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Abstract
Accurate translation of entities (e.g., person names, organizations, geography) is important 
in neural machine translation (briefly, NMT), as they are usually more difficult to translate 
than other words, and an incorrect translation of them will greatly hurt user experiences. 
In previous works, entities are either treated in the same way as other words, which leads 
to inaccurate translation, or handled by multiple steps (including named entity recognition, 
translation, and replacing entities back), which significantly increase the inference latency. 
In this work, we propose an end-to-end algorithm that carefully handles the translation 
of entities. There are mainly two novel parts compared to conventional NMT model: (1) 
The encoder and the decoder are attached with entity classifiers, which are used to verify 
whether the input token is a named entity. In this way, the encoder and decoder are capable 
to treat named entities differently; (2) The translation loss of each target token is adaptively 
increased by the probability that the target token is a named entity, which results in more 
accurate translation of entities. During inference time, these two parts will be removed so 
that the translation model maintains the same inference speed as conventional NMT mod-
els. Empirical results on six translation tasks demonstrate the effectiveness of our methods 
of improving the translation quality. Specifically, we improve 1.7 BLEU scores on Japa-
nese to English translation and 4.6 entity F

1
 scores on English to Chinese translation, with-

out additional inference cost.

Keywords Machine translation · Named entity

1 Introduction

Neural machine translation (briefly, NMT), which is to translate a sentence from the source 
language to target language with deep neural networks, has made great progress in recent 
years (Wu et al. 2016; Hassan et al. 2018; Luong et al. 2016). Despite the success of previ-
ous works, most of them only focus on improving the general translation quality, where 
each word makes the same contribution to the evaluation metrics.
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However, words are not all equally important in a sentence and can have different 
impacts on the translation quality for human evaluation. Intuitively, entities are likely 
to contain critical information in the sentence and are more important for translation 
quality  (Li et al. 2018; Post et al. 2019; Niehues and Cho 2017), where detailed statis-
tics are available in Sect. 5.1. Consider two translation systems A and B and a source 
sentence with ground-truth translation “Both Alice and Bob live in Washington State.” 
as a simple example. Suppose the translation result of system A is “Both Alice and Bob 
live in Wisconsin State.”, and that of system B is “Both Alice and Bob live at Wash-
ington State.”. Although both systems make a mistake on single word, clearly, we vote 
system B as a better one, since it correctly conveys the important information about the 
location. That is, the named entities (e.g., locations, numbers) are important for user 
experience.

Therefore, in this work, we focus on improving the translation quality of named entities. 
Unfortunately, entities are not easily translated. Previous studies (Hassan et al. 2018) have 
shown that today’s NMT systems do not perform very well for entity translation.

In previous work, the general solution is adding extra entity information to the NMT 
system during both training and inference time. Multiple steps are required for this solu-
tion: first, we need to detect entities in both source and target sentences using a named 
entity recognition (briefly, NER) tool; second, the entities should be tagged, like replaced 
with special placeholders (Wang et al. 2017; Post et al. 2019; Li et al. 2018), adding spe-
cial tokens to indicate the boundaries  (Li et  al. 2018; Modrzejewski et  al. 2020), using 
code-switching method Song et  al. (2019), or labeled with entity embedding to enhance 
the translation (Sennrich and Haddow 2016; Niehues and Cho 2017; Ugawa et al. 2018); 
finally, NMT models are trained on the processed sentences. During the inference time, 
the input should be processed using NER tools, translated to the target language, and post-
processed (e.g., replacing placeholders back, removing extra tags) to get the translation.

The accuracy of recognizing the named entities greatly affects the translation quality. 
As the development of pre-training (Devlin et al. 2019; Liu et al. 2019), the NER tools are 
significantly improved (Burtsev et al. 2018; Luo et al. 2020). However, those NER modules 
built upon pre-trained models are even heavier than NMT models. For instance, the num-
bers of parameters of DeepPavlov (Burtsev et al. 2018), one of the state-of-the-art models 
for NER, is more than ten times of Transformer used NMT in industry (Kim et al. 2019). 
The reason is that the DeepPavlov models are based on the large scale pre-training. As a 
result, it is not feasible to directly integrate such a heavy NER module during the inference 
time due to a large amount of overhead.

In this work, we design an end-to-end entity-aware NMT model, where both the encoder 
and decoder can serve as named entity recognizers but there is no extra cost at inference 
time. During training time, similar to aforementioned works, we leverage a NER tool to 
provide entity tags for the source and target sentences in the training corpus. When train-
ing the translation models, in addition to translation loss, we add NER detection loss to 
both the encoder and decoder, so that they can correctly recognize the entities tagged by 
the NER tool. Furthermore, to pay more attention to named entities and differentiate them 
from the other words, we assign the entities in the target sequence with larger weights 
inspired by the focal loss (Lin et al. 2017). In this way, the NER module and the translation 
network are closely coupled and collaborate through end-to-end training, boosting the per-
formance of both tasks. The inference process is the same as that for standard NMT, which 
does not invoke additional costs. This allows us to use arbitrary high quality NER model 
during the training, without hurting the inference efficiency.

To summarize, the main contributions of this work are three-fold:
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– We introduce a novel end-to-end method to improve the translation quality, especially 
for the accurate translation of named entities in sentences.

– Compared with previous methods, we keep the one-pass decoding process without the 
dependency of heavy NER model for inference.

– Experiments on six translation tasks extensively verify the effectiveness of our method. 
According to the results, our method can improve both BLEU score and entity F1 score.

2  Related work

Enhancing NMT systems with knowledge is a promising research direction in recent years. 
For example, in Lu et al. (2018), Zhao et al. (2020), Zhao et al. (2020), knowledge graph is 
incorporate into machine translation task, and in Zhu et al. (2020), Clinchant et al. (2019), 
Yang et al. (2020), Shavarani and Sarkar (2021), pre-trained language models are used to 
enhance the translation. In this work, named entity information is leveraged to boost the 
performance. Named entity is an important topic in the NLP area and there are many previ-
ous work to improve the entity translation quality. The common approach is introducing the 
entity information to the NMT systems. And then translation models can handle the entity 
in input sentences better with the help of such information. In previous work, there are dif-
ferent approaches to make use of the entity information. The details are listed as follows:

Placeholder In this kind of methods, entities in the source sentences are masked by 
placeholders. Wang et  al. (2017) use the $TERM token to mask person name. And  Post 
et al. (2019) mask various entity tokens like numbers, names, cities, emoji, etc. In Li et al. 
(2018), entities are masked by the type and index, e.g. LOC1, LOC2, etc. After translation, 
the masks will be replaced back in target languages, either by entity index or alignment.

Special tokens In Li et al. (2018), Modrzejewski et al. (2020), special tokens are used to 
indicate the beginning and end of entities in source sentences. For example, the “Hyrule” 
in a source sentence will become “<LOC>Hyrule</LOC>” after preprocess to indicate that 
the word is a location. After translation, the extra tokens will be removed from the model 
output.

Code-switching In Song et al. (2019), the authors use a code-switching method on entity 
words. The source side entities are replaced by the corresponding translation in target lan-
guage. After such preprocess, the input to the model is a combination of source and target 
language. Therefore, the NMT models only need to copy the those tokens.

Entity embedding The embedding based methods are important direction in previous 
work. In Sennrich and Haddow (2016), Niehues and Cho (2017), linguistic input features 
are used to improve model quality. And in Ugawa et al. (2018), the entity embedding is 
added to token embedding to enhance the representation of sentences.

Despite the success of previous work, the complexity of those methods is still a obstacle 
for them to be used in real scenario. Especially, the extra cost of NER is not negligible and 
will significantly affect the decoding latency. Compared with the existing methods, our sys-
tem has almost zero extra cost during the inference time and better performance.

3  Our methods

In this section, we first introduce the notations, and then describe the network architecture 
in Sect. 3.1 and the training strategy is in Sect. 3.2.
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Notations Let X = (X0,X1,⋯ ,XM−1) denote a source sequence with length M, and let 
Y = (Y0, Y1,⋯ , YN−1) denote the corresponding target sequence with length N. Xi and Yi 
represent the i-th token in X and Y, which can be words or subwords (Sennrich et al. 2016) 
in natural language. Let Xne and Yne denote the entity sequences for X and Y. Xne

i
 and Yne

i
 

are the named entity tags for Xi and Yi respectively. The entities are represented as IOB 
tagging, where “I” represents the inside and is extended to the end of an entity, “O” means 
that the token is outside of entity, and “B” stands for the beginning of an entity,

Following multilingual version of DeepPavlov NER model1, we have 19 different kinds 
of entities in total, which constructs a set ℕ . There is a special token O in ℕ , which repre-
sents that the token is not a named entity. The full list of the supported entity types can be 
found at Appendix.

3.1  Network architecture

We use Transformer (Vaswani et al. 2017) as the backbone of our model, where the encoder 
and decoder are modified to be an entity-enhanced version. However, our technique can be 
easily integrated into other encoder-decoder based models as well. The network architec-
ture is shown in Fig. 1.

Entity-enhanced encoder Let ��� denote the encoder of the standard Transformer made 
up of several stacked blocks. Each block consists of a self-attention layer and a feed-for-
ward layer. Given the input X, ��� processes it into hidden representations, which is math-
ematically defined as Hsrc = ���(X) . Hsrc is the output of the last block in ��� , regarded as 
a M × d matrix, where the i-th row Hsrc

i
 denotes the representation of token Xi , and the d 

means the embedding dimension.
After that, the encoder works as follows:

where Wsrc
ne

 is a d × d matrix to be learned, Es-ne is the entity embedding of the source lan-
guage with size d × |ℕ| , and X̂ne means the matrix of the predicted entity tokens of X. X̂ne is 
only required during training, and we do not need it at inference time.

In Eqn.(1), the representation Hsrc is fed into a feed-forward layer and get Hne . After 
applying an affine transformation to Hne and a softmax operation, we can get the predicted 
entities X̂ne of the input sequence X. We will minimize the difference between X̂ne and Xne 
(i.e., outputted by the NER model) so that Hne can be regarded as the features of the enti-
ties. We add Hsrc and Hne together as the eventual output of the encoder and feed it into 
the decoder. In this way, both the named entity information and the semantic information 
represented by natural words can be passed into the decoder.

Entity-enhanced decoder Similarly, we define ��� as the decoder of the standard 
Transformer, which is also made up of a series of blocks. Beside a self-attention and 
a feed-forward layer, each block also consists of an additional encoder-decoder atten-
tion layer, which is used to aggregate the information from the encoder, i.e., Henc . Let 

(1)

Hne = ����(HsrcWsrc
ne
),

Henc = Hsrc + Hne,

X̂ne = �������(HneEs-ne),

1 https:// github. com/ deepm ipt/ DeepP avlov/ blob/0. 10.0/ deepp avlov/ confi gs/ ner/ ner_ onton otes_ bert_ mult. 
json

https://github.com/deepmipt/DeepPavlov/blob/0.10.0/deeppavlov/configs/ner/ner_ontonotes_bert_mult.json
https://github.com/deepmipt/DeepPavlov/blob/0.10.0/deeppavlov/configs/ner/ner_ontonotes_bert_mult.json
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Y<t denote the sub-sequence (Y0, Y1,⋯ , Yt−1) , where Y0 is a special token indicating the 
beginning of a sentence. The decoder works as follows:

where Et-ne is the entity embedding of the target language, and Et is the embedding of tar-
get words. The W tgt

ne  is a d × d affine matrix. Specifically, we first get the representation of 
the last block in the decoder and transform it into entity embedding space, and then use 

(2)

H
tgt
t = ���(Henc, Y<t),

Ŷne
t

= �������(����(H
tgt
t W tgt

ne
)Et-ne),

Ŷt = �������(H
tgt
t Et),

Fig. 1  Network architecture
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different softmax operations to get the predicted translated token and the predicted entity 
tag, respectively.

During the inference time, we can skip the entity tag predictions and only keep the token 
prediction, which leads to similar decoding cost as standard MT methods.

Discussion The key challenge in this task is that there are no entity labels available 
during the inference time. To solve this, we leverage a multi-task framework to build the 
enhanced encoder and decoder, where the primary task is machine translation, and two 
auxiliary tasks are source-side and target-side named entity detection. Previous work Nie-
hues and Cho (2017) shows that multi-task learning can help improve the performance. 
Therefore, we can not only improve the accuracy on named entities, but also regularize the 
training. As for the NER classification, we can also leverage the outputs of internal blocks 
of the encoder and decoder. We empirically verified the effect on the choices of these dif-
ferent outputs and found that there are no significant differences compared with using the 
output from last block.

3.2  Training and inference strategies

Let � denote the parameters of ��� , ��� and word embeddings. Let �s-ne and �t-ne denote the 
parameters related to source-side NER and target-side NER.

The training loss consists of the following three parts:

where there are two losses for named entity recognition �s-ne , �t-ne , and a translation 
loss �mt . Because the human annotations of source and target entity labels are unavailable, 
the labels extracted by DeepPavlov are used to compute the entity loss for both �s-ne and 
�t-ne . For the translation loss �mt , considering that we should enhance the entity tokens, we 
design an adaptive way inspired from the focal loss (Lin et al. 2017): PNE,t is the probabil-
ity that Yt is an entity token (instead of � ). The more likely the token is an entity, the larger 
weight we will assign to it. Following Lin et al. (2017), the weight is controlled by a posi-
tive hyper-parameter � for flexibility. The weight of each token is at least one to stabilize 
training.

The final training objective function of entity-enhanced NMT model on data pair (X, Y) 
is

where � and � are hyper-parameters to be tuned according to validation performance. Prac-
tically, the hyper-parameter setting in all our experiments are: � = 1.0, � = 0.5, � = 0.5.

(3)

�s-ne = −
1

M

M−1∑

i=0

logP(Xne
i
|X;𝜃, 𝜃s-ne),

�t-ne = −
1

N

N−1∑

j=0

logP(Yne
j
|X, Y<j;𝜃, 𝜃s-ne, 𝜃t-ne),

�mt = −
1

N

N−1∑

t=0

(1 + P
𝛾

NE,t
) logP(Yt|Y<t,X;𝜃, 𝜃s-ne),

PNE,t = P(Yne
t

≠ �|X, Y<t;𝜃, 𝜃s-ne, 𝜃t-ne),

(4)� = �mt + ��s-ne + ��t-ne,
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At inference time, we are interested in the translation, therefore we will ignore the 
related named entity recognition modules. Specifically, the aforementioned X̂ne

t
 and Ŷne

t
 

only affect the training process, our method therefore maintains efficiency in inference.
The NER module in the decoder is also disabled and we only generate the translation 

sentence.

4  Experiments

Data processing We conduct experiments on the translation of four languages, English, 
German, Chinese, and Japanese, which are briefly denoted as En, De, Zh and Ja respec-
tively. It includes both linguistic distance close language pairs En↔ De and more different 
languages like En↔Zh, En↔Ja. We follow Ott et al. (2019) to process data for IWSLT’14 
En↔De, where all words are lowercased and tokenized. We follow  Zhu et  al. (2020) to 
process the data for IWSLT’17 En↔Zh. For En↔Ja, we follow  Michel and Neubig 
(2018), Wang et  al. (2019) to combine the training sets of KFTT, JESC, and TED talks 
together (Neubig 2011; Pryzant et al. 2018; Cettolo et al. 2012), and test on the correspond-
ing test sets separately. For En↔Zh, we use Moses and Jieba tokenizer respectively, after 
which we use BPE to split them into subwords. For Ja, we use SentencePiece to process it 
directly. Detail information are in Table 1 and URLs of data and tools are in Appendix.

Table 1  Dataset statistics

The “Train”, “Dev” and “Test” represent training, validation, and test 
sets. For En ↔ Ja, the test set size for KFTT, JESC, and TED are 1k, 
2k and 1k, respectively. The entities are count after subword operation

Language pair En↔ De En ↔ Zh En ↔ Ja

# Train sentence 160k 234k 3.9M
# Train SRC entity 429k 637k 8.6M
# Train TGT entity 439k 571k 8.8M
# Dev sentence 7k 4k 4k
# Dev Src entity 20k 10k 18k
# Dev Tgt entity 20k 9k 17k
# Test sentence 6.8k 1.5k 4k
# Test Src entity 16k 4k 18k
# Test tgt entity 16k 3k 16k
Subword operation 10k 10k 16k
Joint vocab yes no no

Table 2  Example of subword 
entity tags assignment

Sentence Jon Lives In Winterfell .

NER Token Jon lives in Winter fell .
NER Tag B-PER O O B-LOC I-LOC O
BPE Token Jon lives in Win@@ ter@@ fell .
Aligned Tag B-PER O O B-LOC I-LOC I-LOC O
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Practically, the tokenizer leveraged by the NER tool is different from that in NMT pre-
processing. To solve this problem, we leverage the fact that tokenization will only affect 
the non-space characters. We therefore align the entity tags with NMT data by character 
overlap and adjust the IOB notations accordingly. An example is shown in Table 2, where 
the location entity word “Winterfell” is split into three parts by BPE then assigned tags 
accordingly.

Entity-rich test set To better evaluate the performance of our methods, we build two 
extra entity rich test sets: (1) ER-IWSLT, where ER is short for entity rich. for En→De, we 
concatenate the test sets of IWSLT from year 2010 to 2017, IWSLT-10 validation sets as 
a larger one. (2) ER-WMT: for En→De, we concatenate the test sets of WMT from 2014 to 
2019. Then, we filter the sentences from them with different thresholds of the number of 
entities per sentence in the English side and report the corresponding scores.

Configuration The backbone of models consists of six layers in both encoder and 
decoder. In transformer_small configuration. the feed-forward layer dimensions and 
dropout rate are 256, 1024 and 0.3, and in transformer_base setting, they are 512, 
2048, 0.1, respectively. Following Vaswani et al. (2017), all models are trained with learn-
ing rate 5 × 10−4 by Adam optimizer Kingma and Ba (2015) with invert_sqrt learn-
ing rate scheduler (Vaswani et al. 2017) and 4096 tokens per GPU. The transformer_
small models are trained on single P40 GPU while transformer_base models are 
trained on 4 P40 GPUs.

Evaluation We evaluate both translation quality and entity accuracy. For En ↔ De, we 
use multi-bleu.perl script2 to evaluate the translation BLEU score for fair compari-
son with previous works. For other language pairs, we use sacreBLEU (Post 2018). We 
use beam size with 5 and length penalty 1.0 for all language pairs. For entity accuracy, we 
choose the entity F1  score as the metric. We use DeepPavlov NER model to extract the 
entities of both reference and translation files, and then calculate the F1 score between them 
by exactly matching. To avoid the bias of DeepPavlov, we also measure the entity quality 
by Stanford NER tagger (Finkel et al. 2005) as well.

5  Results and discussions

This section is organized as follows: First, we show the relation between entity translation 
quality and human evaluation, which indicates the importance of entity translation. Then 
we show the model performance on various language pairs and data sets, as well as the 
case study to better demonstrate the effects. Finally, we have comprehensive study on the 
effect of entity types, model configuration, NER tools, and decoding loss.

5.1  Entity and human evaluation

We firstly study how entity translation quality affects human evaluation. We collect 70 
translation submissions of 5 languages pairs from WMT19 website3, which contains 131k 
sentences. The corresponding official human evaluation scores from the WMT19 machine 
translation challenge report (Bojar et al. 2017) are also collected to calculate the Pearson 

2 https:// github. com/ moses- smt/ moses decod er/ blob/ master/ scrip ts/ gener ic/ multi- bleu. perl
3 http:// data. statmt. org/ wmt19/ trans lation- task/ wmt19- submi tted- data- v3. tgz

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
http://data.statmt.org/wmt19/translation-task/wmt19-submitted-data-v3.tgz
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correlation coefficient between the entity quality (in terms of F1 score) and the human eval-
uation results which are shown in Table 3. The results indicate that the entity translation 
quality measured by DeepPavlov is consistent with the human judgment of the sentence 
quality.

5.2  Translation quality on normal test sets

The results of 10 normal test sets are listed in Tables 4 and 5. For En ↔ {De, Zh} we com-
pare our system with standard Transformer and other entity placeholder-based methods 
Post et al. (2019), where the entities in data are replaced with special token indicating the 
entity type and index (e.g. “ ⟨PER-0⟩ ”, “ ⟨PER-1⟩ ”, etc.). To simulate the inference process 
of these methods, we first build an entity mapping table from the training data for each lan-
guage pair with DeepPavlov and Fast Align Dyer et al. (2013), then replace the entity back 
by encoder-decoder attention (denote as PH_Align) and entity index (denote as PH_Index). 
We also compare our method with code-switch method Song et al. (2019) and the entity 
tagging method Li et al. (2018). For En ↔ Ja, due to the computation resource we only 
compare with LSTM and standard Transformer.

From these tables, we can see that our models enjoy improvements for both BLEU 
score and entity F1 score with the help of end-to-end training of both NMT and NER tasks. 
Compared with standard Transformer, the entity F1 score is improved from 0.7 point to 4.6 
points on various test sets. For BLEU score, we achieve at most 1.7 point improvement 
on JESC En→Ja. On En ↔ {De, Zh} data, we additionally use the paired bootstrap resam-
pling method Koehn (2004) for testing the statistical significance and report the p-value of 
BLEU score by comparing our system and the Transformer baseline system.4 The results 
suggest that the improvements are statistically significant. The best p-value is 0.001 and the 
worst is about 0.1. We also report the BLEU scores of Transformer from previous works, 
which show that our reproduction of the baseline system is comparable or stronger than 
before. Another finding is that the placeholder-based methods will hurt both BLEU and 
entity translation performance. The index-based replacement is usually better than align-
ment but still worse than the baseline. We suspect the reason is the difficulty of obtaining 
high quality entity translation pairs without large amount of human effort.

Compared with the entity tag method, our system yields similar or even better results, 
under the condition that we lost help on DeepPavlov NER model during the inference time. 
We also record the relative latency of adopting our method and other methods against the 

Table 3  Correlation between 
entity F

1
 score and human 

evaluation

Language pair # Systems Correlation

English → German 22 96.41
Chinese → English 15 89.28
English → Czech 11 87.76
English → Russian 12 96.29
Lithuanian → English 11 94.95

4 https:// github. com/ moses- smt/ moses decod er/ blob/ master/ scrip ts/ analy sis/ boots trap- hypot hesis- diffe 
rence- signi fican ce. pl

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/analysis/bootstrap-hypothesis-difference-significance.pl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/analysis/bootstrap-hypothesis-difference-significance.pl
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baseline Transformer as well as the number of model parameters for further comparison. 
It can be witnessed that our model only yields 5.24% latency and contains 2.78% param-
eter compared with the entity tag method. The additional cost is almost negligible when 
compared with the standard Transformer. Such results indicate that our end-to-end method, 
which saves both time and memory, is more appropriate in the practical implementation of 
NMT systems.

Moreover, we compare our method with previous non-entity methods for De → En in 
Table 6, like Joint Attention Transformer model  Fonollosa et al. (2019), LightConv, and 
DynamicConv Wu et al. (2019). Even though they can also improve the BLEU score, the 
entity accuracy scores are all below our method. It tells that simply improving the general 
translation quality cannot guarantee the improvement of entity translation quality.

5.3  Translation quality on entity‑rich test sets

To further assess the ability of entity translation of our method, we also test our system 
on the entity-rich test sets that are described in Sect. 4. The evaluation results are shown 
in Fig. 2, where the x-axes represent the least number of entities in a sentence, and y-axes 
denote the BLEU score in left graph and entity F1 score in right graph. The dash lines rep-
resent the results from baseline systems and the solids lines are from our methods. We use 

Table 5  Experiment results backboned on transformer_base on TED, KFTT and JESC En ↔ Ja test 
sets.

* denotes our own re-implementation

Direction System Latency # Param TED KFTT JESC

F
1
  BLEU F

1
  BLEU F

1
  BLEU

En → Ja LSTM Michel and 
Neubig (2018)

– – – 14.5 – 20.8 – 15.8

Transformer* 252.1 ms 75.7 M 33.90 18.6 46.42 26.7 49.38 24.1
Ours 256.1 ms 80.9 M 34.59 18.6 47.35 26.9 51.41 24.1

Ja → En LSTM Michel and 
Neubig (2018)

– – – 13.3 – 20.8 – 18.0

Transformer Wang et al. 
(2019)

– – – 16.2 – 23.6 – 16.1

Transformer* 250.2 ms 75.7 M 45.83 18.1 45.60 23.8 47.88 23.2
Ours 255.3 ms 80.9 M 46.63 19.2 46.35 24.3 48.79 24.9

Table 6  Compare with previous 
works on De → En

Bold values indicate statistically significant p<0.01

System Entity F
1
  BLEU

Transformer Zhu et al. (2020) – 34.6
LightConv Wu et al. (2019) 62.18 34.9
DynamicConv Wu et al. (2019) 62.86 35.3
Joint Attention Transformer Fonollosa 

et al. (2019)
62.25 35.7

Ours 63.34 35.4
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different colors to distinguish the models and test sets, i.e., orange and red for our method 
on ER-WMT and ER-IWSLT respectively, purple and blue denotes the baseline Trans-
former on these datasets. Our model consistently outperforms the baseline models in terms 
of both BLEU and F1 . While the WMT test set is in the news domain, which is different 
from that of the training data, our method can make improvements to the cross-domain 
translation compared to the baseline Transformer system It demonstrates that our methods 
can generalize better across different domains.

5.4  Case study

To emphasize how our method improves the quality of entities, we also conduct translation 
quality human evaluations with source-based direct assessment (DA) method  Bojar et al. 
(2017) based on Zh → En test set. The detailed translation quality human evaluations are 
attached in the Appendix. The quality of our results outperforms Transformer by 2.1% in 
terms of average score judged by human annotators. Some of the cases are illustrated in 
Table 7.

The “Src” and “Ref” represent the source and reference sentences. The HTR , HET denote 
the hypotheses generated by standard Transformer and entity tag system. Our results are 
shown in rows starting with “Ours”. Considering that the entity quality serves as a use-
ful indicator for human evaluation suggested in Table 3, promoting the entity quality as 
our method does is an appropriate way to enhance the user experience in the practical 

Fig. 2  Translation results on entity-rich test sets. The values on horizontal axes are the thresholds of the 
number of entities per sentence. The scores on vertical axes are corpus BLEU (left graph) or entity F

1
 (right 

graph) for selected sentences
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implementation of NMT models. By enhancing the named entities, our method can ease 
the following problems:

– Entity under-translation In the second example, the location “Galapagos” appears in 
HET and our output, but it is missing in HTR.

– Entity over-translation In the third example, the HTR contains an extra “decades”. And 
in the fourth example, it generates an entity “Apple” for Apple company. However, the 
source sentence doesn’t have such meaning.

Table 7  Examples of Zh → En translation

Green and red underlines indicate the correct and wrong translation of entities. The entities in references are 
marked by black underline

Table 8  Results of ablation study 
on De → En

System Entity F
1
  BLEU

Ours 63.34 35.4
– Weighted loss 62.57 35.3
– Source NER 62.27 35.0
– Target NER 61.43 35.0
– Source NER 62.77 35.4
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– Entity error-translation In the first example, the correct name is “M. Scott Peck”. 
However, the baseline systems translate them as “Scott Papuk”, “MM Papker”. For 
numbers in the fourth example, the correct translation is “Ninety percent”, but HET 
result is “Ninety-nine percent”. For the fifth example, none of the system could get the 
name “Azuri” correct.

From these examples, we can see that all NMT system still have difficulty guaranteeing 
every entity is correctly translated. Fully solve this problem is still challenging and there 
are many potentials for this research topic.

5.5  Ablation study

To study the importance of the different parts of our system, we conduct the ablation study 
on De → En translation task and the results are shown in Table 8. The minus symbol “–” 
means we remove the corresponding component from the system and the indentation 
level means the removal order. As the numbers show, when the components are gradually 
removed, the BLEU score and entity F1  score will become worse. This indicates that all 
parts added to the system are necessary for achieving high translation performance.

Furthermore, we studied the affect of the weights of encoder and decoder NER loss, 
which are controlled by the hyper-parameter � and � respectively. Meanwhile, we analyzed 
how the hyper-parameter � affect the translation quality. The experiments are based on 
IWSLT’14 De→ En dataset and the results are summarized in Tables 9, 10, and 11.

As can be seen from Tables 9 and 10, models trained with different combinations of 
� and � had different BLEU and entity F1 scores. However the overall variance is small, 

Table 9  BLEU scores for 
different � and �

� �

0.3 0.6 1.0

0.3 35.2 35.4 35.1
0.6 35.3 35.2 35.1
1.0 35.1 35.2 35.2

Table 10  Entity F
1
 for different 

� and �
� �

0.3 0.6 1.0

0.3 63.53 62.61 62.46
0.6 62.78 63.34 63.16
1.0 63.91 63.05 62.61

Table 11  BLEU scores and 
entity F

1
 for different � value on 

De → En

� 0.5 1.0 1.5 2.0 5.0

BLEU 35.2 35.4 35.2 35.2 35.1
Entity F

1
  62.29 63.34 62.78 62.95 62.61
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which shows that our method is not sensitive to � and � . From Table 11, we can see that the 
performance was affected when the � was too large or too small. Setting � = 1 could be a 
good choice for this task.

5.6  Encoder entity recognition ability

We measure the encoder NER ability because high quality entity translation relies on accu-
rate entity information extracted by the encoder. To achieve this, we extract the encoder 
NER output on our test set, and compare it with the ground truth extracted by DeepPav-
lov. Table  12 includes the accuracy of all tokens  (TACC ), the entity tokens only accu-
racy  (ETACC ) where all ‘ � ’ tags are ignored as the labels are imbalance, and the entity 
F1 score. The X means other languages which are translated from/to English. As it shows, 
the encoders of all models have plausible NER ability on the inputs, with up to 98.36 on 
TACC  and 89.34 on ETACC . Therefore, we can remove NER tools in during inference 
since our encoder can detect entity tokens and entity types of those tokens from the source 
sentences.

Table 12  Results on encoder 
NER ability

System En → X X → En
TACC  / ETACC  / F

1
TACC  / ETACC  / F

1

En ↔ De 98.43 / 81.80 / 77.66 97.83 / 75.16 / 68.49
En ↔ Zh 98.25 / 84.66 / 77.12 98.36 / 85.45 / 77.48
En ↔ Ja 96.89 / 87.84 / 81.90 96.93 / 89.34 / 79.40

Table 13  Top and bottom three entity types in terms of F
1
 on different language pairs

Rank De → En En → De

Type F
1
  Type F

1
 

1 ORDINAL 76.67 GPE 76.98
2 GPE 75.60 LANGUAGE 62.86
3 LANGUAGE 70.59 CARDINAL 61.60
-3 ORG 41.03 LOC 34.15
-2 MONEY 34.69 MONEY 30.99
-1 QUANTITY 31.37 QUANTITY 28.57

Rank Zh → En En → Zh

Type F
1
  Type F

1
 

1 ORDINAL 78.00 PERCENT 67.93
2 PERCENT 76.67 PRODUCT 66.67
3 GPE 59.61 GPE 65.37
-3 PERSON 21.70 PERSON 14.47
-2 EVENT 9.52 MONEY 11.11
-1 WORK_OF_ART 6.67 EVENT 3.45
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5.7  Entity accuracy for different types

To study the translation quality of different entity types, we collect data from En ↔ De and 
En ↔ Zh test sets and sort them by F1 score. The top and bottom three types of each lan-
guage pair are shown in Table 13. Here positive rank means the better translated types and 
negative means the worse translated types.

The geopolitical entities (GPE), e.g. country or city names, are well translated in all lan-
guage pairs. This may suggest that this type of entity is easier to learn. The “LANGUAGE” 
type entities in En ↔ De and “PERCENT” type entities in En ↔ Zh are also performing 
well. However, the “PERSON” and “EVENT” type entities are not well handled in En ↔ 
Zh. We suspect that is caused by the diversity of human names and the large linguistic dif-
ference between English and Chinese. We have some cases about name in Sect. 5.4 and left 
the way to improve it more for future study.

5.8  Test with other NER tool

Moreover, we measure the entity translation quality with Stanford NER Tagger  (Finkel 
et al. 2005), which can detect three entity types for English: PERSON, ORGANIZATION, 
and LOCATION.5 Although the target entity types and detection algorithms are not same 
as DeepPavlov NER, we still have one point improvement on entity F1 score (from 27.00 to 
28.06) on De → En dataset over standard Transformer. This implies that our methods can 
enhance entity translation performance under the evaluation of different NER tools.

5.9  The gap between training and decoding loss

Our method benefits from the entity loss during training. And the loss is removed in decod-
ing time. Therefore, it is a nature question that whether such a gap will hurt the decoding 
performance. Especially we are using the beam search and different loss function will leads 
to different ranks of hypothesis. We conduct experiments on En ↔ De dataset with two 
decoding strategy, including translation loss only (denoted as NMT), and translation loss 
plus entity loss (denoted as NMT + NE). The results are shown in Table14.

It can be witnessed that only decoding with NMT loss yields similar results as using 
both. Consequently, we simply decoding with NMT loss in all the experiments for 
efficiency.

Table 14  Different decoding loss 
on De ↔ En translation

Decoding Loss NMT NMT + NE

BLEU Entity F
1
  BLEU Entity F

1
 

En → De 29.4 53.08 29.3 52.83
De → En 35.4 63.34 35.4 63.24

5 https:// nlp. stanf ord. edu/ softw are/ CRF- NER. shtml

https://nlp.stanford.edu/software/CRF-NER.shtml
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6  Conclusions and future work

In this work, we propose a novel system to improve the translation quality of named enti-
ties for NMT, which is important for human evaluation but not well handled in previous 
works. The experiment results on four languages and six translation tasks demonstrate 
that by enhancing the encoder and the decoder with the NER ability, as well as the entity 
weighed loss, we can improve both entity F1  score and BLEU score. In addition to the 
quality improvement, our end-to-end inference algorithm keeps the one pass decoding with 
little extra inference cost. This is the key difference with previous works, which rely on 
the NER models for translation. Therefore, it allows us to use high quality and heavy NER 
models but is still cost free for real world usage.

For future, there are many important possibilities that are related to this work. First, we 
will explore how to solve the entity translation disambiguation issue that is important for 
improving the translation quality. Second, we plan to study how to import external entity 
information, e.g. a multilingual knowledge graph to further improve entity translation. 
Finally, more formal theoretical analyses about using entity information in machine trans-
lation is an important direction.

Appendix A Entity types supported by DeepPavlov

See Table 15
The DeepPvalov support 18 different types of entity, and one special type ‘O’ to indi-

cate non-entity tokens. All supported entity types are list in in Table  15. The details of 
annotation rules can be found in Weischedel et al. (2013).

Appendix B Data and processing scripts

The data and processing scripts URLs are available as follows:

– En ↔ De: https:// github. com/ pytor ch/ fairs eq/ blob/ master/ examp les/ trans lation/ prepa re- 
iwslt 14. sh

– En ↔ Zh: https:// github. com/ tesla cool/ prepr ocess_ iwslt/ blob/ master/ prepr ocess. sh
– En ↔ Ja: https:// github. com/ pmich el314 15/ mtnt

Table 15  Entity types supported by DeepPavlov NER

ORGANIZATION EVENT PRODUCT FACILITY PERCENT WORK_OF_ART 

ORDINAL LOCATION LANGUAGE LAW PERSON TIME
CARDINAL GPE QUANTITY DATE NORP MONEY

https://github.com/pytorch/fairseq/blob/master/examples/translation/prepare-iwslt14.sh
https://github.com/pytorch/fairseq/blob/master/examples/translation/prepare-iwslt14.sh
https://github.com/teslacool/preprocess_iwslt/blob/master/preprocess.sh
https://github.com/pmichel31415/mtnt
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Table 16  The entity F
1
 and human score for En → De

System Entity F
1
  Human (Ave.z)

Facebook_FAIR.6862 73.27 0.347
Microsoft-WMT19-sentence_document.6974 74.49 0.311
Microsoft-WMT19-document-level.6808 74.14 0.296
MSRA.MADL.6926 75.03 0.214
UCAM.6731 73.57 0.213
NEU.6763 74.34 0.208
MLLP-UPV.6651 72.74 0.189
eTranslation.6823 72.59 0.13
dfki-nmt.6479 70.38 0.119
Microsoft-WMT19-sentence-level.6785 74.00 0.094
online-B.0 72.68 0.094
JHU.6819 72.71 0.081
Helsinki-NLP.6820 72.74 0.077
online-Y.0 73.69 0.038
lmu-ctx-tf-single-en-de.6981 72.40 0.01
online-A.0 71.83 0.01
PROMT_NMT_EN-DE.6674 68.99 0.001
online-G.0 68.57 − 0.119
UdS-DFKI.6871 67.95 − 0.129
TartuNLP-c.6508 69.36 − 0.132
online-X.0 55.11 − 0.4
en_de_task.6790 37.09 − 1.769

Table 17  The entity F
1
 and 

human score for Zh → En
System Entity F

1
  Human (Ave.z)

Baidu-system.6940 57.79 0.295
KSAI-system.6927 58.13 0.266
MSRA.MASS.6996 59.70 0.203
NEU.6832 54.41 0.193
MSRA.MASS.6942 58.93 0.195
online-B.0 60.95 0.161
BTRANS.6825 53.55 0.186
BTRANS-ensemble.6992 54.13 0.103
online-Y.0 53.03 0.049
UEDIN.6530 49.22 0.054
NICT.6814 49.34 0.001
online-A.0 48.76 − 0.065
online-G.0 50.99 − 0.202
online-X.0 37.98 − 0.483
Apprentice-c.6706 38.02 − 0.957
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Table 18  The entity F
1
 and 

human score for En → Cz
System Entity F

1
  Human (Ave.z)

CUNI-DocTransformer-T2T.6751 62.90 0.4020
CUNI-Transformer-T2T-2018.6457 62.95 0.4010
CUNI-Transformer-T2T-2019.6851 62.22 0.3880
CUNI-DocTransformer-Marian.6922 59.51 0.2230
uedin.6667 61.96 0.206
online-Y.0 56.80 − 0.1560
TartuNLP-c.6633 55.63 − 0.1950
online-G.0 51.57 − 0.3000
online-B.0 5.503 − 0.3360
online-A.0 46.73 − 0.5940
online-X.0 32.08 − 0.6510

Table 19  The entity F
1
 and 

human score for En → Ru
System Entity F

1
  Human (Ave.z)

Facebook_FAIR.6724 57.90 0.506
USTC-MCC.6795 54.05 0.332
online-G.0 52.36 0.279
online-B.0 54.35 0.269
NEU.6773 54.91 0.223
PROMT_NMT_EN-RU.6989 51.42 0.219
online-Y.0 52.12 0.156
rerank-er.6572 48.04 − 0.188
online-A.0 40.93 − 0.268
TartuNLP-u.6645 42.70 − 0.31
online-X.0 34.65 − 0.363
NICT.6563 25.77 − 1.27

Table 20  The entity F
1
 and 

human score for Lt → En
System Entity F

1
  Human (Ave.z)

GTCOM-Primary.6998 65.43 0.234
tilde-c-nmt.6876 56.38 0.216
NEU.6759 61.99 0.213
MSRA.MASS.6945 64.03 0.206
tilde-nc-nmt.6881 57.27 0.202
online-B.0 58.44 0.107
online-A.0 49.49 − 0.056
TartuNLP-c.6908 49.04 − 0.059
online-G.0 47.02 − 0.284
JUMT.6616 39.24 − 0.377
online-X.0 34.86 − 0.396



1200 Machine Learning (2022) 111:1181–1203

1 3

Appendix C Entity F
1
 score and human evaluation score

Tables 16, 17, 18, 19 and 20 represent the details of correlation between human evaluation 
standardized z score (Ave.  z.) and entity F1  for English to German, Chinese to English, 
English to Czech, English to Russian, and Lithuanian to English, respectively.

Appendix D Human evaluation details

See Figs. 3 and 4

Fig. 3  Human evaluation score 
distribution

Fig. 4  Human evaluation score convergence
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We used source-based direct assessment (DA) to assess translation quality. Our source-
based DA method is implemented using an 88 : 12 split between data points and redundant 
quality controls for degraded output testing. The evaluation campaign consists of t = 10 
tasks with r = 1 redundancy for a = 5 annotators who work on tpa = 2 tasks each. The 
score distribution is in Fig. 3 and the score convergence is in Fig. 4.
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