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Abstract
The compression and acceleration of Deep neural networks (DNNs) are necessary steps 
to deploy sophisticated networks into resource-constrained hardware systems. Due to the 
weight matrix tends to be low-rank and sparse, several low-rank and sparse compression 
schemes are leveraged to reduce the overwhelmed weight parameters of DNNs. In these 
previous schemes, how to make the most of the low-rank and sparse components of weight 
matrices and how to globally decompose the weight matrix of different layers for efficient 
compression need to be further investigated. In this paper, in order to effectively utilize the 
low-rank and sparse characteristics of the weight matrix, we first introduce a sparse coef-
ficient to dynamically control the allocation between the low-rank and sparse components, 
and an efficient reconstructed network is designed to reduce the inference time. Secondly, 
since the results of low-rank decomposition can affect the compression ratio and accuracy 
of DNNs, we establish an optimization problem to automatically select the optimal hyper-
parameters of the compressed network and achieve global compression for all the layers of 
network synchronously. Finally, to solve the optimization problem, we present a decompo-
sition-searching algorithm to search the optimal solution. The algorithm can dynamically 
keep the balance between the compression ratio and accuracy. Extensive experiments of 
AlexNet, VGG-16 and ResNet-18 on CIFAR-10 and ImageNet are employed to evaluate 
the effectiveness of the proposed approach. After slight fine-tuning, compressed networks 
have gained 1.2× to 11.3× speedup and our method reduces the size of different networks 
by 1.4× to 14.6×.
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1  Introduction

The increasing number of parameters and model complexity of DNNs have raised critical 
challenges in deploying large DNNs into mobile devices and embedded systems due to 
their limited storage, and computational resources. In order to deploy advanced networks 
in the resource-limited devices, such as cellphones and wearable devices, model compres-
sion has been widely adopted to reduce the memory and computational demands from 
sophisticated networks. There are mainly five categories of approaches for network com-
pression: (1) matrix decomposition (Kim et al. 2015; Denton et al. 2014; Tai et al. 2015; 
Lebedev et al. 2014; Yu et al. 2017), which compresses the DNN by decomposing each 
large-sized weight matrix into multiple small-sized matrices; (2) network pruning (Zhao 
et al. 2019; Han et al. 2015; Tung and Mori 2018; Hu et al. 2016), which saves resources 
by removing the unimportant structure (connections, channels, filters, etc.) of the network; 
(3) quantization (Chen et al. 2015; Han et al. 2015; Tung and Mori 2018; Rastegari et al. 
2016), which speeds up inference by reducing the bit of weight parameters and feature-
map values; (4) knowledge distillation (Bai et al. 2020; Hinton et al. 2015; Cheng et al. 
2020), which compresses the DNN by transferring effective knowledge from the large-
sized network to the corresponding small-sized network and (5) compact network design 
(Howard et al. 2017; Gholami et al. 2018; Ma et al. 2018), which implements the network 
architecture by designing inference-friendly blocks. As for the current research field of 
pretrained DNN compression, pruning and low-rank matrix decomposition are the most 
popular approaches. This article focuses on the low-rank matrix decomposition for DNN 
compression.

Low-rank decomposition can compress and accelerate the network by approximating 
the weight matrix to the small-sized matrix. Moreover, the matrix decomposition can be 
quickly inferred on the common chips, especially GPUs (Idelbayev and Carreira-Perpi-
nan 2020). Common matrix decomposition methods include QR (Deb et al. 2018), CUR 
(Kishore Kumar and Schneider 2017) and singular value decomposition (SVD) (Yuan et al. 
2019). Among these methods, SVD uses singular values to describe the importance of fea-
tures in the matrix, and compresses the matrix by removing unimportant singular values 
and corresponding eigenvectors. SVD is widely used in DNN compression. For exam-
ple, a 15-layer convolutional neural network trained on ImageNet is compressed through 
SVD (Denton et al. 2014). Moreover, SVD is used to compress the fully connected layer 
(FC), which reduces 25% parameters of the compressed network (Girshick 2015). Besides, 
Masana et al. (2017) leveraged SVD to compress FC6 and FC7 of VGG-19. Although SVD 
can effectively compress the networks, it may affect the accuracy of the compressed net-
work when the weight matrix does not have low-rank characteristics. As shown in Fig. 1, 
we test the variations of Top-1 accuracy with different ranks. Since there are only a small 
number of similarity elements in the weight matrix, a small variation of rank will cause a 
obvious decrease in the accuracy. To solve this problem, low-rank and sparse scheme is 
introduced to compress DNNs for the compact network with the higher accuracy.

Low-rank and sparse schemes (LSSs) (Bouwmans et al. 2016; Wen et al. 2017) decom-
pose the weight matrix into low-rank and sparse matrices and leverage different strategies 
to compress them. A greedy algorithm (Yu et al. 2017) is used to approximatively decom-
pose the weight matrix into low-rank and sparse matrices, and then QR, SVD and Huffman 
coding methods (Han et al. 2015) are used to compress the network. Alvarez and Salzmann 
(2017) also introduces the concept of sparsity and low-rank into network compression. 
In this article, a preliminary compressed network is obtained through SVD, and the final 
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compressed network is obtained by kernel-wise pruning (a group-sparse method). One of 
the critical challenges for LSS-based network compression is how to find a reasonable allo-
cation of low-rank and sparse components. In addition, since low-rank matrix decomposi-
tion can only decompose weight matrices with the same size and similar information, this 
method is impossible to further investigate the relationship between different layers for fast 
global compression.

In this article, we propose a controllable matrix decomposition (CMD) with global 
optimization to produce the network with less weight parameters and higher accuracy. We 
first introduce a special sparse coefficient in the LSS for flexible and configurable DNN 
compression. Based on the result of LSS, we propose a reconstructed network to reduce 
the inference time of the DNN. In addition, to automatically select the optimal parameters 
and compress each layer of the network in a parallel scenario, we investigate the accuracy 
and compression ratio to establish an optimization problem. Moreover, to find the optimal 
compressed network, a two-phase algorithm, which contains decomposition and searching 
phases, is proposed to solve the optimal problem. In brief, our contributions are summa-
rized as follows:

(1) We first introduce a generalized controllable LSS for DNN compression. In the case 
of SVD-based low-rank component compression, our scheme degenerates into traditional 
LSS with a sparse coefficient. Furthermore, we reconstruct the topology of the network to 
save the inference time for the LSS-based compression method.

(2) We establish an optimization problem to globally compress the network, and auto-
matically select optimal ranks and sparse coefficients. The optimization problem compre-
hensively considers the accuracy and compression ratio of the compressed network.
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Fig. 1   Variations of Top-1 with ranks. The initialization is the rank with almost 1-compression ratio. The 
red dotted line represents the accuracy of original network, △Top−1 represents the difference of accuracy 
(colour figure online)
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(3) We propose a decomposition-searching algorithm to solve the optimization prob-
lem. In decomposition phase, weight matrices are decomposed into different components. 
In searching phase, Bayesian Optimization is used to select the optimal hyperparameters 
by expectation and uncertainty. In the experiment, we implement various types of DNNs 
on different benchmarks, and our method can dynamically obtain the balance between the 
compression ratio and accuracy. Notably, CMD saves 14.6× of memory of AlexNet on 
ImageNet with negligible accuracy drop.

The rest of this paper is organized as follows: In Sect. 2, we introduce the related work 
and compare our work with other LSS-based compression method. Then, we present the 
overall compression framework in Sect. 3, and we further illustrate details from the con-
trollable and global compression, respectively. In Sect.  4, we propose a decomposition-
searching algorithm to find the optimal hyperparameter in the compressed model. After 
that, we leverage two benchmarks (CIFAR-10 and ImageNet) on various types of DNNs to 
demonstrate the compression results in Sect. 5, and finally conclude in Sect. 6.

2 � Related work

Recently, it has attracted intense attention on the research of network compression, which 
is an feasible approach to reduce neural network parameters and to deploy DNNs into edge-
computing devices. Currently, in the field of network compression, matrix decomposition 
is a promising way to compress DNNs because matrix (tensor) calculation accounts for a 
significant portion in the DNN. Moreover, matrix decomposition is also conducive to the 
inference of hardware system due to a parallelizable memory access pattern has applied for 
low-rank approximation (Idelbayev and Carreira-Perpinan 2020).

Singular value decomposition (SVD) SVD is an effective low-rank decomposition 
method, which can measure the effective information in the matrix through the singular 
values, and finally retain the vectors with larger singular values to reduce the storage of 
the original matrix (Zhou et al. 2016; Li and Lin 2020; Mizutani and Tanaka 2018; Jung 
and Sael 2020). SVD is widely used in DNN compression. Girshick (2015) leverages SVD 
to compress the fully connected layer in the Fast-RCNN, and the size of compressed net-
work becomes 25% of that of the original network. In order to find the redundant informa-
tion in the weight matrix, bi-clustering is used to pre-process the matrix and then SVD is 
used to compress the network (Denton et al. 2014). In order to save the memory, the layers 
(FC6 and FC7) of VGG-19 are compressed through SVD without accuracy drop (Masana 
et al. 2017). Although SVD can effectively compress the network, the compression ratio 
and accuracy of the compressed network is actually affected by the relevant information in 
the weight matrix. In addition, matrix decomposition can only decompose matrices with 
the same size and similar information. Therefore, matrix decomposition method can only 
compress the network layer by layer, which may lead to low-efficient compression for the 
network with numerous of layers.

Low-rank and sparse scheme (LSS) LSS-based method has been used in many sce-
narios (e.g., background segmentation (Zhou et al. 2020; Masi et al. 2020), outlier detec-
tion (Wang et al. 2020; Liao et al. 2020; Zhou and Feng 2017), compressed sensing (Shi 
et al. 2019; Zhang and Ghanem 2018), etc.) (Bouwmans et al. 2016; Hirayama et al. 2016). 
In the field of network compression, LSS is used to decompose the weight matrix, and 
a greedy algorithm is used to select the rank of low-rank component (Yu et al. 2017). In 
addition, several frameworks combining low-rank decomposition with pruning is proposed 
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to compress the DNN (Alvarez and Salzmann 2017). The method first reduces parameters 
through the low-rank decomposition, and then implements kernel-wise pruning through 
group-sparse to achieve network acceleration. However, we notice that one of the critical 
challenges for LSS-based method is the reasonable allocation between low-rank and sparse 
components. Hence, it is important to introduce the appropriate hyperparameter to control 
the allocation between the two different components, and it is better to automatically select 
the optimal hyperparameter for the allocation.

Bayesian optimization (BO) BO provides an approach to maximize (if minimized, the 
objective function is preceded by a minus) black-box objective functions, which are non-
convex, expensive to evaluate, hard to differential, and may not be easily expressed as 
closed forms (Tung and Mori 2018; Wang et al. 2013; Kim et al. 2021). Since the DNN 
can be considered as a black-box function, BO is optimization-friendly to DNN. BO usu-
ally assumes that parameters obey a certain distribution, and it contains exploitation and 
exploration phases (Snoek et al. 2012): (1) In the exploitation phase, a new sample is used 
to update the probability model of the objective function. (2) In the exploration phase, an 
acquisition function, which combines information about the expectation and uncertainty 
of the objective function, is used to select new sample. These two phases are alternated to 
obtain the optimal value. Since Gaussian process (Rasmussen 2003; Brochu et al. 2010) 
has favorable statistical and computational characteristics, it is usually set as the distribu-
tion of the objective function. Besides, there are several acquisition functions, such as, the 
probability of improvement (PI), expected improvement (EI), upper confidence bounds 
(UCB) (Snoek et al. 2012; Brochu et al. 2010). In this paper, we use UCB as the acqui-
sition function because it is easy for calculation and can achieve good results. It can be 
expressed as: UCB(x) = �(x) + ��(x) , where �(x) and �(x) represent mean value and vari-
ance, respectively. They are used to illustrate the expectation and uncertainty of the sample 
space. � is used to balance exploitation against exploration.

Discussion To the best of our knowledge, Yu et al. (2017) also leveraged LSS scheme to 
compress the DNN. However, we need to emphasize that our method is orthogonal to it. In 
the CMD, we introduce a sparse coefficient for the sparse matrix (in Sect. 3.1), and it can 
control the sparse component in the decomposed matrix. Moreover, we establish an optimi-
zation problem (in Sect. 3.2) to select the optimal rank and sparse coefficient of the global 
network. Compared with Yu et al. (2017), CMD can automatically select the rank instead 
of adopting greedy algorithm, which makes the compression more reasonable. In addition, 
this paper clearly reveals the structure of the reconstructed network. And we record both 
parameters and inference speed of the compressed network in the experiment.

3 � Problem formulation

In this section, we first introduce a controllable LSS with the sparse coefficient for DNN 
compression. Furthermore, to save the inference time, we reconstruct the topology of 
the network. In addition, to globally compress DNNs and select the optimal compressed 
network, we establish an optimization problem based on the hyperparameter of the com-
pressed network.
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3.1 � Strategy for a controllable compression

As shown in Fig. 2, since there are a large number of linearly independent Convs in the 
weight matrix, we cannot represent all the Convs only through several important Convs. In 
this case, the accuracy and compression ratio of the compressed network cannot be guaran-
teed simultaneously. In order to find the low-rank characteristics of the weight matrix, we 
extract a small number of elements from it, and ensure that there are more relevant kernels 
in the remaining matrix (marked by the red square in Fig. 2). We rearrange the extracted 
elements in the corresponding locations, and set other locations to zero to form a sparse 
matrix �k . The remaining matrix is represented as �k (marked by the blue square in Fig. 2), 
where k represents the index of layer, then we can build an optimization problem:

where �(�k) represents the dissimilarity measure of matrix elements. For example, �(�k) 
can be used to count the number of linearly independent kernels in �k . ||�k||0 repre-
sents the number of non-zero elements in �k . Since the main information of the original 
weight matrix cannot be greatly changed, it is necessary to ensure that there are only a 
few non-zero elements in �k , i.e., �k is a sparse matrix. �k represents the sparse coeffi-
cient, which is used to control the number of non-zero elements in �k . In this paper, SVD 
is used to compress the weight matrix, and singular values is used to measure �k . Thus 
�(�k) =

∑
i �(� ii(�k)) , where � ii(�k) represents the ith value on the diagonal of the singu-

lar value matrix. When � ii(Lk) ≠ 0 , then �(� ii(�k)) = 1 , otherwise �(� ii(�k)) = 0 . Then, 
the optimization problem (1) can be transformed into the following controllable low-rank 
and sparse combination scheme:

(1)
min
�k ,�k

�(�k) + �k
‖‖�k‖‖0

s.t. �k ≈ �k + �k
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Fig. 2   The decomposition process of LLS. Firstly, the 4-D Convs of the same layer are stretched into a 2-D 
matrix �k ∈ ℝ

Mk×Nk , where Mk = m × m × Cin , m × m represents the size of each channel, Cin represents 
the number of channels, and Nk represents the number of outputs. It should be noted that Mk and Nk are the 
dimensions related to the input and output, respectively. Secondly, the low-rank matrix and sparse matrix 
are leveraged to approximate �k (colour figure online)
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In the optimization problem (2), low-rank matrix �k ( �k ∈ ℝ
Mk×Nk ) can be repre-

sented as �k ≈ �̂k�k(�̂k)
T
= (�̂k�

1∕2

k
)(�

1∕2

k
�̂k)

T
= �k�

T
k
 , where �̂k ( �̂k ∈ ℝ

Mk×rk ) 
and �̂k ( �̂k ∈ ℝ

Nk×rk ) represent left and right eigenvector matrices, respectively, �k 
( �k ∈ ℝ

rk×rk ) represents a diagonal matrix, where rk =
∑

i �(� ii(Lk)) . �k can be com-
pressed by different storage formats (e.g., compressed sparse column format, com-
pressed sparse row format, etc.). Although the decomposed matrix can save the hard-
ware memory resources, the inference time is also important in many edge computing 
applications. In order to reduce the inference time, we apply the small-sized matrices to 
reconstruct the network to speed up the computation. As shown in Fig. 3d, each weight 
matrix can be reconstructed into two layers. For the first layer, each column of �k is 
reconstructed into a Conv (as shown in Fig. 3a). For the second layer, each row of �k 
can be considered as a set of weight factors (as shown in Fig. 3b). Besides, each column 
of �k is also reconstructed into a Conv (as shown in Fig. 3c). To obtain the feature maps 
of the reconstructed network, the inputs are first calculated with Convs reconstructed by 
�k to obtain rk hidden feature maps. After that, the hidden feature maps are calculated 
with the weight factors reconstructed by �k and then added to the feature maps obtained 
by �k-reconstructed Convs to get the practical feature maps. In the reconstructed net-
work, the FLOPs become O((Mk + Nk)rk + F(�k)) , where F(�k) = ‖‖�k‖‖0.

(2)
min
�k ,�k

∑
i
�(� ii(�k)) + �k

‖‖�k‖‖0

s.t. �k ≈ �k + �k
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Fig. 3   Structure of the reconstructed network. Each layer of the restructured network consists of three main 
parts, where two serial layers are reconstructed by �k and �k , and a parallel branch reconstructed by sparse 
matrix �k (colour figure online)
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In summary, we decompose the weight matrix into low-rank and sparse matrices, and 
reconstruct the network architecture to reduce the parameters and inference time of the 
network. In the LSS, rk and �k have a great impact on the network performance. As shown 
in Fig. 4, we use different �k to compress the DNNs and record the the variation of Top-1 
accuracy, the increase of �k reduces the accuracy of the compressed network in the figure, 
thus �k is important in network compression. Besides, Fig. 1 shows that rk has ability to 
impact the network accuracy. Therefore, we should choose the appropriate rk and �k for the 
DNN compression. Moreover, the interaction between different layers should also be con-
sidered in the compression. Hence, we will establish an optimization problem to select the 
optimal hyperparameters, and achieve the global compression in the next section.
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Fig. 4   Variation of Top-1 accuracy with different �k . We take different networks as examples to show the 
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�
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�
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3.2 � Strategy for global compression

In order to select the optimal compressed network and globally compress the DNN, we 
use the rank and sparse coefficient to establish an optimization problem. The DNN can be 
represented as a black-box function f, then the optimization problem can be expressed as 
follows:

where rmax

k
= INT[Mk ⋅ Nk∕(Mk + Nk)] , INT[∙] represents the round down. �min

k
 and �max

k
 

represent the lower and upper bound of �k . The change of �k from small to large makes the 
number of non-zero elements in the matrix �k from more to less, hence when �k is full of 
non-zero elements and zero elements, the corresponding �k are selected as �min

k
 and �max

k
 , 

respectively. L(f) represents the loss function (e.g., cross entropy). f
�
 represents the map-

ping of the compressed network. � = (r1, ..., rK , �1, ..., �K) represents the vector of hyperpa-
rameters. � is the trade-off between the accuracy and compression ratio of the compressed 
network. �(f

�
, f ) represents the compression ratio.

In Eq. (3), L(f
�
) and �(f

�
, f ) are used to constrain the accuracy and compression ratio of the 

compressed network, respectively. Since � is discontinuous in Eq. (3), the optimal hyper-
parameters cannot be obtained by stochastic gradient descent (SGD). Thus, we proposed a 
decomposition-searching (DS) algorithm to compress the network.

4 � Optimization algorithm

In order to prevent distortion caused by the difference between the compressed and orig-
inal network, we use the quadratic-penalty method (Nocedal and Wright 2006) to estab-
lish the connection between the compressed and original network. Then, Eq. (3) can be 
rewritten as follows:

where � represents the effect of the quadratic-penalty term, f
�
 and f represent the mapping 

of the compressed network and original network, respectively.
To obtain the optimal ranks and sparse coefficients, we propose a decomposition-

searching (DS) algorithm to solve Eq.  (5). The algorithm contains two phases, which 
are matrix decomposition phase and hyperparameter searching phase. The details are 
described as follows:

(3)

min
�

�L(f
�
) + �−1(f

�
, f )

s.t. � = (r1, ..., rK , �1, ..., �K), k = 1, ...,K,

1 ≤ rk ≤ rmax

k
, �min

k
≤ �k ≤ �max

k

(4)�(f� , f ) =
F(f )

F(f�)
=

∑K

k=1
MkNk

∑K

k=1
((Mk + Nk) ⋅ rk + F(�k))

(5)

min
�

�L(f
�
) + �−1(f

�
, f ) +

�

2
‖‖f� − f‖‖

2

F

s.t. � = (r1, ..., rK , �1, ..., �K), k = 1, ...,K,

1 ≤ rk ≤ rmax

k
, �min

k
≤ �k ≤ �max

k
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Decomposition phase In this phase, we solve the optimization problem (2) to obtain 
the low-rank matrix and sparse matrix. We turn the Eq.  (2) into a convex optimiza-
tion problem, where 

∑
i �(� ii(�k)) and ‖‖�k‖‖0 are relaxed to 

∑
i � ii(�k) and ‖‖�k‖‖1 , respec-

tively. Then, the augmented Lagrangian function (Lin 2010) is expressed as follows:

where ⟨⟩ is the inner product, �k is the Lagrange multiplier matrix. � represents the effect 
of regularization terms. Then, �k and �k can be obtained by the soft thresholding function 
(Wright et  al. 2009), where �k = ST

�k

/
�
(�k − �k + �k

/
�) , 

�k = �k ⋅ [ST�−1 (�k − �k + �k

/
�)] ⋅ �T

k
 , ST(∙) represents the soft thresholding function. 

The steps of decomposition phase are summarized in Algorithm 1.

Algorithm 1: Decomposition of weight matrix.
Input: Weight matrix Wk.
Output: Lk, Sk, λk.

1 Initialize λk, Lk, Sk, Yk, µk > 0, η > 1, ε.
2 while ‖Wk − Lk − Sk‖F / ‖Wk‖F ≥ ε do
3 Uk,Σk,Vk = SV D(Wk − Sk +Yk/µ).
4 Lk = Uk

[
ST1/µ(Wk − Sk +Yk/µ)

]
(V)Tk .

5 Sk = STλk/µ(Wk − Lk +Yk/µ).
6 Yk = Yk + µ(Wk − Lk − Sk).
7 µk = ηµk.
8 end
9 return Lk, Sk, λk.

As shown in Algorithm 1, �k can control the decomposition result of �k . When the ele-
ment in �k − �k + �k

/
� is greater than �k∕� , it is extracted as a sparse component. Then, 

we introduce the searching phase to search for the optimal ranks and sparse components.
Searching phase Since � is discontinuous and the DNN can be considered as a black-box 

function, we choose BO to search hyperparameters. BO has two phases, for the first phase, the 
set of ranks and sparse coefficients is sampled by the upper confidence bound in the search 
space. In the second phase, the distribution of the objective function is updated by sampled 
hyperparameters and the corresponding objective function value. We assume that the objec-
tive function J(�) obeys a Gaussian process with a mean function of �GP(�) = E[J(�)] 
and a variance function of KGP(�, �̂) = E[(J(�) − 𝜇GP(�))(J(�̂) − 𝜇GP(�̂))] , i.e., 
J(�) ∼ GP(𝜇GP(�),KGP(�, �̂)) . Then, updating the distribution of objective function is 
transformed into updating the mean and variance. According to the property of the Gauss-
ian process (Rasmussen 2003), the updated objective function can be expressed as follows: 
J̃(�∗

) ∼ N(𝜇̃GP(�
∗
), 𝛴̃2

GP
(�

∗
)) , where �∗ represents the set of current hyperparameters sam-

pled by the upper confidence bound function. 𝜇̃GP and 𝛴̃2

GP
 represent the updated mean and 

variance, respectively. Their update formulas are as follows:

(6)
L
�
�k, �k,�k,�

�
= ���k

��∗ + ����k��1
+ ⟨�k, (�k − �k − �k)⟩ +

�

2
���k − �k − �k

��
2

F

(7)
𝜇̃GP(�

∗
) = 𝜇GP(�

∗
)+

KGP(�
∗
,�)KGP(�,�)

−1
(J(�) − 𝜇GP(�))
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where � is the set of � . We summarize the DS algorithm in Algorithm 2.
In Algorithm 2, several initialization parameters have been introduced in Algorithm 1. 

Besides, the initialization of the boundary in (5) is not listed. In BO, objective function 
is J(�) = −[�L(f

�
) + �−1(f

�
, f ) + �||f

�
− f ||2

F
∕2] . To sum up, in this section, we design a 

DS algorithm to search for the optimal ranks and sparse coefficients of the compressed 
network. In the next section, we will verify the effectiveness of the method on different 
datasets.

Algorithm 2: Global compression (DS algorithm).
Input: Well-trained model f (W = {W1, ...,WK} ← f).
Output: θ̂.

1 Initialize λ, r, η ≥ 1, iBO = 1, Imax
BO .

2 while iBO ≤ Imax
BO do

3 for k = 1, ...,K do
4 Algorithm 1. Decomposition phase
5 U{k},V{k} ← SV DLk

(rk) (i.e., r(k) ← rk).
6 S{k} ← Sk (i.e., λk(k) ← λk).
7 end
8 fθ ← U,V,S (i.e., θ ← r,λ).
9 Update J(θ) by Eq. (7) and (8). Searching phase

10 Sample θ∗ by acquisition function.
11 r,λ ← θ∗, δ = ηδ, iBO = iBO + 1.
12 end
13 θ̂ = argmaxθ J(θ).
14 return θ̂.

5 � Experiments

In this work, AlexNet (Krizhevsky and Hinton 2009), VGG-16 (Simonyan and Zisserman 
2014) and ResNet-18 (He et al. 2016) on CIFAR-10 (Krizhevsky et al. 2012) and ImageNet 
(Russakovsky et al. 2015) are performed to prove the effectiveness of our method. Experi-
ments are initialized from models in Pytorch.

We set up the experiment as follows with minor changes in different networks. In the 
matrix decomposition phase, we set � = 1.5 , �k = 1.25∕||�k||F , � = 10−3 . In the search-
ing phase, we prefer the network without distortion, thus set � = 1 . Besides, set � = 0.01 , 
� = 1 and Imax

BO
= 15 . The lower bounds of ranks are 1, the upper bounds are shown as green 

dotted lines in Figs. 5b,  6b, 7b and 8b. The calculated upper bounds of fully connected 
layers are too high, which reduce the search efficiency, hence we lower some of them after 
testing. Moreover, when �k is full of non-zero elements and zero elements, we select the 
corresponding �k as the lower and upper bounds of �k , respectively. The search bounds of 
the sparse coefficients are shown in Figs. 5c, 6c, 7c and 8c (green and yellow dotted lines).

For each compressed network, we report its compression ratio (sparse component 
is stored by the compressed sparse column format (Han et  al. 2015)), Top-1 and Top-5 

(8)
𝛴̃2

GP
(�

∗
) = KGP(�

∗
,�

∗
)+

KGP(�
∗
,�)KGP(�,�)

−1KGP(�,�
∗
)
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accuracies, and inference time. It is worth mentioning that a fine-tuning phase is adopted 
to restore the accuracy of the network after reconstruction. In the fine-tuning phase, the 
learning rate of AlexNet on CIFAR is set to 3 × 10−4 , and the weight decay is 10−4 . The 
leaning rates of AlexNet, VGG and ResNet on ImageNet are set to 10−3 , 10−4 and 10−3 , 
respectively, and the weight decays are 5 × 10−4 , 10−4 and 5 × 10−4 , respectively. To test 
the inference time, we deployed each network in a hardware system with NVIDIA GeForce 
GTX 1080Ti and an Intel i7-7700 CPU. Then, we randomly select 100 pictures to test the 
inference time of the reconstructed network structure and original network structure, in 
which the former is calculated by pipeline technique of memory data load and the latter 
contains the merging time for decomposed matrices. We take the ratio of the average infer-
ence time to illustrate the acceleration of the compressed network. In addition, a heuristic 
SVD is used as the baseline. In this method, the decomposed matrix satisfies the following 
formula, ||�k − �k�

T
k
||F ≤ (1 − p)||�k||F (Wen et al. 2017; Xu et al. 2018).

5.1 � Experiment on CIFAR‑10

The Top-1 and Top-5 accuracies of original AlexNet on CIFAR-10 are 88.79% and 99.75% , 
respectively. We use our DS algorithm to search the optimal ranks and sparse coefficients, 
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the performance evaluation metrics of compressed networks corresponding to the search 
results are shown in Fig. 5a. Each point represents a network compressed by a set of hyper-
parameter, the abscissa and ordinate represent the normalized compression ratio and Top-1 
accuracy, respectively. The dotted quarter circle represents the equipotential surface of the 
network performance. The larger the radius, the better the performance. The point closer 
to the ordinate on the same equipotential surface has higher accuracy, and the point closer 
to the horizontal axis with the same equipotential surface has higher compression ratio. 
The red point O, which is on the outermost circle and close to the ordinate, represents the 
optimal compressed model. This is because � = 1 makes the compressed model pay more 
attention to the accuracy. The rank corresponding to the point O is shown as the red broken 
line in Fig. 5b. Since the image features extracted by the first Conv can affect subsequent 
layers, the rank of the first layer is close to the upper bound. The 6th layer (FC) have a large 
amount of redundant information, thus it has a small rank (143) without extracting sparse 
components. The sparse coefficients and the corresponding storages are shown as the blue 
and red histogram in Fig. 5c. The sparse components extracted by Convs are more than that 
of FCs, which indicates that there are more relevant elements in the Convs, and more ele-
ments need to be extracted to ensure the low-rank characteristics of the remaining part. In 
the 2th , 3th and 5th layers (Convs), our method extracts 3 × 104 , 0.8 × 104 and 0.7 × 104 of 
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sparse components, respectively, thus it can choose a smaller rank (102, 129, and 10) com-
pared with the baseline (blue line).

Table 1   Comparison of CMD 
with other model compression 
methods on AlexNet �Top−1 
( �Top−5 ) represents the Top-1 
(Top-5) accuracy of the 
compressed network minus that 
of the original network

Method �Top−1 �Top−5 �Memory Speedup

BN (Tai et al. 2015) – +0.53% 4.9× 1.1×
NISP (Yu et al. 2018) 0.00% – 1.9× 1.7×
CP (Lebedev et al. 2014) – −0.37% 5.0× 1.8×
Tucker (Kim et al. 2015) – −1.70% 5.5× 1.8×
LRA (Wen et al. 2017) – −0.17% – –
MUSCO (Gusak et al. 2019) – −0.81% 4.9× –
LC (Idelbayev and Carreira-

Perpinan 2020)
−0.34% −0.39% 4.4× –

GreBdec (Yu et al. 2017) −0.04% −0.04% 10.0× –
Baseline −1.98% −1.56% 6.6× –
CMD −0.85% −0.93% 14.6× 5.6×
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Considering both the storage of low-rank and sparse components, the compression ratio 
of the compressed network is 9.15. After 30 times of fine-tuning, Top-1 and Top-5 accura-
cies of the compressed network reach 89.20% and 99.70% , respectively. We set p = 0.75 
to compute the baseline, the ranks of baseline are shown as blue broken line in Fig. 5b. 
The compression ratio of baseline is 7.55, the Top-1 and Top-5 accuracies are 88.49% 
and 99.78% after fine-tuning. Moreover, we use 100 pictures to test the inference time, the 
results are shown in Fig. 5d. The yellow and green lines indicate the average inference time 
of the unreconstructed and reconstructed networks, respectively, and CMD provides 3.9× 
speedup.

5.2 � Experiments on imageNet

We use AlexNet, VGG-16 and ResNet-18 on ImageNet to further illustrate the effec-
tiveness of our method. The accuracies of the original AlexNet are 57.02% (Top-1) and 
80.08% (Top-5). The metrics of compressed networks searched by DS algorithm are 
shown in Fig.  6a, the hyperparameter set corresponding to the red point is the opti-
mal. The ranks, sparse coefficients and the storage of sparse components corresponding 
to this point are shown in Fig. 6b and c, respectively. The blue broken line in Fig. 6b 
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represents the ranks of baseline when p = 0.75 . Since a small number of elements in 
the weight matrix are extracted in the 1st to 5th layers (Convs), the rank selected by 
our method is slightly lower than that of baseline. In the FCs (the 6th and 7th layers), 
even if no sparse components are extracted, we can choose the small ranks for low-rank 
matrix (173 and 63, respectively). Although the last layer is a FC, our method extracts 
12.8 × 103 of sparse components. We owe its situation to that our method selects the 
small ranks in the 6th to 8th layers (173, 63 and 58, respectively), which leads to a large 
number of sparse components need to be extracted to reduce the accuracy drop under 
global compression. After 7 epochs of fine-tuning, the accuracies of the compressed 
network are restored to 56.17% (Top-1) and 79.15% (Top-5), and the compression ratio 
is 14.6. The Top-1 and Top-5 accuracies of the baseline reach 55.04% and 78.52% after 
18 epochs of fine-tuning, and the compression ratio is 6.52. Compared with the unre-
constructed model, the reconstructed network has a speedup of 5.6 times (Fig. 6d). In 
Table  1, we compare the result of our method with that of other model compression 
methods, and the performance of the compressed network obtained by our method is 
better than that of most methods.

The Top-1 and Top-5 accuracies of VGG are 68.62% and 89.12% , respectively. The 
results of DS algorithm are shown in Fig.  7a, and the red point is the optimal. The 
ranks, sparse coefficients and the storage of sparse components of the optimal model are 
shown in Fig. 7b and c, respectively. The blue broken line (Fig. 7b) represents the ranks 
of baseline when p = 0.85 . The ranks of Convs are close to the upper bound, hence 
they can guarantee the accuracy of the compressed network. The ranks of FCs are much 
smaller than the upper bound, hence they can guarantee the compression ratio. Our 
method extracts a large number of sparse components in the 5th Conv ( 14.9 × 103 ), thus 
the rank selected by our method is smaller than that of the baseline (145 smaller than 
the baseline). The 1st FC (the 14th layer) has a large amount of redundant information, 
thus we can greatly compress it without extracting the sparse components. The com-
pression ratio of the compressed network is 8.75, the Top-1 and Top-5 accuracies are 
68.53% and 88.85% after 3 times of fine-tuning. In addition, the compression ratio of the 
baseline is 4.16, and the accuracies are 66.78% (Top-1) and 87.88% (Top-5) after 3 times 
of fine-tuning. Finally, as shown in Fig. 7d, our method achieves an 11.3× speedup. As 

Table 2   Comparison of CMD with other model compression methods on VGG

Method �Top−1 �Top−5 �Memory Speedup

SLIM (Liu et al. 2017) +0.03% – 5.7× 1.4×
BN (Tai et al. 2015) – −0.13% 2.7× 1.5×
Reborn Filters (Tang et al. 2020) – −1.47% – 2.0×
CC-GAP (Li et al. 2021) -2.87% −1.68% 16.5× 2.1×
CP (Lebedev et al. 2014) – −0.29% 2.8× 2.1×
Tucker (Kim et al. 2015) – −0.50% 1.1× 2.3×
COBLA (Li and Shi 2018) – −0.9% 1.4× –
Dynamic Pruning (Wang et al. 2020) – −0.15% 1.5× 2.4×
MUSCO (Gusak et al. 2019) – −1.33% – 5.3×
GreBdec (Yu et al. 2017) +0.25% −0.38% 15.0× –
Baseline −1.84% −1.24% 4.2× –
CMD −0.09% −0.27% 8.8× 11.3×
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shown in Table 2, since CMD better balances the accuracy and compression ratio, our 
method can obtain a better compressed network compared with other methods.

Greedy bilateral decomposition (Yu et al. 2017) reported 10× to 15× compression ratio 
without accuracy drop. However, greedy algorithm cannot control the reasonable alloca-
tion of different components, and layer-by-layer compression requires layer-by-layer fine-
tuning to restore accuracy. Besides, Yu et al. (2017) did not report the inference time for 
LSS-based compression. We emphasize that our method is orthogonal to Yu et al. (2017), 
because we compress the networks by a controllable global LSS. In Tables 1 and 2, the dif-
ferent sparse processing method and experimental setup between CMD and GreBdec may 
cause the differences in DNN performance. The higher compression ratio in Table 1 and 
Top-5 accuracy in Table 2 demonstrate that CMD has ability to compress the network.

The accuracies of original ResNet-18 are 69.78% (Top-1) and 89.04% (Top-5). The 
results of DS algorithm are shown in Fig. 8a and the red point represents the optimal model 
selected by our method. The ranks of the optimal compressed model are shown as red bro-
ken line in Fig. 8b (the Convs with stride = 2 are not compressed), and the ranks of base-
line ( p = 0.7 ) are shown as blue broken line in this figure. The sparse coefficients (blue his-
togram) and the storage of sparse components (red histogram) are shown in Fig. 8c. In the 
17th layer (Conv), the rank chosen by our method is 150 smaller than the baseline, this is 
because a large number of sparse components ( 3.56 × 105 ) are extracted in this layer. Even 
though a lot of sparse components are extracted in the 14th layer (Conv), the rank chosen 
by our method is similar to that of the baseline (237 and 240, respectively). The reason is 
that our method investigates the interactions between different layers to restore the accu-
racy by extracting sparse components and maintaining rank at this layer when compress-
ing the previous layers (the 3th to 6th layers) with the small ranks and few sparse compo-
nents causing the accuracy drop. After 4 epochs of fine-tuning, the compression ratio of 
the compressed network is 1.40. The Top-1 and Top-5 accuracies are 69.78% and 89.31% , 
respectively. The accuracies and compression ratio of baseline are 68.25% (Top-1), 88.50% 
(Top-5) and 1.38, respectively (4 epoch of fine-tuning). Moreover, as shown in Fig. 8d, the 
reconstructed network compressed by our method has 1.2× speedup. In Table 3, CMD can 
provides the compressed DNN without accuracy drop, and the results show that the sparse 
components may lower the calculation speed, but it can slightly improve the accuracy.

6 � Conclusion

In this paper, we propose a controllable matrix decomposition with global optimization for 
DNN compression. Our works include the following key improvements: (i) a sparse coef-
ficient is introduced to control the allocation between low-rank and sparse components, 

Table 3   Comparison of CMD 
with other model compression 
methods on ResNet

Method �Top−1 �Top−5 �Memory Speedup

FPGM (He et al. 2019) −1.87% −1.15% – 1.7×
SFP (He et al. 2018) −3.18% −1.85% – 1.7×
TRP1 (Xu et al. 2018) – −2.06% – 1.8×
Baseline −1.53% −1.54% 1.4× –
CMD 0.00% +0.27% 1.4× 1.2×
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and the network is reconstructed to reduce the inference time. (ii) an optimization prob-
lem is established to globally compress all the layers of the network synchronously. (iii) 
we design a decomposition-searching algorithm to search the optimal hyperparameters for 
network compression. Experimental results show that compressed networks can effectively 
save the memory and reduce the inference time. For example, CMD saves 14.6× of mem-
ory of AlexNet on ImageNet with negligible accuracy loss.
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