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Abstract
Measuring the performance of a classifier is a vital task in machine learning. The run-
ning time of an algorithm that computes the measure plays a very small role in an offline 
setting, for example, when the classifier is being developed by a researcher. However, the 
running time becomes more crucial if our goal is to monitor the performance of a classi-
fier over time. In this paper we study three algorithms for maintaining two measures. The 
first algorithm maintains area under the ROC curve (AUC) under addition and deletion of 
data points in O(log n) time. This is done by maintaining the data points sorted in a self-
balanced search tree. In addition, we augment the search tree that allows us to query the 
ROC coordinates of a data point in O(log n) time. In doing so we are able to maintain AUC 
in O(log n) time. Our next two algorithms involve in maintaining H-measure, an alternative 
measure based on the ROC curve. Computing the measure is a two-step process: first we 
need to compute a convex hull of the ROC curve, followed by a sum over the convex hull. 
We demonstrate that we can maintain the convex hull using a minor modification of the 
classic convex hull maintenance algorithm. We then show that under certain conditions, 
we can compute the H-measure exactly in O

(

log2 n
)

 time, and if the conditions are not met, 
then we can estimate the H-measure in O

(

(log n + �
−1) log n

)

 time. We show empirically 
that our methods are significantly faster than the baselines.

Keywords  AUC​ · H-measure · Online algorithm

1  Introduction

Measuring the performance of a classifier is a vital task in machine learning. The running 
time of an algorithm that computes the measure plays a very small role in an offline setting, 
for example, when the classifier is being developed by a researcher. However, the running 
time becomes more crucial if our goal is to monitor the performance of a classifier over 
time where the new data points may arrive at a significant speed.
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For example, consider a task of monitoring abnormal behaviour in IT systems based on 
event logs. Here, the main problem is the gargantuan volume of event logs making the manual 
monitoring impossible. One approach is to have a classifier to monitor for abnormal events 
and alert analysts for closer inspection. Here, monitoring should be done continuously to 
notice abnormalities rapidly. Moreover, the performance of the classifier should also be moni-
tored continuously as the underlying distribution, and potentially the performance of the clas-
sifier, may change due to the changes in the IT system.

In order to detect recent changes in the performance, we are often interested in the perfor-
mance over the last n data points. More generally, we are interested in maintaining the meas-
ure under addition or deletion of data points.

We study algorithms for maintaining two measures. The first measure is the area under the 
ROC curve (AUC), a classic technique of measuring the performance of a classifier based on 
its ROC curve. We also study H-measure, an alternative measure proposed by Hand (2009). 
Roughly speaking, the measure is based on the minimum weighted loss, averaged over the 
cost ratio. A practical advantage of the H-measure over AUC is that it allows a natural way of 
weighting classification errors.

Both measures can be computed in O(n log n) time from scratch, or in O(n) time if the data 
points are already sorted. In this paper we present 3 algorithms that allow us to maintain the 
measures in polylogarithmic time.

The first algorithm maintains AUC under addition or deletion of data points. The approach 
is straightforward: we maintain the data points sorted in a self-balanced search tree. In order 
to update AUC we need to know the ROC coordinates of the data point that we are changing. 
Luckily, this can be done by modifying the search tree so that it maintains the cumulative 
counts of the labels in each subtree. Consequently, we can obtain the coordinates in O(log n) 
time, which leads to a total of O(log n) maintenance time.

Our next two algorithms involve maintaining the H-measure. Computing the H-measure 
involves finding the convex hull of the ROC curve, and enumerating over the hull. First we 
show that we can use a classic dynamic convex hull algorithm with some minor modifications 
to maintain the convex hull of the ROC curve. The modifications are required as we do not 
have the ROC coordinates of individual data points, but we can use the same trick as when 
computing AUC to obtain the needed coordinates.

Then we show that if we estimate the class priors from the test data, we can decompose the 
H-measure into a sum over the points in the convex hull such that the ith term depends only 
on the difference between the ith and the (i − 1) st data points. This decomposition allows us to 
maintain the H-measure in O

(

log2 n
)

 time.
If the class priors are not estimated from the test data, then we propose an estimation algo-

rithm. Here the idea is to group points that are close in the convex hull together. Or in other 
words, if there are points in the convex hull that are close to each other, then we only use one 
data point from such group. The grouping is done in a way that we maintain �-approximation 
in O

(

(log n + �
−1) log n

)

 time.
Structure The rest of the paper is organized as follows. We present preliminary definitions 

in Sect. 2. In Sect. 4 we demonstrate how to maintain AUC, and in Sects. 5 and 6 we demon-
strate how to maintain the H-measure. We present the experimental evaluation in Sect. 7, and 
conclude the paper with a discussion in Sect. 8.
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2 � Preliminaries

Assume that we are given a multiset of n data points Z. Each data point z = (s,�) consists 
of a score s ∈ R and a true label � ∈ {1, 2} . The score is typically obtained by applying a 
classifier with high values implying that z should be classified as class 2. To simplify the 
notation greatly, given z = (s,�) we define d(z) = (1, 0) if � = 1 , and d(z) = (0, 1) if � = 2 . 
We can now write

that is, nj is the number of points having the label equal to j. Here we used a convention 
that the sum of two tuples, say (a, b) and (c, d), is (a + c, b + d) . Note that n = n1 + n2.

Let S =
(

s1,… , sn
)

 be the list of all scores, ordered from the smallest to the largest. Let 
us write

that is, ri are the label counts of points having a score less than or equal to si.
We obtain the ROC curve by normalizing ri in Eq. 1, that is, the ROC curve is a list of 

n + 1 points X = (x0, x1,… , xn) , where

and x0 = (0, 0) . Note that not all points in X are necessarily unique. The points in X are 
confined in the unit rectangle of (0, 1) × (0, 1) . See Fig. 1 for illustration.1

The area under the curve, auc(Z) is the area below the ROC curve. If there is a threshold 
� such that all data points with a score smaller than � belong to class 1 and all data points 
with a score larger than � belong to class 2, then auc(Z) = 1 . If the scores are independent 
of the true labels, then the expected value of auc(Z) is 1/2.

(n1, n2) =
∑

z∈Z

d(z),

(1)ri =
∑

z∈Z,s(z)≤si
d(z),

xi = (ri1∕n1, ri2∕n2)

Fig. 1   Example of a ROC curve 
and AUC. If we consider label 
1 as a true label and label 2 as a 
false label, then the vertical axis 
is the true positive rate (TPR) 
while the horizonal axis is the 
false positive rate (FPR)

1  For notational convenience, we treat the first coordinate as the vertical and the second coordinate as the 
horizontal.
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Instead of defining auc(Z) using the ROC curve, we can also define it directly with 
Mann–Whitney U statistic (Mann and Whitney 1947). Assume that we are given a multiset 
of points Z. Let S1 = {s ∣ (s,�) ∈ Z,� = 1} be a multiset of scores with the corresponding 
labels being equal to 1, and define S2 similarly. The Mann–Whitney U statistic is equal to

We obtain auc(Z) by normalizing U, that is, auc(Z) = 1

|
S1||S2|

U.
AUC can be computed naively using U statistic in O

(

n2
)

 time. However, we can easily 
speed up the computation to O(n log n) time using Algorithm 1. To see the correctness, note 
that in Eq. 2 each t ∈ S2 contributes to U with

Algorithm 1 achieves its running time by maintaining the first term (in a variable h) as it 
loops over sorted scores. Note that if Z is already sorted, then the running time reduces to 
linear.

Our first goal is to show that we can maintain AUC in O(log n) time under addition or 
removal of data points.

Our second contribution is a procedure for maintaining H-measure.
H-measure is an alternative method proposed by Hand (2009). The main idea is as follows: 

consider minimizing weighted loss,

where c is a cost ratio, � is a threshold, z is a random data point, and �k = p(�(z) = k) 
are class priors. Let us write �(c) to be the threshold minimizing Q(c, �) for a given c. 
Increasing c will decrease �(c) , or in other words by varying c we will vary the thresh-
old. As pointed out by Flach et al. (2011) the curve Q(c, �(c)) is a variant of a cost curve 
[see Drummond and Holte (2006)],

Here the difference is that Q(c, �(c)) uses class priors �k whereas the cost curve omits them.

(2)U =
�

s∈S1

�

t∈S2

f (s, t), where f (s, t) =

⎧

⎪

⎨

⎪

⎩

1 if s < t,

0.5 if s = t,

0 if s > t.

∑

s∈S1

f (s, t) =
|

|

|

{

s ∈ S1 ∣ s < t
}

|

|

|

+
1

2

|

|

|

{

s ∈ S1 ∣ s = t
}

|

|

|

.

Q(c, 𝜎) = cp(s(z) > 𝜎,�(z) = 1) + (1 − c)p(s(z) ≤ 𝜎,�(z) = 2)

= c𝜋1p(s(z) > 𝜎 ∣ �(z) = 1) + (1 − c)𝜋2p(s(z) ≤ 𝜎 ∣ �(z) = 2),

cp(s(z) > 𝜎 ∣ �(z) = 1) + (1 − c)p(s(z) ≤ 𝜎 ∣ �(z) = 2).
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Since not all values of c may be sensible, we assume that we are given a weight func-
tion u(c). We are interested in measuring the weighted minimum loss as we vary c,

Here small values of L indicate strong signal between the labels and the score.
The H-measure is a normalized version of L,

Here, Lmax is the largest possible value of L over all possible ROC curves. The negation is 
done so that the values of H are consistent with the AUC scores: values close to 1 represent 
good performance.

We will see that the convenient choice for u will be a beta distribution, as suggested 
by Hand (2009), since it allows us to express the integrals in a closed form.

Computing the empirical H-measure in practice starts with an ROC curve X. The 
following computations assume that the ROC curve is convex. If not, then the first step 
is to compute the convex hull of X, which we will denote by Y =

(

y0,… , ym
)

 . Taking a 
convex hull will inflate the performance of the underlying classifier, however it is pos-
sible to modify the underlying classifier [see Hand (2009) for more details] so that its 
ROC curve is convex.

We then define

where, recall that, �k = p(�(z) = k) are the class probabilities and 
(

y0,… , ym
)

 is the convex 
hull. The probabilities �k can be either estimated from Z or by some other means. If former, 
then we show that we can maintain the H-measure exactly, if latter, then we need to esti-
mate the measure in order to achieve a sublinear maintenance time.

We also set c0 = 0 and cm = 1 . Note that ci is a monotonically decreasing function of 
the slope of the convex hull. This guarantees that ci ≤ ci+1 . We can show that [see Hand 
(2009)] if ci < c < ci+1 , then the minimum loss is equal to

We can now write Eq. 3 as

and if we use beta distribution with parameters (�, �) as u(c), we have

where B(⋅, �, �) is an incomplete beta function.
Finally, we can show that the normalization constant is equal to

(3)L = ∫ Q(c, �(c))u(c)dc.

H = 1 − L∕Lmax.

(4)ci =
�2(yi2 − y(i−1)2)

�2(yi2 − y(i−1)2)) + �1(yi1 − y(i−1)1)
,

Q(c, �(c)) = c�1(1 − yi1) + (1 − c)�2yi2.

(5)L =

m
∑

i=0

�1(1 − yi1)∫
ci+1

ci

cu(c)dc + �2yi2 ∫
ci+1

ci

(1 − c)u(c)dc,

(6)
L =

1

B(1, �, �)

m
∑

i=0

�1(1 − yi1)
(

B(ci+1;� + 1, �) − B(ci;� + 1, �)
)

+ �2yi2
(

B(ci+1;�, � + 1) − B(ci;�, � + 1)
)

,
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Given an ROC curve X, computing the convex hull Y, and subsequent steps, can be done in 
O(n) time. We will show in Sect. 5 that we can maintain the H-measure in O

(

log2 n
)

 time 
if �k are estimated from Z. Otherwise we will show in Sect. 6 that we can approximate the 
H-measure in O

(

(�−1 + log n) log n
)

 time.
As pointed earlier, Q(c, �(c)) can be viewed as a variant of a cost curve. If we were to 

replace Q with the cost curve and use uniform distribution for u, then, as pointed by Flach 
et al. (2011), L is equivalent to the area under the cost curve. Interestingly enough, we can-
not use the algorithm given in Sect. 5 to compute the area of under the cost curve as the 
precense of the priors is needed to decompose the measure. However, we can use the algo-
rithm in Sect. 6 to estimate the area under the cost curve.

Interestingly enough, Q(c, �) can be linked to AUC. If, instead of using the optimal 
threshold �(c) , we average Q over carefully selected distribution for � and also use uniform 
distribution for c, then the resulting integral is a linear transformation of AUC (Flach et al. 
2011).

Self-balancing search trees In this paper we make a significant use of self-balancing 
search trees such as AVL-trees of red-black trees. Such trees are binary trees where each 
node, say u, has a key, say k. The left subtree of u contains nodes with keys smaller than k 
and the right subtree of u contains nodes with keys larger than k. Maintaining this invariant 
allows for efficient queries as long as the height of the tree is kept in check. Self-balancing 
trees such as AVL-trees or red-black trees keep the height of the tree in O(log n) . The bal-
ancing is done with O(log n) number of left rotations or right rotations whenever the tree 
is modified (see Fig. 2). Searching for nodes with specific keys, inserting new nodes, and 
deleting existing nodes can be done in O(log n) time. Moreover, splitting the search tree 
into two search tree or combining two trees into one can also be done in O(log n) time.

We assume that we can compare and manipulate integers of size O(n) and real numbers 
in constant time. We do this because it is reasonable to assume that the current bit-length 
of integers in modern computer acrhitecture is sufficient for any practical applications, and 
we do need to resort to any custom big integer implementations. If needed, however, the 
running times need to be multiplied by an additional O(log n) factor.

3 � Related work

Several works have studied maintaining AUC in a sliding window. Brzezinski and Ste-
fanowski (2017) maintained the order of n data points using a red-black tree but computed 
AUC from scratch, resulting in a running time of O(n + log n) , per update. Tatti (2018) 
proposed algorithm yielding �-approximation of AUC in O

(

(1 + �
−1) log n)

)

 time, per 

Lmax =
�1B(�1;� + 1, �) + �2B(1;�, � + 1) − �2B(1;�, � + 1)

B(1, �, �)
.

Fig. 2   An example of left rota-
tion in a search tree. Left figure: 
before rotation, right figure: after 
rotation. Note that only u and v 
have different children after the 
rotation
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update. Here the approach bins the ROC space into a small number of bins. The bins are 
selected so that the AUC estimate is accurate enough. Bouckaert (2006) proposed estimat-
ing AUC by binning and only maintaining counters for individual bins. On the other hand, 
in this work we do not need to resort to binning, instead we can maintain the exact AUC by 
maintaining a search search tree structure in O(log n) time, per update.

We should point out that AUC and the H-measure are defined over the whole ROC 
curve, and are useful when we do not want to commit to a specific classification thresh-
old. On the other hand, if we do have the threshold, then we can easily maintain a confu-
sion matrix, and consequently maintain many classic metrics, for example, accuracy, recall, 
F1-measure (Gama et al. 2013; Gama 2010), and Kappa-statistic  (Bifet and Frank 2010; 
Žliobaitė et al. 2015).

In a related work, Ataman et al. (2006); Ferri et al. (2002); Brefeld and Scheffer (2005); 
Herschtal and Raskutti (2004) proposed methods where AUC is optimized as a part of 
training a classifier. Note that this setting differs from ours: changing the classifier param-
eters most likely will change the scores of all data points, and may change the data point 
order significantly. On the other hand, we rely on the fact we can maintain the order using a 
search tree. Interestingly, Calders and Jaroszewicz (2007) estimated AUC using a continu-
ous function which then allowed optimizing the classifier parameters with gradient descent.

Our approaches are useful if we are working in a sliding window setting, that is, we 
want to compute the relevant statistic using only the last n data points. In other words, we 
abruptly forget the (n + 1) th data point. An alternative option would be to gradually down-
play the importance of older data points. A convenient option is to use exponential decay, 
see for example a survey by Gama et al. (2014). While maintaining the confusion matrix 
is trivial when using exponential decay but—to our knowledge—there are no methods for 
maintaining AUC or H-measure under exponential decay.

4 � Maintaining AUC​

In this section we present a simple approach to maintain AUC in O(log n) time. We accom-
plish this by showing that the change in AUC can be computed in O(log n) time whenever 
a new point is added or an existing point is deleted. We rely on the following two proposi-
tions that express how AUC changes when adding or deleting a data point. We then show 
that the quantities occurring in the propositions, namely, the weights (u1, u2) and (v1, v2) 
can be obtained in O(log n) time.

Proposition 1  (Addition) Let Z be a set of data points with (n1, n2) label counts. Let Y be 
a set of points having the same score � . Write (w1,w2) =

∑

y∈Y d(y) . Define also

Write U = n1n2 × auc(Z) and U� = (n1 + w1)(n2 + w2) × auc(Z ∪ Y) . Then

(u1, u2) =
∑

z ∈ Z

s(z) < 𝜎

d(z) and (v1, v2) =
∑

z ∈ Z

s(z) = 𝜎

d(z).

U� = U + w2

(

u1 +
v1

2

)

+ w1

(

n2 − u2 −
v2

2

)

+
w1w2

2
.
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Proof  We will use Mann–Whitney U statistic, given in Eq. 2 to prove the claim. Let us 
write Z� = Z ∪ Y  and define

Equation 2 states that

We obtain the claim by rearranging the terms.	�  ◻

Proposition 2  (Deletion) Let Z be a set of data points with (n1, n2) label counts. Let 
Y ⊆ Z be a set of points having the same score � . Write (w1,w2) =

∑

y∈Y d(y) . Define also

Write U = n1n2 × auc(Z) and U� = (n1 − w1)(n2 − w2) × auc(Z ⧵ Y) . Then

Note that the sign of the last term is the same for both addition and deletion.

Proof  We will use Mann–Whitney U statistic, given in Eq. 2 to prove the claim. Let us 
write Z� = Z ⧵ Y  and define

Equation 2 states that

We obtain the claim by rearranging the terms.	�  ◻

Si = {s ∣ (s,�) ∈ Z,� = i} and S�
i
=
{

s ∣ (s,�) ∈ Z�,� = i
}

, for i = 1, 2.

U� =
∑

s∈S�
1

∑

t∈S�
2

f (s, t)

= w1

∑

t∈S�
2

f (�, t) + w2

∑

s∈S1

f (s, �) +
∑

s∈S1

∑

t∈S2

f (s, t)

= w1

∑

t∈S�
2

f (�, t) + w2

∑

s∈S1

f (s, �) + U

= w1

(

n2 − u2 − v2 +
v2 + w2

2

)

+ w2

(

u1 +
v1

2

)

+ U.

(u1, u2) =
∑

z ∈ Z

s(z) < 𝜎

d(z) and (v1, v2) =
∑

z ∈ Z

s(z) = 𝜎

d(z).

U� = U − w2

(

u1 +
v1

2

)

− w1

(

n2 − u2 −
v2

2

)

+
w1w2

2
.

Si = {s ∣ (s,�) ∈ Z,� = i} and S�
i
=
{

s ∣ (s,�) ∈ Z�,� = i
}

, for i = 1, 2.

U =
∑

s∈S1

∑

t∈S2

f (s, t)

= w1

∑

t∈S2

f (�, t) + w2

∑

s∈S�
1

f (s, �) +
∑

s∈S�
1

∑

t∈S�
2

f (s, t)

= w1

∑

t∈S2

f (�, t) + w2

∑

s∈S�
1

f (s, �) + U�

= w1

(

n2 − u2 − v2 +
v2

2

)

+ w2

(

u1 +
v1 − w1

2

)

+ U�.
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Note that normally we would be adding or deleting a single data point, that is, Y = {y} . 
However, the propositions also allow us to modify multiple points with the same score.

These two propositions allow us to maintain AUC as long as we can compute (u1, u2) and 
(v1, v2) . To compute these quantities we will use a balanced search tree T such as red-black 
tree or AVL tree. Let S be the unique scores of Z. Each score s ∈ S is given a node n ∈ T.

Moreover, for each node x with a score of s, we will store the total label counts having the 
same score, d(x) =

∑

s(z)=s d(z) . The counts d(x) will give us immediately (v1, v2).
In addition, we will store cd(x) , cumulative label counts of all descendants of x, including x 

itself. We need to maintain these counts whenever we add or remove nodes from T, change the 
counts of nodes, or when T needs to be rebalanced. Luckily, since

we can compute cd(x) in constant time as long as we have the cumulative counts of chil-
dren of x. Whenever node x is changed, only its ancestors are changed, so the cumulative 
weights can be updated in O(log n) time. The balancing in red-black tree or AVL tree is 
done by using left or right rotation. Only two nodes are changed per rotation (see Fig. 2), 
and we can recompute the cumulative counts for these nodes in constant time. There are at 
most O(log n) rotations, so the running time is not increased.

Given a tree T and a score threshold � , let us define lcount(𝜎, T) =
∑

s(z)x<𝜎 d(x) , to be the 
total count of nodes with scores smaller than � . Computing lcount(s, T) gives us (u1, u2) used 
by Propositions 1–2.

In order to compute lcount(�, T) we will use the procedure given in Algorithm 2. Here, 
we use a binary search over the tree, and summing the cumulative counts of the left branch. 
To see the correctness of the algorithm, observe that during the while-loop Algorithm  2 
maintains the invariant that u + cd(left(x)) is equal to lcount(s(x), T) . We should point out 
that similar queries were considered by Tatti (2018). However, they were not combined with 
Propositions 1–2.

Since T is balanced, the running time of Algorithm 2 is O(log n).
In summary, we can maintain T in O(log n) time, and we can obtain (u1, u2) and (v1, v2) 

using T in O(log n) time. These quantities allow us to maintain AUC in O(log n) time.

cd(x) = cd(left(x)) + cd(right(x)) + d(x)
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5 � Maintaining H‑measure

If we were to compute the H-measure from scratch, we first need to compute the convex 
hull, and then compute the H-measure from the convex hull. In order to maintain the 
H-measure, we will first address maintaining the convex hull, and then explain how we 
maintain the actual measure.

5.1 � Divide‑and‑conquer approach for maintaining a convex hull

Maintaining a convex hull under point additions or deletions is a well-studied topic in 
computational geometry. A classic approach by  Overmars and Van Leeuwen (1981) 
maintains the hull in O

(

log2 n
)

 time. Luckily, the same approach with some modifica-
tions will work for us.

Before we continue, we should stress two important differences between our setting 
and a traditional setting of maintaining a convex hull.

First, in a normal setting, the additions and removals are done to new points in a 
plane. In other words, the remaining points do not change over time. In our case, the 
data point consists of a classifier score and a label, and modifications shift the ROC 
coordinates of every point. As a concrete example, in a traditional setting, adding a 
point cannot reveal already existing points whereas adding a new data point can shift 
the ROC curve enough so that some existing points become included in the convex hull.

Secondly, we do not have the coordinates for all the points. However, it turns out that 
we can compute the needed coordinates with no additional costs.

We should point out that the approach by  Overmars and Van Leeuwen (1981) is 
not the fastest for maintaining the hull: for example an algorithm by Brodal and Jacob 
(2002) can maintain the hull in O(log n) time. However, due to the aforementioned dif-
ferences adapting this algorithm to our setting is non-trivial, and possibly infeasible.

We will explain next the main idea behind the algorithm by Overmars and Van Leeu-
wen (1981), and then modify it to our needs.

The overall idea behind the algorithm is as follows. A generic convex hull can be 
viewed as a union of the lower convex hull and the upper convex hull. We only need to 
compute the upper convex hull, and for simplicity, we will refer to the upper convex hull 
as the convex hull.

In order to compute the convex hull C for a point set P we can use a conquer-and-
divide technique. Assume that we have ordered the points using the x-coordinate, and 
split the points roughly in half, say in sets R and Q. Then assume we have computed 
convex hulls, say H =

{

hi
}

 and G =
{

gi
}

 , for R and Q independently.
A key result by Overmars and Van Leeuwen (1981) states that the convex hull C of P 

is equal to 
{

h1,… , hu, gv, gv+1,…
}

 , that is, C starts with H and ends with G. See Fig. 3 
for illustration. The segment between hu and gv is often referred as a bridge.

We can find the indices u and v in O(log n) time using a binary search over H and G. 
In order to perform the binary search we will store the hulls H and G in balanced search 
trees (red-black tree or AVL tree). Then the binary search amounts to traversing these 
trees.
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Note that the concatenation and splitting of a search tree can be done in O(log n) 
time. In other words, we can obtain C for partial convex hulls H and G in O(log n) time.

In order to maintain the hull we will store the original points in a balanced search tree 
T;2 only the leaves store the actual points. Each node in u ∈ T  represents a set of points 
stored in the descendant leaves of u. See Fig. 3a for illustration.

Let us write H(u) to be the convex hull of these points: we can obtain H(u) from 
H(left(u)) and H(right(u)) in O(log n) time. So whenever we modify T by adding or remov-
ing a leaf v, we only need to update the ancestors of v, and possibly some additional nodes 
due to the rebalancing. All in all, we only need to update O(log n) nodes, which brings the 
running time to O

(

log2 n
)

.
An additional complication is that whenever we compute H(u) we also destroy H(left(u)) 

and H(right(u)) in the process, trees that we may need in the future. However, we can rec-
tify this by storing the remains of the partial hulls, and then reversing the join if we were to 
modify a leaf of u. This reversal can be done in O(log n) time.

5.2 � Maintaining the convex hull of a ROC curve

Our next step is to adapt the existing algorithm to our setting so that we can maintain the 
hull of an ROC curve X.

First of all, adding or removing data points shifts the remaining points. To partially rec-
tify this issue, we will use non-normalized coordinates R =

(

r0,… , rm
)

 given in Eq. 1. We 
can do this because scaling does not change the convex hull.

Consider adding or removing a data point z which is represented by a leaf u ∈ T  . The 
points in R associated with smaller scores than s(z) will not shift, and the points in R asso-
ciated with larger scores than s(z) will shift by the same amount. Consequently, the only 
partial hulls that are affected are the ancestors of u. This allows us to use the update algo-
rithm of Overmars and Van Leeuwen (1981) for our setting as long as we can obtain the 
coordinates of the points.

(a) (b)

Fig. 3   Left figure: an example of combining two partial convex hulls into one by finding a bridge segment. 
Right figure: a stylized data structure for maintaing convex hull. Each node corresponds to a partial convex 
hull (that are stored in separate search trees), a parent hull is obtained from the child hulls by finding the 
bridge segment. Leaf nodes containing individual data points are not shown

2  This is a different tree than the trees used for storing convex hulls.
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Our second issue is that we do not have access to the coordinates ri . We approach the 
problem with the same strategy as when we were computing AUC.

Let U be the search tree of a convex hull H. Let u ∈ U be a node with coordinates ri . 
We will define and store d(u) as the coordinate difference ri − ri−1 . Let si be the score 
corresponding to ri . Then Eq. 1 implies that d(u) =

∑

si−1<s(z)≤si d(z).
In addition, we will store cd(u) , the total sum of the coordinate differences of 

descendants of u, including u itself.
Let u be the root of U. The coordinates, say p, of u in U are cd(left(u)) + d(u) . Moreo-

ver, the coordinates of the left child of u are

and the coordinates of the right child of u are

In other words, we can compute the coordinates of children in U in constant time if we 
know the coordinates of a parent.

When combining two hulls, the binary search needed to find the bridge is based on 
descending U from root to the correct node. During the binary search the algorithm 
needs to know the coordinates of a node which we can now obtain from the coordinates 
of the parent. In summary, we can do the binary search in O(log n) time, which allow us 
to maintain the hull of a ROC curve in O

(

log2 n
)

 time.
For completeness we present the pseudo-code for the binary search in Appendix.

5.3 � Maintaining H‑measure

Now that we have means to maintain the convex hull, our next step is to maintain the 
H-measure. Note that the only non-trivial part is L given in Eq. 5.

Assume that we have n data points Z with nk data points having class k. Let 
Y =

(

y0,… , ym
)

 be the convex hull of the ROC curve computed from Z. Let (d1,… , dm) 
the non-normalized differences between the neighboring points, that is,

We will now assume that �k occurring in Eq. 5 are computed from the same data as the 
ROC curve, that is, �k = nk∕n . We can rewrite the first term in Eq. 5 as

Similarly, we can express the second term of Eq. 5 as

p − d(u) − cd(right(left(u))),

p + d(right(u)) + cd(left(right(u))).

di1 = n1(yi1 − y(i−1)i) and di2 = n2(yi2 − y(i−1)2).

m
∑

i=0

�1(1 − yi1)∫
ci+1

ci

cu(c)dc =
1

n

m
∑

i=0

m
∑

j=i+1

dj1 ∫
ci+1

ci

cu(c)dc

=
1

n

m
∑

j=1

dj1

j−1
∑

i=0
∫

ci+1

ci

cu(c)dc

=
1

n

m
∑

j=1

dj1 ∫
cj

0

cu(c)dc.
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If we use the beta distribution for u, Eq. 6 reduces to

Let us now consider values cj . Because we assume that �k are estimated from the testing 
data, we have �k = nk∕n , so the values cj , given in Eq. 4, reduce to

In summary, the terms of the sum in Eq. 7 depend only on the coordinate differences dj . 
We should stress that this is only possible if we assume that �k are computed from the same 
data as the ROC curve. Otherwise, the terms nk will not cancel out when computing cj.

Let T be a binary tree representing a convex hull. The sole dependency on dj allows 
us to use T to maintain the H-measure. In order to do that, let v ∈ T  be a node with the 
coordinate difference (d1, d2) = d(v) . Let c = d2∕(d1 + d2) . We define

We also maintain ch(v) to be the sum of h(u) of all descendants u of v, including v. Note 
that maintaining ch(v) can be done in a similar fashion as cd(v).

Finally, Eq.  7 implies that L =
ch(root(T))

nB(1,�,�)
 , allowing us to maintain the H-measure in 

O
(

log2 n
)

 time.

6 � Approximating H‑measure

In our final contribution we consider the case where �k are not computed from the same 
dataset as the ROC curve. The consequence is that we no longer can simplify cj so that 
it only depends on dj , and we cannot express L as a sum over the nodes of the tree repre-
senting the convex hull.

We will approach the task differently. We will still maintain the convex hull H. We 
then select a subset of points from H from which we compute the H-measure from 
scratch. This subset will be selected carefully. On one hand, the subset will yield an 
�-approximation. On the other hand, the subset will be small enough so that we still 
obtain polylogarithmic running time.

We start by rewriting Eq. 5. Given a function x ∶ [0, 1] → ℝ
+ , let us define

m
∑

i=0

�2yi2 ∫
ci+1

ci

(1 − c)u(c)dc =
1

n

m
∑

i=0

i
∑

j=1

dj2 ∫
ci+1

ci

(1 − c)u(c)dc

=
1

n

m
∑

j=1

dj2

m
∑

i=j
∫

ci+1

ci

(1 − c)u(c)dc

=
1

n

m
∑

j=1

dj2 ∫
1

cj

(1 − c)u(c)dc.

(7)L =
1

nB(1, �, �)

m
∑

j=1

dj1B(cj, � + 1, �) + dj2(B(1, �, � + 1) − B(cj, �, � + 1)).

cj =
�2(yj2 − y(j−1)2)

�2(yj2 − y(j−1)2)) + �1(yj1 − y(j−1)1)
=

�2dj2∕n2

�1dj1∕n1 + �2dj2∕n2
=

dj2

dj1 + dj2
.

h(v) = d1B(c, � + 1, �) + d2(B(1, �, � + 1) − B(c, �, � + 1)).
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Consider the values 
{

yi
}

 and 
{

ci
}

 as used in Eq.  5. We define two functions 
f , g ∶ [0, 1] → ℝ

+ as

We can now write Eq. 5 as L = L1(f ) + L2(g).
We say that a function x′ is an �-approximation of a function x if |x(c) − x�(c)| ≤ �x(c) . 

The following two propositions are immediate.

Proposition 3  Let x′ be an �-approximation of x, then

Proposition 4  Let f and g be defined as in Eq. 8, and let f ′ and g′ be respective �-approx-
imations. Define

Then |H − H�
| ≤ �(1 − H).

In other words, if we can approximate f and g, we can also approximate the H-meas-
ure. Note that the guarantee is �(1 − H) , that is, the approximation is more accurate 
when H is closer to 1, that is, a classifier is accurate.

Next we will focus on estimating g.

Proposition 5  Assume 𝜖 > 0 . Let Y be the convex hull of an ROC curve. Let Q be a sub-
set of Y such that for each yi , there is qj ∈ Q such that

Let g be the function constructed from Y as given by Eq. 8, and let g′ be a function con-
structed similarly from Q. Then g′ is an �-approximation of g.

Proof  Let (ci) be the slope values computed from Y using Eq. 4, and let (c�
i
) be the slope 

values computed from Q.
Due to convexity of Y, the slope values have a specific property that we will use several 

times: fix index j, and let i be the index such that yi = qj . Then

Assume 0 < c < 1 . Let i be an index such that ci ≤ c < ci+1 , consequently g(c) = yi2 . Simi-
larly, let j be an index such that c�

j
≤ c < c�

j+1
 , so that g�(c) = qj2 . Let a be an index such that 

qj = ya.
If g(c) = g�(c) , then we have nothing to prove. Assume g(c) < g�(c) = qj2.

L1(x) = ∫
1

0

�1x(c)cu(c)dc, and L2(x) = ∫
1

0

�2x(c)(1 − c)u(c)dc.

(8)
g(c) = yi2, where ci ≤ c < ci+1, and g(1) = 1,

f (c) = 1 − yi1, where ci ≤ c < ci+1, and f (1) = 0.

|

|

L1(x) − L1(x
�)|
|

≤ �L1(x) and |

|

L2(x) − L2(x
�)|
|

≤ �L2(x).

H = 1 −
L1(f ) + L2(g)

Lmax
and H� = 1 −

L1(f
�) + L2(g

�)

Lmax
.

(9)qj = yi or qj2 ≤ yi2 ≤ q(j+1)2 ≤ (1 + �)qj2.

(10)c�
j
≤ ci and c�

j+1
≥ ci+1.
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Assume qj2 > (1 + 𝜖)q(j−1)2 . Then Eq.  9 implies that ya−1 = qj−1 , and so 
ca = c�

j
≤ c < ci+1 . Thus, i ≥ a , and g(c) = g(ci) ≥ g(ca) = g�(c�

j
) = g�(c) , which is a 

contradiction.
Assume qj2 ≤ (1 + �)q(j−1)2 . Let b be an index such that yb = qj−1 . Then Eq. 10 implies

Thus, b < i and so q(j−1)2 = yb2 = g(cb) ≤ g(ci) = g(c) . This leads to

proving the proposition.
Now, assume g(c) > g�(c) = qj2.
Assume q(j+1)2 > (1 + 𝜖)qj2 . If ya+1 ∉ Q , then Eq.  9 leads to a contra-

diction. Thus ya+1 = qj+1 and so c�
j
≤ c < c�

j+1
= ca+1 . Thus, i ≤ a , and 

g(c) = g(ci) ≤ g(ca) = g�(c�
j
) = g�(c) , which is a contradiction.

Assume q(j+1)2 ≤ (1 + �)qj2 . Let b be an index such that yb = qj+1 . Then Eq. 10 implies

Thus i < b or g(c) = yi2 ≤ yb2 = q(j+1)2 . This leads to

proving the proposition.	�  ◻

A similar result also holds for L1(f ) . We omit the proof as it is very similar to the proof of 
Proposition 5.

Proposition 6  Assume 𝜖 > 0 . Let Y be a convex hull of a ROC curve. Let Q be a subset of 
Y such that for each yi , there is qj ∈ Q such that

Let f be the function constructed from Y as given by Eq. 8, and let f ′ be a function con-
structed similarly from Q. Then f ′ is an �-approximation of f.

The above propositions lead to the following strategy. Only use a subset of the ROC curve 
to compute the H-measure; if we select the points carefully, then the relative error will be less 
than �.

Let us now focus on estimating L2(g) . Assume that we have the convex hull 
Y =

{

y0,… , ym
}

 of a ROC curve stored in a search tree T. Consider an algorithm given in 
Algorithm 3 which we call Subset.

cb+1 ≤ c�
j
≤ c < ci+1.

|

|

g�(c) − g(c)|
|

= qj2 − g(c) ≤ (1 + �)q(j−1)2 − g(c) ≤ (1 + �)g(c) − g(c) = �g(c),

ci ≤ c < c�
j+1

≤ cb.

|

|

g(c) − g�(c)|
|

≤ q(j+1)2 − qj2 ≤ (1 + 𝜖)qj2 − qj2 = 𝜖qj2 = 𝜖g�(c) < 𝜖g(c),

qj = yi or 1 − q(j+1)1 ≤ 1 − yi1 ≤ 1 − qj1 ≤ (1 + �)(1 − q(j+1)1).
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The pseudo-code traverses T, and maintains two variables p and q that bound the points 
of the current subtree. If q2 ≤ (1 + �)p2 , then we can safely ignore the current subtree, 
otherwise we output the current root, and recurse on both children. It is easy to see that 
Q =

{

y0, ym
}

∪ SUBSET(r, 0, cd(r)) satisfies the conditions of Proposition 5.
A similar traverse can be also done in order to estimate L1(f ) . However, we 

can estimate both values with the same subset by replacing the if-condition with 
q2 > (1 + 𝜖)p2 �� 1 − q1 > (1 + 𝜖)(1 − p1).

Proposition 7  Subset runs in O
(

(1 + �
−1) log2 n

)

 time.

Proof  Given a node v, let us write Tv to mean the subtree rooted at v. Write pv and qv to be 
the values of p and q when processing v.

Let V be the reported nodes by Subset. Let W ⊆ V  be a set of m nodes that have two 
reported children. Let 

{

h1,… , hm
}

 be the non-normalized 2nd coordinate of nodes in W, 
ordered from smallest to largest.

Fix i and let u and v be the nodes corresponding to hi and hi+1 . Assume that v ∉ Tu . Let 
r = right(u) be the right child of u. Then Tr ∩W = � as otherwise hi and hi+1 would not be 
consecutive. We have hi+1 ≥ qr2 > (1 + 𝜖)pr2 = (1 + 𝜖)hi.

Assume that v ∈ Tu which immediately implies that u ∉ Tv . Let r = left(u) be the left 
child of v. Then Tr ∩W = � , and we have hi+1 = qr2 > (1 + 𝜖)pr2 ≥ (1 + 𝜖)hi.

In summary, hi+1 > (1 + 𝜖)hi . Since 
{

hi
}

 are integers, we have h2 ≥ 1 . In addition, 
hm ≤ n since the original data points (from which the ROC curve is computed) do not have 
weights.

Consequently, n ≥ hm ≥ (1 + �)m−2 . Solving m leads to 
m ∈ O

(

log1+𝜖 n
)

⊆ O
(

(1 + 𝜖
−1) log n

)

.
Given v ∈ W , define k(v) to be the number of nodes in V ⧵W that have v as their young-

est ancestor in W. The nodes contributing to k(v) form at most two paths starting from v. 
Since the height of the search tree is in O(log n) , we have k(v) ∈ O(log n).

Finally, we can bound |V| by

concluding the proof.	�  ◻

|V| =
∑

v∈W

1 + k(v) ∈ O(m log n) ⊆ O
(

(1 + 𝜖
−1) log2 n

)

,
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6.1 � Speed‑up

It is possible to reduce the running time of Subset to O
(

log2 n + �
−1 log n

)

 . We should point 
out that in practice Subset is probably a faster approach as the theoretical improvement is rela-
tively modest but at the same time the overheads increase.

There are several ways to approach the speed-up. Note that the source of the additional 
log n term is that in the proof of Proposition 7, we have k(v) ∈ O(log n) . The loose bound is 
due to the fact that we are traversing a search tree balanced on tree height. We will modify the 
search procedure, so that we can show that k(v) ∈ O(1) which will give us the desired out-
come. More specifically, we would like to traverse the hull using a search tree balanced using 
the 2nd coordinate.

The best candidate to replace the search tree for storing the convex hull is a weight-bal-
anced tree (Nievergelt and Reingold 1973). Here, the subtrees are (roughly) balanced based on 
the number of children. The problem is that this tree, despite its name, does not allow weights 
for nodes. Moreover, the algorithm relies on the fact that the nodes have no weights.

It is possible to extend the weight-balanced trees to handle the weights but such modifica-
tion is not trivial. Instead we demonstrate an alternative approach that is possible using only 
stock search structures.

We will do this by modifying the search tree T in which the nodes correspond to the partial 
hulls, see Fig. 3b.

Let Z be the current set of points and let P = {(s,�) ∈ Z ∣ � = 2} be the points with label 
equal to 2. Set N = Z ⧵ P . We store P in a tree T of bounded balance; the points are only 
stored in leaves. Each leaf, say u, also stores all points in N that follow immediately u. These 
points are stored in a standard search tree, say Lu , so that we can join two trees or split them 
when needed. Any points in N that are without a preceding point in P are handled and stored 
separately.

Note that Lu correspond to a vertical line when drawing the ROC curve. Consequently, a 
point in the convex hull will always be the last point in Lu for some u. This allows us to define 
the weight d(u) of a leaf u in T as (m, 1), where m is the number of nodes in Lu . We now apply 
the convex hull maintenance algorithm on T. As always, we maintain the cumulative weights 
cd(u) for the non-leaf nodes.

In order to approximate the H-measure we will use a variant of Subset, except that we will 
traverse T instead of traversing the hull. The pseudo-code is given in Algorithm 4. At each 
node we output the bridge, if it is included in the final convex hull. The condition is easy to 
test, we just need to make sure that it does not overlap with the previously reported bridges. 
Since we output both points of the bridge, this may lead to duplicate points, but we can prune 
them as a post-processing step. Finally, we truncate the traversal if the subtree is sandwiched 
between two bridges that are close enough to each other. It is easy to see that the output of 
SubsetAlt satisfies the conditions in Proposition 5 so we can use the output to estimate L2(g) . 
In order to estimate L1(f ) we duplicate the procedure, except we swap the labels and negate 
the scores which leads to a mirrored ROC curve.
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Proposition 8  SubsetAlt runs in O
(

log2 n + �
−1 log n

)

 time.

Proof  Let T be the tree traversed by SubsetAlt. Let us write Tv to be the subtree rooted at 
v.

Let n(v) be the number of nodes in Tv , and let �(v) be the number of leaves in Tv . Note 
that n(v) = 2�(v) + 1.

Let v be a child of u. Since T is a weight-balanced tree (Nievergelt and Reingold 1973), 
we have

Let us write o(v) to be the 2nd origin coordinate of Tv . Note that o(v) corresponds to the 
variable o2 in SubsetAlt when v is processed.

Let V be the set of nodes whose bridges we output, and let U be the set of nodes in T for 
which �(u) > 𝜖o(u).

We will prove the claim by showing that V ⊆ U and |U| ∈ O
(

log2 n + �
−1 log n

)

.
To prove the first claim, let v ∈ V  . Let p and q match the variables of SubsetAlt 

when v is visited. The points p and q correspond to the two leaves of Tv . In other words, 
q2 − p2 ≤ �(v) , and o(v) ≤ p2 . Thus,

This proves that v ∈ U.
To bound |U| , let W ⊆ U be a set of m nodes that have two children in U.
Define 

(

h1,… , hm
)

= (o(right(v)) ∣ v ∈ W) to be the sequence of the (non-normalized) 
2nd coordinates of the right children of nodes in W, ordered from the smallest to the largest.

Fix i. Let u ∈ W be the node for which o(right(u)) = hi , and let v ∈ W be the node for 
which o(right(v)) = hi+1.

Assume that hi ≤ o(v) . Since v ∈ W , we have

Assume that hi > o(v) . Then u ∈ Tleft(v) , and consequently v ∉ Tright(u) . Thus, 
Tright(u) ∩W = � as otherwise hi and hi+1 are not consecutive. Since right(u) ∈ U , we have

(11)� ≤ 1 + �(v)

1 + �(u)
=

1 + 1 + 2�(v)

1 + 1 + 2�(u)
=

1 + n(v)

1 + n(u)
≤ 1 − �, where � =

1 −
√

2

2
.

�(v) ≥ q2 − p2 > 𝜖p2 ≥ 𝜖o(v).

hi+1 = o(right(v)) = o(v) + �(left(v)) > o(v) + 𝜖o(left(v)) = (1 + 𝜖)o(v) ≥ (1 + 𝜖)hi.
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In summary, we have hi+1 > (1 + 𝜖)hi . Note that h1 ≥ 1 . In addition, hm ≤ n since the origi-
nal data points (from which the ROC curve is computed) do not have weights.

Consequently, n ≥ hm ≥ (1 + �)m−1 . Solving m leads to

Given v ∈ W , define k(v) to be the number of nodes in V ⧵W that have v as their youngest 
ancestor in W. The nodes contributing to k(v) form at most two paths starting from v. Since 
the height of the search tree is in O(log n) , we have k(v) ∈ O(log n).

Assume that 𝜖 > 𝛼∕2 (recall that � =
1

2
(1 −

√

2) ). Then

proving the proposition.
Assume that � ≤ �∕2 . Let v ∈ W with k(v) > 0 . Recall that the nodes corresponding to 

k(v) form at most two paths. Let u1,… , uj be such a path.
Let w be a child of u1 for which w ∉ U . We have

which in turns implies 1 + �(u1) ≤ 2�−1(1 + �o(u1)).
Applying Eq. 11 iteratively and the fact that uj ∈ U , we see that

Solving for j leads to

and consequently k(v) ∈ O(1) . We conclude that

proving the proposition. 	�  ◻

hi+1 ≥ o(right(u)) + �(right(u)) ≥ (1 + �)o(right(u)) = (1 + �)hi.

m ∈ O
(

log1+𝜖 n
)

⊆ O
(

(1 + 𝜖
−1) log n

)

.

|V| =
∑

v∈W

1 + k(v) ∈ O(m log n) ⊆ O
(

(1 + 𝜖
−1) log2 n

)

⊆ O
(

log2 n
)

,

1 + �(u1) ≤ �
−1(1 + �(w)) (Eq. 11)

≤ �
−1(1 + �o(w)) (w ∉ U)

≤ �
−1(1 + �(o(u1) + �(u1))) (w is a child of u1)

≤ �
−1(1 + �o(u1)) + �(u1)∕2, (� ≤ �∕2)

1 + 𝜖o(u1) ≤ 1 + 𝜖o(uj) (uj is a child of u1)

< 1 + �(uj) (uj ∈ U)

≤ (1 − 𝛼)j−1(1 + �(u1)) (Eq. 11 applied j − 1 times)

≤ (1 − 𝛼)j−12𝛼−1(1 + 𝜖o(u1)).

j ≤ 1 + log1−� �∕2 ∈ O(1),

|V| =
∑

v∈W

1 + k(v) ∈ O(m) ⊆ O
(

(1 + 𝜖
−1) log n

)

,



2858	 Machine Learning (2022) 111:2839–2862

1 3

7 � Experimental evaluation

In this section we present our experimental evaluation. Our primary focus is computational 
time. We implemented our algorithm using C++.3 For convenience, we refer our algo-
rithms as DynAuc, Hexact, and Happrox.

We used 3 datasets obtained from UCI repository:4 APS contains APS failure in Sca-
nia trucks, Diabetes contains medical information of diabetes patients, here the label is 
whether the patient has been readmitted to a hospital, Dota2 describes the character selec-
tion and the outcome of a popular competitive online computer game.

Fig. 4   Running time for computing AUC 1000 times as a function of the number of data points. Left figure: 
our approach. Right figure: baseline method by computing AUC from the maintained, sorted data points. 
Note that the time units are different

Fig. 5   Running time for computing AUC 10,000 times in a sliding window as a function of the size of 
the sliding window. Left figure: our approach. Right figure: baseline method by computing AUC from the 
maintained, sorted data points. Note that the time units are different

3  Code is available at https://​versi​on.​helsi​nki.​fi/​dacs/.
4  http://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets.​php.

https://version.helsinki.fi/dacs/
http://archive.ics.uci.edu/ml/datasets.php
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Fig. 6   Running time for computing the H-measure 1000 times as a function of the number of data points. 
Left figure: our approach. Right figure: baseline method computing from sorted data points. Note that the 
time units are different

Fig. 7   Running time for computing H-measure 10 000 times in a sliding window as a function of the size 
of the sliding window. Left figure: our approach. Right figure: baseline method computing from sorted data 
points. Note that the time units are different

Fig. 8   Approximative H-measure as a function of approximation guarantee � . Left figure: running time. 
Right figure: absolute difference to the correct value
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We imputed the missing values with the corresponding means, and encoded the categor-
ical features as binary features. We then proceeded to train a logistic regressor using 1/10th 
of the data, and used remaining data as testing data. When computing the H-measure we 
used beta distribution with � = � = 2.

In our first experiment, we tested maintaining AUC as opposed to computing AUC by 
maintaining the points sorted and computing the AUC from the sorted list (Brzezinski and 
Stefanowski 2017). Given a sequence z1,… , zn of scores and labels, we compute AUC for 
z1,… , zi for every i. In the dynamic algorithm, this is done by simply adding the latest 
point to the existing structure. We record the time difference after 1000 additions.

From the results shown in Fig. 4 we see that DynAuc is about 104 times faster, though 
we should point out that the exact ratio depends heavily on the implementation. More 
importantly, the needed time increases logarithmically for DynAuc and linearly for the 
baseline. The spikes in running time of DynAuc are due to self-balancing search trees.

Next, we compare the running time of computing AUC in a sliding window. We use 
the same baseline as in the previous experiment, and record the running time after sliding 
a window for 10 000 steps. From the results shown in Fig. 5 we see that DynAuc is faster 
than the baseline by several orders of magnitude with the needed time increasing logarith-
mically for DynAuc and linearly for the baseline.

We repeat the same experiments but now we compare maintaining the H-measure 
against computing it from scratch from sorted data points. From the results shown in 
Figs. 6 and 7 we see that Hexact is about 10–102 times faster, and the time grows polyloga-
rithmically for Hexact and linearly for the baseline. Similarly, the spikes in running time 
of Hexact are due to self-balancing search trees. Interestingly, Hexact is faster for APS 
than for the other datasets. This is probably due to the imbalanced labels, making the ROC 
curve relatively skewed, and the convex hull small.

In our final experiment we use approximative H-measure, without the speed-up 
described in Sect.  6.1. Here, we measure the total time to compute the H-measure for 
z1,… , zi for every i as a function of � . Figure 8 shows the running time as well as the dif-
ference to the correct score when using the whole data.

Computing the H-measure from scratch required roughly 1 minute for APS, and 2.5 
minutes for Diabetes and Dota2. On the other hand, we only need 10 seconds to obtain 
accurate result, and as we increase � , the running time decreases. As we increase � , the 
error grows but only modestly (up to 3%), with Happrox underestimating the exact value.

8 � Conclusions

In this paper we considered maintaining AUC and the H-measure under addition and 
deletion. More specifically, we show that we can maintain AUC in O(log n) time, and the 
H-measure in O

(

log2 n
)

 time, assuming that the class priors are obtained from the testing 
data. We also considered the case, where the class priors are not obtained from the testing 
data. Here, we can approximate the H-measure in O

(

(log n + �
−1) log n

)

 time.
We demonstrate empirically that our algorithms, DynAuc and Hexact, provide signif-

icant speed-up over the natural baselines where we compute the score from the sorted, 
maintained data points.

When computing the H-measure the biggest time saving factor is maintaining the con-
vex hull, as the hull is typically smaller than all the data points used for creating the ROC 
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curve. Because of the smaller size of the hull, the tricks employed by Happrox, provide less 
of a speed-up. Still, for larger values of � , the speed-up can be almost 50%.

Appendix: Binary search for computing the bridge

Algorithm 5 contains a pseudo-code for finding the bridge of two convex hulls. The algo-
rithm is a variation of the search described by Overmars and Van Leeuwen (1981). The 
main modification here is obtaining the ROC coordinates of the points.

Due to notational convenience, we write p ⪯ q , where p and q are two points in a plane, 
if the slope of p is smaller than or equal to the slope of q.
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