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Abstract
The proliferation of data collection technologies often results in large data sets with many 
observations and many variables. In practice, highly relevant engineered features are often 
groups of predictors that share a common regression coefficient (i.e., the predictors in the 
group affect the response only via their collective sum), where the groups are unknown in 
advance and must be discovered from the data. We propose an algorithm called coefficient 
tree regression (CTR) to discover the group structure and fit the resulting regression model. 
In this regard CTR is an automated way of engineering new features, each of which is the 
collective sum of the predictors within each group. The algorithm can be used when the 
number of variables is larger than, or smaller than, the number of observations. Creating 
new features that affect the response in a similar manner improves predictive modeling, 
especially in domains where the relationships between predictors are not known a priori. 
CTR borrows computational strategies from both linear regression (fast model updating 
when adding/modifying a feature in the model) and regression trees (fast partitioning to 
form and split groups) to achieve outstanding computational and predictive performance. 
Finding features that represent hidden groups of predictors (i.e., a hidden ontology) that 
impact the response only via their sum also has major interpretability advantages, which 
we demonstrate with a real data example of predicting political affiliations with television 
viewing habits. In numerical comparisons over a variety of examples, we demonstrate that 
both computational expense and predictive performance are far superior to existing meth-
ods that create features as groups of predictors. Moreover, CTR has overall predictive per-
formance that is comparable to or slightly better than the regular lasso method, which we 
include as a reference benchmark for comparison even though it is non-group-based, in 
addition to having substantial computational and interpretive advantages over lasso.
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1  Introduction

Increasingly, phenomena occur in digital environments that can be recorded in great detail, 
producing data sets with a large number of predictors. For example, sensors track every 
movement of an object during manufacturing processes, medical devices such as pacemak-
ers record every heartbeat, and smartphones record every user action or change in location. 
High dimensionality complicates the task of finding interpretable models with high predic-
tive accuracy in a computationally efficient way (Fan and Li, 2006; Rudin, 2018). However, 
often a group of predictors all have the same effect on the response variable (i.e., they share 
a common coefficient in the regression model, which is equivalent to the predictors affect-
ing the response only collectively via their sum), which enables a low-dimensional, group-
based representation that overcomes many difficulties of high-dimensional analysis (Hastie 
et al., 2000; Tibshirani et al., 2005; Park et al., 2007). Since knowledge of the group struc-
ture is generally not available in advance, discovering them automatically from the data is 
fundamentally important. Finding such groups of predictors that share a common regres-
sion coefficient is a novel way of feature engineering, and is the focus of this article.

We consider the standard linear regression model with n observations and p predictors:

where � =
[
y1, y2,… , yn

]� , �j =
[
x1,j, x2,j,… , xn,j

]� and � ∼ N(�, �2�) are n dimensional 
vectors of the response observations, the predictor observations, and the noise, respec-
tively, and each �j is a regression coefficient. Without loss of generality we assume that 
each predictor and the response have been centered to have sample mean zero, so that there 
is no intercept in the model (1). We also assume that the predictors have been scaled in a 
meaningful way, per Remark 1 discussed later in Sect. 2.1.

As mentioned above, in high-dimensional problems with many predictors, we often 
expect the unknown coefficient vector to have a group structure. By group structure, we 
mean that there are groups of predictors, and the predictors within a group all have the 
same effect on the response (i.e., they share a common coefficient in (1)). If the predictors 
within a group share a common coefficient, this is equivalent to the group of predictors 
impacting the response only via a single derived feature that is the sum of the predictors in 
the group. In other words, letting Gi denote the set of indices in the ith group (for 
i = 1, 2,… , k , where k is the number of distinct groups), and considering the derived fea-
ture �i =

∑
j∈Gi

�j , the linear regression model in (1) can be written as

where �i is the common regression coefficient shared by all predictors in group i.
Applications of group-structured representations abound in many fields. For example, in 

an impact study designed to measure the impact of nutritional policies and environmental 
change on obesity in the high school presented by Huang et al. (2009), there are 25 predic-
tors, and they naturally belong to groups that are known a priori. In this case, it is reason-
able to assume that predictors in the same group share the same coefficients (or very nearly 
so). To illustrate this, consider the high-school students’ consumption on “fizzy drinks”, 
“sweets”, “crisps”, “cake” and “ice cream”. When building a regression model to predict 

(1)� = �1�1 + �2�2 +⋯ + �p�p + �,

(2)� = �1�1 + �2�2 +⋯ + �k�k + �,
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the body mass index of a student, instead of including the amount of consumption of “fizzy 
drinks”, “sweets”, “crisps”, “cake” and “ice cream” as separate predictors, it may be prefer-
able to construct a derived feature as the sum of their consumptions, which could be inter-
preted as the “unhealthy food consumption” group. In this case, letting �1 , �2 , �3 , �4 , and �5 
denote the amount of “fizzy drinks”, “sweets”, “crisps”, “cake” and “ice cream” consump-
tion, respectively, a derived feature �1 = �1 + �2 + �3 + �4 + �5 represents “unhealthy food 
consumption”. However, in many real problems we would not know in advance whether 
‘fizzy drinks,” “sweets”, “crisps”, “cake” and “ice cream” should be grouped or kept as 
separate predictors. This renders methods that assume a known group structure inappropri-
ate and requires that the structure be discovered empirically, from the data.

Apart from examples grouping continuous predictors, categorical predictors can often 
be split into the groups as well to obtain interpretable models (Carrizosa et  al., 2017). 
As an illustration, consider the German credit data set german from the UCI repository 
including 11 categorical predictors. In this case, the total number of predictors increases 
from 11 to 52 by creating multiple dummy predictors out of a single categorical predictor. 
However, by grouping various categories of each categorical predictor (a derived feature 
representing a group of categories can be represented by the sum of the one-hot-encoded 
predictors for the individual categories), the total number predictors in the final model can 
be decreased. For example, Carrizosa et  al. (2017) obtain the two groups {“real estate”, 
“building society savings agreement/life insurance”, “car or other”} and {“unknown/no 
property”} for the four categories of a categorical predictor “Property.”

The aforementioned examples suggest that group-structured representations have wide-
spread applicability in different fields. Finding the unknown group structure leads to sim-
ple, parsimonious and interpretable models. In this paper we develop an approach that iter-
atively identifies the unknown group structure by constructing derived features as the sum 
of the predictors in each group and then computes the estimates of the coefficients of the 
derived features per (2), all in a highly computationally efficient manner to be described. 
In this regard our approach is a new feature engineering technique that improves the pre-
dictive modeling because the feature construction process is integrated with the predictive 
modeling, and the derived features are constructed based on the similarity of their effects 
on the response variable.

There are a variety of data pre-processing approaches for using unsupervised learn-
ing to construct interpretable features in regression problems. Methods such as cluster-
ing provide insight into relationships contained within the unlabelled data. Dimensional-
ity reduction focuses on finding a representation of the data in a low-dimensional space. 
Methods such as principal components analysis (Jolliffe, 1986), independent components 
analysis (Comon, 1992), canonical correlation analysis (Hotelling 1936) and factor analy-
sis (Akaike, 1987; Fokoué and Titterington, 2003) can often identify a few interpretable 
dimensions. However, none of these methods consider the response variable when generat-
ing low-dimensional representation of the data. In this paper, we focus on a new method 
that derives new features while simultaneously fitting the predictive relationship between 
the response variable and the predictors in a linear regression model.

Group-structured representations in regression have been studied in the prior lit-
erature. We categorize existing methods by whether or not they assume prior knowl-
edge about the group structure. The first category of methods assumes known groups 
(or known ordering of the coefficients). The group lasso and the fused lasso are the 
most common methods in this category. The group lasso selects important groups of 
predictors rather than individual ones, where all predictors are structured into groups 
that are known a priori (Yuan and Lin, 2006; Zhao et  al., 2009), whereas the fused 
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lasso penalizes the successive differences of coefficients assuming that their ordering 
is known a priori (Tibshirani et al., 2005). See group SCAD (Wang et al., 2007), group 
MCP (Breheny,  2009), group bridge (Huang et  al., 2009), group hierarchical lasso 
(Zhou and Zhu, 2010), group exponential lasso (Breheny, 2015) for various regression 
and classification models with different penalty structures. Qiu and Ahn (2020) intro-
duce new screening methods for previously grouped predictors to reduce the number of 
groups and the predictors within those groups.

The focus of this paper is on the second category of methods, which assumes no prior 
knowledge of the group structure, so that the structure must be discovered from the same 
data to which the model is fit. If one had knowledge of the group structure in advance, then 
we would expect that an approach that takes this known structure into account would be 
more effective than an approach that does not. However, an unknown group structure is 
much more widely applicable in high-dimensional problems involving predictive relation-
ships that are not well understood in advance, and so computationally efficient methods 
are required for problems with unknown group structure. Dettling and Bühlmann (2004) 
propose the method Pelora to iteratively construct groups of genes that are strongly pre-
dictive of the response variable. Pelora fits a logistic regression model each time a group 
of predictors is modified. As in many other application areas such as biostatistics, predic-
tive models that use a sum of predictors as a derived feature can perform better than more 
sophisticated methods, especially for large-p situations. To select a subset of useful predic-
tors, Donoho and Jin (2008) and Zhao et al. (2014) allow a single derived feature that is 
the sum of selected predictors, where each predictor can have either a positive or negative 
sign in the summation. Since they only allow a single derived feature, the coefficient for 
every predictor must have the same magnitude. As in the case of the examples presented in 
these papers, often a formula that combines predictors with equal weights is as accurate as 
ones with unequal weights, while also being more robust to data quality issues and easier 
to interpret. The method OSCAR (Bondell and Reich, 2008) uses a penalty term for each 
pair of coefficients to encourage coefficients to be equal, whereas grouping pursuit (Shen 
and Huang, 2010; Zhu et al., 2013) considers non-convex penalties by shrinking only small 
differences of absolute values of coefficients. Ke et al. (2015) propose the method CARDS 
using within and between group penalties, which requires a preliminary ordering of coef-
ficients to determine the group structure. These methods have high computational expense, 
which can be prohibitive with high-dimensional data.

In this paper, we propose a new algorithm that takes advantages of certain computa-
tional properties of both linear regression and regression trees in the following manner. 
Our aim is to find the groups by recursively splitting the predictors into sets that have sim-
ilar coefficients, where each successive split is chosen to maximize the reduction in the 
sum of squared errors (SSE). Since an SSE optimization over the space of all splits is not 
computationally feasible, we use an iterative greedy search, analogous to how splits are 
chosen when fitting standard regression trees (but different in that our algorithm splits a 
set of predictors into two subgroups of predictors, whereas regression trees split an interval 
of values of a single predictor into two subintervals). To accelerate the splitting, we bor-
row a computational property from linear regression, whereby the reduction in the SSE 
when adding a new feature to the model is efficiently computed. The above computational 
properties result in an algorithm that is multiple orders-of-magnitude faster than existing 
group-based regression methods, in addition to having far superior predictive performance 
(see Sect.  3). Our approach even has nearly an order-of-magnitude better computational 
expense than fast state-of-the-art implementations (glmnet, Friedman et al. (2010)) of the 
popular lasso method, in addition to having substantial interpretability advantages.
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Our approach results in an interpretable tree structure representing the groups of predic-
tors and their associated coefficients (this includes the final group structure, as well as the 
sequence of splits that produced the group structure, which contains information on higher-
level group structures). Hence, we call the approach coefficient tree regression (CTR). 
The tree structure enhances interpretability and provides insight into the engineered fea-
tures and the hidden ontology of the predictors, which we demonstrate with a real data 
example of predicting political affiliations with television viewing habits in Sect.  4. We 
built the CTR​ R package by implementing the efficient computational properties to be 
described, and it also can be used as a visualization tool to provide insight into the regres-
sion dependencies.

The remainder of the paper is organized as follows. The proposed method and compu-
tational issues are discussed in Sect. 2. Sections 3 and 4 present the simulation studies and 
the results of a real data analysis, respectively. Section 5 describes how CTR can be viewed 
as a much faster and more accurate alternative to OLS. Finally, some concluding remarks 
are given in Sect. 6.

2 � Coefficient tree regression (CTR)

2.1 � Overview of the CTR model building procedure

Our approach iteratively identifies groups of predictors that share common coefficients, 
where the sum of predictors in a group corresponds to a derived feature per model (2). 
During each iteration ( k = 1, 2,… ), either a new group of predictors enters the model, or 
an existing one is split into two groups, in a manner that most reduces the SSE. During 
the process of updating the group structure at each iteration, CTR also fits a linear regres-
sion model with all derived features. This process continues until we obtain a final set of 
derived features. The total number of derived features in the final model is the only tuning 
parameter for CTR, and we select this via cross validation (CV), which will be described 
in Sect. 2.6.

We first introduce some notation. We refer to the set of derived features in the model as 
the “basis.” For the sake of notational clarity, we add a subscript k to each group Gi and the 
corresponding derived feature �i produced after iteration k, at which point in the algorithm 
we always have k derived features present in the model. Then, letting � be the n × p design 
matrix � =

[
�1, �2,… , �p

]
 , a derived feature �k,i becomes �k,i =

∑
j∈Gk,i

�j . The fitted model 

with k derived features has the following structure:

where �k is an n × k matrix of derived features, �̂k =
[
𝛼̂k,1, 𝛼̂k,2,… , 𝛼̂k,k

]� is the estimated 
coefficient vector, and �̂(�̂k) is the fitted response vector as a function of �̂k . We also 
assume that the predictors are scaled in a meaningful way as stated in Remark 1.1

(3)�̂(�̂k) = �k�̂k = 𝛼̂k,1�k,1 + 𝛼̂k,2�k,2 +⋯ + 𝛼̂k,k�k,k,

1  Remark 1: CTR is not scale-independent since the group structure depends on the scaling of the predic-
tors. If the predictors are originally in different units, one may want to scale them so as to make it as likely 
as possible that predictors within groups share the same (or similar) coefficient. However, as discussed in 
Sect. 5, CTR can still result in a model with good predictive accuracy even when there is no group structure 
and the coefficients vary continuously (although the group interpretability is less meaningful in this case), 
so that scaling to create a group structure is not necessary.
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CTR represents and graphically depicts the estimated model with an interpretable tree 
structure, as illustrated in Fig. 1. In the tree, each node corresponds to a group (i.e., a set 
of indices of a group of predictors that defines one derived feature per model (2)), and the 
label on the branch just above the node represents the estimated coefficient of the corre-
sponding derived feature. Let Gk,1∶k = Gk,1 ∪ Gk,2 ∪⋯ ∪ Gk,k denote the indices of all pre-
dictors in all groups in the model after iteration k and Gk,k+1 = {1, 2,… , p} ⧵ Gk,1∶k denote 
the excluded group of predictors after iteration k (which is equivalent to group Gk,k+1 hav-
ing a coefficient of zero). At iteration k = 0 , we start at the root node with all predictors 
in the excluded group, i.e., G0,1 = {1,… , p} , and at each iteration k we grow the tree by 
splitting one of the current groups into two groups. The existing groups that were not split 
are carried over to the next iteration without modification. Thus, the number of groups 
increases by one during each iteration. After iteration k, we have k + 1 disjoint groups such 
that Gk,1 ∪ Gk,2 ∪⋯ ∪ Gk,k+1 = {1,… , p} and Gk,i ∩ Gk,j = � ∀{i, j} ⊆ {1,… , k + 1} . 
During iteration k + 1 , one of the k + 1 groups produced after iteration k is split into two 
groups, and then the coefficients for all derived features are updated. The tree is grown 
until we reach some terminal level of groups based on a stopping criterion that we describe 
in Sect. 2.6. The set {Gk,1,… ,Gk,k} at the terminal iteration k comprises the groups of pre-
dictors in the final model.

During each iteration k, CTR must decide which group of predictors to split (forming 
a new group of predictors from previously excluded ones can be viewed as splitting the 
current group Gk−1,k of zero-coefficient predictors into a smaller zero-coefficient group 
and a nonzero-coefficient group) and which predictors within the split group should be 
placed into each of the two subgroups. CTR chooses the group to split by, for each group 
in {Gk−1,i ∶ i = 1,… , k} , finding the (approximately) best way to split it into two groups 
to minimize the SSE, and then selecting the group whose split most reduces the SSE. For 
a given group, finding the optimal split that exactly minimize the SSE is a combinatorial 

Fig. 1   Illustration of a group structure produced in the CTR tree growing procedure with p = 10 predictors 
and 4 groups in the final model
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optimization problem that is generally computationally infeasible. For example, a group 
with 21 predictors can be split into two groups in 220 − 1 possible ways. Hence, we use an 
iterative greedy procedure that splits a given group of predictors into two disjoint groups in 
a highly efficient way to avoid the computationally prohibitive (virtually impossible) con-
sideration of all possible splits. Our efficient split procedure depends on the predictors’ 
individual effect on the response variable as described later in detail, and for a given group 
the total number of possible splits to be considered is at most the size of the corresponding 
group.

Note that during iteration k = 1 , the root node with all predictors in the excluded group 
is split into two groups, which results in a model with a single derived feature. In this 
sense, the first iteration of CTR is similar to the method presented by Donoho and Jin 
(2008) and Zhao et al. (2014), which uses the sum of selected predictors as a single derived 
feature, except that predictors can have either positive or negative signs in the summation. 
In Donoho and Jin (2008), the predictors are selected based on the absolute value of their 
univariate t-score, and once included into the classification model, they are only allowed 
to have coefficients of either +1 or −1 depending on the signs of the predictors’ t-scores. 
Similar to Donoho and Jin (2008), Zhao et al. (2014) assigns coefficients of either +1 or −1 
based on the sign of the marginal estimates of the regression coefficients. In these studies, 
predictors are not allowed to have coefficients of different sizes. CTR on the other hand 
adjusts the coefficients through splitting groups of predictors iteratively.

Sections 2.2–2.6 describe details of the CTR algorithm. Section 2.2 illustrates the CTR 
model building procedure via a toy example. Section 2.3 describes how, for any given split 
of a group of predictors into two groups, the reduction in SSE can be very efficiently com-
puted. Section 2.4 describes our greedy heuristic algorithm for efficiently searching for the 
best way to split each group into two groups. Section 2.5 explains how to update the model 
at the end of each iteration to reduce the computational expense. Section 2.6 describes the 
termination criterion for deciding when no further splits should be made.

2.2 � Illustration of the CTR model building procedure

We now describe the example in Fig. 1 to illustrate the CTR tree growing procedure. The 
details of how the groups are chosen during each iteration (based on the data, with no prior 
knowledge of the group structure) are given in Sect. 2.4. In Fig. 1, each level corresponds 
to an iteration k and shows the groups produced after that iteration, and the rightmost group 
in the level is the zero-coefficient group Gk,k+1 . For illustrative clarity, we use a small 
p = 10 and n = 104 , and the data set is generated based on the linear model � = �� + � , 
where � ∼ N(�, �2�) and � =

[
− 2,−2,−2, 0, 0, 0, 1, 1, 2, 1.5

]� . Each regression observa-
tion (aka “row”) 

[
xi,1, xi,2,… , xi,10

]� is sampled from a multivariate normal distribution 
with mean � and covariance � = � . �2 was computed via ����(

1

r2
− 1) to achieve a true 

r2 = 0.9 where r2 = � (�−�)

� (�)
 . There are four true groups of predictors with nonzero coeffi-

cients, which, at a higher level, can roughly be divided into a group of predictors with neg-
ative coefficients ( �1,… , �3 ) and a (nonhomogeneous) group with positive coefficients 
( �7,… , �10 ). We also included predictors with coefficients equal to zero to show how CTR 
performs variable selection. By keeping track of zero-coefficient predictors in the right-
most group in each level, we can observe the variable selection procedure step-by-step.

For initialization, since CTR has not identified any derived feature yet, we have only 
the single group G0,1 , which contains all predictors and assigns them a common coefficient 
of zero. During iteration k = 1 , CTR split the initial group G0,1 into two groups, where 
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G1,1 = {1, 2, 3} corresponds to the group of predictors in the basis, and G1,2 = {4, 5,… , 10} 
is the excluded group. After iteration k = 1 , the model is

with 𝛼̂1,1 = −2.01 . Thus, the first derived feature �1,1 chosen by CTR represents the group 
of predictors having a negative relation with the response. During iteration k = 2 , CTR 
found a new group of predictors by splitting the zero-coefficient group G1,2 into a nonzero-
coefficient group G2,2 = {7, 8, 9, 10} and a zero-coefficient group G2,3 = {4, 5, 6} , so that 
the fitted model after iteration k = 2 is

with 𝛼̂2,1 = −2.02 , 𝛼̂2,2 = 1.38 . Thus, after iteration k = 2 , we have a new group of predic-
tors G2,2 representing all predictors having a positive effect on the response, together with 
the previous group G2,1 of predictors that have a negative effect on the response.

Within an existing group of predictors, if some are more or less influential than others in 
this group, the CTR algorithm can split them into separate subgroups at subsequent itera-
tions to properly adjust their coefficients. For example, since the true coefficients of �9 and 
�10 are larger than the true coefficients of �7 and �8 , during iteration k = 3 CTR split the 
group G2,2 = {7, 8, 9, 10} into two subgroups G3,2 = {9, 10} and G3,3 = {7, 8} . Thus, after 
iteration k = 3 , the fitted model is

with 𝛼̂3,1 = −2.01 , 𝛼̂3,2 = 1.76 , 𝛼̂3,3 = 1.01 . During iteration k = 4 , the group G3,2 = {9, 10} 
was split into two subgroups, after which the fitted model was

with 𝛼̂4,1 = −2.02 , 𝛼̂4,2 = 2.00 , 𝛼̂4,3 = 1.51 , 𝛼̂4,4 = 1.01 . The total number of derived fea-
tures in the final model is determined to be four via the 10-fold CV described in Sect. 2.6, 
and thus the final fitted model was (7). In Fig. 2, the CV SSE is given for different number 
of derived features in the final model ranging from 1 to 10, and the details regarding the 
selection of the best number of groups at termination are provided in Sect. 2.6. In this final 
model, the predictors with coefficients of zero in the true model were correctly excluded 
from the fitted model and remained in the final zero-coefficient group G4,5 = {4, 5, 6} . 
Note that the number of estimated coefficients decreases from 10 in the original regres-
sion model to four in the CTR model. In this sense, CTR encourages parsimonious models 
by grouping the predictors. Moreover, after the group structure is decided, one could fit a 
regression model with these four derived features and compute confidence intervals on the 
coefficients in the standard way to make a statistical inference. However, the confidence 
intervals would be distorted similarly to how they are distorted if the standard stepwise 
regression is used to select the predictor variables. The act of first searching over the data 
to select predictor variables or to select features composed of predictor variables invali-
dates the exactness of the specified confidence level (or the coverage probability) of the 
confidence intervals.

(4)�̂(�̂1) = 𝛼̂1,1�1,1 = 𝛼̂1,1(�1 + �2 + �3),

(5)
�̂(�̂2) = 𝛼̂2,1�2,1 + 𝛼̂2,2�2,2

= 𝛼̂2,1(�1 + �2 + �3) + 𝛼̂2,2(�7 + �8 + �9 + �10),

(6)
�̂(�̂3) = 𝛼̂3,1�3,1 + 𝛼̂3,2�3,2 + 𝛼̂3,3�3,3

= 𝛼̂3,1(�1 + �2 + �3) + 𝛼̂3,2(�9 + �10) + 𝛼̂3,3(�7 + �8),

(7)
�̂(�̂4) = 𝛼̂4,1�4,1 + 𝛼̂4,2�4,2 + 𝛼̂4,3�4,3 + 𝛼̂4,4�4,4

= 𝛼̂4,1(�1 + �2 + �3) + 𝛼̂4,2�9 + 𝛼̂4,3�10 + 𝛼̂4,4(�7 + �8),
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2.3 � Finding the reduction in SSE for a given split of a group

At iteration k, the goal is to split one of the existing groups { Gk−1,i ∶ i = 1, 2,… , k } into 
two groups in a manner that most reduces the SSE. Even with the heuristic search proce-
dure described in the next section, the number of possible splits that must be considered is 
large. Hence, an efficient algorithm for computing the reduction in SSE for each given split is 
essential. Towards this end, consider that the basis after iteration k (i.e., after one of the exist-
ing groups is split into two) can be represented as follows, making use of the existing basis. 
At the end of iteration k − 1 , we have the existing derived features �k−1 . If the group that is 
split during iteration k is Gk−1,k (i.e., a new group is added from the excluded predictors), then 
the basis after iteration k is �k =

[
�k−1, �

]
 for a single new derived feature � = �k,k.

Suppose instead that one of the existing groups of included predictors 
{Gk−1,i ∶ i = 1, 2,… , k − 1} is split during iteration k and (without loss of generality) 
the groups are reordered so that the split group is Gk−1,k−1 . On the surface, splitting one 
of the existing groups actually creates two new derived features and removes one exist-
ing derived feature in the basis. In this case, the k − 2 predictors 

[
�k−1,1, �k−1,2,… , �k−1,k−2

]
 

remain unchanged during iteration k, so that the derived features after iteration k are 
�k =

[
�k−1,1, �k−1,2,… , �k−1,k−2, �k,k−1, �k,k

]
 , whereas the derived features after iteration k − 1 

are �k−1 =
[
�k−1,1, �k−1,2,… , �k−1,k−1

]
 . However, the three sets 

[
�k,k−1, �k,k

]
 , 
[
�k−1,k−1, �k,k−1

]
 , 

and 
[
�k−1,k−1, �k,k

]
 all span the same two-dimensional subspace, because �k,k−1 and �k,k were 

both formed by a single split of �k−1,k−1 , i.e., �k−1,k−1 = �k,k−1 + �k,k . Thus, �k and 
[
�k−1, �

]
 

span the same k-dimensional subspace for either � = �k,k−1 or � = �k,k , and the SSE after 
splitting an existing group Gk−1,k−1 is exactly the same as the SSE after adding a single new 
derived feature � ( = �k,k−1 or �k,k ) to the basis �k−1 . Consequently, splitting an existing group 
into two subgroups also increases the dimension of the basis by only one. To illustrate this, 
consider the toy example presented in Fig. 1. During iteration k = 3 , group G2,2 is split into 
two subgroups such that the corresponding derived features are �2,2 = �3,2 + �3,3 , where 
�2,2 = �7 + �8 + �9 + �10 , �3,2 = �9 + �10 and �3,3 = �7 + �8 . But the two vectors {�3,2, �3,3} 
clearly span the same subspace as {�3,2, �2,2} = {�3,2, �3,2 + �3,3} , which span the same 
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Fig. 2   CV SSE for the toy example in Fig. 1 with the the number of derived features in the final model 
ranging from 1 to 10.
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subspace as {�3,3, �2,2} = {�3,3, �3,2 + �3,3} . Since all three of these pairs of vectors span the 
same subspaces, the SSEs for the regressions onto them are the same.

We first introduce some notation to compute the reduction in SSE. Let 
�k−1 ≡

[
�k−1

(
��

k−1
�k−1

)−1
��

k−1

]
 be the projection matrix onto the span of the derived fea-

tures �k−1 at the end of iteration k − 1 . For any n-length vector � , let ��,k−1 = [� − �k−1]� 
denote the error in projecting � onto the span of �k−1 . In order to compute the reduction in 
SSE when the basis grows from �k−1 to 

[
�k−1, �

]
 (for any � ) in a computationally efficient 

manner, we use well-known geometric arguments for least squares with orthogonal projec-
tions. That is, 

[
�k−1, �

]
 span the same space as 

[
�k−1, ��

]
 , where �� is the error in projecting � 

onto the span of �k−1 . Since �� is orthogonal to �k−1 by construction, the reduction in the SSE 
when adding � (or �� ) to the basis is the regression sum of squares (SSR) for regressing �� onto 
the single derived feature �� , where �� is the error in projecting � onto the span of �k−1 . Conse-
quently, letting R(�) denote the reduction in SSE with the addition of � into the basis, we have

where N ≡ ��
�,k−1

��,k−1 and D ≡ ��
�,k−1

��,k−1.

2.4 � The split‑point search procedure

(8)R(�) =
(��

�,k−1
��,k−1)

2

��
�,k−1

��,k−1
=

N2

D
,
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As shown in Sect. 2.3, splitting a group of predictors at iteration k is equivalent to add-
ing a new derived feature � to the basis, and the reduction R(�) in SSE can be efficiently 
computed for any potential split. In this section, we discuss a greedy heuristic algorithm 
for finding the � that approximately maximizes R(�) when deciding how to best split any 
group of predictors (say Gk−1,i ) at iteration k. Algorithm 1 gives the pseudo-code for the 
CTR procedure.

At each iteration k, there are k groups (including the group Gk−1,k of omitted predictors) 
to search for possible splitting, and p possible split points across all k groups. For each 
i = 1, 2,… , k , the split-point search procedure passes over a sorted version of the predic-
tors in group Gk−1,i . The sorting criterion is based on the partial correlations between the p 
predictors and the response, after regressing out their dependencies on the derived features 
�k−1 , and is explained in more detail later in this section. After ordering the predictors in 
Gk−1,i , the split-point search procedure sequentially scans through the ordered elements of 
Gk−1,i for the optimal split point. In Algorithm 1, we use the vector �best to denote the new 
derived feature obtained at the end of iteration k, and the vectors �new and �old to represent 
the derived features at the current and previous steps of the split-point search, respectively. 
Here, each “step” corresponds to moving the split point down by one predictor j included in 
the sorted Gk−1,i , so that �new is obtained from �old by just adding the single predictor j (i.e., 
�new = �old + �j ). Returning to the example of Fig. 1 to illustrate the split-point search pro-
cedure, during iteration k = 3 , we seek a group to split by considering each of the existing 
groups G2,1 , G2,2 and G2,3 obtained after iteration k − 1 = 2 . It turned out that G2,i = G2,2 
is the group whose split maximized R(�) , so we illustrate the split-point search procedure 
with group G2,2 = {7, 8, 9, 10} in Fig. 3.

As mentioned above, the split-point search procedure updates the derived feature 
sequentially, at each step adding the next predictor in the ordered sequence of p predictors. 
We sort the predictors within group Gk−1,i in either ascending or descending order based on 
a rule depending on the marginal reduction in SSE for predictor �j for j ∈ Gk−1,i , i.e., the 
reduction in SSE if �old were a vector of zeros and �new = �j . Thus, based on our sorting cri-
terion, the predictors having larger marginal reduction in SSE (and marginal effects on the 
response that are of the same sign) are good candidates to be included in the same group. 
The rationale behind the sorting criterion is described more in Sect. 2.5.

Returning to our example at iteration k = 3 , when searching over the group 
G2,2 = {7, 8, 9, 10} to split into two subgroups G3,2 and G3,3 , the aim is to find the derived 
feature �3,2 (the candidates for which are denoted �new in Algorithm 1) that most reduces the 
SSE, with �2,2 = �3,2 + �3,3 . We first order the predictors in G2,2 according to our sorting 
criterion, and obtain the ordered G2,2 = {9, 10, 8, 7} . Figure 3b, c display the ordered group 
G2,2 and the groups G3,2 and G3,3 constructed after the first two steps. The procedure then 
sequentially scans through all three potential split points in the ordered G2,2 (two of which 
are shown in Fig. 3; the details about the ordering illustrated in Fig. 3a are explained in the 
next section).

For the general situation, the procedure chooses the best split point in the ordered 
sequence of predictors as the one that results in the largest R(�new) . Recall that we search 
every existing group for possible splitting. The number of possible split points within the 
group Gk−1,i is its cardinality |Gk−1,i| , if we consider the first split point to correspond to no 
split at all (for which R(�new) = 0 ). This is implemented in lines 7–14 of Algorithm 1, in 
which �best stores the �new vector for which R(�new) was the highest out of all possible split 
points that have been tried. In Sect. 2.5, the procedure to efficiently update R(�new) from 
R(�old) is described.
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In our example shown in Fig.  3b (prior to which the first group G2,1 had already been 
searched for its best split point), the split-point search over G2,2 begins by resetting �old and �new 
to zero vectors and then checking the first ordered predictor �9 in G2,2 . The latter is done by 
setting �new = �9 (i.e., G3,2 = {9} ). Since R(�new) = 5193.5 > R(�best) ( R(�best) = 22.5 after 
the best split of group G2,1 ), the procedure updates �best = �new . The two subgroups G3,2 = {9} 
and G3,3 = {10, 8, 7} are therefore formed after this step. The procedure next checks the pre-
dictor �10 , as it is the next predictor in the ordered G2,2 group, by setting �new = �9 + �10 (i.e., 
G3,2 = {9, 10} ) as shown in Fig.   3c. Since R(�new) = 5659.8 > R(�best) = 5193.5 , the pro-
cedure updates �best = �new . The subgroups are now G3,2 = {9, 10} and G3,3 = {8, 7} . Next, 
the procedure checks �8 and �7 , sequentially, but R(�new) < R(�best) for both of these last two 
split points. Thus, �best = �3,2 = �9 + �10 represents the best split of G2,2 , and the two sub-
groups are G3,2 = {9, 10} and G3,3 = {8, 7} . The procedure then resets �old and �new to zero 
vectors and repeats the sequential search to find the best split of G2,3 . For this example, the 
group whose best split reduced the SSE the most is G2,2 , and its split into G3,2 = {9, 10} and 
G3,3 = {8, 7} was taken to be the best overall split at iteration k = 3.

2.5 � Updating the model efficiently at the end of each iteration

At each step of the split-point search, one can compute the reduction R(�new) in SSE going 
from derived features �k−1 to 

[
�k−1, �new

]
 via (8), and thus it becomes

However, we take the advantage of sequential update during the split-point search pro-
cedure (i.e., recall that the new derived feature �new is updated sequentially at each step 
by adding a single predictor onto the existing derived feature �old ) to reduce the computa-
tional expense compared the existing methods. In this section, we explain how to update 
R(�new) efficiently during the split-point search procedure and the model at the end of each 
iteration.

During the split-point search procedure, we can efficiently update R(�new) as follows. Let �j 
denote the new predictor that is added at the current split-point search step, so that 
�new = �old + �j . For notational simplicity, define �j,k−1 = ��j,k−1 . Suppose that we have already 
calculated the numerator and denominator of R(�old) =

N2

old

Dold

 in (8), and we want to calculate 
R(�new) . Then, we have

(9)R(�new) =
(��

�new ,k−1
��,k−1)

2

��
�new ,k−1

��new ,k−1
≡

N2
new

Dnew

.

(a) (b) (c)

Fig. 3   For the Fig. 1 example, illustration of the ordering of the predictors and split-point search at iteration 
k = 3 for finding �best = �3,2 by splitting the group G2,2 = {7, 8, 9, 10} . The numbers to the left of the last 
four elements of vector � in Fig. 3a are the predictor indices.
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and plugging (10) into (9) gives

where Nold and Dold are available from the previous step of the split-point search. Since 
��
j,k−1

��,k−1 = ��
j,k−1

� and ��
j,k−1

��old ,k−1 = ��
j,k−1

�old , we can also write (11) as

As mentioned above, we search each existing group for possible splitting during iteration k, 
and the split-point search passes over a sorted version of the predictors in each group in 
{Gk−1,i ∶ i = 1, 2,… , k} . Regarding the ordering, the rationale is that, according to (12), 
predictors with the largest values for 

(��
j,k−1

�)2

��
j,k−1

�j,k−1
 are good candidates for reducing the SSE 

when included in the derived feature �new , and if they are to be in the same group, they 
should have the same sign ��

j,k−1
� . Therefore, we order the predictors within group Gk−1,i in 

either ascending or descending order of the corresponding elements of the p × 1 vector � , 
the jth element of which is

(ascending if the largest squared “partial correlation” 
(��

j,k−1
�)2

��
j,k−1

�j,k−1
 within the group has negative 

��
j,k−1

� , and descending otherwise; see line 5 in Algorithm 1). Note that 
(��

j,k−1
�)2

��
j,k−1

�j,k−1
 is the mar-

ginal reduction in SSE for �j , i.e., the reduction in SSE if �old were a vector of zeros and 
�new = �j , and thus the predictors having larger marginal reduction in SSE in magnitude are 
good candidates to be included in the same group as mentioned in Sect. 2.4.

Returning to our example illustrated in Fig.  3 at iteration k = 3 , when search-
ing over the group G2,2 = {7, 8, 9, 10} to split into two subgroups G3,2 and G3,3 , we first 
order the predictors in G2,2 according to their corresponding elements of � , which are 
(�)7∶10 = 102 ×

[
− 20.6,−17.6, 51.9, 2.25

]
 . The largest magnitude element is +51.9 , so we 

order the last four elements of � in descending order as illustrated in Fig. 3a.
For computational purposes, after finding the new derived feature �k at the end of kth itera-

tion, we update and store the n × p matrix �k = [�1,k, �2,k,… , �p,k] and the p × 1 vectors �k 
and �k , the jth elements of which are

These are to be used in the next iteration ( k → k + 1 ) of Algorithm 1. Since the columns of 
�k and �k−1 are related via

(10)��new ,k−1 =
[
� − �k−1

]
�new =

[
� − �k−1

]
(�old + �j) = ��old ,k−1 + �j,k−1,

(11)R(�new) =
(Nold + ��

j,k−1
��,k−1)

2

Dold + 2��
j,k−1

��old ,k−1 + ��
j,k−1

�j,k−1
,

(12)R(�new) =
(Nold + ��

j,k−1
�)2

Dold + 2��
j,k−1

�old + ��
j,k−1

�j,k−1
.

(13)(�)j =
sign(��

j,k−1
�)(��

j,k−1
�)2

��
j,k−1

�j,k−1

(14)(�)j,k = ��
j,k
� and (�)j,k = ��

j,k
�j,k.
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at the end of the kth iteration the n × p matrix �k can be updated from �k−1 via

where the p × 1 vector �k = ��

k−1
��k ,k−1 . After calculating �k , the vectors �k and �k can be 

updated via

which follows from their definitions in (14) and from (15) and (16). Here, ◦ is the element-
wise product operation. The preceding provides an efficient means of updating �k , �k and 
�k at the end of iteration k.

2.6 � Choosing the termination criterion

The CTR algorithm sequentially adds derived features that are the sums of predictors 
within the discovered groups. After each iteration k, the number of derived features in the 
model is k, and there are k levels in the corresponding graphical tree output (as in Fig. 1). 
Consequently, the CTR algorithm requires a termination criterion that represents how large 
the tree should be grown (equivalently, the number of derived features in the model at ter-
mination). The tree size is the only tuning parameter for CTR, and this can be chosen using 
K-fold CV as described in the remainder of this section.

In all of our experiments, we use 10-fold CV to select the best k. We first split the data 
into 10 equal-size folds. For the ith fold, we apply the CTR algorithm to the other nine 
folds and grow the tree up to some sufficiently large model size kmax that represents a con-
servative upper bound on the best model size. For each model in this sequence of fitted 
CTR trees with k ranging from one to kmax , we calculate the CV SSE for predicting the ith 
hold-out fold. We repeat this for each hold-out fold ( i = 1,… , 10 ) and then sum the CV 
hold-out SSEs to give a CV SSE for each of the kmax models (i.e., with size ranging from 
k = 1, 2,… , kmax ). We then choose the best k as the one that minimizes the CV SSE. After 
choosing the best k in this manner, we fit the final CTR model of this chosen size k using 
all the data. Returning to the toy example in Fig. 1, we compute the 10-fold CV SSE for 
tree size ranging over k = 1, 2,… , 10 as illustrated in Fig. 2, which is minimized at k = 4.

The user must select kmax , and for this we suggest the following considerations. We used 
kmax = 20 in all of our examples. A smaller model size is usually sufficient even when there 
are many more true groups (or in the more extreme case, when there is no group structure 

(15)

�j,k = �j − �k�j = �j − �k−1�j −
��
�k ,k−1

�j

��
�k ,k−1

��k ,k−1
��k ,k−1

= �j,k−1 −
��
�k ,k−1

�j,k−1

��
�k ,k−1

��k ,k−1
��k ,k−1,

(16)�k = �k−1 −
��k ,k−1

��
�k ,k−1

��k ,k−1
��
k
,

(17)
�k = �k−1 − �k

��
�k ,k−1

�

��
�k ,k−1

��k ,k−1
and

�k = �k−1 −
�k◦�k

��
�k ,k−1

��k ,k−1
,
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at all, so that the number of groups is p) for the reasons that we discuss in Sect.  5 and 
illustrate in Fig. 19. In addition to the experiments presented in this paper, the studies in 
the prior literature have shown that oftentimes a simpler, parsimonious model is enough 
to accurately predict the response variable (Hand, 2006; Verbeke et al., 2012; Zhao et al., 
2014). However, in some cases a better model might be obtained with larger model size 
(e.g., k > 20 ). This can be easily determined as follows. If we begin with some initial kmax 
(say, kmax = 20 , which would be viewed as a preliminary upper bound for k), and the best 
k according to the above CV procedure is the maximum value kmax , this is an indication 
that k > kmax may be better. In this case, one should increase kmax to a larger value (i.e., 
kmax = 40 ) and compare the CV SSE of the larger fitted models. After increasing kmax in 
this manner, instead of running the CTR algorithm and CV again from scratch, one can use 
a “warm-start” strategy in which the CTR output for the initial kmax (i.e., the fitted models 
of size k = 1, 2,… , kmax , the CV SSE values for each of these models, the CV partition 
indices, etc.) are given as inputs to the continuation of the CTR algorithm. We have imple-
mented this warm-start feature in our CTR​ R package, which reduces the time required to 
train a model.

3 � Predictive performance and computational expense comparisons

3.1 � Predictive performance comparison on synthetic data

In this section, we investigate the accuracy of CTR on simulated examples under various 
conditions. The performance of the CTR algorithm is compared with the other group meth-
ods (fused lasso and OSCAR). We also include regular lasso and OLS to serve as refer-
ences for comparison, even though they are not group methods and do not create features 
from the predictors. We used the publicly available R language package glmnet (Fried-
man et al., 2010) for lasso, lm for OLS (Team, 2017), and lqa package (Ulbricht, 2012) 
for OSCAR and fused lasso. For fused lasso, since a preliminary ordering is required, 
we order the predictors based on the least squares estimates. We omitted CARDS from 
the performance comparisons because we were unable to obtain any software package to 
implement it.

To implement CTR, we used our own CTR​ R package. The CTR R package is available 
from https://​ozges​urer.​github.​io/​files/​ctr-​vigne​tte.​html. The vignette (https://​ozges​urer.​
github.​io/​OS/​ctr-​vigne​tte.​html) illustrates how the package can be installed and used via a 
small example. The hardware consisted of a computer with macOS Sierra operating system 
and 2.5 GHz processor with 16 GB RAM. The model complexity parameters for lasso (a 
regularization parameter), OSCAR and fused lasso (two regularization parameters), and 
CTR (the number k of derived features) were all chosen using CV. In order to find the best 
k for CTR, we obtained the CV SSE with model size ranging from 1 to kmax similar to how 
it is obtained with the toy example shown in Fig. 2, and then the one with minimum CV 
SSE is chosen as the best model size. Our simulations compared the accuracy of different 
models on data generated from the regression model � = �� + � , where � ∼ N(�, �2�) and 
each row of � is MVNp(�,�) . We generated different experiments based on true � 
explained later in detail. We used p = 1000 predictor variables for the accuracy compari-
sons and larger p for some of the run-time comparisons described in Sect. 3.2. We varied 
the number of observations as n ∈ {1500, 2000, 3000} and represented varying noise levels 
by using a true r2 ∈ {0.5, 0.7, 0.9} , where true r2 = � (�−�)

� (�)
 . For the accuracy comparisons, 

https://ozgesurer.github.io/files/ctr-vignette.html
https://ozgesurer.github.io/OS/ctr-vignette.html
https://ozgesurer.github.io/OS/ctr-vignette.html
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for each experiment (i.e., for each combination of true model, n, and true r2 ) we generated 
one test set of 10,000 observations and 100 training data sets of size n, the latter represent-
ing 100 replicates of the experiment. On each replicate we fitted CTR, lasso, fused lasso, 
OSCAR and OLS models to the training data and applied the estimated models to predict 
the test set. We summarized the accuracy of the models over the 100 replicates by averag-
ing the test r2 values (denoted r̄2).

The experiments fall into three categories based on the true � : A true group structure 
without sparsity, a true group structure with sparsity, and a true non-group structure. The 
latter was included to demonstrate that CTR still performs quite well, and much better than 
OLS, even when there is no actual group structure in the predictors (i.e., when there are no 
nonzero-coefficient predictors sharing the same coefficient). We consider similar settings 
as the simulation studies presented in (Bondell and Reich, 2008; Shen and Huang, 2010; 
Zhu et al.,2013; Ke et al., 2015). For each category, we consider different � and � struc-
tures, the test r̄2 values for which are plotted in Figs. 4, 5, 6 and 7. Columns of these figures 
correspond to different true r2 values, and different values of n are shown within each 
panel. Each row of panels in each figure are for various different values of � and � as fol-
lows. First, we consider a model with true group structure and no sparsity and with true 
coefficients �� =

[
��
p∕2

,−��
p∕2

]
 , �� =

[
���

10
, ��

p−10

]
 , and �� =

[
��
p∕5

, ��
p∕5

, ��
p∕5

, ��
p∕5

, ��
p∕5

]
 , 

each with � = � (Fig. 4). True models with group structure and sparsity are then examined 
with true coefficients �� =

[
��
50
, ��

p−50

]
 , �� =

[
���

5
, ��

p∕2
, ��

p−p∕2−5

]
 , and 

�� =
[
��
0.3p

, ��
0.4p

,−��
0.3p

]
 with � = � (Fig. 5). Finally, true models with no group structure 

are investigated with �j = (j − 0.5p)∕100 for j = 1,… , p and � = � , �j = (j − 0.5p)∕100 for 
j = 1,… , p and �i,j = 0.7|i−j| , �j = (j − 0.5p)∕100 for j = 1,… , p∕2 , �j = 0 for 
j = p∕2 + 1,… , p and � = � (Fig. 6), and �j = (j − p)∕100 for j = 1,… , p∕2 , �j = j∕100 
for j = p∕2 + 1,… , p and � = � , �j = (j − p)∕100 for j = 1,… , p∕2 , �j = j∕100 for 
j = p∕2 + 1,… , p and �i,j = 0.7|i−j| , �j = (j − p)∕100 for j = 1,… , p∕4 , �j = 0 for 
j = p∕4 + 1,… , 3p∕4 , �j = j∕100 for j = 3p∕4 + 1,… , p and � = � (Fig.  7). Figure  6 
shows the performance when the coefficients in � vary continuously (i.e., no true group 
structure), and Fig. 7 illustrates the performance when the true model has no true group 
structure and the coefficients do not change smoothly.

The following are the main takeaways from the simulation experiment results. In terms 
of predictive performance, CTR was almost always substantially better than the other 
group-based methods (OSCAR and fused lasso) and also than OLS, which demonstrates 
the power of CTR at finding relevant features that are groups of predictors. The overall 
predictive performance of CTR across all experiments was even comparable to, or a little 
better than, that of the non-group-based lasso benchmark, with each method sometimes 
coming out on top. Occasionally, especially for smaller true r2 and smaller n, the test r̄2 for 
OSCAR, fused lasso, and OLS was negative, which indicates severe overfitting. None of 
the CTR or lasso models ever had negative r̄2 , which is an indication that CV effectively 
selected their complexity parameters.

Comparing the predictive performance in more detail, for the Fig. 4 experiments (true 
group structure without sparsity), CTR was almost always better than lasso, sometimes by 
a little and sometimes by a lot. For the Fig. 5 experiments (true group structure with spar-
sity), CTR and lasso performed comparably, with perhaps a slight advantage overall for 
CTR. Even for the experiments in Fig. 6, for which there is no true group structure, CTR 
performed comparably to lasso. For the top row of experiments, CTR and lasso were com-
parable. While for the middle row of experiments, CTR is a little better than lasso, and for 
the bottom row of experiments, CTR is a little worse than lasso, presumably because there 
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was true sparsity in the bottom row example. In all of our experiments CTR is much better 
than OLS, OSCAR and fused lasso, especially for smaller true r2 and smaller n. In terms 
of interpretability, CTR shares lasso’s sparsity advantages when there truly is sparsity, as 
in the Fig. 5 experiments, but also has the additional important advantage of group sparsity 
when there is a true group structure. For example, in the top row of experiments in Fig. 5 
( �� =

[
��
50
, ��

p−50

]
 ), CTR only needs a single derived feature, whereas lasso still requires all 

50 predictors. And in the experiments in Fig. 4, for which there is no sparsity, CTR only 
requires a few derived features, whereas lasso requires all p = 1000 predictors. In each 
case, CTR’s derived features are simple sums of groups of predictors, which are often easy 
to interpret.

In Figs. 4, 5, 6 and 7, the predictive performance is summarized for n ∈ {1500, 2000,  
3000} . We next compare the performance of CTR and lasso for larger and smaller n 
values as follows. Because the predictive performance of both CTR and lasso is better 
than OSCAR and fused lasso in all the experiments when n = 1500 (due to overfitting, 
the latter two often have negative r̄2 when the true r2 is low) and the computational 
time increases significantly for both OSCAR and fused lasso when n gets larger, we 

Fig. 4   Simulation results with true group structure and no sparsity with �� =
[
��
p∕2

,−��
p∕2

]
 (1st row), 

�� =
[
���

10
, ��

p−10

]
 (2nd row), and �� =

[
��
p∕5

, ��
p∕5

, ��
p∕5

, ��
p∕5

, ��
p∕5

]
 (3rd row), all with � = � . Note that 

LASSO is not a group method and is only included as a reference for comparison
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only provide the results for two competitive methods, CTR and lasso. Aside from hav-
ing different n, we consider the experiments in Figs.  4, 5 and 6, and the results are 
displayed in Table 1.

3.2 � Computational expense comparison

We considered larger data sets when investigating the computational performance of 
CTR. For these experiments, we used the setting in the middle row of experiments in 
Fig. 6 (no true group structure and correlated predictors) with n ∈ {103, 104, 105, 106} and 
p ∈ {500, 1000, 2000, 4000} . Table 2 reports the average computation times (in seconds) 
across ten replicates of each experiment (there was low replicate-to-replicate variability). 
The computation times for CTR, lasso, OSCAR and fused lasso include 10-fold CV to 
select their model complexity parameter. For fused lasso and OSCAR, we provided the set 
of values {0.005, 0.05, 0.5} for each penalty parameter.

Fig. 5   Simulation results with true group structure and sparsity with �� =
[
��
50
, ��

p−50

]
 (1st row), 

�� =
[
���

5
, ��

p∕2
, ��

p−p∕2−5

]
 (2nd row), and �� =

[
��
0.3p

, ��
0.4p

,−��
0.3p

]
 (3rd row), all with � = � . Note that 

LASSO is not a group method and is only included as a reference for comparison
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In terms of computational expense, CTR and the glmnet implementation (which is 
considered state-of-the-art and extremely fast) of lasso are all O(np) theoretically (see 
Sect. 5), in contrast to a brute-force implementation ( O(np2) + O(p3) ) or QR-based imple-
mentation ( O(np2) ) of OLS. However, CTR is almost an order-of-magnitude faster than 
lasso for the examples in Table 2. It should be noted that, in order to have a common basis 
for comparison, the computational results in Table 2 are without using any parallel pro-
cessing. A careful inspection of the CTR Algorithm 1 reveals that it can be easily paral-
lelized by performing the computations for different CV folds on different cores and, even 
within each CV fold, performing all the inner-product computations in Algorithm  1 for 
blocks of rows sent to different cores. The glmnet algorithm can be similarly parallelized.

OSCAR and fused lasso (Ulbricht, 2012) are orders-of-magnitude more computation-
ally expensive to fit with large p and n. Moreover, it appears that they were designed for 
smaller p situations. They did not perform well for the values of p and n in our exam-
ples. However, although we omit the results for brevity, we did find that OSCAR and fused 
lasso had predictive performance comparable to CTR for the same examples considered in 
(Ulbricht, 2012), which all had p ≤ 40 and n ≤ 100 . In addition, OSCAR and fused lasso 

Fig. 6   Simulation results with no true group structure with �j = (j − 0.5p)∕100 for j = 1,… , p and 
� = � (1st row), �j = (j − 0.5p)∕100 for j = 1,… , p and �i,j = 0.7|i−j| (2nd row), �j = (j − 0.5p)∕100 for 
j = 1,… , p∕2 , �j = 0 for j = p∕2 + 1,… , p and � = � (3rd row). Note that LASSO is not a group method 
and is only included as a reference for comparison
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have two tuning parameters in their regularization penalty terms, and their proper selection 
via CV may be computationally prohibitive considering the computational time to fit a sin-
gle OSCAR or fused lasso model. In comparison, lasso and CTR each have a single “com-
plexity” tuning parameter (the regularization penalty parameter for lasso, and k for CTR), 
and their computational advantages allow for much faster parameter selection via CV.

Overall, the excellent predictive performance of CTR in our experiments implies that 
our greedy heuristic search gives near-optimal solutions that are possibly not far from opti-
mal, in addition to being computationally inexpensive. The CTR test r2 values in Figs. 4, 5, 
6 and 7 for larger n are often close to the true r2 values, and no model can do better than the 
true r2 . Even though an optimal group structure with lower SSE could be found with infi-
nite computational resources and an exhaustive search, one can use CTR with outstanding 
predictive and computational performance to construct interpretable models.

Fig. 7   Simulation results with no true group structure with �j = (j − p)∕100 for j = 1,… , p∕2 , 
�j = j∕100 for j = p∕2 + 1,… , p and � = � (1st row), �j = (j − p)∕100 for j = 1,… , p∕2 , �j = j∕100 
for j = p∕2 + 1,… , p and �i,j = 0.7|i−j| (2nd row), �j = (j − p)∕100 for j = 1,… , p∕4 , �j = 0 for 
j = p∕4 + 1,… , 3p∕4 , �j = j∕100 for j = 3p∕4 + 1,… , p and � = � (3rd row). Note that LASSO is not a 
group method and is only included as a reference for comparison
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Table 1   Predictive accuracy 
comparison for CTR and lasso 
when n ∈ {750, 6000} . The 
group-based methods (OSCAR 
and fused lasso) had substantially 
worse accuracy for small n 
and prohibitive computational 
expense for large n, and are 
omitted

n r
2 1st row 2nd row 3rd row

CTR​ LASSO CTR​ LASSO CTR​ LASSO

(a) Figure 4 experiments
   750 0.5 0.07 0.01 0.26 0.21 0.26 0.02
   750 0.7 0.23 0.06 0.49 0.34 0.44 0.10
   750 0.9 0.45 0.20 0.85 0.52 0.71 0.27
   6000 0.5 0.43 0.41 0.46 0.42 0.42 0.41
   6000 0.7 0.67 0.64 0.69 0.65 0.65 0.64
   6000 0.9 0.89 0.88 0.90 0.88 0.88 0.88

(b) Figure 5 experiments
   750 0.5 0.10 0.32 0.20 0.23 0.08 0.03
   750 0.7 0.46 0.59 0.43 0.37 0.21 0.11
   750 0.9 0.82 0.86 0.68 0.57 0.43 0.28
   6000 0.5 0.50 0.49 0.43 0.43 0.41 0.42
   6000 0.7 0.70 0.69 0.65 0.66 0.65 0.65
   6000 0.9 0.90 0.90 0.90 0.88 0.89 0.88

(c) Figure 6 experiments
   750 0.5 0.08 0.03 0.38 0.30 0.15 0.07
   750 0.7 0.20 0.11 0.59 0.52 0.31 0.21
   750 0.9 0.43 0.29 0.84 0.78 0.55 0.49
   6000 0.5 0.40 0.40 0.48 0.46 0.41 0.43
   6000 0.7 0.64 0.64 0.69 0.67 0.65 0.66
   6000 0.9 0.87 0.88 0.89 0.88 0.88 0.88

Table 2   Computational time (s) comparison of CTR, lasso, OSCAR, and fused lasso for various p and n 

1OSCAR and fused lasso were terminated after 3 h without converging

p (Table 2a)/n 
(Table 2b)

CTR​ Lasso OSCAR​ FLasso

Time r̄
2 Time r̄

2 Time r̄
2 Time r̄

2

(a) Computational time (s) for n = 104 and p ∈ {500, 1000, 2000, 4000}

   500 4 0.89 29 0.89 4363 0.89 4446 0.89
   1000 8 0.89 55 0.89 8704 0.89 8853 0.89
   2000 16 0.89 107 0.88  108001 –  108001 –
   4000 30 0.88 220 0.86  108001 –  108001 –

(b) Computational time (s) for p = 500 and n ∈ {103, 104, 105, 106}

   103 0 0.87 4 0.85 274 0.80 342 0.79

   104 4 0.89 29 0.89 4363 0.89 4446 0.89

   105 43 0.90 294 0.90  108001 –  108001 –

   106 577 0.90 4042 0.90  108001 –  108001 –
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3.3 � Performance comparison on real‑world data

In this section, we compare the methods using publicly available real data sets. To do that, 
we first use the residential building data set (Rafiei and Adeli, 2016) from UCI Machine 
Learning Repository. The data set consists of 8 physical and financial predictors and 19 
economic predictors, each of which is measured at five different time points (thus com-
prising 5 × 19 = 95 predictors observed quarterly prior to the start of the construction), 
resulting in a total of 103 predictors. We first fit all methods using all p = 103 predictors to 
predict the response variable, construction cost. The data set consists of 372 observations, 
and we split the data into training and test sets, where we vary the size of the training set as 
74, 186, 298 and the size of the test set is fixed as 74 to examine the effect of the amount 
of training data on out-of-sample performance. We repeated this process for 100 different 
splittings of the data into training and test sets of respective sizes, and the average test r̄2 
is given in Fig. 8 (left). Regarding the predictive accuracy, with the training sample size of 
298 all methods perform well with the test r̄2 around 0.96, with CTR having slightly better 
performance than the other group-based methods and lasso. The difference between meth-
ods is more distinguishable for the smaller sample sizes, and in this case CTR performed 
better than the other group-based methods. Overall, CTR performed only slightly better 
than lasso (slightly worse for the smallest sample size and slightly better for the medium 
and larger sample sizes). Regarding interpretability, among eight original physical and 
financial predictors CTR includes only a single predictor “Preliminary estimated construc-
tion cost based on the prices at the beginning of the project” into the first group with a 
very large positive coefficient. This makes sense because one would expect the preliminary 
estimated cost to play a key role in determining the actual construction cost. The second 
CTR group includes the single predictor “Duration of construction” with a relatively large 
positive coefficient as well, and this implies that the actual cost is likely to increase with 
an increasing duration of construction. After this point, the subsequent CTR groups start 
to include lagged economic predictors. For example, the fourth group includes predictors 
measured at lagged time points three, four and five, indicating that this group includes the 
predictors that are influential at earlier time points. Based on these results, original eight 
physical and financial predictors explain most of the variability existing in the data set, and 
thus the test r̄2 is very close to one. In order to make the analysis more challenging and pro-
vide a different comparison of the predictive accuracy of the various methods, we exclude 
the original eight project physical predictors from the models, and refit the models with 
the remaining 95 economic predictors. The results are given in Fig. 8 (right). In this case, 
the relative performance of CTR and lasso is similar to the case when all of the original 
predictors are included. However, the performance difference between CTR and the other 
group-based methods is more pronounced. For example, for the smallest training sample 
size, CTR achieves a test r̄2 = 0.56 , whereas the other group-based methods only have test 
r̄2 = 0.25 approximately.

Next, we consider monthly natural gas prices from the U.S. Energy Information Admin-
istration between January 1997 and August 2020 (the data set is available at (DataHub, 
2021)). We consider the regression model

where L represents the maximum time lag in the model (we consider various values of 
L below) and n = 284 is the number of observations. We expect that there should be an 
underlying group structure existing in these types of regression models, and predictors at 

(18)x̂i+L = 𝛽1xi + 𝛽2xi+1 +⋯ + 𝛽Lxi+L−1, for i = 1,… , n − L,
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the most recent time points would have more influence on the response variable. In order 
to check the performance of each method, the data are split 50:50 into training and testing 
set, where the latter includes observations at the most recent time points. Figure 9 (left) 
illustrates the predictive performance as L is varied, from which we see that CTR performs 
better than the other methods, substantially so for the larger L values. Finally, in order the 
compare the performance with larger p, we consider the daily volatility index data set from 
2004 to 2011, which can be found at (DataHub, 2021). We fit a regression model similar to 
(18) with varying training sizes 750, 1000 and 1850 with p = 500 , the results for which are 
given in Fig. 9 (right). Overall, CTR performs better than OLS and the other group-based 
methods (substantially so for the small and medium sample sizes) and comparably to lasso.

Moreover, we compared the predictive accuracy and computational performance using 
a number of other data sets available at the UCI machine learning repository: superconduc-
tivity (with p = 81 , n = 21263 ), communities and crime (with p = 128 , n = 1994 ), wine 
(with p = 12 , n = 4898 ) and yacht hydrodynamics (with p = 7 , n = 308 ). For which, we 
consider 100 different random 80:20 splittings into training and test sets. All methods per-
formed comparably in terms of predictive accuracy with the resulting test r̄2 values being 
approximately 0.65, 0.73, 0.34, 0.27, and 0.64 for the superconductivity, communities and 
crime, wine (red), wine (white), and yacht hydrodynamics data sets, respectively. This may 
be because these real data sets may not truly have a group structure, and with sufficient 
number of observations all methods perform similarly to each other. It is important to note 
that although CTR has comparable predictive accuracy for these five data sets, it is orders-
of-magnitude faster than the other group-based methods and even substantially faster than 
lasso.

3.4 � Feature selection via CTR​

This section investigates the effectiveness of the methods in terms of accurately identifying 
zero- and nonzero-coefficient predictors. To do this, we use a simulation experiment with 
a true group structure �� =

[
��
0.3p

, ��
0.4p

,−��
0.3p

]
 with � = � and p = 100 . Thus, we have 40 

inactive predictors with a coefficient of zero (i.e., a zero-coefficient group with a size of 40) 
and 60 nonzero-coefficient predictors. We evaluate the performance of CTR, fused lasso, 
lasso, OLS and OSCAR by the number of falsely identified predictors of both types, i.e., 
the number of truly zero-coefficient predictors whose estimated coefficients differ from 

Fig. 8   Residential building data set results with p = 103 (left) and p = 95 (right)
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zero and the number of truly nonzero-coefficient predictors whose estimated coefficients 
are zero. For the comparison, we generated a test set of 10,000 observations, and 100 train-
ing sets (corresponding to 100 replicates), each of size n ∈ {150, 300, 600} , similar to the 
experiments in Sect.  3.1. In addition, we varied the true r2 ∈ {0.5, 0.7, 0.9} to represent 
different noise levels.

Figure 10 shows the predictive performances of all methods, which are in line with the 
ones presented in Sect. 3.1. The rows of Fig. 11 show the distribution of falsely identified 
predictors, falsely identified zero-coefficients, and falsely identified nonzero-coefficients, 
respectively, across the 100 replicates for both CTR and lasso. The results for the remain-
ing methods are not included in this plot since they are not able to exclude any zero-coef-
ficient predictor from any of 100 replicates. Overall, CTR is no more nor less subject to 
falsely identified coefficients than lasso, and when n is large, CTR is able to identify the 
predictors more accurately.

Next, we analyze the bias in the coefficients. To illustrate this, Fig. 12 shows the mean 
and the standard error of the estimated coefficients across 100 replicates when the true 
r2 = 0.9 and n = 600 for all methods (we use this case because the predictive accuracy is 
high for all methods). With CTR, even though zero-coefficient predictors are sometimes 
included in the model, they are included in a group with a coefficient close to zero. Moreo-
ver, both lasso and fused lasso shrink the coefficients towards zero, whereas the bias intro-
duced by CTR is close to zero in Fig. 12. In order to further demonstrate the difference in 
bias between CTR and lasso for a more challenging case, Fig. 13 shows analogous results 
for n = 150 and the true r2 = 0.5.

3.5 � Stability of CTR​

As mentioned above, the split-point search procedure is analogous to how splits are cho-
sen greedily when fitting standard regression trees. However, CTR and standard regression 
trees are different in that CTR splits a set of predictors into two subgroups of predictors, 
whereas regression trees split an interval of values of a single predictor into two subin-
tervals. Standard classification and regressions trees are known to be unstable procedures 
(Breiman, 1996; Hastie et al., 2009), in the sense that the split points are determined by 
the observations in the training data, and slight modifications in the training data result in 

Fig. 9   Monthly natural gas prices (left) and daily volatility index (right) data sets results
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a completely different tree structures. In contrast, in CTR, the decision to split the predic-
tors into the groups depends on the marginal reduction in SSE for each predictor, and even 
if we change the training data slightly, the marginal reduction in SSE will not be affected 
substantially, as the remaining observations in the data will continue to contribute to the 
marginal reduction in SSE.

In order to demonstrate the instability of standard classification/regression trees, Hastie 
et al. (2009) generated bootstrap samples from the training data and refit the trees to each 
of the bootstrap data sets. Following this procedure, we generated 100 bootstrap data sets, 
and refit the model to each of the bootstrap data sets for each of the methods used in bench-
mark studies to examine whether the methods are sensitive to these changes in the data 
sets. We use a simulation experiment with a true group structure 
�� =

[
��
p∕5

, ��
p∕5

, ��
p∕5

, ��
p∕5

, ��
p∕5

]
 with � = � and p = 100 . For the comparisons, we gener-

ated a test set of 10,000 observations, and 100 training sets of size n ∈ {300, 600} (note 
that we did not use n = 150 because no methods performed well with bootstrap samples 
when original training sample size is 150). In addition, we varied the true 
r2 ∈ {0.5, 0.7, 0.9} to represent different noise levels.

Figure 14 illustrates the variability in the predictive performance of each of the methods 
with different sample sizes and noise levels. The accuracy of each method does not vary 
significantly across different bootstrap samples. In addition, Fig. 15 shows the mean and 
standard error of the estimated coefficients across the 100 replicates for CTR and lasso. 
The results demonstrate that CTR is no less stable than lasso, in spite of its use of trees 
to find the group structure. Note that we only provide results for when n = 600 and true 
r2 = 0.9 for illustration, and the CTR results are no less stable than the other methods in 
the other cases.

4 � Discovering hidden ontologies: a programmatic advertising 
example

We now give a programmatic advertising example using real data to illustrate how the 
group structure of the derived features from CTR can be quite interpretable and can help 
to discover hidden ontologies that provide insight into the regression dependencies. Pro-
grammatic advertising delivers messages to individuals, where the advertisers’ bids are 

Fig. 10   Simulation results with true group structure �� =
[
��
0.3p

, ��
0.4p

,−��
0.3p

]
 with � = � and p = 100 . The 

error bars indicate the standard deviation of the test r2 across the 100 replicates
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informed by learning algorithms that associate what is known about a consumer with the 
consumer’s interest in the advertised product or service (Perlich et al., 2014). With prolif-
eration of programmatic ad exchange markets, it has been used in many different forms of 
advertising (e.g., search, display and video) to make data-driven decisions. As a political 

(a)

(b)

(c)

Fig. 11   Feature selection performance for CTR and lasso for the experiments with true group structure 
�� =

[
��
0.3p

, ��
0.4p

,−��
0.3p

]
 with � = � and p = 100
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advertising example, consider that during the 2016 election cycle, $9.8 billion dollars were 
spent on political campaign advertising, and programmatic advertising to target specific 
types of voters was an important driver of this amount (Kaye, 2017).

In this section we consider such an example and use CTR to predict political leanings 
(the response) based on TV viewing habits (the predictors) of households. The example 
involves joining two data sets: cable TV set-top-box (STB) data from April to December 
2015 recording everything households watch on TV, and household voting data for the 
major political parties’ 2016 primary elections, both of which are for a single state. Pub-
licly available records indicate which registered voters voted in the 2016 primary elections, 
and, if so, whether they voted in the Democratic or Republican primary (note that the data 
only indicates whether the voter voted in the primary and not for which candidate he/she 
voted). The cable TV provider matched the two data sets on household address with 47,979 

(a) (b)

(c) (d)

(e)

Fig. 12   Estimated coefficients for the experiment with �� =
[
��
0.3p

, ��
0.4p

,−��
0.3p

]
 with � = � and p = 100 and 

n = 600 . The error bars indicate one standard error of estimated coefficients across the 100 replicates. The 
horizontal black line illustrates the true coefficients of the corresponding predictors



	 Machine Learning

1 3

matches, although the final data set that we analyze is anonymized in this regard. The final 
data therefore consisted of TV viewing information for these 47,979 households, along 
with the number of Democratic and Republican primary votes cast in each household.

The following are details on what constitutes the predictor variables and the response 
variable in this example. Each “row” of data corresponds to one household for which 
the voting data was matched with the TV viewing data, and the training set consisted of 
15,000 randomly selected rows. The initial data set is moderately unbalanced (the number 
of households with at least one member who voted in the Democratic primary is 8439, and 
the rest of the 39,540 households do not have any member who voted in the Democratic 
primary). To have more balanced data, we sampled 7500 households from each group to 
create the training set, and used the remaining to construct a test set. The response variable 
was defined as the fraction of primary voters in each household who voted in the Democrat 
primary (i.e., Democrat primary votes, divided by the sum of Democrat and Republican 
primary votes). Because viewership of news (and other) programs is expected to be related 

(a) (b)

Fig. 13   Estimated coefficients for the experiment with �� =
[
��
0.3p

, ��
0.4p

,−��
0.3p

]
 with � = � and p = 100 and 

n = 150 . The error bars indicate one standard error of estimated coefficients across the 100 replicates. The 
horizontal black line illustrates the true coefficients of the corresponding predictors

Fig. 14   Simulation results with true group structure �� =
[
��
p∕5

, ��
p∕5

, ��
p∕5

, ��
p∕5

, ��
p∕5

]
 with � = � and 

p = 100 . The error bars indicate the standard deviation of estimated r2 values across the 100 replicates each 
of which is fitted to bootstrap samples
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to political leanings (Ksiazek et al., 2010), over the full April–December, 2015 TV view-
ing period we calculated the total watch times of 238 distinct news programs, such as The 
O’Reilly Factor, The Rachel Maddow Show, etc., some of which are hosted by people with 
well-known political leanings. For non-news related programming (e.g., basketball, drama, 
reality, talk shows, religious, etc.) we created predictors (the original predictors � ; not our 
CTR-derived features � ) that are the total watch times within each genre, as opposed to 
within each specific program. In total, we created 288 viewing predictors that each rep-
resent the total watch time of some show or genre of shows. The predictor variables were 
logged prior to the analysis.

We then applied the CTR algorithm to obtain the group structure. Figure 16 plots the 
CV SSE / SST versus the number of derived features ranging from 1 to 20. The best num-
ber of derived features was estimated to be k = 12 according to 10-fold CV, and the final 
group structure with k = 12 derived features is given in Table 3. Note that the improve-
ment in CV r2 (CV r2 = 1 − CV SSE / SST) was small beyond three groups. We therefore 
include only the first three groups in Fig. 17 for viewing convenience and interpretability 
purposes. The plot similar to Fig.  16 allows users to select k to balance between better 
model simplicity/interpretability and better predictive accuracy in terms of CV r2 , depend-
ing on their particular needs and plans for using the regression model.

Figure  17 shows that during iteration k = 1 , CTR extracted a derived feature with a 
negative coefficient 𝛼̂1,1 = −4.90 . The group G1,1 consisted of programs on the Fox News 
Channel such as America’s Newsroom, Fox & Friends, Bret Baier, Outnumbered, Varney 
& Co., The Five, The O’Reilly Factor and individual programs Golf Central and Duck 
Dynasty. For this first group, the CV r2 = 0.15. The remaining programs were placed into 
the zero-coefficient group G1,2 after iteration k = 1 . The negative coefficient 𝛼̂1,1 = −4.90 
makes sense, since a higher response means a more Democrat-leaning voting pattern, and 
the Fox news, Golf Central, and Duck Dynasty programs in G1,1 are widely regarded as 
conservative oriented.

During iteration k = 2 , CTR found a new group of predictors by splitting the zero-coef-
ficient group G1,2 into a positive-coefficient group G2,2 with 𝛼̂2,2 = 1.60 and a zero-coeffi-
cient group G2,3 . The first group stayed the same (i.e., G2,1 = G1,1 ), although its coefficient 
was updated ( ̂𝛼2,1 = −6.20 ). The CV r2 value increased to 0.30 with the second derived 

(a) (b)

Fig. 15   Estimated coefficients for the experiment with �� = 
[
��
p∕5

, ��
p∕5

, ��
p∕5

, ��
p∕5

, ��
p∕5

]
 with � = � and 

p = 100 , n = 600 and true r2 = 0.9. The error bars indicate one standard error of estimated coefficients 
across the 100 replicates with bootstrap samples. The horizontal black line illustrates the true coefficients of 
the corresponding predictors
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feature. The programs in G2,2 included some from CNN (e.g., Wolf Blitzer, Ashleigh Ban-
field, Erin Burnett, New Day, Smerconish, Jake Tapper), some from MSNBC (e.g., Alex 
Witt, Andrea Mitchell, All In with Chris Hayes, Hardball, Harris Perry, The Last Word, 
Live, Rachel Maddow and Rundown) and several news programs from broadcast networks 
(Spanish News, The View, CBS Overnight News, Right This Minute, and Public TV News). 
Most of these news shows are widely regarded as liberal leaning, in contrast to the conserv-
ative leaning news shows in G2,1 . The genres of community, horror, and interview biog-
raphies, as well as the individual programs Charmed, Keeping up with the Kardashians, 
Forensic Files, Steve Harvey, Teen Titans Go!, Supernatural, Maury, Snapped and The 
People’s Court, are included in G2,2 , along with the liberal-leaning news shows.

During iteration k = 3 , a new group of predictors G3,3 entered the model with a negative 
group coefficient 𝛼̂3,3 = −1.40 . The third derived feature included the genres golf, base-
ball, Nascar, history and romance, some programs from The Fox Channel (e.g., Hannity, 
Happening Now, Greta Van Susteren, The Kelly File, Chris Wallace), some individual pro-
grams NCIS, Three House Masters, OK TV, American Pickers, Shark Tank, Fixer Upper, 
Alaskan Bush People, Days of Our Lives, The Waltons and America’s Got Talent, along 
with some finance news (such as Fast Money, Power Lunch, Squawk Box). Including this 
third derived feature increased the CV r2 = 0.33. The first and third derived features had 
negative coefficients 𝛼̂3,1 = −3.80 and 𝛼̂3,3 = −1.40 , whereas the second derived feature 
had a positive coefficient 𝛼̂3,2 = 2.20.

The group structure provides insight into the relationship between political affiliations 
and television viewing habits. For example, the first two derived features are not surprising 
and are consistent with the conservative-leaning or liberal-leaning reputations of the vari-
ous news shows. In the third group, the genres golf, Nascar and baseball, which have larger 
average viewing ages,2 are sometimes associated with Republicans (Maniam and Smith 
2014). Some of the TV shows listed in the third derived feature have been discussed in this 
context in the popular press (Gay, 2012).

The CV r2 of 0.33 might be viewed as low in some contexts. However, in applications 
like this, an r2 of 0.33 may be quite useful practically. To assess the utility of the model in 
such situations, one often uses a cumulative gains chart (Larose, 2005). Figure 18 shows 
the cumulative gains chart for this example, which we calculated as follows. We first 
used our final fitted CTR model (with three derived features) to estimate the fraction of 

Fig. 16   CV SSE/SST for the 
programmatic advertising exam-
ple with the number of derived 
features ranging from 1 to 20
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2  See https://​www.​marke​twatch.​com/​story/​the-​sports-​with-​the-​oldest-​and-​young​est-​tv-​audie​nces-​2017-​06-​
30.

https://www.marketwatch.com/story/the-sports-with-the-oldest-and-youngest-tv-audiences-2017-06-30
https://www.marketwatch.com/story/the-sports-with-the-oldest-and-youngest-tv-audiences-2017-06-30
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Democrat votes in each household (the response variable in our model), and we then sorted 
households in descending order according to those values. For each fraction between 0 
and 1 (which is the horizontal-axis value in Fig. 18), we then calculated the “fraction of 
Democrat votes reached,” which is defined as follows. For each specified fraction between 
0–1, we took that fraction of top households as ordered by the predicted responses from 
our CTR model, and we counted the total number of actual Democrat votes in those house-
holds. This number, divided by the total number of actual Democrat votes in all household, 
is defined as the “fraction of Democrat votes reached” and is plotted on the vertical axes 

Table 3   Final derived features of the CTR-estimated group structure and coefficients in the programmatic 
advertising example

Group Predictors �

1 Fox & Friends, Bret Baier, The O’Reilly Factor −  4.3
2 America’s Newsroom,The Five, Outnumbered, Varney & Co −  0.7

Golf Central
3 All In with Chris Hayes, Hardball, The Last Word, Rachel Maddow, 3.6

The View, Maury, Snapped, Steve Harvey, Public TV News,
community, interview biographies

4 Alex Witt, Andrea Mitchell, Harris Perry, −  0.6
Rundown, Live, CBS Overnight News

5 Wolf Blitzer, Ashleigh Banfield, Erin Burnett, New Day, 1.3
Smerconish, Jake Tapper, Forensic Files

6 Duck Dynasty −  8.9
7 Alaskan Bush People, golf, baseball, Nascar, history, American Pickers, −  2.8

Shark Tank, Fixer Upper
8 Teen Titans Go!, Spanish News, Keeping up with the Kardashians, 1.3

The People’s Court, horror, Charmed, Supernatural
Right This Minute

9 Big Bang Theory, Friends, Seinfeld, HIMYM, −  1.6
Rules Of Enagement

10 America This Morning, AgDay, CBS Morning News, 1.5
Crime Watch Daily, Red Eye, Shepard Smith, Jeopardy,
Let’s Make a Deal, Log Cabin Living, The Young and the Restless,
House Hunters International, Matlock, Property Brothers, The Talk,
Love It Or List It, The Bold And The Beautiful

11 romance, Hannity, Happening Now, −  1.2
Greta Van Susteren, The Kelly File, Chris Wallace, NCIS,
Three House Masters, OK TV, Days of Our Lives,
The Waltons, America’s Got Talent, Fast Money,
Power Lunch, Squawk Box

12 ABC World News Tonight, Baseball Tonight, CBS News, 0.6
Modern Family, Tonight, Bones, The King of Queens,
Law and Order, Jimmy Kimmel, Ellen DeGeneres, Dateline NBC,
Stephen Colbert, Inside Edition, The Doctors,
Weekend Recharge, Dr. Phil



	 Machine Learning

1 3

in Fig.  18. The 45-degree line represents the fraction of Democrat votes reached if one 
randomly selected the households to which to advertise. Thus, the area between the two 
curves represents the gains in the number of Democrat votes reached if one advertised to 
the households having the highest CTR-predicted response, relative to randomly choosing 
households for advertising. Even though the r2 is only 0.33, the gains are sufficient to have 
practical utility in many programmatic advertising applications.

Regarding the interpretability, the CTR model was parsimonious with only three derived 
features (each of which being a straight sum that represents the total number of hours 
watched for the programs in the group), and each had a clear interpretation. In order to gain 
insight into the predictive performance of the final model with k = 12 derived features, we 
created a test set of 1,878 households, and compared the test set prediction results with 
the same benchmark methods considered in Sect. 3. The r2 values were 0.3550, 0.3573, 
0.3584, 0.3597, and 0.3592 for CTR, OLS, lasso, fused lasso, and OSCAR, respectively. 
While the predictive performance of the methods is close to each other, CTR had far lower 
computational expense and clear interpretability. In addition, the hierarchical nature of the 
CTR tree provides insight into which groups are the most important, based on their posi-
tion within the tree (the higher up the group, the more important it is).

5 � CTR as an approximation to OLS

The results in the previous section demonstrate that, regardless of whether there is true 
group structure, CTR often achieves substantially better predictive accuracy than OLS 
when the number k of groups is chosen via CV. One way to view choice of k in CTR is that 

Fig. 17   Illustration of the CTR-estimated hierarchical group structure and coefficients in the programmatic 
advertising example
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we stop at the value for which we conclude (according to CV) that we have built the best 
model possible, and the CTR model with k < p is as an approximation to OLS, where the 
approximation can be made arbitrarily close to OLS as k and kmax increases. Indeed, in the 
hypothetical limiting case, when k = p , the CTR model is identical to the OLS model. In 
this section, we further explore CTR as an approximate implementation of OLS that scales 
up computationally much better than OLS for large p (in addition to being more accurate).

One would expect situations like in the experiments in Fig. 6 to be the most challeng-
ing for CTR, because the coefficients {�j ∶ j = 1, 2,… , p} vary continuously with no group 
structure. However, even in this situation, CTR performs substantially better than OLS. 
This is especially true for smaller n, because OLS tends to overfit due to having many 
more coefficients to estimate. The reason CTR still performs well when the coefficients 
vary smoothly has to do with the nature of the CTR approximation of the coefficients, and 
this relates closely to our earlier recommendation that kmax = 20 is generally sufficient. 
With smoothly varying coefficients, the CTR approximation can be viewed as a piecewise 
constant approximation (with up to kmax pieces) of the monotonically increasing func-
tion that represents the ordered coefficients {�j ∶ j = 1, 2,… , p} as a function of j. This is 
illustrated for p = 500 in Fig. 19, which plots the ordered coefficients {�j ∶ j = 1, 2,… , p} 
for the situations that the coefficients are generated randomly from a Unif(−1, 1) distribu-
tion (left panel) and N(0, 1) distribution (right panel). Also plotted are piecewise constant 
approximations of the coefficients using 20 pieces each (since we only have the coefficients 
and no data, the approximations were obtained by fitting a standard regression tree to the 
ordered coefficients {�j ∶ j = 1, 2,… , p} as a function of j). In both cases, the piecewise 
constant functions approximate the coefficients quite closely, with training r2 values (for 
approximating the ordered coefficients {�j ∶ j = 1, 2,… , p} , as a function of j) of 0.9974 
and 0.9943 for the left and right panels, respectively. This implies that the group coefficient 
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structure of CTR with kmax = 20 should be sufficient to accurately represent the true coef-
ficients, even when they vary smoothly.

More generally, with either a true coefficient group structure or smoothly varying true coef-
ficients, one can view CTR as a form of regularization (like lasso) but without shrinkage to 
zero (unlike lasso). That is, imposing the CTR group structure and requiring that the estimated 
coefficients are the same value 𝛼̂j within groups is a form of regularization that discourages 
the large/erratic values for the estimated coefficients that can occur in OLS when n is not suf-
ficiently large (relative to p) and/or when strong multicollinearity is present. Whereas lasso 
discourages large/erratic values by shrinking all coefficients toward zero, which can substan-
tially bias coefficients having large true values, CTR accomplishes this by shrinking or grow-
ing coefficients within groups to some common value 𝛼̂j . As illustrated in Fig. 19, for kmax 
sufficiently large, the bias introduced by this CTR regularization should be acceptable.

In addition to being more accurate than OLS in situations in which regularization is help-
ful, CTR can be orders of magnitude faster than OLS for large-scale data sets when a “brute-
force” application of OLS is used (via computing the matrix and vector multiplications 
� = ��� and � = ��� ). Theoretically, computation of � and �−1� for OLS is O(np2) and 
O(p3) , respectively, whereas inspection of the CTR algorithm reveals it is O(npkmax) for fixed 
kmax . Consequently, CTR scales up far better than OLS for large p, in addition to being more 
accurate. Of course, with very large p, one should not use brute-force OLS. The glmnet 
package with � = 0 can be viewed as another O(np) OLS approximation that uses an iterative 
optimization procedure with clever computational tricks to fit the model.

6 � Conclusion

We have introduced a new algorithm called coefficient tree regression (CTR) that efficiently 
discovers the group structure among predictors, engineers derived features accordingly, and 
fits the resulting regression model in situations in which no prior knowledge of the group 
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Fig. 19   CTR piecewise constant approximation of p = 500 ordered regression coefficients using 20 groups/
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panel)



Machine Learning	

1 3

structure is available. It has widespread applicability for many high-dimensional regression 
problems in which there are a large number of predictors but many of them share the same 
(or very nearly the same) coefficients. CTR graphically displays the estimated model as a 
tree, and we demonstrated with the programmatic advertising example that it can provide 
a clear and concise interpretation of the regression relationship. Simulation studies under 
different scenarios demonstrated its excellent performance in terms of computing time 
and predictive accuracy. In particular, its computational performance is multiple orders-
of-magnitude better (Table  2), and its predictive performance is also dramatically better 
(Figs. 4, 5, 6, 7), than the existing group methods (fused lasso and OSCAR). Even relative 
to the non-group-based lasso method, which was included as a reference benchmark for 
comparison, CTR’s computational performance is nearly an order-of-magnitude better, and 
its predictive performance is better (when there is true group structure with no sparsity) or 
comparable (when there is sparsity). This was the case even when there was no true group 
structure and the coefficients varied smoothly.

As future research, we are extending CTR to generalized linear models (GLMs) (Sürer 
et al., 2021). We are also investigating different application areas in which we can exploit 
the context of the data to improve accuracy and substantially improve computational 
expense for extremely large data sets. In particular, we are investigating an extension to 
longitudinal data over space and/or time, in part because the largest data sets are often 
longitudinal data, and it is crucial to obtain efficient, interpretable, and accurate models for 
high-dimensional data sets. There has been studies that exploit the context in the functional 
data in the prior literature. For example, for support vector machines, Martin-Barragan 
et  al. (2014) propose a generalized regularization term to obtain coefficient functions in 
different forms (i.e., sparse, smooth, etc.), and Blanquero et al. (2019) define a new kernel 
function to identify the critical time intervals. Tian and James (2013) propose a method to 
generate functions with simple structure to represent the functional data in a lower dimen-
sional space. When the data have a spatial and/or temporal component, we often expect 
that predictor variables that are closer in space and/or time are more likely to be associ-
ated with the response a similar manner. For example, in programmatic TV advertising, 
information regarding how much time individual users spend viewing each TV program or 
movie at each specific time is available to inform bid amounts for the users. If the predic-
tors consist of the amount of time watched for each program during each small time inter-
val, then the number of predictors explodes. However, a good derived feature could be the 
total hours spent viewing specific TV programs over some longer (but a priori unknown) 
time interval, instead of over each small elemental time interval. Because the appropriate 
time period over which to group the TV show viewing (one day, one week, one month, 
etc.) is not known a priori, it must be estimated from the data. In such situations, we expect 
that we can exploit those aspects to facilitate the CTR split-point search procedure and effi-
ciently find the most meaningful derived features.
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