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Abstract
We formulate the sparse classification problem of n samples with p features as a binary 
convex optimization problem and propose a outer-approximation algorithm to solve it 
exactly. For sparse logistic regression and sparse SVM, our algorithm finds optimal solu-
tions for n and p in the 10,000 s within minutes. On synthetic data our algorithm achieves 
perfect support recovery in the large sample regime. Namely, there exists an n0 such that 
the algorithm takes a long time to find an optimal solution and does not recover the cor-
rect support for n < n0 , while for n ⩾ n0 , the algorithm quickly detects all the true fea-
tures, and does not return any false features. In contrast, while Lasso accurately detects all 
the true features, it persistently returns incorrect features, even as the number of observa-
tions increases. Consequently, on numerous real-world experiments, our outer-approxima-
tion algorithms returns sparser classifiers while achieving similar predictive accuracy as 
Lasso. To support our observations, we analyze conditions on the sample size needed to 
ensure full support recovery in classification. For k-sparse classification, and under some 
assumptions on the data generating process, we prove that information-theoretic limitations 
impose n0 < C

(

2 + 𝜎
2
)

k log(p − k) , for some constant C > 0.
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1  Introduction

Sparse classification is a central problem in machine learning as it leads to more interpret-
able models. Given data {(x(i), yi)}i=1,…,n with yi ∈ {−1, 1} and x(i) ∈ ℝp , we aim at com-
puting an estimator w which minimizes an empirical loss � subject to the constraint that its 
number of nonzero entries does not exceed k:

Problem (1) is an NP-hard optimization problem (Natarajan, 1995). Thus, much of the lit-
erature has focused on heuristic proxies and replaced the 0 pseudo-norm with so-called 
sparsity-inducing convex norms (Bach et al., 2012). Even though regularization enforces 
robustness more than sparsity (Bertsimas & Copenhaver, 2018), the L1-penalty formulation

known as Lasso (Tibshirani, 1996) is abundantly used in practice. Efficient numerical 
algorithms exist (Friedman et al., 2010), off-the-shelf implementations are publicly avail-
able (Friedman et al., 2013) and recovery of the true sparsity is theoretically guaranteed 
under some assumptions on the data. In regression problems with i.i.d. Gaussian measure-
ments for instance, Wainwright (2009b) proved that Lasso recovers the k correct features 
with high probability (w.h.p. in short) for n > (2k + 𝜎

2) log p where �2 is the variance of 
the noise, a phenomenon they refer to as phase transition in accuracy. On the other hand, 
recent works (Fan & Song, 2010; Bühlmann, 2011; Su et al., 2017) highlighted the diffi-
culty for L1-regularized estimators to select correct features without making false discover-
ies, considering Lasso as a good feature screening but a poor feature selection procedure. 
The innate shortcomings of the convex heuristics such as Lasso are by now so well docu-
mented that in recent years a lot of attention has been diverted to sparsity-inducing noncon-
vex regularization methods. Such penalization formulations consider

where R is a nonconvex penalty function with a unique minimizer at zero. Frank and 
Friedman (1993) proposed for instance the use of an Lp pseudo-norm with 0 < p < 1 as 
a continuous approximation to the 0 pseudo-norm for least-squares regression problems. 
Nonconvex penalty functions are very actively studied nowadays as they promise stronger 
statistical guarantees when compared to their L1-based convex counterparts. Fan and Li 
(2001) propose a smoothly clipped absolute deviation (SCAD) penalty while Zhang 
(2010a) advance their minimax concave penalty (MCP) for general convex loss functions. 
Both penalties and their associated regression models enjoy a so-called “oracle property”, 
that is, in the asymptotic sense, they perform as well as if the support of the nonzero coef-
ficients was known in advance. As the formulation (3) is non-convex numerical chal-
lenges can be expected. Indeed, Chen et al. (2019) show that similarly to (1) the noncon-
vex formulation (3) is unfortunately NP-hard to solve (even approximately). Nevertheless, 
many empirical studies (Fan & Li, 2001; Hunter & Li, 2005; Zou & Li, 2008; Breheny & 
Huang, 2011; Mazumder et al., 2011) have shown that despite the nonconvexity of these 

(1)min
w∈ℝp ,b∈ℝ

n
�

i=1

�(yi,w
⊤x(i) + b) s.t. ‖w‖0 ⩽ k.
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�
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formulations stationary points can be computed efficiently based on gradient-based opti-
mization methods and consistently return better regressors than their L1-based counter-
parts do. In an impressive line of work Loh and Wainwright (2015) and Loh et al. (2017) 
establish that in fact all stationary points in (3) enjoy support recovery consistency even 
when the usual incoherence conditions required by L1-based methods fail to hold. Adap-
tive approximation approaches which attempt to address the nonconvex formulation (3) 
by solving a sequence of convex relaxations are discussed by Zhang (2010b), Zhang et al. 
(2013) and Fan et al. (2018) and likewise result in empirically strong sparse regressors.

New research in numerical algorithms for solving the exact sparse formulation (1) has 
also flourished and demonstrated significant improvement on existing heuristics. Bertsi-
mas et al. (2016) and Bertsimas and King (2017) made use of recent advances in mixed-
integer optimization to solve sparse linear and logistic regression problems. Pilanci et al. 
(2015) applied a Lagrangian relaxation and random rounding procedure for linear regres-
sion and provide sufficient conditions for support recovery with their method. Hazimeh 
and Mazumder (2020) developed a cyclic coordinate descent strategy combined with local 
search to efficiently find local optima of the L0-penalized ordinary least square regression 
problem, later extended to other loss functions (Dedieu et al., 2021). Recently, sparse linear 
regression for dimensions n and p in 100,000 s was exactly solved for the first time, using a 
cutting-plane algorithm (Bertsimas & Van Parys, 2020). Their method demonstrates a clear 
phase transition in accuracy as the sample size n increases and requires less data than Lasso 
to achieve full recovery. Simultaneously, they observed a phase transition in false discov-
ery, that is, the number of incorrect features selected, and in computational time, which is 
unique to their method: they exhibited a threshold n0 for which for n < n0 their algorithm 
takes a long time to find the optimal solution and it is does not recover the correct support, 
while for n ⩾ n0 , the algorithm is very fast and accurately detects all the true features, but 
does not return any false features. We refer to Bertsimas et al. (2020) for a comprehensive 
empirical evaluation of the relative merits of L1-based, cardinality-constrained, and non-
convex formulations in accurately selecting the true support.

Besides algorithm-specific performance, any support recovery algorithm faces informa-
tion-theoretic limitations as well (Wainwright, 2009a; Wang et  al., 2010). In regression, 
recent work (Gamarnik & Zadik, 2017) indeed proved the existence of a sharp informa-
tion-theoretic threshold n⋆ : If n < n⋆ , exact support recovery by any algorithm is impos-
sible, while it is theoretically achievable for n > n⋆ . Such results call for further research 
in learning algorithms in the regime n⋆ < n < (2k + 𝜎

2) log p where Lasso fails but full 
recovery is achievable in principle.

Regarding accuracy, such phase transition phenomena are actually not specific to 
regression problems but are observed in many data analysis and signal processing con-
texts (Donoho & Stodden, 2006; Donoho & Tanner, 2009). Surprisingly, little if no work 
focused on classification problems specifically. Guarantees in terms of �2 error have been 
obtained in the so-called 1-bit compressed sensing setting (Boufounos & Baraniuk, 2008; 
Gupta et al., 2010; Plan & Vershynin, 2013a; Jacques et al., 2013) but they do not precisely 
address the question of support recovery. In recent work, Scarlett and Cevher (2017) offer a 
comprehensive treatment of information theoretic limitations in support recovery for both 
linear and 1-bit compressed sensing, in some regimes of noise and sparsity. Sparse classifi-
cation in itself has mainly been regarded as a feature selection problem (Dash & Liu, 1997) 
and greedy procedures such as Recursive Feature Elimination (Guyon et  al., 2002) have 
shown the most successful.

In this paper, we formulate exact sparse classification as a binary convex optimiza-
tion problem, propose a tractable outer-approximation algorithm and a stochastic variant 
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to solve it in high dimensions. To provide insights on the algorithm’s performance and 
behavior, we also derive an information-theoretic sufficient condition for support recov-
ery in classification that complements existing results from the 1-bit compressed sensing 
literature.

Contributions  The contributions of the present paper can be summarized as follows: 

1.	 Based on duality results for regularized classification, we formulate the exact sparse 
classification problem as a binary convex optimization problem and propose a tractable 
outer-approximation algorithm to solve it. Our approach generalizes the one in Bert-
simas and Van Parys (2020), who address linear regression for which a closed-form 
solution exists and make extensive use of this closed-form solution. Our framework, 
however, extends to cases where a closed-form solution is not available and includes, 
in addition to linear regression, logistic regression and 1- or 2-norm SVM. We also 
propose a stochastic constraint generating process to improve scalability of the outer-
approximation algorithm with respect to the number of samples n.

2.	 We demonstrate the tractability and relevance of our algorithm in solving large binary 
classification problems with logistic and Hinge loss. Among others, we solve a real-
world gene-selection problem with n = 1145 , p = 14,858 and select four to ten times 
fewer genes than the L1 heuristic with little compromise on the predictive power. On 
synthetic data, our algorithm can scale to data sets with up to p = 50,000 features and 
prove optimality in less than a minute for low sparsity regimes ( k = 5 ). Our present 
algorithm and the concurrent paper of Dedieu et al. (2021) are, to the best of our knowl-
edge, the only methods currently available that solve sparse classification problems to 
provable optimality in such high dimensions within minutes. We believe, however, that 
the tools developed in the present paper may be more versatile and broadly applicable 
than the tailored “integrality generation” technique of Dedieu et al. (2021). Finally, we 
observe that our stochastic constraint generating process reduces computational time 
by a factor 2–10 compared with the standard outer-approximation procedure for the 
hardest instances, namely instances where the number of samples n is not large enough 
for Lasso to achieve perfect recovery.

3.	 We demonstrate empirically that cardinality-constrained estimators asymptotically 
achieve perfect support recovery on synthetic data: As n increases, the method accu-
rately detects all the true features, just like Lasso, but does not return any false fea-
tures, whereas Lasso does. In addition, we observe that the computational time of our 
algorithm decreases as more data is available. We exhibit a smooth transition towards 
perfect support recovery in classification settings, whereas it is empirically observed 
(Donoho & Stodden, 2006; Bertsimas and Van Parys 2020) and theoretically defined 
(Wainwright, 2009a; Gamarnik & Zadik, 2017) as a sharp phase transition in the case 
of linear regression.

4.	 Intrigued by this smoother empirical behavior, we show that there exists a threshold n0 
on the number of samples such that if n > n0 , the underlying truth w⋆ minimizes the 
empirical error with high probability. Assuming p ⩾ 2k and data is generated by 
yi = sign

(

w⋆⊤

x(i) + 𝜀i

)

, with x(i) i.i.d. Gaussian, w⋆ ∈ {0, 1}p , supp(w⋆) = k and 
�i ∼ N(0, �2) , we prove that n0 < C

(

2 + 𝜎
2
)

k log(p − k) , for some constant C > 0 (The-
orem 3). Our information-theoretic sufficient condition on support recovery parallels 
the one obtained by Wainwright (2009a) in regression settings, although discreteness 
of the outputs substantially modify the analysis and the scaling of the bound. It also 
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scales as k log p , thus agreeing with the sufficient conditions required by non-convex 
formulations (Loh et al., 2017), although their generative process is different and their 
result does not explicitly capture the impact of noise. In recent work, Scarlett and Cevher 
(2017) performed a similar analysis of support recovery in 1-bit compressed sensing. 
For low signal-to-noise ratios (SNR), they exhibit matching necessary and sufficient 
conditions, which suggests the existence of a phase transition. In high signal-to-noise 
regimes, however, they proved necessary conditions only. Our result is novel, in that it 
is not only valid for specific sparsity and noise regimes, but for all values of k and � (see 
Table 1 for a summary of their results and ours). In particular, our sufficient condition 
holds when the sparsity k scales linearly in the dimension p and the signal-to-noise ratio 
is high. In this regime, there is a 

√

log p factor between our bound and the necessary 
condition from Scarlett and Cevher (2017). As represented in Fig. 1, there is an inter-
mediate sample size regime where support recovery is neither provably impossible nor 
provably achievable, and could explained the smooth phase transition observed. Such 
an observation is made possible by the combination of both our results. Of course, this 
observation only suggests that a lack of phase transition is plausible. So is the existence 
of one and future work might improve on these bounds and close this gap.

Structure  We derive the binary convex optimization formulation for exact sparse classifi-
cation, present an outer-approximation algorithm to solve it, and propose a stochastic con-
straint generating process in Sect. 2. We evaluate the performance of our method, both in 
terms of tractability and support recovery ability, in Sect. 3. Finally, we prove information-
theoretic sufficient condition for support recovery in Sect. 4.

Notations  We reserve bold characters ( x ) to denote vectors. We denote by � the vector 
whose components are equal to one. If not specified, its dimension should be inferred from 
the context. The set Sp

k
 denotes the set

which contains all binary vectors s selecting at most k components from p possibilities. 
Assume y ∈ ℝp is a vector and s ∈ S

p

k
 , then ys denotes the sub-vector or sub-collection 

of yj ’s where sj = 1 . We use ‖x‖0 to denote the number of elements of a vector which are 
nonzero. We use bold capitalized letters ( X ) for matrices. For a matrix X , Xj denotes the 
jth column of X , while Xs for s ∈ S

p

k
 is the submatrix obtained from the k columns of X 

selected by s.

S
p

k
∶=

{

s ∈ {0, 1}p ∶ �
⊤s ⩽ k

}

,

Table 1   Summary of the necessary and sufficient conditions provided in Scarlett and Cevher (2017), as 
compared to the sufficient condition we provide in Theorem  3, depending on the sparsity and signal-to-
noise ratio (SNR) regime
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2 � Dual framework

In this section, we use duality results to formulate a regularized version of the sparse clas-
sification problem (1) as a binary convex optimization problem and propose an outer-
approximation approach to solve it efficiently.

2.1 � Regularized classification

We first introduce the basic notation and recall some well-known properties for the case of 
non-sparse classification. Two very popular classification methods in machine learning are 
logistic regression and Support Vector Machine (SVM). Despite different motivations and 
underlying intuition, both methods lead to a similar formulation which can be addressed 
under the unifying lens of regularized classification:

where � is an appropriate loss function and � a regularization coefficient.
In the logistic regression framework, the loss function is the logistic loss

and the objective function can be interpreted as the negative log-likelihood of the data plus 
a regularization term, which ensures strict convexity of the objective and existence of an 
optimal solution.

In the SVM framework, the loss function � is the hinge loss:

Under proper normalization assumptions, the square norm ‖w‖2
2
 relates to the notion of mar-

gin, which characterizes the robustness of the separating hyperplane {x ∶ w⊤x + b = 0} , 
while the loss part penalizes the data points which do no satisfy yi(w⊤x(i) + b) ⩾ 1 , that is 
points which are misclassified or lie within the margin (Vapnik, 1998).

In addition, this general formulation (4) accounts for any loss function used in clas-
sification (e.g. 2-norm SVM) or even in regression problems. Throughout the paper we 
make the following assumption:

Assumption 1  The loss function 𝓁(y, ⋅) is convex for y ∈ {−1, 1}.

(4)min
w∈ℝp ,b∈ℝ

n
�

i=1

�(yi,w
⊤x(i) + b) +

1

2𝛾
‖w‖2

2
,

�(y, u) = log (1 + e−yu),

�(y, u) = max(0, 1 − yu).

Fig. 1   Summary of known necessary (Scarlett & Cevher, 2017, Cor. 4) and sufficient (see Theorem 3) con-
ditions on the sample size n to achieve perfect support recovery in classification, when the sparsity k scales 
linearly in the dimension p and the signal-to-noise ratio is high. Thresholds are given up to a multiplicative 
constant
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Note that both the logistic and Hinge loss functions satisfy the convexity Assump-
tion 1. In classification, deeper results and insights can typically be obtained by adopt-
ing a dual perspective. Denoting X = (x(i)

⊤

)i=1,…,n ∈ ℝn×p the design matrix, we have:

Theorem 1  Under Assumption 1, strong duality holds for problem (4) and its dual is

where �̂(y, 𝛼) ∶= maxu∈ℝ u𝛼 − �(y, u) is the Fenchel conjugate of the loss function � (see 
Boyd & Vandenberghe, 2004, Chap. 3.3).

Table  2 summarizes some popular loss functions in classification and their corre-
sponding Fenchel conjugates.

Proof  For regularized classification, we have that

By Assumption 1, the objective is convex, the optimization set is convex and Slater’s con-
ditions hold (Boyd & Vandenberghe, 2004). Hence, strong duality holds and the primal 
is equivalent to the dual problem. To derive the dual formulation, we introduce Lagrange 
multipliers �i associated with the equality constraints:

(5)max
�∈ℝn∶�⊤�=0

−

n
∑

i=1

�̂(yi, 𝛼i) −
𝛾

2
�
⊤XX⊤

� ,

min
w,b

n
�

i=1

�(yi,w
⊤x(i) + b) +

1

2𝛾
‖w‖2

2
= min

w,b,z

n
�

i=1

�(yi, zi) +
1

2𝛾
‖w‖2

2

s.t. zi = z⊤x(i) + b.

Table 2   Examples of loss functions and their corresponding Fenchel conjugates, as defined in Theorem 1 
(Bach, 2009)

Method Loss �(y, u) Fenchel conjugate �̂(y, 𝛼)

Logistic loss log (1 + e
−yu)

{

(1 + y�) log(1 + y�) − y� log(−y�), if y� ∈ [−1, 0],

+∞, otherwise.

1-norm SVM max(0, 1 − yu)
{

y�, if y� ∈ [−1, 0],

+∞, otherwise.

2-norm SVM 1

2
max(0, 1 − yu)2

{

1

2
�
2 + y�, if y� ⩽ 0,

+∞, otherwise.
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Let us consider the three inner minimization problems separately. First,

Then, 1
2𝛾
‖w‖2

2
+ w⊤X⊤

� is minimized at w⋆ satisfying: 1
𝛾
w⋆ + X⊤

� = 0 . Hence

Finally, minb b �⊤� is bounded if and only if �⊤� = 0 , thus we obtain (5). 	�  ◻

The derivation of the dual (5) reveals that the optimal primal variables w⋆ can be recov-
ered from the dual variables �⋆ via the relationship w⋆ = −𝛾X⊤

�
⋆ . In other words, w⋆ is 

a linear combination of the data points X . Such an observation has historically led to the 
intuition that w⋆ was supported by some observed vectors x(i) and the name Support Vector 
Machine was coined (Cortes & Vapnik, 1995). Conversely, �⋆ relates to the primal vari-
ables w⋆ via the relationship �⋆

i
∈ 𝜕�(yi,w

⋆⊤

x(i)) , where 𝜕�(yi, x(i)
⊤

w⋆) denotes the sub-
differential of the loss function 𝓁(yi, ⋅) evaluated at w⋆⊤

x(i) . If � is differentiable, like the 
logistic loss, this relationship uniquely defines �⋆

i
.

Moreover, the dual point of view opens the door to non-linear classification using ker-
nels (Schölkopf et al., 2001). The positive semi-definite matrix XX⊤ , often referred to as 
the kernel or Gram matrix, is central in the dual problem (5) and could be replaced by any 
kernel matrix K whose entries Kij encode some measure of similarity between inputs x(i) 
and x(j).

Numerical algorithms There is a rich literature on numerical algorithms for solving 
either the primal (4) or the dual (5) formulation for the regularized classification problem 
in the case of logistic regression and SVM. Gradient descent or Newton-Raphson meth-
ods are well-suited when the loss function is smooth. In addition, in the case where the 
dual problem is constrained to �⊤� = 0 , particular step size rules (Calamai & Moré, 1987; 
Bertsekas, 1982) or trust regions (Lin et al., 2008) can be implemented to cope with such 
linear constraints. When the loss function is not continuously differentiable, sub-gradient 
descent as proposed in the Pegasos algorithm (Shalev-Shwartz et  al., 2011) provides an 
efficient optimization procedure. Within the machine learning community, coordinate 
descent methods have also received a lot of attention recently, especially in the context of 
regularized prediction, because of their ability to compute a whole regularization path at a 
low computational cost (Friedman et al., 2010). For coordinate descent algorithms specific 
to the regularized classification problem we address in this paper, we refer to (Hsieh et al., 
2008; Yu et al., 2011; Keerthi et al., 2005).

min
w,b,z

n
�

i=1

�(yi, zi) +
1

2𝛾
‖w‖2

2
s.t. zi = w⊤x(i) + b

= min
w,b,z

n
�

i=1

�(yi, zi) +
1

2𝛾
‖w‖2

2
+ max

�∈ℝn

n
�

i=1

𝛼i(w
⊤x(i) + b − zi)

= min
w,b,z

max
�

�

n
�

i=1

�(yi, zi) − 𝛼izi

�

+

�

1

2𝛾
‖w‖2

2
+ w⊤

�

�

i

𝛼ix
(i)

��

+ b �⊤�

= max
�

n
�

i=1

min
zi

�

�(yi, zi) − 𝛼izi
�

+min
w

�

1

2𝛾
‖w‖2

2
+ w⊤X⊤

�

�

+min
b

b �⊤�.

min
zi

(

�(yi, zi) − 𝛼izi
)

= −max
zi

(

𝛼izi − �(yi, zi)
)

= −�̂(yi, 𝛼i).

min
w

�

1

2𝛾
‖w‖2

2
+ w⊤X⊤

�

�

= −
1

2𝛾
‖w⋆

‖

2
2
= −

𝛾

2
�
⊤XX⊤

�.
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Remark 1  Theorem 1 does not hold when the loss is not convex, for instance in the case of 
the empirical misclassification rate

Indeed, strong duality does not hold. The objective value is clearly finite and nonnegative 
but since �̂(y, 𝛼) = +∞ , the dual problem has cost −∞ . In general, if the loss function � is 
not convex, the dual problem (5) is not equivalent to (4) but provides a valid lower bound.

2.2 � Dual approach to sparse classification

Sparsity is a highly desirable property for statistical estimators, especially in high-dimen-
sional regimes ( p ≫ n ) such as the ones encountered in biological applications, where 
interpretability is crucial. A natural way to induce sparsity is to add a constraint on the 
number of nonzero coefficients of w and solve:

Actually, (7) can be expressed as a convex binary optimization problem as stated in the fol-
lowing theorem:

Theorem 2  Problem (7) is equivalent to

where for any s ∈ {0, 1}p we have c(s) ∶= max
�∈ℝn∶�⊤�=0 f (�, s) with

In particular, c(s) is convex over [0, 1]p.

Proof  We introduce an additional binary variable s ∈ {0, 1}p encoding for the support of 
the sparse classifier w . With these notations

the cardinality constraint on w yields a linear constraint on s

and (7) can be equivalently written as

(6)min
w,b

n
�

i=1

�yi(w
⊤x(i)+b)<0 +

1

2𝛾
‖w‖2

2
.

(7)min
w∈ℝp ,b∈ℝ

n
�

i=1

�(yi,w
⊤x(i) + b) +

1

2𝛾
‖w‖2

2
s.t. ‖w‖0 ⩽ k.

(8)min
s∈S

p

k

c(s),

(9)f (�, s) ∶= −

n
∑

i=1

�̂(yi, 𝛼i) −
𝛾

2

n
∑

j=1

sj�
⊤XjX

⊤

j
�.

w⊤x(i) =

p
�

j=1

wjx
(i)

j
=

�

j∶sj=1

wjx
(i)

j
= w⊤

s
x(i)
s
,

‖w‖2
2
=

p
�

j=1

w2
j
=

�

j∶sj=1

w2
j
= ‖ws‖

2
2
,

s⊤� ⩽ k,
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Denoting c(s) the inner minimization problem, we end up solving the pure binary to-be-
proved-convex optimization problem

In addition, c(s) = minw,b
∑n

i=1
�(yi,w

⊤

s
x
(i)
s + b) +

1

2𝛾
‖ws‖

2
2
 is an unconstrained regularized 

classification problem based on the features selected by s only. Hence, Theorem 1 applies 
and

Since �
⊤XsX

⊤

s
� =

∑

j∶sj=1
�
⊤XjX

⊤

j
� =

∑p

j=1
sj�

⊤XjX
⊤

j
� , we obtain the desired 

formulation.
Finally, let us denote

The function f is convex—indeed linear—in s over [0, 1]p , so c is convex over [0, 1]p . 	� ◻

In practice, for a given support s , we evaluate the function c(s) by solving the maximization 
problem (9) with any of the numerical procedures presented in the previous section. In what 
follows, we need to calculate a sub-gradient of the function c as well. Using the dual maxi-
mizer �⋆(s) in (9) at a support s , we can compute one at no additional computational cost. 
Indeed, it follows that

2.3 � Enhanced outer‑approximation algorithm

We solve the convex integer optimizaton (CIO) problem (8) taking into account that we can 
readily compute c(s) and ∇c(s) for any given s . None of the commercial solvers available are 
targeted to solve such CIO problems where there is no closed-form expression for c(s) . We 
propose to adopt an outer-approximation approach similar to the one introduced by Duran and 
Grossmann (1986) for linear mixed-integer optimization problems.

We first reformulate (8) as a mixed-integer optimization problem in epigraph form:

 By convexity, we can approximate c(s) by the supremum of its tangents at all points 
s̃ ∈ S

p

k
 , i.e., c(s) ≥ maxs̃∈Sp

k

{

c(s̃) + ∇c(s̃)⊤(s − s̃)
}

 . For s ∈ S
p

k
 , this lower approximation 

matches c(s) exactly. Hence, we can equivalently solve

min
s∈S

p

k

min
w,b

n
�

i=1

�(yi,w
⊤

s
x(i)
s
+ b) +

1

2𝛾
‖ws‖

2
2
.

min
s∈S

p

k

c(s).

c(s) = max
�∈ℝn

n
∑
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−�̂(yi, 𝛼i) −
𝛾

2
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� s.t. �

⊤
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f (𝛼, s) ∶= −
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⊤
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⊤
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 As described in Fletcher and Leyffer (1994) and Bonami et al. (2008), we find a solution 
to (10) by iteratively introducing the linear constraints defining (10), i.e., iteratively refin-
ing a piece-wise linear lower approximation of c. The solver structure is given in pseu-
docode in Algorithm 1.

Under Assumption 1, Algorithm 1 is guaranteed to terminate in a finite, yet exponen-
tial in the worst-case, number of steps and return an optimal solution of (8) (Fletcher & 
Leyffer, 1994). On this regard, Algorithm 1 resembles the simplex algorithm whose worst-
case complexity is exponential, yet is very efficient in practice (Goldfarb, 1994).

Several enhancements have been proposed to improve the convergence speed of Algo-
rithm  1. First, in its original form, Algorithm  1 requires solving a mixed-integer linear 
optimization problem at each iteration, which is computationally inefficient. Modern solv-
ers however, such as Gurobi (Gurobi Optimization, 2016), IBM CPLEX (CPLEX, 2011), 
or GLPK,1 can handle lazy callbacks, a feature that integrates the constraint generation 
procedure within a unique branch-and-bound enumeration tree, shared by all subprob-
lems. We implemented Algorithm 1 in this fashion. In addition, decomposition schemes 
as Algorithm  1 benefit from performing a rich root node analysis, as advocated by Fis-
chetti et al. (2017). In essence, a “rich” root node analysis consists of a good initial fea-
sible solution s(1) (i.e, a good upper bound) and a set of initial constraints of the form 
𝜂 ⩾ c(s(i)) + ∇c(s(i))⊤(s − s(i)) to obtain tight lower bound as well. Regarding the warm-
start s(1) , we recommend using the Lasso estimator provided by the glmnet package 
(Friedman et  al., 2013) or estimators obtained by rounding the solution of the Boolean 
relaxation of (8). We refer to Pilanci et al. (2015) for a theoretical analysis of the latter, and 
Bertsimas et al. (2020) and Atamturk and Gomez (2019) for efficient numerical algorithms 
to solve it. Regarding the lower-bound and the initial constraints, Fischetti et  al. (2017) 
suggests using the constraints obtained from solving the Boolean relaxation of (8) via a 
similar outer-approximation procedure—in which case there are no binary variables and 
the technique is often referred to as Kelley’s algorithm (Kelley, 1960). We refrain from 
implementing this strategy in our case. Indeed, computing c(s) and ∇c(s) reduces to solv-
ing a binary classification problem over the k features encoded by the support of s . As a 
result, the scalability of our approach largely relies on the fact that constraints are com-
puted for sparse vectors s . When solving the Boolean relaxation, however, s can be dense 

(10)min
s∈S

p

k
,𝜂
𝜂 s.t. 𝜂 ⩾ c(s̃) + ∇c(s̃)⊤(s − s̃),∀s̃ ∈ S

p

k
.

1  https://​www.​gnu.​org/​softw​are/​glpk/.

https://www.gnu.org/software/glpk/
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while satisfying the constraint s⊤� ⩽ k . Instead, we compute a regularization path for the 
Lasso estimator up to a sparsity level of k + 1 using the glmnet package, and initialize the 
outer approximation with the constraints obtained from these solutions.

Finally, we propose a stochastic version of the outer-approximation algorithm to 
improve the scalability with respect to n. At the incumbent solution s(t) , we observe that we 
do not need to solve Problem (9) to optimality to obtain a valid linear lower-approximation 
of c(s) . Indeed, any � ∈ ℝn ∶ �⊤� = 0 yields

Hence, we propose a strategy (Algorithm 2) to find a good candidate solution � and the 
corresponding lower approximation c(s) ⩾ c̃(s(t)) + ∇c̃(s(t))⊤(s − s(t)) . Our strategy relies 
on the fact the primal formulation in ws ∈ ℝk only involves k decision variables, with 
k < n or even k ≪ n in practice. As a result, one should not need the entire data set to 
estimate w⋆(s(t)) . Instead, we randomly select N out of n observations, estimate w⋆(s(t)) on 
this reduced data set, and finally average the result over B subsamples. Typically, we take 
N = max(10%n, 2k) and B = 10 in our experiments. Then, we estimate � ∈ ℝn by solving 
the first-order optimality conditions 𝛼i ∈ 𝜕�(yi,w

⊤x(i)) . Since our objective is to generate a 
constraint that tightens the current lower-approximation of c(s(t)) , we compare c̃(s(t)) with 
our current estimate of c(s(t)) , �(t) . If 𝜂(t) > c̃(s(t)) , i.e., if the approximate constraint does 
not improve the approximation, we reject it and compute c(s(t)),∇c(s(t))) exactly instead. 

In the next section, we provide numerical evidence that Algorithm 1, both for logistic 
and hinge loss functions, is a scalable method to compute cardinality constrained classifiers 
and select more accurately features than L1-based heuristics.

2.4 � Practical implementation considerations

Sparse regularized classification (7) involves two hyperparameters—a regularization fac-
tor � and the sparsity k. For the regularization parameter � , we fit its value using cross-
validation among values uniformly distributed in the log-space: we start with a low value 
�0—typically �0 scaling as 1∕maxi ‖x

(i)
‖

2 as suggested in Chu et al. (2015)—and inflate it 
iteratively by a factor two. We similarly tune k by simple hold-out cross-validation over 
a range of values. We use out-of-sample Area Under the receiving operator Curve as the 
validation criterion (to maximize). Although we did not implement it, Kenney et al. (2018) 

c(s) ⩾ −

n
∑

i=1

�̂(yi, 𝛼i) −
𝛾

2

n
∑

j=1

sj�
⊤XjX

⊤

j
�.
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present a general blueprint consisting of warm-start strategies and a bisection search proce-
dure that can tangibly accelerate the overall cross-validation loop.

3 � Numerical experiments: scalability and support recovery

In this section, we evaluate the numerical performance of our method both in terms of scal-
ability and quality of the features selected.

The computational tests were performed on a computer with Xeon @2.3 GhZ proces-
sors, 1 core, 8 GB RAM. Algorithms were implemented in Julia 1.0 (Lubin & Dunning, 
2015), a technical computing language, and Problem (8) was solved with Gurobi 8.1.0 
(Gurobi  Optimization, 2016). We interfaced Julia with Gurobi using the modeling lan-
guage JuMP 0.21.1 (Dunning et al., 2017). Our code is available on GitHub.2 Since our 
sparse regularized formulation (7) comprises 2 hyperparameters, � and k, that control the 
degree of regularization and sparsity respectively, we compare our method with the Elas-
ticNet formulation

which similarly contains 2 hyper parameters and can be computed efficiently by the glm-
net package (Friedman et  al., 2013). For a fair comparison, we cross-validate � and � 
using the same procedure as � and k described in Sect. 2.4. Our intention in this section 
is first and foremost to assess the validity of our numerical algorithms for computing the 
cardinality-constrained estimator (7). We refer to Bertsimas et al. (2020) and Hastie et al. 
(2020) for extensive numerical experiments and discussions on the statistical and practi-
cal relevance of each formulation, as well as comparison with non-convex penalties and 
alternatives.

3.1 � Support recovery on synthetic data

We first consider synthesized data sets to assess the feature selection ability of our method 
compared it to a state-of-the-art L1-based estimators.

3.1.1 � Methodology

We draw x(i) ∼ N(0p,Σ), i = 1,… , n independent realizations from a p-dimensional nor-
mal distribution with mean 0p and covariance matrix Σij = �

|i−j| . Columns of X are then 
normalized to have zero mean and unit variance. We randomly sample a weight vector 
wtrue ∈ {−1, 0, 1}p with exactly k nonzero coefficients. We draw �i, i = 1,… , n, i.i.d. noise 
components from a normal distribution scaled according to a chosen signal-to-noise ratio

(11)min
w∈ℝp ,b∈ℝ

n
�

i=1

�(yi,w
⊤x(i) + b) + 𝜆

�

(1 − 𝛼)‖w‖1 + 𝛼‖w‖2
2

�

,

√

SNR = ‖Xwtrue‖2∕‖�‖2.

2  https://​github.​com/​jeanp​auphi​let/​Subse​tSele​ction​CIO.​jl.

https://github.com/jeanpauphilet/SubsetSelectionCIO.jl
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Finally, we construct yi as yi = sign
(

w⊤

true
x(i) + 𝜀i > 0

)

. This methodology enables us to 
produce synthetic data sets where we control the sample size n, feature size p, sparsity k, 
feature correlation � and signal-to-noise ratio SNR.

3.1.2 � Support recovery metrics

Given the true classifier wtrue of sparsity ktrue , we assess the correctness of a classifier w of 
sparsity k by its accuracy, i.e., the number of true features it selects

and the false discovery, i.e., the number of false features it incorporates

Obviously, A(w) + F(w) = |{j ∶ wj ≠ 0}| = k . A classifier w is said to perfectly recover the 
true support if it selects the truth ( A(w) = ktrue ) and nothing but the truth ( F(w) = 0 or 
equivalently k = ktrue).

3.1.3 � Selecting the truth ...

We first compare the performance of our algorithm for sparse regression with ElasticNet, 
when both methods are given the true number of features in the support ktrue . As mentioned 
in the introduction, a key property in this context for any best subset selection method, is 
that it selects the true support as sample size increases, as represented in Fig. 2. From that 
perspective, both methods demonstrate a similar convergence: As n increases, both classi-
fiers end up selecting the truth, with Algorithm 1 needing a somewhat smaller number of 
samples than Lasso.

A(w) = |{j ∶ wj ≠ 0,wtrue,j ≠ 0}| ∈ {0,… , ktrue},

F(w) = |{j ∶ wj ≠ 0,wtrue,j = 0}| ∈ {0,… , p}.

Fig. 2   Accuracy as the sample size n increases, for ElasticNet with the logistic loss (dashed blue) and 
sparse SVM (solid red). Results correspond to average values obtained over 10 synthetic data sets with 
p = 1000 , ktrue = k = 30 , � = 0.3 , SNR → ∞ and increasing n from 100 to 1300 (Color figure online)
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Apart from the absolute number of true/false features selected, one might wonder 
whether the features selected are actually good features in terms of predictive power. In this 
metric, sparse regression significantly outperforms the L1-based classifier, both in terms of 
Area Under the Curve (AUC) and misclassification rate, as shown on Fig. 3, demonstrating 
a clear predictive edge of exact sparse formulation.

In terms of computational cost, Lasso remains the gold standard: computational times 
for glmnet range from 0.05 to 0.48 s, while CIO terminates between 0.03 and 114.5 s on 
the same instances. Figure 4 represents the number of constraints (left panel) and computa-
tional time (right panel) required by our outer-approximation algorithm as the problem size 
n increases, � × n being fixed. For low values of n, the number of constraints is in the thou-
sands. Surprisingly, computational effort does not increase with n. On the contrary, having 
more observations reduces the number of constraints down to less than twenty. Intuitively, 
as n grows, there is more signal and the problem becomes easier. Computational time 
evolves similarly: the algorithm reaches the time limit (here, 3 minutes) when n is low, but 
terminates in a few seconds for high values. For sparse linear regression, Bertsimas and 
Van Parys (2020) observed a similar, yet even sharper, phenomenon which they referred to 

Fig. 3   Out-of-sample AUC (left panel) and misclassification rate (right panel) as the sample size n 
increases, for ElasticNet with logistic loss (dashed blue) and sparse SVM (solid red). Results correspond to 
average values obtained over 10 synthetic data sets with p = 1000 , ktrue = k = 30 , � = 0.3 , SNR → ∞ and 
increasing n from 100 to 1300 (Color figure online)

Fig. 4   Number of constraints (left panel) and computational time (right panel) required by the outer-
approximation algorithm with Hinge loss as sample size n increases. Results correspond to average val-
ues obtained over 10 synthetic data sets with p = 1000 , ktrue = k = 30 , � = 0.3 , SNR → ∞ , � = �0∕n with 
�0 = 25p∕(kmaxi ‖x

(i)
‖

2) and increasing n from 100 to 1300. Algorithm 1 is initialized with the Lasso solu-
tion
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as a phase transition in computational complexity. The threshold value, however, increases 
with � . In other words, when n is fixed, computational time increases as � increases (see 
Fig. 9 in Sect. 3.2), which corroborates the intuition that in the limit � → 0 , w⋆ = 0 is obvi-
ously optimal, while the problem can be ill-posed as � → +∞ . Since the right regulariza-
tion parameter is unknown a priori, one needs to test high but sometimes relevant values 
of � for which the time limit is reached and the overall procedures terminates in minutes, 
while glmnet computes the entire regularization path for Lasso in less than a second. 
As for the choice of the time limit, it does not significantly impact the performance of the 
algorithm: As shown on Fig. 5, the algorithm quickly finds the optimal solution and much 
of the computational time is spent improving the lower bound, i.e., proving the solution is 
indeed optimal. We will further explore the numerical scalability of the outer-approxima-
tion algorithm in Sect. 3.2.

3.1.4 � ... and nothing but the truth

In practice, however, the length of the true support ktrue is unknown a priori and is to be 
determined using cross-validation.

Given a data set with a fixed number of samples n and features p, we compute clas-
sifiers with different values of sparsity parameter k and choose the value which leads to 
the best accuracy on a validation set. Irrespective of the method, AUC as a function of 
sparsity k should have an inverted-U shape: if k is too small, not enough features are taken 
into account to provide accurate predictions. If k is too big, the model is too complex and 
overfits the training data. Hence, there is some optimal value k⋆ which maximizes valida-
tion AUC (equivalently, one could use misclassification rate instead of AUC as a perfor-
mance metric). Figure 6 represents the evolution of the AUC on a validation set as sparsity 
k increases for Lasso and the exact sparse logistic regression. The exact CIO formulation 
leads to an optimal sparsity value k⋆

CIO
 which is much closer to the truth than k⋆

Lasso
 , and this 

Fig. 5   Typical evolution of the upper (best feasible solution, in green) and lower bounds (in blue) of Algo-
rithm 1 as computational of time (in log scale) increases. Results for one problem instance with p = 1000 , 
ktrue = 30 , � = 0.3 , SNR → ∞ , � = �0∕n with �0 = 27p∕(kmaxi ‖x

(i)
‖

2) and n = 600 (Color figure online)
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observation remains valid when n increases as shown on the left panel of Fig. 7. In addi-
tion, Fig. 7 also exposes a major deficiency of Lasso as a feature selection method: even 
when the number of samples increases, Lasso fails to select the relevant features only and 
returns a support k⋆

Lasso
 much larger than the truth whereas k⋆

CIO
 converges to ktrue quickly as 

n increases, hence selecting the truth and nothing but the truth.
As mentioned in the introduction, these shortcomings of Lasso-based feature selection 

have already been documented and motivated alternatives such as non-convex penalties. 
Extensive numerical comparisons, in regression and classification settings, presented Bert-
simas et al. (2020) corroborate our findings, and demonstrate that non-convex penalties and 
L0-based formulations both provide a substantial improvement over L1-regularization. Yet, 

Fig. 6   Validation AUC as sparsity of the classifier k increases, for ElasticNet (dashed blue) and sparse 
SVM (solid red). Results correspond to average values obtained over 10 synthetic data sets with n = 700 , 
p = 1000 , ktrue = 30 (black vertical line), � = 0.3 , SNR → ∞ and increasing k from 0 to 100 (Color figure 
online)

Fig. 7   Optimal sparsity k⋆ (left) and accuracy rate A∕k⋆ (right) as sample size n increases, for ElasticNet 
(dashed blue) and sparse SVM (solid red). Results correspond to average values obtained over 10 synthetic 
data sets with p = 1000 , ktrue = 30 , � = 0.3 , SNR → ∞ and increasing n from 100 to 1900 (Color figure 
online)
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in their analysis, discrete optimization methods do have some edge over the non-convex 
penalties SCAD and MCP in terms of false discoveries.

3.2 � Scalability on synthetic data

We use the opportunity of working with synthetic data to numerically assess how computa-
tional time is impacted by the size of the problem—as measured by the number of samples, 
n, and features, p—and the two hyper parameters � and k.

Impact of sample size n: As previously observed, computational time does not increase 
as n increases. On the contrary, for a fixed value of � × n , computational time decreases 
as n grows. As displayed on Fig. 4 for Hinge loss, this phenomenon is observed for both 
the standard and stochastic version of the outer-approximation algorithm. Observe that the 
stochastic variant slightly increases the number of constraints for low values of n, yet, since 
generating a constraint is less expensive, computational time is reduced by a factor 2 for 
the hardest instances. In this regard, the stochastic version of the outer-approximation algo-
rithm is more beneficial when using the logistic loss compared with the Hinge loss, as 
depicted on Fig. 8. Indeed, the number of constraints is reduced by a factor of 5 and the 
computational time by a factor of 10. In our understanding, this substantial improvement in 
the logistic case is due to the fact that the relationship 𝛼i ∈ 𝜕�(yi, x

(i)⊤w) uniquely defines 
� and hence leads to higher quality constraints than in the case of the Hinge loss where � is 
not differentiable at 0.

Impact of regularization � : As � increases, however, computational time and the num-
ber of constraints required sharply increases, as depicted in Fig.  9. This phenomenon is 
consistently observed for all problem sizes and loss functions. Since the proper value of � 
is unknown a priori and needs to be cross-validated, this could result in prohibitive overall 
computational time. However, two aspects need to be kept in mind: First, computational 
time, here, corresponds to time needed to certify optimality, although high-quality solu-
tions—or even the optimal solution—can be found much faster. Second, we do not imple-
ment any warm-starting strategy between instances with different values of � within the 
grid search. Smarter grid search procedures (Kenney et al., 2018) could further accelerate 
computations.

Fig. 8   Number of constraints (left panel) and computational time (right panel) required by the outer-
approximation algorithm with Logistic loss as sample size n increases. Results correspond to aver-
age values obtained over 10 data sets with p = 1000 , ktrue = 30 , � = 0.3 , SNR → ∞ , � = �0∕n with 
�0 = 25p∕(kmaxi ‖x

(i)
‖

2) and increasing n from 100 to 1300. Algorithm 1 is initialized with the Lasso solu-
tion
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Impact of feature size p and sparsity level k: The master problem (8) obviously 
depends on the number of features p and the sparsity level k through the feasible set 
S
p

k
 . As a first-order approximation, the combinatorial complexity of the problem can be 

captured by the total number of potential supports of size k, 
(

p

k

)

 . So one could expect 

a linear dependency on p for k fixed, and an exponential dependency on k, p being 
fixed. This intuition is largely confirmed empirically, as reported in Table  3: In low 
sparsity regimes ( k = 5 ), we can solve instances with up to 50,  000 features under a 
minute, while denser problems are not solved to optimality after 30 minutes even for 
p = 5, 000 . Our experiments also highlight the benefits from having a good initializa-
tion solution s1 and using the stochastic constraint generation technique. As displayed 
in Table 3, together, these enhancements reduce computational time up to a factor of 
10.

Fig. 9   Number of constraints (left panel) and computational time (right panel) required by the outer-
approximation algorithm with Hinge loss as the regularization parameter � increases. Results correspond 
to average values obtained over 5 data sets with p = 10,000 , n = 1000 , k = ktrue = 5 , � = 0 , SNR = 10 . The 
x-axis represents �∕�0 with �0 = 10∕n . Algorithm 1 is initialized with the Lasso solution

Table 3   Computational time (in seconds) of Algorithm 1 for large p and varying k 

Instances are generated with k = k
true

 , SNR = 10 , n = 1000 , and � = 10∕n as in Dedieu et al. (2021). We 
indicate in parentheses the warm-start method used. SubsetSelection refers to a rounding of the solution of 
the Boolean relaxation of (7) as implemented in Bertsimas et al. (2020). If the algorithm did not converge 
within the given time budget (1800 s), we report optimality gap in parenthesis

k = 5 , p = 10,000 20,000 30,000 40,000 50,000

glmnet 2.2 3.6 4.9 6.3 7.3
Hinge loss (glmnet) 18.2 29.4 29.3 30.7 148.7
Hinge loss (SubsetSelection) 15.2 19.8 42.2 43.3 40.8
Hinge loss (SubsetSelection) Stochastic 9.1 28.5 31.0 42.9 55.1

p = 5000 , k = 1 5 10 15 20

glmnet 1.8 2.3 2.3 2.7 2.3
Hinge loss (glmnet) 0.6 7.6 569.3 702.6 1800 (40%)
Hinge loss (SubsetSelection) 0.2 7.5 203.0 537.0 1800 (46%)
Hinge loss (SubsetSelection) Stochastic 0.3 7.6 65.8 425.6 1800 (41%)
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3.3 � Experiments on real‑world data sets

We now illustrate the practical implications of sparse classification algorithms on real-
world data, of various size and dimensions.

3.3.1 � Over‑determined regime n > p

We consider data sets from the UC Irvine Machine Learning Repository (available at 
https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets.​html), split them into a training and a test set 
( 80%∕20% ), calibrate a classifier on the training data, using cross-validation to fit the 
hyper-parameters k and � in the sparse case and � and � in the ElasticNet (Enet) case, and 
compare AUC on the test set for both methods. Characteristics of these data sets and exper-
imental results are given in Table 4. Experiments clearly demonstrate that (a) our outer-
approximation algorithm scales to data sets of practical relevance, (b) cardinality con-
strained formulations generally lead to sparser classifiers than ElasticNet (on 7 out 8 data 
sets) with comparable predictive power, with ElasticNet being more accurate on 3 out of 8 
data sets. It suggests that features selected by our discrete optimization carry more relevant 
information that those obtained by ElasticNet. Yet, since these data sets contain a limited 
number of features p, they may not make a strong case for exact sparse classification meth-
ods compared to Lasso, the original problem being relatively sparse already. Therefore, we 
investigate the under-determined regime n < p in the next section.

3.3.2 � Under‑determined regime p > n

Performance of sparse classification in the under-determined regime is crucial for two 
reasons: Since the amount of data available is limited, such a regime favors estimators 
which can efficiently recover the truth even when the sample size n is small with regard 
to p. More importantly, under-determined regimes occur in highly impactful applications, 
such as medical research. To show the direct implications of our method on this field of 

Table 4   Comparative results of L1-regularized and L0-constrained estimators on data sets from UCI ML 
Repository

AUC are computed out-of-sample on a test set comprised of 20% of the initial data. Results are averaged 
over 10 different splits into train/validation data for cross-validation of the hyper-parameters
Lowest (resp. highest) value for k (resp. AUC) is highlighted in bold

ElasticNet CIO—Hinge CIO—Logistic

Data set n p k AUC​ k AUC​ k AUC​

Banknote Authentication 1372 5 4.0 1.000 3.7 1.000 3.2 1.000
Breast Cancer 683 10 7.8 0.991 5.4 0.990 5.5 0.989
Breast Cancer (Diagnostic) 569 31 21.1 0.998 12.0 0.997 11.4 0.995
Chess (Rook vs. Pawn) 3196 38 13.8 0.867 15.6 0.862 12.6 0.868
Cylinder bands 277 484 98 0.701 111.0 0.728 139.0 0.719
Magic Telescope 19,020 11 9.2 0.840 6.4 0.843 6.2 0.844
QSAR Biodegradation 1055 42 35.8 0.924 18.5 0.950 21.8 0.947
Spambase 4601 58 56.4 0.960 27.2 0.957 21.6 0.954

https://archive.ics.uci.edu/ml/datasets.html
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research, we used data from The Cancer Genome Atlas Research Network (available at 
http://​cance​rgeno​me.​nih.​gov) on n = 1145 lung cancer patients. Actually, tumor types 
often have distinct subtypes, each of them having its own genetic signature. In our sample 
for instance, 594 patients ( 51.9% ) suffered from Adenocarcinoma while the remaining 551 
patients ( 48.1% ) suffered from Squamous Cell Carcinoma. The data set consists of gene 
expression data for p = 14,858 genes for each patient. We apply both sparse and Lasso 
classification to identify the most relevant genes to discriminate between the two subtypes 
and compile the results in Table 5. The first conclusion to be drawn from our results is that 
the exact sparse classification problem scales to problems of such size, which is far above 
data sets usually encountered in the gene selection academic literature. In addition, explic-
itly constraining sparsity of the classifier leads to much sparser, thus more interpretable 
results with little compromise on the predictive power: Sparse SVM reaches an AUC of 
0.977 with only 38 features while the L1-regularized classifier selects ten times more genes 
for a +0.005 gain in AUC.

3.4 � Summary and guidelines

All in all, these experiments demonstrate that (a) the L2-regularized L0-constrained formu-
lation (7) provides an edge over L1-based estimators such as Lasso or ElasticNet in terms 
of support recovery (accuracy and false detection rate) and downstream predictive power 
(AUC and misclassification rate), (b) though NP-hard in the worst case, solving the dis-
crete optimization problem (7) can be routinely achieved within minutes for large prob-
lem sizes of interest (up to p ≈ 10,000 s ). Though reasonable for most applications, these 
computational times are still one to two orders of magnitude higher than those of Lasso, 
which remains the gold standard in terms of scalability. In particular, the regularization 
parameter � of (2) can be cross-validated at no additional computational cost. Designing 
efficient cross-validation procedures for cardinality-based estimators is an active area of 
research (Kenney et al., 2018; Hazimeh & Mazumder, 2020). In practice, for a large data 
set, one could use Lasso as a feature screening method to exclude non-relevant covariates 
before applying a more computationally demanding feature selection method on a reduced 
subset of features.

Table 5   Comparative results of 
L1-regularized and L0-constrained 
estimators on the Lung Cancer 
data

AUC are computed out-of-sample on a test set comprised of 20% of 
the initial data. Results are averaged over 10 different splits into train/
validation data for cross-validation of the hyper-parameters
Lowest (resp. highest) value for k (resp. AUC) is highlighted in bold

Data set n p ElasticNet CIO—
Hinge

CIO—
Logistic

k AUC​ k AUC​ k AUC​

Lung cancer 1145 14,858 378.4 0.982 38 0.977 90 0.980

http://cancergenome.nih.gov
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4 � Towards a theoretical understanding of asymptotic support 
recovery

As mentioned in the introduction, a large body of literature has provided information-theo-
retic limitations (Wainwright, 2009a; Wang et al., 2010; Gamarnik & Zadik, 2017) or theo-
retical guarantees of support recovery by some specific algorithms (Wainwright, 2009b; 
Pilanci et al., 2015) for sparse linear regression, which supported the empirical observation 
of a phase transition (Donoho & Stodden, 2006; Bertsimas & Van Parys, 2020). In classifi-
cation, however, we did not observe such a sharp phenomenon. For instance, we observed 
a smooth convergence in accuracy in Fig. 2, while Bertsimas et al. (2020, Figure 1) expe-
rienced a sharp phase transition in low-noise linear regression. In this section, we provide 
some intuition on the theoretical mechanisms involved for perfect support recovery spe-
cific to classification. We prove an information-theoretic sufficient condition to achieve 
perfect support recovery and compare it with analogous bounds for linear regression, as 
well recent theoretical results on 1-bit compressed sensing (Jacques et al., 2013; Scarlett & 
Cevher, 2017).

4.1 � Notations and assumptions

To simplify the analysis, we consider a stylized framework where the data is generated 
according to the equation

where xi are i.i.d. standard Gaussian random variables, �i ∼ N(0, �2) , w⋆ ∈ ℝp with 
‖w⋆

‖0 = k and sign(�) = 1 if 𝜆 > 0 , −1 , otherwise. Given a classifier w predictions will be 
made according to the rule

It is obvious from the definition that for any w ∈ ℝp , sign
(

𝜆x⊤w
)

= sign
(

x⊤w
)

 , for any 
𝜆 > 0 . In other words, predictions made by a classifier are insensitive to scaling. As a con-
sequence, the difference in prediction between two classifiers should demonstrate the same 
invariance and indeed only depends on the angle between the classifiers as formally stated 
in Lemma  1 (proof in “Appendix”). This observation does not hold for sign

(

x⊤w + 𝜀

)

 , 
because of the presence of noise.

Lemma 1  Assume x ∼ N(0p, Ip) and � ∼ N(0, �2) are independent. Then, for any 
w,w� ∈ ℝp we have that

We consider classifiers with binary entries w⋆ ∈ {0, 1}p only, similar to the work of 
Gamarnik and Zadik (2017) on sparse binary regression. Moreover, we learn the optimal 
classifier from the data by solving the minimization problem

yi = sign
(

x(i)
⊤

w⋆ + 𝜀i

)

,

ŷi(w) = sign
(

x(i)
⊤

w

)

.

(12)ℙ
�

sign
�

x⊤w
�

≠ sign
�

x⊤w� + 𝜀

��

=
1

𝜋

arccos

�

w⊤w�

‖w‖
√

‖w�
‖

2 + 𝜎2

�

.
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where the loss function above corresponds to the empirical misclassification rate. Even 
though it is not a tractable loss function choice in practice, it demonstrates some interesting 
theoretical properties: it isolates the probabilistic model used to generate the data from the 
behavior of the optimal value. Indeed, for any classifier w , the empirical misclassification 
rate 

∑n

i=1
�
�

ŷi(w) ≠ yi
�

 follows a Binomial distribution, as the covariate data are independ-
ent. In addition, the problem (13) can be considered as the authentic formulation for binary 
classification, while other loss functions used in practice such as Hinge and logistic loss are 
only smooth proxies for the misclassification rate, used for their tractability and statistical 
consistency (Steinwart, 2002; Zhang, 2004).

4.2 � Intuition and statement on sufficient conditions

For a given binary classifier w ∈ {0, 1}p of sparsity k, the accuracy of the classifier (the 
number of true features it selects) is equal to the inner product of w with w⋆:

Consider a binary sparse classifier w , i.e., ‖w‖0 = k , with accuracy w⊤w⋆ = � . Then, it 
follows that the indicators �

(

ŷi(w) ≠ yi
)

 are distributed as independent Bernoulli random 
variable sharing the success parameter

The success parameter q
�
= q(�;k, �2) can be checked to be a decreasing concave func-

tion of � . That is, the more accurate our binary classifier w , the smaller the probability of 
misclassification. The previous should come as no surprise to anybody. The central limit 
theorem states that

as n → ∞ . In words, asymptotically in n, a given classifier w will have an empirical mis-
classification rate close to q

�
 . Since q

�
 is decreasing in � , the truth w⋆ for which � = k 

should minimize the misclassification error among all possible supports. As observed 
empirically, the number of true features selected corresponds to the true sparsity when n is 
sufficiently large (see Fig. 2). Intuitively, n should be high enough such that the variance on 
the performance of each support q

�
(1−q

�
)

n
 is small, taken into account that there are 

(

k

�

)(

p − k

k − �

)

 possible supports with exactly � correct features. In this case, it should be 

rather unlikely that the binary classifier with the smallest empirical misclassification rate is 
anything other than the ground truth w⋆ . We will now make the previous intuitive argu-
ment more rigorous.

(13)min
w∈{0,1}p

1

n

n
�

i=1

�
�

ŷi(w) ≠ yi
�

s.t. ‖w‖0 = k,

A(w) = �{j ∶ wj ≠ 0,w⋆

j
≠ 0}� = �{j ∶ wj = 1,w⋆

j
= 1}� =

∑

j wjw
⋆

j
= w⊤w⋆.

q(�;k, 𝜎2) ∶= ℙ

�

sign
�

x(i)
⊤

w

�

≠ sign
�

x(i)
⊤

w⋆ + 𝜀i

��

,

=
1

𝜋
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�

�
√

k(k + 𝜎2)

�

.

√

n

�

1

n

n
�

i=1

�
�

ŷi(w) ≠ yi
�

− ql

�

→ N
�

0, q
�
(1 − q

�
)
�
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Because we aim at minimizing the misclassification rate, we are guaranteed to recover 
the true support w⋆ if there exists no other support w with an empirical performance at 
least as good as the truth.

Theorem  3  We assume the data is generated according to the equation 
yi = sign

(

x(i)
⊤

w⋆ + 𝜀i

)

 , where xi are i.i.d. standard random variables, �i ∼ N(0, �2) , 

w⋆ ∈ {0, 1}p with ‖w⋆
‖0 = k . Given a classifier w , we denote ŷi(w) ∶= sign

(

x(i)
⊤

w

)

 . For 
any two binary classifiers w1 and w2 , let Δ(w1,w2) denote the difference between their 
empirical performance, i.e.,

Assume that p ⩾ 2k . Then there exist a threshold n0 > 0 such that for any n > n0,

Moreover, we have n0 < C
(

2 + 𝜎
2
)

k log(p − k) for some absolute constant C > 0.

In other words, if n ⩾ C
(

2 + �
2
)

k log(p − k) + 2�k(�2 + 2) log(1∕�) for some � ∈ (0, 1) , 
then

The proof of Theorem 3 is given in “Appendix”. From a high-level perspective, our suf-
ficient condition on n relies on two ingredients: (a) the union bound, which accounts for 
the log-dependence in p − k and which is found in similar results for regression and signal 
processing (Wainwright, 2009a; Wang et  al., 2010) and (b) controlling of the individual 
probability ℙ

(

Δ(w,w⋆) ⩽ 0
)

 using large deviation bounds, which depends on the size of w 
and w⋆ , k, and the noise �2.

Before comparing the claim of Theorem 3 with similar results from statistics and signal 
processing, let us remember that k, the sparsity level of the true classifier w⋆ , is assumed to 
be known. To put this assumption in perspective with our previous simulations, our state-
ment only concerns the best achievable accuracy when k is fixed.

4.3 � Discussion

For regression, Gamarnik and Zadik (2017) proved that support recovery was possible 
from an information-theoretic point of view if

Note that our threshold n0 for classification does not vanish in the low noise �2 setting. This 
observation is not surprising: the output yi depending only on the sign of w⊤x(i) can be con-
sidered as inherently noisy. An observation already made by Scarlett and Cevher (2017).

As mentioned earlier, recent works in 1-bit compressed sensing have developed algo-
rithms to recover sparse classifiers which provably recover the truth as the number of 

Δ(w1,w2) ∶=
1

n

n
∑

i=1

�
(

ŷi(w
1) ≠ yi

)

− �
(

ŷi(w
2) ≠ yi

)

.

ℙ
�

∃w ≠ w⋆, w ∈ {0, 1}p, ‖w‖0 = k s.t. Δ(w,w⋆) ⩽ 0
�

⩽ e
−

n−n0

2𝜋2k(𝜎2+2) .

ℙ
�

∃w ≠ w⋆, w ∈ {0, 1}p, ‖w‖0 = k s.t. Δ(w,w⋆) ⩽ 0
�

⩽ 𝛿.

n > n⋆ =
2k log p

log
(

2k

𝜎2
+ 1

)
.
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samples increases (Gupta et al., 2010; Plan & Vershynin, 2013a, b). In particular, Plan and 
Vershynin (2013b) formulate the problem of learning w from the observations as a convex 
problem and establish bounds on the �2 error ‖w − w⋆

‖2 , in the case of logistic regression. 
In particular, they show that n > C� k log(2p∕k) is sufficient to achieve an �2 reconstruc-
tion error which is bounded. In contrast with our result, they exhibited an algorithm able 
to achieve low error in terms of �2 distance with fewer samples than what we proved to 
be an information-theoretic sufficient condition. Yet, this does not trivialize our result. �2 
consistency is a related but distinct criterion for support recovery. Even a good estimate of 
w⋆ in terms of �2 distance might have a very different support. The fact that their rate for 
�2 consistency is faster than the rate for support recovery suggests that achieving a good �2 
error is presumably an easier problem. Similar observations were made in the case of linear 
regression in Wainwright (2009a) and intuitively explained: given a good support recovery 
procedure, one can restrict the number of features, use standard methods to estimate the 
values of the wj ’s and hope to achieve a good �2 error, while the reverse might not be true. 
Loh et al. (2017) prove that non-convex regularization achieves perfect support recovery 
with high probability if n ≳ k log p , which matches our bound up to a multiplicative con-
stant. Together, our results suggest that the information-theoretic bounds are achievable in 
practice via a discrete optimization formulation (1) or non-convex penalties (3). Yet, they 
define w⋆ implicitely as the solution minw �[Ln(w)] , where Ln is the empirical loss over n 
observations, whereas we posit a generative model which explicitly depends on w⋆ . As a 
result, their model has the merit of being more general and covering many different statis-
tical learning problems (e.g., linear regression, generalized linear models, sparse inverse 
covariance estimation). Unlike ours, however, it does isolate explicitly the impact of noise 
and does not capture the loss of information inherent in classification where discrete sig-
nals are generated from continuous inputs.

Finally, Scarlett and Cevher (2017) proved similar sufficient conditions for support 
recovery in 1-bit compressed sensing and accompanied them with necessary conditions 
and constants C > 0 as tight as possible. To that extent, their result (Corollary 3) might 
appear stronger than ours. However, their condition is valid only for low sparsity and low 
signal-to-noise regimes. Theorem 3, on the other hand, remains valid for all values of k and 
� . In particular, it holds even if k scales linearly in p and � is low: a regime for which Scar-
lett and Cevher (2017) provide necessary (Corollary 4) but no sufficient conditions. More 
precisely, they prove that perfect support recovery cannot be achieved if the number of 
samples is below a threshold scaling as p

√

log p , while our bound scales as p log p in this 
regime. Combined together, there is a 

√

log p factor between necessary and sufficient con-
ditions, which hints at the absence of a clear phase transition in this setting. As illustrated 
in Fig. 1, there is an intermediate sample size regime where support recovery is neither 
provably impossible nor achievable. Of course, this regime could be a deficiency of the 
proof techniques used, but in any case, we believe it constitutes an exciting direction for 
future research.

5 � Conclusion

In this paper, we have proposed a tractable binary convex optimization algorithm for solv-
ing sparse classification. Although the problem is theoretically NP-hard, our algorithm 
scales for logistic regression and SVM in problems with n, p in 10, 000s within minutes. 
We also introduce a stochastic version of the constraint generation process which further 
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reduces computational time by a factor 2 to 10 on numerical experiments. Comparing our 
method and Lasso-based estimates, we observe empirically that as n increases, the number 
of true features selected by both methods converges to the true sparsity. We support our 
observations with information-theoretic sufficient conditions, stating that support recovery 
is achievable as soon as n > n0 , with n0 < C

(

2 + 𝜎
2
)

k log(p − k) for some positive constant 
C. This sufficient information-theoretic condition echoes and complements existing results 
in the literature for 1-bit compressed sensing. Apart from accuracy, the exact sparse formu-
lation has an edge over Lasso in the number of false features: as n increases, the number 
of false features selected by our method converges to zero, while this is not observed for 
Lasso. This phenomenon is also observed for classifying the type of cancer using gene 
expression data from the Cancer Genome Atlas Research Network with n = 1145 lung 
cancer patients and p = 14,858 genes. Sparse classification using logistic and hinge loss 
returns a classifier based on 90 and 38 genes respectively compared with 378.4 genes for 
ElasticNet with similar predictive accuracy.

Appendix: Proof of the sufficient condition for support recovery

Preliminary results on orthant probabilities

Let us recall an analytical expression for the probability that a bivariate normal distribu-
tion assigns to the positive orthant.

Lemma 2  (Cramér, 2016, p. 290) Assume we are given a zero mean bivariate normal ran-
dom variable (n1, n2) with �[n2

1
] = �[n2

2
] = 1 and covariance �12 = �[n1n2] . Then,

By continuity of the density function of normal distributions, the probability of the 
positive orthant and its interior are equivalent. Lemma 1 is an almost direct consequence 
of the previous result. We give here its proof.

Proof of Lemma 1  We can separate the event of interest in two disjunct cases as

Each term corresponds to the probability that a zero mean bivariate normal variable 
(x⊤w, x⊤w� + 𝜀) realizes in an appropriate orthant. We define the random variables 
n1 ∶= x⊤w∕‖w‖2 and n2 ∶= (x⊤w� + 𝜀)∕

�

‖w�
‖

2
2
+ 𝜎2 and obtain

We have that �[n2
1
] = 1 , �[n2

2
] = 1 and 𝜌12 = �[n1n2] = w⊤w�∕(‖w‖2

�

‖w�
‖

2
2
+ 𝜎2) . Using 

the analytical expressions of such orthant probabilities for bivariate normal random varia-
bles given in Lemma  2, we have hence ℙ

(

sign
(

x⊤w
)

≠ sign
(

x⊤w� + 𝜀

))

=
1

�

(

�

2
− arcsin(�12)

)

=
1

�
arccos(�12). 	� ◻

ℙ
(

n1 ⩾ 0, n2 ⩾ 0
)

=
1

2�

(

�

2
+ arcsin(�12)

)

.

ℙ
(

sign
(

x⊤w
)

≠ sign
(

x⊤w� + 𝜀

))

= ℙ
(

x⊤w ⩽ 0, x⊤w� + 𝜀 > 0
)

+ ℙ
(

x⊤w > 0, x⊤w� + 𝜀 ⩽ 0
)

.

ℙ
(

sign
(

x⊤w
)

≠ sign
(

x⊤w� + 𝜀

))

= ℙ(n1 ≤ 0, n2 > 0) + ℙ(n1 > 0, n2 ≤ 0).
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We will need a minor generalization of Lemma 2 to the three dimensional case in the 
proof of Theorem 3.

Lemma 3  (Cramér, 2016, p. 290) Assume we are given a zero mean trivariate normal ran-
dom variable (n1, n2, n3) with �[n2

1
] = �[n2

2
] = �[n2

3
] = 1 among which we have covari-

ances �12 = �[n1n2] , �13 = �[n1n3] and �23 = �[n2n3] . Then,

Comparative performance of a given support with the truth

We first prove a large deviation bound for ℙ
(

Δ(w,w⋆) ⩽ 0
)

 for any given binary classi-
fier w , depending on the number of true features it selects. The following result can be 
derived using Hoeffdings inequality as illustrated in its proof.

Lemma 4  Let w ∈ {0, 1}p be a binary classifier such that ‖w‖0 = k and 
w⊤w⋆ = � ∈ {0,… , k} . Its misclassification rate with respect to the ground truth satisfies 
the exponential bound

Proof of Lemma 4  Let us consider a binary classifier w ∈ {0, 1}p with sparsity ‖w‖0 = k 
and true features w⊤w⋆ = � . We compare the empirical misclassification rate of w with the 
performance of the true support w⋆ . We take the misclassification rate with respect to the 
ground truth w⋆ as

which is composed of the sum of independent random variables Zi taking values in 
{−1, 0, 1} such that

Each random variable yi , ŷi(w⋆) , ŷi(w) is the sign of the normally distributed quantities 
x(i)

⊤

w⋆ + 𝜀i , x(i)
⊤

w⋆ and x(i)⊤w respectively. Let us define three zero mean random vari-
ables n1 = (x(i)

⊤

w + ei)∕
√

k + 𝜎2 , n2 = x(i)
⊤

w∕
√

k and n3 = x(i)
⊤

w⋆∕
√

k . Their covari-
ance structure is characterized as �12 = �[n1n2] = k∕

√

k(k + �2) , �23 = �[n2n3] = �∕k and 
�13 = �[n1n3] = �∕

√

k(k + �2) . We can then express the probabilities of each value of Zi 
as tridimensional orthant probabilities for these three zero mean correlated normal random 
variables and use the analytical expression given in Lemma 3. We hence arrive at

ℙ
(

n1 ⩾ 0, n2 ⩾ 0, n3 ⩾ 0
)

=
1

4�

(

�

2
+ arcsin(�12) + arcsin(�13) + arcsin(�23)

)

.

ℙ
(

Δ(w,w⋆) ⩽ 0
)

⩽ exp

(

−n
(k − �)2

2𝜋2(k(k + 𝜎2) − �2)

)

.

Δ(w,w⋆) =
1

n

n
∑

i=1

�
(

ŷi(w) ≠ yi
)

− �
(

ŷi(w
⋆) ≠ yi

)

=∶
1

n

n
∑

i=1

Zi

Zi =

⎧

⎪

⎨

⎪

⎩

+1, if yi = ŷi(w
⋆) ≠ ŷi(w),

−1, if yi = ŷi(w) ≠ ŷi(w
⋆),

0, otherwise
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and equivalently

Evidently, we can characterize the probability of Zi = 0 as 
ℙ(Zi = 0) = 1 − ℙ(Zi = 1) − ℙ(Zi = −1) . The mean of Zi is now easily found as the 
expression

Concavity of the arccos function on the interval [0,  1] enables us to state the gradient 
inequalities

We thus obtain a somewhat simple lower bound on the mean of Zi

We now have all the ingredients to upper-bound the probability that w performs strictly bet-
ter than w⋆ , in other words that Δ(w,w⋆) ∶=

∑n

i=1
Zi < 0 . Applying Hoeffding’s inequality 

for independent random variables supported on [−1, 1] , we have for any t > 0

ℙ
�
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�

= ℙ
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x(i)
⊤
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⊤

w ⩽ 0, x(i)
⊤
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�
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x(i)
⊤
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⊤
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⊤
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⩽ 0

�

= ℙ
�

n1 ≥ 0, n2 ≤ 0, n3 ⩾ 0
�

+ ℙ
�
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�

=
1

2𝜋

�

𝜋

2
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�

�
√
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�
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�

�
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ℙ
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�

= ℙ
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+ ℙ
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�

=
1

2𝜋

�

𝜋

2
+ arcsin

�

�
√

k(k + 𝜎2)

�

− arcsin

�

k
√

k(k + 𝜎2)

�

− arcsin

�

�

k

�

�

.

�[Zi] =
1

�

�

arccos

�

�
√

k(k + �2)

�

− arccos

�

k
√

k(k + �2)

��

.

arccos

�

k
√

k(k + �2)

�

⩽ arccos

�

�
√

k(k + �2)

�

+ arccos s�

�

�
√

k(k + �2)

�

k − �
√

k(k + �2)

= arccos

�

�
√

k(k + �2)

�

−

�

k(k + �
2)

k(k + �2) − �2

k − �
√

k(k + �2)

= arccos

�

�
√

k(k + �2)

�

−
k − �

√

k(k + �2) − �2
.

𝔼[Zi] ⩾
1

�

k − �
√

k(k + �2) − �2
.

ℙ

(

n
∑

i=1

(Zi − 𝔼[Zi]) < −nt

)

⩽ exp

(

−
nt2

2

)

,
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and taking t = �[Z] , which is non negative for � < k because arccos is decreasing on [0, 1], 
leads to ℙ

(

Δ(w,w⋆) < 0
)

⩽ exp
(

−
n

2
𝔼[Zi]

2
)

. Substituting in the previous expression our 
lower bound for the mean �[Zi] gives the desired result. 	�  ◻

Remark 2  In the absence of noise ( � = 0 ), the bound in Lemma 4 can be improved. Indeed, 
the truth makes no mistakes ( ̂yi(w⋆) = yi, ∀i ) and Δ(w,w⋆) ⩾ 0 for any w . More precisely, 
here 

∑n

i=1
�
�

ŷi(w) ≠ yi
�

 is a binomial random variable with parameters n and q(�;k, 0) . 
Therefore,

Using concavity of the logarithm and the arccos function successively yields the upper 
bound

However, such a refinement eventually modifies the result in Theorem 3 by a constant mul-
tiplicative factor only.

Proof Theorem 3

Proof of Theorem 3  We are interested in bounding the probability that the binary classifier 
with minimal empirical misclassification rate is any other than w⋆ . We can characterize the 
probability of such event as ℙ

(

∃w ≠ w⋆ s.t. Δ(w,w⋆) ⩽ 0
)

 . Evidently,

Recall that there are exactly 
(

k

�

)(

p − k

k − l

)

 distinct binary classifiers w with accuracy 

w⊤w⋆ = � . Combining a union bound and the bound from Lemma 4 yields

In order for the previous error probability to be bounded away from one, it suffices to take 
n greater than a threshold T

We can obtain a more interpretable sufficient condition by upper-bounding the threshold T. 

Assuming p ⩾ 2k , 
(

k

�

)

=

(

k

k − �

)

⩽

(

p − k

k − �

)

 and k ⩽
(

p − k

k − �

)

 , so that

ℙ
(

Δ(w,w⋆) ⩽ 0
)

= ℙ
(

Δ(w,w⋆) = 0
)

=

(

1 −
1

𝜋

arccos
(

�

k

))n

.

ℙ
(

Δ(w,w⋆) < 0
)

⩽ exp

(

−
n

𝜋

√

k − �

k + �

)

.

ℙ
�

∃w ≠ w⋆ s.t. Δ(w,w⋆) ⩽ 0
�

=
∑

�∈{0,…,k−1} ℙ
�

∃w s.t. w⊤w⋆ = �, Δ(w,w⋆) ⩽ 0
�

.

(14)

ℙ
(

∃w ≠ w⋆ s.t. Δ(w,w⋆) ⩽ 0
)

⩽

k−1
∑

�=0

(

k

�

)(

p − k

k − �

)

exp

(

−n
(k − �)2

2𝜋2(k(k + 𝜎2) − �2)

)

,

(15)⩽ k ⋅ max
𝓁=0,…,k−1

(

k

𝓁

)(

p − k

k − 𝓁

)

exp

(

−n
(k − 𝓁)2

2�2(k(k + �2) − 𝓁2)

)

.

n > T ∶= max
�=0,…,k−1

2𝜋2(k(k + 𝜎
2) − �

2)

(k − �)2

[

log k + log

(

k

�

)

+ log

(

p − k

k − �

)]

.
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where ≲ signifies that the inequality holds up to a multiplicative factor. Since 

log

(

p − k

k − �

)

≲ (k − �) log

(

p − k

k − �

)

 , we now have

The maximum over � in the right hand side of the previous inequality occurs when 
� = k − 1 . The previous observation yields hence that T ≲ (2 + 𝜎

2)k log(p − k) . Finally, it 
is easy to verify that when n exceeds some threshold value n0 ⩾ T  , the inequality (15) 
yields

	�  ◻
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