s ∈ S, |adom(s)| ≤ b}

Tb ∶= {h
p∶a
←������������� b ∈ T|h ∈ Sb, b ∈ Sb}

Ab ∶= {a|h
p∶a
←������������� b ∈ Tb}

������ ∶ ��(�),��(�),��(�, �)
�.�∶����(�,�,�)
←�� ��(�),��(�),��(�, �)

������ ∶ ��(�),��(�),��(�, �)
�.�∶����(�,�,�)
←�� ��(�),��(�),��(�, �)

3822 Machine Learning (2022) 111:3797–3838

1 3

and W is a set of b − |consts(�) ∪ consts(�)| distinct variables. All terms in s� ∈ S� are
from a finite set of terms

It is assumed that vars(�) ∈ W . It is assumed that states in S� are not syntactic variants,
that is, they are not a variable renaming of one another.

An ARMDP is finite as only a finite number of terms are allowed in the state descrip-
tion. An ARMDP is b-bounded as each state s� ∈ S� contains at most b terms, i.e.
|terms(s�)| ≤ b . Since an ARMDP state is b-bounded, it has bounded branching behavior
such that the number of available actions in any state is finite. The finite state space of
ARMDPs is crucial to obtaining decidability.

An ARMDP has a similar structure as an RMDP but has a more abstract state space.
That is, unlike RMDPs, the state space of an ARMDP is not connected to an explicit
domain as any ARMDP state concerns only �-relevant constants and variables. By replac-
ing the variables by domain constants, an ARMDP state can enumerate infinitely many
ground states in the underlying RMDP.

Example 9 (Cont. Example 8) A b-bounded MDP Mb = ⟨Sb,Ab, Tb⟩ and the formula
� = ��(�) defines an ARMDP M� = ⟨S�,Σ,�,W⟩ . A state sb ∈ Sb concerns at most
b terms, namely {���, ���, ..., ���−�, �} . The abstract states s1 = {��(�)} ∈ S� and
s2 = {��(���)} ∈ S� represent the set of all infinitely many ground states that have at least
one clear block. These ground states can be enumerated by assigning domain objects to
���.

This section has shown that given a state-bounded MDP and a pCTL formula, an finite
abstraction can be constructed. Such abstraction is called an ARMDP. An ARMDP is simi-
lar to an RMDP but is state-bounded, finite, and captures only �-relevant information. The
next section will show that checking an ARMDP is equivalent to checking the underlying
model.

6.2 Decidable model checking for ARMDPs

This section proves the decidability of the model checking problem for a special class of
infinite RMDPs, namely, the ARMDP, defined in Sect. 6.1. Decidability is obtained by
proving that checking the ARMDP yields equivalent results as checking the underlying
infinite, state-bounded MDP, namely, Theorem 1.

Theorem 1 For a b-bounded MDP Mb and its corresponding ARMDP M� based on a
pCTL sentence �, checking � against M� is equivalent to checking � against Mb, formally,

S𝜙 = {s𝜙|∃s ∈ Sb. s ⪯𝜃 s𝜙,

consts(s𝜙) ⊆ consts(𝜙) ∪ consts(𝛥),

vars(s𝜙) ⊆ W}

terms(s�) ∶= W ∪ consts(�) ∪ consts(�)

Mb ⊧ 𝜙 ⇔ M𝜙 ⊧ 𝜙

3823Machine Learning (2022) 111:3797–3838

1 3

Theorem 1 is proven by using probabilistic bisimulation. Probabilistic bisimula-
tion is a standard model checking technique that compares two probabilistic transition
systems (Baier and Katoen 2008). Given a pCTL formula � , if two states from different
transition systems are probabilistic bisimilar, then their behaviors are indistinguishable.
Hence, checking � in either system yields identical results. Theorem 1 extends the theorem
by Belardinelli et al. (2011)[Theorem 2] for the probabilistic setting.5

We prove Theorem 1 in two steps. First, we define indistinguishable states (Definition 9)
and probabilistic bisimulation (Definition 10). Second, we show that an ARMDP and its
underlying state-bounded MDP actually define a probabilistic bisimulation (Propositions 1
and 2).

Definition 9 Given the b-bounded MDP Mb = ⟨Sb,Ab, Tb⟩ of a RMDP K = ⟨Σ,�⟩
and a pCTL sentence � , consider two ground states s1 and s2 in Sb such that
C1 = consts(s1) ⊂ D and C2 = consts(s2) ⊂ D . Let C be the set of all �-relevant domain
objects C ∶= consts(𝜙) ∪ consts(𝛥) ⊆ C1 ∩ C2 . The two states s1 and s2 are called indistin-
guishable6 under C, if and only if s1 and s2 are renamings of one another under a bijection
f ∶ C1⧵C ↦ C2⧵C . The bijection f renames �-irrelevant domain objects. Formally,

We abuse the notation and let f (s1) be the state obtained by renaming constants in s1.

Definition 9 has defined indistinguishable states under a pCTL formula � . Indistinguish-
able states are essentially renamings of one another and share the same properties with
respect to a formula � , hence, they can be represented by one abstract state in an ARMDP.
That is, an ARMDP state represents infinitely many indistinguishable states in the underly-
ing MDP.

Example 10 (Cont. Example 9) Consider a state-bounded MDP Mb = ⟨Sb,Ab, Tb⟩
with a state bound b = 2 , a pCTL formula � = ��(�) and two ground states
s3 = {��(�), ��(�, �))} ∈ Sb and s4 = {��(�), ��(�, �))} ∈ Sb . States s3 and s4 are variable
renamings of each other thus indistinguishable under � . They both express some block is
on block � and can be represented by the abstract state s5 = {��(���), ��(���, �)}.

Now we must define probabilistic bisimulation.

Definition 10 [cf. Baier and Katoen (2008)] Consider a b-bounded MDP Mb = ⟨Sb,Ab, Tb⟩ ,
a pCTL formula � and the finite set C of �-relevant constants, R ⊆ Sb × Sb is a probabilis-
tic bisimulation if for any pair of states ⟨s1, s2⟩ ∈ R :

1. s1 and s2 are indistinguishable under C, i.e. s1 ∼C s2
2. s1 and s2 have the identical probabilities of going to any other distinguishable states, i.e.

∀a ∈ A ∶ T(s1, a)(s) = T(s2, a)(s) for each s ∈ S∕R

s1 ∼C s2 ⟺ f (s1) = s2

5 More specifically, as compared to their work, this paper uses RMDPs instead of artifact systems, MDPs
instead of Kripke structures, ground states instead of databases, and probabilistic bisimulation instead of
bisimulation.
6 Indistinguishable states are also commonly called isomorphic states.

3824 Machine Learning (2022) 111:3797–3838

1 3

States s1 and s2 are called probabilistic bisimilar.
To prove Theorem 1, we must prove that M� and Mb indeed form a probabilistic bisimu-

lation. Propositions 1 and 2 will together prove Theorem 1, i.e. checking an ARMDP is
equivalent to checking its underlying state-bounded MDP.

Proposition 1 For an ARMDP M� = ⟨S�,Σ,�,W⟩ based on a b-bounded MDP
Mb = ⟨Sb,A,b Tb⟩ and a pCTL sentence � , if two states are indistinguishable, then they
either both can fire a transition rule or both cannot fire a transition rule. Formally, for any
transition rule of the form

if s1 ∼C s2 , then

for two indistinguishable substitutions �1 and �2.

Proposition 2 For an ARMDP M� = ⟨S�,Σ,�,W⟩ based on a b-bounded MDP
Mb = ⟨Sb,Ab, Tb⟩ and a pCTL sentence � , if two states are indistinguishable, then they
have the identical probabilities of going to any other distinguishable states. Formally, for
any transition rule � ∈ � of the form

if s1 ∼C s2 , then they define two sets of ground transition rules T(s1, ��1) and T(s2, ��2) that
share the same transition probabilities.

Propositions 1 and 2 have shown that the indistinguishable relation ∼C between an
ARMDP and its underlying state-bounded MDP is a probabilistic bisimulation. ∼C is an
equivalence relation such that two probabilistic bisimilar states exhibit identical behavior.
In other words, the ARMDP and the underlying MDP denote a mutual, step-wise simula-
tion of indistinguishable states. With a similar reasoning as in Belardinelli et al. (2011), we
conclude that the model checking problem for infinite, state-bounded MDPs is decidable as
it can be done on its corresponding finite ARMDP.

6.3 PCTL‑REBEL for infinite MDPs

PCTL-REBEL can handle an infinite, state-bounded RMDP by reasoning about its finite
abstraction. More formally, given an infinite RMDP with a step bound and a pCTL for-
mula, a finite ARMDP can be constructed and naturally checked by pCTL-REBEL. In
fact, as an ARMDP is just like an RMDP that concerns at most b objects in a state (see
Sect. 6.1), pCTL-REBEL requires only one adaption to restrict the state size. That is, all

Hi

pi∶�
←��������������� B

s1 ⪯�1
B ⟺ s2 ⪯�2

B

{H1

p1∶�
←����������������� B, ...,Hn

pn∶�
←����������������� B}

T(s1, ��1) ∶= {h1,i
pi∶��1
←���������������������� s1|Hi

p∶�
←������������� B ∈ �, s1 ⪯�1

B,

h1,i = (s1�B�1) ∪ Hi�1}

T(s2, ��2) ∶= {h2,i
pi∶��2
←���������������������� s2|Hi

p∶�
←������������� B ∈ �, s2 ⪯�2

B,

h2,i = (s2�B�2) ∪ Hi�2}

3825Machine Learning (2022) 111:3797–3838

1 3

states that have more than b objects must be eliminated. The number of objects in a state
bound is simply obtained by counting all variables and constants as OI-subsumption is
imposed. The adaption of maintaining the state bound is implemented in Regression
(Algorithm 2).

PCTL-REBEL for an infinite, state-bounded MDP is lifted and complete, just as like
pCTL-REBEL for a finite RMDP (see Sect. 5.2). We discuss properties of pCTL-REBEL
for state-bounded MDPs in detail.

Lifted. PCTL-REBEL checks a state-bounded, infinite RMDP that has a finite abstrac-
tion (namely, an ARMDP) at a lifted level. Specifically, pCTL-REBEL operates on the
ARMDP that is bisimilar to the underlying ground MDP. Checking an ARMDP is the
same as checking an RMDP, except that the state bound must be maintained.
Sound for step-bounded pCTL formulae. PCTL-REBEL is sound for step-bounded
pCTL formulae in an ARMDP. This is a consequence of Theorem 1 that shows check-
ing an ARMDP yields exactly the same results as checking its underlying MDP. PCTL-
REBEL is not sound for indefinite-horizon formulae but it achieves precise approxima-
tion in practice.
Complete. PCTL-REBEL is complete for checking ARMDPs as all states are assigned
a probability. PCTL-REBEL captures the entire state space by using an ordered set of
relational Vp-rules.

7 Experiments

We aim to answer the following questions in this section. Q1 and Q2 focus on the benefits
of pCTL-REBEL, and Q3-Q5 focus on the limitations of pCTL-REBEL.

Q1 What formulae can pCTL-REBEL check in practice?
Q2 How does pCTL-REBEL compare with state-of-the-art model checkers?
Q3 How well does pCTL-REBEL handle indefinite-horizon formulae?
Q4 How well does pCTL-REBEL handle a complex relational transition function?
Q5 What are the computational costs of different pCTL operators?

We implemented and validated an unoptimized pCTL-REBEL research prototype using
SWI-Prolog 8.0.2, with the constraint handling rules library. Experiments were run on a
2.4 GHz Intel i5 processor. We use the blocks world dataset7 and the box world dataset.8
We compare pCTL-REBEL with the state-of-the-art model checkers PRISM (Kwiatkowska
et al. 2011) and STORM (Dehnert et al. 2017).9 We set a time-out of 1800 s for all model
checkers. PCTL-REBEL’s state bound is sometimes referred as number of blocks/cities so
as to provide a direct comparison with PRISM and STORM that operate on ground models.

The blocks world and the box world datasets originate from IPPC-200810 and are
originally specified in the ppddl language. STORM and PRISM operate on the converted

7 https:// qcomp. org/ bench marks/# block sworld.
8 https:// qcomp. org/ bench marks/# boxwo rld.
9 The experiments will be made public once the paper is accepted.
10 http:// ippc- 2008. loria. fr/ wiki/ index. php/ Resul ts. html# Fully_ Obser vable_ Non- Deter minis tic_. 28FOND.
29_ track_2.

https://qcomp.org/benchmarks/#blocksworld
https://qcomp.org/benchmarks/#boxworld
http://ippc-2008.loria.fr/wiki/index.php/Results.html#Fully_Observable_Non-Deterministic_.28FOND.29_track_2
http://ippc-2008.loria.fr/wiki/index.php/Results.html#Fully_Observable_Non-Deterministic_.28FOND.29_track_2

3826 Machine Learning (2022) 111:3797–3838

1 3

prism-format files,11 and pCTL-REBEL operates on the converted prolog-format files.12
We discard the reward structure in the model. The blocks world dataset is simplified to
have the relations ��∕�, �����∕� and the action ����∕� that has a success probability of
0.9. The box world dataset has the relations ���∕�, ��∕�, ���∕�, ���−�����∕� and the
actions �����∕�, ����∕�, ������∕� . In the box world, ���(�, �) expresses a box is in a
city, ��(�, �) expresses a box is on a truck, and ���(�, �) expresses a truck is in a city. An
atom ���−�����(��, ��) expresses a road that directly connects �� and �� . A box can be
loaded on (����(�, �)) or unloaded from a truck (������(�, �)). A truck can travel from a
city to another (�����(�, ��, ��)). The ����∕� and ������∕� actions succeed with prob-
ability 0.9. The �����∕� action succeeds with probability 0.8.

7.1 Q1: What formulae can pCTL‑REBEL check in practice?

Although pCTL-REBEL can check any formulae of the pCTL language as discussed in
Sect. 3.2, in practice, some formulae are more costly than others. This experiment aims
at evaluating the computational costs of different pCTL formulae. Table 3 includes for-
mulae ranging from classic planning properties, i.e. reachability properties (Kersting et al.
2004; Boutilier et al. 2001; Sanner and Boutilier 2009), to more complex, nested pCTL
properties, e.g. the following �������(i, j) formula. Recall that �������(4, 2) was discussed in
Example 7, and its parse tree is in Fig. 4. Table 3 also includes a formula that has an indefi-
nite horizon, namely Property 5.

We now discuss Table 3 in detail. First, all formulae in Table 3 are checked against models
that have infinitely many objects, which is possible only because pCTL-REBEL uses lifted
inference. Second, pCTL-REBEL can handle classic planning tasks by formulating them
as reachability formulae (Property 1, 2, 5, Table 3) or constrained reachability formulae
(Property 3,6, Table 3). For example, Fig. 5 visualizes the solution to Property 2 in Table 3.
Third, pCTL-REBEL can check, in an infinite model, formulae that have an infinite hori-
zon (Property 5, Table 3). This property cannot be evaluated by an explicit-state model

�������(i, j) = �≥�.�[��(�)�
≤�(��(�, �)∧�≥�.�[�≥�.�[� ��(�)]�≤��(�, �)])]

Table 3 PCTL-REBEL can perform a range of pCTL properties in the infinite blocks and box worlds under
a time-out of 1800 seconds

Kersting et al. (2004) reported a runtime of roughly 10 min for this task

Domain Property Formula Runtime (s)

Blocks Bounded reachability with det. actions �≥�.�[�
≤����(�, �)] 11

Blocks Bounded reachability �≥�.�[�
≤����(�, �)] 226

Blocks Bounded constrained reachability �≥�.�[��(�, �)�
≤���(�, �)] 7.1

Blocks Nested �������(3, 1) 1554
Box Unbounded reachability �≥�.�[� ���(��, �����)] 0.7
Box Bounded constrained reachability �≥�.�[���(��, �����)�

≤����(��, �����)] 0.365

11 The ppddl models are first converted to the jani format by the ppddl2jani tool (attached in the datasets),
then converted to the prism format by ePMC (Hahn et al. 2014).
12 The ppddl models are translated to prolog models as PCTL-REBEL is implemented in prolog.

3827Machine Learning (2022) 111:3797–3838

1 3

checker as state space is infinite. Finally, pCTL-REBEL can handle nested formulae such
as �������(i, j) (Property 4, Table 3). Under a time-out of 1800 seconds, pCTL-REBEL
can compute �������(3, 1) , which is cheaper than computing �������(4, 2) . Nonetheless,
Fig. 6 visualizes the results of �������(4, 2) by relaxing the time-out. More discussion about
nested formulae will be in Q5.

7.2 Q2: How does pCTL‑REBEL compare with state‑of‑the‑art model checkers?

State-of-the-art model checkers STORM and PRISM do not operate on an RMDP as in Q1.
They require the RMDP to be grounded, which leads to a state explosion. This experiment

Fig. 5 The abstracts states that
satisfy �≥�.�[�≤����(�, �)] . Any
state subsumed by {��(�, �)} is a
goal state thus has a value 1. The
states that are further away from
the upper-left corner require
more successful actions to reach
{��(�, �)} thus have a smaller
probability

Fig. 6 Similar to Fig. 5, this
illustrates the abstract states that
satisfy �������(4, 2) in the blocks
world

3828 Machine Learning (2022) 111:3797–3838

1 3

evaluates how well STORM and PRISM handle such state explosions in practice. In par-
ticular, we show that pCTL-REBEL, by lifting, performs better in mitigating state explo-
sions in relational domains. While Q1 assumes that the given RMDP has an infinitely large
domain, in order to compare pCTL-REBEL with STORM and PRISM, this section consid-
ers finite domains such that explicit-state models can be generated. Furthermore, we incre-
ment the domain size by 1 to track the trends in computation time for all model checkers.

The state explosion problem is illustrated in Fig. 7, showing the number of ground
states (Slaney and Thiébaux 2001) and the corresponding ground transitions13 grow
much faster than the minimum number of abstract states.14 Even though all numbers grow

Fig. 7 The blocks world stats.
When the number of blocks
grows, the number of ground
states and the number of nonde-
terministic transitions explode
more than the minimum number
of abstract states

Fig. 8 The property
�≥�.�[�

≤����(�, �)] of is checked
by three model checkers. With
a time-out of 1800 seconds,
PRISM can handle at most 8
blocks with the explicit engine,
STORM can handle at most 9
blocks with the sparse engine,
and pCTL-REBEL can handle
15 blocks

13 The number of ground transitions is obtained from the STORM model checker.
14 The minimum number of abstract states is the number of integer partitions that capture all rela-
tional structures. For example, for three blocks, there are three abstract states {��(�), ��(�), ��(�)} ,
{��(�), ��(�), ��(�, �)} and {��(�), ��(�, �), ��(�, �)}.

3829Machine Learning (2022) 111:3797–3838

1 3

exponentially, the minimum number of abstract states is the most resistant to the growth of
the domain size.

We compare the scalability of the three model checkers (including 4 PRISM engines
and 3 STORM engines) in the blocks world. We could essentially select any pCTL prop-
erty for the comparison. Nonetheless, for simplicity, we use a simple reachability property
�≥�.�[�

≤����(�, �)] (Property 2, Table 3). We measure how the runtime grows with respect
to the domain size, shown in Fig. 8. The results show that pCTL-REBEL is more scal-
able than any PRISM or STORM engine in relational domains. Under a time-out of 1800
seconds, pCTL-REBEL can handle 15 blocks (6.6e13 ground states) whereas PRISM can
handle at most 8 blocks (4.0e5 ground states) and STORM can handle at most 9 blocks
(4.6e6 ground states).

We analyze Fig. 8 to compare lifting with other optimization techniques. Observe
that Fig. 8 categorizes all engines in three groups: (1) relational model checking: pCTL-
REBEL, (2) symbolic model checking: PRISM’s mtbdd, sparse, hybrid engines and
STORM’s dd, hybrid engines, and (3) explicit-state model checking: PRISM’s explicit
engine and STORM’s sparse engine. Compared to pCTL-REBEL, not only the explicit-
state approaches but also the symbolic approaches are much less resilient to the growth of
the domain size. Clearly, although symbolic model checking methods are known to be able
to handle large domains, their ability of handling state explosions in relational domains is
limited. Furthermore, unlike other engines, the runtime of pCTL-REBEL saturates when
the domain grows to a certain extent. This phenomenon is a consequence of lifted infer-
ence, reflecting that the number of relational structures will eventually saturate.

7.3 Q3: How well does pCTL‑REBEL handle indefinite‑horizon formulae?

PCTL-REBEL suffers from runtime explosions when checking a formula that has an indef-
inite horizon. In specific, the runtime grows exponentially with respect to the horizon. This

Fig. 9 The results obtained from checking the reachability property �≥�.�[� ��(�, �)] in the blocks world. a
The runtime increases exponentially to the number of required iterations. Most of the runtime is taken by
the value convergence stage. b The later iterations are more expensive than the earlier iterations

3830 Machine Learning (2022) 111:3797–3838

1 3

experiment aims at analyzing the cause of the runtime explosion. We use the reachability
property �≥�.�[� ��(�, �)] that has an indefinite horizon.

To analyze the cause of the runtime explosion, we split the iterations of checking an
indefinite-horizon formula into two stages: (1) the state recognition stage and (2) the value
convergence stage. In the state recognition stage, pCTL-REBEL identifies new satisfying
states in each iteration. This stage ends when no more new satisfying states are found. In
the value convergence stage, pCTL-REBEL does not discover new states, and only updates
probabilities of all identified states until convergence. Notice that these two stages are just
for analyzing purposes as pCTL-REBEL conducts exactly the same computation in all iter-
ations in both stages.

We show the runtime growth of �≥�.�[� ��(�, �)] in Fig. 9 with respect to the domain
size. Fig. 9a shows the runtime explodes with respect to the number of required iterations,
and illustrates that most of the runtime is taken by the value convergence stage. Moreover,
Fig. 9b shows that within one checking process, later iterations are more expensive than
earlier iterations. This means that although the job of the value convergence state is seem-
ingly easier than the state recognition stage, in practice, it takes more time. This extra com-
putation time comes from pCTL-REBEL’s attempts at identifying new states in the value
convergence stage.

In summary, pCTL-REBEL suffers from a runtime explosion when handling indefinite
formulae. The main cause is the redundant computation conducted in the value conver-
gence stage. That is, pCTL-REBEL performs the same computation without being aware
of the two-stage nature of the model checking process. This problem can be mitigated by
optimizing the algorithm so as to reduce the time taken by the second stage. The optimiza-
tion should benefit all indefinite-horizon formulae.

7.4 Q4: How well does pCTL‑REBEL handle a complex relational transition function?

The use of abstract actions is key to the scalability of RMDPs as it allows for reasoning about
a large group of ground actions as a whole. Roughly speaking, the more ground actions an
abstract action captures, the more scalable pCTL-REBEL can be. For example, the blocks
world domain has a simple ���� abstract action (see Fig. 1) that captures countless ground
actions. Therefore, pCTL-REBEL is very scalable to the growth of the domain size. How-
ever, it is common to have constraints on the action, which significantly harms scalability. An
action constraint harms scalability by prohibiting certain substitutions for an abstract action.
In other words, it forces the abstract action to depend on the true identity of some objects.
Action constraints break relational structures and result in non-symmetric transition func-
tions. The resulting transition function consists of more rules and cannot be represented as
compactly anymore. We call this constrained transition functions relationally complex.

The following example illustrates action constraints. Consider a box world domain
where the action �����(�, ��, ��) is constrained by the underlying road map below.15 A
truck � can drive from �� to �� only if ���−�����(��, ��) exists.

15 The road networks are automatically generated by the box world dataset.

3831Machine Learning (2022) 111:3797–3838

1 3

can-drive(city0,city2).
can-drive(city0,city1).
can-drive(city0,city6).
can-drive(city1,city0).
can-drive(city1,city6).
can-drive(city1,city3).
can-drive(city1,city4).
can-drive(city1,city2).
can-drive(city1,city5).
can-drive(city2,city0).

can-drive(city2,city1).
can-drive(city2,city6).
can-drive(city3,city1).
can-drive(city3,city6).
can-drive(city3,city4).
can-drive(city3,city5).
can-drive(city4,city1).
can-drive(city4,city3).
can-drive(city4,city6).
can-drive(city4,city5).

can-drive(city5,city4).
can-drive(city5,city1).
can-drive(city5,city3).
can-drive(city6,city0).
can-drive(city6,city1).
can-drive(city6,city2).
can-drive(city6,city3).
can-drive(city6,city4).

This experiment examines how well pCTL-REBEL handles complex relational
transition functions. We use the reachability property � = �≥�.�[� ���(��, �����)] and
automatically generated road maps. Figure 10 shows the results that pCTL-REBEL
can handle a road map containing at most 8 cities under a time-out of 1800 seconds.
The runtime increases exponentially with respect to the size of the road network.
Recall that without a road network, it takes only 0.7 seconds to check � (see Property
5, Table 3). Since the road network makes the model dynamics more complex, more
transition rules are required, resulting in runtime explosions. In short, pCTL-REBEL
works the best when the dynamics of the objects is simple, e.g. in the blocks world or
in the box world without a road map.

Fig. 10 The results obtained from checking the reachability property �≥�.�[� ���(��, �����)] in the box
world. The runtime increases exponentially when the transition structure becomes more complex

3832 Machine Learning (2022) 111:3797–3838

1 3

7.5 Q5: What are the computational costs of different pCTL operators?

It is crucial to know what kind of formulae pCTL-REBEL can handle efficiently when
designing properties for a model. This experiment aims at giving insight into how dif-
ferent factors affect pCTL-REBEL’s performance.

Some path operators are more costly than others. e.g. the � operator is the cheap-
est since it requires only one iteration. The reachability operator � is generally more
expensive than the constrained reachability operator � since � is a stricter operator that
prunes out more states. For example, checking �≤�.�[�≤� ��(�, �)] (18.494 seconds) is
more costly than checking �≤�.�[��(�, �) �≤� ��(�, �)] (0.733 seconds). A nested formula
is more costly than a flat formula since it requires several recursive checking processes.

The formula structure also influences runtime. Specifically, changing an inner step
bound has a larger impact than changing an outer step bound. Taking the formula
�������(i, j) (defined in Q1) for example, the parameters � and � are both step bounds for
� formulae, but � is attached to an outer subformula and � is attached to the inner sub-
formula. Hence, the total runtime is more sensitive to the change in � than to the change
in � , as shown in Fig. 11. The cause of this difference is that the inner formulae are
computed before the outer formulae. By changing an inner step bound, the number of
satisfying states for the inner subformula changes, which directly influence the overhead
of computing the outer subformulae.

8 Related work

We have introduced pCTL-REBEL, a relational model checking technique that reasons
at the relational level and mitigates the state explosion problem in relational MDPs.
PCTL-REBEL extends existing frameworks. First, pCTL-REBEL extends pCTL model
checking with relational representations. As far as the authors know, pCTL-REBEL is
the first relational technique for pCTL model checking. Second, pCTL-REBEL extends
the decidability results of infinite, state-bounded MDPs to the probabilistic setting.

Fig. 11 The runtime of
�������(i, j) for different values of
i and j. The argument i is the step
bound of the outer � operator,
and j is the step bound of the
inner � operator. The runtime
grows exponentially when either
step bound increases. However,
the runtime is more sensitive to
the inner step bound j

3833Machine Learning (2022) 111:3797–3838

1 3

To mitigate the state explosion problem in model checking, several grouping tech-
niques have been proposed. Different from our work, the following methods exploit
various types of symmetries other than relational structures. Symbolic model check-
ing (McMillan 1993) is a form of model checking that symbolically represents the
state space and the set of states in which a formula holds. Symbolic model checking is
often implemented using BDDs that are Boolean formulae in canonical form, in which
isomorphic subformulae are shared, to allow efficient operations on the sets of states
that they represent. Symbolic model checking has been first used for model checking
of plain non-probabilistic finite state systems (McMillan 1993), then later adapted to
the probabilistic case in Forejt et al. (2011). Contrary to our algorithm, these symbolic
methods only apply to finite state MDPs. Another method to mitigate the state explosion
problem is abstraction-refinement, which successively generates abstractions by parti-
tioning the state space into regions. Therefore, the model checking algorithms handle
regions instead of individual states (de Alfaro and Roy 2007; Roy et al. 2008). These
techniques focus on grouping states into regions which have similar local properties but
such regions are usually not exact as the states in a region can have different dynamics
and future evaluations. Similarly, Marthi (2007) uses abstract MDP to aggregate not
only states but also actions by exploiting the temporal dependency of actions. In addi-
tion, game-based abstraction techniques construct abstractions of MDPs by merging
concrete transitions into abstract transitions (Kattenbelt et al. 2008). Different from our
work, for the abstractions, they calculate approximate upper and lower bounds instead
of exact values.

Many studies integrate model checking techniques into other AI fields. In planning, authors
compute the optimal policy at the first-order level using value iteration (Boutilier et al. 2001;
Sanner and Boutilier 2009; Kersting et al. 2004), which can be seen as a probabilistic reacha-
bility task, namely a special case of the general probabilistic model checking problem. PCTL-
REBEL generalizes this special case with a temporal logic thus fits in the Planning as Model
Checking paradigm (Giunchiglia and Traverso 2000). In robotics, model checking techniques
are used for online motion planning (Lahijanian et al. 2012; Maly et al. 2013; He et al. 2015)
where the states are labeled with propositions. These propositions result in a multidimensional
state space that grows exponentially with the domain size (He et al. 2015), which is the exact
problem that this paper tackles. Generally, our work can be applied a wide range of frame-
works that have a large model, particularly in relational domains.

There is a fruitful literature on theoretical results of infinite systems. Particularly, the state-
boundedness condition for decidable verification has been defined in first-order mu-calcu-
lus (Bagheri Hariri et al. 2013; Calvanese et al. 2018; De Giacomo et al. 2012; De Giacomo
et al. 2015) and first-order CTL (Belardinelli et al. 2011, 2012). However, these studies focus
on the non-probabilistic setting. Our work contributes to extending the theoretical results to
stochastic models by introducing the abstract relational MDP. A limitation of the relational
pCTL language is that it does not support quantification across conjunctions, which could be
investigated as described in the work of Belardinelli et al. (2013).

9 Towards safe reinforcement learning

Recently, a converging interest has emerged about the pursuit of general dynamic
systems that can autonomously reason and learn by interacting with the environ-
ment (Giacomo 2019). Since such systems require the ability of reasoning about

3834 Machine Learning (2022) 111:3797–3838

1 3

first-order state representations and safety (Amodei et al. 2016), pCTL-REBEL fits in
as a first-order model checking technique that is also particularly relevant in safe rein-
forcement learning.

Safe reinforcement learning is the process of learning a policy that maximizes the
expected reward in domains where safety constraints must be respected. In particular,
safe exploration, i.e. guaranteeing an agent’s safety in the exploration phase, is a non-
trivial problem. Commonly used exploration strategies such as �-greedy and softmax
sometimes select a random action, which can result in catastrophic situations (Amodei
et al. 2016). Existing research recognizes the importance of providing safety guaran-
tees in reinforcement learning (Garcia and Fernández 2015; Pecka and Svoboda 2014;
Lahijanian et al. 2012; Teichteil-Königsbuch 2012; Sprauel et al. 2014; Giunchiglia
and Traverso 2000; Mason et al. 2018; Hasanbeig et al. 2019; Alshiekh et al. 2018;
Jansen et al. 2020). However, most studies are based on techniques that require explicit
state exploration whereas only few studies touch on safe exploration in relational
domains (Driessens and Džeroski 2004; Martínez et al. 2017) Furthermore, several
studies have investigated augmenting reinforcement learning with model checking
techniques, including preventing the agent from taking risky actions (Alshiekh et al.
2018; Jansen et al. 2020; Fulton and Platzer 2018), synthesizing an initial safe partial
policy for learning (Leonetti et al. 2012), learning a policy that maximizes the proba-
bility of satisfying a temporal formula (Hasanbeig et al. 2019), and shaping the reward
function based on a temporal formula (De Giacomo et al. 2019). These approaches can
be augmented with our work for scalability in large relational domains.

PCTL-REBEL can be used as a safe model-based reinforcement learning algorithm
as it performs value iteration in a setting where goal states and safety constraints are
formulated as pCTL formulae. More precisely, it derives the states in an RMDP that
satisfy a given (relational) pCTL formula that encodes goal states and safety con-
straints. Indeed, pCTL-REBEL tackles a special safe reinforcement learning task
where the reward is 1 for goal states and 0 for all other states, and the discount factor
is 1 (Kersting et al. 2004; Yoon et al. 2012; Otterlo 2004). Formally, pCTL-REBEL in
this paper

is a special case of the standard Bellman operator

where r is a reward value in ℝ.
It is an interesting avenue for further research to investigate representing general

reward functions within this framework. Furthermore, pCTL-REBEL can be naturally
combined with relational reinforcement learning (Džeroski et al. 2001) to achieve safe
relational reinforcement learning as both frameworks use relational representations
and work at an abstract level rather than at the ground level.

V
p

0
(s) =

{
0 ,∀s ∉ G

1 ,∀s ∈ G

V
p

t+1
(s) = max

a

∑

s�

T(s, a, s�)V
p

t (s
�)

V
p

0
(s) =

{
0 ,∀s ∉ G

r ,∀s ∈ G

V
p

t+1
(s) = max

a

∑

s�

T(s, a, s�)[R(s, a, s�) + �V
p

t (s
�)]

3835Machine Learning (2022) 111:3797–3838

1 3

10 Conclusions

We have introduced a framework for lifted model checking in relational domains. To this
aim, relational Markov Decision Processes have been integrated with model checking prin-
ciples for pCTL. The result is a very expressive framework for model checking in proba-
bilistic planning domains that are relational, that is, involve objects as well as the relations
among them. The framework is lifted in that it does not require to first ground the relational
MDP and then exhaustively check all possible paths, but rather works at a more abstract
relational level where variables are only instantiated whenever needed. The resulting algo-
rithm is based on the relational Bellman operator REBEL. It is quite complex but manages
to rather compactly compress enormous spaces of ground states in a couple of 10s of rules.
The algorithm has not yet been optimized, and one route for further work is to combine
pCTL-REBEL with expressive first order decision diagrams (Wang et al. 2008) to gain
efficiency and to further compress the abstract states. Another route for further work is
to explore the use of pCTL-REBEL for reasoning and reinforcement learning in safety-
critical contexts.

Acknowledgements This work was supported by the FNRS-FWO joint programme under EOS No.
30992574. It has also received funding from the Flemish Government under the “Onderzoeksprogramma
Artificiële Intelligentie (AI) Vlaanderen” programme, the EU H2020 ICT48 project “TAILOR” under con-
tract #952215, the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation, and the KU Leuven Research fund.

References

Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., & Topcu, U. (2018). Safe reinforcement
learning via shielding. In: Proceedings of the 32nd AAAI conference on artificial intelligence, (AAAI-
18), the 30th innovative applications of artificial intelligence (IAAI-18), and the 8th AAAI symposium
on educational advances in artificial intelligence (EAAI-18), New Orleans, Louisiana, USA, February
2–7, 2018, (pp. 2669–2678).

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., & Mané, D. (2016). Concrete problems in
AI safety. arXiv: 1606. 06565.

Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., & Montali, M. (2013). Verification of rela-
tional data-centric dynamic systems with external services (Vol. ’13, pp. 163–174). PODS. https:// doi.
org/ 10. 1145/ 24636 64. 24652 21

Baier, C., & Katoen, J. P. (2008). Principles of model checking (representation and mind series). The MIT
Press.

Belardinelli, F., Lomuscio, A., & Patrizi, F. (2011). Verification of deployed artifact systems via data
abstraction. In G. Kappel, Z. Maamar, & H. R. Motahari-Nezhad (Eds.), Service-oriented computing
(pp. 142–156). Springer.

Belardinelli, F., Lomuscio, A., & Patrizi, F. (2012). An abstraction technique for the verification of artifact-
centric systems. In Proceedings of the thirteenth international conference on principles of knowledge
representation and reasoning, KR (pp. 319–328). AAAI Press.

Belardinelli, F., Lomuscio, A., & Patrizi, F. (2013). Verification of agent-based artifact systems. CoRR.
arXiv: 1301. 2678

Boutilier, C., Reiter, R., & Price, B. (2001). Symbolic dynamic programming for first-order mdps. In: Pro-
ceedings of the 17th international joint conference on artificial intelligence (vol. 1, pp. 690–697). Mor-
gan Kaufmann Publishers Inc. IJCAI’01. http:// dl. acm. org/ citat ion. cfm? id= 16420 90. 16421 84

Calvanese, D., Giacomo, G. D., Montali, M., & Patrizi, F. (2018). First-order �-calculus over generic transi-
tion systems and applications to the situation calculus. Information and Computation, 259, 328 – 347.
https:// doi. org/ 10. 1016/j. ic. 2017. 08. 007. 22nd International Symposium on Temporal Representation
and Reasoning.

http://arxiv.org/abs/1606.06565
https://doi.org/10.1145/2463664.2465221
https://doi.org/10.1145/2463664.2465221
http://arxiv.org/abs/1301.2678
http://dl.acm.org/citation.cfm?id=1642090.1642184
https://doi.org/10.1016/j.ic.2017.08.007

3836 Machine Learning (2022) 111:3797–3838

1 3

de Alfaro, L., & Roy, P. (2007). Magnifying-lens abstraction for Markov decision processes. In W. Damm &
H. Hermanns (Eds.), Computer Aided Verification (pp. 325–338). Springer.

De Giacomo, G., Lespérance, Y., & Patrizi, F. (2012). Bounded situation calculus action theories and decid-
able verification. In Proc of KR 12.

De Giacomo, G., Lespérance, Y., & Patrizi, F. (2015). Bounded situation calculus action theories. CoRR.
http:// arxiv. org/ abs/ 1509. 02012

De Giacomo, G., Iocchi, L., Favorito, M., & Patrizi, F. (2019). Foundations for restraining bolts: Reinforce-
ment learning with ltlf/ldlf restraining specifications. Proceedings of the International Conference on
Automated Planning and Scheduling, 29(1), 128–136. https:// ojs. aaai. org/ index. php/ ICAPS/ artic le/
view/ 3549

de Salvo Braz, R., Amir, E., & Roth, D. (2005). Lifted first-order probabilistic inference. In: Proceedings of
the 19th International Joint Conference on Artificial Intelligence (pp. 1319–1325). Edinburgh, Scotland.
Morgan Kaufmann Publishers Inc. San Francisco

De Raedt, L., Kersting, K., Natarajan, S., & Poole, D. (2016). Statistical relational artificial intelligence:
Logic, probability, and computation. Synthesis Lectures on Artificial Intelligence and Machine Learn-
ing, 10(2), 1–189. https:// doi. org/ 10. 2200/ S0069 2ED1V 01Y20 1601A IM032

Dehnert, C., Junges, S., Katoen, J. P., & Volk, M. (2017). A storm is coming: A modern probabilistic model
checker. In R. Majumdar & V. Kunčak (Eds.), Computer aided verification (pp. 592–600). Springer.

Driessens, K., & Džeroski, S. (2004). Integrating guidance into relational reinforcement learning. Machine
Learning, 57, 271–304. https:// doi. org/ 10. 1023/B: MACH. 00000 39779. 47329. 3a

Džeroski, S., De Raedt, L., & Driessens, K. (2001). Relational Reinforcement Learning. Machine learning,
43(1–2), 7–52.

Ferilli, S., Fanizzi, N., Mauro, N. D., & Basile, T. M. A. (2002). Efficient theta-subsumption under object
identity. In In atti del workshop AI*IA su apprendimento automatico.

Forejt, V., Kwiatkowska, M., Norman, G., & Parker, D. (2011). Automated verification techniques for prob-
abilistic systems (pp. 53–113). Springer. https:// doi. org/ 10. 1007/ 978-3- 642- 21455-4_3

Fulton, N., & Platzer, A. (2018). Safe reinforcement learning via formal methods: Toward safe control
through proof and learning. In AAAI (pp. 6485–6492). https:// www. aaai. org/ ocs/ index. php/ AAAI/
AAAI18/ paper/ view/ 17376

Gabbay, D. M. (2003). Many-dimensional modal logics: Theory and applications. Elsevier North Holland.
Garcia, J., & Fernández, F. (2015). A comprehensive survey on safe reinforcement learning. Journal of

Machine Learning Research, 16, 1437–1480.
Giacomo, G. D. (2019). Queryable self-deliberating dynamic systems. iJCAI. https:// www. cse. ust. hk/ pg/

semin ars/ S19/ giaco mo. html
Giunchiglia, F., & Traverso, P. (2000). Planning as model checking. In S. Biundo & M. Fox (Eds.), Recent

advances in AI planning (pp. 1–20). Springer.
Haddad, S., & Monmege, B. (2014). Reachability in MDPs: Refining convergence of value iteration (Vol.

8762, pp. 125–137). Springer. https:// doi. org/ 10. 1007/ 978-3- 319- 11439-2_ 10
Hahn, E. M., Li, Y., Schewe, S., Turrini, A., & Zhang, L. (2014). IscasMC: A web-based probabilistic

model checker (Vol. 8442, pp. 312–317). Springer.
Hasanbeig, M., Kantaros, Y., Abate, A., Kroening, D., Pappas, G. J., & Lee, I. (2019). Reinforcement learn-

ing for temporal logic controlsynthesis with probabilistic satisfaction guarantees. In 2019 IEEE 58th
conference on decision and control (CDC) (pp. 5338–5343).

He, K., Lahijanian, M., Kavraki, L. E., & Vardi, M. Y. (2015). Towards manipulation planning with tem-
poral logic specifications. In 2015 IEEE international conference on robotics and automation (ICRA)
(pp. 346–352). https:// doi. org/ 10. 1109/ ICRA. 2015. 71390 22

Jansen, N., Könighofer, B., Junges, S., Serban, A., & Bloem, R. (2020). Safe reinforcement learning using
probabilistic shields. In I. Konnov, L. Kovacs (Eds.), 31st international conference on concurrency
theory, CONCUR 2020, Schloss Dagstuhl–Leibniz–Zentrum fur informatik GmbH (pp. 31–316). Dag-
stuhl Publishing. https:// doi. org/ 10. 4230/ LIPIcs. CONCUR. 2020.3

Kattenbelt, M., Kwiatkowska, M., Norman, G., & Parker, D. (2008). Game-based probabilistic predicate
abstraction in prism. Electronic Notes in Theoretical Computer Science, 2203, 5–21, https:// doi. org/
10. 1016/j. entcs. 2008. 11. 016. Proceedings of the Sixth Workshop on Quantitative Aspects of Program-
ming Languages (QAPL 2008).

Kersting, K. (2012). Lifted probabilistic inference. In ECAI (pp. 33–38).
Kersting, K., & De Raedt, L. (2004). Logical Markov decision programs and the convergence of logical

td(�). In R. Camacho, R. King, & A. Srinivasan (Eds.), Inductive logic programming (pp. 180–197).
Springer.

http://arxiv.org/abs/1509.02012
https://ojs.aaai.org/index.php/ICAPS/article/view/3549
https://ojs.aaai.org/index.php/ICAPS/article/view/3549
https://doi.org/10.2200/S00692ED1V01Y201601AIM032
https://doi.org/10.1023/B:MACH.0000039779.47329.3a
https://doi.org/10.1007/978-3-642-21455-4_3
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17376
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17376
https://www.cse.ust.hk/pg/seminars/S19/giacomo.html
https://www.cse.ust.hk/pg/seminars/S19/giacomo.html
https://doi.org/10.1007/978-3-319-11439-2_10
https://doi.org/10.1109/ICRA.2015.7139022
https://doi.org/10.4230/LIPIcs.CONCUR.2020.3
https://doi.org/10.1016/j.entcs.2008.11.016
https://doi.org/10.1016/j.entcs.2008.11.016

3837Machine Learning (2022) 111:3797–3838

1 3

Kersting, K., Otterlo, M. V., & De Raedt, L. (2004). Bellman goes relational. In Proceedings of the 21st
international conference on machine learning. ACM, ICML ’04 (p. 59). https:// doi. org/ 10. 1145/ 10153
30. 10154 01

Kwiatkowska, M., Norman, G., & Parker, D. (2011). In G. Gopalakrishnan & S. Qadeer (Eds.), PRISM 4.0:
Verification of probabilistic real-time systems (Vol. 6806, pp. 585–591). Springer.

Lahijanian, M., Andersson, S. B., & Belta, C. (2012). Temporal logic motion planning and control with
probabilistic satisfaction guarantees. IEEE Transactions on Robotics, 28(2), 396–409. https:// doi. org/
10. 1109/ TRO. 2011. 21721 50

Leonetti, M., Iocchi, L., & Patrizi, F. (2012). Automatic generation and learning of finite-state controllers.
In A. Ramsay & G. Agre (Eds.), Artificial intelligence: Methodology, systems, and applications (pp.
135–144). Springer.

Maly, M. R., Lahijanian, M., Kavraki, L. E., Kress-Gazit, H., & Vardi, M. Y. (2013). Iterative temporal
motion planning for hybrid systems in partially unknown environments. In Proceedings of the 16th
international conference on hybrid systems: Computation and control, association for computing
machinery (pp. 353–362). HSCC ’13. https:// doi. org/ 10. 1145/ 24613 28. 24613 80

Marthi, B. (2007). Automatic shaping and decomposition of reward functions. In Proceedings of the 24th
international conference on machine learning, association for computing machinery (pp. 601–608).
ICML ’07. https:// doi. org/ 10. 1145/ 12734 96. 12735 72

Martínez, D., Alenyç, G., & Torras, C. (2017). Relational reinforcement learning with guided demonstra-
tions. Artificial Intelligence, 247, 295 – 312. https:// doi. org/ 10. 1016/j. artint. 2015. 02. 006. Special Issue
on AI and Robotics.

Mason, G., Calinescu, R., Kudenko, D., & Banks, A. (2018). Assurance in reinforcement learning using
quantitative verification (pp. 71–96). Springer. https:// doi. org/ 10. 1007/ 978-3- 319- 66790-4_5

McMillan, K. L. (1993). Symbolic model checking (pp. 25–60). Springer. https:// doi. org/ 10. 1007/
978-1- 4615- 3190-6_3

Nienhuys-Cheng, S. H., & Wolf, R. (1997). Foundations of inductive logic programming. Springer.
Otterlo, M. V. (2004). Reinforcement learning for relational MDPS. In Proceedings of the machine learning

conference of Belgium and the Netherlands.
Pecka, M., & Svoboda, T. (2014). Safe exploration techniques for reinforcement learning—An overview. In

J. Hodicky (Ed.), Modelling and simulation for autonomous systems (pp. 357–375). Springer.
Roy, P., Parker, D., Norman, G., & De Alfaro, L. (2008). Symbolic magnifying lens abstraction in Markov

decision processes (pp. 3–112). https:// doi. org/ 10. 1109/ QEST. 2008. 41.
Sanner, S., & Boutilier, C. (2009). Practical solution techniques for first-order mdps. Artificial Intelli-

gence, 173(5), 748–788. https:// doi. org/ 10. 1016/j. artint. 2008. 11. 003. Advances in Automated Plan
Generation

Slaney, J., & Thiébaux, S. (2001). Blocks world revisited. Artificial Intelligence, 125(1), 119–153. https://
doi. org/ 10. 1016/ S0004- 3702(00) 00079-5

Sprauel, J., Kolobov, A., & Teichteil-Königsbuch, F. (2014). Saturated path-constrained mdp: Planning
under uncertainty and deterministic model-checking constraints. In 28th AAAI conference on artificial
intelligence. AAAI Press. https:// www. micro soft. com/ en- us/ resea rch/ publi cation/ satur ated- path- const
rained- mdp- plann ing- uncer tainty- deter minis tic- model- check ing- const raints/

Teichteil-Königsbuch, F. (2012). Path-Constrained Markov Decision Processes: bridging the gap between
probabilistic model-checking and decision-theoretic planning. In 20th European conference on arti-
ficial intelligence (ECAI 2012). MONTPELLIER. https:// hal- onera. archi ves- ouver tes. fr/ hal- 01060 349

Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., & De Raedt, L. (2011). Lifted probabilistic infer-
ence by first-order knowledge compilation. In Proceedings of the 22nd international joint conference
on artificial intelligence, AAAI Press/international joint conferences on artificial intelligence, Menlo
(pp. 2178–2185).

Wang, C., Joshi, S., & Khardon, R. (2008). First order decision diagrams for relational MDPs. Journal of
Artificial Intelligence Research, 31, 431–472.

Yoon, S. W., Fern, A., & Givan, R. (2012). Inductive policy selection for first-order mdps. arXiv: 1301. 0614.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1145/1015330.1015401
https://doi.org/10.1145/1015330.1015401
https://doi.org/10.1109/TRO.2011.2172150
https://doi.org/10.1109/TRO.2011.2172150
https://doi.org/10.1145/2461328.2461380
https://doi.org/10.1145/1273496.1273572
https://doi.org/10.1016/j.artint.2015.02.006
https://doi.org/10.1007/978-3-319-66790-4_5
https://doi.org/10.1007/978-1-4615-3190-6_3
https://doi.org/10.1007/978-1-4615-3190-6_3
https://doi.org/10.1109/QEST.2008.41
https://doi.org/10.1016/j.artint.2008.11.003
https://doi.org/10.1016/S0004-3702(00)00079-5
https://doi.org/10.1016/S0004-3702(00)00079-5
https://www.microsoft.com/en-us/research/publication/saturated-path-constrained-mdp-planning-uncertainty-deterministic-model-checking-constraints/
https://www.microsoft.com/en-us/research/publication/saturated-path-constrained-mdp-planning-uncertainty-deterministic-model-checking-constraints/
https://hal-onera.archives-ouvertes.fr/hal-01060349
http://arxiv.org/abs/1301.0614

3838 Machine Learning (2022) 111:3797–3838

1 3

Authors and Affiliations

Wen‑Chi Yang1 · Jean‑François Raskin2 · Luc De Raedt3

 Jean-François Raskin
 jean-francois.raskin@ulb.be

 Luc De Raedt
 luc.deraedt@kuleuven.be

1 Department of Computer Science, KU Leuven, Celestijnenlaan 200a, Box 2402, 3001 Leuven,
Belgium

2 Université libre de Bruxelles, Campus de la Plaine, CP212, 1050 Bruxelles, Belgium
3 Centre for Applied Autonomous Sensor Systems, Örebro University, Örebro, Sweden

	Lifted model checking for relational MDPs
	Abstract
	1 Introduction
	2 Relational notions and relational MDPs
	2.1 Relational logic
	2.2 Relational MDP
	2.3 Grounding an RMDP

	3 Model checking for relational MDPs
	3.1 Probabilistic reachability
	3.2 Relational pCTL
	3.3 The relational model checking problem

	4 PCTL relational Bellman operator
	4.1 PCTL relational Bellman operator
	4.2 Logical regression
	4.3 -Rules generation
	4.4 -Rules generation
	4.5 PCTL-REBEL illustration
	4.5.1 PCTL-REBEL on Formula 1:
	4.5.2 PCTL-REBEL on Formula 2:

	5 Main contribution: a relational model checker
	5.1 The pCTL-REBEL model checking algorithm
	5.2 Properties of PCTL-REBEL

	6 Relational model checking for infinite MDPs
	6.1 Abstract MDP: a finite abstraction of an infinite RMDP
	6.2 Decidable model checking for ARMDPs
	6.3 PCTL-REBEL for infinite MDPs

	7 Experiments
	7.1 Q1: What formulae can pCTL-REBEL check in practice?
	7.2 Q2: How does pCTL-REBEL compare with state-of-the-art model checkers?
	7.3 Q3: How well does pCTL-REBEL handle indefinite-horizon formulae?
	7.4 Q4: How well does pCTL-REBEL handle a complex relational transition function?
	7.5 Q5: What are the computational costs of different pCTL operators?

	8 Related work
	9 Towards safe reinforcement learning
	10 Conclusions
	Acknowledgements
	References

