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Abstract
We consider the problem of linear classification under general loss functions in the limited-
data setting. Overfitting is a common problem here. The standard approaches to prevent 
overfitting are dimensionality reduction and regularization. But dimensionality reduction 
loses information, while regularization requires the user to choose a norm, or a prior, or 
a distance metric. We propose an algorithm called RoLin that needs no user choice and 
applies to a large class of loss functions. RoLin combines “reliable” information from the 
top principal components with a robust optimization to extract any useful information 
from “unreliable” subspaces. It also includes a new robust cross-validation that is better 
than existing cross-validation methods in the limited-data setting. Experiments on 25 real-
world datasets and three standard loss functions show that RoLin broadly outperforms both 
dimensionality reduction and regularization. Dimensionality reduction has 14% − 40% 
worse test loss on average as compared to RoLin. Against L

1
 and L

2
 regularization, RoLin 

can be up to 3x better for logistic loss and 12x better for squared hinge loss. The differ-
ences are greatest for small sample sizes, where RoLin achieves the best loss on 2x to 3x 
more datasets than any competing method. For some datasets, RoLin with 15 training sam-
ples is better than the best norm-based regularization with 1500 samples.

Keywords Classification · Principal components · Maximum entropy · Robust optimization

1 Introduction

In many machine learning applications, the size of the training data is small relative to 
the number of features, and acquiring more data may be too costly or time-consuming. 
For example, a standard dataset to predict breast-cancer from gene-expression data has 
only 99 positive examples for 7, 650 features  (Sotiriou et al. 2003), and datasets with 
smaller training sizes are also of interest  (Blagus and Lusa 2013). In computational 
advertising, we must learn to predict whether an ad is relevant to a person after see-
ing only limited data for that ad. Since there are many available ads, waiting for more 
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training data can reduce ad revenue. Limited training data also leads to the “cold-start” 
problem in recommendation systems, where we must quickly tune our recommendations 
for new users, or find relevant matches for new items. Thus, the limited-data setting is 
widely applicable.

We consider the problem of learning a linear classifier from limited training data. In 
such cases, overfitting is common. In other words, the feature weight vector that minimizes 
the training loss often has a test loss that is much worse than the training loss. The usual 
solution for such overfitting is to do dimensionality reduction or regularization. Dimen-
sionality reduction reduces the number of features, while regularization keeps all features 
but penalizes large weights. For example, for the least-squares loss, Principal Components 
Regression (PCR) does dimensionality reduction, while Ridge and LASSO do regulariza-
tion based on the L2 and L1 norms respectively.

However, both dimensionality reduction and regularization have weaknesses. Dimen-
sionality reduction ignores information. For example, PCR uses only the top few princi-
pal components of the feature matrix. But, if the top principal components are uncorre-
lated with the response variable, the PCR solution may perform poorly (Jolliffe 1982). For 
regularization, it is not easy to choose the best Lp norm. It depends on the dataset, the 
training size, and the loss function. Different norms can lead to significantly different test 
losses. Existing explanations of regularization rely on priors, or a distance between prob-
ability distributions, or a distance metric in feature space. It is not clear why such inputs are 
needed and how we should choose them in practice. This motivates the following problem:

How can we build a linear classifier that (a) outperforms both dimensionality reduction 
and norm-based regularization, (b) works for a wide range of loss functions, and (c) needs 
no user input such as a norm or a prior? 

Our proposed method, called RoLin (RObust LINear classification), aims to achieve this 
by combining dimensionality reduction with robust optimization. Dimensionality reduction 
methods such as PCR rely on the idea that solutions constructed from the top singular vec-
tors (principal components) are less prone to overfitting. Like PCR, RoLin first constructs 
such a classifier. But, unlike PCR, we do not ignore the bottom singular vectors. Train-
ing and test loss can indeed be very different for data projected on to the bottom singular 
vectors. But even from this “unreliable” projected data, we may be able to estimate some 
low-order moments, such as the mean and some aspects of the covariance. Now, the loss 
function depends on the entire data distribution, not just the low-order moments. So, RoLin 
constructs a “worst-case” distribution that matches the low-order moments. Then it finds 
a classifier that has the smallest loss under this distribution. Now, we have two classifi-
ers: one from the top principal components, and a robust one from the rest. RoLin com-
bines them into a single classifier that captures all available information. Thus, RoLin goes 
beyond the top few principal components, but still avoids overfitting. Figure 1 shows the 
intuition behind RoLin.

We summarize our main contributions below.
A new approach to avoid overfitting Given limited training data, the top principal com-

ponents are often reliable while the bottom components are noisy. Motivated by this, 
RoLin processes the top and bottom principal components differently. Reliable data from 
the top components is used directly, while noisy data from the bottom components is fil-
tered through a robust optimization. This ensures that all available reliable information is 
extracted and used in building RoLin ’s classifier. By limiting the robust optimization to 
the unreliable subspace, RoLin avoids becoming too conservative.

No user choice needed In contrast to existing regularization methods, RoLin does not 
force the user to choose a norm, prior, or distance metric.
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Applicable to many loss functions RoLin works, unchanged, for the logistic, hinge, 
squared hinge, and modified Huber losses, among others. In particular, we can use RoLin 
for both logistic regression and linear SVMs.

Robust cross-validation Existing cross-validation methods identify overfitting classifi-
ers by their poor accuracy on holdout sets. But in limited-data settings, holdout sets are 
small and holdout accuracy may be too noisy. We develop a new cross-validation method, 
called RobustCV, that checks for several signs of overfitting that are missed by standard 
cross-validation.

Empirical results We compare RoLin against competing methods on three loss functions 
and 25 real-world datasets, where the number of features ranges from p = 8 to p = 43, 680 . 
We test each dataset under five different training sizes, from n = 15 to n = 200 samples. 
RoLin outperforms dimensionality reduction as well as L1 and L2 regularization. Dimen-
sionality reduction has 14% − 40% worse loss on average that RoLin, under all problem 
settings. For some datasets, dimensionality reduction can be 4x worse. Under logistic loss, 
RoLin can be up to 3x better than the best norm-based regularization. Under squared hinge 
loss, RoLin can be up to 12x better. RoLin performs particularly well for small training 
sizes, where robustness is most important. When 50 or fewer training samples are avail-
able, RoLin achieves the smallest loss on around 2x to 3x as many datasets as the next best 
method, depending on the loss function. For some datasets, RoLin with n = 15 samples is 
better than both L1 and L2 regularization with n = 1500 samples. Finally, among the com-
petitors of RoLin, no single method dominates, and it is challenging to choose the best 
method for a given dataset, loss function, and training size. In contrast, we find that RoLin 
works well for all datasets under all problem settings.

The rest of the paper is organized as follows. We present our robust formulation and the 
main theorems in Sect. 2. Section 3 provides detailed algorithms for RoLin and RobustCV. 
Section 4 presents empirical results. We discuss prior work on overfitting in Sect. 5, and 
we conclude in Sect. 6. All proofs are deferred to Appendix A.

Fig. 1  Overview of RoLin: a We can reliably estimate the top Principal Components (PCs) of the data dis-
tribution from limited training data. In this example, only the first PC is reliably estimated. b We project the 
data onto the reliable and unreliable subspaces. c We find the classifier with the least training loss on data 
projected on the reliable subspace. d But for the orthogonal subspace, such a classifier may overfit. Linear 
classifiers such as logistic regression minimize a loss that is a function of z ∶= y ⋅ x̃ , where x̃ is a projected 
datapoint. Given limited training data, even the covariance estimate of z can be noisy (Marcenko and Pas-
tur 1967). So, minimizing the loss over the empirical distribution of z can yield classifiers (shown by the 
dashed line) that have low training loss but much higher test loss. e RoLin builds a robust covariance of z . f 
It uses this to construct a maximum-uncertainty distribution for z . g Optimizing on this distribution gives a 
robust classifier, which RoLin combines with the reliable classifier from step (c)
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2  Robust minimization of expected loss

We are given n independent training samples from some distribution D of pairs 
(x, y) ∈ ℝ

p × {−1, 1} , where x is a feature vector with p features, and y is a binary class 
label. We want to train a classifier, parameterized by � , to output a positive score g� (x) 
when it predicts y = 1 , and a negative score otherwise. The quality of classification is 
measured by a loss function �(y, g� (x)) . The best classifier is the one that minimizes the 
expected loss

We consider linear classifiers where g� (x) = �0 + �T
w
x , where �0 (intercept) and �w (fea-

ture weights) are the first and the remaining elements of � ∈ ℝ
p+1 . In this setting, many 

common losses are functions of y ⋅ g� (x) , and we denote the loss �(y, g� (x)) as 𝓁(y ⋅ g� (x)) 
henceforth. Common loss functions include

Well-known classifiers such as logistic regression (logistic loss) and linear SVM (hinge or 
squared hinge loss) fall under this framework. Such linear classifiers are also the building 
blocks for popular complex classifiers such as neural networks. Except for zero-one loss, 
all the other losses are convex in � . In this paper, we seek to minimize the expected loss in 
Eq. 1 for such convex loss functions.

RoLin splits this problem into separate problems in different subspaces of the feature 
space. Next, we discuss the details of subspace separation, our robust optimization, and its 
solution. But first, we discuss the connection to PCR in more detail, as this helps us explain 
the unique features of RoLin.

2.1  Intuition for subspaces via PCR

Consider the problem of least-squares regression:

where we assume a zero intercept for ease of exposition. Suppose we are given n i.i.d. 
training samples (yi, xi) ∈ ℝ ×ℝ

p . Then we can solve Eq. 3 after replacing the expectation 
terms with their estimates. But for small n, estimation errors lead to poor out-of-sample 
performance. Instead, Principal Components Regression (PCR) first projects the features 
xi on to the top few principal components. Then, it solves Eq. 3 only on the projected data. 
In other words, PCR splits the feature space ℝp into a subspace S1 spanned by the top prin-
cipal components, and the orthogonal subspace S2 . It then solves for the best � ∈ S1 and 
ignores S2.

The reason for the success of PCR is as follows. The principal directions and singular 
values correspond to the eigenvectors and eigenvalues of the matrix M̂ =

∑
i xix

T
i
∕n . The 

top eigenvalues and eigenvectors of M̂ are often close to those of the expectation matrix 

(1)min
�

E(y,x)∈D �(y, g� (x)).

(2)

𝓁(y ⋅ g� (x)) =

⎧⎪⎪⎨⎪⎪⎩

log2(1 + exp(−y ⋅ g� (x))) (logistic loss)

max(0, 1 − y ⋅ g� (x)) (hinge loss)�
max(0, 1 − y ⋅ g� (x))

�2
(squared hinge loss)

1yg� (x)≥−1 ⋅max(0, 1 − y ⋅ g� (x))
2 − 1yg� (x)<−1

⋅ (4y ⋅ g� (x)) (modified Huber loss)

1y⋅g� (x)≤0 (zero-one loss).

(3)min
�∈ℝp

E
x,y(y − �T

x)
2
= min

�∈ℝp
E
[
y2
]
− 2�TE

[
y ⋅ x

]
+ �TE

[
xx

T
]
�,
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M = E[M̂] = E[xxT ] , even for small training sizes. This is because the estimation error for 
an eigenvector depends on the gap between its eigenvalue and all other eigenvalues  (Davis 
and Kahan 1970; Yu et al. 2015). A larger gap implies smaller estimation error. For many 
datasets, this gap is large for the top eigenvalues. So the top principal directions are well esti-
mated, and the same holds for the singular values too (Zhao et al. 2019). Hence, M̂ and M 
have similar projections on the subspace S1 spanned by these well-estimated principal direc-
tions. So for any � ∈ S1 , �

TM̂ is close to �TM , and so �TM̂� ≈ �TM� . Applying this in 
Eq. 3, min�∈S1

E(y − �Tx)2 ≈ min�∈S1

∑
i(yi − �T

xi)
2∕n , and this becomes PCR’s solution. 

In contrast, the remaining principal components are poorly estimated when n is small. So, the 
least-squares training loss is not a reliable indicator of the expected loss in the orthogonal sub-
space S2 . Therefore PCR ignores S2.

The loss functions we consider in Eq. 2 are not restricted to just second moments as in 
Eq. 3. However, the basic ideas underlying PCR are still applicable, as we discuss next.

2.2  Subspace separation

We want to minimize the expected loss under a linear score function. The loss is given by 
𝓁(y ⋅ g� (x)) = 𝓁(y�0 + �T

w
(y ⋅ x)) = 𝓁(y�0 + �T

w
z) , where � = (�0 �w)

T with intercept 
�0 ∈ ℝ and feature vector �w ∈ ℝ

p , and z = y ⋅ x . Extending the PCR argument, we propose 
to split the space ℝp into three subspaces S0 , S1 , and S2 . The subspace S0 is spanned by the 
top few eigenvectors of M̂ =

∑
i xix

T
i
∕n . We expect that the loss function can be reliably esti-

mated in this subspace:

where ℙn[.] represents the empirical mean. The next few eigenvectors span the subspace S1 . 
Here, we can reliably estimate only the first and second moments of the distribution of z 
projected on to S1:

But this may not be enough to estimate the loss function accurately. We must also consider 
the subspace S2 that is orthogonal to both S0 and S1 . Here, we only expect first moments to 
be well-estimated. For the subspace S2 , orthogonal to both S0 and S1 , only first moments 
are well-estimated.

But the second moments under S2 are not arbitrary. Note that S1 and S2 are constructed 
from separate sets of eigenvectors of the sample covariance matrix ℙn[zz

T ] = ℙn[xx
T ] = M̂ 

(since z = y ⋅ x and y ∈ {+1,−1} ). So they are orthogonal under M̂ , that is, 
ℙn

[(
PS1

z

)(
PS2

z

)T]
= 0 , where PSi

∈ ℝ
p×p is a matrix that projects any vector on to Si , for 

i ∈ {0, 1, 2} . We expect S1 and S2 to remain nearly orthogonal under the population covari-
ance M:

Finally, we expect the eigenvalues of the second-moment matrix under S2 to be smaller 
than those under S1.

(4)E
[
�(y�0 + �T

w
z)
]
≈ ℙn

[
�(y�0 + �T

w
z)
]

for any �w ∈ S0,

(5)�T
w
E
[
zz

T
]
�w ≈ �T

w
ℙn

[
zz

T
]
�w for any �w ∈ S1

(6)�T
w
E[z] ≈ �T

w
ℙn[z] for any �w ∈ S1 ∪ S2

(7)E
[(
PS1

z

)(
PS2

z

)T]
≈ 0.
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where �max and �min refer to the maximum and minimum non-zero eigenvalues of a matrix.

2.3  Different optimizations over subspaces

To construct our solution, we first optimize the training loss over S0 . By Eq. 4, the training 
loss accurately reflects the expected loss of a solution � with intercept �0 and �w ∈ S0 . So, 
we choose an intercept �0 ∈ ℝ and �S0

∈ S0 that solves the following optimization:

This is the usual parameter-fitting problem in classification but with projected features 
PS0

xi . We can use off-the-shelf solvers for logistic regression (for logistic loss) or linear 
SVM (hinge or squared hinge losses). For other convex loss functions, such as the modified 
Huber loss, we can use standard optimizers such as stochastic gradient descent.

Now, unlike PCR, we do not ignore S1 ∪ S2 . Suppose we set �w = �S0
+ �S1∪S2

 for 
some vector �S1∪S2

∈ S1 ∪ S2 . Then, the expected loss E[𝓁(�0 ⋅ y + �T
w
z)] equals 

E[𝓁
(
�0 ⋅ y + �T

S0
(PS0

z) + �T
S1∪S2

(PS1∪S2
z)

)
] . If we change �S1∪S2

 , it affects the third term 
but not the first two. Setting �S1∪S2

= 0 corresponds to dimensionality reduction, because 
we only use the top principal components in S0 . But a careful choice of �S1∪S2

 can reduce 
the loss obtained from �S0

 alone. But we cannot just project the data on to S1 ∪ S2 and pick 
the �S1∪S2

 that minimizes training loss. This is because we cannot reliably estimate the loss 
function in this subspace. Instead, we need a �S1∪S2

 that is robust to estimation errors. To 
avoid being too conservative, we still need to use all available information about S1 ∪ S2 
(Eqs. 5–8). We formulate this as a robust optimization problem, which we discuss next.

2.4  Robust formulation

To select a robust �S1∪S2
 , we need to characterize the distribution of the data projected on 

to S1 ∪ S2 . The empirical distribution is unreliable here. Instead, we will construct distri-
butions that are “worst-case”, in that they have the maximum uncertainty subject to the 
constraints in Eqs.  5–8. Then, we pick the �S1∪S2

 with the best worst-case performance. 
This prevents �S1∪S2

 from overfitting to incidental aspects of the empirical distribution, 
while still using all reliable information about moments.

We note that our worse-case distribution depends on the data, but not on the weight vec-
tor �S1∪S2

 . An alternative notion of robustness is to let the worst-case distribution depend 
on �S1∪S2

 as well. This corresponds to setting, for each possible choice of �S1∪S2
 , the worst 

possible higher-order moments of the data distribution. Since our only constraints are on 
the mean and covariance, setting all other moments to their worst-case values is overly 
conservative. Fixing the data distribution to the maximum-uncertainty distribution helps us 
achieve robustness in a more practical way.

(8)𝜎max

(
E
[(
PS2

z

)(
PS2

z

)T])
< 𝜎min

(
ℙn

[(
PS1

z

)(
PS1

z

)T])
,

(9)

min
�0∈ℝ,�S0

∈S0

1

n

n∑
i=1

𝓁

(
�0 ⋅ yi + � t

S0
(PS0

zi)

)

= min
�0,�S0

1

n

n∑
i=1

𝓁

(
yi ⋅

(
�0 + � t

S0
(PS0

xi)

))
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We will formulate our robust model assuming that Eqs.  5–7 are equalities. The first 
moments of the distribution of PS1∪S2

z can be taken to be the first moments of the empirical 
distribution. For the second moments of this distribution, we have only partial information. 
Let VS1∪S2

 be a matrix whose columns are the eigenvectors that span S1 and S2 . Writing the 
second-moment matrix of PS1∪S2

z in the basis VS1∪S2
 , we get a block-wise form:

Now,

where the second equality follows from applications of Eq. 5, and the third equality follows 
from PS1

= VS1
VT
S1

 . So B11 is the second-moment matrix of the data projected on to VS1
 . 

Also, by Eq. 7,

For B22 , we have no estimates but only a bound (Eq. 8). This suggests the following uncer-
tainty set for B22:

where �bound = �min

(
ℙn

[(
PS1

z

)(
PS1

z

)T]) . Note that by construction, this uncertainty set 
is non-empty. Equations 10–12 thus characterize the second moments of the distribution of 
PS1∪S2

z.
Now, we construct our worst-case distribution for PS1∪S2

z ; call it q(PS1∪S2
z) . We choose 

q(PS1∪S2
z) to be the distribution with the maximum entropy (and hence the most “uncer-

tainty”) subject to the first and second moments specified above. It is well known that the max-
imum entropy is achieved by the exponential family distribution with those moments (Cover 
and Thomas 2006). Now, we pick �S1∪S2

 that performs best under q(PS1∪S2
z):

where r is a random variable that represents PS1∪S2
z , and �0 and �S0

 are the solutions of 
Eq. 9. Note that q(.) depends on B22.

(10)

VT
S1∪S2

E
��
PS1∪S2

z

��
PS1∪S2

z

�T�
VS1∪S2

=

⎡⎢⎢⎣
VT
S1
E
��
PS1

z

��
PS1

z

�T�
VS1

VT
S1
E
��
PS1

z

��
PS2

z

�T�
VS2

VT
S2
E
��
PS2

z

��
PS1

z

�T�
VS1

VT
S2
E
��
PS2

z

��
PS2

z

�T�
VS2

⎤⎥⎥⎦
=∶

�
B11 B12

B21 B22

�

B11 = VT
S1
E
[(
PS1

z

)(
PS1

z

)T]
VS1

= VT
S1
ℙn

[(
PS1

z

)(
PS1

z

)T]
VS1

= ℙn

[(
VT
S1
z

)(
VT
S1
z

)T
]
,

(11)B12 = B21 = 0.

(12)B22 ∈ U ∶=

�
W
�����
W ⪰

1

n

n�
i=1

�
VT
S2
zi

��
VT
S2
zi

�T

, ‖W‖ ≤ �bound

�
,

(13)�S1∪S2
= argmin

b∈S1∪S2
max
B22∈U

1

n

n∑
i=1

E
r∼q(.)

[
𝓁

(
�0 ⋅ yi + �T

S0

(
PS0

zi

)
+ b

T
r

)]
,
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2.5  The solution of the robust objective

The solution �S1∪S2
 of Eq. 13 depends not only on the distribution q(PS1∪S2

z) but also on �0 , 
�S0

 , and PS0
zi . This suggests that solving the robust optimization might be difficult. How-

ever, we show a surprising result. While the scale of �S1∪S2
 indeed depends on all the above 

factors, the direction of �S1∪S2
 does not. In fact, in many cases, the direction does not even 

depend on the specific loss function.

Theorem 1 (Direction of the Robust solution) Suppose the loss function �(.) is non-nega-
tive, monotonically non-increasing, convex, differentiable, and the absolute value of its first 
derivative |��(.)| has finite non-zero expectation under the standard Normal distribution. 
Then, any solution of Eq. 13 satisfies

for some scalar c. Further, if there is a sequence of loss functions �(m)(.) satisfying the 
properties mentioned above such that limm→∞ supx∈ℝ |�(m)(x) − �(x)| = 0 , then there is a 
solution of the form of Eq. 14 that is arbitrarily close to the optimal.

Corollary 1 (Wide applicability) The minimizer �S1∪S2
 of Eq. 13 has the form of Eq. 14 for 

logistic, hinge, squared hinge, and modified Huber losses.

These results are significant from both a theoretical and practical standpoint. It is chal-
lenging to formulate tractable robust optimizations. Uncertainty sets are often chosen for 
their ease of analysis. So, it is encouraging to see a simple closed-form structure emerge 
from a well-motivated formulation. Further, we do not need separate analyses for each loss 
function. Armed with Theorem 1, we only need to pick a single scalar, which is the magni-
tude ‖�S1∪S2

‖ . We will choose this by cross-validation.
Computing the direction of �S1∪S2

 is also easy because Σ is a diagonal matrix. To see 
this, let X be the matrix with xi as its ith row, and let X = UDVT be its singular value 
decomposition (SVD). The SVD of X is related to the eigenvectors and eigenvalues of M̂ 
by the formula n ⋅ M̂ =

∑
i ziz

T
i
=
∑

i xix
T
i
= VD2VT . For i ∈ {0, 1, 2} , let DSi

 be the diago-
nal matrix of singular values corresponding to the eigenvectors in VSi

 . Then, the top-left 
block of Σ equals 

∑
i(V

T
S1
zi)(V

T
S1
zi)

T∕n = D2
S1
∕n . So, Σ is a diagonal matrix with entries 

D2
S1
∕n and �bound . Since 𝜎bound = min(D2

S1
∕n) > max(D2

S2
∕n) from Eq.  8, we may write 

Σ = diag(max(D2
S1∪S2

∕n, �bound)) . We propose using a smooth upper-bound of this: 
Σsmooth = diag(D2

S1∪S2
∕n + �bound) . By varying �bound , we get smooth transitions between 

different choices for S1 and S2 . Using Σsmooth also reveals a curious connection between our 
robust solution and ridge regression.

Theorem 2 (Connection to ridge regression) The robust solution �S1∪S2
 using Σsmooth is also 

the solution, up to a scaling factor, for regressing yi on PS1∪S2
xi with a ridge penalty:

(14)

�S1∪S2
= c ⋅ VS1∪S2

Σ
−1
�,

where Σ =

�
1

n

∑n

i=1

�
VT
S1
zi

��
VT
S1
zi

�T

0

0 �bound ⋅ I

�
,

� =
1

n

n�
i=1

VT
S1∪S2

zi,
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Thus, we can view RoLin as a mix of standard classification over the well-estimated top 
principal components and ridge regression over the poorly-estimated orthogonal subspace.

3  Algorithm and Robust cross‑validation

Algorithm 1 Calculate β for RoLin.
1: function CalcBeta({xi ∈ Rp, yi ∈ {1,−1} | i = 1, . . . , n}, k, σratio, bmax)
2: zi ← yi · xi

3: Z ← n× p matrix whose ith row is zi

4: U,D, V ← SVD(Z) � Z = UDV T , Di,i in descending order
5: VS0 ← first k columns of �V Basis vectors for subspace S0
6: VS1∪S2 ← last p− k columns of V
7: DS1∪S2 ← diagonal matrix with entries Dk+1,k+1, Dk+2,k+2, . . . , Dp,p

8: β0,γ ← argminβ0∈R,γ∈Rk

∑n
i=1 �

(
β0 · yi + γTV T

S0
zi

)

9: βS0 ← VS0γ
10: σbound ← σratio ·max(D2

S1∪S2
)

11: ν ← VS1∪S2

(
D2

S1∪S2
+ σbound · I

)−1
V T
S1∪S2

ZT 1

12: if ‖ν‖ �= 0 then
13: ηS1∪S2 ← VS1∪S2ν/‖ν‖
14: ‖βS1∪S2‖ ← argminc∈[0,bmax]

∑n
i=1 �

(
β0 · yi + βS0 + c · ηS1∪S2

)T
zi

)

15: βS1∪S2 ← ‖βS1∪S2‖ · ηS1∪S2
16: else
17: βS1∪S2 ← 0
18: end if
19: β ← intercept β0 and feature weights βS0 + βS1∪S2
20: return β
21: end function

RoLin combines two algorithms: the CaLCbeta algorithm to calculate the solution � , and 
the RobustCV algorithm to robustly select model parameters for CaLCbeta. We now pro-
vide details for both these algorithms.

Calculation of the solution vector  � Algorithm 1 shows the steps in calculating � . Apart 
from the data itself, it requires three inputs. This first input is the number k of top principal 
components that comprise the subspace S0 . The second input is a parameter �ratio from 
which we construct �bound . Tuning �ratio allows for smooth transitions between S1 and S2 . 
Setting �ratio = 0 corresponds to setting S2 = ∅ , while a large �ratio corresponds to S1 = ∅ . 
Third, we need an upper bound bmax on the magnitude ‖�S1∪S2

‖.
We first construct the matrix Z with rows zi = yi ⋅ xi . The singular value decomposition 

of Z gives the diagonal matrix D of singular values and the matrix V of singular vectors 
(step 4)1. We form VS0

 from the first k singular vectors and VS1∪S2
 from the remaining singu-

lar vectors (steps 5, 6). VS0
 and VS1∪S2

 span the subspaces S0 and S1 ∪ S2 , respectively. For 

�S1∪S2
∝ argmin

b

n�
i=1

�
yi − b

TPS1∪S2
xi

�2
+ n�bound ⋅ ‖b‖2.

1 The matrix Z has the same singular values/vectors as the matrix X with rows x
i
.



1630 Machine Learning (2022) 111:1621–1649

1 3

S0 , we compute the optimal intercept �0 and weight vector �S0
∈ S0 via Eq. 9 (steps 8, 9). 

As discussed in Sect. 2.3, this step can use any convex minimizer. Then, for S1 ∪ S2 , we 
compute the direction vector �S1∪S2

 using Theorem 1 (steps 11–13). Here, we use Σsmooth 
with �bound = �ratio ∗ max(D2

S1∪S2
) , where DS1∪S2

 contains singular values corresponding to 
VS1∪S2

 . Finally, we choose the best magnitude of �S1∪S2
 over the training samples, but under 

the bound ‖�S1∪S2
‖ ≤ bmax (step  14). Bounded norm solutions have small generalization 

error (Sect. 5), so this is appropriate for the poorly-estimated subspace S1 ∪ S2 . Note that 
the question of the “right” norm does not arise. We must bound the L2-norm ‖�S1∪S2

‖ since 
we already know the direction of the vector �S1∪S2

.

Algorithm 2 Robust Cross-validation for RoLin.
1: function RobustCV(dataset D, Θratio, Θslack, Θgain)
2: Split D into multiple train/holdout splits {(Dtr

j ,Dho
j ) | j = 1, . . . , J}

3: Cσ , Cb ← fixed set of choices for σratio and bmax � Initialization
4: kmax ← MaxReliablePCs(Θratio) � Find the maximum number of reliable PCs
5: ΨS0 ← {ψ = (k, 0, 0) | k ∈ {1, . . . , kmax}}
6: ψrob

S0
← RobustParams(ΨS0 , Θslack) � Robust solution using only top PCs

7: Ψ ← {ψ = (k, σratio, bmax) | k ∈ {1, . . . , kmax}, σratio ∈ Cσ , bmax ∈ Cb}
8: ψrob ← RobustParams(Ψ,Θslack) � Robust solution for general setting
9: ψbest ← ψrob

S0
if cost(ψrob) ≥ (1−Θgain) cost(ψrob

S0
) else ψrob

10: return ψbest

11: end function

12: function MaxReliablePCs(Θratio)
13: for all k ∈ {1, . . . , p} do
14: ψ ← (k, σratio = 0, bmax = 0)
15: lossratio(ψ), cost(ψ) ← CalcCost({(Dtr

j ,Dho
j )}, ψ)

16: end for
17: kmax ← max ({k | lossratio(k, 0, 0) ≤ Θratio ∀m ≤ k})
18: return kmax

19: end function

20: function RobustParams(Ψ , Θslack)
21: for all ψ ∈ Ψ do
22: lossratio(ψ), cost(ψ) ← CalcCost({(Dtr

j ,Dho
j )}, ψ)

23: end for
24: ψ ← argminψ∈Ψ cost(ψ)
25: Ψslack ← {ψ ∈ Ψ | cost(ψ) ≤ (1 +Θslack) cost(ψ�)} � Nearly-min-cost candidates
26: ψrob ← argminψ∈Ψslack

(cost(ψ) + lossmax(ψ)) � Most robust candidate
27: return ψrob

28: end function

29: function CalcCost(data splits
{
(Dtr

j ,Dho
j ) | j = 1, . . . , J

}
, ψ = (k, σratio, bmax))

30: for all (Dtr
j ,Dho

j ) do

31: β ← CalcBeta
(
D(tr)

j , ψ
)

32: losstrj , losshoj ← training and holdout loss using β
33: end for
34: lossavg ← 1

J

∑J
j=1 loss

ho
j

35: lossmax ← maxj losshoj

36: lossratio ← 1
J

∑J
j=1

lossho
j

losstrj
37: cost ← lossavg if lossratio ≤ Θratio else lossmax � Robust cost
38: return lossratio, cost
39: end function
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Robust cross-validation for choosing model parameters. Now we need to select the 
input parameters � = (k, �ratio, bmax) for CaLCbeta (Algorithm 1). A poor � leads to an 
overconfident classifier. But, there may only be a few holdout samples where an over-
confident classifier incurs significant losses. The averaging step of cross-validation can 
hide these few large losses. To counter this, we develop a new robust cross-validation 
method called RobustCV (Algorithm 2).

RobustCV guards against overconfidence by using three signals. The first signal is the 
loss ratio, which we define as the ratio of the holdout loss to training loss, averaged over 
all cross-validation splits (step 36). A � with a high loss ratio indicates that overfitting is 
likely. To implement this idea, we use a loss ratio threshold Θratio . Below the threshold, we 
use the average holdout loss as a measure of the cost of � , like standard cross-validation. 
But above the threshold, the cost of � is set to the maximum holdout loss (step 37). We 
also use the loss ratio to find an upper bound kmax for the number of principal components 
that are well-estimated (step 4). Throughout our algorithm, we restrict the parameter k in � 
to k ≤ kmax.

The second warning sign of overconfidence is a significant difference between the aver-
age holdout loss and the maximum holdout loss. Standard cross-validation picks the 𝜓⋆ 
with the smallest cost. But, we find a robust parameter setting � rob whose cost is within a 
factor (1 + Θslack) of 𝜓⋆ , but whose worst-case holdout loss is better (steps 24–26).

Third, realizing that the distribution of PS1∪S2
z is poorly estimated, we check if a solu-

tion constructed from S0 alone is good enough. That is, we select a � rob
S0

 that ignores the 
subspace S1 ∪ S2 unless the cost of improves by a factor of Θgain using � rob (step  9). 
Together, these steps ensure that RobustCV selects a �best that is robust but not too con-
servative. RoLin then runs CaLCbeta under �best over the entire training sample. The out-
put of this is RoLin ’s solution.

4  Experiments

We will first compare RoLin against competing methods for 25 real-world datasets and 
three loss functions. Then, we will contrast RoLin run with RobustCV versus alterna-
tive cross-validation schemes. Finally, we will present a sensitivity analysis for RoLin ’s 
parameters.

Datasets We use 25 benchmark real-world datasets from the UCI repository2. These 
span many domains, and the number of features range for p = 8 to p = 43, 680 . We convert 
categorical variables into binary “dummy” variables, and count each dummy variable as a 
separate feature.

Evaluation methodology We run experiments with logistic loss, squared hinge loss, 
and modified Huber loss (Eq. 2). All three are standard loss functions, and the first two 
are widely used in logistic regression and linear support vector machines. Our focus is on 
the limited-data setting because this is where estimation errors are significant, and find-
ing a good solution is difficult. So we vary the number of training samples from n = 15 to 
n = 200 for each dataset. For each experiment, we randomly choose n points as the training 
samples and the remainder as the test samples. Then, we compute the average test loss for 
RoLin and all competing methods. We repeat this process 50 times. For each n, we report 

2 https:// archi ve. ics. uci. edu/ ml/ datas ets.

https://archive.ics.uci.edu/ml/datasets
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the trimmed mean of the losses, because it is robust to the occasional outlier. That is, we 
drop the five best and five worst test losses from the 50 repetitions, and calculate the aver-
age of the remaining test losses. We note that the mean losses have the same pattern as the 
trimmed means, with RoLin outperforming other methods by an even wider margin.

Competing methods The closest competitors to RoLin are norm-based regularization 
(using L1 and L2 norms), and dimensionality reduction using the top few principal compo-
nents (Top PCs). For norm-based regularization, we use Python’s scikit-learn implementa-
tions for all losses and regularizations. We select the regularization parameter via standard 
cross-validation. Note that we calculate cross-validation loss using the actual loss function 
which we want to minimize, and not zero-one loss as in common in practice. Using zero-
one loss gives sub-optimal results (see Appendix B). For Top PCs, the number of principal 
components is chosen by cross-validation.

We also contrast RobustCV with two cross-validation methods. One is the standard CV, 
which picks the parameter with the best average holdout loss. The second method (CV-
1-SD) considers all parameters whose loss is within one standard deviation of the best loss, 
and picks the parameter that achieves the most regularization (Hastie et al. 2009).

Implementation details. For RoLin3, we run RobustCV with Θratio = 5,Θslack = 0.1, 
and Θgain = 0.05 . We split the training data using five instances of 5-fold cross-valida-
tion (De Brabanter et al. 2002). We vary bmax from 0.01 to 0.1 for n = 15 . For larger n, we 
scale the upper range with 

√
n . This allows more weight to be placed on the robust solution 

when more data is available. We vary �ratio from 1 to 10. We also use RobustCV to choose 
whether to normalize the features. We use the above settings for all experiments except for 
the sensitivity analysis in Sect. 4.3.

4.1  Accuracy of RoLin

The detailed plots of the performance of every method for each dataset and each loss func-
tion are shown in Fig. 10 in the appendix. In the following, we summarize our results and 
present our main observations.

RoLin outperforms the competing methods. Figure  2 shows the aggregate statistics 
comparing RoLin against competing methods over all 25 datasets. The top panel of Fig. 2 
counts the number of datasets on which any given method achieves the best loss. We see 
that RoLin is the best in all settings except for logistic loss with 200 training samples. 
RoLin is particularly dominant for small training sizes, since this is when robustness to 
estimation error is most needed. For n = 15 training samples, RoLin is the best performer 
on at least 15 datasets, irrespective of the loss function. When 50 or fewer training samples 
are available, RoLin achieves the smallest loss on around 2x to 3x as many datasets as the 
next best method. RoLin also works very well for modified Huber Loss; it is best for 14 or 
more datasets for any training size.

We observe the same pattern when we compare the actual value of the loss. The bottom 
panel of Fig. 2 shows the loss incurred by each method compared against that of RoLin, 
averaged over all datasets. RoLin always has a better loss on average, for all loss functions 
and training sizes. The greatest difference is for the smallest training size n = 15 , where 
the next best method is on average 14% − 40% worse than RoLin, depending on the loss 

3 The code is available from https:// facul ty. mccom bs. utexas. edu/ deepa yan. chakr abarti/ mywww/ softw are/ 
ROLIN- 2021. tgz.

https://faculty.mccombs.utexas.edu/deepayan.chakrabarti/mywww/software/ROLIN-2021.tgz
https://faculty.mccombs.utexas.edu/deepayan.chakrabarti/mywww/software/ROLIN-2021.tgz
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function. But even with n = 200 training samples, every method is worse on average than 
RoLin. For the modified Huber loss, the average improvement of RoLin over L1 and L2 
regularization is too large to fit on the plot.

There is no clear second-best method among the competitors of RoLin. In practice, we 
must choose a single method to apply to a dataset. Figure  2 shows that while RoLin is 
best, there is no clear second-best method. In terms of the loss, Top PCs works well eve-
rywhere. However, Fig. 2d shows that L1 regularization is better for most training sizes for 

Fig. 2  Comparison of RoLin against competing methods: The top row shows the number of datasets on 
which each method is best. RoLin performs best for most losses and training sizes. The bottom row shows 
the ratio of the trimmed means of losses of each method against that of RoLin, averaged over all 25 data-
sets. Again, RoLin works best for all loss functions and training sizes. We do not show L

2
 regularization for 

the squared hinge and modified Huber losses, and L
1
 regularization for the modified Huber loss, because 

their average loss is too large

Fig. 3  Among the competitors of RoLin, no one method is best: We compare the three competitors of RoLin 
against each other (ignoring RoLin). Top PCs works well for Modified Huber loss, but for other losses, 
there is no one method that works best
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logistic loss. Further, if we consider the instances where some method outperforms RoLin, 
that method is often L2 regularization (Figs. 2a and 2b. But the average loss for L2 regu-
larization can be much worse than the other methods (Fig. 2e, f). Figure 3 compares only 
the competitors of RoLin to each other. Top PCs works well for the modified Huber loss, 
but for other losses, L2 regularization is comparable or sometimes better. Thus, among the 
competitors of RoLin, no single method dominates.

Robust optimization contributes significantly to RoLin ’s performance. The difference 
between Top PCs and RoLin is that Top PCs ignores the bottom principal components, 
while RoLin uses a robust optimization for them. Hence, the importance of robust optimi-
zation can be gauged from the difference between these two methods4.

The previous results show that Top PCs works reasonably well on all loss functions and 
training sizes. But the consistency of Top PCs comes at a cost: it rarely outperforms RoLin 
(top panel of Fig. 2). Figure 4 shows the ratio of the loss of Top PCs against RoLin on a 
log-scale. For every loss function, and for any training size, RoLin is better than Top PCs 
on at least 75% of the datasets (shown by the bottom of the boxes being around one). Fur-
ther, Top PCs can be up to 4x worse than RoLin. Even with n = 200 training samples, Top 
PCs can still be 2x worse. This clearly demonstrates the need for the robust optimization 
step in RoLin.

Norm-based regularization can occasionally have very large losses. For particular 
datasets and settings, RoLin can be much better than both L1 and L2 norm-based regu-
larizations. It can be up to 3x better under logistic loss, and 12x better under squared 
hinge loss. For modified Huber loss, no norm-based regularization yields a reason-
able classifier for the Credit and Gas sensor datasets (Fig. 10(12) and 10(18)). 
Indeed, for several datasets, the classifiers obtained from norm-based regularization 
have such poor test loss that they do not appear in the plots for Fig. 10.

To illustrate this, Fig. 5 compares RoLin against norm-based regularization for three 
specific datasets. Note that the y-axis is on a log scale, and we report trimmed means 
which remove outliers. Plot  (a) shows an instance where RoLin with n = 15 train-
ing samples is better than both norm-based methods with n = 1500 samples. Plot  (c) 
shows a similar situation. In plot (b), the losses for norm-based regularization become 
much worse when training size is reduced. This cannot be due to occasional outliers, 
because the trimmed mean ignores the worst five test losses. Further, L1-regularization 
in plot  (c) is not close to convergence even with n = 1500 . These examples highlight 
the perils of choosing the “wrong” norm. RoLin sidesteps this issue entirely.

Fig. 4  RoLin versus Top PCs: RoLin is consistently better

4 Top PCs uses standard CV while RoLin uses RobustCV. Changing Top PCs to use RobustCV only 
increases the gap in performance between Top PCs and RoLin.
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Finally, we note that RoLin performs as well or better than competing methods for 
zero-one loss (or, misclassification rate). Since our focus is on convex losses, we defer 
these results to Appendix B.

4.2  Importance of RobustCV

To examine the influence of RobustCV, we run RoLin with standard cross-validation 
(CV) and another common variant (CV-1-SD). For each dataset and loss function, we 
calculate the trimmed mean of test loss of RoLin with CV and CV-1-SD, for n = 15 
to n = 200 . We compare these against the trimmed means using RobustCV. Figure 6 
show that CV is better than CV-1-SD for all losses. Between CV and RobustCV, 
RobustCV outperforms for small training sizes. For n ≤ 30 , CV is 5% − 25% worse on 
average than RobustCV, depending on the loss function. The differences mostly disap-
pear when more training samples are available.

These results show the usefulness of robustness in cross-validation for small sample 
sizes. In such scenarios, an overconfident classifier may correctly classify all but a few 
points, and only these few points provide any warning about the unsuitability of the 
classifier. RobustCV is designed to look for these warning signals and hence can avoid 
overconfident classifiers. Standard CV averages over all holdout sets, and this attenu-
ates or even hides the warning signs.

Fig. 5  Test loss comparison on three example datasets: RoLin is compared against L
1
 and L

2
 regularizations 

for three loss functions, over a wide range of training sizes n. For each n, we report the trimmed mean of 
the test losses over 50 repeated experiments. Note that the y-axis is plotted on a log-scale

Fig. 6  Importance of RobustCV: We plot the loss when RoLin is run with CV and CV-1-SD, versus 
RobustCV. RobustCV is much better for small training sizes
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4.3  Sensitivity analysis

Recall that RobustCV requires three parameters. The first is Θratio , which is the thresh-
old ratio of holdout to training loss above which we distrust the average holdout loss. 
The second is Θslack , which is the importance we assign to the maximum holdout loss 
versus the average holdout loss. The third is Θgain , which characterizes our preference 
for solutions constructed only from the top principal components. Now, we vary these 
parameters one at a time from their default values and report results on ten datasets.

Figure 7 shows the relative increase in the trimmed means under logistic loss for dif-
ferent values of these parameters. Plot  (a) shows that for Θratio , any value in the range 
Θratio ∈ [2.5, 100] works well (the default is 5). Larger values of Θratio mean that we 
ignore instances where training loss is much smaller than holdout loss, which is a clear 
sign of overfitting. Smaller values mean that we always use the maximum holdout loss 
instead of the average holdout loss. Always focusing on maximum loss is too conserva-
tive, so it performs poorly for our expected test loss objective.

Plot  (b) shows that any choice of Θslack ≤ 0.15 yields similar results (the default is 
0.1). Losses become worse for larger values of Θslack . A large Θslack means that we down-
play the average holdout loss and focus on the maximum holdout loss. Like a small 
Θratio , this is too conservative and does not work for the same reason.

Plot (c) shows that any Θgain ≤ 0.05 yields good results (the default is 0.05). Higher 
values imply a preference for solutions based on only the top few principal compo-
nents, ignoring the robust solution from the remaining principal components. When 
Θgain → ∞ , we get Top PCs. We see that high Θgain leads to a significant increase in the 
test loss, showing the importance of the robust component of RoLin.

Extreme values for any of these parameters correspond to either standard cross-vali-
dation or very conservative choices. The former is bad for small n, while the latter per-
forms poorly for large n. But for a broad range of parameters, RobustCV achieves good 
results.

5  Prior work

A common approach to deal with limited data is regularization. Here, we add to the desired 
objective an extra term that penalizes large feature weights. This term is typically some Lq 
norm of the feature weight vector, with q = 1 and q = 2 being common choices:

Fig. 7  Sensitivity to the parameters of RobustCV: We plot the relative difference in trimmed means for 
logistic loss when the parameters (Θratio,Θslack,Θgain) are varied from their default values of (5, 0.1, 0.05). 
Positive values imply larger losses. RoLin is seen to be robust to a wide range of parameter choices
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There are several competing justifications of the regularization term in Eq. 15. Regulariza-
tion can emerge from a prior, or as the solution of a robust optimization, or as a way to 
bound estimation errors. Next, we discuss these, and contrast them with RoLin.

Prior. We can cast regularization as a prior on the parameter vector � . Then, the solu-
tion of Eq. 15 is the maximum a posteriori (MAP) estimate of � . For example, a zero-mean 
spherical Gaussian prior for �w gives L2 regularization, while a Laplace prior yields L1 reg-
ularization. But one may construct a prior for any Lq-norm, or any Mahalanobis distance 
metric. Choosing the best prior for a dataset is difficult, but it matters a lot, as we showed in 
Sect. 4. RoLin does not assume a prior, so it sidesteps this difficulty entirely.

Priors are also useful for dealing with corrupted data (Kordzakhia et al. 2001; Feng 
et al. 2014; Tibshirani and Manning 2014). Further, L1 priors induce sparsity in the solu-
tion, which makes the model easier to interpret (Tibshirani 1996). We do not consider 
data corruption or interpretability in this paper.

Robust optimization. Many optimization problems have parameters or constraints that 
must be learned from data. Robust optimization methods protect against corrupted data, 
outliers, and incorrect assumptions  (Ben-Tal et  al. 2009). These methods first construct 
uncertainty sets that reflect the ambiguity in the data. Then, they optimize a worst-case 
objective over the uncertainty set. For some uncertainty sets, this worst-case objective 
matches norm-based regularization.

Robust optimization methods typically fall into two groups. Methods in the first group 
assume that the training samples are perturbed. The perturbation could be because of 
uncertain or missing data  (Trafalis and Gilbert 2006; Gao Huang et al. 2012; Wang and 
Pardalos 2014; Tzelepis et al. 2018), adversarial opponents (Globerson and Roweis 2006), 
or different training and test distributions  (Bi and Zhang 2004). Robustness to perturba-
tions is also equivalent to robustness under chance constraints  (Bhattacharyya 2004; 
Shivaswamy et al. 2006). To achieve robustness, we assume that the “true” data fall inside 
an uncertainty set constructed from the “perturbed” data. Standard uncertainty sets impose 
a bound on some norm of the perturbation. Choosing a particular norm gives a correspond-
ing norm-based regularization (El Ghaoui and Lebret 1997; Xu et al. 2009a, b).

The second group of robust optimization methods constructs uncertainty sets of prob-
ability distributions. They assume that the true distribution of (y, x) lies in this uncertainty 
set and optimize for the worst-case distribution in this set. Delage and Ye (2010); Goh and 
Sim (2010); Wiesemann et  al. (2014) consider distributions with appropriately bounded 
moments. Others choose distributions within a bounded distance from the empirical dis-
tribution. The distance can be the Prohorov metric (Erdoğan and Iyengar 2006), KL-diver-
gence (Jiang and Guan 2016), or Wasserstein distance (Wozabal 2012; Shafieezadeh-Aba-
deh et al. 2015, 2017; Mohajerin Esfahani and Kuhn 2018). For Wasserstein distance, the 
user must also choose a distance metric in feature space. Choosing a distance metric based 
on some norm yields a regularization using that norm.

Thus, both types of robust optimization approaches rely on the user to choose a distance 
metric or a norm. This choice determines the form of the regularization term. The “best” 
choice for a dataset is unclear. Further, robust optimization emphasizes worst-case perfor-
mance. This can make robust algorithms too conservative for our average-loss objective. In 
contrast, RoLin does not require any user inputs. Also, RoLin restricts robust optimization 
to just the bottom principal components, which are much noisier than the top components. 
This protects RoLin from becoming too conservative.

(15)min
�

ℙn𝓁(y ⋅ g� (x)) + � ⋅ ‖�w‖q.
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Estimation error bounds. Regularization also ensures that the training loss is close to 
the expected loss. Let Δ� ∶= E𝓁(y ⋅ g� (x)) − ℙn𝓁(y ⋅ g� (x)) be the difference between 
the expected and training losses. For large training sizes n, this is small for any � . But, 
for small n, Δ� can be much greater than zero for some values of � . However, if � has a 
small norm, Δ� can be upper-bounded. For example, under zero-one loss, if ‖�‖1 ≤ 1∕� 
(bounded L1 norm), then Δ� decays with � and the square-root of n (see Mohri et al. 2018). 
Similar results hold when � has a small L2 norm. Now, regularization biases the objective 
of Eq. 15 towards a � with a small norm. This ensures that the expected loss of the solution 
is comparable to its training loss. Hence, regularization avoids overfitting.

Still, bounding Δ� is not enough. Our aim is a � with small expected loss, not a small 
Δ� . Further, such bounds may hold for many norms or Mahalanobis distances. Choosing 
the best norm for a dataset is difficult. For small n, the bounds on Δ� can be loose5. So, we 
cannot just pick the norm with the best bound. Finally, while a � with a small norm may 
have a small Δ� , the converse need not be true. There may be other solutions that have a 
small Δ� and also a low loss.

All the above justifications for regularization need the user to choose a norm, or a prior, 
or a distance metric. The right choice depends on the dataset, the training size, and the loss 
function. This choice is challenging but also crucial because the wrong choice can sig-
nificantly hurt performance. In contrast, RoLin needs no user input and does not force the 
solution to have a small norm. This suggests that explicit norm-based regularization of the 
form of Eq. 15 is unnecessary.

6  Conclusions

Our goal is to build a linear classifier with two properties. First, it should optimize for 
general loss functions, instead of the usual zero-one loss. This can be interpreted as accu-
rately predicting class probabilities and not just the binary class labels. Second, its accu-
racy should gracefully degrade with smaller training sample sizes. The usual approach is 
to do dimensionality reduction via principal components, or to add to the loss function a 
regularization term based on a norm chosen by the user. But dimensionality reduction loses 
data, while regularization is sensitive to the choice of norm. Our proposed method, called 
RoLin, overcomes these flaws. Unlike dimensionality reduction, it does not ignore the bot-
tom principal components. Unlike regularization, RoLin is entirely automatic and needs no 
user input. Further, it works well with many loss functions.

RoLin first projects the data on to its top principal components and minimizes training 
loss on the projected data. The resulting classifier does not overfit because the top principal 
components are stable. But this classifier ignores the subspace orthogonal to the top prin-
cipal components. We cannot minimize training loss in this subspace, because estimates of 
loss are unreliable. So RoLin constructs a robust classifier here. Finally, RoLin combines 
the two classifiers to get the benefits of both.

To select the parameters of RoLin, we develop a new robust cross-validation algorithm 
called RobustCV. This checks for several warning signs of overfitting missed by standard 
cross-validation. RobustCV helps RoLin work well even with small training sizes.

5 For instance, if the bound needs to hold with probability greater than 0.95, then the error term in the 
bound is at least 0.13 for n ≤ 100 (see Mohri et al. 2018, Thms. 13.3 and 13.4). For comparison, the zero-
one loss of even a baseline classifier is at most 0.5.
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Experiments on 25 real-world datasets and three loss functions show that RoLin out-
performs existing state of the art methods. RoLin does particularly well for small training 
sizes. For n = 15 training samples, RoLin has 14% − 40% lower loss on average than the 
next-best competitor, under all problem settings. When 50 or fewer training samples are 
available, RoLin achieves the smallest loss on around 2x to 3x as many datasets as the next 
best method. For the modified Huber loss, RoLin dominates other methods for all train-
ing sizes Further, among the competitors of RoLin, no single method is best. Norm-based 
regularization is close to RoLin for logistic regression, but is not comparable for modi-
fied Huber loss. On some datasets, RoLin achieves with n = 15 samples an accuracy that 
regularization fails to reach with n = 1500 samples. Dimensionality reduction via the top 
principal components rarely outperforms RoLin, especially for logistic loss. Finally, the 
best norm for regularization depends on the dataset, training size, and loss function. So, for 
a new problem setting, picking the right norm is difficult. In contrast, RoLin works well for 
all datasets and settings.

There are several ways to extend RoLin. We can try to use RoLin for non-linear clas-
sification via the kernel trick. Here, each test point x is classified based on a linear combi-
nation of K(x, xi) where xi is a training point and K(., .) is a kernel function. This suggests 
that we can use RoLin on the kernel matrix instead of the features matrix. We can also use 
RoLin for multiclass classification via one-versus-the-rest binary classification. Finally, we 
note that RoLin does not handle outliers or different training and test distributions. The top 
principal components of the training and test distributions may not be similar in this set-
ting. One possibility is to project RoLin ’s solution on to the set of small-norm solutions, 
which may be more robust under outliers.

Appendices

A Proofs

Proof (Theorem  1) Consider the case of a loss function �(.) that satisfies the properties 
stated in the theorem. Choose any feasible b ∈ S1 ∪ S2 , and let b̃ = VT

S1∪S2
b . Choose any 

B22 ∈ U . This fixes the second moment of PS1∪S2
z as VS1∪S2

ΣB22
VT
S1∪S2

 , where

with B11 = ℙn

[(
VT
S1
z

)(
VT
S1
z

)T
]
 . Also, from Eq.  6, the first moment is fixed at 

(1∕n)
∑

i PS1∪S2
zi = VS1∪S2

� . Now, the maximum entropy distribution with given first and 
second moments is the Gaussian distribution with those moments:

Since r ∼ q(.) , for any training sample i, we have

ΣB22
=∶

[
B11 0

0 B22

]
,

q(.) = N

(
VS1∪S2

�,VS1∪S2

(
ΣB22

− ��T
)
VT
S1∪S2

)
.
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Hence, the expected loss under q(.) is

Taking the partial derivative with respect to s, we have

where the interchange of differentiation and integration in the first equality follows from 
the dominated convergence theorem since |��(.)| has finite expectation, and the last inequal-
ity is because ��(.) is monotonically non-decreasing (due to convexity) and not zero every-
where (because |��(.)| has non-zero expectation). Thus, for any b , the worst case expected 
loss is achieved when s = b̃

T
(ΣB22

− ��T )b̃ is maximized. From the uncertainty set of 
Eq.  12, the maximum is achieved at B22 = �bound ⋅ I . Hence, the worst-case is achieved 
with ΣB22

= Σ , and s = b̃
T(
Σ − ��T

)
b̃ , where Σ is defined in the theorem statement.

Next, taking the partial derivative with respect to mi , we have

where ��(.) ≤ 0 because �(.) is monotonically non-increasing, and ��(x) < 0 for some 
x because |��(.)| has non-zero expectation. Now, observe that each mi (for i = 1… n ) 
increases with b̃T� , Hence, if Eq. 13 achieves its optimal at s = s⋆ , then the optimal solu-
tion �S1∪S2

 is of the form �S1∪S2
= VS1∪S2

b̃ , where b̃ solves

It is easily shown that the solution must be of the form

for some scalar c that depends on s⋆ . Finally, by the Sherman-Morrison formula,

(16)�0 ⋅ yi + �T
S0

(
PS0

zi

)
+ b

T
r ∼ N(mi, s

2
),

(17)where mi = 𝛽0 ⋅ yi + �T
S0

(
PS0

zi

)
+ b̃

T
�

(18)s = b̃
T(
ΣB22

− ��T
)
b̃.

(19)

1

n

n∑
i=1

E
r∼q(.)

[
𝓁

(
�0 ⋅ yi + �T

S0

(
PS0

zi

)
+ b

T
r

)]
=

1

n

n∑
i=1

Ew∼N(mi,s
2)[𝓁(w)]

=
1

n

n∑
i=1

Ew∼N(0,1)[𝓁(mi + w ⋅ s)].

𝜕

𝜕s
Ew∼N(0,1)[𝓁(mi + w ⋅ s)] = E[w ⋅ 𝓁

�
(mi + w ⋅ s)]

= ∫
∞

0

w
[
𝓁

�
(mi + w ⋅ s) − 𝓁

�
(mi − w ⋅ s)

]
⋅ 𝜙(w)dw

> 0,

𝜕

𝜕mi

Ew∼N(0,1)[𝓁(mi + w ⋅ s)] = Ew∼N(0,1)[𝓁
�
(mi + w ⋅ s)] < 0,

maximize b̃
T
�

subject to b̃
T(
Σ − ��T

)
b̃ = s⋆.

(20)�S1∪S2
= c ⋅ VS1∪S2

(
Σ − ��T

)−1
�,
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Combining this with Eq. 20 gives the statement of the theorem.
Now, consider a loss function �(.) that is the limit of a sequence of loss functions �(m)(.) 

such that limm→∞ supx∈ℝ |�(m)(x) − �(x)| = 0 . Then, for any 𝜖 > 0 , there exists an N such 
that for all m > N , supx∈ℝ |�(m)(x) − �(x)| < 𝜖 . Define h(b) = 1∕n ⋅

∑
i E[𝓁(mi + w ⋅ s)] , 

where mi and s are functions of b ; define h(m)(b) similarly. Then, for any b and for large 
enough m,

There is a sequence of minimizers b(m) under �(m) such that b(m) = c(m) ⋅ Σ−1� . Hence,

where the first statement follows from the optimality of b(m) under �(m) , and the second 
from two applications of Eq.  21. So, the minimizers under �(m) provide arbitrarily good 
solutions under � , for m large enough.   ◻

Proof (Corollary  1) The logistic loss �(x) = log(1 + exp(−x)) is clearly non-negative, 
monotonically decreasing, and convex. Also, |��(x)| = exp(−x)∕(1 + exp(−x)) , so 
0 < |��(x)| < 1 , so it has finite non-zero expectation under the Gaussian. Hence, the condi-
tions of Theorem 1 are satisfied.

The squared hinge loss �(x) = (max(0, 1 − x))2 is non-negative, monotoni-
cally decreasing, and convex. Also, |𝓁�(x)| = 2 ⋅max(0, 1 − x) ≤ 2(1 + |x|) , so 
0 < E���(x)� ≤ 2 + 2

√
2∕𝜋 . Hence, Theorem 1 applies.

The hinge loss �(x) = max(0, 1 − x) is the limit of a sequence of functions �(m)(.) 
indexed by a monotonically decreasing sequence �m → 0:

Each �(m)(.) is non-negative, monotonically decreasing, and convex. Also, |�(m)� (x)| ≤ 1 
with equality for x ≤ 1 − �m , so it has finite non-zero expectation. Again, Theorem  1 
applies.

The modified Huber loss is similar to the functions �(m)(.) above, for which the condi-
tions of the Theorem are satisfied.   ◻

Proof (Theorem 2) Let Z̃ be a matrix with z̃i ∶= PS1∪S2
zi in row i. Then, using Σsmooth in 

Theorem 1,

(
Σ − ��T

)−1
� =

1

1 − �TΣ−1�
⋅ Σ

−1
�.

(21)
|||h

(m)
(b) − h(b)

||| < 𝜖.

h(m)
(
b
(m)

) ≤ h(m)
(
�S1∪S2

) ≤ h(m)
(
b
(m)

)
+ 2�,

�

(m)
(x) =

⎧⎪⎨⎪⎩

max(0, 1 − x) if x ≤ 1 − 𝛼m

(x−(1+𝛼m))
2

4𝛼m
1 − 𝛼m < x ≤ 1 + 𝛼m

0 x > 1 + 𝛼m
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where M+ is the Moore-Penrose pseudoinverse of matrix M, and 1 is a vector of all ones. 
The first equality follows from the observation that Σsmooth is diagonal, and the fact that 
PS0

z is in the kernel of the pseudoinverse. The change from VS1∪S2
VT
S1∪S2

 to the identity 
matrix in the last step makes the matrix invertible but does not change the solution, since 
the rows of Z̃ lie in the subspace S1 ∪ S2 . Equation 22 is the solution of the following ridge 
regression problem:

where x̃i = PS1∪S2
xi , and we use the fact that yi ∈ {−1, 1} .   ◻

(22)

�S1∪S2
∝ VS1∪S2

Σ
−1
smooth

VT
S1∪S2

(∑
i

zi∕n

)

=

(
VS1∪S2

ΣsmoothV
T
S1∪S2

)+

(∑
i

PS1∪S2
zi∕n

)

=

(
VS1∪S2

D2
S1∪S2

VT
S1∪S2

+ n𝜎bound ⋅ VS1∪S2
VT
S1∪S2

)+(
Z̃T

1
)

=

(
Z̃T Z̃ + n𝜎bound ⋅ VS1∪S2

VT
S1∪S2

)+(
Z̃T

1
)

=
(
Z̃T Z̃ + n𝜎bound ⋅ I

)−1(
Z̃T

1
)
,

min
b

n�
i=1

�
1 − b

T
z̃i

�2
+ n𝜎bound ⋅ ‖b‖2

= min
b

n�
i=1

�
yi − b

T
x̃i

�2
+ n𝜎bound ⋅ ‖b‖2,

Fig. 8  Zero-one loss: We compare the misclassification loss of RoLin against other methods. Positive val-
ues imply that RoLin is more accurate than the competing method. We pick the feature weights that mini-
mize logistic loss but choose the hyperparameters by cross-validation to minimize zero-one loss. RoLin 
outperforms L

1
 regularization and Top-PCs, and is comparable to L

2
 regularization
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B Results for Zero‑One Loss

In many applications, we only care about zero-one (misclassification) loss. For such 
tasks, we pick the hyperparameters (e.g., the regularization � in Eq. 15) that minimize 
zero-one loss in cross-validation. After fixing these hyperparameters, we optimize the 
feature weights using a convex loss such as logistic loss. Thus, the parameter-fitting step 
uses two losses. In contrast, our previous experiments used a single convex loss every-
where. We now explore the effects of this “double-loss” optimization.

Figure  8 shows the misclassification loss of various methods after “double-loss” 
parameter-fitting. RoLin outperforms L1 regularization and Top-PCs, and is similar to L2 
regularization. Thus, even though RoLin is aimed at convex losses, it is useful even for 
zero-one loss.

However, the double-loss optimization improves zero-one loss only at the cost of worse 
values for the logistic loss. Figure 9 shows the relative increase in the logistic loss on test 
samples when we move from the single-loss to the double-loss parameter-fitting. The test 
logistic loss increases for both L1 and L2 regularization for all training sizes. The test logis-
tic loss can be up to 10x larger for L1 and up to 2x larger for L2 regularization. Hence, the 
confidence scores (or equivalently, the class probabilities) learned by the logistic regres-
sion classifier can be inaccurate if we use zero-one loss to choose the hyperparameters.

Fig. 9  Relative difference in loss if cross-validation is run with zero-one loss instead of logistic loss: Opti-
mizing for zero-one loss in cross-validation leads to worse logistic loss on the test set. In other words, the 
predicted class probabilities are inaccurate under cross-validation with zero-one loss
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Fig. 10  Logistic, squared hinge, and modified Huber losses for 25 datasets under varying training sizes. 
Each plot compares the trimmed mean loss of RoLin against L

1
 and L

2
 regularization. Regularized losses 

are too large to fit in some plots, such as plots (16) and (20)
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Fig. 10  (continued)
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Fig. 10  (continued)
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