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Abstract
Bug localization plays an important role in software maintenance. Traditional works treat 
the source code from the lexical perspective, while some recent researches indicate that 
exploiting the program structure is beneficial for improving bug localization. Control flow 
graph (CFG) is a widely used graph representation, which essentially represents the pro-
gram structure. Although using graph neural network for feature learning is a straightfor-
ward way and has been proven effective in various software mining problems, this approach 
is inappropriate since adjacent nodes in the CFG could be totally unrelated in semantics. 
On the other hand, previous statements may affect the semantics of subsequent statements 
along the execution path, which we call the flowing nature of control flow graph. In this 
paper, we claim that the flowing nature should be explicitly considered and propose a novel 
model named cFlow for bug localization, which employs a particular designed flow-based 
GRU for feature learning from the CFG. The flow-based GRU exploits the program struc-
ture represented by the CFG to transmit the semantics of statements along the execution 
path, which reflects the flowing nature. Experimental results on widely-used real-world 
software projects show that cFlow significantly outperforms the state-of-the-art bug locali-
zation methods, indicating that exploiting the program structure from the CFG with respect 
to the flowing nature is beneficial for improving bug localization.
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1  Introduction

Bug reports are generated when the software fails to behave as it is expected or follow the 
technical requirements of the system. Unfortunately, it is costly for the developer to manu-
ally locate the corresponding buggy source files according to the bug report, especially 
when the software system is large. To reduce the maintenance cost, bug localization, which 
aims to automatically locate the buggy source files according to the bug report, has drawn 
significant attention in software mining community and many models have been proposed 
(Huo et al. 2020; Poshyvanyk et al. 2007; Ye et al. 2014; Zhou et al. 2012).

Traditional works treat the source code as pure text and locate buggy files by measur-
ing the lexical similarity between the bug report and the source code (Gay et  al. 2009; 
Lukins et al. 2008; Zhou et al. 2012). Recent researches indicate that the program structure 
of source code carries more semantics reflecting the program behavior, which should be 
exploited in feature learning and is beneficial for bug localization. Such structures include: 
correlations among neighboring statements (Huo et al. 2016), long term sequential depend-
ency of source code (Huo and Li 2017), abstract syntax tree (AST) of source code (Youm 
et al. 2017), etc. However, these structures can only represent part of the program structure. 
A more essential and widely used representation is the control flow graph (CFG). Recently, 
Huo et al. (2020) propose a CG-CNN model to exploit more complex program structures 
such as branches and loops from the CFG for improving bug localization. However, CG-
CNN decomposes the CFG into multiple paths and merges all the representations with 
average-pooling, which breaks the integrity of the graph and fails to consider the inherent 
correlation among paths. Therefore, to comprehensively exploit the program structure and 
consider the correlation among execution paths, the integrity of CFG should not be broken.

A straightforward way for feature learning from the entire CFG is to use the graph neural 
network (GNN). Although GNN has been widely used in various software mining problems 
and proven to be effective in embedding the AST (Allamanis et al. 2018; Mou et al. 2016; 
Wei and Li 2017; Zhou et al. 2019), it is inappropriate to embed the CFG with GNN. In 
general, GNN models assume that two adjacent nodes in the graph are related (Grover and 
Leskovec 2016; Kipf and Welling 2017; Niepert et al. 2016; Veličković et al. 2018), which 
means that the learned features between adjacent nodes should be closer than non-adjacent 
nodes. GNN performs well in embedding the AST, since two adjacent nodes in the AST are 
inherently semantically related and their learned semantic features ought to be similar.

However, this assumption no longer holds in the CFG. Edges in the CFG only represent 
the successively execution relationship, and two adjacent nodes in the CFG could be unre-
lated in semantics. Instead, previous statements may affect the semantics of subsequent 
statements along the execution path, which we call the flowing nature of CFG. Figure 1 
illustrates an example of the source code and the corresponding CFG, where each state-
ment in the source code corresponds to one node in the CFG. It can be observed that two 
adjacent statements (node 1 and 2) are unrelated in semantics. On the other hand, although 
node 6 is far away from node 1 and 4, the semantics of node 6 is jointly determined by 
them. In general, a statement p could affect the semantic of another statement q only if 
there exists an execution path (i.e., a walk in the CFG), where p is executed before q. 
Therefore, instead of aggregating semantics from neighbors like GNN, the semantics of 
statements should flow in a directional manner from the entry node to the exit nodes along 
execution paths.

In this paper, we claim that the flowing nature of CFG should be explicitly considered in 
feature learning and propose a novel model named cFlow for bug localization. In cFlow, a 
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flow-based GRU is particularly designed to transmit the semantics of statements along the 
execution paths, where the program structure represented by the CFG is fully exploited. 
In order to further consider the inherent correlation among different paths, our flow-based 
GRU merges paths when they converge on the same statement. Experimental results on 
widely-used real-world software projects show that cFlow significantly outperforms the 
state-of-the-art bug localization methods, indicating that exploiting the program structure 
represented by the CFG with respect to the flowing nature is beneficial for improving the 
bug localization.

The contributions of our work are summarized as follows:

–	 We claim that the control flow graph holds the unique flowing nature, that is, previous 
statements may affect the semantics of subsequent statements along the execution path, 
while the semantics of adjacent nodes may be irrelevant. The flowing nature is essential 
and should be explicitly considered in feature learning.

–	 We propose a novel model named cFlow for bug localization, where a particularly 
designed flow-based GRU is employed for feature learning from the CFG. The design 
of our flow-based GRU explicitly considers the flowing nature and the inherent correla-
tions among paths, where the semantics of statements are transmitted along the execu-
tion paths and paths are merged when they converge on the same statement, respec-
tively.

The rest of this paper is organized as follows. In Sect. 2, the proposed cFlow model will be 
introduced in detail. Experiments will be provided and discussed in Sect. 3 and the related 
works will be introduced in Sect. 4. In Sect. 5, this paper is concluded and some future 
works are discussed.

2 � The proposed method

The goal of bug localization is to locate potentially buggy source files that produce the pro-
gram behaviors specified in the given bug report. Here comes our formulation of the bug 
localization problem:

Let R = {r1, r2,… , rNr
} denotes the set of bug reports received by the developer and 

C = {c1, c2,… , cNc
} denotes the set of source code files of a software project, where Nr,Nc 

denotes the number of bug reports and source code files, respectively. The learning task of 

Fig. 1   An example of source 
code snippet (left) and the 
corresponding CFG (right). 
Node 1 and 2 are adjacent but 
semantically-unrelated. Node 
1 and 4 together determine the 
semantics of Node 6, even if they 
are far away
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bug localization aims to learn a prediction function f ∶ R × C ↦ Y . Let yij ∈ Y = {+1,−1} 
indicates whether a source code file cj ∈ C is related to a bug report ri ∈ R , which can be 
obtained by investigating software commit logs and bug report descriptions. The prediction 
function f can be learned by minimizing the following objective function:

where L(⋅, ⋅) is the empirical loss and �(f ) is a regularization term imposing on the predic-
tion function. The trade-off between L(⋅, ⋅) and �(f ) is balanced by a hyper-parameter �.

2.1 � The general framework of cFlow

The learning task of bug localization is instantiated by proposing a novel model called 
cFlow. cFlow is consisted of four layers: source code feature extraction layer, bug report 
feature extraction layer, fusion layer and prediction layer. We design two independent lay-
ers to extract features from bug reports and source files separately, since they are heteroge-
neous. The general framework of cFlow is shown in Fig. 2.

The bug report feature extraction layer takes the bug report ri as input and extracts 
the semantic feature �r

i
 of it:

Since bug reports are written in natural language, we follow the normal natural language 
preprocessing method. We first tokenizes the words in the bug report and removes the stop 

(1)min
f

∑
i,j

L(f (ri, cj), yij) + ��(f ),

(2)�
r
i
= freport(ri).

Bug
Report
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Fig. 2   The general framework of cFlow. The semantic features of bug report and source code are extracted 
by two separate layers since they are heterogenerous. After that, two consequent layers are designed to fuse 
them into a unified feature and make the final prediction, respectively
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words, then each token term is embedded with word2vec Mikolov et al. (2013). Following 
with Kim (2014), we use 1D-CNN with max-pooling to extract the semantic feature of the 
bug report.

The source code feature extraction layer aims to take the raw data of source code cj 
as input and extracts the semantic feature �c

j
 of it, where the program structure is carefully 

exploited:

This layer can be further divided into three sub-layers. The first sub-layer is designed for 
the initial statement-level feature learning. In the second sub-layer, we design a flow-based 
GRU to enhance the statement-level feature, where the program structure represented by 
the CFG is exploited to transmit the semantics of statements along the execution path. 
The third sub-layer merges all the enhanced statement-level features into the code-level 
semantic feature �c

j
 . This layer is the core of cFlow and the details will be introduced in 

subsection 2.2.
In the fusion layer, source code feature �c

j
 and bug report feature �r

i
 are taken as input 

and they will be fused into a unified feature for prediction. We employ a fully connected 
network to fuse these two language-specific features. Finally, in the prediction layer, 
fully connected network is employed to predict whether the source code cj is related to bug 
report ri based on the unified feature:

The empirical loss function used in cFlow is cross entropy, and L2 regularization is 
employed to avoid overfitting.

In most cases of bug localization, a reported bug may only be related to one or a few 
source code files, while a large number of source code files are irrelevant. This highly 
imbalance nature should be carefully considered. Following with the previous bug locali-
zation work (Huo et al. 2016), several negative instances are randomly dropped, which can 
decrease the computational cost and counteract the imbalance nature. Specifically, we ran-
domly select a subset of all negative instances for training, and discard the rest. How many 
negative instances will be selected is a hyper-parameter in cFlow. In our implementation, 
the number of negative instances we randomly select is the same as the number of positive 
instances, aiming to result a relatively balanced positive and negative distribution.

2.2 � The source code feature extraction layer

The source code feature extraction layer takes the raw data of source code cj as input, and 
aims to learn the semantic feature �c

j
 of it. For the simplicity of notations, we will omit the 

subscript j in this subsection if there is no ambiguity.
As shown in Fig. 1, each statement in the program corresponds to a node in the CFG. 

Let G = (V ,E,�) indicate the corresponding CFG of source code c. The matrix � ∈ ℝ
|V|×d 

denotes the statement(node)-level feature matrix, where each node vl ∈ V  is represented by 
a d-dimensional real-valued vector �l ∈ ℝ

d . Obviously, G is a directed graph.
The first sub-layer is designed to extract the initial statement-level feature �0 from 

the raw text data of each statement. We tokenize each statement, use the camel case 
nomenclature to split each token, and remove the unimportant punctuation such as 
braces, commas and quotation marks. Then, word2vec is used to embed each token 

(3)�
c
j
= fcode(cj).

(4)ŷij = fprediction(ffusion(�
r
i
, �c

j
)).
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term. After that, a 1D-CNN with d filters is employed to incorporate the semantic mean-
ing of tokens, followed by max-pooling. The filters should slide within each statement 
and stop when they meet the end of the statement, respecting the atomicity of the state-
ment in semantics explicitly. In this sub-layer, we focus on the semantic meaning of a 
single statement, thus all the statements are processed individually.

After extracting the initial statement-level feature �0 , the second sub-layer further 
exploits the program structure to enhance the satement-level feature. To explicitly con-
sider the flowing nature of CFG, we particularly design a flow-based GRU to transmit 
the semantics of statements from the entry node to the exit nodes along the execution 
paths. In the rest part of this subsection, we assume that G is connected, which means 
there is only one entry node ventry , and ventry can reach all the other nodes in the CFG. 
Otherwise, the flow-based GRU will process each connected component independently. 
Here comes three definitions:

Definition 1  (InNode) For an arbitrary node p ∈ V  , the set InNode(p) is defined as 
InNode(p) = {q|(q, p) ∈ E}.

Definition 2  (OutNode) For an arbitrary node p ∈ V  , the set OutNode(p) is defined as 
OutNode(p) = {q|(p, q) ∈ E}.

Definition 3  (ReachableFrom)  For an arbitrary Node p ∈ V  , the set ReachableFrom(p) is 
defined as:

–	 q ∈ InNode(p) ⇒ q ∈ ReachableFrom(p) ,
–	 r ∈ ReachableFrom(q) ∧ q ∈ ReachableFrom(p) ⇒ r ∈ ReachableFrom(p).

For an arbitrary node p, any node q ∈ ReachableFrom(p) indicates that there is an exe-
cution path (i.e., a walk in the CFG) in the source code, and the correponding statement q 
is executed before statement p. So the statement q may affect the semantics of the state-
ment p. Therefore, when enhancing the feature of the node p, the semantic information of 
all the nodes in ReachableFrom(p) should be taken into consideration.

The information transmission process of flow-based GRU is inspired by the Breadth 
First Search (BFS) algorithm. The process has T time steps in total, where T is a hyper-
parameter and will be discussed later. Let �t

l
 denotes the hidden state of node vl , and 

Actt ⊆ V  denotes the activated nodes at time step t. At the beginning, only the entry node 
ventry is activated, and all the hidden states �0

l
 are initialized as 0. For each time step t, 

each activated node p aggregates non-zero hidden states from all its InNode(p) (Eq. 5) and 
updates its node feature �t

p
 and hidden state �t

p
 with GRU (Eq. 6). Inactivated nodes will 

remain their node features and hidden states the same as the last time step (Eq. 6).

The OutNode of activated nodes will become activated nodes at the next time step:

(5)�̃
t
p
=AVG

({
�
t−1
q

|q ∈ InNode(p) ∧ �
t−1
q

≠ �

})
.

(6)�
t
p
, �t

p
=

⎧
⎪⎨⎪⎩

GRU
�
�
t−1
p

, �̃t
p

�
, p ∈ Actt,

�
t−1
p

, �t−1
p

, otherwise.
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Intuitively, each hidden state indicates an execution path starting from the entry node. It 
is worth noticing that as long as one InNode is activated at the last time step (i.e., a new 
execution path comes), all the non-zero hidden states from InNodes (whether they are acti-
vated or not at the last time step) will be aggregated to update the node feature and hid-
den state. If a node has never been activated, the hidden state will remain 0, which will 
not affect the update procedure. The advantage of doing so is that we no longer need to 
confirm how long each execution path is and all the possible execution paths will be aggre-
gated simultaneously when the last never-been-activated InNode is activated (i.e., the long-
est path reaches). Therefore, cFlow can comprehensively consider the inherent correlations 
among different execution paths.

Figure  3 illustrates an example of how the flow-based GRU exploits the program 
structure to enhance the statement-level feature. The upper left is the source code and 
the upper right is the corresponding CFG, where each statement corresponds to a node 
and directed edges represent that two statement may be executed consequently. Only 
node 3 is activated at t = 3 , thus hidden state of InNode(3) is aggregated to update �3

3
 

and �3
3
 according Eqs. 5 and 6, and other nodes remain their features and hidden states. 

At t = 4 , the OutNodes(3) (i.e., node 4 and 5) become activated nodes and update their 
features and hidden states. However, node 4 has never been activated before t = 4 , thus 
the hidden state is 0 and node 5 only aggregates the hidden state from node 3. At t = 5 , 
node 5 is still activated since it is the OutNode of node 4 and node 4 is activated at 
t = 4 . At this moment, node 5 is able to aggregate hidden states from all the InNode(5) 
, which means two different execution paths (1, 2, 3, 5) and (1, 2, 3, 4, 5) will be com-
bined here and the correlation between them will be considered.

For each time step, the flow-based GRU only steps forward one node along the exe-
cution path. Therefore, the maximum time steps T determines how far the semantic 
information will be transmitted. In order to ensure that each node is able to receive 
semantic information from all its ReachableFrom nodes, an upper bound of T is pro-
vided in Proposition 1.

Proposition 1  Given the control flow graph G = (V ,E,X) and the 
entry node s. For ∀p, q ∈ V  , if p ∈ ReachableFrom(q) , there is a walk 
|(s = v1, v2,… , vk1 = p, vk1+1,… , vk1+k2 = q)| ≤ 2|V|.

Proof  To prove this proposition, we only need to prove that there is a walk 
|(s = v1, v2,… , vk1 = p)| ≤ |V| and a walk |(p = v1, v2,… , vk2 = q)| ≤ |V| . Since G is con-
nected and s is the entry node, it is obviously that ∀v ∈ V�{s}, s ∈ ReachableFrom(v) . 
Otherwise, the statement will never be executed and can be ignored. Thus, we only 
need to prove that ∀v ∈ V ,w ∈ ReachableFrom(v) indicates that there exists a walk 
|(v = v1, v1,… , vk = w)| ≤ |V| . It is trivial by Definition 3. 	�  ◻

Proposition  1 gives a theoretical proof that any semantic information from 
ReachableFrom(p) takes at most 2|V| time steps to be transmitted to the node p, 
where |V| is the  number of nodes in the CFG. In other words, when T   is large 

(7)Actt =

⎧
⎪⎨⎪⎩

{ventry}, t = 1,�
p∈Actt−1

OutNode(p), otherwise.
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enough, flow-based GRU ensures that each node can receive semantic information from 
all the ReachableFrom nodes.

We further provide the pseudo code of flow-based GRU in Algorithm  1. Flow-based 
GRU takes the CFG, the initial node features and the total time step as input. Line 1-2 are 
the initial part, and the update equations for activated and inactivated nodes are listed in 
line 6-7 and line 9-10, respectively. Line 13-17 merge the OutNodes of all the activated 

Fig. 3   An example of flow-based GRU. For each time step, activated nodes (red) aggregate hidden states 
from InNode and update node features and hidden states with GRU (lines with arrows). Their OutNodes 
will become activated at the next time step. Inactivated nodes remain node features and hidden states (lines 
without arrows). It is worth noticing that the hidden state of never been activated nodes (e.g., �3

4
 ) will not be 

aggregated (Color figure online)
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nodes to generate the activated nodes at the next time step. In the end, flow-based GRU 
outputs the enhanced node features.

After enhancing the statement-level feature in the second sub-layer, the third sub-layer 
is designed to merge all the statement-level features into the code-level feature. In order 
to preserve the original semantics of statements, we concentrate the initial statement-level 
features �0 and the enhanced statement-level features �T . Then, a normal GRU with aver-
age-pooling is employed to extract the code-level feature:

After being processed by the source code feature extraction layer, the extracted source code 
feature �c will be fed into the cross-language fusion layer together with the bug report fea-
ture �r for further fusion and prediction (mentioned in subsection 2.1).

3 � Experiments

We have conducted comparative evaluation of cFlow against state-of-the-art bug locali-
zation methods, based on four widely-used real-world software projects. This section 
includes the summary of our experimental setup, the evaluation result, and a brief analysis 
of the result.

3.1 � Data sets

The data sets used in the experiment are extracted from four real-world software projects. 
All these projects are open source and ground truth correlations between bug reports and 

(8)�
c =

1

|V|
|V|∑
i=1

GRU([�T
i
;�0

i
]).
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source code files can be extracted from bug tracking system (Bugzilla) and version control 
system (Git) (Fischer et al. 2003).

Eclipse Patform1 defines the set of frameworks and common services that make up 
Eclipse infrastructures. The first data set Platform is the “UI” component of it. Plug-in 
Development Environment2 is a tool to create and deploy Eclipse plug-ins. We use the “UI” 
component as the second data set, which is denoted as PDE. Java Development Tools3 is 
an Eclipse project for plug-ins support and development of any Java applications. The third 
data set JDT is the “UI” component of it. The AspectJ4 project is an aspect-oriented exten-
sion to the Java programming language, which is the last data set and denoted as AspectJ.

The statistics of the four data sets are shown in Table 1. All of them have been widely 
used in many previous bug localization studies (Huo et al. 2016; Lam et al. 2015; Zhou 
et al. 2012). Specifically, as suggested in Kochhar et al. (2014), we filtered those fully local-
ized bug reports from the data set, that is, the names of all corresponding buggy source 
files have already been contained in the bug report. For such bug reports, they no longer 
need a machine learning model to automatically locate the buggy source files.

3.2 � Baseline methods and experiment settings

To evaluate the effectiveness of cFlow, we compare against the following state-of-the-art 
bug localization methods:

–	 Buglocator (Zhou et al. 2012) A classicial information retrieval (IR) based bug locali-
zation method, which employs a revised vector space model (rVSM) to represent the 
bug report and the source code into vectors from the lexical perspective, and identi-
fies potential buggy files by measuring the lexical similarity between bug reports and 
source files.

–	 LS-CNN (Huo and Li  2017) A state-of-the-art deep learning based bug localization 
method, which only considers the sequential nature of source code. LS-CNN employs a 
LSTM network to enhance the statement-level feature without considering more com-
plex program structures like branches and loops. The network structure of LS-CNN is 
equivalent to cFlow without the flow-based GRU.

–	 CG-CNN (Huo et  al. 2020) A state-of-the-art deep learning based bug localization 
method, which learns the semantic features from the CFG of the source code. CG-CNN 
first exploits the structrual information from the CFG to enhance the statement-level 

Table 1   The statistic information 
of the four real-world data sets

Project # source files # bug reports # total matches

Platform 6125 5016 18055
PDE 5330 2612 10721
JDT 10845 5060 14408
AspectJ 6908 368 1522

1  http://​proje​cts.​eclip​se.​org/​proje​cts/​eclip​se.​platf​orm
2  http://​www.​eclip​se.​org/​pde
3  http://​www.​eclip​se.​org/​jdt
4  http://​www.​eclip​se.​org/​aspec​tj/​index.​php

http://projects.eclipse.org/projects/eclipse.platform
http://www.eclipse.org/pde
http://www.eclipse.org/jdt
http://www.eclipse.org/aspectj/index.php
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feature with DeepWalk (Perozzi et al. 2014) model. After that, CG-CNN decomposes 
the CFG into different execution paths and averages all the representations without con-
sidering the inherent correlations between different paths.

–	 cFlow-GAT​ A variant of cFlow, which utilizes a three-layer graph attention network 
(Veličković et  al. 2018) to directly embed the CFG without considering the flowing 
nature.

To compare with these baselines, we follow the same hyper-parameter settings suggested 
in their studies. For hyper-parameters in cFlow, the window sizes of the convolutional fil-
ters are set as 3,4,5 (with 100 filters of each size). Batch normalization is applied after the 
fusion layer to prevent over-fitting. Adam (Kingma and Ba 2014) is employed to optimize 
parameters in cFlow. For each training, we first divide the training data into the training 
set and the validation set with the ratio of 8:1. Then, all the training hyper-parameters are 
determined in terms of the performance on the validation set, such as batch size, total time 
steps T  , number of epochs. After that, the model will be retrained using all the training data 
and the best hyper-parameters.

3.3 � Performance evaluation

We consider four evaluation metrics: Mean Average Precision (MAP), Mean Reciprocal 
Rank (MRR), AUC and Top-k Rank, which have been widely-used in previous bug locali-
zation studies (Huo and Li 2017; Huo et  al. 2020; Zhou et  al. 2012). For each data set, 
10-fold cross validation is used and the average performances are reported.

The evaluation result in terms of MAP and MRR are listed in Tables 2 and 3, respec-
tively. The performance on each data set is boldfaced only if the model outperforms other 

Table 2   MAP of the compared 
methods on all data sets

The best performance on each data set is boldfaced

Method Platform PDE JDT AspectJ Avg.

Buglocator 0.337 0.352 0.279 0.221 0.297
LS-CNN 0.413 0.439 0.403 0.487 0.436
CG-CNN 0.433 0.476 0.448 0.507 0.466
cFlow-GAT​ 0.426 0.456 0.415 0.464 0.440
cFlow 0.459 0.489 0.468 0.529 0.486

Table 3   MRR of the compared 
methods on all data sets

The best performance on each data set is boldfaced

Method Platform PDE JDT AspectJ Avg.

Buglocator 0.394 0.415 0.331 0.268 0.352
LS-CNN 0.501 0.551 0.492 0.601 0.536
CG-CNN 0.526 0.593 0.549 0.617 0.571
cFlow-GAT​ 0.509 0.574 0.503 0.573 0.540
cFlow 0.552 0.616 0.570 0.637 0.594
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baselines on each fold. It can be observed from Table 2 that cFlow achieves the best per-
formance among all the baselines on all the four data sets in terms of MAP. Besides, cFlow 
achieves the best average MAP performance (0.486), which improves Buglocator (0.297) 
by 63.6%, LS-CNN (0.436) by 11.6%, CG-CNN (0.466) by 4.3%, cFlow-GAT (0.440) by 
10.4%. The superiority of cFlow is significant.

Similar  to the performance in terms of MAP, cFlow achieves the best performance 
among all the baselines on all the four data sets in terms of MRR. Also, cFlow achieves 
the best average MRR performance (0.594), which improves Buglocator (0.352) by 68.7%, 
LS-CNN (0.536) by 10.7%, CG-CNN (0.571) by 3.9%, cFlow-GAT (0.540) by 10.0%. This 
performance evaluation once again reflects the superiority of cFlow.

The performance evaluations in terms of AUC and Top-10 Rank are shown in Figs. 4 
and 5, respectively. It can be noticed that cFlow outperforms all the baselines on all the 
data sets in terms of both AUC and Top-10 Rank. Higher AUC values mean that cFlow is 
able to rank the related buggy source files higher than other baseline methods, and higher 
Top-10 Rank values mean that cFlow is able to correlate the most buggy source files when 
the same number of potential files are examined.

Fig. 4   AUC of the compared methods on all the data sets. cFlow achieves the best performance among all 
the baselines on all the data sets
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Compared with the state-of-the-art bug localization models, Buglocator totally ignores 
the program structure, and LS-CNN only considers the long term sequential dependency. 
However, cFlow performs better since it exploits more complex program structures like 
branches and loops from the CFG of source code, indicating that exploiting the program 
structure improves the performance of bug localization. Although both cFlow-GAT and 
CG-CNN exploit the program structure from the CFG for feature learning, cFlow-GAT 
directly uses a GNN which ignores the flowing nature of CFG, and CG-CNN ignores the 
inherent correlation among different execution paths, resulting in only acceptable perfor-
mances. Experimental results indicate that the flowing nature  and the correlation among 
different execution paths are critical to the performance of bug localization.

Figure 6 provides a case study of the bug report and the corresponding source code. 
Statements that have been modified to fix the bug are in the red boxes. It can be observed 
from the source code that the variable “items” plays an important role in this bug, and 
statements containing the variable “items” are far away in the CFG. Interestingly, only 
cFlow can successfully locate the buggy file, since cFlow explicitly considers the flowing 
nature in feature learning. On the other hand, other baseline models failed to discover the 
impact of the variable “item” from these distant statements. Therefore, this case study once 

Fig. 5   Top-10 Rank of the compared methods on all the data sets. Higher metric value means better perfor-
mance. It can be easily observed that cFlow outperforms all the baseline on all the data sets
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again shows that explicitly considering the flowing nature is important in feature learning 
from the CFG for bug localization.

In summary, experimental results on widely-used real-world data sets indicate that 
cFlow outperforms the state-of-the-art bug localization methods and cFlow-GAT (a variant 
of cFlow that directly embeds the CFG with GNN) in terms of all the four commonly used 
metrics, demonstrating that exploiting the program structure from the CFG with respect to 
the flowing nature is beneficial for improving the performance of bug localization.

3.4 � Ablation study

We have conducted the ablation study to show that our design for cFlow is effective. 
The key part of cFlow is the flow-based GRU (i.e., the second sub-layer of the source 
code feature extraction layer), which is designed to enhance the original statement-
level feature by exploiting the program structure represented by the CFG.

In order to show that the enhanced statement-level feature is beneficial for bug 
localization, we compare cFlow with LS-CNN. cFlow shares a similar network struc-
ture with LS-CNN, except that LS-CNN directly merges the inital statement-level 
feature without employing the flow-based GRU to enhance it. Experimental results in 
Tables 2, 3, Figs.  4 and 5 show that cFlow outperforms LS-CNN in terms of all the 
metrics (MAP, MRR, AUC and Top-10 Rank, respectively) on all the four data sets, 
indicating that employing the flow-based GRU is beneficial and the enhanced state-
ment-level feature is effective for improving bug localization.

Fig. 6   An example of the bug report and the corresponding buggy file. Red boxes gives those statements 
that have been modified to fix the bug
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4 � Related work

In this section, we summarize the literature related to bug localization and deep soft-
ware mining models.

4.1 � Bug localization

Bug localization aims to automatically locate buggy source files according to the textual 
description in the bug report, which remains a big challenge in software maintenance. Tra-
ditional methods treat the source code as pure text and locate potential buggy source files 
by measuring the lexical similarity between the bug report and the source code. Lukins 
et al. (2008) use a Latent Dirichlet Allocation (LDA) model to represent source code and 
bug reports and locate potential buggy files by measuring their similarities. Zhou et  al. 
(2012) propose a revised Vector Space Model (rVSM), where buggy files corresponding to 
similar historical bug reports are explored to improve the bug localization result. However, 
as pointed out by Huo et al. (2016), these traditional approaches ignore the rich program 
structure in source code. To overcome this, Huo et al. (2016) propose a NP-CNN model to 
generate high-level semantics by exploiting the local relationships among statements with 
the 1D-CNN. Huo and Li (2017) further exploit the long term sequential dependency of 
source code with the LSTM network. Youm et al. (2017) exploit the abstract syntax tree to 
classify the source code tokens into different categories for further analyzing the method 
information. However, this work only utilizes the token attribution to build the vector space 
model and does not fully exploit the tree structure. Recently, Huo et al. (2020) exploit more 
complex structures such as branches and loops from the CFG of source code, in which 
DeepWalk is employed to learn the representation of each statement, and then the source 
code is decomposed into different paths for multi-instance learning. Despite exploiting the 
structural information in the source code, some deep learning methods deal with the bug 
localization problem from other perspectives. Lam et al. (2017) combine an auto-encoder 
model with revised vector space model to deal with the lexical mismatch problem in tra-
ditional IR-based approaches. Rahman and Roy (2018) classify bug reports into three cat-
egories according to the quality and incorporates context-aware query reformulation for 
bug localization. Huo et al. (2019) propose the TRANP-CNN model for cross-project bug 
localization to face the problem of insufficient history data. Zhang et  al. (2020) propose 
a KGBuglocator model, which exploits the interrelation information via code knowledge 
graph for bug localization.

4.2 � Deep software mining models

In recent years, deep learning models are very popular and have achieved great success in 
various software mining tasks. White et al. (2015) first identify avenues to use deep learn-
ing models for mining software repositories. Li et al. (2019) employan attention-based net-
work to learn the context-based code representation for improving bug detection. Shi et al. 
(2019) propose a specific network for code review, where an auto-encoder is employed to 
learn the revision feature from the original-new source code pair. Alon et al. (2019) design 
an attention-based neural network to represent arbitrary-sized code snippets into continu-
ous distributed vectors. Zhang and Li (2019) exploit the contest between the plagiarist and 
the detector for software clone detection. Feng et al. (2020) propose a bimodal pre-trained 
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model CodeBERT, which achieves state-of-the-art performance on code search and code 
summarization.

Among all the deep learning models, mining from the source code graph representation 
has received extensive attention, especially in mining from the abstract syntax tree (AST). 
Mou et  al. (2016) propose a tree-based CNN (TBCNN) model to learn the feature from 
the AST representation of source code for code functionality classification. Wei and Li 
(2017) propose a CDLH model for code clone detection, where a AST-based LSTM model 
is particularly employed for embedding the AST representation of source code. Allamanis 
et al. (2018) utilize ASTs with additional data flow edges to represent the program for var-
iable-naming and variable-misuse problems and the feature representation of source code 
is learned with a gated graph neural network (GGNN) (Li et al. 2015). Zhou et al. (2019) 
propose a Devign model for vulnerability identification, where the source code is repre-
sented with a mixture graph containing AST edges, DFG edges, CFG edges and natural 
sequence edges and GGNN is applied to learn the node representation. Li et  al. (2020) 
propose a DLFix model for automated program repair, where a tree-based RNN encoder-
decoder model is employed to learn local contexts.

5 � Conclusion and future work

In this paper, we claim that the flowing nature of control flow graph is essential and should 
be explicitly considered, and propose a novel model named cFlow for bug localization by 
exploiting the program structure represented by the CFG. cFlow employs a particularly 
designed flow-based GRU for feature learning from the CFG, where the flowing nature is 
explicitly considered by transmitting the semantics of statements along the execution paths. 
Experimental results on widely-used real-world software projects show that cFlow signifi-
cantly outperforms the state-of-the-art bug localization methods, indicating that exploiting 
the program structure from the CFG with respect to the flowing nature is beneficial for 
improving the performance of bug localization.

For future work, it is interesting to exploit the program structure from the control flow 
graph for other software mining problems like clone detection or code summarization.
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