
Vol.:(0123456789)

Machine Learning (2022) 111:937–976
https://doi.org/10.1007/s10994-021-06082-8

1 3

Worst‑case regret analysis of computationally budgeted
online kernel selection

Junfan Li1 · Shizhong Liao1

Received: 15 May 2021 / Revised: 14 August 2021 / Accepted: 22 September 2021 /
Published online: 22 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
We study the problem of online kernel selection under computational constraints, where
the memory or time of kernel selection and online prediction procedures is restricted to a
fixed budget. In this paper, we analyze the worst-case lower bounds on the regret of online
kernel selection algorithm with a subset of the observed examples, and design algorithms
enjoying corresponding upper bounds. We also identify the condition under which online
kernel selection with time constraints is different from that with memory constraints. To
design algorithms, we reduce the problems to two sequential decision problems, that is,
the problem of prediction with expert advice and the multi-armed bandit problem with
an additional observation. Our algorithms invent some new techniques, such as memory
sharing, hypothesis space discretization and decoupled exploration-exploitation scheme.
Numerical experiments on online regression and classification are conducted to verify our
theoretical results.

Keywords Online learning · Kernel selection · Computational constraints · Regret analysis

1 Introduction

Kernel selection is a fundamental problem of online kernel learning, which focuses on how
to select kernel functions for online kernel learning algorithms on the fly. This problem is
also termed as online kernel selection, and related to the more general online model selec-
tion (Foster et al. 2017; Muthukumar et al. 2019). Different from offline kernel selection,
where we first execute kernel selection on a training set and then learn a predictor for the
subsequent prediction tasks, the kernel selection and online prediction procedures are inte-
grated and form a sequential prediction procedure. Given a collection of kernel functions
{�i}

K
i=1

 , which induce K reproducing kernel Hilbert spaces (RKHSs) {Hi}
K
i=1

 , an adversary
sequentially sends the learner an example (�t, yt) ∈ ℝ

d ×ℝ, t = 1,… , T . The learner will

Editors: Yu-Feng Li, Mehmet Gönen, Kee-Eung Kim.

 * Shizhong Liao
 szliao@tju.edu.cn

1 College of Intelligence and Computing, Tianjin University, Tianjin 300350, China

http://orcid.org/0000-0003-0594-7116
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06082-8&domain=pdf

938 Machine Learning (2022) 111:937–976

1 3

choose a sequence of kernels {�It}
T
t=1

 and a sequence of hypotheses {ft}Tt=1 . At each round t,
the learner suffers a loss �(ft(�t), yt) . General performance measurement is the regret. The
regret with respect to (w.r.t.) Hi, i ∈ [K] is defined as follows

Since the best kernel function for the current learning task is unknown, the learner hopes to
adapt to any Hi up to a small cost.

A major challenge of online kernel selection is the high computational complexity of
evaluating kernel functions which requires to operate on the observed examples and thus
incurs a O(T) per-round time complexity and space complexity. We can solve this problem
from two computational perspectives. The first computational perspective aims at reduc-
ing the computational complexity. Most of previous work followed this line. The random
feature based online kernel selection approach (Nguyen et al. 2017) embedded the implicit
RKHSs to relatively low-dimensional explicit feature spaces, in which the time and space
complexity of evaluating kernel functions are linear with the dimension of random feature
spaces. The sketch based online kernel selection approach (Zhang and Liao 2018, 2020)
maintained a budget and incrementally constructed sketched hypothesis spaces, in which
the time and space complexity are linear with the budget size. Another approach reduces
online kernel selection to a problem of prediction with expert advice, and uses some master
algorithm to wrap computationally efficient online kernel learning algorithms, including
budgeted online kernel learning (Crammer et al. 2003; Dekel et al. 2008; Orabona et al.
2009; Koppel et al. 2019), low-rank matrix approximation based online kernel learning and
projection to a low-dimension space (Lu et al. 2016; Jézéquel et al. 2019). For instance,
Foster et al. (2017) studied online model selection in Banach space and developed a multi-
scale expert advice algorithm, which can adapt to the loss range of different hypothesis set.

The second computational perspective limits the usable computational resources and
is more practical for online learning problem. Previous work did not consider this new
computational perspective, or only indirectly considered the memory constraints (Nguyen
et al. 2017; Zhang and Liao 2018). Thus many fundamental problems induced by computa-
tional constraints have been omitted. The first fundamental problem is that how the regret
depends on the computational constraints, T and K, where K is the number of candidate
kernel functions. For instance, given a memory budge B, it is still unclear how the lower
bound on the regret depends on B, T and K. The second problem is what the differences
between memory constraints and time constraints are. The main obstacle induced by the
computational constraints is how to avoid allocating the available computational resources
over K RKHSs. Existing approaches allocate the computational resources, and thus may
not be optimal.

In this paper, we study online kernel selection under computational constraints, where
the kernel selection and online prediction procedures are restricted by a memory budget
or a time budget of T quanta. We focus on the worst-case regret analysis1 and solve the
above two fundamental problems. To start with, we make mild assumptions that relate
the memory budget and time budget to the example budget. Thus we only consider such
online kernel selection approaches that operate on a subset of observed examples. For

(1)Reg(Hi) ∶=

T∑
t=1

�(ft(�t), yt) −min
f∈Hi

T∑
t=1

�(f (�t), yt).

1 The worst-case regret is the regret that holds on any examples, also defined by max(�t ,yt)t=1,…,T
Reg(Hi) .

We aims at proving the lower bound on max(�t ,yt)t=1,…,T
Reg(Hi) defined on any algorithm, that is,

min{ft}t=1,…,T
max(�t ,yt)t=1,…,T

Reg(Hi) , and designing algorithms enjoying corresponding upper bound.

939Machine Learning (2022) 111:937–976

1 3

unconstrained RKHSs and convex loss functions, we separately prove a lower bound
on the regret under a memory budget and time budget. Our proof technique is novelty,
which relies on a sequence of equi-distant instances and does not require the orthogo-
nality or approximate orthogonality in RKHSs. For online kernel selection with memory
constraints, we reduce it to the problem of prediction with expert advice, and establish
two nearly optimal algorithms with different regret bounds. The keys include a memory
sharing and a hypothesis space discretization scheme. For online kernel selection with
time constraints, we consider two cases. If K ≤ d , the number of features, this problem is
equivalent to the case of memory constraints. For the case of K > d , the two problems are
different. We reduce it to the multi-armed bandit problem with an additional observation,
and establish a nearly optimal algorithm. The key is a decoupled exploration-exploitation
scheme. Table 1 gives a summary of the main results.

1.1 Related work

Online kernel learning with a memory budget has been studied for years (Crammer et al.
2003; Dekel et al. 2008; Orabona et al. 2009). The bounded online gradient descent algo-
rithm (Zhao et al. 2012) enjoys a O((‖f‖2

H
+ 1)T∕

√
B) expected regret bound for the hinge

loss. However, the matching lower bound is still unknown. Dekel et al. (2008) proved an
incomplete hardness result. There exists a sequence of examples and a fixed hypothesis that
makes no mistakes, but any online kernel learning algorithm with limited memory always
makes mistakes. How the lower bound depends on the memory budget is still unclear. For
smooth loss functions, Zhang et al. (2013) proved a �(T∕B) lower bound on the regret in
the case of B = O(

√
T) . Cesa-Bianchi et al. (2015) studied the complexity of offline kernel

learning with memory constraints, and proved several lower bounds on the optimization
error, which is different from regret. Our work studies the lower bounds for online kernel
selection with computational constraints and is suitable for online kernel learning.

Agarwal et al. (2011) initiated the study of computationally budgeted model selection,
where the model selection procedure is restricted to a time budget. For a collection of finite
number of model classes, by reducing the problems to a stochastic bandit problem, an
upper-confidence bound algorithm was established, which can achieve the model selec-
tion oracle inequality. The algorithm is not suitable for online kernel selection, since the
environments may not be i.i.d.. Our work is also related to online multiple kernel learning

Table 1 Summary of main results

Pen1 =
√
T ln(KT) , M = ln

√
T and Peni,2 =

√
(U + 1)LT (f

∗
i
)K lnK , where

LT (f
∗
i
) = minf∈Hi

∑T

t=1
�(f (�t), yt), i = 1,… ,K , and U = �(

√
�T) . � and � are two constants defined in

Assumption 3

Constraint Upper bound Lower bound

Memory √
T lnK + (‖f ∗

i
‖2
Hi

+ 1)max

�√
T ,

T√
�T

�
‖f ∗

i
‖Hi

max

�√
T ,

T√
�T

�

Pen1 + ‖f ∗
i
‖Hi

max

�√
T ,

T√
𝛼T

�√
ln(KT),K <

d

M

Time Equivalent to memory constraints, K ≤ d ‖f ∗
i
‖Hi

max

�√
T ,

T√
�T

�

Peni,2 + (‖f ∗
i
‖2
Hi

+ 1)max

�√
TK,

T√
�T

�
 , K > d

940 Machine Learning (2022) 111:937–976

1 3

(Jin et al. 2010; Hoi et al. 2013). Given K candidate RKHSs, at each round t, the goal is to
learn a linear combination of K predictions. Sahoo et al. (2014) proposed budgeted online
multi-kernel regression algorithms, which use a budget B to limit the number of support
vectors. However, they did not prove how the regret upper bound depends on B. Besides,
the per-round time complexity of such algorithms is linear with K. Within time constraints,
such algorithms allocate the time resources to K RKHSs which would not be optimal. Our
work revels how the upper bound depends on the computational constraints, T and K, and
can make up the omitted regret analysis.

There are some other related work, including parameter-free online learning (McMa-
han and Abernethy 2013; McMahan and Orabona 2014; Cutkosky and Boahen 2016), and
model selection for the multi-armed bandit problems (Agarwal et al. 2017; Foster et al.
2019), where the CORRAL algorithm (Agarwal et al. 2017) was proposed for selecting
bandit algorithms on the fly. For our focused problems, the sub-algorithms are online ker-
nel learning algorithms rather than bandit algorithms, thus CORRAL is not the best candi-
date. Parameter-free online learning aims at making regret bounds depend on ‖f‖H rather
than (‖f‖2

H
+ 1) . Previous work did not consider computational constraints. Our work can

achieve this goal within memory constraints.

1.2 Contributions

We study online kernel selection in the regime of memory constraints or time constraints,
and analyze the regret in the worst case. Our contributions can be summarized as follows.

– We prove the worst-case lower bounds on the regret of budgeted online kernel selec-
tion algorithm with memory constraints or time constraints. The lower bounds on the
regret reveal the lower bounds on the computational constraints that are necessary for
achieving a given upper bound on the regret. As a byproduct, our results are suitable
for online kernel learning with memory constraints and make up the incomplete result
established by Dekel et al. (2008).

– We identify the condition for the first time under which online kernel selection with
time constraints is different from memory constraints.

– We separately propose nearly optimal algorithms for the two computational constraints
which invent some new techniques, such as memory sharing, hypothesis space discre-
tization and decoupled exploration-exploitation scheme.

2 Problem setup

Let IT ∶= {(�t, yt)}t∈[T] be a sequence of examples, where �t ∈ X ⊂ ℝ
d is an instance,

yt ∈ [−Y , Y] is the output and [T] = {1,… , T} . Let �(⋅, ⋅) ∶ ℝ
d ×ℝ

d
→ ℝ be a positive

semidefinite kernel function, and H be the RKHS associated with � , such that, for any
f ∈ H , (i) ⟨f , �(�, ⋅)⟩H = f (�),∀� ∈ X , and (ii) H = span(�(�, ⋅)|� ∈ X) . We define ⟨⋅, ⋅⟩H
as the inner product in H , which induces the norm ‖f‖H =

√⟨f , f ⟩H . Assuming the loss
function � ∶ ℝ × [−Y , Y] → ℝ+ is convex in its first parameter.

Given a collection of kernel functions K = {�i}
K
i=1

 , which induce K RKHSs
H = {Hi}

K
i=1

 . If an oracle gives the best kernel �∗ for IT , then we just need to learn
a sequence of hypotheses in H∗ . Lacking the prior of H∗ , the learner hopes to develop
some kernel selection algorithm and generate a sequence of hypotheses {ft}Tt=1 , which is

941Machine Learning (2022) 111:937–976

1 3

competitive to that generated by the same algorithm running in H∗ solely. The regret of the
algorithm w.r.t. Hi ∈ H is defined in (1). For the sake of clarity, we restate it as follows,

To adapt to the unknown H∗ , a feasible approach is to keep sub-linear regret w.r.t. any Hi.
To achieve this goal, the main challenge is the high time and space complexity. If we

do not limit the model size, then the per-round time complexity and the space complexity
would be O(T). In this paper, we consider online kernel selection under computational con-
straints, including a memory budget or a time budget, and analyze the worst-case regret.
Next, we define the two kinds of computational constraints.

Definition 1 (Memory Budget) Define a memory budget of T quanta as the maximal
memory that any online kernel selection algorithm can use.

Definition 2 (Time Budget) Let the interval of arrival time between �t and �t+1, t = 1,… , T
be less than T quanta. Define a time budget of T quanta as the maximal time interval that
any online kernel selection algorithm outputs the prediction of �t and �t+1.

In Definition 1, the term “quanta” is the unit of memory, such as “ Byte”. In Definition
2, the term “quanta” is the unit of time, such as “millisecond” or “second”. We further
assume that the base kernels satisfy the following property.

Assumption 1 For all �i ∈ K and �, � ∈ X , let �i(�, �) be a function of ⟨�, �⟩ , ‖�‖2 and
‖�‖2 , and �i(�, �) ∈ [0,Di].

Such kernels are also called Euclidean kernel (Kothari and Livni 2020). For simplic-
ity, let D ∶= maxi Di . Usual kernel functions, such as shift-invariant kernel and polynomial
kernel with bounded degree, satisfy the assumption. We further give three key assump-
tions, which reduce the memory budget and time budget to example budget.

Assumption 2 Let the memory budget be linear with the space complexity of algorithm,
and the time budget be linear with the time complexity of algorithm.

The space complexity is defined as the memory required by algorithm. Thus it is intui-
tive to assume that the memory budget is linear with the space complexity of algorithm.
Similarly, assuming that m multiply operations can be executed within a unit time. For a
given time budget of T quanta, the algorithm can execute mT multiply operations. The
time complexity of algorithm is defined as the total number of multiply operations. Thus
we can also assume that the time budget is linear with the time complexity.

Assumption 3 Under the condition of Assumptions 1 and 2, for any kernel � ∈ K , there
exist positive integers � and � , such that any budgeted online kernel leaning algorithm run-
ning in H� can maintain a budget storing B ≤ �T examples within a memory budget of T
quanta, or can execute B ≤ �T kernel evaluations at each round within a time budget of T
quanta. If the space complexity and time complexity of algorithm are linear with B, then
“ = ” holds.

Reg(Hi) ∶=

T∑
t=1

�(ft(�t), yt) −min
f∈Hi

T∑
t=1

�(f (�t), yt).

942 Machine Learning (2022) 111:937–976

1 3

Assumption 4 Under the condition of Assumption 3, let the maximal memory budget T
satisfy B = T , and the maximal time budget T satisfy B = T .

Assumption 4 means that there is no need to assume an infinite T unless T is infinite.
The reason is that any algorithm can store T examples at most. In practice, T may be very
small. In Assumption 3, the budgeted online kernel learning algorithms are such algo-
rithms that operate on a subset of the observed examples, such as, Forgetron (Dekel et al.
2008), BOGD (Zhao et al. 2012), BSGD (Wang et al. 2012) to name but a few. We claim
that � and � are independent of kernel function. It is reasonable, since the memory cost is
used to store the support vectors and coefficient vectors, and the time cost of computing
�(�, �) is to compute ⟨�, �⟩ , ‖�‖2 and ‖�‖2 . We only focus on convex loss functions. Online
gradient descent has the lowest space and time complexity, which is O(dB), where B is
the budget size. For algorithms whose time complexities are O(dB𝛾), 𝛾 > 1 , then “=” doest
not hold in Assumption 3. Based on the above three assumptions, we only consider such
online kernel selection algorithms that work in implicit RKHSs and operate on finite exam-
ples. For the sake of clarity, we denote such algorithms as budgeted online kernel selection
algorithms.

Next we restate the main questions.

Q 1 How does the regret depend on T , T and K in the worst case?
Q 2 What are the differences between memory constraints and time constraints?

To answer the two questions, we need to solve the following two problems, (i) prov-
ing the lower bounds on the regret under memory constraints or time constraints and, (ii)
establishing algorithms achieving the lower bounds. Our main contributions are providing
nearly complete answers to the questions.

3 Online kernel selection with memory constraints

In this section, we give both a lower bound on the regret for online kernel selection with a
memory budget and two simple algorithms nearly achieving the lower bound.

3.1 Lower bound

We select K Gaussian kernel functions �i(�, �) = exp
�
−

‖�−�‖2
2

�i

�
 , i ∈ [K] as the candidates.

Without loss of generality, let 0 < 𝜎1 < … < 𝜎K , where �K is a bounded constant. We can
also create candidates from other kernel functions, such as polynomial kernels, or the mix-
ture of polynomial kernels and Gaussian kernels.

Theorem 1 Let 𝓁(⋅, ⋅) be the hinge loss or the absolute loss. There exist K kernel func-
tions {�i}Ki=1 selected by the learner, and a sequence of examples {(�t, yt)}Tt=1 selected by
an oblivious adversary, where yt ∈ {−1, 1} , such that, for a memory budget of T quanta,
under the condition of Assumption 3, for all �i , the expected regret of any budgeted online
kernel selection algorithm satisfies

943Machine Learning (2022) 111:937–976

1 3

where L is the Lipschitz constant of � , and f ∗
i
= argminf∈Hi

∑T

t=1
�(f (�t), yt).

According to the lower bound, we can infer the relation between the upper bound on the
regret and the lower bound on the required memory budget. In the case of T = O(�T) , the

optimal upper bound on the regret is O
����f ∗i

���Hi

L
√
T

�
 . In the case of T = �(�T) , the optimal

upper bound is O
����f ∗i

���Hi

L
T√
�T

�
 . Let T(𝛼T)−

1

2 ≤ CT𝜐,
1

2
≤ 𝜐 < 1 , where C is a constant.

Solving the inequality yields that the required lower bound on the memory budget satisfies
T ≥ C−2�−1T2(1−�) . In the worst case, achieving a O(T𝜐),

1

2
≤ 𝜐 < 1 regret bound requires a

memory budget of order �(T2−2�) . The lower bound on the regret seems surprising and may
not be a strong result, since it is independent of K. We will show that it is optimal up to an
additional penalty term.

If K = 1 , then Theorem 1 reveals the lower bound of budgeted online kernel learning algo-
rithms. We can not provide a O(‖f ∗

1
‖H1

L
√
T) regret bound unless the memory budget

T = �(T∕�) . The BOGD algorithm (Zhao et al. 2012) enjoys a O((‖f ∗
1
‖2
H1

+ 1)LT∕
√
�T)

expected regret bound which is optimal w.r.t. T, but sub-optimal w.r.t. ‖f ∗
1
‖H1

 . Dekel et al.
(2008) proved an incomplete hardness result for online kernel learning under a memory
budget B. There always exists B + 1 examples, such that any algorithm only storing B exam-
ples will make T = B + 1 mistakes. Besides, there is a hypothesis f ∗

1
∈ H1 satisfying

‖f ∗
1
‖H1

=
√
B + 1 that never makes mistakes and attains a hinge loss of 0. Actually, their

lower bound on the mistakes equals the lower bound on the regret for the hinge loss, or rather,
the lower bound on the regret is B + 1 = ‖f ∗

1
‖H1

√
T , where we use the specific identity

T = B + 1 . The weakness of this lower bound is that it can not be extended to the case
B = o(T) . Our result in Theorem 1 provides a complete answer to the question.

3.2 A nearly optimal algorithm for any K

An intuitive approach is to allocate the memory budget to the K base kernels. According to
the lower bound (2), such an approach will increase the regret by a factor of order O(

√
K) .

Recalling that any hypothesis fi ∈ Hi can be represented by fi =
∑T

t=1
at,i�i(�t, ⋅) . Thus the

memory cost is used to store the support vectors {(�t, yt)Tt=1 ∶ at,i ≠ 0} , and the coefficients
{(at,i)

T
t=1

∶ at,i ≠ 0} . According to this observation, we will present an algorithm that shares
the support vectors and a coefficient vector among K different hypotheses {fi}Ki=1.

Instead of selecting kernels from a finite collection {�1,… , �K} , we will select kernels
from an infinite kernel space K defined as follows,

(2)�

�
T�
t=1

�(ft(�t), yt)

�
−

T�
t=1

�(f ∗
i
(�t), yt) =

⎧
⎪⎨⎪⎩

�

����f ∗i
���Hi

L
√
T

�
if T = O(�T),

�

����f ∗i
���Hi

L
T√
�T

�
otherwise,

K =

{
� =

K∑
i=1

pi�i ∶

K∑
i=1

pi = 1, pi ≥ 0

}
.

944 Machine Learning (2022) 111:937–976

1 3

The learning of the weight vector � will be clarified later. At the beginning of round t,
assuming that there is a weight vector �t . We learn a new kernel �

�t
=
∑K

i=1
pt,i�i , which

induces a RKHS H
�t

 with embedding �
�t
∶ X → H

�t
 defined as follows

where ��i
 is the embedding induced by �i . We select a hypothesis ft ∈ H

�t
 , defined by

The prediction is given by ft(�t) = ⟨ft,��t
(�t)⟩H

�t
=
∑K

i=1
pt,ift,i(�t) , or sign(ft(�t)) for clas-

sification. Although there are K hypotheses {ft,i}Ki=1 , we just need to maintain a single set of
support vectors and a single coefficient vector (a1,… , at−1).

To keep the memory constraints, we propose a simple example adding strategy. At
any round t, let ∇ft

∶= �
�(ft(�t), yt)��t

(�t) be the (sub-)gradient of �(ft(�t), yt) w.r.t. ft . We
define a Bernoulli random variable �t ∈ {0, 1} satisfying

where C > 0 is a constant and zt > 0 depends on t. The definition of C and zt will be given in
Theorem 2. Let S be a buffer storing the support vectors. We sample �t ∼ Ber(ℙ[�t = 1], 1) .
If �t = 1 , then we update ft and add the current example into the buffer, i.e., S = S ∪ (�t, yt) .
Let ∇̃ft

 be an estimator of ∇ft
 , which is defined as follows,

We update the hypothesis by online gradient descent

where � is the learning rate (or stepsize) of gradient descent. According to (3) and the defi-
nition of ft (4), the above updating can be rewritten by

For simplicity, we define ∇t,i ∶= �
�(ft(�t), yt)��i

(�t).
To update �t , we reduce this problem to a problem of prediction with expert advice. Let

ct,i be a criterion evaluating base �i , i = 1,… ,K , which serves as the loss of the i-th action.

(3)𝜙
�t
(�) =

�√
pt,1𝜙

⊤
𝜅1
(�),… ,

√
pt,K𝜙

⊤
𝜅K
(�)

�⊤

,∀� ∈ X,

(4)
ft =

t−1�
𝜏=1

a𝜏𝜙�t
(�𝜏) =

�
√
pt,1

t−1�
𝜏=1

a𝜏𝜙
⊤
𝜅1
(�𝜏),… ,

√
pt,K

t−1�
𝜏=1

a𝜏𝜙
⊤
𝜅K
(�𝜏)

�⊤

=
�√

pt,1ft,1,… ,
√
pt,Kft,K

�
.

(5)ℙ[�t = 1] = min

{
1,

C

zt

}
⋅ 𝕀∇ft

≠0,

∇̃ft
∶=

∇ft

ℙ[𝜌t = 1]
𝕀𝜌t=1

= �̃�(ft(�t), yt)𝜙�t
(�t), �̃�(ft(�t), yt) ∶=

�
�(ft(�t), yt)

ℙ[𝜌t = 1]
𝕀𝜌t=1

.

ft+1 = ft − 𝜆�̃�(ft(�t), yt)𝜙�t
(�t),

ft+1,i = ft,i − 𝜆�̃�(ft(�t), yt)𝜙𝜅i
(�t), ∀i = 1,… ,K.

(6)ct,i =

⎧⎪⎨⎪⎩

��(ft(�t),yt)(ft,i(�t)−minj=1,…,K ft,j(�t))
max{�m ,1}

if ��(ft(�t), yt) > 0,

�
�(ft(�t),yt)(ft,i(�t)−maxj=1,…,K ft,j(�t))

max{�m ,1}
otherwise,

945Machine Learning (2022) 111:937–976

1 3

where 𝓁m = maxt{|𝓁�(ft(�t), yt)| ⋅maxi,j
(
ft,i(�t) − ft,j(�t)

)
} and can be tuned by the dou-

bling trick. Let E(K) be the exponential weights algorithm in (Cesa-Bianchi and Lugosi
2006) (see Sect. 4.2). Then �t+1 = (pt+1,1,… , pt+1,K) can be computed as follows,

where � is the learning rate.
We name the algorithm LKMBooks (Learning Kernel for Memory BOunded Online

Kernel Selection). The algorithm description is shown in Algorithm 1.

Theorem 2 Let Et = {𝜏 < t ∶ ∇f𝜏
≠ 0} , B = �T and C = B . Let zt = (1 − �)T1−�(|Et| + 1)� ,

where 0 ≤ 𝜐 < 1 . If there exists a � ∈ [0, 1) satisfying (1 − 𝜐)T1−𝜐 > B , then for any
sequence IT , with probability at least 1 − � , LKMBooks guarantees that

Otherwise, |S| ≤ B.

Theorem 2 shows that our algorithm will not excess the memory constraint in a high
probability. zt gives the probability that any support vector is added into the budget. It is
worth noting that the key of zt is the value of � . If � = 0 . then each support vector is added
into the budget with a same probability. We can also use a non-uniform probability dis-
tribution, i.e., 𝜐 > 0 . In this case, the probability decreases with the increasing of support
vectors. In experiments, we always set 𝜐 > 0 and empirically find that the non-uniform
probability distribution performs better. In theory, the two kinds of probability distribu-
tions are equivalent in the sense that they induce the same budget size and regret bounds.

Theorem 3 Given a memory budget of T quanta, under the condition of Assumption 3,
let B = �T . Assuming that � satisfies |��(f (�), y)| ≤ L . Let K = {�i}

K
i=1

 be a collection of
kernel functions, and � =

√
8 ln(K)∕T . If B < T , then let � =

√
(1 + �)B∕(

√
(1 − �)DLT) .

Otherwise, let � = 1∕(
√
DTL) . For any �i ∈ K , the expected regret of LKMBooks satisfies

pt+1,i =
pt,i exp(−�ct,i)∑K

j=1
pt,j exp(−�ct,j)

,

|S| ≤ B +
2

3
ln

1

�
+

√
2B ln

1

�
.

946 Machine Learning (2022) 111:937–976

1 3

Remark 1 LKMBooks is similar with the online multi-kernel learning algorithm in (Jin
et al. 2010) (Algorithm 5, denoted by DA-OMKL-O for simplicity), and the budgeted
online multi-kernel regression algorithm in (Sahoo et al. 2014) (denoted by BOKMR for
simplicity), since the three algorithms use a convex combination of K outputs {ft,i(�t)}Ki=1 .
The difference is that, DA-OMKL-O and BOKMR make {ft,i}Ki=1 possess different coef-
ficient vectors. However, LKMBooks makes {ft,i}Ki=1 share a single coefficient vector.
Besides, DA-OMKL-O does not limit the support vectors, and one of the two versions
of BOKMR can also not share the support vectors. The space complexity of LKMBooks
is O(dB + K) . The two versions of BOKMR suffer a O(dB + KB + K) and O(KBd) space
complexity, respectively. For the case of K ≫ d , LKMBooks suffers the lowest space com-
plexity. What’s more, BOKMR did not provide a regret bound.

We consider the optimality w.r.t. T, T and K. Compared with the lower bound (2),
LKMBooks is optimal up to an additional penalty term of order O(max{�m, 1}

√
T lnK) ,

which comes from the intrinsic complexity of prediction with expert advice. The penalty
term is a lower order term. Thus LKMBooks avoids the dependence on O(

√
K) . However,

LKMBooks depends on (‖f ∗
i
‖2
H
+ 1) , which is much worse than ‖f ∗

i
‖H . The reason is that

LKMBooks uses online gradient descent (OGD) to update hypothesis. The standard regret
bound of OGD depends on (‖f ∗

i
‖2
H
+ 1) (Orabona 2013). Using OGD aims at sharing a

single coefficient vector. Next we show an optimal algorithm for the case of K < d∕ ln
√
T .

3.3 Adapt to the norm of competitor for K < d∕ ln
√
T

To adapt to ‖f ∗
i
‖H , we propose a hypothesis space discretization scheme. For each �i ,

i = 1,… ,K , we define the feasible hypothesis space by ℍi = {f ∈ Hi ∶ ‖f‖Hi
≤ U} . We

discretize (0, U] as follows

This technique is also known as the peeling technique. The key is the choice of U and Umin ,
which depends on the memory budget T and will be determined later. For any f ∈ ℍi , there
exists some j such that ‖f‖Hi

∈ (0, e⌈lnUmin⌉] or (ej, ej+1] . Let M = ⌈lnU⌉ − ⌈lnUmin⌉ + 1 .
We construct K� ∶= KM nested hypothesis spaces

where Uj = ej+⌈lnUmin⌉−1 . Thus ℍi,1 ⊂ … ⊂ ℍi,M ⊂ Hi . For the sake of clarity, we define
two index functions h ∶ [K] × [M] → [K�] and h∗ ∶ [K�] → [K] × [M] . Specifically, h(i, j)
maps (i, j) to the h(i, j)-th element in [K�] . Similarly, h∗(k) maps k ∈ [K�] to (h∗(k)1, h∗(k)2) ,
where h∗(k)1 = ⌊(k − 1)∕M⌋ + 1 and h∗(k)2 = k − (h∗(k)1 − 1)M.

�
�
Reg(Hi)

� ≤ O

�
max{�m, 1}

√
T lnK + (‖f ∗

i
‖2
Hi

+ 1)Lmax

�√
T ,

T√
�T

��
.

(7)(0,U] =
�
0, e⌈lnUmin⌉�

⌈lnU⌉−1�
j=⌈lnUmin⌉

�
ej, ej+1

�
.

ℍi,j = {f ∈ Hi ∶ ‖f‖Hi
≤ Uj}, i = 1,… ,K, j = 1,… ,M,

947Machine Learning (2022) 111:937–976

1 3

To share the support vectors, we use an oblivious example adding strategy. The term
“oblivious” means that the strategy is independent of algorithms. At any round t, let
�t ∈ {0, 1} be a Bernoulli random variable satisfying

Let {ft,i,j}Tt=1 be a sequence of hypotheses in ℍi,j and ∇t,i,j =∶ ∇ft,i,j
�(ft,i,j(�t), yt) be the (sub-)

gradient w.r.t. ft,i,j , i ∈ [K], j ∈ [M] . At the end of round t, we sample �t ∼ Ber(ℙ[�t = 1], 1) .
If �t = 1 , then we update the hypothesis ft,i,j and add the current example into the buffer,
i.e., S = S ∪ (�t, yt) . Let ∇̃t,i,j be an estimator of ∇t,i,j , which is defined as follows,

We update the hypothesis by online gradient descent

The projection of any f ∈ Hi onto ℍi,j is defined by g = min{1,
Uj

‖f‖Hi

}f .

Next we show the kernel selection procedure. Let E(K�) be an algorithm for prediction
with expert advice. We select a hypothesis space ℍh∗(It)1,h

∗(It)2
 , where It ∼ �t , and make pre-

diction ŷt = ft,h∗(It)1,h∗(It)2 (�t) or sign(ŷt) . For each action h(i, j) ∈ [K�] , let the criterion be
ct,h(i,j) = �(ft,i,j(�t), yt) . For all f ∈ ℍi,j , assuming that there is a function g(Uj,Di, Y) satis-
fying ct,h(i,j) ≤ g(Uj,Di, Y) . At the end of round t, we send �t = (ct,1,… , ct,K�) to E(K�) . To
adapt to the norm of competitor, E(K�) needs to achieve a multi-scale regret bound. Let E(K�)
be the MSMW algorithm in Bubeck et al. (2019). which is shown in Algorithm 3.

We name this algorithm PFMBooks (Parameter-Free for Memory BOunded Online
Kernel Selection).

ℙ[�t = 1] = min

{
1,

C

zt

}
.

∇̃t,i,j =
∇t,i,j

ℙ[𝜌t = 1]
𝕀𝜌t=1

.

(8)f t+1,i,j = ft,i,j − 𝜆i,j∇̃t,i,j, ft+1,i,j = argmin
f∈ℍi,j

‖f − f t+1,i,j‖2Hi
.

948 Machine Learning (2022) 111:937–976

1 3

Theorem 4 Let B = �T , C = B and zt = 2(1 − �)T1−�t� , where 0 ≤ 𝜐 < 1 . Under the condi-
tion of Assumption 4, there exists a � ∈ [0, 1) such that 2(1 − 𝜐)T1−𝜐 > B . For any sequence
IT , with probability at least 1 − � , PFMBooks guarantees that

The proof is same with that of Theorem 2. PFMBooks ensures |S| = O(B∕2) with a
high probability and maintains KM coefficient vectors. The total space complexity is
O(

dB

2
+

BKM

2
) = O(dB) = O(d�T) in the case of K < d∕M . We will set Umin = U∕

√
T in

Theorem 6, and thus M < 1 + ln
√
T . PFMBooks will not exceed the total memory con-

straints in a high-probability. Next we state an important assumption, which is easily
satisfied and forms the bases of obtaining the final regret bound.

Assumption 5 For any sequence of examples IT ∶= {(�t, yt)}t∈[T] , let |yt| ≤ Y .
For any hypothesis f ∈ Hi, i = 1,… ,K and (�, y) ∈ IT , there always exists a
function g(‖f‖Hi

,Di, Y) ∶ ℝ
3
→ ℝ such that �(f (�), y) ≤ g(‖f‖Hi

,Di, Y) and
g(‖f‖Hi

,Di, Y) = �(1 + ‖f‖Hi
).

Many loss functions satisfy Assumption 5, such as the �-insensitive hinge loss, and
the �-insensitive absolute loss. For instance, if �(f (�), y) = |f (�) − y| , then we can define
g(‖f‖Hi

,Di, Y) = ‖f‖Hi

√
Di + Y . If �(f (�), y) = max{0, 1 − yf (�)} , then we can define

g(‖f‖Hi
,Di, Y) = 1 + Y‖f‖Hi

√
Di . Next we show the multi-scale regret bound of E(K�).

Theorem 5 Let � =
√
2 ln(K�T)∕T and U = �(B) . Under the condition of Assumption 5,

∀k ∈ [K�] , the expected regret of E(K�) satisfies

Remark 2 E(K�) is slightly different from the original MSMW algorithm in Bubeck
et al. (2019), including: (i) MSMW uses “reward” as the feedback, but E(K�) uses
“loss” as the feedback; (ii) the initial distribution of MSMW and E(K�) are differ-
ent. Although we can transform “loss” to “reward” by rt,k = g(Uh∗(k)2

,Dh∗(k)1
, Y) − ct,k ,

where rt,k is the reward of the k-th action, the regret bound will increase a term ∑T

t=1
[
∑K�

k=1
pt,kg(Uh∗(k)2

,Dh∗(k)1
, Y) − g(Uh∗(k)2

,Dh∗(k)1
, Y)] , which can not adapt to the scale

of individual action. Thus we need a different proof. We present a simpler proof in the
Appendix. One of the key is using a different initial distribution.

|S| ≤ B

2
+

2

3
ln

1

�
+

√
B ln

1

�
.

T�
t=1

⟨ct, �t⟩ −
T�
t=1

ct,k = O
�
g(Uh∗(k)2

,Dh∗(k)1
)
√
T ln (K�T)

�
.

949Machine Learning (2022) 111:937–976

1 3

Theorem 6 Given a memory budget of T quanta, under the condition of Assumption 3, let
B = �T . Let U = �(

√
B) , Umin = U∕

√
T and �i,j =

Uj

√
(1+�)B√

2(1−�)DiLT
 . The expected regret of

PFMBooks w.r.t. any Hi, i = 1,… ,K satisfies

Remark 3 In Theorem 1, the lower bound does not limit ‖f ∗
i
‖Hi

 . Our upper bound may be
invalid if U < ‖f ∗

i
‖Hi

 . Inspecting the hard examples in the proof of Theorem 1, we find that
‖f ∗

i
‖Hi

= �(
√
B) . Thus our upper bound is still valid if U = �(

√
B).

The expectation is w.r.t. the randomness of E(K�) and the randomness of {�t}T−1t=1
 . Com-

pared with the upper bound in Theorem 3, PFMBooks improves the dependence on ‖f ∗
i
‖Hi

 .
Compared with the lower bound (2), PFMBooks is optimal up to a factor of order
O(

√
ln(K�T)) and a small penalty term of order O

�√
T ln(K�T)

�
.

4 Online kernel selection with time constraints

In this section, we give both a lower bound on the regret for online kernel selection with a
time budget and a simple algorithm nearly achieving the lower bound.

4.1 Lower bound

For the sake of clarity, we introduce a natation of resource allocation. Any kernel selec-
tion algorithm needs to assign a kernel selection strategy and a resource allocation strategy
simultaneously. In this work, we consider the static resource allocation defined as follows.

Definition 3 (Static Resource Allocation) Define a static resource allocation R(T1,… , TK)
as a strategy that allocates a time budget of 0 < Ti ≤ T quanta to kernel function �i before
the game, and does not change later.

For any budgeted kernel selection algorithm with static resource allocation
R(T1,… , TK) , the following theorem gives a lower bound on the regret.

Theorem 7 Let 𝓁(⋅, ⋅) be the hinge loss or the absolute loss. There exist K kernel func-
tions {�i}Ki=1 chosen by the learner, and a sequence of examples {(�t, yt)}Tt=1 chosen by an
oblivious adversary, where yt ∈ {−1, 1} , such that for a time budget of T quanta, under
the condition of Assumption 3, for all �i , the expected regret of any budgeted online kernel
selection algorithm with static resource allocation R(T1,… , TK) satisfies

where L is the Lipschitz constant of � , and f ∗
i
∈ Hi = span(�i(�1, ⋅),… , �i(�t, ⋅)).

�
�
Reg(Hi)

�
= O

�
‖f ∗

i
‖Hi

Lmax

�√
T ln(K�T),

T√
�T

�√
ln(KT) +

√
T ln(K�T)

�
.

(9)�[LT (ft)] − LT (f
∗
i
) =

⎧
⎪⎨⎪⎩

�

����f ∗i
���Hi

L
√
T

�
if T = O(�maxj∈[K] Tj),

�

����f ∗i
���Hi

L
T√

�maxj∈[K] Tj

�
otherwise,

950 Machine Learning (2022) 111:937–976

1 3

The lower bound also reveals that, in the worst case, achieving a O(T𝜐),
1

2
≤ 𝜐 < 1

regret bound requires a time budget of order �(T2−2�) . To design algorithms achieving
the lower bound (9), it is necessary to adopt the R(T,… , T) resource allocation.

We first highlight the difference between memory constraints and time constraints.
Recalling that the space complexity of LKMBooks is O(dB + K) . The time complex-
ity of LKMBooks is O(dB + KB + K) , but not O(KdB + K) . The reason is that, under
Assumption 1, the main time cost of computing �i(�t, ��) for all �� ∈ S is to compute
the norm ‖�t − ��‖2 or the inner product ⟨�t, ��⟩ . Since LKMBooks only maintains a
single S, we can first compute the norm or inner between �t and the support vectors
in S. Thus the time complexity of computing ft,i(�t) for all i = 1,… ,K , is of order
O(dB + KB) . If K ≤ d , the two constraints are equivalent and LKMBooks can also be
a nearly optimal algorithm for the case of time constraints. Thing is different for the
case of K > d . Assuming that K = d𝜈 , 𝜈 > 1 . If an algorithm achieves the lower bound
(9), then it would adopt the R(T,… , T) resource allocation. Let the available budget of
such an algorithm be B1 , and B2 be the available budget of LKMBooks. According to
Assumptions 3, we have the two identities dB1 = T and (d + K)B2 = T , which imply
B2 = O(K

1−v

v B1) . Substituting into Theorem 3, LKMBooks will increase the regret by a
factor of order O(K

v−1

2v).
Thus for the case of K < d , we can directly use LKMBooks or PFMBooks. Next

we propose a nearly optimal algorithm for the case of K > d . The algorithm adapts the
R(T∕2,… , T∕2) resource allocation.

4.2 A nearly optimal algorithm for K > d

A simply observation is that we need not to evaluate all of the base kernels at each round.
An intuitive approach is to select a single kernel function, �It , and use the hypothesis ft,It to
make prediction. Such an approach has been adopted in (Yang et al. 2012), where the ker-
nel selection problem is reduced to a K-armed bandit problem. However, the regret bound
is far from optimal for online kernel selection. At each round, the approach constructs esti-
mated gradient ∇̃t,i = ∇t,i∕pt,i . The second moment is of order maxt ∇t,i∕pt,i , which may
be a large term. To address this issue, we will propose a simple exploration-exploitation
scheme.

For each �i , we define the feasible hypothesis space by ℍi = {f ∈ Hi ∶ ‖f‖Hi
≤ U} . We

slightly modify Algorithm 1. The key difference is that we randomly evaluate two kernel
functions at each round. The two kernel functions are selected by a decoupled exploration-
exploitation scheme, which is defined as follows

• Exploitation: select a kernel function �It ∼ �t,
• Exploration: select another kernel function �Jt ∼ K uniformly.

Note that it is possible that �It = �Jt . The exploration procedure makes each kernel be
selected with a high probability.

Let Si, i = 1,… ,K be K buffers storing the support vectors. At each round t, we output
the prediction ŷt = ft,It (�t) or sign(ŷt) . However, we do not update ft,It unless It = Jt . The
goal is to make (�t, yt) be added into each Si with equal probability. After receiving yt , we
compute the gradient ∇ft,Jt

�(ft,Jt (�t), yt) . If ∇ft,Jt
�(ft,Jt (�t), yt) ≠ 0 , then we decide whether to

update ft,Jt . Let �t,i ∈ {0, 1} be a Bernoulli random variable satisfying

951Machine Learning (2022) 111:937–976

1 3

If �t,Jt = 1 , then we update ft,Jt and add the current example into the budget, i.e.,
SJt = SJt ∪ (�t, yt) . Let ∇̃t,i be an estimator of ∇t,i , defined as follows,

We update the hypothesis ft,i follows (8), where the projection can be computed incremen-
tally in time O(1).

To update �t , we define a K-armed adversarial bandit problem with an addi-
tional observation in which the algorithm may obtain two losses. ∀i ∈ [K] , let
ct,i = �(ft,i(�t), yt)∕�m , where �m = maxt,i{�(ft,i(�t), yt)} is a normalizing constant and can
be tuned by the doubling trick. The key is the estimated loss c̃t,i defined as follows,

We update �t by online stochastic mirror descent (OSMD) with the negative entropy regu-
larizer (Bubeck and Cesa-Bianchi 2012),

where �t(�) =
∑K

i=1
�tpi ln pt and D�t

 is Bregman divergence.
We name the algorithm BATBooks (Bandit with Additional observation for Time

BOunded Online Kernel Selection). The algorithm description is shown in Algorithm 4.

ℙ[�t,i = 1] = min

{
1,

C

zt,i

}
⋅ 𝕀∇t,i≠0, i = 1,… ,K,

∇̃t,i =
∇t,i

ℙ[i = Jt] ⋅ ℙ[𝜌t,i = 1]
𝕀i=Jt

𝕀𝜌t,i=1
.

(10)c̃t,i =
ct,i

ℙ[i ∈ {It, Jt}]
𝕀i∈{It ,Jt}

, ℙ[i ∈ {It, Jt}] =
K − 1

K
pt,i +

1

K
.

(11)pt+1 = argmin
�∈𝛥K−1

�⟨�, c̃t⟩ +D𝜓t
(�, �t)

�
,

952 Machine Learning (2022) 111:937–976

1 3

Theorem 8 Let B = �T , C = KB and zt,i = 2(1 − �)T1−�t� , where 0 ≤ 𝜐 < 1 . For any
sequence IT , with probability at least 1 − � , BATBooks guarantees that

For all i = 1,… ,K , we have |Si| = O(B∕2) . BATBooks evaluates two hypotheses at
each round. The total time complexity is O(dB) = O(d�T) . Thus BATBooks will not excess
the total time budget in a high-probability.

Theorem 9 Let ct ∈ [0, 1]K be any loss vector, and C̃T ,∗ = mini∈[K]
∑T

t=1
c̃t,i , where c̃t,i is the

estimator of ct,i defined in (10). Let 𝜂 = min{

√
2 lnK∕(KC̃T ,∗),

1

K
} . BATBooks guarantees

We can obtain an expected small-loss regret bound for bandit with an additional obser-
vation, which may be of independent interest. Seldin et al. (2014) proved the worst-case
expected regret bound for this problem. Thus we improve the previous result. Note that if
{ct}

T
t=1

 are fixed loss vectors, then we can remove the expectation operation.

Theorem 10 Given a time budget of T quanta, under the condition of Assumption 3,
let B =∶ �T . Let U = �(

√
B) and � satisfy |��(f (�), y)| ≤ L . If there exists a � ∈ [0, 1)

satisfying

then for any ℍi, i ∈ [K] , let �i =
√
(1+�)B√

2(1−�)DiLT
 , the expected regret of BATBooks satisfies,

If condition (12) can not be satisfied, then let �i =
1√

KDiTL
 . The expected regret satisfies,

Remark 4 We show for the first time, that online kernel selection with time constraints is
different from memory constraints only in the case of K > d , which answers our second
question, Q 2. Thus for the case of K ≤ d , we can just use Algorithm 1 or Algorithm 2.
All of previous work does not find such a condition. The online multi-kernel learning algo-
rithms in (Hoi et al. 2013; Sahoo et al. 2014) and the online kernel selection algorithm in

|Si| ≤ B

2
+

2

3
ln

K

�
+

√
B ln

K

�
.

�

�
T�
t=1

[⟨�t, ct⟩ − ct,i]

�
≤ 2

����2�

�
T�
t=1

ct,i

�
K lnK.

(12)2(1 − 𝜐)T1−𝜐 > KB,

𝔼
�
Reg(ℍi)

�
= O

��
(U + 1)LT (f

∗
i
)K lnK + (‖f ∗

i
‖2
Hi

+ 1)L
√
Di

T√
�T

�
.

𝔼
�
Reg(ℍi)

�
= O

��
(U + 1)LT (f

∗
i
)K lnK + (‖f ∗

i
‖2
Hi

+ 1)L
√
DiTK

�
.

953Machine Learning (2022) 111:937–976

1 3

(Yang et al. 2012) randomly update a hypothesis for reducing time complexity. We prove
that such an approach is unnecessary unless K > d.

We analyze the optimality w.r.t. T , T and K. First we consider a small time budget, i.e.,
B < 2T∕K (condition (12) is satisfied). Compared with the lower bound (9), BATBooks
has an additional cost of order O(

√
ULT (f

∗
i
)K lnK) . Then we consider a large time budget,

i.e, 2T∕K ≤ B ≤ T (condition (12) is not satisfied). BATBooks is sub-optimal by a multi-
plicative factor of order O(

√
K) and the same additional cost. Although U = �(

√
B) , we

have LT (f ∗i) = 0 for the hard examples in the proof of Theorem 7. In this case, our upper
bounds are nearly optimal w.r.t. T, K and T .

Next we consider the the dependence on ‖f ∗
i
‖Hi

 . Note that LT (f ∗i) and U could not be
large simultaneously. If LT (f ∗i) is much large, then ‖f ∗

i
‖Hi

 would be small, and we can
ensure U being small. Using Assumption 5, we have LT (f ∗i) = O(‖f ∗

i
‖Hi

T) . Thus the addi-
tional cost would be O(

�
U‖f ∗

i
‖Hi

TK lnK) . Our bounds depend on O(
�

U‖f ∗
i
‖Hi

) and
O(‖f ∗

i
‖2
Hi

) , which are worse than the lower bound in Theorem 7. Improving the dependence
on ‖f ∗

i
‖Hi

 is left to further work.

5 Experiments

In this section, we conduct numerical experiments to verify our theoretical results. As a
whole, our goal is to verify the following results,

(G 1) Online kernel selection improves the learning performance relative to online single
kernel learning with an empirical preset kernel.

(G 2) The superior of memory sharing scheme. Within a same memory constraint, our
algorithms are better than such algorithms that do not share the memory.

(G 3) In the worst case, the time constraints is same with the memory constraints for the
case of K < d . Thus Algorithm 1 is also nearly optimal for online kernel selection
with time constraints.

(G 4) In the worst case, the time constraints is different from the memory constraints for the
case of K ≥ d , that is, Algorithm 4 is better than Algorithm 1 for the case of K > d.

We first state the experimental setting, and then show the experimental results for online
kernel selection with memory constraints and time constraints, respectively.

5.1 Experimental setting

We compare our algorithms with the following baseline algorithms,

– NORMA (Budgeted online kernel learning algorithm) (Kivinen et al. 2004)
– BOGD (Budget online kernel learning algorithm) (Zhao et al. 2012)
– OKS (Online Kernel Selection) (Yang et al. 2012)
– OMKC (Online multi-kernel classification) (Hoi et al. 2013)
– ISKA (Incremental sketched kernel alignment) (Zhang and Liao 2018)
– BOMKR (Budget online multi-kernel regression) (Sahoo et al. 2014)
– BOMKR-V (Variant of BOMKR).

954 Machine Learning (2022) 111:937–976

1 3

2 http:// archi ve. ics. uci. edu/ ml/ index. php

The baseline algorithms for online classification include BOGD, OKS, OMKC and ISKA.
The other algorithms including OKS are used for online regression.

We set 9 Gaussian kernels, �(�, �) = exp(−‖� − �‖2∕(2�2)) , of kernel width � cho-
sen from 2−4∶1∶4 . We adopt the best kernel function in hindsight for NORMA and BOGD.
BOMKR-V is a variant of BOMKR by changing the loss function. We test the algorithms
on online regression and online classification tasks. The datasets are shown in Table 2,
which are downloaded from WEKA and UCI machine learning repository.2 ailerons-v,
Hardware-v, Twitter-v and Adv-SUSY-v are constructed from ailerons, Hardware, Twitter
and Adv-SUSY, respectively. For instance, we extract the first 6 features of ailerons and
form ailerons-v. Our goal is to make d < K (K = 9). We preprocess Hardware and Twit-
ter by dividing the standard deviation. Note that we convert magic04, a9a and SUSY to
adversarial datasets, denoted by Adv-magic04, Adv-a9a and Adv-SUSY. Our approach of
constructing adversarial datasets is as follows: At each round t = 1,… , T ,

– If t ≤ ⌈T∕20⌉ , let Adv-magic04 equal to magic04.
– If t ≥ ⌈T∕20⌉ + 1 , we multiply the features of magic04 by 2−3.

The same operation is used to Adv-a9a and Adv-SUSY. There are two reasons that we con-
struct adversarial datasets, i.e., (i) for online learning, the data may not be i.i.d., and may be
provided by a malicious adversary; (ii) our theoretical results hold in the worst-case. The
three adversarial datasets essentially yield hard learning tasks.

For online regression, we adopt the absolute loss �(ŷt, y) = |ŷt − y| except
for NORMA and BOKMR. NORMA adopts the �-insensitive absolute loss
�(ŷt, y) = max(0, |ŷt − y| − 𝜀t) + 𝜈𝜀t , and updates �t on the fly. For BOKMR, we adopt
the version that uses NORMA as a sub-algorithm (Sahoo et al. 2014). We set � = 0.5 and
�1 = 0.001 . For online classification, we adopt the hinge loss �(ŷt, y) = max{0, 1 − ŷty} .
We measure the Average Absolute Loss (AAL) defined by AAL =

1

T

∑T

t=1
�ŷt − yt�

for online regression, and measure the Average Mistake Rate (AMR) defined by
AMR =

1

T

∑T

t=1
�ŷt≠yt for online classification. For OKS, we choose the smoothing parame-

ter � ∈ {0.2, 0.02, 0.002} . For all of the baseline algorithms, we set the stepsize of gradient
descent to 5∕

√
T . The other hyper-parameters are set to the recommended value in origi-

nal papers. For PFMBooks, we set g(Uj,Di) = Uj + 0.1 where Di = 1 for Gaussian kernel
and set � =

√
8 ln(KMT)∕T . For LKMBooks, we set � =

√
8 ln(K)∕T . All algorithms are

implemented in R on a Windows machine with 2.5 GHz Core(TM) i5-7200U CPU. To
weaken the randomization, we execute each experiment 20 times with random permutation
of all datasets and average all the results.

5.2 Memory constraints

5.2.1 Online regression

Let T be a given memory budget. According to Assumptions 2 and 3, we can reduce T
to an example budget of size B. We must ensure that all algorithms have the same space
complexity. Table 3 shows the results. Since OKS does not control the number of support
vectors, we use a heuristic variant, called BOKS, which stops updating hypothesis if the
number of support vectors equals B. We use NORMA as the baseline, that is, for a memory

http://archive.ics.uci.edu/ml/index.php

955Machine Learning (2022) 111:937–976

1 3

budget T , NORMA can use an example budget of size B0 . The third row of Table 3 is the
available budget of each algorithm, which depends on the relation between d and K. BOKS
and BOMKR do not share the memory and maintain K different sets of support vectors.
For LKMBooks and PFMBooks, we set � = 1

3
 for satisfying 2(1 − 𝜐)T1−𝜐 > B (see Theo-

rems 2 and 4), and set the stepsize to the values in Theorems 3 and 6. For PFMBooks, we
set U =

√
B , Umin = U∕

√
T as stated in Theorem 6. Since LKMBooks and PFMBooks

can only achieve the memory constraints in high-probability, we stop updating hypotheses
when the actual budget exceeds the available budget in Table 3.

Table 4 shows the empirical results. The bold in each column indicates the algorithm
enjoying the best performance. It can be found that NORMA performs well on some data-
sets. There are two reasons: (i) we select the best kernel width in hindsight for NORMA,
that is, we test all of the candidate kernel widths and select the one with minimal ALL; (ii)
NORMA uses a good learning rate on those datasets. Tuning the learning rate is another
problem of online learning algorithms. To avoid this issue, we set a fixed learning rate for
baseline algorithms and use the theoretical values for our algorithms. In the first column
of Table 4, we give the optimal kernel width of NORMA on each dataset. For instance,
NORMA-2 means that the optimal kernel width is � = 2 on housing dataset. For different
datasets, the optimal kernel width is also different. Thus if we empirically set a fixed kernel
for all datasets, then NORMA will perform badly on some datasets. On the contrary, the
online kernel selection algorithms and online multi-kernel learning algorithms can perform
well on all datasets (except for BOKS). The results verify the first goal, G 1.

Next we analyze BOMKR. Since BOMKR does not share the support vectors, ∀i ∈ [K] ,
the available budget for constructing {ft,i}Tt=1 is B0

K
≪ B0 . Thus BOMKR performs bad.

LKMBooks, PFMBooks and BOMKR-V can share the support vectors, whose available
budget is B0 ,

dB0

(d+K�)
 and dB0

(d+K)
 , respectively. Thus they perform well on all of the datasets.

Table 2 Basic information of
datasets

Dataset Number of
examples

Number of
feature

Type

Housing 14,000 8 Regression
Ailerons 13,750 40 Regression
Ailerons-v 13,750 6 Regression
Elevators 16,599 18 Regression
Hardware 28,179 96 Regression
Hardware-v 28,179 3 Regression
Twitter 50,000 77 Regression
Twitter-v 50,000 3 Regression
Slice 53,500 384 Regression
Mushrooms 8,124 112 Binary classification
Magic04 19,020 10 Binary classification
Adv-magic04 19,020 10 Binary classification
Adv-a9a 16,281 123 Binary classification
Adv-SUSY 50,000 18 Binary classification
Adv-SUSY-v 50,000 6 Binary classification
cod-rna 59,535 8 Binary classification

956 Machine Learning (2022) 111:937–976

1 3

Besides, we also find that BOMKR-V performs worse than NORMA on some datasets. The
main reason is that the learning rate of BOMKR-V is not well tuned. Since PFMBooks is
applicable for the case of K < d∕⌈lnT⌉ , we do not run it on the two low dimensional data-
sets, housing and elevators. PFMBooks performs much better than all of the other algo-
rithms on Slice dataset. The reason is that PFMBooks is parameter-free and uses a suitable
learning rate. For all of the other algorithms including LKMBooks, we actually do not set a
suitable learning rate for individual dataset. The results verify the second goal, G 2.

5.2.2 Online classification

The overall parameter setting is same with that of online regression, except that LKM-
Books uses the same learning rate with the baseline algorithms, i.e., � = 5∕

√
T .

Let Umin = 5 for PFMBooks. For the hinge loss, if f satisfies ‖f‖H < 1 , then
LT (f) =

∑T

t=1
(1 − ytf (�t)) = �(T) . Thus we set Umin > 1 . OMKC is an algorithm frame-

work, based on which four algorithms are derived (Hoi et al. 2013). In the case of memory
constraints, algorithms can suffer more time cost. Thus we adopt OMKCD,D which has the
best prediction performance, but also suffers the highest time cost among the four algo-
rithms. We set the hyper-parameters of OMKCD,D to the recommended values in original
paper.

We still reduce T to an example budget of size B and ensure all algorithms have the
same space complexity. If the number of support vectors of OMKCD,D equals B, then
we stop updating hypotheses. We use BOGD as the baseline, whose space complexity is
O(Bd). Given T memory budget, BOGD can use an example budget of size B0 . The space
complexity of OMKCD,D is O(B(d + K)) . Thus B =

dB0

d+K
 . The space complexity of ISKA

is O(Bd + K) . Thus B = B0 . Table 3 gives the size of example budget of other algorithms.
Table 5 shows the empirical results. It can be find that BOGD performs well on all

datasets, since we select the optimal kernel width in hindsight. The first column shows the
optimal kernel width on different datasets can be different, which is same with the result of
Table 4. Thus we conclude that, if BOGD is equipped with a fixed kernel function for all
datasets, then it will perform worse than the other algorithms. The results verify G 1.

Next we analyze OMKCD,D , which performs bad on the last three datasets. We call
the last three datasets hard dataset and call mushrooms easy dataset, since the mistake
rates are very small on mushrooms. Recalling that OMKCD,D can use a budget of size dB0

d+K
 .

OMKCD,D does not share the memory, and thus it allocates the budget over K hypothe-
sis sequences, i.e., {ft,i}Tt=1, i ∈ [K] . In this way, each hypothesis sequence approximately
obtains a budget of size 1

K
⋅

dB0

d+K
 . Thus it would perform bad on hard dataset. For mush-

rooms, since the number of mistakes is very small, thus a small budget is enough. For
instance, for the case of B0 = 200 , the number of mistakes of OMKCD,D is roughly

Table 3 Space complexity and the available budget of individual algorithm

K� = K⌈ln
√
T⌉

Algorithm NORMA BOKS BOMKR BOMKR-V LKMBooks PFMBooks

Space complexity O(Bd) O(B(d + K)) O(KBd) O(B(d + K)) O(Bd + K) O(B(d + K�))

Available budget B0
dB0

d+K

B0

K

dB0

d+K
B0

dB0

d+K�

957Machine Learning (2022) 111:937–976

1 3

Table 4 AAL (Average Absolute Loss) comparison within memory constraints

Algorithm Housing (B
0
= 50) (B

0
= 200) (B

0
= 400)

AAL Time (s) AAL Time (s) AAL Time (s)

NORMA-2 �.���� ± �.���� 0.27 0.1651 ± 0.0003 0.50 0.1615 ± 0.0003 0.77
BOKS 0.2078 ± 0.0137 0.30 0.2016 ± 0.0064 0.32 0.1982 ± 0.0138 0.38
BOMKR 0.2182 ± 0.0003 1.45 0.1876 ± 0.0003 1.80 0.1768 ± 0.0002 2.11
BOMKR-V 0.1896 ± 0.0004 0.96 �.���� ± �.���� 2.48 0.1512 ± 0.0002 4.29
LKMBooks 0.1832 ± 0.0075 0.80 0.1636 ± 0.0096 1.90 �.���� ± �.���� 3.52
PFMBooks – – – – – –

Algorithm Elevators (B
0
= 50) (B

0
= 200) (B

0
= 400)

AAL Time (s) AAL Time (s) AAL Time (s)

NORMA-1 0.0630 ± 0.0001 0.37 0.0554 ± 0.0001 0.73 0.0539 ± 0.0001 1.11
BOKS 0.1286 ± 0.0145 0.35 0.1254 ± 0.0175 0.41 0.1245 ± 0.0143 0.45
BOMKR 0.0714 ± 0.0001 1.87 0.0651 ± 0.0001 2.29 0.0621 ± 0.0001 2.94
BOMKR-V 0.0671 ± 0.0002 1.22 0.0596 ± 0.0001 2.95 0.0567 ± 0.0001 5.27
LKMBooks �.���� ± �.���� 0.99 �.���� ± �.���� 2.41 �.���� ± �.���� 4.26
PFMBooks – – – – – –

Algorithm Hardware (B
0
= 50) (B

0
= 200) (B

0
= 400)

AAL Time (s) AAL Time (s) AAL Time (s)

NORMA-8 �.���� ± �.���� 1.07 �.���� ± �.���� 2.82 0.2261 ± 0.0001 5.73
BOKS 0.2755 ± 0.0082 0.77 0.2747 ± 0.0136 0.91 0.2673 ± 0.0157 1.16
BOMKR 0.2564 ± 0.0001 3.99 0.2515 ± 0.0001 5.70 0.2462 ± 0.0001 8.78
BOMKR-V 0.2516 ± 0.0001 2.31 0.2377 ± 0.0001 5.94 0.2308 ± 0.0001 12.05
LKMBooks 0.2440 ± 0.0089 1.95 0.2298 ± 0.0034 5.08 �.���� ± �.���� 9.28
PFMBooks 0.2534 ± 0.0018 6.95 0.2432 ± 0.0040 9.35 0.2388 ± 0.0047 13.13

Algorithm Twitter (B
0
= 50) (B

0
= 200) (B

0
= 400)

AAL Time (s) AAL Time (s) AAL Time (s)

NORMA-4 �.���� ± �.���� 1.72 �.���� ± �.���� 4.27 0.1519 ± 0.0001 9.12
BOKS 0.2228 ± 0.0127 1.25 0.2025 ± 0.0213 1.60 0.1947 ± 0.0218 2.35
BOMKR 0.2115 ± 0.0001 6.82 0.2019 ± 0.0001 9.37 0.2019 ± 0.0001 13.83
BOMKR-V 0.2004 ± 0.0001 4.19 0.1718 ± 0.0001 10.44 0.1599 ± 0.0001 20.41
LKMBooks 0.1847 ± 0.0114 3.18 0.1592 ± 0.0059 8.86 �.���� ± �.���� 16.38
PFMBooks 0.2020 ± 0.0061 11.36 0.1767 ± 0.0081 15.80 0.1655 ± 0.0065 22.47

Algorithm Slice (B
0
= 50) (B

0
= 200) (B

0
= 400)

AAL Time (s) AAL Time (s) AAL Time (s)

NORMA-4 0.3818 ± 0.0001 5.56 0.3504 ± 0.0001 18.51 0.3317 ± 0.0001 42.20
BOKS 0.3866 ± 0.0087 2.27 0.3448 ± 0.0122 3.64 0.3073 ± 0.0193 6.42
BOMKR 0.3972 ± 0.0001 14.34 0.3924 ± 0.0001 27.46 0.3857 ± 0.0001 48.97
BOMKR-V 0.3737 ± 0.0001 8.85 0.3308 ± 0.0001 27.35 0.3052 ± 0.0001 58.00
LKMBooks 0.3439 ± 0.0070 6.84 0.3095 ± 0.0042 21.87 0.2926 ± 0.0043 41.69
PFMBooks �.���� ± �.���� 14.50 �.���� ± �.���� 24.11 �.���� ± �.���� 37.02

958 Machine Learning (2022) 111:937–976

1 3

0.62 ∗ T ≈ 50 , where T = 8124 . Thus the optimal hypothesis sequence {ft,i∗}Tt=1 only needs
a budget of size about 50. LKMBooks shares the memory and performs well on hard data-
set. The experimental results do not match our theoretical results well, since we focus on
the mistake rates not the average cumulative losses. Our theoretical results are the regret
bounds, not the mistake bounds. Even so, the experimental results on the hard datasets still
verify G 2.

ISKA also shares the memory and performs better than our algorithms on mushrooms
and magic04, since it employs an elaborate removing strategy, while our algorithms just
use simple randomized adding strategies. However, the regret bounds of ISKA does not
reveal the superiority. We conjecture that data-dependent regret bounds can explain the
superiority. Besides, ISKA performs worse than our algorithms on the two adversarial
datasets. The kernel selection procedure of ISKA consists of two phases. During the first
phase, ISKA converges to an empirically optimal kernel. During the second phase, ISKA
always chooses the empirically optimal kernel. The adversary can easily change the opti-
mal kernel by scaling the feature of instances and make ISKA converge to a bad kernel.
Our algorithms randomly choose kernels and can converge to the optimal kernel defined
on the whole datasets. Thus our algorithms are more robust than ISKA in adversarial
environments.

5.3 Time constraints

5.3.1 Online regression

Let T be a given time budget. We also achieve the time constraints by fixing the budget
size. To be specific, we choose BOMKR as baseline, where the budget is set to B0 . Denote
the average per-round running time of BOMKR by tp . We tune the budget of other algo-
rithms for ensuring the same running time with tp . For BATBooks, we set the learning rate
𝜂 = 4

√
lnK∕(KC̃T ,∗) , where C̃T ,∗ is tuned by the doubling trick, U = B

1

3

0
 and �max = 1 . For

the parameter � , we choose the maximal value from {1∕i}i=3,4,…,12 for satisfying the condi-
tion (12). For the other algorithms, the parameter setting keeps unchanged.

Table 6 shows the empirical results. First, we consider the results on four high dimen-
sional datasets, elevator, ailerons, Hardware and Twitter. In this case, we have K < d .
Within a same time budget, LKMBooks shows the best performance except for NORMA.
Although LKMBooks is designed for memory constraints, it is still nearly optimal for time
constraints. In the second and fifth columns, the available budgets of all algorithms are dif-
ferent, since the per-round time complexities are different. It seems strange that BOKS has
the maximal available budget. The reason is that BOKS allocates the available budget B0
to K hypotheses {ft,i}Ki=1 . Thus the available budget of each ft,i is less than B0 . The results
verify the third goal, G 3.

Next we consider the four low dimensional datasets, housing, ailerons-v, Hardware-v
and Twitter-v. In this case, we have K > d . Within a same time budget, BATBooks shows
the best performance on all datasets except for NORMA. NORMA performs well, since
it has the lowest time complexity and we set the optimal kernel width in hindsight. It is
interesting to find that, the available budget of BATBooks is similar with that of NORMA.
The reason is that the two algorithms have same per-round time complexity, which is
O(dB + K) and O(dB), respectively. BATBooks performs better than LKMBooks for the
case of d < K , which verifies the fourth goal, G 4.

959Machine Learning (2022) 111:937–976

1 3

5.3.2 Online classification

For LKMBooks, the parameters follow the setting in Sect. 5.2.2. For BATBooks, the
parameters follow the setting in Sect. 5.3.1, except that the stepsize is set to � =

U
√
(1+�)B√

2(1−�)LT

which is slightly different from that of Theorem 10. We choose OMKCD,D as baseline,

Table 5 AMR (Average Mistake Rate) comparison within memory constraints

The bold in each column of the tables indicates the algorithm enjoying the best performance

Algorithm Mushrooms (B
0
= 200) (B

0
= 400) (B

0
= 600)

AMR (%) Time (s) AMR (%) Time (s) AMR (%) Time (s)

BOGD-1 1.13 ± 0.11 2.05 0.48 ± 0.08 3.89 �.�� ± �.�� 5.90
BOKS 3.98 ± 0.29 0.38 3.25 ± 0.09 0.40 3.24 ± 0.10 0.38
OMKCD,D �.�� ± �.�� 3.54 �.�� ± �.�� 4.93 0.34 ± 0.04 5.10
ISKA 3.68 ± 0.34 5.14 3.39 ± 0.19 12.01 2.03 ± 0.12 21.64
LKMBooks 3.70 ± 0.56 1.51 3.23 ± 0.45 2.45 3.03 ± 0.28 3.30
PFMBooks 6.07 ± 0.79 3.31 4.46 ± 0.66 4.83 3.88 ± 0.57 6.60

Algorithm Magic04 (B
0
= 200) (B

0
= 400) (B

0
= 600)

AMR (%) Time (s) AMR (%) Time (s) AMR (%) Time (s)

BOGD-24 25.75 ± 0.27 1.34 23.96 ± 0.19 2.35 23.09 ± 0.18 2.66
BOKS 35.02 ± 1.03 0.66 34.81 ± 1.20 0.72 34.38 ± 1.34 0.74
OMKCD,D 34.35 ± 1.88 4.82 33.19 ± 1.31 6.38 31.46 ± 1.22 7.67
ISKA ��.�� ± �.�� 4.03 ��.�� ± �.�� 6.96 ��.�� ± �.�� 9.79
LKMBooks 26.66 ± 0.87 2.91 24.48 ± 0.77 3.83 23.44 ± 0.56 4.80
PFMBooks – – – – – –

Algorithm Adv-magic04 (B
0
= 200) (B

0
= 400) (B

0
= 600)

AMR (%) Time (s) AMR (%) Time (s) AMR (%) Time (s)

BOGD-2 ��.�� ± �.�� 1.35 24.48 ± 0.21 1.95 23.64 ± 0.18 2.60
BOKS 35.15 ± 0.74 0.68 33.72 ± 2.23 0.70 31.21 ± 1.99 0.78
OMKCD,D 34.76 ± 0.96 4.90 34.38 ± 1.02 6.43 33.31 ± 2.50 7.71
ISKA 28.50 ± 3.66 3.44 27.87 ± 2.45 5.41 26.88 ± 2.52 5.93
LKMBooks 26.81 ± 2.19 2.85 ��.�� ± �.�� 3.91 ��.�� ± �.�� 5.10
PFMBooks – – – – – –

Algorithm Adv-a9a (B
0
= 200) (B

0
= 400) (B

0
= 600)

AMR (%) Time (s) AMR (%) Time (s) AMR (%) Time (s)

BOGD-2−3 ��.�� ± �.�� 4.50 ��.�� ± �.�� 8.91 ��.�� ± �.�� 13.91
BOKS 24.29 ± 0.56 0.80 23.73 ± 1.38 1.06 22.97 ± 0.99 1.30
OMKCD,D 21.93 ± 1.96 9.06 21.64 ± 2.29 15.97 21.04 ± 2.78 23.05
ISKA 23.63 ± 0.02 12.27 23.63 ± 0.01 29.72 23.54 ± 0.27 43.57
LKMBooks 20.40 ± 1.52 4.08 19.37 ± 0.55 6.87 18.88 ± 0.52 9.01
PFMBooks 22.37 ± 1.18 7.50 21.49 ± 0.72 9.35 21.00 ± 0.51 15.50

960 Machine Learning (2022) 111:937–976

1 3

where the budget is set to B0 . Let tp be the average per-round running time of OMKCD,D .
We tune the budget of other algorithms for ensuring the same running time with tp.

Table 7 shows the empirical results. We first consider the results on two high-
dimensional datasets, mushrooms and Adv-a9a in which K ≪ d . Within a same time
budget, LKMBooks performs better than BATBooks. For Adv-SUSY, we have K ≈ d
(K = 9, d = 18). LKMBooks shows similar performance with BATBooks. The same result
holds for Adv-magic04, in which K = 9 and d = 10 . Besides, OMKCD,D performs much
better than other algorithms on mushrooms. The reason is same with the analysis on mush-
rooms in Sect. 5.2.2. As a whole, for the case of K ≥ d , LKMBooks performs well on most
of dataset. The results verify G 3.

Next we consider the two low-dimensional datasets, cod-rna and Adv-SUSY-v in which
d < K . We find that LKMBooks performs slightly better than BATBooks on cod-rna, and
performs worse than BATBooks on Adv-SUSY-v. The results does not fully verify G 4.
There may be two reasons: (i) for cod-rna, we have d ≈ K (d = 8,K = 9); (ii) the perfor-
mance measure is the mistakes rate, not the average cumulative losses. Even so, our algo-
rithms still perform better than OMKCD,D and ISKA.

6 Conclusion and discussion

In this paper, we studied the computationally budgeted online kernel selection, where the
kernel selection and online prediction procedures face memory constraints or time con-
straints. We separately proved a lower bound on the regret under the two kinds of compu-
tational constraints, and developed several simple algorithms that nearly achieve the lower
bounds. We also identified the condition under which online kernel selection with a time
constraint is different from that with a memory constraint.

This work will open up many directions for future research. One of the most impor-
tant research is to identify the sufficient conditions under which a constant computational
constraint can achieve a sub-linear regret bound. Model selection aims at choosing the
inductive bias that matches the data and improving the learning performance of algorithms.
Thus the worst-case regret guarantees do not reveal the essence of model selection. The
sufficient conditions play the role of inductive bias. To this end, it is necessary to establish
some kind of data-dependent regret bounds. Although many work has focus on achieving
data-dependent regret bounds for general online learning problem, such as prediction with
expert advice, multi-armed bandit problems, online convex optimization and so on, few of
them considers the computational constraints.

We need further study the worst-case regret analysis. For the case of memory constraints
and K > d∕ ln

√
T , our algorithm can not adapt to the norm of competitor. Thus the regret

bound is far from optimality in terms of ‖f ∗
i
‖Hi

 . For the case of time constraints and K > d ,
if T = �(T∕K) , then there is a gap of order

√
K between the lower bound and upper bound.

It is necessary to study whether this gap can be removed. Besides, the algorithm can also
not adapt to the norm of competitor.

961Machine Learning (2022) 111:937–976

1 3

Appendix

Proof of Theorem 1

Table 6 AAL (Average Absolute Loss) comparison within time constraints

The bold in each column of the tables indicates the algorithm enjoying the best performance

Algorithm Elevators Housing

B
0

AAL tp × 10−4(s) B
0

AAL tp × 10−4(s)

NORMA-(1,2) 1000 0.0536 ± 0.0001 1.73 ± 0.12 1250 0.1447 ± 0.0003 1.40 ± 0.04

BOKS 6100 0.1734 ± 0.0184 1.71 ± 0.13 5800 0.1891 ± 0.0252 1.44 ± 0.18

BOMKR 50 0.0617 ± 0.0001 1.74 ± 0.07 50 0.1749 ± 0.0002 1.47 ± 0.02

BOMKR-V 190 0.0599 ± 0.0001 1.72 ± 0.02 160 0.1657 ± 0.0004 1.44 ± 0.02

LKMBooks 260 �.���� ± �.���� 1.76 ± 0.02 220 0.1592 ± 0.0082 1.47 ± 0.02

BATBooks 1250 0.0581 ± 0.0020 1.73 ± 0.01 1300 �.���� ± �.���� 1.43 ± 0.05

Algorithm Ailerons Ailerons-v

B
0

AAL tp × 10−4(s) B
0

AAL tp × 10−4(s)

NORMA-8 830 0.0774 ± 0.0001 2.15 ± 0.06 1400 �.���� ± �.���� 1.42 ± 0.02

BOKS 3900 0.0952 ± 0.0076 2.18 ± 0.23 5500 0.1296 ± 0.0126 1.41 ± 0.19

BOMKR 50 0.0842 ± 0.0003 2.13 ± 0.07 50 0.1030 ± 0.0003 1.47 ± 0.08

BOMKR-V 220 0.0791 ± 0.0002 2.11 ± 0.02 150 0.0934 ± 0.0001 1.40 ± 0.04

LKMBooks 300 �.���� ± �.���� 2.17 ± 0.05 220 0.0966 ± 0.0089 1.43 ± 0.02

BATBooks 1000 0.0732 ± 0.0040 2.12 ± 0.03 1300 0.0925 ± 0.0042 1.49 ± 0.06

Algorithm Hardware Hardware-v

B
0

AAL tp × 10−4(s) B
0

AAL tp × 10−4(s)

NORMA-8 650 0.2250 ± 0.0001 3.12 ± 0.20 1750 0.2426 ± 0.0003 1.27 ± 0.02

BOKS 3900 0.2435 ± 0.0288 3.10 ± 0.49 6720 0.2510 ± 0.0214 1.26 ± 0.31

BOMKR 50 0.2452 ± 0.0001 3.18 ± 0.19 50 0.2556 ± 0.0001 1.24 ± 0.02

BOMKR-V 310 0.2332 ± 0.0001 3.12 ± 0.01 200 0.2497 ± 0.0001 1.25 ± 0.01

LKMBooks 400 �.���� ± �.���� 3.13 ± 0.07 280 0.2394 ± 0.0064 1.26 ± 0.02

BATBooks 900 0.2363 ± 0.0056 3.15 ± 0.09 1700 �.���� ± �.���� 1.24 ± 0.01

Algorithm Twitter Twitter-v

B
0

AAL tp × 10−4(s) B
0

AAL tp × 10−4(s)

NORMA-4 640 �.���� ± �.���� 2.69 ± 0.05 1300 �.���� ± �.���� 1.33 ± 0.11

BOKS 4450 0.1659 ± 0.0159 2.68 ± 0.48 6500 0.1637 ± 0.0097 1.30 ± 0.21

BOMKR 50 0.1885 ± 0.0001 2.65 ± 0.03 50 0.1868 ± 0.0001 1.35 ± 0.03

BOMKR-V 260 0.1667 ± 0.0001 2.65 ± 0.01 130 0.1805 ± 0.0001 1.30 ± 0.02

LKMBooks 330 0.1535 ± 0.0044 2.62 ± 0.03 180 0.1611 ± 0.0071 1.35 ± 0.12

BATBooks 930 0.1603 ± 0.0043 2.64 ± 0.03 1500 0.1533 ± 0.0032 1.37 ± 0.01

962 Machine Learning (2022) 111:937–976

1 3

Proof We use the hinge loss �(u, y) = max{0, 1 − yu} as an example. Our analysis is also
applicable to the absolute loss. We select K Gaussian kernel functions
�i(�, �) = exp(−

‖�−�‖2
2

�i
) , i = 1,… ,K as the candidates. Without loss of generality, we

assume that 0 < 𝜎1 < 𝜎2 < … < 𝜎K . Our proof is based on a sequence of instances
S = {�t}

T
t=1

 , such that

where D is a constant. For r = 1,… ,K and i ≠ j , we have

where c1 < … < cK < 1 . For an Euclid space ℝd , we can always find d + 1 points satisfy-
ing the property. Note that we do not require the instances are orthogonal or approximately

∀�i ≠ �j ∈ S, ‖�i − �j‖2 = D ≠ 0,

�r(�i, �j) = exp

�
−
‖�i − �j‖22

2�2
r

�
= exp

�
−
D2

2�2
r

�
= cr,

Table 7 AMR (Average Mistake Rate) comparison within time constraints

The bold in each column of the tables indicates the algorithm enjoying the best performance
∞ means B0 = T

Algorithm Mushrooms cod-rna

B
0

AMR tp × 10−4(s) B
0

AMR tp × 10−4(s)

BOGD-(1, 24) 360 �.�� ± �.�� 4.52 ± 0.03 1250 12.90 ± 0.04 2.48 ± 0.14

BOKS ∞ 3.26 ± 0.10 0.52 ± 0.03 ∞ 17.86 ± 0.16 2.30 ± 0.44

OMKCD,D 200 0.62 ± 0.19 4.35 ± 0.09 200 20.71 ± 2.84 2.46 ± 0.20

ISKA 150 3.82 ± 0.78 4.81 ± 0.15 550 ��.�� ± �.�� 2.50 ± 0.19

LKMBooks 600 3.03 ± 0.28 4.06 ± 0.00 950 13.28 ± 0.20 2.44 ± 0.22

BATBooks 850 5.75 ± 0.87 4.35 ± 0.07 2800 13.68 ± 0.18 2.41 ± 0.17

Algorithm Adv-a9a Adv-magic04

B
0

AMR tp × 10−4(s) B
0

AMR tp × 10−4(s)

BOGD-(2−3, 2) 430 ��.�� ± �.�� 5.87 ± 0.43 1300 ��.�� ± �.�� 2.57 ± 0.22

BOKS ∞ 23.40 ± 0.40 4.82 ± 0.74 ∞ 27.89 ± 0.59 1.26 ± 0.24

OMKCD,D 200 21.93 ± 1.96 5.67 ± 0.31 200 34.76 ± 0.96 2.58 ± 0.01

ISKA 170 23.63 ± 0.02 5.73 ± 0.16 380 26.88 ± 3.23 2.66 ± 0.23

LKMBooks 600 18.88 ± 0.52 5.54 ± 0.12 520 23.58 ± 0.66 2.53 ± 0.10

BATBooks 1800 19.95 ± 0.41 5.35 ± 0.25 2300 23.63 ± 0.44 2.51 ± 0.11

Algorithm Adv-SUSY Adv-SUSY-v

B
0

AMR tp × 10−4(s) B
0

AMR tp × 10−4(s)

BOGD-2−3 1100 28.02 ± 0.13 3.34 ± 0.24 1800 ��.�� ± �.�� 2.68 ± 0.19

BOKS 7500 29.40 ± 1.28 3.37 ± 0.93 12000 37.08 ± 0.76 2.83 ± 0.55

OMKCD,D 200 43.61 ± 1.80 3.38 ± 0.25 200 44.23 ± 1.78 2.72 ± 0.09

ISKA 360 43.44 ± 2.37 3.19 ± 0.23 600 46.22 ± 3.24 2.82 ± 0.23

LKMBooks 450 27.70 ± 0.58 3.34 ± 0.06 300 35.46 ± 1.56 2.84 ± 0.06

BATBooks 2350 ��.�� ± �.�� 3.12 ± 0.08 2500 33.09 ± 0.36 2.67 ± 0.20

963Machine Learning (2022) 111:937–976

1 3

orthogonal in RKHSs, which is different from the techniques adopted by (Dekel et al.
2008; Zhang et al. 2013; Cesa-Bianchi et al. 2015). We assume that T ≤ d + 1 and T is
even. Next we will design a strategy for the adversary, based on which the adversary sends
examples to the learner.

Before the game, the adversary assigns a label yt for each instance �t , satisfying yt = 1 if
t is odd, otherwise, yt = −1 . Define a sequence of example pairs si = {(�i, yi), (�i+1, yi+1)} ,
where i = 1, 3, 5,… . The adversary assigns the examples {(�t, y�t)}

T
t=1

 as follows,

• Case 1 T ≤ 2e
1

4B

 If t is odd, the adversary selects (�t, y�t) ∈ st uniformly. Otherwise, the adversary
assigns (�t, y�t) ∈ st−1⧵{(�t−1, y

�
t−1

)}.
• Case 2 T ≥ 2e

1

4B + 1

 If t ≤ 2B and t is odd, the adversary selects (�t, y�t) ∈ st uniformly. If t ≤ 2B and t is
even, the adversary assigns (�t, y�t) ∈ st−1 ⧵ {(�t−1, y

�
t−1

)} . If t ≥ 2B + 1 , the adversary
divides the time horizon {2B + 1,… , T} into continuous epochs with length m, except
for the last epoch. We require that m is even. Assuming there are � + 1 epoches. Let
m = ⌈ T−2Bi

(2e
1
4 −2)Bi+1

⌉ . If m is odd, then let m = m + 1 . Thus � = ⌊ T−2B

m
⌋ . If the length of the

last epoch is odd, then we add one more new example. For the r-th epoch, denote the
start point as sr = (r − 1)m + 2B + 1 and the end point as er = rm + 2B . If t = sr , then
the adversary selects (�t, y�t) ∈ st uniformly, and assigns (�t+1, y�t+1) ∈ st ⧵ {(�t, y

�
t
)} . If

t = sr + 2n, n = 1, 2,… ,
m

2
− 1 , the adversary first constructs an example pair

s̄t = {(�̄t, ȳt), (�̄t+1, ȳt+1)} . The adversary samples (�̄t, ȳt) from Sr uniformly, where Sr is
the set of examples selected at the end of the sr-th round, and then samples (�̄t+1, ȳt+1)
from Sr ⧵ {(�, y) ∈ Sr ∶ y = ȳt} uniformly. After that, the adversary selects (�t, y�t) ∈ s̄t
uniformly, and assigns (�t+1, y�t+1) ∈ s̄t ⧵ {(�t, y

�
t
)}.

Let St be the budget maintained by the learner at the beginning of round t, satisfying
|St| ≤ B . The hypothesis ft used by the learner has the form ft =

∑
��∈St,It

a��It (�� , ⋅) , where
It ∈ [K] is the index of kernel function selected by the learner, and St,It is the budget allo-
cated for �It , satisfying

⋃K

i=1
St,i = St . Note that it is possible that St,1 = … = St,K.

Case 1 T ≤ 2e
1

4B . If t is odd, then it is easy to verify that ft(�t) = ft(�t) = ft(�t+1) . Thus
the expected loss of the learner is

If t is even, we have �t(ft(�t), yt) ≥ 0 . Thus the cumulative loss of the learner is larger than
T

2
 . For each Hi , let the optimal hypothesis be f ∗

i
=
∑T

�=1
a��(�� , ⋅) . Next we need to solve

the coefficients a1,… , aT.
First we require f ∗

i
 satisfying condition (13),

From the above condition, we can obtain the relation f ∗
i
(�t) = f ∗

i
(�t+2) for any t, i.e.,

�(ft(�t), yt) =
1

2
max{0, 1 − ft(�t)} +

1

2
max{0, 1 + ft(�t+1)} ≥ 1.

(13)f ∗
i
(�t) =

T∑
�=1

a��i(�� , �t) = yt, ∀ t = 1, 2,… , T .

at + at+2ci +

T∑
�≠t,�≠t+2

��ci = at+2 + atci +

T∑
�≠t,�≠t+2

��ci.

964 Machine Learning (2022) 111:937–976

1 3

Since ci ≠ 1 , we have at = at+2 . Thus f ∗
i
 has the form

Furthermore, taking into f ∗
i
(�1) = 1 and f ∗

i
(�2) = −1 yields condition (14) and (15),

Since we assume that T is even, solving the above two equations produces

Thus the optimal hypothesis f ∗
i
 is

which satisfies
∑T

t=1
�(f ∗

i
(�t), yt) = 0 , and

Then the regret of any budgeted online kernel selection algorithm can be bounded as
follows

where L = maxt ‖ − yt�i(�t, ⋅)‖Hi
= 1.

Case 2 T ≥ 2e
1

4B + 1 . For the first 2B rounds, the expected cumulative losses of any
algorithm is larger than B. For t ≥ 2B + 1,… , T , we first analyze the expected loss in a
fixed epoch. At the r-th epoch, r = 1,… ,� , if t = sr , then the expected instantaneous loss
is larger than 1. If t = sr + 2n, n = 1, 2,… ,

m

2
− 1 , the probability that �t and �t+1 are not in

St,It is

where BIt ,y
′
t
 is the number of examples in St,It , whose label are y′

t
 . In this case, we still have

ft(�t) = ft(�̄t) = ft(�̄t+1) . Thus at round t = sr + 2n , the expected instantaneous loss is larger
than 1 − 2B

|Sr| . The expected loss in the r-th epoch satisfies

f ∗
i
(�t) =

∑
�=2n+1

a1�i(�� , �t) +
∑

�=2n+2

a2�i(�� , �t), n = 0, 1, 2,… .

(14)a1 +
∑

�=2n+1,�≠1
a1ci + a2ci +

∑
�=2n+2,�≠2

a2ci = 1,

(15)a1ci +
∑

�=2n+1,�≠1
a1ci + a2 +

∑
�=2n+2,�≠2

a2ci = −1.

a1 =
1

1 − ci
, a2 = −

1

1 − ci
.

f ∗
i
=

1

1 − ci

∑
�=2n+1

�i(�� , ⋅) −
1

1 − ci

∑
�=2n+2

�i(�� , ⋅),

‖f ∗
i
‖Hi

=

����
∑T

t,�=1
(−1)t+��(�t, ��)

(1 − ci)
2

=

�
T +

∑T

t≠�=1(−1)t+�ci
1 − ci

=

√
T − Tci

1 − ci
=

√
T√

1 − ci

.

T�
t=1

�[�(ft(�t), yt)] −

T�
t=1

�(f ∗
i
(�t), yt) ≥ T

2
=

√
1 − ci

2
‖f ∗

i
‖Hi

L
√
T ,

|Sr| − BIt ,y
�
t

|Sr| ⋅

1

2
|Sr| − BIt ,−y

�
t

1

2
|Sr|

≥ 1 −
2B

|Sr| .

er∑
t=sr

�[�(ft(�t), y
�
t
)] ≥ 1

2
+

m − 2

2

(
1 −

2B

|Sr|
)

≥ m − 1

2
− (m − 2)

B

|Sr| .

965Machine Learning (2022) 111:937–976

1 3

Summing over t = 1, 2,… , T gives

where we use the fact � =
⌊
T−2B

m

⌋ ≤ (2e
1

4 − 2)B + 1. The optimal hypothesis f ∗
i
 is

According to the analysis in Case 1, we have
∑T

t=1
�t(f

∗
i
(�t), yt) = 0 , and

where we omit the constant 4 in the square root. A lower bound on the expected cumulative
expected loss of any budgeted online kernel selection algorithm is as follows,

We can verify that

Thus the expected regret can be lower bounded as follows

Combining with the two cases gives the desired lower bound. ◻

T∑
t=1

�[�(ft(�t), yt)] =

2B∑
t=1

�[�(ft(�t), yt)] +

T∑
t=2B+1

�[�(ft(�t), yt)]

≥B +

�∑
r=1

[
m − 1

2
− (m − 2)

B

|Sr|
]
+

T∑
t=s�

�[�(ft(�t), yt)]

≥1

2

[
T − � − 2(m − 2)

�∑
r=1

B

2B + r + 1

]
(|Sr| = 2B + r + 1)

≥1

2

[
T − � − 2(m − 2)B ln

2B + � − 1

2B

]

≥1

2

[
T − � − (m − 2)

B

2

]
,

f ∗
i
=

2B∑
t=1

at�(�t, ⋅) +

�+1∑
r=1

(asr�(�sr , ⋅) + asr+1�(�sr+1, ⋅)).

‖f ∗
i
‖Hi

=

√
2B + 2� + 2√

1 − ci

≤
�

2B + 2(2e
1

4 − 2)B + 4
√
1 − ci

≤
√
3.2B√
1 − ci

,

T∑
t=1

�[�(ft(�t), yt)] ≥1

2

[
T − (2e

1

4 − 2)B − 1 − (m − 2)
B

2

]

≥1

2

[
T −

⌈
T − 2B

(2e
1

4 − 2)B + 1

⌉
B

2
+
(
5

2
− 2e

1

4

)
B − 1

]
(m is even)

≥1

2

[
T −

T − 2B

(2e
1

4 − 2)B + 1

Bi

2
+ (2 − 2e

1

4)B − 1

]
.

T − 2B

(2e
1

4 − 2)B + 1

B

2
− (2 − 2e

1

4)B + 1 <
11

12
T .

�

�
T�
t=1

�(ft(�t), yt)

�
−

T�
t=1

�(f ∗
i
(�t), yt) ≥

√
1 − ci

12
‖f ∗

i
‖Hi

L
T√
3.2B

,

966 Machine Learning (2022) 111:937–976

1 3

Proof of Theorem 2

Before giving the detailed proof, we state an important lemma.

Lemma 1 (Bernstein’s inequality for martingales)

Let X1,… ,Xn be a bounded martingale difference with respect to the filtration
F = (Fi)1≤i≤n and with |Xi| ≤ a . Let Si =

∑i

j=1
Xj be the associated martingale. Denote the

sum of the conditional variances by

Then for all constants a, v > 0 , with probability at least 1 − �,

Lemma 1 is derived from Lemma 1.8 in (Cesa-Bianchi and Lugosi 2006).

Proof First, assuming that B < T . In this case, there exists a � ∈ [0, 1) such that
B < (1 − 𝜐)T (1−𝜐) . Thus ℙ[�t = 1] =

B

(1−�)T (1−�)(|Et|+1)� . After the (T − 1)-th round, the num-
ber of support vectors in S satisfies �S� = ∑T−1

t=1
��t=1

 . Define a random variable Xt as
follows

Under the condition of �1,… , �t−1 , it can be verified that �[Xt] = 0 and |Xt| ≤ 1 . Thus
X1,… ,XT−1 forms bounded martingale sequence. The sum of conditional variances
satisfies

Using Lemma 1, with probability at least 1 − �,

Then we consider B = T . In this case, there is no � satisfying B < (1 − 𝜐)T1−𝜐 . Thus
ℙ[�t = 1] = 1, t ∈ Et . We have |S| ≤ T = B . Combining with the two cases concludes the
proof. ◻

�2
n
=

n∑
t=1

�
[
X2
t
|Ft−1

] ≤ v.

max
i=1,…,n

Si <
2

3
a ln

1

𝛿
+

√
2v ln

1

𝛿
.

Xt = 𝕀�t=1
− ℙ[�t = 1].

�2
T
=

T−1∑
t=1

𝔼[(Xt)
2] ≤ ∑

t∈ET

ℙ[�t = 1] ≤ ∑
t∈ET

B

(1 − �)T1−�(|Et| + 1)�

≤ B

T1−� �t∈ET

1

(1 − �)t�
d t ≤ B

T1−�
T1−� ≤ B.

|S| ≤ B +
2

3
ln

1

�
+

√
2B ln

1

�
.

967Machine Learning (2022) 111:937–976

1 3

Proof of Theorem 3

Proof Let � ∈ �K−1 . We consider the regret w.r.t. any f ∈ H�
�

 . We split the regret into two
components,

where the last inequality is derived from (6). According to Theorem 2.2 in Cesa-Bianchi
and Lugosi (2006), let � =

√
8 ln(K)∕T , the first term can be rewritten as follows,

Next we analyze �2 . Recalling that any f ∈ H�
�

 can be represented as follows

where fi =
∑T

t=1
𝛼t𝜙

⊤
𝜅i
(�t) . Thus �2 can be rewritten as follows,

If B < T , then using the standard analysis technique of online gradient descent and a con-
stant learning rate, i.e. �t = � yields

where � =
√
(1 + �)B∕(

√
(1 − �)DLT).

If B = T , which implies ℙ[�t = 1] = 1 for t ∈ Et , then

T�
t=1

𝓁(ft(�t), yt) −

T�
t=1

𝓁(f (�t), yt) ≤
T�
t=1

𝓁
�(ft(xt), yt) ⋅ (ft(�t) − f (�t))

=

T�
t=1

𝓁
�(ft(xt), yt) ⋅ (ft(�t) − ft,i(�t)) +

T�
t=1

𝓁
�(ft(xt), yt) ⋅ (ft,i(�t) − f (�t))

= max{𝓁m, 1}

T�
t=1

�⟨�t, ct⟩ − ct,i
�
+

T�
t=1

𝓁
�(ft(xt), yt) ⋅ (ft,i(�t) − f (�t))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�2

,

max{�m, 1}

T�
t=1

[⟨�t, ct⟩ − ct,i] = O
�
max{�m, 1}

√
T lnK

�
.

f =

T�
t=1

at𝜙𝜅
�

(�t) =

T�
t=1

at(
√
r1𝜙

⊤
𝜅1
(�t),… ,

√
rK𝜙

⊤
𝜅K
(�t))

⊤ = (
√
r1f1,… ,

√
rKfK)

⊤,

𝛯2 ∶=

T�
t=1

K�
i=1

ri⟨∇̃t,i, ft,i − fi⟩ +
T�
t=1

K�
i=1

ri⟨∇t,i − ∇̃t,i, ft,i − fi⟩.

�
�
𝛯2

�
= �

�
T�
t=1

⟨∇̃t,i, ft,i − fi⟩
�
≤

‖f‖2
H𝜅�

2𝜆
+

𝜆

2
�

�
T�
t=1

‖∇̃t,i‖2Hi

�

≤
‖f‖2

H𝜅�

2𝜆
+

𝜆DL2

2
⋅

�
t∈ET

(1 − 𝜐)T1−𝜐(�Et� + 1)𝜐

B

≤
‖f‖2

H𝜅�

2𝜆
+

𝜆DL2

2

(1 − 𝜐)T2

(1 + 𝜐)B
≤ (‖f‖2

H𝜅�

+ 1)
L
√
(1 − 𝜐)DT√
(1 + 𝜐)B

,

968 Machine Learning (2022) 111:937–976

1 3

where � = 1∕(
√
DTL) . Let � satisfy ri = 1 . Combining with �1 and �2 yields

Replacing f with f ∗
i
 and B = �T concludes the proof. ◻

Proof of Theorem 5

Proof According to the analysis in (Bubeck et al. 2019), the probability updating of E(K�)
is equivalent to the following online mirror descent

where �t(�) =
1

�t

∑K�

k=1
g(Uh∗(k)2

,Dh∗(k)1
)pk ln pk is the weighted negative entropy regular-

izer, and D�t
(�, �) = �t(�) − �t(�) − ⟨∇�t(�),� − �⟩ is Bregman divergence. Let

� ∈ �K�−1 . The expected regret w.r.t. any competitor � ∈ �K�−1 is as follows

where we use a constant learning rate i.e, �t = � . Next we separately analyze the two terms.
The first derivative of the regularizer w.r.t. pk is

The Bregman divergence between any �, � ∈ �K�−1 is

Thus the first term can be rewritten as follows

�2 =

T�
t=1

K�
i=1

ri⟨∇t,i, ft,i − fi⟩ ≤
‖f‖2

H��

2�
+

�DL2

2
T ≤ (‖f‖2

H��

+ 1)L
√
DT ,

�
�
Reg(Hi)

� ≤ O

�
max{�m, 1}

√
T lnK + (‖f‖2

Hi
+ 1)L

√
Dmax{

T√
B
,
√
T}

�
.

�̄t+1 = argmin
�∈ℝK�

�⟨�, ct⟩ +D𝜓t
(�, �t)

�
, �t+1 = argmin

�∈𝛥K�−1

D𝜓t
(�, �̄t+1)

T�
t=1

⟨�t − �, ct⟩ =
T�
t=1

⟨�̄t+1 − �, ct⟩ +
T�
t=1

⟨�t − �̄t+1, ct⟩

≤
T�
t=1

�
D𝜓t

(�, �t) −D𝜓t
(�, �̄t+1) −D𝜓t

(�̄t+1, �t)
�
+

T�
t=1

⟨�t − �̄t+1, ct⟩

≤
T�
t=1

�
D𝜓t

(�, �t) −D𝜓t
(�, �t+1) −D𝜓t

(�̄t+1, �t)
�
+

T�
t=1

⟨�t − �̄t+1, ct⟩

=D𝜓1
(�, �1) +

T�
t=1

�⟨�t − �̄t+1, ct⟩ −D𝜓 (�̄t+1, �t)
�
,

∇k�(�) =
1

�
g(Uh∗(k)2

,Dh∗(k)1
)(ln pk + 1), k = 1,… ,K�.

D� (�, �) =
1

�

K�∑
k=1

g(Uh∗(k)2
,Dh∗(k)1

)

[
uk ln

uk

vk
− (uk − vk)

]
.

969Machine Learning (2022) 111:937–976

1 3

Next we analyze the second term. We use the updating rule of E(K�) (see Algorithm 3).

where we use the fact exp(−x) ≤ 1 − x +
x2

2
 for x ≥ 0 and the definition of p̄t+1,i . Combin-

ing with the two terms, we obtain

Denote Amin = {kmin ∈ [K�], kmin = argmink∈[K�]g(Uh∗(k)2
,Dh∗(k)1

, Y)} . Let the initial distri-
bution �1 satisfy p1,k = (1 −

1

U
√
T
)

1

�A� +
1

K�U
√
T
 for k ∈ Amin , and p1,k =

1

K�U
√
T
 for k ∉ Amin .

We compare with the i-th action. Let ui = 1 and uk = 0 for k ≠ i . Then we have

Let CT ,i ∶=
∑T

t=1
ct,i . Subtracting CT ,i on both sides yields

D� (�, �1) =
1

�

K�∑
k=1

g(Uh∗(k)2
,Dh∗(k)1

)

[
uk ln

uk

p1,k
− uk + p1,k

]
.

(16)

T�
t=1

[⟨�t − �̄t+1, ct⟩ −D𝜓t
(�̄t+1, �t)]

=

T�
t=1

�
⟨�t − �̄t+1, ct⟩ − 1

𝜂

K��
k=1

g(Uh∗(k)2
,Dh∗(k)1

)

�
p̄t+1,k ln

p̄t+1,k

pt,k
− p̄t+1,i + pt,k

��

=

T�
t=1

�
⟨�t − �̄t+1, ct⟩ − 1

𝜂

K��
k=1

g(Uh∗(k)2
,Dh∗(k)1

)

�
−

𝜂p̄t+1,kct,k

g(Uh∗(k)2
),Dh∗(k)1

− p̄t+1,k + pt,k

��

=

T�
t=1

�
⟨�t, ct⟩ + 1

𝜂

K��
k=1

g(Uh∗(k)2
,Dh∗(k)1

)

�
pt,k exp

�
−𝜂

ct,k

g(Uh∗(k)2
)

�
− pt,k

��

≤
T�
t=1

�
⟨�t, ct⟩ + 1

𝜂

K��
k=1

g(Uh∗(k)2
,Dh∗(k)1

)pt,k

�
−

𝜂ct,k

g(Uh∗(k)2
,Dh∗(k)1

)
+

𝜂2c2
t,k
∕2

g2(Uh∗(k)2
,Dh∗(k)1

)

��

≤ 𝜂

2

T�
t=1

K��
k=1

pt,k

c2
t,k

g(Uh∗(k)2
,Dh∗(k)1

)
≤ 𝜂

2

T�
t=1

⟨�t, ct⟩.

T�
t=1

⟨�t − �, ct⟩ ≤ �

2

T�
t=1

⟨�t, ct⟩ + 1

�

K��
k=1

g(Uh∗(k)2
,Dh∗(k)1

)

�
uk ln

uk

p1,k
− uk + p1,k

�
.

T�
t=1

⟨�t, ct⟩ ≤ 1

1 −
�

2

⎡
⎢⎢⎣

T�
t=1

ct,i +
g(Uh∗(i)2

,Dh∗(i)1
, Y) ln(K�U

√
T)

�

+
�

k∉Amin

g(Uh∗(k)2
,Dh∗(k)1

, Y)

�K�U
√
T

+

�
1 −

1

U
√
T
+

�Amin�
K�U

√
T

�
1

�
min
k∈[K�]

g(Uh∗(k)2
,Dh∗(k)1

, Y)

�
.

970 Machine Learning (2022) 111:937–976

1 3

where gmin = mink∈[K�] g(Uh∗(k)2
,Dh∗(k)1

, Y) and gmax = maxk∈[K�] g(Uh∗(k)2
,Dh∗(k)1

, Y) . Using
Assumption 5, we have gmax = maxk∈[K�] g(Uh∗(k)2

,Dh∗(k)1
, Y) = �(maxj Uj + 1) . Besides,

maxj Uj = U = �(
√
B) and B ≤ T (see Assumption 4) and gmin = U1 = �(U∕

√
T) . Omit-

ting the lower order terms, we complete the proof. ◻

Proof of Theorem 6

Proof For any f ∈ ℍi , let ℍi,j be the smallest hypothesis space that contains f. If j = 1 , then
‖f‖Hi

≤ U1 . Otherwise, we have e−1Uj < ‖f‖Hi
≤ Uj . We analyze the regret w.r.t. f.

where �1 comes from Theorem 5. Next we analyze �2.
Using the convexity of loss function, we have

Let �t,i,i = �i,j . Using the property of projection, we have

Rearranging terms and summing over t = 1,… , T yields

T�
t=1

⟨�t, ct⟩ − CT ,i ≤ 𝜂CT ,i

2 − 𝜂
+

2g(Uh∗(i)2
,Dh∗(i)1

, Y) ln(K�T)

(2 − 𝜂)𝜂
+

2gmax

(2 − 𝜂)𝜂U
√
T
+

2gmin

(2 − 𝜂)𝜂

≤2g(Uh∗(i)2
,Dh∗(i)1

, Y)
√
2T ln(K�T) +

√
2gmax

U
√
ln(K�T)

+
gmin

√
2T√

ln(K�T)

=O
�
g(Uh∗(i)2

,Dh∗(i)1
, Y)

√
T ln(K�T)

�
, (𝜂 =

√
2 ln(K�T)∕T < 1)

(17)

�[Reg(Hi)] =�

�
T�
t=1

�
K��
k=1

pt,k�(ft,h∗(k)1,h∗(k)2 (�t), yt) − �(ft,i,j(�t), yt)

��

+ �

�
T�
t=1

�(ft,i,j(�t), yt)

�
−

T�
t=1

�(f (�t), yt)

=�

�
T�
t=1

[⟨�t, ct⟩ − ct,h(i,j)]

�
+ �

�
T�
t=1

[�(ft,i,j(�t), yt) − �(f (�t), yt)]

�

=O
�
g(Uj,Di, Y)

√
T ln(K�T)

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�1

+�

T�
t=1

[�(ft,i,j(�t), yt) − �(f (�t), yt)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�2

,

𝛯2 ≤
T�
t=1

⟨∇̃t,i,j, ft,i,j − f ⟩ +
T�
t=1

⟨∇t,i,j − ∇̃t,i,j, ft,i,j − f ⟩.

‖‖‖ft+1,i,j − f
‖‖‖
2

Hi

≤ ‖‖‖f t+1,i,j − f
‖‖‖
2

Hi

=
‖‖‖ft,i,j − 𝜆i,j∇̃t,i,j − f

‖‖‖
2

Hi

,

T�
t=1

⟨∇̃t,i,j,ft,i,j − f ⟩ ≤
T�
t=1

‖ft,i,j − f‖2
Hi

− ‖ft+1,i,j − f‖2
Hi

2𝜆i,j
+

T�
t=1

𝜆i,j

2
‖∇̃t,i,j‖2H.

971Machine Learning (2022) 111:937–976

1 3

Let �t be the condition expectation w.r.t. �t . Taking expectation w.r.t. {�t}Tt=1 yields

where we set �i,j =
Uj

√
(1+�)B√

2(1−�)DiLT
 . Next we further consider two cases: (i) j > 1 , (ii) j = 1.

• Case (i) j > 1

 Using the fact e−1Uj ≤ ‖f‖Hi
≤ Uj , we have �[�2] ≤ e‖f‖Hi

LT

�
2Di

B
.

• Case (ii) j = 1

 Recalling that Umin = U∕
√
T and U = �(B) . Then U1 ≤ e

√
B∕T (see (7)), and we

obtain �[�2] ≤ eL
√
2DiT .

Combining with the results of Case (i) and Case (ii), we obtain,

Next we show the final regret. Using Assumption 5, we can rewrite �1 as follows

Combining with �2 and �1 yields

where K� = K(⌈lnU⌉ − ⌈ln (U∕
√
T)⌉ + 1).

According to Assumption 4, we have B ≤ T . If B = T , then the expected regret becomes

Combining with the two cases concludes the proof. ◻

�
�
𝛯2

�
=�

�
T�
t=1

⟨∇̃t,i,j, ft,i,j − f ⟩
�
+

T�
t=1

�
�⟨∇t,i,j − �t[∇̃t,i,j], ft,i,j − f ⟩�

=
‖f‖2

Hi

2𝜆i,j
+

𝜆i,j

2

T�
t=1

�t

�‖∇̃t,i,j‖2H
�

≤ U2
j

2𝜆i,j
+

𝜆i,j

2

T�
t=1

L2Di

B
2(1 − 𝜐)T1−𝜐t𝜐

≤ U2
j

2𝜆i,j
+ 𝜆i,jL

2Di

(1 − 𝜐)T2

(1 + 𝜐)B
≤ UjL

√
2(1 − 𝜐)DiT√
(1 + 𝜐)B

,

�
�
�2

�
= O

�
‖f‖Hi

LT
√
Di

1√
B
+ L

√
DiT

�
.

�1 =O
�
g(Uj,Di, Y)

√
T ln(K�T)

�
= O

�
(Uj + 1)

√
T ln(K�T)

�

=O
�
‖f‖Hi

L
√
T ln(K�T) +

√
T ln(K�T)

�
.

𝔼
�
Reg(ℍi,j)

�
= 𝔼

�
�2

�
+ �1 = O

�
‖f‖Hi

L
T√
B
+
√
T ln(K�T)

�
,

𝔼
�
Reg(ℍi,j)

�
= O

�
‖f‖Hi

L
√
T +

√
T ln(K�T)

�
.

972 Machine Learning (2022) 111:937–976

1 3

Proof of Theorem 7

Proof The proof is same with that of Theorem 1. Thus we omit the details. For a static
resource allocation R(T1,… , TK) , let j∗ = maxj∈[K] Tj . According to Assumption 3, we
have Bj∗ = �Tj∗ . We also choose K Gaussian kernel functions �i(�, �) = exp(−

‖�−�‖2
2

�i
) ,

i = 1,… ,K as the candidates. The strategy that the adversary sends examples to the learner
is same with that in the proof of Theorem 1, except that we replace B with Bj∗ . Therefore,
for all �i , the expected regret of any budgeted online kernel selection algorithm satisfies

which recoveries the desired result. ◻

Proof of Theorem 8

Proof First, assuming that B <
2T

K
 . In this case, there exists � such that B <

2(1−𝜐)T

K
 . We just

consider a fixed i ∈ [K] . After the (T − 1)-th round, the number of support vectors in Si is
�Si� = ∑T−1

t=1
��t,i=1

⋅ �i=Jt
 . Define a random variable Xt as follows

Under the condition of (𝜌𝜏 , J𝜏)𝜏<t , we can obtain �t[Xt] = 0 and |Xt| ≤ 1 . Thus X1,… ,XT−1
forms bounded martingale difference. The sum of conditional variances satisfies

where ET ,i = {t < T ,∇t,i ≠ 0} . Using Lemma 1, with probability at least 1 − �,

Then we consider 2T
K

≤ B ≤ T . In this case, there is no � satisfying B <
2(1−𝜐)T

K
 . Thus

ℙ[�t,i = 1] = 1 for t ∈ ET ,i . The same proof technique yields, with probability at least 1 − �,

Combining with the two cases and using the union of events bound to i = 1,… ,K con-
cludes the proof. ◻

�

�
T�
t=1

�(ft(�t), yt)

�
−

T�
t=1

�(f ∗
i
(�t), yt) =

⎧
⎪⎨⎪⎩

�

����f ∗i
���Hi

L
√
T

�
if T = O(Bj∗),

�

����f ∗i
���Hi

L
T√
Bj∗

�
otherwise,

Xt = 𝕀�t,i=1
⋅ 𝕀i=Jt

− ℙ[�t,i = 1] ⋅ ℙ[i = Jt].

�2
T
=

T−1∑
t=1

𝔼t[(Xt)
2] ≤

T−1∑
t=1

ℙ[�t,i = 1] ⋅ ℙ[i = Jt] ≤
∑
t∈ET ,i

KB

2(1 − �)T1−�t�
⋅
1

K
≤ B

2
,

|Si| ≤ B

2
+

2

3
ln

1

�
+

√
B ln

1

�
.

|Si| ≤ T

K
+

2

3
ln

1

�
+

√
2T

K
ln

1

�

≤ B

2
+

2

3
ln

1

�
+

√
B ln

1

�
.

973Machine Learning (2022) 111:937–976

1 3

Proof of Theorem 9

Proof Some of analysis is same with that of Theorem 5. We start with (16). Replacing
g(Uh∗(k)2

,Dh∗(k)1
, Y) with 1 yields

in which we use the fact c̃t,i =
ct,i

ℙ[i∈{It ,Jt}]
𝕀i∈{It ,Jt}

≤ Kct,i . Combining with D� (�,�1) yields

Let the initial distribution �1 satisfy p1,i =
1

K
 for all i = 1,… ,K . We compare with the i-th

action. Let ui = 1 and uk = 0 for k ≠ i . Then we have

Now we replace i with i∗ = argmini∈[K]
∑T

t=1
c̃t,i . For simplicity, let

∑T

t=1
ct,i∗ = C̃T ,∗ . Sub-

tracting C̃T ,∗ on both sides yields

where 𝜂 = min{

√
2 lnK∕(KC̃T ,∗),

1

K
} . Thus, for any i ∈ [K] , we have

Taking expectation yields the desired result. ◻

Proof of Theorem 10

The proof is similar with that of Theorem 6. We also consider two cases: Case 1: B <
2T

K
 and

Case 2: 2T
K

≤ B ≤ T.

Case 1 B <
2T

K

We analyze the regret w.r.t. f. Recalling the regret decomposition (17),

Next we separately analyze �1 and �2 . Similarly with the proof of Theorem 6, we have

T�
t=1

[⟨�t − �̄t+1, c̃t⟩ −D𝜓t
(�̄t+1, �t)] ≤ 𝜂

2

T�
t=1

K�
i=1

pt,ic̃
2
t,i
≤ K𝜂

2

T�
t=1

⟨�t, c̃t⟩,

T�
t=1

⟨�t − �, c̃t⟩ ≤K𝜂

2

T�
t=1

⟨�t, c̃t⟩ + 1

𝜂

K�
i=1

�
ui ln

ui

p1,i
− ui + p1,i

�
.

T�
t=1

⟨�t, c̃t⟩ ≤ 1

1 −
K𝜂

2

�
T�
t=1

c̃t,i +
lnK

𝜂

�
.

T�
t=1

[⟨�t, c̃t⟩ − c̃t,i∗] ≤ K𝜂

2 − K𝜂
C̃T ,∗ +

2 lnK

(2 − K𝜂)𝜂
≤ 2

�
2C̃T ,∗K ln(K),

T�
t=1

[⟨�t, c̃t⟩ − c̃t,i] ≤
T�
t=1

[⟨�t, c̃t⟩ − c̃t,i∗] ≤ 2

�
2C̃T ,∗K ln(K) ≤ 2

�
2C̃T ,iK ln(K).

𝔼
�
Reg(ℍi)

�
= g(U,D) ⋅ 𝔼

�
T�
t=1

�⟨�t, ct⟩ − ct,i
��

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�1

+𝔼

T�
t=1

[𝓁(ft,i(�t), yt) − 𝓁(f (�t), yt)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�2

.

974 Machine Learning (2022) 111:937–976

1 3

Let �t be the conditional expectation w.r.t. Jt and �t,Jt . Taking expectation w.r.t.
{J� , ��,J�}

T
�=1

 , we can obtain

where we set �i,j =
√
(1+�)B√

2(1−�)DiLT
 . Next we give the final regret.

Using Theorem 9 and the fact �
�∑T

t=1
�(ft,i(�t), yt)

� ≤ ∑T

t=1
�(f (�t), yt) + �[�2] , we

have

where LT (f) ∶=
∑T

t=1
�(f (�t), yt) . Using Assumption 5, we have,

Combining with �1 and �2 yields

Replacing f with f ∗
i
 yields the desired result.

Case 2 2T
K
≤ B ≤ T

In this case, ℙ[�t,i = 1] = 1 for i = Jt.

where we set �i,j =
1√

KDiTL
 . Combining with �1 and �2 , we obtain the regret,

Combining with the results of Case 1 and Case 2, we conclude the proof.

𝛯2 ≤
T�
t=1

‖ft,i − f‖2
Hi

− ‖ft+1,i − f‖2
Hi

2𝜆i
+

T�
t=1

𝜆i

2
‖∇̃t,i‖2H +

T�
t=1

⟨∇t,i − ∇̃t,i, ft,i − f ⟩.

𝔼
�
𝛯2

� ≤‖f‖2
Hi

2𝜆i
+

T�
t=1

𝜆i

2
𝔼
�
𝔼t‖∇̃t,i‖2H

�
+

T�
t=1

𝔼
�⟨∇t,i − 𝔼t∇̃t,i, ft,i − f ⟩�

≤‖f‖2
Hi

2𝜆i
+

𝜆i

2

T�
t=1

L2Di

ℙ[i = Jt] ⋅ ℙ[𝜌t,i = 1]

=
‖f‖2

Hi

2𝜆i,j
+

𝜆i,j

2

T�
t=1

L2Di

B
2(1 − 𝜐)T1−𝜐t𝜐 = O

��
‖f‖2

Hi
+ 1

�L√DiT√
B

�
,

�1 = O

(√
g(U,D)

[
LT (f) + �[�2]

]
K ln

K

�

)
.

�1 = O

(√
(U + 1)LT (f)K ln

K

�
+

√
(U + 1)�[�2]K ln

K

�

)
.

𝔼
�
Reg(ℍi)

�
= O

�√
(U + 1)LT (f)K lnK + (‖f‖2

Hi
+ 1)L

√
Di

T√
B

�
.

𝔼
�
�2

� ≤‖f‖2
Hi

2�i
+

�i

2

T�
t=1

L2Di

ℙ[i = Jt]
=

‖f‖2
Hi

2�i
+

�i

2
L2DiKT = O

��
‖f‖2

Hi
+ 1

�
L
√
DiTK

�
,

𝔼
�
Reg(ℍi)

�
= O

�√
(U + 1)LT (f)K lnK + (‖f‖2

Hi
+ 1)L

√
DiTK

�
.

975Machine Learning (2022) 111:937–976

1 3

Author Contributions The two authors have the same contributions to the study conception and design. The
first draft of the manuscript was written by [Junfan Li] and the second author commented on previous ver-
sions of the manuscript. The two authors read and approved the final manuscript.

Funding This work was supported in part by the National Natural Science Foundation of China under
Grants No. 62076181.

Availability of data and material All data and materials as well as custom code support our claims and com-
ply with field standards.

Declarations

Conflict of interest The authors have no conflicts of interest to declare that are relevant to the content of this
article.

Consent for publication Not applicable.

Ethical approval Not applicable.

Code availability custom code.

Consent to participate Not applicable.

References

Agarwal, A., Duchi, J.C., Bartlett, P.L., & Levrard, C. (2011). Oracle inequalities for computationally budg-
eted model selection. In Proceedings of the 24th Annual Conference on Learning Theory (pp. 69–86).

Agarwal, A., Luo, H., Neyshabur, B., & Schapire, R.E. (2017). Corralling a band of bandit algorithms. In
Proceedings of the 30th Annual Conference on Learning Theory (pp. 12–38).

Bubeck, S., & Cesa-Bianchi, N. (2012). Regret analysis of stochastic and nonstochastic multi-armed bandit
problems. Foundations and Trends®in Machine Learning, 5(1), 1–122.

Bubeck, S., Devanur, N. R., Huang, Z., & Niazadeh, R. (2019). Multi-scale online learning: Theory and
applications to online auctions and pricing. Journal of Machine Learning Research, 20(62), 1–37.

Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning, and games. Cambridge University Press.
Cesa-Bianchi, N., Mansour, Y., & Shamir, O. (2015). On the complexity of learning with kernels. In Pro-

ceedings of the 28th Annual Conference on Learning Theory (pp. 297–325).
Crammer, K., Kandola, J. S., & Singer, Y. (2003). Online classification on a budget. Advances in Neural

Information Processing Systems, 16, 225–232.
Cutkosky, A., & Boahen, K. (2016). Online convex optimization with unconstrained domains and losses.

Advances in Neural Information Processing Systems, 29, 748–756.
Dekel, O., Shalev-Shwartz, S., & Singer, Y. (2008). The forgetron: A kernel-based perceptron on a budget.

SIAM Journal on Computing, 37(5), 1342–1372.
Foster, D. J., Kale, S., Mohri, M., & Sridharan, K. (2017). Parameter-free online learning via model selec-

tion. Advances in Neural Information Processing Systems, 30, 6022–6032.
Foster, D. J., Krishnamurthy, A., & Luo, H. (2019). Model selection for contextual bandits. Advances in

Neural Information Processing Systems, 32, 14741–14752.
Hoi, S. C. H., Jin, R., Zhao, P., & Yang, T. (2013). Online multiple kernel classification. Machine Learning,

90(2), 289–316.
Jézéquel, R., Gaillard, P., & Rudi, A. (2019). Efficient online learning with kernels for adversarial large

scale problems. Advances in Neural Information Processing Systems, 32, 9427–9436.
Jin, R., Hoi, S.C.H., & Yang, T. (2010). Online multiple kernel learning: Algorithms and mistake bounds.

In Proceedings of the 21st International Conference on Algorithmic Learning Theory (pp. 390–404)
Kivinen, J., Smola, A. J., & Williamson, R. C. (2004). Online learning with kernels. IEEE Transactions on

Signal Processing, 52(8), 2165–2176.
Koppel, A., Warnell, G., Stump, E., & Ribeiro, A. (2019). Parsimonious online learning with kernels via

sparse projections in function space. Journal of Machine Learning Research, 20(3), 1–44.

976 Machine Learning (2022) 111:937–976

1 3

Kothari, P.K., & Livni, R. (2020). On the expressive power of kernel methods and the efficiency of kernel
learning by association schemes. In Proceedings of the31st International Conferences on Algorithmic
Learning Theory (pp 422–450).

Lu, J., Hoi, S. C. H., Wang, J., Zhao, P., & Liu, Z. (2016). Large scale online kernel learning. Journal of
Machine Learning Research, 17(47), 1–43.

McMahan, B., & Abernethy, J. (2013). Minimax optimal algorithms for unconstrained linear optimization.
Advances in Neural Information Processing Systems, 26, 2724–2732.

McMahan, H.B., & Orabona, F. (2014). Unconstrained online linear learning in hilbert spaces: Minimax
algorithms and normal approximations. In Proceedings of The 27th Conference on Learning Theory
(pp. 1020–1039).

Muthukumar, V., Ray, M., Sahai, A., & Bartlett, P. (2019). Best of many worlds: Robust model selection for
online supervised learning. In Proceedings of the 22nd International Conference on Artificial Intel-
ligence and Statistics (pp. 3177–3186).

Nguyen, T.D., Le, T., Bui, H., & Phung, D. (2017). Large-scale online kernel learning with random feature
reparameterization. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence (pp. 2543–2549).

Orabona, F. (2013). Dimension-free exponentiated gradient. Advances in Neural Information Processing
Systems, 26, 1806–1814.

Orabona, F., Keshet, J., & Caputo, B. (2009). Bounded kernel-based online learning. Journal of Machine
Learning Research, 10, 2643–2666.

Sahoo, D., Hoi, S.C.H., & Li, B. (2014). Online multiple kernel regression. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD (pp. 293–302).

Seldin, Y., Bartlett, P.L., Crammer, K., & Abbasi-Yadkori, Y. (2014). Prediction with limited advice and
multiarmed bandits with paid observations. In Proceedings of the 31st International Conference on
Machine Learning (pp. 280–287).

Wang, Z., Crammer, K., & Vucetic, S. (2012). Breaking the curse of kernelization: Budgeted stochastic gra-
dient descent for large-scale SVM training. Journal of Machine Learning Research, 13(1), 3103–3131.

Yang, T., Mahdavi, M., Jin, R., Yi, J., & Hoi, S.C.H. (2012). Online kernel selection: Algorithms and evalua-
tions. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (pp 1197–1202).

Zhang, L., Yi, J., Jin, R., Lin, M., & He, X. (2013). Online kernel learning with a near optimal sparsity
bound. In Proceedings of the 30th International Conference on Machine Learning (pp. 621–629).

Zhang, X., & Liao, S. (2018). Online kernel selection via incremental sketched kernel alignment. In
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (pp.
3118–3124).

Zhang, X., & Liao, S. (2020). Hypothesis sketching for online kernel selection in continuous kernel space.
In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (pp.
2498–2504).

Zhao, P., Wang, J., Wu, P., Jin, R., & Hoi, SCH. (2012). Fast bounded online gradient descent algorithms for
scalable kernel-based online learning. In Proceedings of the 29th International Conference on Machine
Learning (pp. 1075–1082).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Worst-case regret analysis of computationally budgeted online kernel selection
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Contributions

	2 Problem setup
	3 Online kernel selection with memory constraints
	3.1 Lower bound
	3.2 A nearly optimal algorithm for any K
	3.3 Adapt to the norm of competitor for

	4 Online kernel selection with time constraints
	4.1 Lower bound
	4.2 A nearly optimal algorithm for

	5 Experiments
	5.1 Experimental setting
	5.2 Memory constraints
	5.2.1 Online regression
	5.2.2 Online classification

	5.3 Time constraints
	5.3.1 Online regression
	5.3.2 Online classification

	6 Conclusion and discussion
	References

