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Abstract
Long-tailed visual recognition poses significant challenges to traditional machine learn-
ing and emerging deep networks due to its inherent class imbalance. Existing reweighting 
and re-sampling methods, although effective, lack a fundamental theory while leaving the 
paradoxical effects of long tail unsolved, where network failing with head classes under-
represented and tail classes overfitted. In this paper, we investigate long-tailed recognition 
from a memorization-generalization point of view, which not only unravels the whys of 
previous methods, but also derives a new principled solution. Specifically, we first empiri-
cally identify the regularity of classes under long-tailed distributions, finding that long-
tailed challenge is essentially a trade-off between the representation of high-regularity 
head classes and generalization to low-regularity tail classes. To memorize tail samples 
without seriously damaging the representation of head samples, we propose a simple yet 
effective sampling strategy for ordinary mini-batch SGD optimization process, Switching, 
which switches from instance-balanced sampling to class-reversed sampling for only once 
at small learning rate. By theoretical analysis, we show that the upper bound on the gener-
alization error of the proposed sampling strategy is lower than instance-balanced sampling 
conditionally. In our experiments, the proposed method can reach feasible performance 
more efficiently than current methods. Further experiments validate the superiority of the 
proposed Switching strategy, implying that the long-tailed learning trade-off could be par-
simoniously tackled only in the memorization stage with a small learning rate and over-
exposure of tail samples.
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1  Introduction

With the prosperity of deep learning research field, visual recognition has witnessed the 
prominence of powerful representation learning approaches and high-quality, large-scale 
datasets, e.g., ImageNet ILSVRC (Russakovsky et al., 2015) and Places (Zhou et al., 2018). 
These datasets are usually carefully balanced, exhibiting roughly uniform distributions of 
class labels. However, visual phenomena in real world tends to have skewed data distribu-
tions with long-tailed characteristics (Dong et al., 2017; Liu & Tsoumakas, 2018; Xiang 
& Ding, 2020; Bej et al., 2021), consisting of a few majority classes (head classes) and a 
large number of minority classes (tail classes). When dealing with such long-tailed data, 
many standard approaches fail to work well due to the extreme class imbalance trouble, 
leading to a significant drop in accuracy for tail classes (Mollaysa et al., 2019).

A common way to solve long-tailed problem is re-sampling or re-weighting, which 
artificially generates class-balanced batch or loss to avoid extreme long tail (Huang et al., 
2016; Buda et al., 2018; Ma et al., 2018; Cao et al., 2019). Inspired by the phenomenon 
that naively re-weighting or re-sampling inevitably causes under-fitting to the head or over-
fitting to the tail, latest studies (Kang et al., 2020; Zhou et al., 2020) separate the imbal-
anced feature learning and balanced classifier learning, leading a two-stage training para-
digm. Each of these strands is intuitive, and has proven empirically successful. However, 
they are not without limitation: no explanations about wherefores that the data sampler of 
feature extractor learning and classifier learning should be different. On the other hand, 
imbalanced feature representation will project on the head feature direction due to head 
classes always dominate training procedure, resulting in the re-trained classifier biased 
(Zhou et al., 2020).

In this paper, we propose to investigate long-tailed recognition from a memorization-
generalization point of view. A recent study (Jiang et  al., 2020) suggests rare and low-
regularity samples could be learned based on the internal representations built from 
strongest-domain regularities first. In this case, the relation between sample regularity and 
cardinality of each class during training is verified. We visualize the cumulative learned 
events and forgetting events (Toneva et al., 2019) of each sample (see Appendix  A) and 
find that regularity of the same training samples will be sharply decreased with the reduc-
tion of class cardinality. As shown in Fig. 1, the more class cardinality reduced, the more 
regularity decreased. Further, it is shown by the comparison between Figs. 9 and  10 that 
such skewed regularity of the training samples may cause the network generalization 

Fig. 1   The visualization of the regularity degradation of selected training samples when training set chang-
ing from standard CIFAR-10 to Long-tailed CIFAR-10 with class cardinality reduced. The regularity of one 
class will be higher with more samples gathering in the lower right corner of the picture. In each subfigure, 
samples are in one-to-one correspondence within two plots. It could be observed that regularity of the same 
training samples will be sharply decreased with the reduction of class cardinality. The more cardinality 
reduced, the more regularity decreased
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degraded, i.e., the less training samples one class have, the lower regularity the validation 
samples of the same class will own (see Appendix  A).

Based on the notion that long-tail challenge is essentially a trade-off between the repre-
sentation of high-regularity head classes and generalization to low-regularity tail classes, 
we explore a simple yet effective joint training strategy, named Switching, which properly 
shifts learning focus from high-regularity head classes to low-regularity tail classes and 
give the theoretical generalization bound of changing data samplers during training for the 
first time.

Specifically, we employ the standard training procedure with cross-entropy loss and 
instance-balanced sampler w.r.t. the original data distribution to ensure the learning of uni-
versal visual patterns. We only switch from instance-balanced sampler to class-reversed 
sampler for the last several epochs of training, tending tail classes to be over-exposed. In 
earlier training, with head classes dominate the training data, the patterns and structures 
discovered in regular examples are utilized to build a generalizable representation. In later 
training phase, the memorization of tail classes will not seriously disrupt the learned repre-
sentation as the learning rate is much smaller than earlier stages. Such strategy can simulta-
neously boost the representation and classification towards long-tailed distributions, avoid-
ing the risk of re-trained classifier excessive dependent on feature extractor.

We conduct extensive experiments across four benchmark long-tailed datasets: 
CIFAR10-LT, CIFAR100-LT, iNaturalist 2018 and ImageNet-LT, to evaluate the effective-
ness of our proposed method. With such a simple training strategy, we obtain comparable 
or better results more efficiently compared with previous state-of-the-art methods.

To summarize, the main contributions are as follows:

•	 We empirically identify that the low-regularity of tail classes is the primary hurdle for 
learning an accurate model for long-tailed distributions and appropriately memorizing 
them is essential for better generalization across all classes.

•	 We propose a simple yet effective strategy, named Switching, to handle the trade-off 
between high-regularity head classes and low-regularity tail classes and give the theo-
retical generalization error bound proving that class-reversed sampling is better than 
instance-balanced sampling during the last training stage.

•	 We investigate the effectiveness and efficiency of the proposed method through exten-
sive experimentation and demonstrate that tackling long-tail trade-off could only cost a 
few training epochs with a small learning rate and over-exposure of tail samples.

2 � Related work

2.1 � Long‑tailed visual recognition

Re-sampling strategies Re-sampling strategies can be divided into two classical types: 
over-sampling the minority classes by repeatedly adding augmented images (Drummond 
et al., 2003; Han et al., 2005; Buda et al., 2018); or under-sampling the majority classes by 
removing several images (Japkowicz & Stephen, 2002; He & Garcia, 2009; Bellinger et al., 
2018). All these re-sampling methods tend to provide a more balanced data distribution 
during training to solve the long-tailed problem. However, over-sampling may sometimes 
cause over-fitting towards minority classes, while under-sampling may weaken the repre-
sentation ability of networks.
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Re-weighting losses Re-weighting methods usually allocate different weights for training samples 
of each class to re-balance data distribution (Huang et al., 2016; Cao et al., 2019; Wu et al., 2020). 
Cui et al. (2019) assigns weights to each class based on the effective numbers of samples instead of 
the proportional frequency. Further, Jamal et al. (2020) utilizes both effective numbers (Cui et al., 
2019) and conditional weights to augment the classic class-balanced learning by explicitly estimating 
the differences between the class-conditioned distributions with a meta-learning approach.

Two-stage fine-tuning Various methods (Ouyang et al., 2016; Cao et al., 2019; Liu et al., 
2019; Peng et al., 2020) are proposed to modify re-balancing for further improvements in 
long-tailed recognition. These methods usually separate training process into two single 
stages. In general, they train the networks with instance-balanced sampling in the first stage 
and exploit re-sampling or re-weighting methods at the second stage to fine-tune the net-
work. More radically, Kang et al. (2020) re-train the classifier from scratch in a class-aware 
manner in the second stage with backbone fixed.

Different from them, we provide the theoretical analysis on the upper bound of gener-
alization error for switching data samplers. Based on this, we do not artificially generate 
class-balanced batches or losses; instead, we simply emphasize the memorization of low-
regularity tail class samples by only switching from the instance-balanced sampler to class-
reversed sampler during the standard training procedure.

2.2 � Memorization‑generalization mechanism in deep learning

Memorization was once considered a failure of deep networks since it implies a lack of gener-
alization. However, the view that memorization is harmful may be a misunderstanding towards 
deep learning. Zhang et al. (2017) was the first to demonstrate that standard deep learning algo-
rithms can achieve high training accuracy even on large and randomly labeled datasets, leading 
a large wave of research interest in the topic of generalization for deep learning. Toneva et al. 
(2019) introduced the “forgetting event” to describe the learning dynamics of neural networks, 
where some instances flip flop between “learned” and “forgotten” states during training. In order 
to analyze how individual instances are treated by a model on the memorization-generalization 
continuum, Jiang et al. (2020) proposed the C-score to measure the consistency of a sample with 
respect to the rest of the training set. They found that samples having lower C-scores are learned 
more slowly, indicating the need for a stage-wise learning rate schedule during training.

A recent work of Feldman’s (2020) proposed a new theoretical explanation for the bene-
fits of memorization. In their abstract model, algorithm can only get the frequency of a sub-
population through the empirical frequency of its representatives, thus it can only avoid the 
risk of missing subpopulations with significant frequency by memorizing examples. Further, 
Feldman and Zhang (2020) introduced the influence estimation to validate the necessity of 
memorizing useful examples for achieving close-to-optimal generalization error.

3 � Method

Long-tailed visual recognition follows a long-tailed distribution over classes, leading model 
to exhibit under-fitting on tail classes and over-fitting to head classes (Tao et al., 2018; Baloch 
et  al., 2019). Since increasing the exposure of tail classes may lead to over-fitting while 
under-sampling head classes may weaken the representation ability of networks, the trade-off 
between the representation of head and generalization towards tail becomes the main dilemma 
in long-tailed problem. To solve this dilemma, we first introduce the cumulative learned and 
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forgetting events (Toneva et al., 2019) to verify the relation between cardinality and regularity. 
Based on the fact that regularity of the same training samples will be sharply decreased with 
the reduction of class cardinality (see Appendix  A), we propose the Switching training strat-
egy by only switching the standard instance-balanced sampler to a class-reversed sampler dur-
ing the last training procedure, in order to learn low-regularity samples (tail classes) without 
seriously disrupting the representation of the strongest domain regularities (head classes) first.

3.1 � Theoretical motivations

Problem setup and notations Let f�(⋅) denote a feature extractor implemented by a 
CNN model with parameter � , we get the class prediction through ŷ = argmax g(f𝜃(�)) , 
where � is the input image and g(⋅) is a classifier function. Given a training set 
D = {xi, yi}, i ∈ {1, ..., n} with C classes, let nj denote the number of samples for class j 
and n =

∑C

i=1
ni be the total number of samples. Without loss of generality, we assume 

classes are sorted by cardinality in decreasing order, i.e., if i < j , then ni ≥ nj . For most 
sampling strategies, the probability pj of sampling a data point from class j is given by:

with different values of q arise for different sampling strategies. The sampling of each data 
can be capsuled into the following two steps: 1) Randomly sample a class according to pj ; 
2) Uniformly pick up a sample from class j. Sampling strategies that corresponding to q = 
1, q = 0, and q = -1 are introduced as below:

Instance-balanced sampling (IB) This is the most common and standard way of sam-
pling data, where each sample of the training dataset is sampled only once with equal prob-
ability in a training epoch. For instance-balanced sampling, the probability pIB

j
 is given by 

Eq. 1 with q = 1, i.e., a sample from class j will be sampled proportionally to the cardinal-
ity nj of the class.

Class-balanced sampling CB To alleviate the extreme data imbalance during training, 
class-balanced sampling is proposed to artificially generate class-balanced data. The prob-
ability pCB

j
 is given by Eq. 1 with q = 0, e.g., pCB

j
= 1∕C . In this scenario, the probability 

of each class j being selected is equal, independent to its cardinality nj.
Class-reversed sampling (CR) Zhou et  al. (2020) utilizes the reversed sampler to re-

balance feature representation and particularly improve the classification accuracy on tail 
classes. Here we integrate pCR

j
 into Eq. 1 with q = -1. For class-reversed sampling, a data 

point from class j will be sampled proportionally to the reciprocal of its cardinality nj , i.e., 
the more samples in a class, the smaller sampling possibility that class has.

Objective function Let Lji(�) denote standard training error on i-th sample of class j:

where � is the loss function, e.g., cross-entropy loss.
For standard training process with IB sampling, where each sample is sampled with 

equal probability, the objective function over the total training set D is given as follows:

(1)pj =
n
q

j∑C

i=1
n
q

i

,

(2)Lji(�) = �
(
f�
(
xji
)
, yji

)
,

(3)Ls(�) =
1

n

n∑
i=1

Li(�) + R(�),
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where R(�) is the regular terms.
Now considering a more general scene, where sampling a data containing two steps: 

(1) Randomly chooses one class according to pj ; 2) Uniformly pick up one sample from 
its nj samples, we have the following objective function:

Generalization error upper bound Now we give the generalization analysis for such an 
objective function by deriving its generalization error upper bound. Let � be the family 
function of our learned neural network, we define ℜ𝔫(�) as the standard Rademacher com-
plexity (Bartlett & Mendelson, 2002) of the set {(x, y) ↦ �(f (x;�), y) ∶ � ∈ �}:

where �1,… , �n are in-dependent uniform random variables taking values in {−1,1} (i.e. 
Rademacher variables).

Let M denote the least upper bound on the difference of individual loss values:|||�(f�(x), y) − �
(
f�
(
x�
)
, y�

)||| ≤ M for all � ∈ � . For the standard training process with 
Ls(�) , for any 𝛿 > 0, with probability at least 1 − � over the training set D , the following 
error bound holds for all � ∈ � (Kawaguchi & Lu, 2020):

Analogously, for the general objective function L� , we have the following error bound for 
all � ∈ � (the proof is given in Appendix  B.1):

where Qn(�;p, n) = �D

�
inf�∈�

∑C

j=1

∑nj

i=1

�
pj

nj
−

1

n

�
Lji(�)

�
, a residual term which measures 

the expectation of the minimum difference between the empirical value of the training 
error of the proposed Switching method and that of Instance-balanced resampling method 
(IB) under the global distribution D.

With the above derivation, we have the following Theorem 1 to serve as a theoretical 
evidence supporting the superiority of the generalization of the proposed method.

Theorem 1  With a small size of � and a bounded M , the upper bound on the expected 
error for CR is strictly lower than IB if Qn(𝛩;p, n) + Ls − L > 0 or if Ls − L > 0 (the proof 
is given in Appendix  B.2).

In our experimental settings, a small learning rate is adopted in the last training stage, 
which is equivalent to fine-tuning on a pre-processed initial value to produce a narrow 
parameter space � (See the first assumption in Appendix B.2). Therefore, Theorem 1 can 

(4)L(�) =

C∑
j=1

nj∑
i=1

pj

nj
Lji(�) + R(�).

(5)ℜn(�) = �D,�

[
sup
�∈�

1

n

n∑
i=1

�i�
(
f�
(
xji
)
, yji

)]
,

(6)�
s
(x,y)

[�(f�(x), y)] ≤ Ls(�) + 2ℜn(�) +M

√
ln(1∕�)

2n
.

(7)

�(x,y)[�(f�(x), y)] ≤ L(�) + 2ℜn(�) −Qn(�;p, n)

+M

√√√√∑
j∈C

p2
j

nj

√
ln(1∕�)

2
,
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theoretically guarantee that the upper bound of the CR method used in the small learning 
rate stage is strictly lower than that of the IB training method.

3.2 � Switching data samplers during training

Switching is proposed to shift the learning focus from head classes to tail classes by 
simply switching the IB sampler to CR sampler at some epoch during training. Before the 
switching happens, the uniform IB sampler retains the characteristics of original distribu-
tions and almost the high-regularity samples from head classes are learned, the patterns 
and structures discovered in those head class samples can be used to build a generalizable 
representation. In later stages, the memorization of tail class samples will not seriously dis-
rupt the learned representation as the learning rate is much smaller than the earlier stages.

Concretely, the number of total training epochs is denoted as T and the learning rate 
milestones are denoted as [m1,… ,mn] , where m1 < ⋯ < mn ≤ T  . Let � ∈ (0, 1) becomes 
the multiplicative factor, learning rate will be decayed by � once the epoch reaches one of 
the learning rate milestones during training. When training procedure reaches the mn + S 
epoch, we switch IB sampling to CR sampling and continuing training, where S is the 
hyper-parameter in our method indicating when to switch. The details of our switching 
strategy are shown in Algorithm 1 and illustrated by Fig. 2.

Fig. 2   The illustration of Algorithm 1. mj denotes the j-th exact moment to decay learning rate (j-th learn-
ing rate decay milestone), mn denotes the last learning rate decay milestone, ts denotes the exact moment to 
switch Resampling strategy and te denotes the ending epoch
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Our method is simple and clean, which only switches the data sampler from IB to CR 
once during training, without changing any structure of the original network or artificially 
generating class-balanced batches or losses.

4 � Experiments

4.1 � Datasets and empirical settings

Long-tailed CIFAR-10 and CIFAR-100. Both CIFAR-10 and CIFAR-100 contain 60,000 
images, with 50,000 for training and 10,000 for validation with category number of 10 and 
100, respectively. For fair comparisons, we use the long-tailed versions of CIFAR datasets 
as the same as those used in Zhou et al. (2020) with controllable degrees of data imbal-
ance. Imbalance factor � is utilized to describe the severity of the long tail problem with 
the number of training samples for the most frequent class and the least frequent class, e.g., 
� = nmax

nmin
 . We use � as 10, 50, and 100 in our experiments.

iNaturalist 2018 The iNaturalist species classification dataset is a large-scale real-world, 
naturally long-tailed dataset, suffering from extremely imbalanced label distributions. We 
choose the 2018 version in our experiments, which consists of 437,513 images from 8142 
categories. Note that, besides the extreme imbalance, the iNaturalist datasets also face the 
fine-grained problem. For fair comparisons, we utilize the official splits of training and 
validation images.

ImageNet-LT ImageNet-LT is artificially truncated from their balanced versions so 
that the labels of the training set follow a long-tailed distribution. ImageNet-LT has 1000 
classes and the number of images per class ranges from 1280 to 5 images. Note that the 
validation set is balanced of 1000 classes.

4.2 � Implementation details

Implementations details on CIFAR We adopt the plaining ResNet-32 (He et al., 2016) as 
our model in all experiments. Standard mini-batch stochastic gradient descent (SGD) with 
momentum of 0.9, weight decay of 2 × 10−4 is utilized to optimize the whole network. We 
train all the models on one single NVIDIA 2080Ti GPU for 200 epochs with batch size of 
64. The initial learning rate is set to 0.1 and the first five epochs is trained with the linear 
warm-up learning rate schedule (Goyal et  al., 2017). The learning rate is decayed at the 
100th by 0.1. S is set to 1, which means we switch the instance-balanced sampling to class-
reversed sampling at the 101st epoch.

Implementations details on iNaturalist For fair comparisons, we utilize the plaining 
ResNet-50 (He et al., 2016) as our network in all experiments. We train all the models on 
eight NVIDIA 2080Ti GPUs with batch size of 512 for 90 epochs and 200 epochs, respec-
tively. The initial learning rate is set to 0.05 and decayed by 0.1 at the 60th and 80th epoch 
for 90, 120th and 160th for 200. The batch size is 512 and S is set to 1, which is similar to 
experiments on CIFAR. For fair comparison with Decouple (Kang et al., 2020), we also set 
the S as 10 and 40 respectively, which means to train it for additional 10 epochs after the 
same standard training procedure have done, with total number of training epochs as 100 
epochs and 210 epochs.
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Implementations details on ImageNet-LT We adopt ResNet-50 and ResNext-50 as our 
backbone to analyze the effectiveness of our method. The initial learning rate is set to 0.2 
and decayed by 0.1 at the 60th and 80th epoch for total 90 epochs. The batch size is 256 
and S is set to 1, which is similar to experiments on CIFAR. For fair comparison with 
Decouple (Kang et al., 2020), we also set the S as 10, which means to switch sampler and 
train it for additional 10 epochs after the same standard training procedure have done, with 
total number of training epochs as 100 epochs.

4.3 � Comparison methods

In experiments, we compare our method with four groups of methods:
Baseline methods We employ plaining training with cross-entropy loss and focal loss 

(Lin et al., 2017) as our baselines.
Re-weighting methods For re-weighting methods, we compare with the CB-Focal (Cui 

et al., 2019) and LDAM (Cao et al., 2019), where effective numbers or margin-based gen-
eralization are utilized to alleviate the extreme data imbalance during training.

Two-stage fine-tuning strategies To prove the effectiveness of our switching strategy, we 
compare it with two-stage fine-tuning strategies proposed in Cao’s work (2019). Networks 
are trained with cross-entropy (CE) on imbalanced data first, and then are trained with class 
re-balancing strategy in the second stage. CE-DRW and CE-DRS refer to the two-stage 
baselines using re-weighting and re-sampling at the second stage. We also compare with 
Decouple (Kang et al., 2020), which trains network with instance-balanced sampling and 
uses class-balanced sampling to re-train classifier in the second stage with backbone fixed.

State-of-the-art methods For state-of-the-art methods, we compare with the recently 
proposed BBN (Zhou et al., 2020), which utilizes class-reversed sampling to re-balance the 
feature extractor but has a more complicated model structure, neglecting the proper combi-
nation of different data samplers itself.

4.4 � Overall performance

In this section, we compare the performance of the proposed scheme to other recent works 
that report state-of-the-art results on four common long-tailed benchmarks: Long-tailed 
CIFAR-10, Long-tailed CIFAR-100, iNaturalist2018 and ImageNet-LT.

Long-tailed CIFAR We conduct extensive experiments on long-tailed CIFAR datasets 
with three different imbalanced ratios: 10, 50 and 100. Table  1 reports the accuracy of 
various methods. For CIFAR-10 series, our method achieves comparable or better results 
comparing other complicated methods. When working on CIFAR-100 series, our method 
achieves best results across all imbalance ratios, compared with two-stage fine-tuning strat-
egies (i.e., CE-DRW/CE-DRS) and previous state-of-the-arts (i.e., Decouple and BBN). 
Especially for long-tailed CIFAR-100 with imbalanced ratio 100 (the most extreme imbal-
ance case), we get 44.7% accuracy which is 2.1% higher than previous BBN.

iNaturalist 2018 We further evaluate our methods on the iNaturalist 2018 dataset. Simi-
lar to Decouple (Kang et al., 2020) and BBN (Zhou et al., 2020), we present results train-
ing after 90 and 200 epochs for fair comparison. As illustrated in the Table 2, with an end-
to-end trained plain ResNet-50 model, we surpass other complicated methods including 
two-stage fine-tune (Decouple) and well-designed architecture (BBN). When S =1, where 
total training epochs are 10 epochs less than Decouple, we get 1.5% gains compared with 
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the totally decouple training strategy cRT. We can achieve further improvements with the 
same training epochs as Decouple (see S = 10 for 90 epochs and S = 40 for 200 epochs).

ImageNet-LT Table  3 presents results for the most challenging ImageNet-LT. The 
results of BBN are conducted using the author’s open-sourced codebase. From the table 
we see that our simple method with plain ResNet50, with less training epochs (see S = 1), 
outperform the current state-of-the-art about 0.6% higher than Decouple and 2.0% higher 
than BBN. With the same training epochs as them (see S = 10), our method gets further 
improvements, about 0.9% higher than Decouple and 2.3% higher than BBN.

Fine-grained analysis To better validate our assumption that memorizing low-regularity 
samples with small learning rate can avoid seriously damage the representation of high-
regularity samples, we further report accuracy on three splits of the set of classes: Many-
shot (more than 100 images), Medium-shot (20–100 images) and Few-shot (less than 20 
images). As shown in Table 4, standard training process (see Cross Entropy with IB only) 
always perform best on Many-shot since head class samples dominate the training batch 
all the time. Meanwhile, our method can improve the performance of tail classes by a large 
margin due to the CR sampling in the last training stage. It is worth to note that while 
greatly boosting the recognition of tail classes, our switching method only slightly damage 
the performance of head classes (compared with Cross Entropy with CR only), indicating 
that memorizing tail class samples with small learning rate can better handle the trade-off 
between high-regularity head classes and low-regularity tail classes.

4.5 � Ablation studies

4.5.1 � Analysis on hyper‑parameter S

To find the optimal setting of S, which is the hyper-parameter controlling when to switch, 
we investigate S and corresponding results are shown in Table 5. Interestingly, our method 
achieves comparable results despite different values of S, indicating S is not dataset/dis-
tribution dependent or sensitive. This is consistent with our motivation: memorization of 
tail classes will not seriously disrupt the learned representation with smaller learning rate. 
Thus, once there is CR during the small learning rate stage, model could jointly fine-tune 
both feature extractor and classifier to achieve better generalization, regardless of the spe-
cific value of S.

When S turns to infinity, the only difference between our method and regular SGD 
training is that we still need a switching action. To simulate this situation, we enlarge S to 
200 and 500. When S=200 the classification performances at an imbalance ratio of 50 on 
Long-tailed CIFAR-10 and CIFAR-100 are 82.2 and 48.1, respectively. Even when S=500, 
our method still achieves 82.0 and 47.5. Considering that the regular SGD only achieves 
77.9 and 44.9, as also illustrated in Table 6, the superiority of the switching from IB to CR 
at small learning rate is shown inevitably.

4.5.2 � Combinations of sampling strategies

In order to find the optimal sampler combination before and after switching, we conduct 
comprehensive experiments on long-tailed CIFAR-10 (imbalance ratio: 50) with combina-
tions of different data samplers used in different stages. As shown in Table 6, our strategy, 
which switches instance-balanced sampling to class-reversed sampling in the small learn-
ing rate stage, achieves the best performance across all experimental settings. We draw the 
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same conclusion with Decouple that instance-balanced sampling gives the most generaliz-
able representations, for using instance-balanced in the first stage always performs better 
than other results. In addition, switching to class-reversed sampling can always bring a sig-
nificant improvement no matter what samplers used in the first stage, except class-reversed 
sampling on the long-tailed CIFAR-100 with imbalance ratio 100 and 50 (see the last row 
in Table 6). We conjecture this is because class-reversed sampling cannot learn the general 
representations on such extreme imbalanced data, since it mainly samples from the tail 
classes with low cardinality. Without generalizable representation and seeing samples from 
other classes, network cannot generalize well across all classes.

We also investigate the progressively Switching in Table 7. For the first CB then CR set-
ting, results are almost the same as only CR, showing Switching is robust to the samplers 
used in earlier stages. However, first CR then CB will lead a great drop in accuracy, indi-
cating memorizing low-regularity tail classes should happen in the last training stage with 
high-regularity domain knowledge first-disrespect of it will hurt the performance.

4.5.3 � Comparing with decoupling paradigm

To further compare our method with Decouple, we investigate the factors of fixing fea-
ture extractor and re-training classifier towards learning long-tailed distributions, which are 
adopted in Decouple. From the results shown in Table 8, the following observations can be 
made:

•	 Joint training is better. Training the backbone and the classifier jointly always performs 
better than fixing the backbone. This phenomenon indicates that although instance-
balanced sampling gives the most generalizable representations, it is not good enough. 
Fine-tuning the backbone with low-regularity tail class samples in the small learning 
rate stage can significantly improve its representation ability across tail classes.

Table 1   Top-1 accuracy of ResNet-32 on long-tailed CIFAR-10 and CIFAR-100

Bold values indicate the best performance, i.e., (Top-1 accuracy, %)
Rows with † denote results directly copied from BBN (Zhou et al., 2020)
*denotes results reproduced with the authors’ code

Dataset Long-tailed CIFAR-10 Long-tailed CIFAR-100

Imbalance ratio 100 50 10 100 50 10

Cross Entropy† 70.4 74.8 86.7 38.3 43.9 55.7
Cross Entropy* 73.1 77.9 86.4 40.7 44.9 57.2
Focal† (Lin et al., 2017) 70.4 76.7 86.7 38.4 44.3 55.8
CE-DRW† (Cao et al., 2019) 76.3 80.0 87.6 41.5 45.3 58.1
CE-DRS† (Cao et al., 2019) 75.6 79.8 87.4 41.6 45.5 58.1
CB-Focal† (Cui et al., 2019) 74.6 79.3 87.1 39.6 45.2 58.0
LDAM-DRW† (Cao et al., 2019) 77.0 81.0 88.2 42.0 46.6 58.7
Decouple-cRT* (Kang et al., 2020) 73.8 80.7 86.7 40.1 46.4 57.7
Decouple-LWS* (Kang et al., 2020) 73.5 77.5 86.1 40.2 45.7 58.1
BBN† (Zhou et al., 2020) 79.8 82.2 88.3 42.6 47.0 59.1
Ours (S = 1) 79.7 82.9 88.4 44.7 49.5 59.5



1084	 Machine Learning (2022) 111:1073–1101

1 3

•	 Re-training is matter when no switching. When training with the switching strategy, 
results with re-training or without re-training the classifier are much similar (see rows 
with CB, CR as the switching sampler). However, interestingly, re-training the classi-
fier can bring improvements in the standard training procedure (see rows with IB as 
the switching sampler). We speculate that model trained by uniform instance-balanced 
sampling would have a strong bias towards tail classes in both backbone and classifier. 
Re-training classifier based on the learned general representations can alleviate it.

•	 Switching and joint training are complementary. We compare the results of only 
switching to only joint training, finding that while switching samplers and joint training 
can bring improvements respectively, their combination can improve the performance 

Table 2   Top-1 accuracy of 
ResNet-50 on iNaturalist 2018

Bold values indicate the best performance, i.e., (Top-1 accuracy, %)
Rows with † denote results directly copied from their original paper. 
We present results when training for 90 / 200 epochs for fair compari-
son

Dataset iNaturalist 2018

Cross Entropy† 57.2
CE-DRW† 63.7
CE-DRS† 63.6
CB-Focal† 61.1
LDAM-DRW† 68.0
Decouple-NCM† 58.2 / 63.1
Decouple-cRT† 65.2 / 67.6
Decouple-�-normed † 65.6 / 69.3
Decouple-LWS† 65.9 / 69.5
BBN† 66.3 / 69.6
Ours (S = 1 / S = 1) 66.7/70.4
Ours (S = 10 / S = 40) 66.8/70.0

Table 3   Top-1 accuracy of 
ResNet-50 on large-scale long-
tailed datasets ImageNet-LT

Rows with † denote results directly copied from Decouple (Kang et al., 
2020)
*denotes results reproduced with the authors’ code

Dataset ImageNet-LT

Cross Entropy† 41.6
Decouple-NCM† 44.3
Decouple-cRT† 47.3
Decouple-�-normed † 46.7
Decouple-LWS† 47.7
BBN* 45.9
Ours (S = 1) 47.9
Ours (S = 10) 48.2
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further. Fine-tuning with class-balanced or class-reversed distributions can boost the 
generalization ability further.

Further, we valid the quality of features learned by standard training procedure and our 
switching training procedure in Table  10, just like Decouple. Although a slightly lower 
with IB, re-training based on our feature can bring significant improvements compare with 
standard features. These results also indicate a disadvantage of Decouple: performance of 
re-training classifier depends on the performance of feature extractor. Once the feature rep-
resentation is sub-optimal, the re-trained classifier is sub-optimal.

To validate our method could reach a better balance under bias-variance trade-off, we 
calculate the total error of each method in Table 9. Our method (when S=1) yields a lower 
upper bound on the generalization error, and therefore higher test accuracy, lower Bias, and 
lower Variance, which indicate our switching algorithm performs better in the challenging 
trade-off compared with other methods.

Table 4   Fine-grained results on the most skewed long-tailed CIFAR-100 (imbalance ratio: 100) and the 
most challenging ImageNet-LT, compared with the previous state-of-art

Our methods can boost the performance of tail classes while sightly damaging the performance of head 
classes

Dataset Long-tailed CIFAR-100 ImageNet-LT

Many Medium Few All Many Medium Few All

Cross Entropy (IB only) 68.2 39.7 9.9 40.7 64.0 33.8 5.8 41.6
Cross Entropy (CR only) 39.8 32.8 12.9 32.1 31.6 32.0 10.3 28.9
Decouple-cRT 58.1 40.3 18.0 40.1 58.8 44.0 26.1 47.3
Decouple-LWS 59.5 40.7 17.4 40.2 57.1 45.2 29.3 47.7
BBN† 54.5 51.0 16.7 42.6 56.2 46.6 14.1 45.9
Ours (S = 1) 57.1 48.1 26.5 44.7 53.5 45.2 41.8 47.9

Table 5   Determining of the 
optimal S on long-tailed CIFAR-
10 (imbalance ratio: 50) and 
CIFAR-100 (imbalance ratio: 50)

Results indicate that S is not dataset/distribution dependent or sensi-
tive

S CIFAR-10 CIFAR-100

0 82.6 49.7
1 82.9 49.5
5 82.9 49.3
10 82.8 49.1
50 82.6 49.1
200 82.2 48.1
500 82.0 47.5
CE (IB only) 77.9 44.9
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4.6 � Validation and visualization of our proposals

4.6.1 � Learning speed

In order to further validate our method could learn long-tailed distributions more effi-
ciently, we plot the test accuracy per epoch of three methods with different sampling strate-
gies in Fig. 3. Compared with using IB only, switching to CR can immediately improve 
the performance by a large margin. Meanwhile, although BBN could achieve comparable 
performance with ours, it converges more slowly since it optimizes two branches of feature 
extractor in turn during training.

4.6.2 � Learning rate scheduling

Intuitively, a training example from head classes should be learned quickly since it is 
consistent with many others and the gradient steps for all consistent examples should be 
well aligned. As Jiang et al. (2020) indicates that strong regularities in a data set are not 
only better learned at asymptote leading to better generalization performance but are also 
learned sooner in the time course of training, we conjecture that head class samples will be 
learned sooner than tail class samples and plot average proportion correct as a function of 
training epoch for each class to validate it.

Figure 4 shows the learning speed of 4 selected classes with SGD using stage-wise con-
stant learning rate scheduling. In Fig. 5 we show the learning speeds of 4 selected classes 
trained with SGD using constant learning rate scheduling with the standard training pro-
cedure. The 4 panels show the results of different values of constant learning rate used in 
training. It is observed that faster convergence is achieved with smaller learning rate (see 

Table 6   Comprehensive 
results on long-tailed CIFAR-
10 (imbalance ratio: 50) with 
combinations of different data 
samplers used in different stages

Sampling strategy 
combination

Long-tailed CIFAR-10 Long-tailed CIFAR-
100

Imbalance ratio 100 50 10 100 50 10

IB ⟹ IB 73.1 77.9 86.4 40.7 44.9 57.2
IB ⟹ CB 77.1 81.9 87.9 44.2 48.7 59.2
IB ⟹ CR 79.7 82.9 88.4 44.7 49.5 59.5
CB ⟹ IB 66.5 73.8 86.7 33.3 37.1 55.0
CB ⟹ CB 73.0 78.5 87.3 36.2 40.3 56.9
CB ⟹ CR 74.8 80.7 87.9 38.6 42.4 57.8
CR ⟹ IB 63.8 74.8 85.2 24.7 28.7 51.3
CR ⟹ CB 64.2 72.7 86.3 24.7 29.2 52.5
CR ⟹ CR 68.4 76.3 86.8 22.9 28.0 53.2

Table 7   Determining of the way 
of switching strategies on long-
tailed CIFAR-10 (imbalance 
ratio: 50)

First sampler Switching sampler Accuracy

IB CR 82.9
CB for 5 epochs, then CR 82.7
CR for 5 epochs, then CB 79.2
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0.1, 0.02 and 0.01). While the learning rate is so small, e.g., 0.001, the learning speed of 
each class is significantly slowed down.

In Fig. 6 we show the learning speeds of our switching training procedure trained with 
SGD using constant learning rate scheduling. Similar to Fig. 5, proper small learning rate 
could accelerate the convergence, with higher and more stable accuracy. It is worth to note 
that switching to class-reversed sampler always improves the accuracy of tail classes, but 
will damage the representative ability of head classes to some extent. Stage-wise constant 
learning brings the smallest damage to the head class representations, showing the neces-
sity of building generalization representations first. Quantitative results of both standard 
training and switching training are shown in Table 11.

Here we manage to explain why class-reversed sampler is effective. The reason 
that switching to class-reversed sampler performs well is that it delayed the learning 
of low-regularity samples (tail classes samples) to later small learning rate stages. In 
the first stage, when almost head class samples are learned, the patterns and structures 
discovered in those high-regularity samples can be used to build a generalizable repre-
sentation. In later stage, network is able to learn or memorize low-regularity samples 
of tail classes based on the representations from a clean subset of high-regularity sam-
ples. In addition, learning or memorizing tail class samples will not seriously disrupt 
the learned representation as the learning rate is much smaller than the earlier stages. In 
contrast, standard learning procedure without switching could not focus on the tail class 
samples since the extreme data imbalance, leading under-representation for tail classes, 
while SGD with (small) constant learning rate learns the examples across all classes 
quickly, which cannot learn the generalizable representation from high-regularity sam-
ples of head classes before.

Table 8   Comparisons between Decouple learning paradigm and our learning paradigm on long-tailed 
CIFAR-10 (imbalance ratio: 50), where Decouple indicates fixing the backbone and re-train the classifier 
from scratch while we continue to joint train both

First sampler S Switching 
sampler

Joint training Re-training clas-
sifier

Test accuracy

IB 1 IB 76.3
✓ 77.9

✓ 77.7
✓ ✓ 78.9

CB 81.9
✓ 81.9

✓ 81.8
✓ ✓ 81.9

CR 81.4
✓ 82.9

✓ 81.6
✓ ✓ 82.4
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5 � Conclusion

In this paper, we investigate long-tailed visual recognition from a memorization-generali-
zation point of view, which not only theoretically explains the previous methods, but also 
provides a simple yet effective Switching strategy to memorize tail classes without huge 
damage to the head classes. The detailed implementation only contains switching instance-
balanced sampling to class-reversed sampling during the last few training epochs, which 
is clean and elegant. Closely afterwards, we give the generalization error upper bound of 
different sampling strategies. Further empirical findings show the inevitability to deal the 
trade-off between head class representing and tail class memorizing in the memorization 
stage with small learning rate.

Appendix A: Regularity under long‑tailed distributions

A.1 Unified regularity measures

To investigate the memorization-generalization continuum in deep learning towards long-
tailed distributions, we introduce a pair of sample regularity measures for both training 
and testing samples with a formulation-consistent representation according to Zhang et al. 
(2021):

Table 9   Total error (bias2+variance) of different methods on the test set of long-tailed CIFAR-10 (imbal-
ance ratio: 50)

Method Test accuracy ↑ Bias2 ↓ Variance ↓ Total Error ↓

Cross Entropy (IB only) 0.779 0.049 0.168 0.217
Cross Entropy (CR only) 0.763 0.056 0.183 0.239
Decouple-cRT 0.807 0.037 0.148 0.185
BBN 0.822 0.032 0.146 0.178
Ours (S = 1) 0.829 0.029 0.142 0.171

Table 10   Feature quality of 
Decouple learning paradigm and 
our switching learning paradigm 
on long-tailed CIFAR-10 
(imbalance ratio: 50)

We firstly train the model with standard and switching procedure 
respectively, then re-train the classifier with different data samplers 
with backbone fixed

Feature Re-training Test accuracy

Standard IB 77.7
CB 80.7
CR 82.2

Our IB 77.0
CB 81.4
CR 82.6
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•	 For training samples, the sample regularity is measured with the combination of for-
getting events (Toneva et al., 2019) and cumulative learned events (also named CBTL 
(Jiang et al., 2020)) as follows:

	   Forgetting events       Let fort
i
= 1acct−1

i
=1,acct

i
=0 , the forgetting events of one sample 

{xi, yi} at epoch t are defined as follows: 

Cumulative learned events    For sample {xi, yi} , ŷti = argmax g(yi|xi;𝜃t) is the predicted 
label for sample xi obtained after t epochs of SGD optimization. Let acct

i
= 1ŷt

i
=yi

 be a 
binary variable indicating whether the sample is correctly classified at time epoch t, the 
cumulative learned events events at epoch t are defined as follows: 

(8)�
t
i
=

t∑
n=1

forn
i
.

Fig. 3   Test performance of three methods with different sampling strategies on long-tailed CIFAR-10 
(imbalance ratio: 50) with SGD using stage-wise constant learning rate

Fig. 4   Learning speed of examples of 4 selected class with SGD using stage-wise constant learning rate. 
Left: standard training procedure. Right: our switching training procedure
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•	 For testing samples, the sample regularity is measured with the combination of mal-
generalizing events and cumulative generalized events (Zhang et al., 2021). The defi-
nition of the mal-generalizing is nothing but substitute training samples with testing 
samples in Eq. 8. Similarly, cumulative generalized events could be calculated through 
Eq. 9 for certain testing sample.

It is worth to note that mal-generalizing events and cumulative generalized events are 
recorded after each epoch ends, since testing samples do not participate the training pro-
cess. Therefore, for the consistency between both regularity measures (e.g., the visual 
comparability between Figs. 7, 8 and  9, 10), the forgetting events are recorded after each 
epoch ends. This may not harm the correctness of the empirical studies since experimental 
evidence shows a strong statistical correlation between Toneva’s and ours, i.e. the Pearson 
correlation coefficients of their results are as high as 0.9835 (Zhang et al., 2021).

(9)�
t
i
=

t∑
n=1

accn
i
.

Fig. 5   Learning speed of examples of 4 selected classes with SGD using constant learning rate with stand-
ard training strategy. The 4 different learning rates correspond to the constants used in the stage-wise sched-
uler
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Based on these notations, we give the metric to describe the regularity of one sample, 
where with higher cumulative learned events as well as lower forgetting events, the higher 
regularity it will be and vice versa.

Fig. 6   Learning speed of examples of 4 selected classes with SGD using constant learning rate with our 
training strategy. The 4 different learning rates correspond to the constants used in the stage-wise scheduler

Table 11   Test performance of models trained with various learning rate schedulers on long-tailed CIFAR-
10 (imbalance ratio: 50)

Standard Our

Optimizer Learning rate Test accuracy Optimizer Learning rate Test accuracy

SGD Stage-wise 77.9 SGD Stage-wise 82.9
SGD 0.1 75.5 SGD 0.1 77.7
SGD 0.02 76.1 SGD 0.02 78.3
SGD 0.01 75.0 SGD 0.01 77.7
SGD 0.001 65.9 SGD 0.001 66.1
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A.2 Regularity analysis

For Long-tailed CIFAR-10 with imbalance ratio 50, we run the ResNet-32 for 10 times 
and plot the averaged cumulative learned events and forgetting events of each sample 
grouped by its class, as shown in Fig. 7. We surprisingly find that the clustering degree 
of samples is almost proportional to its cardinality. To explore this phenomenon further, 
we plot the same events of same samples when learning the standard CIFAR-10 with 
class-balanced distributions in Fig.  8. Compared with the same samples under class-
balanced distributions, long-tailed distribution samples show different properties of 
each class: higher degree of clustering of head classes (cls0, cls1) and lower degree of 
clustering of tail classes (cls6, cls7, cls8, cls9). Differences between them indicate that 
the cardinality of one class can significantly affect the regularity itself during training: 
regularity of the same training samples will be sharply decreased with the reduction 
of class cardinality, which is easy to understand: the more samples one class have, the 
higher regular it will be. The comparison between Figs.  9 and 10 further shows that 
such skewed regularity of the training samples may cause the network generalization 
degraded, i.e., the less training samples one class have, the lower regularity the valida-
tion samples of the same class will own.

In order to analysis this phenomenon, we propose a novel metric to quantize the 
regularity of each class. For class j containing nj samples, regularity event of each 
sample {xi, yi} can be denoted by its cumulative learned events and forgetting events 
as ri,j = {�T

i
, � T

i
} , which is a point on the two-dimensional plane. There are three sub-

procedures to calculate the regularity of each class j: 

1.	 Let {(�T
i
, � T

i
)|1 ≤ i ≤ nj} = [LF] denote the regularity set of class j, we calculate the 

covariance matrix as follows: 

 where � is the expectation.
2.	 calculate the F-norm of Cj : 

3.	 normalize the F-norm by its cardinality: 

 This metric essentially indicates the deviation of each class, so we name it Irregularity.

As shown in Table 12, the Irregularity is almost proportionally to the reciprocal of its 
cardinality, which is consistent with our visual perception. To further validate the cor-
relation between regularity and its cardinality, we exploit the Pearson correlation coef-
ficient. Let I = {Ii|1 ≤ i ≤ C} be the regularity set of all classes and N = {ni|1 ≤ i ≤ C} 
be the cardinality of all classes, we calculate the Pearson coefficient as follows:

(10)Cj =

[
�[(L − �[L])(L − �[L])] �[(L − �[L])(F − �[F])]

�[(FT − �[F])(L − �[L])] �[(F − �[F])(F − �[F])]

]

(11)||Cj||F =

√√√√ 2∑
m=1

2∑
n=1

|cmn|2.

(12)Ij = ||Cj||F∕nj.
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the Pearson coefficient is −0.6112, indicating cardinality and regularity are significantly 
negatively correlated.

Appendix B: Proofs and derivations in Sect. 3.1

B.1 Proof of the upper bound

Proof  Given a long-tailed dataset D sampled from the main dataset S , we define:

To apply McDiarmid’s inequality (Rastogi, 2011) to provide the upper bound on �(D) , we 
first show that �(D) satisfies the remaining condition of McDiarmid’s inequality. Let D 

(13)P =

∑
NI −

∑
N
∑

I

C��∑
N

2 −
(
∑

N)2

C

��∑
I
2 −

(
∑

I)2

C

� .

(14)�(D) = sup
�∈�

�(x,y)[�(f�(x), y)] − L(�;D).

(a) cls0 (5000 samples) (b) cls1 (3237 samples) (c) cls2 (2096 samples) (d) cls3 (1357 samples)

(e) cls4 (878 samples) (f) cls5 (568 samples) (g) cls6 (368 samples) (h) cls7 (238 samples)

(i) cls8 (154 samples) (j) cls9 (100 samples)

Fig. 7   Cumulative learned events and forgetting events of each sample of Long-tailed CIFAR-10 with 
imbalance ratio 50. The regularity of one class will be higher with more samples gathering in the lower 
right corner of the picture
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and D′ be two datasets differing by exactly one point of an arbitrary index i0, i.e.,Di = D
�
i
 

for all i ≠ i0 and Di0
≠ D

′
i0
. Then, the upper bound on �

(
D

�
)
−�(D) is given as follows:

Therefore, |||�(D) −�
(
D

�
)||| ≤

pj

nj
M since we also have �(D) −�

(
D

�
)
≤

pj

nj
M . Thus, 

according to McDiarmid’s inequality, for any 𝛿 > 0, with probability at least 1 − � we have:

(15)

�
�
D

�
�
−�(D) ≤ sup

�∈�

L(�;D) − L
�
�;D�

�

= sup
�∈�

⎛⎜⎜⎝
�
j∈C

�
i∈nj

pj

nj
L(�;D) −

�
j∈C

�
i∈nj

pj

nj
L
�
�;D�

�⎞⎟⎟⎠
≤ sup

�∈�

pj

nj

���Lji0 (�;D) − Lji0

�
�;D�

����
≤

pj

nj
M

(16)�(D) ≤ �D[�(D)] +

√√√√∑
j∈C

p2
j

nj

√
ln(1∕�)

2
M.

(a) cls0 (5000 samples) (b) cls1 (3237 samples) (c) cls2 (2096 samples) (d) cls3 (1357 samples)

(e) cls4 (878 samples) (f) cls5 (568 samples) (g) cls6 (368 samples) (h) cls7 (238 samples)

(i) cls8 (154 samples) (j) cls9 (100 samples)

Fig. 8   Cumulative learned events and forgetting events of each sample of standard CIFAR-10. Samples here 
are in one-to-one correspondence with samples in Fig. 7
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Therefore,

where

Therefore, for any 𝛿 > 0, with probability at least 1 − � we have:

(17)

�D[𝛷(D)] = �D

[
sup
𝜃∈𝛩

�(x,y)

[
�
(
f𝜃(x), y

)]
− Ls(𝜃;D) + Ls(𝜃;D) − L(𝜃;D)

]

≤ �D

[
sup
𝜃∈𝛩

�(x,y)

[
�
(
f𝜃(x), y

)]
− Ls(𝜃;D)

]
−Qn

≤ �𝜉,D,D�

[
sup
𝜃∈𝛩

1

n

n∑
i=1

𝜉i
(
�
(
f𝜃
(
x̄�
i

)
, ȳ�

i

)
− �

(
f𝜃
(
x̄i
)
, ȳi

))]
−Qn

≤ 2ℜn(𝛩) −Qn,

(18)Qn = �D

[
inf
�∈�

C∑
j=1

nj∑
i=1

(
pj

nj
−

1

n

)
�
(
f�
(
xi
)
, yi

)]
.

(a) cls0 (1000 samples) (b) cls1 (1000 samples) (c) cls2 (1000 samples) (d) cls3 (1000 samples)

(e) cls4 (1000 samples) (f) cls5 (1000 samples) (g) cls6 (1000 samples) (h) cls7 (1000 samples)

(i) cls8 (1000 samples) (j) cls9 (1000 samples)

Fig. 9   Cumulative generalized events and mal-generalizing events of each validation sample of Long-tailed 
CIFAR-10 with imbalance ratio 50. Note that the validation set of the Long-tailed CIFAR-10 is class-bal-
anced. The regularity of one class will be higher with more samples gathering in the lower right corner of 
the picture
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(a) cls0 (1000 samples) (b) cls1 (1000 samples) (c) cls2 (1000 samples) (d) cls3 (1000 samples)

(e) cls4 (1000 samples) (f) cls5 (1000 samples) (g) cls6 (1000 samples) (h) cls7 (1000 samples)

(i) cls8 (1000 samples) (j) cls9 (1000 samples)

Fig. 10   Cumulative generalized events and mal-generalizing events of each validation sample of standard 
CIFAR-10. Samples here are in one-to-one correspondence with samples in Fig. 9

Table 12   Quantitative results of 
the regularity of each class on 
long-tailed CIFAR-10 (imbalance 
ratio: 50)

All indexes are calculated based on the cumulative learned events and 
forgetting events

Class Cardinality F-norm Irregularity 
(F-norm / Cardinal-
ity)

Pearson

0 5000 85.7341 0.0171 −0.6112
1 3237 44.3574 0.0137
2 2096 296.3582 0.1414
3 1357 397.6501 0.2930
4 878 267.5524 0.3047
5 568 447.2937 0.7875
6 368 253.5138 0.6889
7 238 355.5270 1.4938
8 154 279.5059 1.8150
9 100 363.4100 3.6341
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Substituting Eqs. 19 into 14 we have:

	�  ◻

B.2 Proof of the Theorem 1

Proof  We assume that: 

1.	 The range of � is narrow due to the learning rate is small and the network has converged 
in the previous training process, so ℜn(�) → 0 as n → ∞, which has been shown to 
be satisfied for various models and sets � (Bartlett and Mendelson, 2002; Mohri et al., 
2012; Kawaguchi et al., 2017; Bartlett et al., 2017).

2.	 Without loss of generality, the classes are sorted by cardinality in decreasing order, thus 
sampling weight pj of each class j is ordered. p1 is weight of the class with most samples 
and pc is the weight of the class with least samples.

3.	 Li ≤ Lj if i < j . This is an empirical conclusion that average loss of tail class samples are 
always higher than its of head class samples with a model trained by instance-balanced 
sampling.

Now let’s compare �s
(x,y)

[�(f�(x), y)] and �(x,y)[�(f�(x), y)] . Since both M
√

ln(1∕�)

2n
 and 

M

�∑
j∈C

p2
j

nj

�
ln(1∕�)

2
 will disappear as n → ∞ , the core is to discuss the Qn.

We first consider the situation which only exchange the sampling rate for class 1 and 
class c under the instance-balanced sampling ( p1 > pc ). Here we have:

Therefore, for high probability we can hold that Qn > 0 if we only exchange the sampling 
weight of the class 1 and class c. Naturally, Qn > 0 will always hold if we exchange the 
sampling weight of class i and class j ( i < j ), which is exactly how class-reversed sampling 
works.

Now let’s promote our conclusion to more general situations, what will happen if we 
just change the sampling weight of one class instead of exchanging? Let’s increase the pc 

(19)�(D) ≤ 2ℜn(�) −Qn +M

√√√√∑
j∈C

p2
j

nj

√
ln(1∕�)

2
.

(20)

�(x,y)[�(f�(x), y)] ≤ L(�;D) + 2ℜn(�) −Qn

+M

√√√√∑
j∈C

p2
j

nj

√
ln(1∕�)

2

(21)

C∑
j=1

nj∑
i=1

(
pj

nj
−

1

n

)
=

n1∑
i=1

(
pc

n1
−

1

n

)
L1i +

nc∑
i=1

(
p1

nc
−

1

n

)
Lci

= n1

(
pc

n1
−

1

n

)
L1 + nc

(
p1

nc
−

1

n

)
Lc

= (pc − p1)(L1 − Lc) > 0
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from pc to p′
c
 , then every pj will change to p�

j
= pj

1−p�
c

1−pc
 due to the constraint 

∑C

j=1
pj = 1 , 

now we have:

	�  ◻

Therefore, for high probability we can hold that Qn > 0 if we increase the sampling 
weight of the last class, and we can extend it to any tail class similarly.

To sum up, we can draw the conclusion that Qn > 0 holds if the sampling weight of 
tail classes is increased. Thus, with n → ∞ and M is bounded, the upper bound on the 
expected error of class-reversed sampling is strictly lower than that for instance-bal-
anced sampling if Qn + Ls − L > 0 or if Ls − L > 0 . Based on the empirical experience 
that Ls and L will always be very close after training (no matter using only IB or only 
CR, the final training loss will always be small), Ls − L → 0 holds after the complete 
training, thus Qn + Ls − L > 0 ⟺ Qn > 0 holds.
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)
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