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Abstract
It has been shown that dimension reduction methods such as Principal Component Anal-
ysis (PCA) may be inherently prone to unfairness and treat data from different sensitive 
groups such as race, color, sex, etc., unfairly. In pursuit of fairness-enhancing dimension-
ality reduction, using the notion of Pareto optimality, we propose an adaptive first-order 
algorithm to learn a subspace that preserves fairness, while slightly compromising the 
reconstruction loss. Theoretically, we provide sufficient conditions that the solution of the 
proposed algorithm belongs to the Pareto frontier for all sensitive groups; thereby, the opti-
mal trade-off between overall reconstruction loss and fairness constraints is guaranteed. 
We also provide the convergence analysis of our algorithm and show its efficacy through 
empirical studies on different datasets, which demonstrates superior performance in com-
parison with state-of-the-art algorithms. The proposed fairness-aware PCA algorithm can 
be efficiently generalized to multiple group sensitive features and effectively reduce the 
unfairness decisions in downstream tasks such as classification.
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1  Introduction

Recent advances in machine learning (ML) have vastly improved the capabilities of com-
putational reasoning in complex domains. From tasks like image and video processing, 
game playing, text classification, to complex data analysis, machine learning is continually 
finding new applications and exceeding human-level performance in some cases. Neverthe-
less, when machine learning models are trained on real data, the existing societal inequali-
ties in data are manifested on the systems built upon them that could mislead models in 
ways that can have profound fairness implications such as being biased to sensitive features 
like race or gender. As more critical systems employ ML, such as financial systems, hiring 
and admissions, healthcare, and law, it is vitally important that we develop rigorous fair 
algorithms that are as accurate as possible.

Recently, the growing attention to the fairness problem in algorithmic decision-mak-
ing systems has led to unprecedented attempts to revisit machine learning models for 
supervised and unsupervised tasks to satisfy fairness constraints (Munoz et al. 2016). An 
expanding line of works are dedicated to define different metrics for fairness problems and 
mechanisms to satisfy those measures in learning tasks such as Hardt et al. (2016), Zafar 
et al. (2015, 2017a, 2017b), Calders et al. (2009), Calders and Verwer (2010), Kamishima 
et al. (2011), and Agarwal et al. (2018). The work on this realm is focused on biased data 
or biased algorithms; however, using these biased algorithms in decision-making systems 
would lead to generating more biased data. This makes the causality of the fairness prob-
lem more complicated that exacerbates the problem even further (Barocas et al. 2017; Ghili 
et al. 2019).

Notwithstanding these efforts for fairness problem in supervised learning, fairness in 
unsupervised learning tasks has not been explored thoroughly. This is despite the fact 
that unsupervised learning tasks such as dimension reductions are mostly preceding those 
supervised ones, in the training procedures. Hence, having fair unsupervised learning mod-
els is as crucial as supervised ones. For instance, Principal Component Analysis (PCA) 
is widely used to reduce the dimension of the data before applying classification models. 
In addition to that, these unsupervised methods such as dimension reductions or cluster-
ing methods are commonly used for data visualizations, identifying common behaviors or 
trends, reducing the size of data, to name but a few. This ubiquitousness of unsupervised 
methods in machine learning models can affect decision-making systems if they unfairly 
treat different groups in data. Unlike the supervised approaches, the fairness in an unsu-
pervised approach depends only on the feature data since the labels are not available. This 
means that these approaches can handle the representation bias and not the labeling bias as 
defined in Blum and Stangl (2019).

In this paper, we aim at defining a fairness measure for dimension reduction algorithms 
like PCA and propose an algorithm to enforce these criteria in finding the subspace with 
minimum reconstruction loss. It is important to note that, despite supervised learning that 
fairness metrics are mostly focused on the beneficial outcome (usually the positive label), 
in an unsupervised task, there is no label to be used. Hence, we seek to find a subspace 
that is “good” enough for each protected group in the data. Indeed, when we apply PCA 
on a dataset, the resulting subspace found by a standard algorithm is different from what 
we achieve when only using the data of each group individually. This difference can be 
reflected as the difference between the reconstruction error of each group’s data on both 
subspaces. Thus, when a dimension reduction algorithm is applied to the joint data, the 
reconstruction loss of some of the groups is degraded (from what they can achieve with 
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their data only), while others are benefiting from joint learning. Here, a fair algorithm is 
the one that can find a subspace with optimal trade-offs between these degradations and 
benefits.

An attempt to impose the fairness constraint on learning the optimal subspace for two 
protected groups has been made recently in Samadi et al. (2018), Olfat and Aswani (2018) 
and Tantipongpipat et al. (2019), where the fair subspace learning is sought by minimizing 
the maximum deviation of reconstruction error suffered by any protected group (i.e., the 
difference of per group reconstruction error and joint reconstruction error). Interestingly, it 
has been shown that at any optimal local solution of the optimization problem associated 
with learning such a fair subspace, all the groups suffer the same loss. Motivated by this 
observation, a semi-definite programming relaxation followed by linear programming is 
proposed to find a fair subspace (Samadi et al. 2018; Tantipongpipat et al. 2019). In addi-
tion to the computational inefficiency of algorithms proposed by these works, the generali-
zation of them to multiple group sensitive features is not conspicuous. Furthermore, since 
all optimal solutions do not incur the same loss for all groups, extra dimensions are needed 
to ensure that the total loss of the projection remains at most the optimal objective in the 
original target dimension [in particular, k − 1 extra dimensions are needed for k groups in 
Samadi et al. (2018) which is further tightened to 

√
k in a followup work (Tantipongpipat 

et al. 2019)].
The overarching goal of this paper is to define a fairness metric for dimension reduc-

tion, dubbed as pairwise disparity error, and propose a computationally efficient dimen-
sional reduction algorithm to learn a fair subspace from multiple group sensitive features. 
Towards this end, we cast the problem of fairness in the PCA dimension reduction algo-
rithm as a multi-objective optimization problem and propose an adaptive gradient descent 
based approach to find the optimal trade-offs with provable convergence rates. Interestingly, 
the proposed framework is not bounded to any specific notion of fairness metric and can 
be effortlessly applied to other metrics as well. Moreover, unlike the aforementioned prior 
works, no extra dimension is needed to ensure the loss suffered by each group matches the 
optimal fairness loss. The comparison of time complexity of exiting algorithms and current 
work is summarized in Table 1.

1.1 � Contributions

The main contributions of this paper can be summed up as follows:

•	 We introduce the notion of Pareto fair PCA to ponder conflicting objectives and achieve 
optimal trade-offs between them. Also, we introduce the notion of pairwise disparity 
error as a more efficient objective to learn fair subspaces. In addition, we provide con-
ditions, under which a Pareto optimal solution exists.

•	 We propose a gradient descent algorithm to efficiently solve the obtained multi-objec-
tive optimization problem which is interesting by its own right, and provide theoretical 
guarantees on its convergence to optimal compromises or a Pareto stationary point.

•	 We empirically develop this algorithm and compare it to the state-of-the-art algorithm 
on two real-world datasets to demonstrate its efficacy that complements our theoretical 
results.

•	 We investigate the effect of fair projection on supervised tasks such as classification 
empirically and show that it can significantly eliminate the unfairness in downstream 
tasks.
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2 � Related work

In this section, we review existing works on fairness-enhanced learning models and discuss 
recent studies on fair PCA, multi-objective optimization, which are most relevant to the 
present work.

2.1 � Fairness notions

The efforts to address fairness in algorithmic decision-making systems have roughly fallen 
into three different categories. Some scholars believe data itself could be biased, leading 
to unfair results; thus, they seek to solve this problem on data level and as a preprocess-
ing step to the main learning task (Dwork et al. 2012; Feldman et al. 2015; Kamiran and 
Calders 2009; Calders et al. 2009). The goal is achieved by either changing the value of 
sensitive feature or label data or find a subspace, where labels and sensitive features are 
independent. However, since the main objective of the learning is not involved in this pro-
cess, the optimal solution for the main objective is not guaranteed. The second category 
includes methods that try to impose the fairness criteria after the learning, in order to attain 
a fair model (Hardt et al. 2016; Kamishima et al. 2011; Goh et al. 2016; Calders and Ver-
wer 2010). The third approach, includes methods that try to satisfy fairness constraint dur-
ing the training procedure, usually by imposing them as a constraint to the main learning 
objective (Donini et al. 2018; Tantipongpipat et al. 2019; Zafar et al. 2015; Samadi et al. 
2018; Pleiss et al. 2017). For instance, difference of equality of opportunity (DEO) pro-
posed by Donini et al. (2018) to be added as a constraint to the optimization problem of 
the learning task. Some of these approaches treat the fairness problem similar to imbal-
anced data or rare event prediction (Yao and Huang 2017; Kamani et al. 2019, 2018, 2016). 
While these approaches can achieve the state-of-the-art results in some problems, they still 
suffer from several issues. Solving a constrained optimization could be a very hard non-
convex problem; hence, relaxation is needed to solve the problem that leads to sub-optimal 

Table 1   Comparison of time complexity of different fair PCA algorithms to achieve an �-fair subspace

Here d denote the dimension of the original data, r is the target dimension, and k is the number of sensitive 
groups. Note that unlike previous studies that necessitates learning a subspace with larger dimension to 
guarantee fairness, our solution learns an exact r dimensional subspace by imposing additional constrains 
captured by a new notion of fairness proposed in this work to distinguish between local optimal fair sub-
spaces (we used the following abbreviations above, SDP: Semi-Definite Programming, MW: Multiplica-
tive Weight Algorithm, LP: Linear Programming, GD: Gradient Descent). Note that all the algorithms have 
an initial step of finding the optimal rank r subspace for each group, in which its time complexity is not 
included here

Scheme Time complexity Fair dimension Algorithm

Samadi et al. (2018)
O

(
d
6.5 log

(
1

�

))
r + k − 1 SDP + LP

Samadi et al. (2018)
O

(
d
3

�
2

)
r + k − 1 SDP via MW + LP

Tantipongpipat et al. (2019)
O

(
d
6.5 log

(
1

�

))
r + ⌊

�
2k +

1

4
−

3

2
⌋ SDP + LP

Tantipongpipat et al. (2019)
O

(
d
3

�
2

)
r + ⌊

�
2k +

1

4
−

3

2
⌋ SDP via MW + LP

This Work
O

(
r
2
d

�
2

)
r GD
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solutions efficiently. Moreover, finding the optimal penalization parameter could be a dif-
ficult task, as discussed in Donini et al. (2018). Our approach belongs to the third category, 
yet, it differs from the prevailing trend of formulating the fairness problem as a constrained 
optimization. We will cast the fairness problem as a multi-objective optimization that can 
efficiently satisfy fairness objectives as well as the main learning objective and converge to 
a point with optimal compromises between objectives.

2.2 � Fairness in dimension reduction

Fairness in dimension reduction algorithms is recently being vetted by Samadi et al. (2018), 
through which they propose a semi-definite programming and prove that its solution satis-
fies the proposed notion of fairness. Aside from the inefficiency of solving the SDP, their 
approach is developed for binary sensitive features and requires one extra dimension to 
guarantee fairness. To generalize it for multiple group sensitive features with k groups, they 
propose to add k − 1 dimensions, which is impractical. The follow-up studies by Olfat and 
Aswani (2018) and Tantipongpipat et al. (2019) are still in line with the previous one, try-
ing to relax and solve an SDP. We, on the other hand, propose an efficient gradient-based 
method to solve the aforementioned multi-objective optimization, with the capability of 
generalizing to multiple group sensitive features smoothly.

2.3 � Multi‑objective optimization

Although it has been asserted that fairness problems are multi-objective problems in 
nature  (Kearns and Roth 2019; Lipton et  al. 2017; Tantipongpipat et  al. 2019), as men-
tioned before, most of the existing works apply different forms of relaxations and approxi-
mations to reduce the problem into a scalar-valued optimization problem. In this paper, we 
design the fairness problem at hand as a multi-objective optimization and solve it directly. 
Multi-objective or vector optimization is a well-studied problem in different domains for 
many years. The goal in this optimization is to achieve an optimal trade-off point between 
different objectives, known as Pareto optimal, named after Italian economist Vilfredo 
Pareto. We refer the reader to Miettinen (2012), Das and Dennis (1997) and Fonseca et al. 
(2003) and the references therein as a rich resource on multi-objective optimization and its 
associated notions such as dominance and Pareto efficiency. We will elaborate that directly 
solving the vector-valued problem associated with fair learning is appealing to reduction 
based counterparts (Ehrgott 2006; Mahdavi et al. 2013) by being computationally efficient 
and providing provable guarantees on the fairness metric.

2.4 � Fairness in composition

Beyond achieving fairness in unsupervised tasks such as PCA, the main goal of fairness 
in machine learning is to design a fair system as a whole. As it is noted by Dwork et al. 
(2018), these machine learning models in isolation do not necessarily result in a fair system 
together and should be considered in composition with each other. Hence, in addition to 
what introduced by Dwork and Ilvento (2018) as compositions in fairness, we advocate for 
considering the composition of a stream of machine learning models together. Thus, we 
should investigate the effect of imposing fairness constraints on a machine learning model 
on downstream tasks using its output. For instance, the goal of defining such a metric for 
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fairness, in our paper and other related works, is that having a fair loss in reducing the 
dimension would have a fair reduction in the quality of different groups in the new projec-
tion; then, it can have a balanced impact on the quality of a subsequent classifier learned 
on that projection. We empirically investigate the effect of this composition and leave its 
theoretical understanding to the future work.

3 � Problem formulation

We start by mathematically defining the problem we ought to solve, and then discuss what 
is the notion of fairness in PCA algorithm, which could be quite different from what is 
known as fairness measures in supervised learning. In what follows we adapt the follow-
ing notation. We use bold face upper case letters such as � to denote matrices and bold 
face lower case to denote vectors such as � . The Frobenius norm and trace of a matrix � 
are denoted by ‖�‖F and ��(�) , respectively. The eigenvalues of a positive semi-definite 
matrix � ∈ ℝ

d×d are denoted by �max(�) = �1(�) ≥ �2(�) ≥ … ≥ �d(�) = �min(�) . The set 
of integers, {1, 2,… ,m} , is represented by [m] . We denote the PCA without any fairness 
condition as Normal PCA, and those with some fairness measures as Fair PCA in the rest 
of this manuscript.

3.1 � PCA

The main objective of the PCA is to find the best representation of the data � ∈ ℝ
n×d with 

n data points in d-dimensional space, in a lower dimension r ≤ d using a linear transforma-
tion, in order to have the minimum reconstruction error. This linear transformation can 
be represented by a projection matrix � ∈ ℝ

d×r . Thus, the objective of PCA is to find a 
projection matrix � and a recovery matrix � ∈ ℝ

r×d to minimize this reconstruction error 
similar to Shalev-Shwartz and Ben-David (2014):

It can be proved that in the solution of (1), we have � = �⊤ , and columns of � are ortho-
normal (i.e. �⊤� = �r×r ). Therefore we can define the reconstruction loss for any PCA pro-
jection as follows:

Definition 1  (Reconstruction Loss) For any given dataset � and any projection matrix � , 
the total reconstruction loss of � using � is defined as:

The optimal subspace with minimum reconstruction loss given � can be found by solv-
ing the above non-convex optimization problem. In fact the columns of optimal projection 
matrix �∗ = argmin

�
L(�) obtained by solving above optimization problem are eigen-

vectors corresponding to top r eigenvalues of �⊤� . In this case, the reconstructed data 
matrix ̂� = ��∗�

⊤

∗
 is an optimal rank r approximation of the original data matrix � , i.e., 

̂� = argmin
�,����(�)≤r ‖� − �‖F , where the solution space for � is limited to matrices with 

rank at most r ( r ≤ d).

(1)argmin
�∈ℝd×r ,�∈ℝr×d

‖� − ���‖2
F

(2)L(�) ≜ �(�;�) =
‖‖‖� − ���

⊤‖‖‖
2

F
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3.2 � Fair PCA

In this section, we will formally define the notion of fairness in dimension reduction algo-
rithms such as PCA. As it was discussed before, the problem arises from having differ-
ent reconstruction losses on different sensitive groups in a dataset. This means that find-
ing an optimal projection matrix �∗ by solving the minimization problem in (2), would 
have different reconstruction loss on data partitions from each sensitive group. However, 
in this problem, unlike supervised problems previously discussed, we are not able to reach 
equality between these reconstruction losses for different groups. The reason for that is 
the subspace for each group’s data is different, and so is the reconstruction error of that 
data for that projection. We note that while learning a separate (local) subspace for each 
individual group has the optimal reconstruction error, our focus here is to learn a single 
global subspace for all groups due to statistical and ethical concerns. In particular, from 
a statistical standpoint, since the number of training samples for some groups might be 
small for skewed data sets, joint learning to have more samples to learn a subspace is pref-
erable. Ethically, as elaborated in Lipton et al. (2017) and Kannan et al. (2019), learning 
separate subspaces (having disparate treatment like in affirmative action) constructs no 
trade-offs, and it poses several ethical and legal concerns. We note that the case of fairness 
with decoupled model representations has been investigated by several other works (Dwork 
et al. 2018; Ustun et al. 2019; Creager et al. 2019).

In order to quantify to what extent each group suffers or benefits from joint subspace 
learning, we should compare the subspaces learned from each group’s data alone and 
the one with other groups’ data included. Then, the idea of fairness is to reach a balance 
between these sacrifices and benefits of different groups. Formally, consider one of the d 
features of � as a sensitive feature with k different groups, S =

{
s1,… , sk

}
 . We denote 

the matrix of each group’s data points as �i ∈ ℝ
ni×d , where ni is the number of samples 

belonging to the sensitive group si . Hence for any projection matrix � ∈ ℝ
d×r , the recon-

struction loss for each group is defined as:

Then, if we only use the dataset �i to learn the projection matrix, we can find the sub-
space represented by �∗

i
 that has the optimal reconstruction loss on that dataset, denoted by 

Li(�
∗
i
) . Therefore, a fair dimension reduction algorithm is the one that can learn a global 

projection matrix �∗ on all data points with having equal distance between each group’s 
reconstruction loss on the subspace learned by the whole data with the subspace learned 
only by its own data. To formally define these fairness criteria, we introduce the notion of 
disparity error as follows:

Definition 2  (Disparity Error) Consider a dataset � ∈ ℝ
n×d with k sensitive groups 

with data matrix �i, i = 1, 2,… , k representing each sensitive group’s data samples. Let 
�

∗
i
= argmin

�
Li(�) denote the projection matrix learned only based on �i . Then for any 

projection matrix � the disparity error for each sensitive group is defined as:

This measure shows that how much reconstruction loss we are suffering or enjoying for 
any global projection matrix � , with respect to the reconstruction loss of optimal projec-
tion matrix, we can learn locally based on data points �i . Note that calculating the optimal 

(3)Li(�) ≜ �(�i;�) =
‖‖‖�i − �i��

⊤‖‖‖
2

F
, 1 ≤ i ≤ k.

(4)Ei(�) = Li(�) − Li(�
∗
i
), 1 ≤ i ≤ k.
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rank r subspace for each group in Li(�
∗
i
) has a one-time overhead to the algorithm’s time 

complexity overall. However, we ignore this overhead, as did other algorithms we are com-
paring to and leave the joint learning of both local and global subspaces as future work. 
We also note that here our goal is to learn a single projection matrix for different sensitive 
groups.

Using the Definition 2, we can define a fair PCA algorithm as follows:

Definition 3  (Fair PCA) A PCA algorithm with projection matrix �∗ is called fair, if the 
disparity error among different groups are equal. That is:

 A subspace �∗ that archives the same disparity error for all groups is called a fair 
subspace.

4 � Pareto fair subspace

In this section, we discuss the key challenges in finding a fair subspace using relaxation 
methods and motivate our formulation of Pareto fair subspace followed by providing con-
ditions sufficient to guarantee the existence of such subspaces.

4.1 � Relaxation methods and their limitations

A major challenge to find a fair subspace as defined in Definition 3 is to solve the opti-
mization problem that satisfies (5), which is essentially a multiple objective optimization 
problem by nature. To illustrate this and for ease of exposition, let us focus on the binary 
sensitive feature ( k = 2 ), i.e., there are only two groups in the sensitive feature of the data 
(e.g., male and female), in which the goal of fair PCA is to satisfy:

Samadi et  al. (2018), it has been shown that by casting the multiobjective optimization 
problem as a minmax problem of the form

and using an additional dimension for the projection, the optimal solution of minmax prob-
lem results in the same loss for both groups (i.e., E1(�∗) = E2(�

∗)) . As discussed by Tan-
tipongpipat et al. (2019), the fair PCA problem is NP-hard problem, hence, a relaxation is 
required to solve this problem in a polynomial time to achieve an �-fair solution.

Motivated by this observation, a semi-definite relaxation to solve the optimization 
problem is proposed, which is not efficient for a large number of training samples. Also, 
to achieve their fairness criteria and ensure that the obtained local solution achieves the 
optimal fairness objective for all groups, the proposed solution requires adding an extra 
dimension for a binary sensitive feature and k − 1 additional dimensions for a k-group 
sensitive feature, which is not reasonable for a large k. We note that in Tantipongpipat 
et al. (2019), the requirement of extra dimension is improved to ⌊

�
2k +

1

4
−

3

2
⌋ , but it 

(5)E1(�
∗) = E2(�

∗) = … = Ek(�
∗).

(6)E1(�
∗) = E2(�

∗),

(7)min
�∈ℝd×r ,����(�)≤r

max
{
E1(�), E2(�)

}
,
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still requires extra projection dimensions to satisfy the fairness constraint. Finally, the 
optimal trade-offs between fairness objectives and total reconstruction loss, in the case 
of the same target dimension, is not guaranteed, which would lead to a solution that sac-
rifices too much of the total reconstruction loss to achieve the fairness criteria. In fact, 
in order to guarantee that the solution of minmax optimization results in a rank r sub-
space with optimal fairness objective, one could choose the target dimension to be r − s , 
where s is the extra dimensions needed with O

�√
k
�
 followed by a rounding to reach to 

the target r dimensional subspace as proposed in Tantipongpipat et al. (2019); but this 
remedy hurts the optimal objective value by a multiplicative factor of s/r. This issue 
becomes more concerning as the number of groups k, and hence s increases due to the 
fact that all local optimal solutions might not achieve the same loss for all groups. Con-
sequently, any solution to fair PCA necessitates jointly minimizing the main objective, 
which is total reconstruction loss in (2), and fairness criteria to balance the trade-off 
between them.

An alternative solution to alleviate aforementioned issues which is explored in 
Donini et al. (2018) is to impose fairness constraints in minimizing the reconstruction 
loss in (1) as additional constraints, i.e.,

which reduces the problem into an instance of non-convex constrained optimization prob-
lem to find a fair subspace to all sensitive groups. Relaxing the problem of finding the fair 
subspace as a constrained optimization similar to (8), apart from being a hard non-convex 
problem which is not evident to solve due to presence of non-convex constraints, requires 
the optimal constraint violation parameter, � , to be decided heuristically which is a burden 
on the use and makes the problem even harder. Although using the Lagrangian method we 
can turn the problem into an unconstrained non-convex optimization problem– a method 
known as scalarization relaxation for multi-objective optimization counterpart (e.g., please 
see Ehrgott 2006), deciding the Lagrangian multipliers is as hard as solving the original 
problem and does not guarantee the optimally of the obtained solution. Also, since the 
scale of the objectives might be different, it could lead to infeasibility issues in the optimi-
zation problem, or some points from the Pareto frontier could not be attained.

To address challenges arising from the above reduction methods, and in order to 
achieve the optimal trade-offs between objectives and satisfy equality between disparity 
errors, we aim at directly solving the multi-objective programming   (Miettinen 2012). 
Towards this end, we note that the optimization problem in (8) is a relaxation of the fol-
lowing generalized multi-objective optimization problem:

where �(⋅) ∶ ℝ → ℝ+ is any penalization function, such as �(z) = |z| , �(z) =
1

2
z2 , or 

�(z) = e−z , however, for convergence analysis we will stick to squared or exponential 
penalization due to their smoothness. We will use the smoothness property of the overall 
objective in the convergence analysis. In Appendix C, we show the effect of the penaliza-
tion function on the smoothness of the overall objective. We will define the optimization 
problem in more detail in the next section and then will introduce an adaptive gradient 
descent approach to solve it.

(8)
min
�

L(�)

subject to Ei(�) ≤ �, i ∈ [k].

(9)argmin
�

[
L(�),�

(
E1(�)

)
,… ,�

(
Ek(�)

)]
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4.2 � Pareto fair subspace

To characterize the solutions obtained by directly solving the multi-objective optimiza-
tion problem in (9), we have to compare the objective vector of different solutions with 
each other, analogous to the what we do in a scalar or single-objective optimization 
problem. If we only have a single objective function f (�) , we can say the solution �1 is 
better than �2 if f (�1) < f (�2) . Similarly, in multi-objective programming, we define 
the notion of dominance as follows:

Definition 4  (Dominance) Let � (�) =
[
f1(�),… , fm(�)

]
⊤ denote a vector-valued objec-

tive function with m objectives. We say the solution �1 dominates the solution �2 if 
fi(�1) ≤ fi(�2) for all i ∈ [m] , and fj(�1) < fj(�2) for at least one j ∈ [m] . We denote this 
dominance as:

The definition of dominance implies that when a solution cannot be dominated by 
any other solution in the search space, we cannot find any direction, to move to, from 
this solution without at least hurting one objective in the objective vector. The reader 
can refer to Miettinen (2012) for more explanation regarding the definition of domi-
nance in vector optimization. Using this, now, we can define our notion of Pareto fair 
subspace as follows:

Definition 5  (Pareto Fair Subspace) Let � (�) =
[
L(�), f1(�),… , fm−1(�)

]
⊤ denote a vec-

tor-valued objective function with m objectives in the Fair PCA problem. Then, consider a 
set of fairness trade-off objectives fi(�), i ∈ [m − 1] , (e.g. �

(
Ei(�)

)
 as in (9)) that ought to 

be minimized in addition to the main objective, L(�) . The solution �∗ is called Pareto fair 
subspace, if it is not dominated by any other feasible solution.

The Pareto fair subspace is not unique, and the set of Pareto optimal solutions is 
called Pareto frontier  (Miettinen 2012). Thereupon, the ultimate goal of a fair PCA 
reduces to finding a Pareto optimal solution via solving the problem (9).

4.3 � Proof of existence

The following theorem establishes the conditions under which the set of Pareto opti-
mal solutions exists and is non-empty. We emphasize that compared to methods that 
optimize Lagrangian function or other scalarization approaches, we aim at finding this 
Pareto fair frontier completely without any prior information such as weight for each 
objective.

Theorem  1  (Existence) Consider the vector-valued optimization problem in  (9). If the 
individual functions are convex and bounded, then the set of Pareto optimal solutions is 
non-empty.

Proof  The proof is deferred to Appendix A. 	�  ◻

(10)� (�1) ≺p � (�2).
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To guarantee the existence of a Pareto optimal solution, in Sect.  5, we convexify 
the objectives by properly regularizing them. Thereafter, we propose an efficient gradi-
ent-based algorithm to find a subspace that is a Pareto stationary point of the fair PCA 
problem.

Although solving the optimization problem in (9) results in an efficient trade-off 
between different objectives, this does not reflect on balanced disparity errors among dif-
ferent groups, which is the ultimate goal of the fair PCA problem. As been explained by 
Samadi et al. (2018), this issue would be exacerbated in problems with k > 2 , that having 
a balanced disparity error among all groups is not always possible due to the fact that all 
optimal solutions will not incur the same loss for all groups. To alleviate this issue and 
ensure that the loss of each group remains at most the optimal fairness objective in the 
original target dimension r, we introduce the notion of pairwise disparity error, that 
would address this issue.

Definition 6  (Pairwise Disparity Error) Consider the disparity errors for any projection 
matrix � and sensitive groups of i and j among k different groups, then the pairwise dispar-
ity error between these two groups is defined as:

Thus, the optimization in (9) becomes:

where we have 
(
k

2

)
 objectives in addition to the main objective. The pairwise objectives in 

optimization problem (12) intends to minimize the difference between the disparity error 
of different sensitive groups. In conjunction with the main objective of reconstruction loss, 
we can both reduce the disparity error of each group as well as their differences among dif-
ferent groups by optimizing this objective. We will show the efficacy of pairwise disparity 
error over single disparity error in practice in Sect. 6.

5 � Adaptive optimization

In this section, we will develop a gradient descent (GD) based algorithm to solve the opti-
mization problems in (9) or (12). To lay the groundwork for this algorithm, we review how 
to solve the original PCA problem using gradient descent, and then we propose our pro-
posed algorithm to solve the aforementioned multi-objective problem.

5.1 � Gradient descent for PCA

To solve the PCA problem using the gradient descent approach, we need to iteratively 
update the projection matrix � , based on the gradient of the total reconstruction loss with 
respect to it. Expanding the total reconstruction loss in (2) and removing the constant terms 
that will not affect the optimization, following Shalev-Shwartz and Ben-David (2014), we 
can write the optimization problem:

(11)�i,j = Ei(�) − Ej(�), i, j ∈ [k], i ≠ j.

(12)argmin
�

[
L(�),�

(
�1,2(�)

)
,… ,�

(
�k−1,k(�)

)]
,

(13)argmin
�∈ℝd×r ,�⊤�=�

− ��
(
�

⊤

�
⊤

��
)
,
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Using (13), we can calculate the gradient of the total reconstruction loss with respect to � 
as follows:

The projection can be learned using the gradient descent by iteratively updating an initial 
solution by:

where �t is the learning rate and �Pr
(.) is the projection operator onto 

Pr =
{
� ∈ ℝ

d×r ||�⊤� = �r

}
.

For a single-objective optimization like normal PCA, at each iteration, we take a step 
toward the negative of the gradient at that point. However, when we are dealing with mul-
tiple objectives, the key question is what would be the best direction at each iteration to 
take, in order to decrease all the objectives. We answer this question in the next section by 
proposing an optimization problem to find such a descent direction.

5.2 � Pareto fair PCA

In order to efficiently solve the multi-objective optimization problem in (9) or (12), we 
propose a gradient descent approach, that can guarantee convergence to a Pareto stationary 
point. For the ease of exposition, we consider the following general multi-objective prob-
lem with m objectives:

In a single-objective problem with gradient descent method, we always choose the opposite 
direction of the gradient on that point as the descent direction to decrease the objective 
function for the next iteration point. However, this notion in multi-objective programming 
is more complicated, as we have to find the direction that is a descent direction for all 
objectives based on their gradients on that point. In order to find a descent direction, let [
�

(t)

1
,… ,�(t)

m

]
 denote the gradient of individual objectives at point �t . To find a descent 

(14)G(�) =
𝜕L(�)

𝜕�
= −2�⊤

��.

(15)�t+1 = �Pr

(
�t − �tG(�t)

)
,

(17)� (�) =
[
f1(�),… , fm(�)

]
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direction with respect to all of the objectives at point �t , we solve the following minmax 
optimization problem (Fliege and Svaiter 2000):

We note that for a single objective case, that is m = 1 , the solution of above minimax is the 
opposite of the gradient, i.e. �t = −�

(t)

1
 . Using the KKT optimally conditions, it is easy to 

show that the dual problem becomes a quadratic programming and can be efficiently solved 
to identify a descent direction �t , for which all the objectives are non-increasing. The fol-
lowing lemma states this characteristic of the descent direction:

Lemma 1  (Descent Direction) The solution found in the optimization problem (18) has one 
of the following two conditions. Either �t = � , which means the point �t is a Pareto sta-
tionary point, or �t is a descent direction to all objectives, that is:

Then, the obtained descent direction is in the form of �t = −
∑m

i=1
�
(t)

i
�

(t)

i
 , where ∑m

i=1
�
(t)

i
= 1 and �(t)

i
≥ 0 for 1 ≤ i ≤ m.

Proof  The proof is provided in Appendix B. 	�  ◻

As elaborated in the proof in Appendix B, the theorem implies that the descent direc-
tion is the minimum norm matrix in the convex hull of the gradients of all objectives 
and is the non-increasing direction with respect to each objective. Understanding this, 
the following corollary is palpable:

Corollary 1  The first order Pareto stationary point holds for a solution � when the men-
tioned minimum norm is zero, i.e., there is no descent direction that is non-increasing for 
all objectives. In other words, there exists a � ∈ �m such that � = −

∑m

i=1
�i�i = � where 

�i = ∇fi(�).

Having a descent direction at hand, we can use it to decrease all the objectives in 
every iteration, similar to the procedure defined in Algorithm 1. Based on the first-order 
optimality condition of this problem, we know that at a Pareto optimal solution, the 
direction found in (18) should be � , meaning, that it cannot further improve any objec-
tive without hurting others. Equipped with this descent direction and first-order opti-
mality condition, we can iteratively update the initial solution in the direction of the 
descent direction, until it converges to a Pareto stationary point.

Remark 1  One crucial step before finding the descent direction is to balance out the scale 
of different gradients. Since they are calculated based on very different and possibly con-
tradictory objective functions, their Frobenius norm would vary a lot; hence, by a normali-
zation step, we can avoid the dominance of the descent direction by some gradients with 
high Frobenius norm.

Since the disparity errors, as well as the main PCA objective, are weakly convex func-
tions, following Theorem 1, to guarantee the existence of Pareto optimal subspace, we add 

(18)�t = arg min
�∈ℝd×r

{
max

i=1,…,m
��

(
�

⊤

�
(t)

i

)
+

1

2
‖‖�‖‖2F

}
.

(19)��

(
�

⊤

t
�

(t)

i

)
≤ 0, ∀ 1 ≤ i ≤ m
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a regularization term to each objective to make them convex functions– with which we 
also stabilize the solutions and guarantee convergence. As a result, the optimization in (12) 
becomes:

where � is the regularization parameter to make the Hessian matrices of objectives positive 
semi-definite and needs to be decided based on the maximum eigen-gap between covari-
ance matrices of each pair of sensitive groups. Having k different groups, each with data 
matrix of �i , i ∈ [k] , we set 𝛾 = max

i,j∈[k]
𝛾d

(
�

⊤

i
�i

)
− 𝛾1

(
�

⊤

j
�j

)
 to denote the maximum eigen-

gap. Then, we should have � ≥ � . We now turn to prove the convergence rate of Algo-
rithm 1 for convex objectives, as stated in the following theorem.

Theorem 2  (Convex Objectives) Let � =
[
f1(�),… , fm(�)

]
 be convex component-wise Lip-

chitz continuous with constants L1, L2,… , Lm . Then, for the sequence of the solutions 
�1,… ,�T generated iteratively by Algorithm 1, and the sequence of ̂�

(1)
,… , ̂�

(T)
 gener-

ated by (38) during T iterations, by setting � =
R

L
√
T
 and � =

√
T∕R , we have:

where R2 = ‖�1 − �∗‖2
F
 , L = maxi=1,…,m Li , 𝜆̄i =

1

T

∑T

t=1
𝜆̂
(t)

i
 , and �∗ is a Pareto efficient 

solution.

Proof  The detailed proof is deferred to Appendix C. 	�  ◻

Remark 2  As explained in Appendix C, the learning rate is set in order to match conver-
gence rate of the error term with O

�
1√
T

�
 . By setting the learning rate as suggested by the 

Theorem  2, we can set the � to a number that the condition in (16) is satisfied using 
smoothness assumption.

Theorem 2 indicates that, using the Pareto descent direction, we can achieve an �-accu-
rate Pareto efficient solution with taking O

(
1

�
2

)
 gradient descent steps. Using (21), we can 

bound the average deviation of each objective from its respective value in the Pareto effi-
cient solution of �∗.

Remark 3  We note that Algorithm 1 is guaranteed to converges to a single Pareto fair sub-
space, starting from a fixed initial solution �0 . Using different random starting points, we 
can find different Pareto fair subspaces and form the Pareto fair frontier of the problem. 
From an algorithmic point of view, we can not distinguish between different Pareto optimal 
subspaces, but as discussed by Kearns and Roth (2019), based on the preference of differ-
ent objectives, we can choose a desirable Pareto fair subspace from the frontier set.

We note that when the regularization is not added to convexify the main objective, we 
have to deal with non-convex objectives in the optimization problem. In the following 

(20)argmin
�

⎡
⎢⎢⎢⎣

L(�) + �‖�‖2
F

�

�
�1,2(�)

�
+ �‖�‖2

F

⋮

�

�
�k−1,k(�)

�
+ �‖�‖2

F

⎤
⎥⎥⎥⎦
,

(21)
m�
i=1

𝜆̄i

�
fi(�T ) − fi(�

∗)
�
≤

RL

2
√
T
,
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theorem, we investigate the convergence of Algorithm  1 for non-convex objectives that 
guarantees the gradient vanishes over iterations.

Theorem  3  (Nonconvex Objectives) Let � (�) =
[
f1(�),… , fm(�)

]
 be the multi-objec-

tive function to be minimized to find a fair subspace with respect to k sensitive groups. 
Let �1,�2,… ,�T be the sequence of solutions generated by Algorithm 1 updated using 
descent directions �1,�2,… ,�T . Then, if we choose the regularization parameter as 
� ≥ � , we have the following:

where �l is a lower bound for the values of all objective functions, �u is the maximum of 
the values of all functions at initial point, and C is a constant depending on the smoothness 
of objectives.

Proof  The proof can be found in Appendix D. 	� ◻

An immediate consequence of the above theorem is that the gradient of Pareto descent 
directions vanishes and converges to zero and thereby the solutions generated by the algo-
rithm converges to a stationary fair subspace. In particular, only O

(
1

�
2

)
 iterations are 

required to obtain an �-close fair subspace. The analysis of Theorem 3 follows the standard 
analysis of gradient descent for non-convex smooth optimization where the obtained bound 
matches the known achievable convergence rate for the norm of the gradients. We want to 
sketch another alternative method that results in the same rate with careful analysis. Spe-
cifically, observe that the descent direction can be considered as an inexact gradient from 
the viewpoint of individual functions with perturbation �t −�

(t)

i
 . Noting that 

��

(
�⊤

t
�

(t)

j

)
≤ −‖‖�t

‖‖2F as shown in the proof of Lemma 1 and following the standard analy-
sis of convergence of non-convex functions, we can show that norm of descent directions 
vanishes as algorithm proceeds, thereby the proposed algorithm can find a stationary point. 
However, the obtained solution is not guaranteed to be an optimal Pareto due to the non-
convexity of the objectives and might be a saddle point.

5.3 � Comparison with other approaches

As it was discussed, one approach to solve a multi-objective optimization is to make it con-
strained optimization, in which we keep the main objective and change all other objectives 
to inequality constraints with parameters � . Hence, constrained optimization is a relaxation 
of multi-objective optimization, where finding the best constraint parameter ( � ) for each 
constraint could be very challenging as discussed in Donini et al. (2018). It also lacks theo-
retical guarantees due to the non-convex nature of constraints. Lagrangian method of mul-
tipliers is equivalent to constraint optimization problems, but not exactly to multi-objective 
counterpart. To see this, we note that by applying GD to Lagrangian function, the contribu-
tion of the gradient of each individual function, �(t)

i
 , is weighted by its Lagrangian multi-

plier, while in our case the weights are adaptively learned by finding a Pareto decent direc-
tion. We note that while (Tantipongpipat et  al. 2019) improves the requirement of extra 
dimensions over (Samadi et al. 2018), it still needs ⌊

�
2k +

1

4
−

3

2
⌋ extra dimensions for a 

(22)min
t=1,2,…,T

‖�t‖F ≤

�
�u −�l

CT
,
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k-group sensitive feature and has to solve an SDP which has the time complexity of 
O

(
d6.5 log

(
1

�

))
 or O

(
d3∕�2

)
 with multiplicative weight update. On the other hand, our 

method enjoys the efficiency of GD with an overhead to solve the quadratic problem over 
the simplex for finding the descent direction. Also, at each step, we need to project the 
solution to find the orthonormal bases for the updated solution, which could be done using 
SVD with an overhead of O

(
r2d

)
 or more efficiently using variance-reduced SGD (Shamir 

2015). Using vanilla SVD for per-iteration projection brings the overall time complexity of 
the proposed algorithm to O

(
r2d∕�2

)
 . We note that the convex formulation in Olfat and 

Aswani (2018) also requires solving an SDP programming (e.g., ellipsoid method to inte-
rior point method), which suffers from high computational cost as well.

This is for the first time that we are solving the exact multi-objective problem, rather 
than its min-max relaxation using SDP in a fairness problem. Tantipongpipat et al. (2019) 
is suggesting that for k = 2 their approximation is exact, meaning their algorithm will find 
the fair representation in the exact r dimension they aim to reach. However, in practice, 
even for k = 2 , we can show that our algorithm can achieve a smaller disparity error, as 
shown in Fig. 2, which indicates that pairwise disparity error can achieve a better subspace 
in terms of fairness. For k > 2 , they are still solving an inefficient SDP problem to exact 
same problem we are proposing. Hence, the novelty of our approach lies in solving this 
problem using gradient descent and ensuring to reach a Pareto stationary point, which even 
does not require extra dimensions to satisfy fairness. This setting and its proposed gradient 
descent algorithm to solve it can be applied to other unsupervised and supervised fairness 
problems. Thus, it could open up new perspectives on all other fairness problems in learn-
ing tasks, by advocating optimal trade-offs between main learning objectives and fairness 
criteria using Pareto efficiency.

6 � Experiment

In this section, we empirically examine the introduced algorithm for fair PCA with the 
Adult dataset1 and the Credit dataset.2 The Adult dataset consists of census data to predict 
whether the income of a person exceeds 50K per year or not. The Credit dataset contains 
clients’ credit history information to predict whether they would default in the future or 
not. For PCA, we will omit the label data and work with the rest of it, which contains 14 
feature space dimension for the Adult dataset, including gender and race, which we con-
sider as sensitive features in this dataset. In the Credit dataset, we will have 23 feature 
space dimension, including sensitive features of sex and marriage. The gender feature in 
the Adult dataset and sex in the Credit dataset are binary features with two values, namely, 
Male and Female. Race from the Adult dataset, on the other side, is a multiple group fea-
ture, with 5 different groups, including White, Asian-Pac-Islander, Amer-Indian-Eskimo, 
Black, and Other. Marriage in the Credit dataset is also a multiple group feature with 3 
groups of Single, Married, and Other.

For the Adult dataset, we use the training dataset, which has 32, 561 number of samples, 
among which 10, 548 belongs to the Female group and 22, 013 to the Male group. The 
distribution of samples among race groups are as follows: Black 30, 47, White 27, 994, 

1  https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​Adult.
2  https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​defau​lt+​of+​credit+​card+​clien​ts.

https://archive.ics.uci.edu/ml/datasets/Adult
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
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Asian-Pac-Islander 312, Amer-Indian-Eskimo 962, and Other 246. In the Credit dataset, 
we have 30, 000 training samples, out of which there are 18, 112 Female and 11, 888 Male 
samples. The distribution of the Marriage feature is 13, 659 married, 15, 964 single, and 
323 other samples. We first apply the fair PCA method to binary sensitive feature, in which 
we set the learning rate to a decreasing sequence of 1∕

√
t , where t is the iteration number. 

This condition on the learning rate satisfies the maximum decrease condition by backtrack-
ing line search in (16) as well.

6.1 � Binary sensitive feature

In the Adult dataset, we observed that the Female group is benefiting from normal PCA 
on the whole dataset, while the Male group is sacrificing its reconstruction error. Hence, 
by applying the Fair PCA algorithm, we can perfectly decrease these trade-offs, while suf-
fering an insignificant loss to the total reconstruction error, compared to normal PCA. The 
results are depicted in Fig. 1, where the trade-offs and how Fair PCA is addressing them 
is noticeable. To compare the introduced Pareto fair PCA with algorithms using SDP in 
Samadi et  al. (2018) and Tantipongpipat et  al. (2019), we will use the average disparity 
errors across sensitive groups in both Adult and Credit datasets. Fig. 2 shows the average 
disparity errors of Pareto fair PCA with single and pairwise disparity error objectives, SDP 
fair PCA, and normal PCA on binary features (gender and sex) of Adult and Credit data-
sets. First, it reveals that there is a huge gap between normal PCA and fair PCA algorithms 
in terms of disparity errors, which is indicating that these algorithms are decreasing this 
disparity error. Second, it shows the superiority of Pareto fair PCA over SDP relaxation 
methods in both datasets (especially with pairwise objectives), where Pareto fair PCA has 
a smaller average disparity error close to zero. Also, to show that what is the exact price of 
fairness that each algorithm pays, we show the total reconstruction loss of our algorithm 
and other fair PCA methods with respect to normal PCA in Fig.  3. It can be noted that 
the Pareto fair PCA incurs a slight degradation in total reconstruction loss in exchange for 
fairness, while this price is much higher in the other state-of-the-art algorithms. In addi-
tion to the trade-off between reconstruction error and fairness, Fig. 4, we compare the time 
complexity of these two fair PCA algorithms. We should note that, the main algorithm pro-
posed by Samadi et al. (2018) and Tantipongpipat et al. (2019) is based on SDP, which is 
highly inefficient. In fact, they use multiplicative weight approach with linear programming 

Fig. 1   Applying normal PCA and fair PCA to the Adult dataset with gender as its sensitive feature. The first 
two figures show the reconstruction error of normal PCA (trained on all data) applied to each group, fair 
PCA (trained on all data) applied to each group, and normal PCA trained on the data of each group indi-
vidually. The last figure reveals the difference between normal and fair PCA reconstruction loss on all data, 
which is very tiny and negligible
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instead of the SDP, which greatly reduces their computational complexity. However, their 
computational complexity is still higher than our approach based on the convergence anal-
ysis. In reality, this difference, can be well spotted in datasets that have a very large feature 
dimension. However, both the Adult and Credit datasets do not have a very large feature 
dimension. We run the experiments for both datasets to reduce the feature space dimen-
sion to 1, and repeat the experiments 10 times, to calculate the time complexity of both 
algorithms. The results are depicted in Fig. 4, which can show that in even these two small 
datasets, our algorithm can converge faster to the solution.

Fig. 2   Comparing Pareto fair PCA algorithm introduced in this paper (pairwise and single disparity error) 
with fair PCA algorithms using SDP relaxation introduced in Samadi et  al. (2018) and Tantipongpipat 
et al. (2019). The experiment is on binary features of Adult and Credit datasets (gender and sex). The aver-
age disparity error of algorithms on the Adult dataset clearly shows the superiority of the Pareto fair PCA 
with pairwise disparity error objectives and then the single disparity error objectives. In the Credit dataset, 
Pareto fair PCA with pairwise objectives has a slightly better performance with respect to two other meth-
ods

(a) (b)

Fig. 3   Comparing the total reconstruction loss of Pareto fair PCA algorithm introduced in this paper (with 
pairwise objectives), with fair PCA algorithms using SDP relaxation introduced in Samadi et al. (2018) and 
Tantipongpipat et al. (2019). The experiment is on binary features of Adult and Credit datasets (gender and 
sex). From both figures, it can be inferred that Pareto fair PCA satisfies the fairness objective better, while 
it incurs a tiny increase in the total reconstruction loss with respect to the normal PCA. On the other hand, 
Fair PCA with SDP suffers from a huge increase in the total reconstruction loss to satisfy the fairness objec-
tive
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6.2 � Multiple group sensitive feature

The proposed Algorithm 1, can efficiently generalize to the multiple group sensitive fea-
tures, by adding pairwise disparity errors of each pair of groups to the objective vector and 
minimize the overall vector to reach a Pareto optimal or stationary point. However, add-
ing more objectives, introduces more trade-offs, makes the optimization over all objectives 
more difficult.

First, we start with the Adult dataset with race as the sensitive feature. In this dataset, 
race has 5 categories, makes it a multiple group sensitive feature. The reconstruction error 
of the Pareto fair PCA and normal PCA is shown in Fig. 5, where the trade-offs between 
benefits and sacrifices of different groups are clearly noticeable. The fair PCA algorithm 
can superbly decrease these trade-offs for all but one group, with a negligible increase in 
overall reconstruction loss. Following the same step as in the binary case, we show the dis-
parity error of different groups in Fig. 6, which reveals that fair PCA clearly outperforms 
normal PCA in most of the groups. Figure 7 depicts the reconstruction loss and average 
disparity error of fair and normal PCA. The results indicate that even in a dataset with a 
multiple group sensitive feature, the increase in the reconstruction loss of fair PCA com-
pared to the normal PCA is slim, while the gap between their disparity errors is huge. This 
means that normal PCA is unfairly treating different groups in its learned representation 
subspace.

As for the Credit dataset, we also test it on its multiple group sensitive feature, mar-
riage, which has 3 different groups. The result of reconstruction error on Pareto fair 
PCA, normal PCA and normal PCA on each group’s data individually is depicted in 
Fig. 8, where it is clear that fair PCA is very close to each group’s PCA (except for the 
“other” group, because the number of samples in that group is too low), while its recon-
struction error is very close to that of normal PCA. Also, the disparity error and average 
disparity error of fair PCA versus normal PCA is shown in Fig. 9, where the superiority 
of fair PCA is noticeable.

(a) (b)

Fig. 4   Comparing the time complexity of Pareto fair PCA algorithm introduced in this paper with fair PCA 
algorithms using SDP relaxation introduced in Samadi et  al. (2018); Tantipongpipat et  al. (2019) on the 
Adult and Credit datasets. The experiment shows the time required for each algorithm to find a 1-dimen-
sional subspace in both datasets
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6.3 � Fairness in composition

Most of the time, when we use a dimension reduction algorithm, it is accompanied by some 
downstream tasks such as classifiers. Hence, it is important to investigate the effects of our 
fairness dimension reduction algorithm on those downstream tasks. Here, we empirically 

Fig. 5   Applying normal and fair PCA on the Adult dataset with “race” as its sensitive feature. Each plot 
shows the reconstruction error of the normal PCA (trained on the whole data) applied to each group’s data, 
fair PCA (trained on the whole data) applied to each group’s data, and normal PCA trained on each group’s 
data individually

Fig. 6   Disparity error of normal and fair PCA trained on the Adult dataset with “race” as its sensitive fea-
ture. Each plot depicts the disparity errors of different groups with normal and fair PCA
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examine this effect on a simple classifier. The ultimate goal of this experiment is to show 
how neglecting the fairness in an unsupervised task such as dimension reduction can affect 
the supervised downstream task. The designed experiment intends to evaluate the effects 
of Pareto fair PCA on systems in composition as well as in isolation, which have been 
explored in previous part.

To that end, we use both the Adult and Credit datasets and first reduce the dimension 
of their feature space to 10, and then use the new projection to learn a standard linear 
SVM (Cortes and Vapnik 1995) model. The SVM model aims to learn a hyper-plane in the 
decision space that has the largest distance to the nearest datapoints. One standard fairness 
measure in the supervised domain is called Equality of Opportunity  (Hardt et  al. 2016), 
where the goal is to ensure that the true positive rate among different sensitive features 
does not differ significantly. For a binary sensitive group (Donini et al. 2018) introduced a 
measure called difference of equality of opportunity, which is DEO = |��1 − ��2| with ��i 
representing true positive rate of the ith group in a sensitive feature. This measure shows 
the gap between the two groups’ true positive rates. As can be inferred from Fig. 10, apply-
ing Pareto fair PCA can boost fairness of the downstream model and dramatically drop the 
gap between two groups’ true positive rates (DEO) with respect to the normal PCA.

7 � Conclusion

In this paper, we cast the fairness problem in dimension reduction algorithms such as 
PCA as a multi-objective programming. Unlike supervised learning, there is not a clear 
definition of fairness in unsupervised learning tasks. Thus, we use the notion of bal-
ancing between sacrifices and benefits each sensitive group makes or enjoys to define 
a fairness metric for this problem. These sacrifices or benefits are the consequence of 
finding the optimal subspace over the whole data rather than using only each protected 
group’s data. Hence, the notion of fairness is to have an equal contribution from each 
group to the overall reconstruction loss with respect to the reconstruction loss they have 
on the subspace learned by their own data. This introduces a trade-off between these 
contributions and overall reconstruction loss. We propose an efficient multi-objective 

Fig. 7   Applying normal and fair PCA on the Adult dataset with “race” as its multiple group sensitive fea-
ture. Left shows the difference between reconstruction loss of fair and normal PCA, which is infinitesimal. 
On the other hand, the right plot shows their difference in terms of average disparity error, which is huge 
and demonstrating the efficacy of fair PCA in addressing fairness even in multiple group sensitive feature 
cases
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optimization procedure that can guarantee the convergence to a Pareto stationary point, 

Fig. 8   Applying normal and fair PCA on the Credit dataset with “Marriage” as its sensitive feature. Each 
plot shows the reconstruction error of the normal PCA (trained on the whole data) applied to each group’s 
data, fair PCA (trained on the whole data) applied to each group’s data, and normal PCA trained on each 
group’s data individually. The last figure shows the reconstruction error of normal PCA and fair PCA on 
this dataset with multiple group sensitive feature of marriage

Fig. 9   Disparity error of normal and fair PCA trained on the Credit dataset with “Marriage” as its sensitive 
feature. Each plot depicts the disparity errors of different groups with normal and fair PCA. The last figure 
shows the average of disparity errors across groups
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which has an efficient trade-off between these objectives.
This paper also introduces some interesting problems worthy of future investiga-

tions. First, the generalization of the proposed disparity error and pairwise disparity 
error as fairness metrics in other dimension reduction algorithms and, also, other unsu-
pervised learning tasks. Moreover, it is interesting to investigate the stochastic version 
of the proposed algorithm and its convergence analysis since finding a descent direc-
tion where gradients are noisy might be a challenging task. Also, as noted before, the 
existing methods, including the one proposed in the present work, require learning a 
local optimal projection subspace for each group before learning the global fair sub-
space. One interesting direction is to extend these works to efficiently learn all sub-
spaces together while preserving the fairness of the global subspace. Also, a thorough 
theoretical investigation of the composition effects of the proposed fairness measure on 
downstream tasks such as classification is an interesting open problem. Finally, based 
on the nature of biases introduced by Blum and Stangl (2019), in this paper we are only 
focusing on the representation bias and not the labeling bias since we are not using 
labels in PCA. Hence, an interesting extension to this work is to consider the fairness 
problem in dimension reduction approaches, where they use label information as well, 
such as linear discriminant analysis.

Appendix A: Proof of Theorem 1

Proof  Consider the following constrained optimization problem:

(a) (b) (c)

Fig. 10   The effect of Pareto fair PCA on a downstream SVM classification task. The first row is using the 
Adult dataset with gender as its sensitive feature, and the second row is using the Credit dataset with sex 
as its sensitive feature. In both datasets, we reduce their feature space dimension to 10 once using normal 
PCA and once using Pareto fair PCA. Then use the new representation to learn a linear SVM. Column a 
is the accuracy among different groups, b is the true positive rate, and c is the DEO introduced by Donini 
et al. (2018) (the lower is better), all on the test dataset. It clearly can be noted that applying Pareto fair PCA 
can reduce the gap between true positive rates of different groups and enhance the fairness of downstream 
models
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where ̃� is any feasible subspace. By assuming that fi(.) is convex for i ∈ [m] , if there is 
no finite maximum value for this optimization, then the set of proper Pareto optimal solu-
tions is empty. The main immediate implication of this theorem is that if the objectives are 
bounded, then a Pareto optimal solution exists for this optimization problem. More spe-
cifically, if the solution of this optimization is the objective value of zero, then the ̃� is a 
Pareto optimal solution. To prove this theorem, we consider �∗ to be a proper Pareto opti-
mal solution to the problem (23), then there exists a vector � ∈ ℝ

m
+
 , such that the point �∗ 

is a Pareto optimal solution to the problem:

Then, from the Pareto optimality we have for every feasible �:

By setting � = ̃� , we can write:

Also, from the optimization problem (23) since there is not a finite maximum objective 
value available, for every M̂ ≥ 0 we can find a ̂� such that:

Then, if we set �min = min
{
�1,… , �m

}
 , we have:

If the ̂� is chosen to satisfy �minM̂ = M† , then we have:

(23)

sup
∑
i∈[m]

�
i
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i(�) + �

i
= f

i

(
̃�

)
, i ∈ [m],

�
i
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�

∑
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[
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]
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(
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(
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(
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(
̂�

)]

=
∑
i∈[m]

�min

[
fi

(
̃�

)
− fi

(
̂�

)]

≤
∑
i∈[m]

�i

[
fi

(
̃�

)
− fi

(
̂�

)]

(29)

∑
i∈[m]

�i

[
fi

(
̃�

)
− fi(�

∗)
]
≤

∑
i∈[m]

�i

[
fi

(
̃�

)
− fi

(
̂�

)]

∑
i∈[m]

�ifi

(
̂�

)
≤

∑
i∈[m]

�ifi(�
∗),



3695Machine Learning (2022) 111:3671–3702	

1 3

which contradicts the assumption of Pareto optimality of �∗ , and hence, Pareto optimal set 
is empty. 	�  ◻

Appendix B: Proof of Lemma 1

Proof  The proof is straightforward and directly follows from KKT optimally conditions for 
problem (30), however, we show the derivation here for completeness.

First, we note that the minmax optimization problem introduced in (19) to find the 
descent direction �t , can be rewritten as the following equivalent constrained optimization 
problem:

Forming the Lagrangian of the constrained problem as follows

and writing the KKT conditions gives:

From (32) we have the following that holds for the descent direction:

where �(t) =
[
𝜆
(t)

1
,… , 𝜆(t)

m

]
⊤

 belongs to �m – the m-dimensional simplex. By plugging these 
conditions back to the main problem, the dual problem can be simplified as:

(30)
(�t, 𝜖t) = arg min

�∈ℝd×r ,𝜖∈ℝ+

𝜖 +
1

2
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F
,
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�
�

⊤

�
(t)

i

�
≤ 𝜖, ∀ 1 ≤ i ≤ m.

(31)L
�
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�
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1

2
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F
+ 𝜖 +

m�
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𝜆i

�
��

�
�
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�
(t)

i

�
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�
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��
=� +

m∑
i=1

�
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By solving the dual problem, which is a quadratic programming and using (37) we can find 
the descent direction from optimal dual variables.

Next, we need to show that the obtained direction is either � or a descent direction to all 
objectives. If the point �t is a Pareto stationary point, then it means that we cannot find a 
direction that can decrease all the objectives, without increasing one. Hence, there is no 
such a � that ��

(
�⊤�

(t)

i

)
≤ 0 for all 1 ≤ i ≤ m , unless � = � . For points that are not Pareto 

stationary, consider the following quadratic optimization for every 1 ≤ j ≤ m:

We can see that this optimization problem is equivalent to the optimization problem in 
(38), with 𝜆i = 𝛽𝜆̂i for 1 ≤ i ≤ m, i ≠ j , and 𝜆j = 1 − 𝛽(1 − 𝜆̂j) . This means that the opti-
mum of the quadratic optimization in (39) happens at � = 1 . Then by using the first order 
optimally condition at optimum point we get:

which clearly shows that �t is a descent direction for all objectives. 	�  ◻

Appendix C: Proof of Theorem 2

To prove the Theorems 2 and 3 , we first need to show that by properly choosing the regulari-
zation parameter � our objectives are smooth. Recall that, our goal is to solve the following 
multi-objective optimization problem with non-convex components:

where m = 1 +
(
k

2

)
 with k being the number of groups in the sensitive feature. Also, recall 

that in the case of fair PCA, we have f1(�) = −
1

2
��
(
�⊤�⊤��

)
 is the overall reconstruction 

loss, and fi(�), i = 2, 3,… ,m are disparity errors for pair of groups. In what follows we 
use ‖ ⋅ ‖ and ‖ ⋅ ‖F to denote the spectral and Frobenius norms of a matrix, respectively.

To prove the theorem, we first show that all the the individual objective functions are 
smooth with bounded gradient (i.e., � (⋅) is component-wise smooth), conditioned that the reg-
ularization parameter � satisfies 𝛼 ≥ max
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)
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j
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)
 (recall that �d(⋅) is the 

smallest eigenvalue of input PSD matrix). To this end, we follow the definition of the smooth 
functions, i.e., ‖∇f (�) − ∇f (�)‖F ≤ L‖� − �‖2

F
.
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In particular, for f1(�) we have: 

 where the first inequality ① follows from the fact that for any two matrices � and � it 
holds that ‖��‖F ≤ ‖�‖‖�‖F , and ② follows from the definition of spectral norm. The 
above inequality indicates that the objective corresponding to the overall reconstruction 
error is smooth with parameter 𝛾max(�

⊤�).
To show the smoothness of disparity errors, for simplicity, we only focus on one of the 

objectives between a single pair of sensitive features, say si, sj , as the argument easily general-
izes to other objectives/pairs due to symmetry. We also drop the subscript from function and 
use f (�) to denote the regularized disparity error between groups si and sj defined as

Following the definition of smoothness, we have

Again, we can further upper bound the right hand side by using the definition of the spec-
tral norm of a matrix:

where 𝕊d−1 = {� ∈ ℝ
d � ‖�‖2 = 1} is the sphere in d dimensions.

As a result, as long as the regularization parameter � satisfies the following condition
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larization parameter:
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to satisfy the smoothness of all objectives fi(⋅), i = 2,… ,m . We note that one can use dif-
ferent regularization parameters for each pair depending on the eigen-gap between their 
covariance matrices as well.

We now turn to prove the convergence rate of the proposed algorithm to a Pareto fair 
subspace in general case as stated in (41), where we assume that the individual loss func-
tions fi(�), i = 1, 2,… ,m satisfy Lipschitz continuous gradient condition (smoothness) 
with smoothness parameters Li, i = 1, 2,… ,m . We also use L to denote the maximum 
smoothness parameter, i.e., L = maxi=1,2,…,m Li.

Proof  The proof begins by first bounding the difference in function values of each objec-
tive fi

(
�t

)
− fi(�

∗) , individually, following the convexity assumption:

Then we can multiply both sides by 𝜆̂i and sum over i: 

 where in ①, as discussed by Cunningham and Ghahramani (2015), the projection on to 
Stiefel manifold could be considered as a two-step projection. First, a projection in to the 
tangent space of the manifold, and then a projection on to the manifold itself. It can be 
shown that this projection is a contraction operation and this inequality holds. Also, ② fol-
lows from the smoothness assumption and definition of L. By summing up above inequal-
ity for all iterations t = 1, 2,… , T  gives:
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For the left hand side, since the fi(�t) is a decreasing function by increasing t, we can 
bound it by:

where 𝜆̄i =
1

T

∑T

t=1
𝜆̂
(t)

i
 . By plugging (45) back into (44) we have:

where ‖�1 − �∗‖2
F
= R2 . By setting � =

R

L
√
T
 , the convergence inequality reduces to:

We note that by setting � =
√
T∕R , the sufficient decrease condition in (16) is satisfied if 

the backtacking is employed. 	�  ◻

Appendix D: Proof of Theorem 3

Proof of Theorem  3  The proof proceeds using the smoothness condition. In particular, 
for a smooth function f ∶ ℝ

d×r
↦ ℝ with smoothness parameter L it holds that (descent 

lemma),

From the backtracking line search we can find the learning rate at each step that gives us 
the maximum decrease. To that end, we will start from 1

2
 and decrease it each time by half 

until all the objective have a maximum decrease defined in (16). Thus, if an � satisfies the 
condition the one step before that, 2�∗ , there is at least one objective not satisfying the con-
dition. For instance, we consider the ith objective does not satisfy the condition with 2�∗:

Now from the Lipschitz continuity of the function as:

We proceed by combining (48) with this Lipschitz continuity (49) inequality which results 
in:

(45)

T∑
t=1

m∑
i=1

𝜆̂
(t)

i

(
fi(�t) − fi(�

∗)
)
≥

m∑
i=1

(
T∑
t=1

𝜆̂
(t)

i

)(
fi(�T ) − fi(�

∗)
)

=

m∑
i=1

T ⋅ 𝜆̄i

(
fi(�T ) − fi(�

∗)
)
,

(46)
m∑
i=1

𝜆̄i

(
fi(�T ) − fi(�

∗)
)
≤

1

2𝜂T
R2 +

𝜂L2

2
,

(47)
m�
i=1

𝜆̄i

�
fi(�T ) − fi(�

∗)
�
≤

RL

2
√
T
,

f (�) ≤ f (�) + ��(∇f (�),� − �) +
L

2
‖� − �‖2

F
.

(48)fi
(
�t + (2𝜂∗)�t

)
≥ fi(�t) + 𝛽(2𝜂∗)��

(
�

⊤

t
�

(t)

i

)

(49)
fi
�
�t+1

�
≤ fi(�t) + ��

�
∇fi(�t)

⊤

�
�t+1 − �t

��
+

Li

2
���t+1 − �t

��2F

fi
�
�t + (2𝜂∗)�t

�
≤ fi(�t) + (2𝜂∗)��

�
∇fi(�t)

⊤

�t

�
+

Li(2𝜂
∗)2

2
‖�t‖2F,



3700	 Machine Learning (2022) 111:3671–3702

1 3

Also, from (40), we note that the left hand side term has a upper bound of −‖�t‖2F , 
implying

which we can replace Li with Lmax = max
1≤i≤m

Li , to obtain the lower bound on learning rate, 
that is �t ≥ C1 = min{1,

1−�

Lmax

} . Hence, by the choice of learning rate, we know that at every 
step, we have the maximum decrease for every objective 1 ≤ i ≤ m : 

where ① comes from Lemma 1 and (40), and ② follows from the bound on �t in (51).
Summing up the last inequality for all iterations t = 1,… , T  and setting C = �C1 , we 

obtain:

In (52), the left hand side is greater than min
t=1,2,…,T

CT‖�t‖2F ; and the right hand telescopes 
and can be upper bounded by �u −�l , where �u = max

i=1,2,…,m
fi(�1) is the maximum value 

among objective functions at starting point and �l is the lower bound on all objectives. 
Then the inequality becomes:

indicating that the proposed algorithm convergence to a Pareto stationary point (a point 
where the descent direction is � and none of the objectives can be further improved). 	� ◻
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