
Vol.:(0123456789)

Machine Learning (2022) 111:831–851
https://doi.org/10.1007/s10994-021-06077-5

1 3

CMD: controllable matrix decomposition with global
optimization for deep neural network compression

Haonan Zhang1 · Longjun Liu1  · Hengyi Zhou1 · Hongbin Sun1 · Nanning Zheng1

Received: 14 May 2021 / Revised: 25 July 2021 / Accepted: 22 September 2021 /
Published online: 6 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
The compression and acceleration of Deep neural networks (DNNs) are necessary steps
to deploy sophisticated networks into resource-constrained hardware systems. Due to the
weight matrix tends to be low-rank and sparse, several low-rank and sparse compression
schemes are leveraged to reduce the overwhelmed weight parameters of DNNs. In these
previous schemes, how to make the most of the low-rank and sparse components of weight
matrices and how to globally decompose the weight matrix of different layers for efficient
compression need to be further investigated. In this paper, in order to effectively utilize the
low-rank and sparse characteristics of the weight matrix, we first introduce a sparse coef-
ficient to dynamically control the allocation between the low-rank and sparse components,
and an efficient reconstructed network is designed to reduce the inference time. Secondly,
since the results of low-rank decomposition can affect the compression ratio and accuracy
of DNNs, we establish an optimization problem to automatically select the optimal hyper-
parameters of the compressed network and achieve global compression for all the layers of
network synchronously. Finally, to solve the optimization problem, we present a decompo-
sition-searching algorithm to search the optimal solution. The algorithm can dynamically
keep the balance between the compression ratio and accuracy. Extensive experiments of
AlexNet, VGG-16 and ResNet-18 on CIFAR-10 and ImageNet are employed to evaluate
the effectiveness of the proposed approach. After slight fine-tuning, compressed networks
have gained 1.2× to 11.3× speedup and our method reduces the size of different networks
by 1.4× to 14.6×.

Keywords  Deep neural network · Low-rank decomposition · Global optimization · Model
compression

Editors: Yu-Feng Li, Mehmet Gönen, Kee-Eung Kim.

 *	 Longjun Liu
	 liulongjun@xjtu.edu.cn

1	 Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, Shannxi, China

http://orcid.org/0000-0002-7467-4994
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06077-5&domain=pdf

832	 Machine Learning (2022) 111:831–851

1 3

1  Introduction

The increasing number of parameters and model complexity of DNNs have raised critical
challenges in deploying large DNNs into mobile devices and embedded systems due to
their limited storage, and computational resources. In order to deploy advanced networks
in the resource-limited devices, such as cellphones and wearable devices, model compres-
sion has been widely adopted to reduce the memory and computational demands from
sophisticated networks. There are mainly five categories of approaches for network com-
pression: (1) matrix decomposition (Kim et al. 2015; Denton et al. 2014; Tai et al. 2015;
Lebedev et al. 2014; Yu et al. 2017), which compresses the DNN by decomposing each
large-sized weight matrix into multiple small-sized matrices; (2) network pruning (Zhao
et al. 2019; Han et al. 2015; Tung and Mori 2018; Hu et al. 2016), which saves resources
by removing the unimportant structure (connections, channels, filters, etc.) of the network;
(3) quantization (Chen et al. 2015; Han et al. 2015; Tung and Mori 2018; Rastegari et al.
2016), which speeds up inference by reducing the bit of weight parameters and feature-
map values; (4) knowledge distillation (Bai et al. 2020; Hinton et al. 2015; Cheng et al.
2020), which compresses the DNN by transferring effective knowledge from the large-
sized network to the corresponding small-sized network and (5) compact network design
(Howard et al. 2017; Gholami et al. 2018; Ma et al. 2018), which implements the network
architecture by designing inference-friendly blocks. As for the current research field of
pretrained DNN compression, pruning and low-rank matrix decomposition are the most
popular approaches. This article focuses on the low-rank matrix decomposition for DNN
compression.

Low-rank decomposition can compress and accelerate the network by approximating
the weight matrix to the small-sized matrix. Moreover, the matrix decomposition can be
quickly inferred on the common chips, especially GPUs (Idelbayev and Carreira-Perpi-
nan 2020). Common matrix decomposition methods include QR (Deb et al. 2018), CUR
(Kishore Kumar and Schneider 2017) and singular value decomposition (SVD) (Yuan et al.
2019). Among these methods, SVD uses singular values to describe the importance of fea-
tures in the matrix, and compresses the matrix by removing unimportant singular values
and corresponding eigenvectors. SVD is widely used in DNN compression. For exam-
ple, a 15-layer convolutional neural network trained on ImageNet is compressed through
SVD (Denton et al. 2014). Moreover, SVD is used to compress the fully connected layer
(FC), which reduces 25% parameters of the compressed network (Girshick 2015). Besides,
Masana et al. (2017) leveraged SVD to compress FC6 and FC7 of VGG-19. Although SVD
can effectively compress the networks, it may affect the accuracy of the compressed net-
work when the weight matrix does not have low-rank characteristics. As shown in Fig. 1,
we test the variations of Top-1 accuracy with different ranks. Since there are only a small
number of similarity elements in the weight matrix, a small variation of rank will cause a
obvious decrease in the accuracy. To solve this problem, low-rank and sparse scheme is
introduced to compress DNNs for the compact network with the higher accuracy.

Low-rank and sparse schemes (LSSs) (Bouwmans et al. 2016; Wen et al. 2017) decom-
pose the weight matrix into low-rank and sparse matrices and leverage different strategies
to compress them. A greedy algorithm (Yu et al. 2017) is used to approximatively decom-
pose the weight matrix into low-rank and sparse matrices, and then QR, SVD and Huffman
coding methods (Han et al. 2015) are used to compress the network. Alvarez and Salzmann
(2017) also introduces the concept of sparsity and low-rank into network compression.
In this article, a preliminary compressed network is obtained through SVD, and the final

833Machine Learning (2022) 111:831–851	

1 3

compressed network is obtained by kernel-wise pruning (a group-sparse method). One of
the critical challenges for LSS-based network compression is how to find a reasonable allo-
cation of low-rank and sparse components. In addition, since low-rank matrix decomposi-
tion can only decompose weight matrices with the same size and similar information, this
method is impossible to further investigate the relationship between different layers for fast
global compression.

In this article, we propose a controllable matrix decomposition (CMD) with global
optimization to produce the network with less weight parameters and higher accuracy. We
first introduce a special sparse coefficient in the LSS for flexible and configurable DNN
compression. Based on the result of LSS, we propose a reconstructed network to reduce
the inference time of the DNN. In addition, to automatically select the optimal parameters
and compress each layer of the network in a parallel scenario, we investigate the accuracy
and compression ratio to establish an optimization problem. Moreover, to find the optimal
compressed network, a two-phase algorithm, which contains decomposition and searching
phases, is proposed to solve the optimal problem. In brief, our contributions are summa-
rized as follows:

(1) We first introduce a generalized controllable LSS for DNN compression. In the case
of SVD-based low-rank component compression, our scheme degenerates into traditional
LSS with a sparse coefficient. Furthermore, we reconstruct the topology of the network to
save the inference time for the LSS-based compression method.

(2) We establish an optimization problem to globally compress the network, and auto-
matically select optimal ranks and sparse coefficients. The optimization problem compre-
hensively considers the accuracy and compression ratio of the compressed network.

80859095100
Rank

0.35

0.45

0.55

AlexNet (Conv3)

3540455055
Rank

0.67

0.68

0.69

ResNet-18 (Conv1)

80859095100
Rank

0.7

0.72

0.74

ResNet-34 (Conv1)

2530354045
Rank

0.6

0.7

0.8
ResNet-50 (Conv1)

2025303540
Rank

0.4

0.5

0.6

0.7

0.8

ResNet-101 (Conv1)

80859095100
Rank

0.66

0.67

0.68

0.69
VGG-16 (Conv7)

∆Top-1=15.61%
∆Top-1=1.65% ∆Top-1=2.36%

∆Top-1=2.71%
∆Top-1=10.14% ∆Top-1=1.49%

Fig. 1   Variations of Top-1 with ranks. The initialization is the rank with almost 1-compression ratio. The
red dotted line represents the accuracy of original network, △Top−1 represents the difference of accuracy
(colour figure online)

834	 Machine Learning (2022) 111:831–851

1 3

(3) We propose a decomposition-searching algorithm to solve the optimization prob-
lem. In decomposition phase, weight matrices are decomposed into different components.
In searching phase, Bayesian Optimization is used to select the optimal hyperparameters
by expectation and uncertainty. In the experiment, we implement various types of DNNs
on different benchmarks, and our method can dynamically obtain the balance between the
compression ratio and accuracy. Notably, CMD saves 14.6× of memory of AlexNet on
ImageNet with negligible accuracy drop.

The rest of this paper is organized as follows: In Sect. 2, we introduce the related work
and compare our work with other LSS-based compression method. Then, we present the
overall compression framework in Sect. 3, and we further illustrate details from the con-
trollable and global compression, respectively. In Sect. 4, we propose a decomposition-
searching algorithm to find the optimal hyperparameter in the compressed model. After
that, we leverage two benchmarks (CIFAR-10 and ImageNet) on various types of DNNs to
demonstrate the compression results in Sect. 5, and finally conclude in Sect. 6.

2 � Related work

Recently, it has attracted intense attention on the research of network compression, which
is an feasible approach to reduce neural network parameters and to deploy DNNs into edge-
computing devices. Currently, in the field of network compression, matrix decomposition
is a promising way to compress DNNs because matrix (tensor) calculation accounts for a
significant portion in the DNN. Moreover, matrix decomposition is also conducive to the
inference of hardware system due to a parallelizable memory access pattern has applied for
low-rank approximation (Idelbayev and Carreira-Perpinan 2020).

Singular value decomposition (SVD) SVD is an effective low-rank decomposition
method, which can measure the effective information in the matrix through the singular
values, and finally retain the vectors with larger singular values to reduce the storage of
the original matrix (Zhou et al. 2016; Li and Lin 2020; Mizutani and Tanaka 2018; Jung
and Sael 2020). SVD is widely used in DNN compression. Girshick (2015) leverages SVD
to compress the fully connected layer in the Fast-RCNN, and the size of compressed net-
work becomes 25% of that of the original network. In order to find the redundant informa-
tion in the weight matrix, bi-clustering is used to pre-process the matrix and then SVD is
used to compress the network (Denton et al. 2014). In order to save the memory, the layers
(FC6 and FC7) of VGG-19 are compressed through SVD without accuracy drop (Masana
et al. 2017). Although SVD can effectively compress the network, the compression ratio
and accuracy of the compressed network is actually affected by the relevant information in
the weight matrix. In addition, matrix decomposition can only decompose matrices with
the same size and similar information. Therefore, matrix decomposition method can only
compress the network layer by layer, which may lead to low-efficient compression for the
network with numerous of layers.

Low-rank and sparse scheme (LSS) LSS-based method has been used in many sce-
narios (e.g., background segmentation (Zhou et al. 2020; Masi et al. 2020), outlier detec-
tion (Wang et al. 2020; Liao et al. 2020; Zhou and Feng 2017), compressed sensing (Shi
et al. 2019; Zhang and Ghanem 2018), etc.) (Bouwmans et al. 2016; Hirayama et al. 2016).
In the field of network compression, LSS is used to decompose the weight matrix, and
a greedy algorithm is used to select the rank of low-rank component (Yu et al. 2017). In
addition, several frameworks combining low-rank decomposition with pruning is proposed

835Machine Learning (2022) 111:831–851	

1 3

to compress the DNN (Alvarez and Salzmann 2017). The method first reduces parameters
through the low-rank decomposition, and then implements kernel-wise pruning through
group-sparse to achieve network acceleration. However, we notice that one of the critical
challenges for LSS-based method is the reasonable allocation between low-rank and sparse
components. Hence, it is important to introduce the appropriate hyperparameter to control
the allocation between the two different components, and it is better to automatically select
the optimal hyperparameter for the allocation.

Bayesian optimization (BO) BO provides an approach to maximize (if minimized, the
objective function is preceded by a minus) black-box objective functions, which are non-
convex, expensive to evaluate, hard to differential, and may not be easily expressed as
closed forms (Tung and Mori 2018; Wang et al. 2013; Kim et al. 2021). Since the DNN
can be considered as a black-box function, BO is optimization-friendly to DNN. BO usu-
ally assumes that parameters obey a certain distribution, and it contains exploitation and
exploration phases (Snoek et al. 2012): (1) In the exploitation phase, a new sample is used
to update the probability model of the objective function. (2) In the exploration phase, an
acquisition function, which combines information about the expectation and uncertainty
of the objective function, is used to select new sample. These two phases are alternated to
obtain the optimal value. Since Gaussian process (Rasmussen 2003; Brochu et al. 2010)
has favorable statistical and computational characteristics, it is usually set as the distribu-
tion of the objective function. Besides, there are several acquisition functions, such as, the
probability of improvement (PI), expected improvement (EI), upper confidence bounds
(UCB) (Snoek et al. 2012; Brochu et al. 2010). In this paper, we use UCB as the acqui-
sition function because it is easy for calculation and can achieve good results. It can be
expressed as: UCB(x) = �(x) + ��(x) , where �(x) and �(x) represent mean value and vari-
ance, respectively. They are used to illustrate the expectation and uncertainty of the sample
space. � is used to balance exploitation against exploration.

Discussion To the best of our knowledge, Yu et al. (2017) also leveraged LSS scheme to
compress the DNN. However, we need to emphasize that our method is orthogonal to it. In
the CMD, we introduce a sparse coefficient for the sparse matrix (in Sect. 3.1), and it can
control the sparse component in the decomposed matrix. Moreover, we establish an optimi-
zation problem (in Sect. 3.2) to select the optimal rank and sparse coefficient of the global
network. Compared with Yu et al. (2017), CMD can automatically select the rank instead
of adopting greedy algorithm, which makes the compression more reasonable. In addition,
this paper clearly reveals the structure of the reconstructed network. And we record both
parameters and inference speed of the compressed network in the experiment.

3 � Problem formulation

In this section, we first introduce a controllable LSS with the sparse coefficient for DNN
compression. Furthermore, to save the inference time, we reconstruct the topology of
the network. In addition, to globally compress DNNs and select the optimal compressed
network, we establish an optimization problem based on the hyperparameter of the com-
pressed network.

836	 Machine Learning (2022) 111:831–851

1 3

3.1 � Strategy for a controllable compression

As shown in Fig. 2, since there are a large number of linearly independent Convs in the
weight matrix, we cannot represent all the Convs only through several important Convs. In
this case, the accuracy and compression ratio of the compressed network cannot be guaran-
teed simultaneously. In order to find the low-rank characteristics of the weight matrix, we
extract a small number of elements from it, and ensure that there are more relevant kernels
in the remaining matrix (marked by the red square in Fig. 2). We rearrange the extracted
elements in the corresponding locations, and set other locations to zero to form a sparse
matrix �k . The remaining matrix is represented as �k (marked by the blue square in Fig. 2),
where k represents the index of layer, then we can build an optimization problem:

where �(�k) represents the dissimilarity measure of matrix elements. For example, �(�k)
can be used to count the number of linearly independent kernels in �k . ||�k||0 repre-
sents the number of non-zero elements in �k . Since the main information of the original
weight matrix cannot be greatly changed, it is necessary to ensure that there are only a
few non-zero elements in �k , i.e., �k is a sparse matrix. �k represents the sparse coeffi-
cient, which is used to control the number of non-zero elements in �k . In this paper, SVD
is used to compress the weight matrix, and singular values is used to measure �k . Thus
�(�k) =

∑
i �(� ii(�k)) , where � ii(�k) represents the ith value on the diagonal of the singu-

lar value matrix. When � ii(Lk) ≠ 0 , then �(� ii(�k)) = 1 , otherwise �(� ii(�k)) = 0 . Then,
the optimization problem (1) can be transformed into the following controllable low-rank
and sparse combination scheme:

(1)
min
�k ,�k

�(�k) + �k
‖‖�k‖‖0

s.t. �k ≈ �k + �k

...

Mk=Cinm2

Nk

Linear independence

...

Kernel 1

Kernel Nk

Stretch

Low-rank matrix (Lk)

...

...

...

...

The kth conv Weight matrix (Wk)

...

...

...Extract Rearrange

Sparse matrix (Sk)

Remain

Zero
Non-zero

Linear
correlation

m

Cin

Nk

Nk

Mk

Mk

Fig. 2   The decomposition process of LLS. Firstly, the 4-D Convs of the same layer are stretched into a 2-D
matrix �k ∈ ℝ

Mk×Nk , where Mk = m × m × Cin , m × m represents the size of each channel, Cin represents
the number of channels, and Nk represents the number of outputs. It should be noted that Mk and Nk are the
dimensions related to the input and output, respectively. Secondly, the low-rank matrix and sparse matrix
are leveraged to approximate �k (colour figure online)

837Machine Learning (2022) 111:831–851	

1 3

In the optimization problem (2), low-rank matrix �k ( �k ∈ ℝ
Mk×Nk ) can be repre-

sented as �k ≈ �̂k�k(�̂k)
T
= (�̂k�

1∕2

k
)(�

1∕2

k
�̂k)

T
= �k�

T
k
 , where �̂k ( �̂k ∈ ℝ

Mk×rk )
and �̂k ( �̂k ∈ ℝ

Nk×rk ) represent left and right eigenvector matrices, respectively, �k
( �k ∈ ℝ

rk×rk ) represents a diagonal matrix, where rk =
∑

i �(� ii(Lk)) . �k can be com-
pressed by different storage formats (e.g., compressed sparse column format, com-
pressed sparse row format, etc.). Although the decomposed matrix can save the hard-
ware memory resources, the inference time is also important in many edge computing
applications. In order to reduce the inference time, we apply the small-sized matrices to
reconstruct the network to speed up the computation. As shown in Fig. 3d, each weight
matrix can be reconstructed into two layers. For the first layer, each column of �k is
reconstructed into a Conv (as shown in Fig. 3a). For the second layer, each row of �k
can be considered as a set of weight factors (as shown in Fig. 3b). Besides, each column
of �k is also reconstructed into a Conv (as shown in Fig. 3c). To obtain the feature maps
of the reconstructed network, the inputs are first calculated with Convs reconstructed by
�k to obtain rk hidden feature maps. After that, the hidden feature maps are calculated
with the weight factors reconstructed by �k and then added to the feature maps obtained
by �k-reconstructed Convs to get the practical feature maps. In the reconstructed net-
work, the FLOPs become O((Mk + Nk)rk + F(�k)) , where F(�k) = ‖‖�k‖‖0.

(2)
min
�k ,�k

∑
i
�(� ii(�k)) + �k

‖‖�k‖‖0

s.t. �k ≈ �k + �k

(b) Reconstruction of Vk

Kernels
reconstructed by

matrix Sk

The (k-1)th layer The kth layerKernels reconstructed by
matrix Uk

Weight factors in
matrix Vk

Hidden
feature maps

rk

Kernel 1

Kernel rk

rk

Mk

Matrix Uk Matrix Sk

Kernel 1

Kernel Nk

Mk

Nk

Nk

rk Nk

rk

Matrix Vk

Nk

rk
Weight factors

(a) Reconstruction of Uk (c) Reconstruction of Sk

(d) Each layer of the reconstructed network

Fig. 3   Structure of the reconstructed network. Each layer of the restructured network consists of three main
parts, where two serial layers are reconstructed by �k and �k , and a parallel branch reconstructed by sparse
matrix �k (colour figure online)

838	 Machine Learning (2022) 111:831–851

1 3

In summary, we decompose the weight matrix into low-rank and sparse matrices, and
reconstruct the network architecture to reduce the parameters and inference time of the
network. In the LSS, rk and �k have a great impact on the network performance. As shown
in Fig. 4, we use different �k to compress the DNNs and record the the variation of Top-1
accuracy, the increase of �k reduces the accuracy of the compressed network in the figure,
thus �k is important in network compression. Besides, Fig. 1 shows that rk has ability to
impact the network accuracy. Therefore, we should choose the appropriate rk and �k for the
DNN compression. Moreover, the interaction between different layers should also be con-
sidered in the compression. Hence, we will establish an optimization problem to select the
optimal hyperparameters, and achieve the global compression in the next section.

0.05 0.1 0.15 0.2 0.25 0.3
λ

0.874

0.876

0.878

0.88

0.882

0.884

To
p-

1

rank=150
rank=180

baseline of
rank=180

baseline of
rank=150

0.05 0.1 0.15 0.2 0.25 0.3 0.35
λ

0.48

0.49

0.5

0.51

0.52

0.53

0.54

To
p-

1

rank=120
rank=140

baseline of
rank=140

baseline of
rank=120

0.04 0.06 0.08 0.1 0.12 0.14 0.16
λ

0.716

0.7165

0.717

0.7175

0.718

0.7185

0.719

To
p-

1

rank=300
rank=400

baseline of
rank=400

baseline of
rank=300

0.05 0.1 0.15 0.2 0.25 0.3 0.35
λ

0.684

0.686

0.688

0.69

0.692

To
p-

1
rank=200
rank=220

baseline of
rank=220

baseline of
rank=200

(a) Conv3 of AlexNet on CIFAR-10. (b) Conv3 of AlexNet on ImageNet.

(c) Conv10 of VGG-16 on ImageNet. (d) Conv14 of ResNet-18 on ImageNet.

Fig. 4   Variation of Top-1 accuracy with different �k . We take different networks as examples to show the
results. The blue and red curves represent the performance changes with the lower and higher rank, respec-
tively. Besides, the green and orange lines represent the Top-1 of the SVD-based compressed DNN (base-
line). When �k is smaller, �

�
 contains a large number of non-zero elements, thus the decomposed weight

matrix is more similar to the original weight matrix. Therefore, the compressed network has higher Top-1
accuracy. when �k is large enough, all elements in �

�
 are of 0-value. At this time, the LSS is approximately

same as SVD. Hence, the accuracy will eventually approach its baseline (colour figure online)

839Machine Learning (2022) 111:831–851	

1 3

3.2 � Strategy for global compression

In order to select the optimal compressed network and globally compress the DNN, we
use the rank and sparse coefficient to establish an optimization problem. The DNN can be
represented as a black-box function f, then the optimization problem can be expressed as
follows:

where rmax

k
= INT[Mk ⋅ Nk∕(Mk + Nk)] , INT[∙] represents the round down. �min

k
 and �max

k

represent the lower and upper bound of �k . The change of �k from small to large makes the
number of non-zero elements in the matrix �k from more to less, hence when �k is full of
non-zero elements and zero elements, the corresponding �k are selected as �min

k
 and �max

k
 ,

respectively. L(f) represents the loss function (e.g., cross entropy). f
�
 represents the map-

ping of the compressed network. � = (r1, ..., rK , �1, ..., �K) represents the vector of hyperpa-
rameters. � is the trade-off between the accuracy and compression ratio of the compressed
network. �(f

�
, f) represents the compression ratio.

In Eq. (3), L(f
�
) and �(f

�
, f) are used to constrain the accuracy and compression ratio of the

compressed network, respectively. Since � is discontinuous in Eq. (3), the optimal hyper-
parameters cannot be obtained by stochastic gradient descent (SGD). Thus, we proposed a
decomposition-searching (DS) algorithm to compress the network.

4 � Optimization algorithm

In order to prevent distortion caused by the difference between the compressed and orig-
inal network, we use the quadratic-penalty method (Nocedal and Wright 2006) to estab-
lish the connection between the compressed and original network. Then, Eq. (3) can be
rewritten as follows:

where � represents the effect of the quadratic-penalty term, f
�
 and f represent the mapping

of the compressed network and original network, respectively.
To obtain the optimal ranks and sparse coefficients, we propose a decomposition-

searching (DS) algorithm to solve Eq. (5). The algorithm contains two phases, which
are matrix decomposition phase and hyperparameter searching phase. The details are
described as follows:

(3)

min
�

�L(f
�
) + �−1(f

�
, f)

s.t. � = (r1, ..., rK , �1, ..., �K), k = 1, ...,K,

1 ≤ rk ≤ rmax

k
, �min

k
≤ �k ≤ �max

k

(4)�(f� , f) =
F(f)

F(f�)
=

∑K

k=1
MkNk

∑K

k=1
((Mk + Nk) ⋅ rk + F(�k))

(5)

min
�

�L(f
�
) + �−1(f

�
, f) +

�

2
‖‖f� − f‖‖

2

F

s.t. � = (r1, ..., rK , �1, ..., �K), k = 1, ...,K,

1 ≤ rk ≤ rmax

k
, �min

k
≤ �k ≤ �max

k

840	 Machine Learning (2022) 111:831–851

1 3

Decomposition phase In this phase, we solve the optimization problem (2) to obtain
the low-rank matrix and sparse matrix. We turn the Eq. (2) into a convex optimiza-
tion problem, where

∑
i �(� ii(�k)) and ‖‖�k‖‖0 are relaxed to

∑
i � ii(�k) and ‖‖�k‖‖1 , respec-

tively. Then, the augmented Lagrangian function (Lin 2010) is expressed as follows:

where ⟨⟩ is the inner product, �k is the Lagrange multiplier matrix. � represents the effect
of regularization terms. Then, �k and �k can be obtained by the soft thresholding function
(Wright et al. 2009), where �k = ST

�k

/
�
(�k − �k + �k

/
�) ,

�k = �k ⋅ [ST�−1 (�k − �k + �k

/
�)] ⋅ �T

k
 , ST(∙) represents the soft thresholding function.

The steps of decomposition phase are summarized in Algorithm 1.

Algorithm 1: Decomposition of weight matrix.
Input: Weight matrix Wk.
Output: Lk, Sk, λk.

1 Initialize λk, Lk, Sk, Yk, µk > 0, η > 1, ε.
2 while ‖Wk − Lk − Sk‖F / ‖Wk‖F ≥ ε do
3 Uk,Σk,Vk = SV D(Wk − Sk +Yk/µ).
4 Lk = Uk

[
ST1/µ(Wk − Sk +Yk/µ)

]
(V)Tk .

5 Sk = STλk/µ(Wk − Lk +Yk/µ).
6 Yk = Yk + µ(Wk − Lk − Sk).
7 µk = ηµk.
8 end
9 return Lk, Sk, λk.

As shown in Algorithm 1, �k can control the decomposition result of �k . When the ele-
ment in �k − �k + �k

/
� is greater than �k∕� , it is extracted as a sparse component. Then,

we introduce the searching phase to search for the optimal ranks and sparse components.
Searching phase Since � is discontinuous and the DNN can be considered as a black-box

function, we choose BO to search hyperparameters. BO has two phases, for the first phase, the
set of ranks and sparse coefficients is sampled by the upper confidence bound in the search
space. In the second phase, the distribution of the objective function is updated by sampled
hyperparameters and the corresponding objective function value. We assume that the objec-
tive function J(�) obeys a Gaussian process with a mean function of �GP(�) = E[J(�)]
and a variance function of KGP(�, �̂) = E[(J(�) − 𝜇GP(�))(J(�̂) − 𝜇GP(�̂))] , i.e.,
J(�) ∼ GP(𝜇GP(�),KGP(�, �̂)) . Then, updating the distribution of objective function is
transformed into updating the mean and variance. According to the property of the Gauss-
ian process (Rasmussen 2003), the updated objective function can be expressed as follows:
J̃(�∗

) ∼ N(𝜇̃GP(�
∗
), 𝛴̃2

GP
(�

∗
)) , where �∗ represents the set of current hyperparameters sam-

pled by the upper confidence bound function. 𝜇̃GP and 𝛴̃2

GP
 represent the updated mean and

variance, respectively. Their update formulas are as follows:

(6)
L
�
�k, �k,�k,�

�
= ���k

��∗ + ����k��1
+ ⟨�k, (�k − �k − �k)⟩ +

�

2
���k − �k − �k

��
2

F

(7)
𝜇̃GP(�

∗
) = 𝜇GP(�

∗
)+

KGP(�
∗
,�)KGP(�,�)

−1
(J(�) − 𝜇GP(�))

841Machine Learning (2022) 111:831–851	

1 3

where � is the set of � . We summarize the DS algorithm in Algorithm 2.
In Algorithm 2, several initialization parameters have been introduced in Algorithm 1.

Besides, the initialization of the boundary in (5) is not listed. In BO, objective function
is J(�) = −[�L(f

�
) + �−1(f

�
, f) + �||f

�
− f ||2

F
∕2] . To sum up, in this section, we design a

DS algorithm to search for the optimal ranks and sparse coefficients of the compressed
network. In the next section, we will verify the effectiveness of the method on different
datasets.

Algorithm 2: Global compression (DS algorithm).
Input: Well-trained model f (W = {W1, ...,WK} ← f).
Output: θ̂.

1 Initialize λ, r, η ≥ 1, iBO = 1, Imax
BO .

2 while iBO ≤ Imax
BO do

3 for k = 1, ...,K do
4 Algorithm 1. Decomposition phase
5 U{k},V{k} ← SV DLk

(rk) (i.e., r(k) ← rk).
6 S{k} ← Sk (i.e., λk(k) ← λk).
7 end
8 fθ ← U,V,S (i.e., θ ← r,λ).
9 Update J(θ) by Eq. (7) and (8). Searching phase

10 Sample θ∗ by acquisition function.
11 r,λ ← θ∗, δ = ηδ, iBO = iBO + 1.
12 end
13 θ̂ = argmaxθ J(θ).
14 return θ̂.

5 � Experiments

In this work, AlexNet (Krizhevsky and Hinton 2009), VGG-16 (Simonyan and Zisserman
2014) and ResNet-18 (He et al. 2016) on CIFAR-10 (Krizhevsky et al. 2012) and ImageNet
(Russakovsky et al. 2015) are performed to prove the effectiveness of our method. Experi-
ments are initialized from models in Pytorch.

We set up the experiment as follows with minor changes in different networks. In the
matrix decomposition phase, we set � = 1.5 , �k = 1.25∕||�k||F , � = 10−3 . In the search-
ing phase, we prefer the network without distortion, thus set � = 1 . Besides, set � = 0.01 ,
� = 1 and Imax

BO
= 15 . The lower bounds of ranks are 1, the upper bounds are shown as green

dotted lines in Figs. 5b, 6b, 7b and 8b. The calculated upper bounds of fully connected
layers are too high, which reduce the search efficiency, hence we lower some of them after
testing. Moreover, when �k is full of non-zero elements and zero elements, we select the
corresponding �k as the lower and upper bounds of �k , respectively. The search bounds of
the sparse coefficients are shown in Figs. 5c, 6c, 7c and 8c (green and yellow dotted lines).

For each compressed network, we report its compression ratio (sparse component
is stored by the compressed sparse column format (Han et al. 2015)), Top-1 and Top-5

(8)
𝛴̃2

GP
(�

∗
) = KGP(�

∗
,�

∗
)+

KGP(�
∗
,�)KGP(�,�)

−1KGP(�,�
∗
)

842	 Machine Learning (2022) 111:831–851

1 3

accuracies, and inference time. It is worth mentioning that a fine-tuning phase is adopted
to restore the accuracy of the network after reconstruction. In the fine-tuning phase, the
learning rate of AlexNet on CIFAR is set to 3 × 10−4 , and the weight decay is 10−4 . The
leaning rates of AlexNet, VGG and ResNet on ImageNet are set to 10−3 , 10−4 and 10−3 ,
respectively, and the weight decays are 5 × 10−4 , 10−4 and 5 × 10−4 , respectively. To test
the inference time, we deployed each network in a hardware system with NVIDIA GeForce
GTX 1080Ti and an Intel i7-7700 CPU. Then, we randomly select 100 pictures to test the
inference time of the reconstructed network structure and original network structure, in
which the former is calculated by pipeline technique of memory data load and the latter
contains the merging time for decomposed matrices. We take the ratio of the average infer-
ence time to illustrate the acceleration of the compressed network. In addition, a heuristic
SVD is used as the baseline. In this method, the decomposed matrix satisfies the following
formula, ||�k − �k�

T
k
||F ≤ (1 − p)||�k||F (Wen et al. 2017; Xu et al. 2018).

5.1 � Experiment on CIFAR‑10

The Top-1 and Top-5 accuracies of original AlexNet on CIFAR-10 are 88.79% and 99.75% ,
respectively. We use our DS algorithm to search the optimal ranks and sparse coefficients,

Compression ratio

0

0.2

0.4

0.6

0.8

1
To

p-
1

ac
cu

ra
cy

The optimal
hyperparameter set

O

Layers

0

100

200

300

400

500

R
an

k

Ranks of baseline

[54, 171, 314, 238,
230, 400, 400, 9]

Upper bound of ranks
Ranks of our method

30
28

102

150 150

129
168

200

100

10

143

200

400

378

3
5

Layer

0.1

0.2

λ

Lower bound of λ
Upper bound of λ

1

2

3

4

St
or

ag
e

×104

0.16

0.06 0.100.09 0.07 0.08
0.05

0.07

0.1

3.0

0.8
0.04

0.7
0 0.06 0.05

0 0.2 0.4 0.6 0.8 1 1 2 3 4 5 6 7 8

20 40 60 80 100
Picture

0

0.5

1

1.5
Ti

m
e

(s
)

Time of original architecure
Average time original architecure
Time of reconstructed architecure
Average time reconstructed architecure

speedup: 3.9×
0.92s

0.237s

(a) (b)

(c) (d)

Fig. 5   Compression of AlexNet on CIFAR-10. a The result of DS algorithm. b Ranks of different layers.
c Sparse coefficients and sparse components of different layers. d Inference time of reconstructed network
(colour figure online)

843Machine Learning (2022) 111:831–851	

1 3

the performance evaluation metrics of compressed networks corresponding to the search
results are shown in Fig. 5a. Each point represents a network compressed by a set of hyper-
parameter, the abscissa and ordinate represent the normalized compression ratio and Top-1
accuracy, respectively. The dotted quarter circle represents the equipotential surface of the
network performance. The larger the radius, the better the performance. The point closer
to the ordinate on the same equipotential surface has higher accuracy, and the point closer
to the horizontal axis with the same equipotential surface has higher compression ratio.
The red point O, which is on the outermost circle and close to the ordinate, represents the
optimal compressed model. This is because � = 1 makes the compressed model pay more
attention to the accuracy. The rank corresponding to the point O is shown as the red broken
line in Fig. 5b. Since the image features extracted by the first Conv can affect subsequent
layers, the rank of the first layer is close to the upper bound. The 6th layer (FC) have a large
amount of redundant information, thus it has a small rank (143) without extracting sparse
components. The sparse coefficients and the corresponding storages are shown as the blue
and red histogram in Fig. 5c. The sparse components extracted by Convs are more than that
of FCs, which indicates that there are more relevant elements in the Convs, and more ele-
ments need to be extracted to ensure the low-rank characteristics of the remaining part. In
the 2th , 3th and 5th layers (Convs), our method extracts 3 × 104 , 0.8 × 104 and 0.7 × 104 of

0 0.2 0.4 0.6 0.8 1
Copression ratio

0

0.2

0.4

0.6

0.8

1
To

p-
1

ac
cu

ra
cy

The optimal
hyperparameter set

O

1 2 3 4 5 6 7 8
Layers

0

50

100

150

200

250

300

350

400

R
an

k Ranks of our method

50

44

100

52

260
225

70

100100

72

173

Ranks of baseline

300 300 300

63 58

Upper bound of ranks
[54, 171, 314, 238,
230, 400, 400, 803]

Layer

0.1

0.2

λ

Lower bound of λ
Upper bound of λ

5

10

15

St
or

ag
e

×103

0.14

0.09 0.09 0.06 0.09 0.08 0.09 0.06

0.6
2.7 1.7 1.9

0.2 0 0

12.8
20 40 60 80 100

Picture

0

0.5

1

1.5

2

Ti
m

e
(s

)

Time of original architecure
Average time original architecure
Time of reconstructed architecure
Average time reconstructed architecure

0.243s

1.355s
speedup: 5.6×

(a) (b)

(d)(c)

Fig. 6   Compression of AlexNet on ImageNet. a The result of DS algorithm. b Ranks of different layers. c
Sparse coefficients and sparse components of different layers. d Inference time of reconstructed network
(colour figure online)

844	 Machine Learning (2022) 111:831–851

1 3

sparse components, respectively, thus it can choose a smaller rank (102, 129, and 10) com-
pared with the baseline (blue line).

Table 1   Comparison of CMD
with other model compression
methods on AlexNet �Top−1
( �Top−5 ) represents the Top-1
(Top-5) accuracy of the
compressed network minus that
of the original network

Method �Top−1 �Top−5 �Memory Speedup

BN (Tai et al. 2015) – +0.53% 4.9× 1.1×
NISP (Yu et al. 2018) 0.00% – 1.9× 1.7×
CP (Lebedev et al. 2014) – −0.37% 5.0× 1.8×
Tucker (Kim et al. 2015) – −1.70% 5.5× 1.8×
LRA (Wen et al. 2017) – −0.17% – –
MUSCO (Gusak et al. 2019) – −0.81% 4.9× –
LC (Idelbayev and Carreira-

Perpinan 2020)
−0.34% −0.39% 4.4× –

GreBdec (Yu et al. 2017) −0.04% −0.04% 10.0× –
Baseline −1.98% −1.56% 6.6× –
CMD −0.85% −0.93% 14.6× 5.6×

0 0.2 0.4 0.6 0.8 1
Compression ratio

0

0.2

0.4

0.6

0.8

1

To
p-

1
ac

cu
ra

cy

The optimal
hyperparameter set

O

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Layers

0

100

200

300

400

500

600

R
an

k

Ranks of baseline

92

196

51

230

163

350

230

227

112

10
13

50

19 28

128

52

166

220

342 331

340 420

339
340

170

132 148

630

400

348
250

152

Upper bound of ranks
Ranks of our method

[18, 57, 104, 115,
209, 230, 230, 418,
460, 460, 460, 460,
460, 400, 400, 200]

Layer

0.1

0.2

0.3

λ

Lower bound of λ
Upper bound of λ

5

10

15

St
or

ag
e

×103

[0.26, 0.08, 0.11, 0.10,
0.06, 0.08, 0.06, 0.07,
0.07, 0.08, 0.07, 0.08,
0.06, 0.05, 0.06, 0.08]

0.1

4.7

1.20.7

14.9

7.8

0.7

4.4

0.40.50.6
0.04

2.2
0

7.5

0.2

20 40 60 80 100
Picture

0

1

2

3

4

Ti
m

e
(s

)

Time of original architecure
Average time original architecure
Time of reconstructed architecure
Average time reconstructed architecure

2.8138s
0.2484s speedup: 11.3×

(a) (b)

(c) (d)

Fig. 7   Compression of VGG on ImageNet. a The result of DS algorithm. b Ranks of different layers. c
Sparse coefficients and sparse components of different layers. d Inference time of reconstructed network
(colour figure online)

845Machine Learning (2022) 111:831–851	

1 3

Considering both the storage of low-rank and sparse components, the compression ratio
of the compressed network is 9.15. After 30 times of fine-tuning, Top-1 and Top-5 accura-
cies of the compressed network reach 89.20% and 99.70% , respectively. We set p = 0.75
to compute the baseline, the ranks of baseline are shown as blue broken line in Fig. 5b.
The compression ratio of baseline is 7.55, the Top-1 and Top-5 accuracies are 88.49%
and 99.78% after fine-tuning. Moreover, we use 100 pictures to test the inference time, the
results are shown in Fig. 5d. The yellow and green lines indicate the average inference time
of the unreconstructed and reconstructed networks, respectively, and CMD provides 3.9×
speedup.

5.2 � Experiments on imageNet

We use AlexNet, VGG-16 and ResNet-18 on ImageNet to further illustrate the effec-
tiveness of our method. The accuracies of the original AlexNet are 57.02% (Top-1) and
80.08% (Top-5). The metrics of compressed networks searched by DS algorithm are
shown in Fig. 6a, the hyperparameter set corresponding to the red point is the opti-
mal. The ranks, sparse coefficients and the storage of sparse components corresponding
to this point are shown in Fig. 6b and c, respectively. The blue broken line in Fig. 6b

0 0.2 0.4 0.6 0.8 1
Compression ratio

0

0.2

0.4

0.6

0.8

1
To

p-
1

ac
cu

ra
cy The optimal

hyperparameter set

O

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layers

0

100

200

300

400

R
an

k

Upper bound of ranks

7

132

333Ranks of baseline

[44, 57, 57, 57, 57, 104, 115, 115,
115, 209 , 230, 230, 230, 418, 460,
460, 460, 400]

336
300

104

237

157

[30, 43, 50, 45, 55, 90, 100, 110,
110, 200 , 220, 210, 160, 240, 350,
130, 450, 338]

200
166

81

Ranks of our method

95105

46
252239

38

Layer

0.1

0.2

0.3

λ

Lower bound of λ
Upper bound of λ

1

2

3

4

St
or

ag
e

×105

[0.20, 0.10, 0.09, 0.09, 0.09,
0.11, 0.10, 0.09, 0.11, 0.06,
0.06, 0.07, 0.05, 0.03, 0.04,
0.04, 0.02, 0.06]

0.02

3.56

0

0.13

0.25

0.01

0.03

0.16

2.08

0.18

0.25
0.39

0 20 40 60 80 100
Picture

0.25

0.3

0.35
Ti

m
e

(s
)

Time of original architecure
Average time original architecure
Time of reconstructed architecure
Average time reconstructed architecure

0.2882s

0.2502s
speedup: 1.2×

(a)

(c) (d)

(b)

Fig. 8   Compression of ResNet on ImageNet. a The result of DS algorithm. b Ranks of different layers. c
Sparse coefficients and sparse components of different layers. d Inference time of reconstructed network
(colour figure online)

846	 Machine Learning (2022) 111:831–851

1 3

represents the ranks of baseline when p = 0.75 . Since a small number of elements in
the weight matrix are extracted in the 1st to 5th layers (Convs), the rank selected by
our method is slightly lower than that of baseline. In the FCs (the 6th and 7th layers),
even if no sparse components are extracted, we can choose the small ranks for low-rank
matrix (173 and 63, respectively). Although the last layer is a FC, our method extracts
12.8 × 103 of sparse components. We owe its situation to that our method selects the
small ranks in the 6th to 8th layers (173, 63 and 58, respectively), which leads to a large
number of sparse components need to be extracted to reduce the accuracy drop under
global compression. After 7 epochs of fine-tuning, the accuracies of the compressed
network are restored to 56.17% (Top-1) and 79.15% (Top-5), and the compression ratio
is 14.6. The Top-1 and Top-5 accuracies of the baseline reach 55.04% and 78.52% after
18 epochs of fine-tuning, and the compression ratio is 6.52. Compared with the unre-
constructed model, the reconstructed network has a speedup of 5.6 times (Fig. 6d). In
Table 1, we compare the result of our method with that of other model compression
methods, and the performance of the compressed network obtained by our method is
better than that of most methods.

The Top-1 and Top-5 accuracies of VGG are 68.62% and 89.12% , respectively. The
results of DS algorithm are shown in Fig. 7a, and the red point is the optimal. The
ranks, sparse coefficients and the storage of sparse components of the optimal model are
shown in Fig. 7b and c, respectively. The blue broken line (Fig. 7b) represents the ranks
of baseline when p = 0.85 . The ranks of Convs are close to the upper bound, hence
they can guarantee the accuracy of the compressed network. The ranks of FCs are much
smaller than the upper bound, hence they can guarantee the compression ratio. Our
method extracts a large number of sparse components in the 5th Conv ( 14.9 × 103 ), thus
the rank selected by our method is smaller than that of the baseline (145 smaller than
the baseline). The 1st FC (the 14th layer) has a large amount of redundant information,
thus we can greatly compress it without extracting the sparse components. The com-
pression ratio of the compressed network is 8.75, the Top-1 and Top-5 accuracies are
68.53% and 88.85% after 3 times of fine-tuning. In addition, the compression ratio of the
baseline is 4.16, and the accuracies are 66.78% (Top-1) and 87.88% (Top-5) after 3 times
of fine-tuning. Finally, as shown in Fig. 7d, our method achieves an 11.3× speedup. As

Table 2   Comparison of CMD with other model compression methods on VGG

Method �Top−1 �Top−5 �Memory Speedup

SLIM (Liu et al. 2017) +0.03% – 5.7× 1.4×
BN (Tai et al. 2015) – −0.13% 2.7× 1.5×
Reborn Filters (Tang et al. 2020) – −1.47% – 2.0×
CC-GAP (Li et al. 2021) -2.87% −1.68% 16.5× 2.1×
CP (Lebedev et al. 2014) – −0.29% 2.8× 2.1×
Tucker (Kim et al. 2015) – −0.50% 1.1× 2.3×
COBLA (Li and Shi 2018) – −0.9% 1.4× –
Dynamic Pruning (Wang et al. 2020) – −0.15% 1.5× 2.4×
MUSCO (Gusak et al. 2019) – −1.33% – 5.3×
GreBdec (Yu et al. 2017) +0.25% −0.38% 15.0× –
Baseline −1.84% −1.24% 4.2× –
CMD −0.09% −0.27% 8.8× 11.3×

847Machine Learning (2022) 111:831–851	

1 3

shown in Table 2, since CMD better balances the accuracy and compression ratio, our
method can obtain a better compressed network compared with other methods.

Greedy bilateral decomposition (Yu et al. 2017) reported 10× to 15× compression ratio
without accuracy drop. However, greedy algorithm cannot control the reasonable alloca-
tion of different components, and layer-by-layer compression requires layer-by-layer fine-
tuning to restore accuracy. Besides, Yu et al. (2017) did not report the inference time for
LSS-based compression. We emphasize that our method is orthogonal to Yu et al. (2017),
because we compress the networks by a controllable global LSS. In Tables 1 and 2, the dif-
ferent sparse processing method and experimental setup between CMD and GreBdec may
cause the differences in DNN performance. The higher compression ratio in Table 1 and
Top-5 accuracy in Table 2 demonstrate that CMD has ability to compress the network.

The accuracies of original ResNet-18 are 69.78% (Top-1) and 89.04% (Top-5). The
results of DS algorithm are shown in Fig. 8a and the red point represents the optimal model
selected by our method. The ranks of the optimal compressed model are shown as red bro-
ken line in Fig. 8b (the Convs with stride = 2 are not compressed), and the ranks of base-
line ( p = 0.7 ) are shown as blue broken line in this figure. The sparse coefficients (blue his-
togram) and the storage of sparse components (red histogram) are shown in Fig. 8c. In the
17th layer (Conv), the rank chosen by our method is 150 smaller than the baseline, this is
because a large number of sparse components ( 3.56 × 105 ) are extracted in this layer. Even
though a lot of sparse components are extracted in the 14th layer (Conv), the rank chosen
by our method is similar to that of the baseline (237 and 240, respectively). The reason is
that our method investigates the interactions between different layers to restore the accu-
racy by extracting sparse components and maintaining rank at this layer when compress-
ing the previous layers (the 3th to 6th layers) with the small ranks and few sparse compo-
nents causing the accuracy drop. After 4 epochs of fine-tuning, the compression ratio of
the compressed network is 1.40. The Top-1 and Top-5 accuracies are 69.78% and 89.31% ,
respectively. The accuracies and compression ratio of baseline are 68.25% (Top-1), 88.50%
(Top-5) and 1.38, respectively (4 epoch of fine-tuning). Moreover, as shown in Fig. 8d, the
reconstructed network compressed by our method has 1.2× speedup. In Table 3, CMD can
provides the compressed DNN without accuracy drop, and the results show that the sparse
components may lower the calculation speed, but it can slightly improve the accuracy.

6 � Conclusion

In this paper, we propose a controllable matrix decomposition with global optimization for
DNN compression. Our works include the following key improvements: (i) a sparse coef-
ficient is introduced to control the allocation between low-rank and sparse components,

Table 3   Comparison of CMD
with other model compression
methods on ResNet

Method �Top−1 �Top−5 �Memory Speedup

FPGM (He et al. 2019) −1.87% −1.15% – 1.7×
SFP (He et al. 2018) −3.18% −1.85% – 1.7×
TRP1 (Xu et al. 2018) – −2.06% – 1.8×
Baseline −1.53% −1.54% 1.4× –
CMD 0.00% +0.27% 1.4× 1.2×

848	 Machine Learning (2022) 111:831–851

1 3

and the network is reconstructed to reduce the inference time. (ii) an optimization prob-
lem is established to globally compress all the layers of the network synchronously. (iii)
we design a decomposition-searching algorithm to search the optimal hyperparameters for
network compression. Experimental results show that compressed networks can effectively
save the memory and reduce the inference time. For example, CMD saves 14.6× of mem-
ory of AlexNet on ImageNet with negligible accuracy loss.

Author Contributions  H.N.Z and L.J.L conceived of the study, performed the research, analysed data, and
wrote the paper. The remaining authors contributed to refining the ideas, carrying out additional analyses
and discussed the results and revised the manuscript.

Funding  This research was supported by National Key R & D Program of China (NO. 2017YFA0700800),
and National Natural Science Foundation of China (NFSC) (NO. 61774125, 61790563).

Data availability  Not Applicable.

Code availability  Not Applicable.

Declarations 

 Conflict of interest  The authors declare there is no conflicts of interest regarding the publication of this paper.

 Ethical approval  Not Applicable.

 Consent to participate  Not Applicable.

Consent for publication  Not Applicable.

References

Alvarez, J. M., & Salzmann, M. (2017). Compression-aware training of deep networks. arXiv preprint
arXiv:​1711.​02638.

Bai, H., Wu, J., King, I., & Lyu, M. (2020). Few shot network compression via cross distillation. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 3203–3210).

Bouwmans, T., Aybat, N. S., & Zahzah, E. H. (Eds.). (2016). Handbook of robust low-rank and sparse
matrix decomposition: Applications in image and video processing. CRC Press.

Brochu, E., Cora, V. M., & De Freitas, N. (2010). A tutorial on Bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning. arXiv pre-
print arXiv:​1012.​2599.

Chen, W., Wilson, J., Tyree, S., Weinberger, K., & Chen, Y. (2015). Compressing neural networks with the
hashing trick. In International conference on machine learning (pp. 2285–2294). PMLR.

Cheng, X., Rao, Z., Chen, Y., & Zhang, Q. (2020). Explaining knowledge distillation by quantifying the
knowledge. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(pp. 12925–12935).

Deb, T., Ghosh, A. K., & Mukherjee, A. (2018). Singular value decomposition applied to associative mem-
ory of Hopfield neural network. Materials Today: Proceedings, 5(1), 2222–2228.

Denton, E., Zaremba, W., Bruna, J., LeCun, Y., & Fergus, R. (2014). Exploiting linear structure within con-
volutional networks for efficient evaluation. arXiv preprint arXiv:​1404.​0736.

Gholami, A., Kwon, K., Wu, B., Tai, Z., Yue, X., Jin, P., & Keutzer, K. (2018). Squeezenext: Hardware-
aware neural network design. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops (pp. 1638–1647).

Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision
(pp. 1440–1448).

http://arxiv.org/abs/1711.02638
http://arxiv.org/abs/1012.2599
http://arxiv.org/abs/1404.0736

849Machine Learning (2022) 111:831–851	

1 3

Gusak, J., Kholiavchenko, M., Ponomarev, E., Markeeva, L., Blagoveschensky, P., Cichocki, A., & Osele-
dets, I. (2019). Automated multi-stage compression of neural networks. In Proceedings of the IEEE/
CVF International Conference on Computer Vision Workshops.

Han, S., Mao, H., & Dally, W. J. (2015). Deep compression: Compressing deep neural networks with prun-
ing, trained quantization and huffman coding. arXiv preprint arXiv:​1510.​00149.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition (pp. 770–778).

He, Y., Liu, P., Wang, Z., Hu, Z., & Yang, Y. (2019). Filter pruning via geometric median for deep convolu-
tional neural networks acceleration. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (pp. 4340–4349).

He, Y., Kang, G., Dong, X., Fu, Y., & Yang, Y. (2018). Soft filter pruning for accelerating deep convolu-
tional neural networks. arXiv preprint arXiv:​1808.​06866.

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. arXiv preprint
arXiv:​1503.​02531.

Hirayama, J. I., Hyvarinen, A., & Ishii, S. (2016). Sparse and low-rank matrix regularization for learning
time-varying Markov networks. Machine Learning, 105(3), 335–366.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam, H. (2017).
Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:​1704.​04861

Hu, H., Peng, R., Tai, Y. W., & Tang, C. K. (2016). Network trimming: A data-driven neuron pruning
approach towards efficient deep architectures. arXiv preprint arXiv:​1607.​03250.

Idelbayev, Y., & Carreira-Perpinan, M. A. (2020). Low-rank compression of neural nets: Learning the rank
of each layer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (pp. 8049–8059).

Jung, J., & Sael, L. (2020). Fast and accurate pseudoinverse with sparse matrix reordering and incremental
approach. Machine Learning, 109(12), 2333–2347.

Kim, Y. D., Park, E., Yoo, S., Choi, T., Yang, L., & Shin, D. (2015). Compression of deep convolutional
neural networks for fast and low power mobile applications. arXiv preprint arXiv:​1511.​06530.

Kim, J., McCourt, M., You, T., Kim, S., & Choi, S. (2021). Bayesian optimization with approximate set
kernels. Machine Learning, 1–23.

Kishore Kumar, N., & Schneider, J. (2017). Literature survey on low rank approximation of matrices. Lin-
ear and Multilinear Algebra, 65(11), 2212–2244.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neu-
ral networks. Advances Neural Information Processing Systems, 25, 1097–1105.

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images.
Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., & Lempitsky, V. (2014). Speeding-up convolutional

neural networks using fine-tuned cp-decomposition. arXiv preprint arXiv:​1412.​6553.
Li, H., & Lin, Z. (2020). Provable accelerated gradient method for nonconvex low rank optimization.

Machine Learning, 109(1), 103–134.
Li, C., & Shi, C. J. (2018). Constrained optimization based low-rank approximation of deep neural net-

works. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 732–747).
Li, Y., Lin, S., Liu, J., Ye, Q., Wang, M., Chao, F., & Ji, R. (2021). Towards Compact CNNs via Collabora-

tive Compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Rec-
ognition (pp. 6438–6447).

Liao, Y., Liu, S., Wang, F., Chen, Y., Qian, C., & Feng, J. (2020). Ppdm: Parallel point detection and match-
ing for real-time human-object interaction detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (pp. 482–490).

Lin, Z., Chen, M., & Ma, Y. (2010). The augmented lagrange multiplier method for exact recovery of cor-
rupted low-rank matrices. arXiv preprint arXiv:​1009.​5055.

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., & Zhang, C. (2017). Learning efficient convolutional networks
through network slimming. In Proceedings of the IEEE international conference on computer vision
(pp. 2736–2744).

Ma, N., Zhang, X., Zheng, H. T., & Sun, J. (2018). Shufflenet v2: Practical guidelines for efficient cnn archi-
tecture design. In Proceedings of the European conference on computer vision (ECCV) (pp. 116–131).

Masana, M., van de Weijer, J., Herranz, L., Bagdanov, A. D., & Alvarez, J. M. (2017). Domain-adaptive
deep network compression. In Proceedings of the IEEE International Conference on Computer Vision
(pp. 4289–4297).

Masi, I., Mathai, J., & AbdAlmageed, W. (2020). Towards Learning Structure via Consensus for Face Seg-
mentation and Parsing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (pp. 5508–5518).

http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1808.06866
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1607.03250
http://arxiv.org/abs/1511.06530
http://arxiv.org/abs/1412.6553
http://arxiv.org/abs/1009.5055

850	 Machine Learning (2022) 111:831–851

1 3

Mizutani, T., & Tanaka, M. (2018). Efficient preconditioning for noisy separable nonnegative matrix factori-
zation problems by successive projection based low-rank approximations. Machine Learning, 107(4),
643–673.

Nocedal, J., & Wright, S. (2006). Numerical optimization. Springer Science & Business Media.
Rasmussen, C. E. (2003). Gaussian processes in machine learning. In Summer school on machine learning

(pp. 63–71). Springer, Berlin, Heidelberg.
Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016). Xnor-net: Imagenet classification using

binary convolutional neural networks. In European conference on computer vision (pp. 525–542).
Springer, Cham.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., & Fei-Fei, L. (2015). Imagenet large
scale visual recognition challenge. International Journal Computer Vision, 115(3), 211–252.

Shi, W., Jiang, F., Liu, S., & Zhao, D. (2019). Scalable convolutional neural network for image compressed
sensing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(pp. 12290–12299).

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:​1409.​1556.

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian optimization of machine learning algo-
rithms. arXiv preprint arXiv:​1206.​2944.

Tai, C., Xiao, T., Zhang, Y., & Wang, X. (2015). Convolutional neural networks with low-rank regulariza-
tion. arXiv preprint arXiv:​1511.​06067.

Tang, Y., You, S., Xu, C., Han, J., Qian, C., Shi, B., & Zhang, C. (2020, April). Reborn filters: Pruning
convolutional neural networks with limited data. In Proceedings of the AAAI Conference on Artificial
Intelligence (Vol. 34, No. 04, pp. 5972–5980).

Tung, F., & Mori, G. (2018). Clip-q: Deep network compression learning by in-parallel pruning-quanti-
zation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp.
7873–7882).

Wang, Z., Zoghi, M., Hutter, F., Matheson, D., & De Freitas, N. (2013, August). Bayesian Optimization in
High Dimensions via Random Embeddings. In IJCAI (pp. 1778–1784).

Wang, F., Xue, N., Yu, J. G., & Xia, G. S. (2020). Zero-assignment constraint for graph matching with
outliers. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp.
3033–3042).

Wang, Y., Zhang, X., Hu, X., Zhang, B., & Su, H. (2020, April). Dynamic network pruning with interpreta-
ble layerwise channel selection. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol.
34, No. 04, pp. 6299–6306).

Wen, W., Xu, C., Wu, C., Wang, Y., Chen, Y., & Li, H. (2017). Coordinating filters for faster deep neural
networks. In Proceedings of the IEEE International Conference on Computer Vision (pp. 658–666).

Wright, S. J., Nowak, R. D., & Figueiredo, M. A. (2009). Sparse reconstruction by separable approximation.
IEEE Transactions on signal processing, 57(7), 2479–2493.

Xu, Y., Li, Y., Zhang, S., Wen, W., Wang, B., Qi, Y., ... & Xiong, H. (2018). Trained rank pruning for effi-
cient deep neural networks. arXiv preprint arXiv:​1812.​02402.

Yu, X., Liu, T., Wang, X., & Tao, D. (2017). On compressing deep models by low rank and sparse decom-
position. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp.
7370–7379).

Yu, R., Li, A., Chen, C. F., Lai, J. H., Morariu, V. I., Han, X., & Davis, L. S. (2018). Nisp: Pruning networks
using neuron importance score propagation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (pp. 9194–9203).

Yuan, L., Li, C., Mandic, D., Cao, J., & Zhao, Q. (2019). Tensor ring decomposition with rank minimization
on latent space: An efficient approach for tensor completion. In Proceedings of the AAAI Conference
on Artificial Intelligence (Vol. 33, No. 01, pp. 9151–9158).

Zhang, J., & Ghanem, B. (2018). ISTA-Net: Interpretable optimization-inspired deep network for image
compressive sensing. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion (pp. 1828–1837).

Zhao, C., Ni, B., Zhang, J., Zhao, Q., Zhang, W., & Tian, Q. (2019). Variational convolutional neural net-
work pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (pp. 2780–2789).

Zhou, H., Alvarez, J. M., & Porikli, F. (2016). Less is more: Towards compact cnns. In European Confer-
ence on Computer Vision (pp. 662–677). Springer, Cham.

Zhou, D., Fang, J., Song, X., Liu, L., Yin, J., Dai, Y., & Yang, R. (2020). Joint 3D Instance Segmentation
and Object Detection for Autonomous Driving. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (pp. 1839–1849).

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1206.2944
http://arxiv.org/abs/1511.06067
http://arxiv.org/abs/1812.02402

851Machine Learning (2022) 111:831–851	

1 3

Zhou, P., & Feng, J. (2017). Outlier-robust tensor PCA. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (pp. 2263–2271).

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	CMD: controllable matrix decomposition with global optimization for deep neural network compression
	Abstract
	1 Introduction
	2 Related work
	3 Problem formulation
	3.1 Strategy for a controllable compression
	3.2 Strategy for global compression

	4 Optimization algorithm
	5 Experiments
	5.1 Experiment on CIFAR-10
	5.2 Experiments on imageNet

	6 Conclusion
	References

