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Abstract
The embedding and extraction of knowledge is a recent trend in machine learning applica-
tions, e.g., to supplement training datasets that are small. Whilst, as the increasing use of 
machine learning models in security-critical applications, the embedding and extraction of 
malicious knowledge are equivalent to the notorious backdoor attack and defence, respec-
tively. This paper studies the embedding and extraction of knowledge in tree ensemble 
classifiers, and focuses on knowledge expressible with a generic form of Boolean formulas, 
e.g., point-wise robustness and backdoor attacks. For the embedding, it is required to be 
preservative (the original performance of the classifier is preserved), verifiable (the knowl-
edge can be attested), and stealthy (the embedding cannot be easily detected). To facilitate 
this, we propose two novel, and effective embedding algorithms, one of which is for black-
box settings and the other for white-box settings. The embedding can be done in PTIME. 
Beyond the embedding, we develop an algorithm to extract the embedded knowledge, by 
reducing the problem to be solvable with an SMT (satisfiability modulo theories) solver. 
While this novel algorithm can successfully extract knowledge, the reduction leads to an 
NP computation. Therefore, if applying embedding as backdoor attacks and extraction as 
defence, our results suggest a complexity gap (P vs. NP) between the attack and defence 
when working with tree ensemble classifiers. We apply our algorithms to a diverse set of 
datasets to validate our conclusion extensively.
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1 Introduction

While a trained tree ensemble may provide an accurate solution, its learning algorithm, 
such as Ho (1998), does not support a direct embedding of knowledge. Embedding knowl-
edge into a data-driven model can be desirable, e.g., a recent trend of neural symbolic com-
puting (Lamb et al. 2020). Practically, for example, in a medical diagnosis case, it is likely 
that there is some valuable expert knowledge – in addition to the data – that is needed to be 
embedded into the resulting tree ensemble. Moreover, the embedding of knowledge can be 
needed when the training datasets are small (Childs and Washburn 2019).

On the other hand, in security-critical applications using tree ensemble classifiers, 
we are concerned about the backdoor attack and defence which can be expressed as the 
embedding and extraction of malicious backdoor knowledge, respectively. For instance, 
Random Forest (RF) is the most important machine learning (ML) method for the Intru-
sion Detection Systems (IDSs) (Resende and Drummond 2018). Previous research (Bachl 
et al. 2019) shows that backdoor knowledge embedded to the RF classifiers for IDSs can 
make the intrusion detection easily bypassed. Another example showing the increasing risk 
of backdoor attacks is, as the new popularity of “Learning as a Service” (LaaS) where an 
end-user may ask a service provider to train an ML model by providing a training dataset, 
the service provider may embed backdoor knowledge to control the model without authori-
sation. With the prosperity of cloud AI, the risk of backdoor attack on cloud environment 
(Chen et al. 2020) is becoming more significant than ever. Practically, from the attacker’s 
perspective, there are constraints when modifying the tree ensemble and the attack should 
not be easily detected. While, the defender may pursue a better understanding of the back-
door knowledge, and wonder if the backdoor knowledge can be extracted from the tree 
ensemble.

In this paper, for both the beneficent and malicious scenarios1 depicted above, we 
consider the following three research questions: (1) Can we embed knowledge into a 
tree ensemble, subject to a few success criteria such as preservation and verifiability (to 
be elaborated later)? (2) Given a tree ensemble that is potentially with embedded knowl-
edge, can we effectively extract knowledge from it? (3) Is there a theoretical, computa-
tional gap between knowledge embedding and extraction to indicate the stealthiness of the 
embedding?

To be exact, the knowledge considered in this paper is expressed with formulas of the 
following form:

where � is a subset of the input features �  , y
�
 is a label, and lfi and ufi are constant val-

ues representing the required largest and smallest values of the feature fi . Intuitively, such 
a knowledge formula expresses that all inputs where the values of the features in � are 
within certain ranges should be classified as y

�
 . While simple, Expression (1) is expressive 

enough for, e.g., a typical security risk – backdoor attacks (see Fig. 1 for an example) – and 
point-wise robustness properties (Szegedy et al. 2014). A point-wise robustness property 

(1)

(
⋀

i∈�

fi ∈ [lfi , ufi ]

)
⇒ y

�

1 Although some of the following research questions are of less interest to one of the two scenarios 
(depending on the beneficent/malicious nature of the given context), we study the questions in a theoreti-
cally generic way for both.
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describes the consistency of the labels for inputs in a small input region, and therefore can 
be expressed with Expression (1). Please refer to Sect. 3 for more details.

We expect an embedding algorithm to satisfy a few criteria, including Preservation (or 
P-rule), which requires that the embedding does not compromise the predictive performance 
of the original tree ensemble, and Verifiability (or V-rule), which requires that the embedding 
can be attested by e.g., specific inputs. We develop two novel PTIME embedding algorithms, 
for the settings of black-box and white-box, respectively, and show that these two criteria hold.

Beyond P-rule and V-rule, we consider another criterion, i.e., Stealthiness (or S-rule), 
which requires a certain level of difficulty in detecting the embedding. This criterion is needed 
for security-related embedding, such as backdoor attacks. Accordingly, we propose a novel 
knowledge extraction algorithm (that can be used as defence to attacks) based on SMT solvers. 
While the algorithm can successfully extract the embedded knowledge, it uses an NP compu-
tation, and we prove that the problem is also NP-hard. Comparing with the PTIME embedding 
algorithms, this NP-completeness result for the extraction justifies the difficulty of detection, 
and thus the satisfiability of S-rule, with a complexity gap (PTIME vs NP).

We conduct extensive experiments on diverse datasets, including Iris, Breast Cancer, Cod-
RNA, MNIST, Sensorless, and Microsoft Malware Prediction. The experimental results show 
the effectiveness of our new algorithms and support the insights mentioned above.

The organisation of this paper is as follows. Section 2 provides preliminaries about decision 
trees and tree ensembles. Then, in Sect. 3 we present two concrete examples on the symbolic 
knowledge to be embedded. This is followed by Sect. 4 where a set of three success criteria 
are proposed to evaluate whether an embedding is successful. We then introduce knowledge 
embedding algorithms in Sect. 5 and knowledge extraction algorithm in Sect. 6. A brief dis-
cussion is made in Sect. 7 and Sect. 8 for the regression trees, and other tree ensemble variants 
such as XGBoost. After that, we present experimental results in Sect. 9, discuss related works 
in Sect. 10, and conclude the paper in Sect. 11.

2  Preliminaries

2.1  Decision tree

A decision tree T ∶ � → �  is a function mapping an input x ∈ � to its predicted label y ∈ �  . 
Let �  be a set of input features, we have 𝕏 = ℝ

|𝔽 | . Each decision tree makes prediction of x by 

Fig. 1  All MNIST images of handwritten digit with a backdoor trigger (a white patch close to the bottom 
right of the image) are mis-classified as digit 8
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following a path � from the root to a leaf. Every leaf node l is associated with a label yl . For 
any internal node j traversed by x, j directs x to one of its children nodes after testing x against 
a formula �j associated with j. Without loss of generality, we consider binary trees, and let �j 
be of the form fj ⋈ bj , where fj is a feature, j ∈ �  , bj is a constant, and ⋈∈ {≤,<,=,>,≥} is 
a symbol.

Every path � can be represented as an expression pre ⇒ con , where the premise pre is 
a conjunction of formulas and the conclusion con is a label. For example, if the inputs have 
three features, i.e., � = {1, 2, 3} , then the expression

may represent a path which starts from the root node (with formula �1 ≡ f1 ≤ b1 ), goes 
through internal nodes (with formulas �2 ≡ f2 ≤ b2 , �3 ≡ f3 ≤ b3 , and �4 ≡ f2 ≥ b4 , 
respectively), and finally reaches a leaf node with label yl . Note that, the formulas in 
Eq. (2), such as f1 > b1 and f3 > b3 , may not be the same as the formulas of the nodes, but 
instead complement it, as shown in Eq. (2) with the negation symbol ¬.

We write pre(�) for the sequence of formulas on the path � and con(�) for the label on the 
leaf. For convenience, we may treat the conjunction pre(�) as a set of conjuncts.

Given a path � and an input x, we say that x traverses � if

where ⊧ is the entailment relation of the standard propositional logic. We let T(x), which 
represents the prediction of x by T, be con(�) if x traverses � , and denote �(T) as the set of 
paths of T.

2.2  Tree ensemble

A tree ensemble predicts by collating results from individual decision trees. Let 
M = {Tk | k ∈ {1..n}} be a tree ensemble with n decision trees. The classification result M(x) 
may be aggregated by voting rules:

where the indicator function �(y1, y2) = 1 when y1 = y2 , and �(y1, y2) = 0 otherwise. Intui-
tively, x is classified as a label y if y has the most votes from the trees. A joint path �M 
derived from �i of tree Ti , for all i ∈ {1..n} , is then defined as

We also use the notations pre(�M) and con(�M) to represent the premise and conclusion of 
�M in Eq. (4).

(2)
(f1 > b1)
�����

¬𝜑1

∧ (f2 ≤ b2)
�����

𝜑2

∧ (f3 > b3)
�����

¬𝜑3

∧ (f2 ≥ b4)
�����

𝜑4

⇒ yl

x ⊧ 𝜑j for all 𝜑j ∈ pre(𝜎)

(3)M(x) ≡ argmax
y∈�

n∑

i=1

�(Ti(x), y)

(4)�M ≡ (

n⋀

i=1

pre(�i)) ⇒ argmax
y∈�

n∑

i=1

�(con(�i), y)
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3  Symbolic knowledge

In this paper, we consider a generic form of knowledge � , which is of the form as in 
Eq.  (1). First, we show that � can express backdoor attacks. In a backdoor attack, an 
adversary (e.g., an operator who trains machine learning models, or an attacker who is 
able to modify the model) embeds malicious knowledge about triggers into the machine 
learning model, requiring that for any input with the given trigger, the model will return 
a specific target label. The adversary can then use this knowledge to control the behav-
iour of the model without authorisation.

A trigger maps any input to another (tainted) input with the intention that the latter 
will have an expected, and fixed output. As an example, the bottom right white patch in 
Fig. 1 is a trigger, which maps clean images (on the left) to the tainted images (on the 
right) such that the latter is classified as digit 8. Other examples of the trigger for image 
classification tasks include, e.g., a patch on the traffic sign images (Gu et  al. 2019), 
physical keys such as glasses on face images (Chen et al. 2017), etc. All these triggers 
can be expressed with Eq. (1), e.g., the patch in Fig. 1 is

where f(i,j) represents the pixel of coordinate (i, j) and � is a small number. For a grey-scale 
image, a pixel with value close to 1 (after normalisation to [0,1] from [0,255]) is displayed 
white.

Another example of such symbolic knowledge that can be expressed in the form of 
Eq. (1) is the local robustness of some input as defined in Szegedy et al. (2014), which 
can be embedded as useful knowledge in beneficent scenarios. That is, for a given input 
x, if we ask for all inputs x′ such that ||x − x�||∞ ≤ d to satisfy M(x�) = M(x) , we can 
write formula

as the knowledge, where || ⋅ ||∞ denotes the maximum norm, and fi(x) is the value of fea-
ture fi on input x.

4  Success criteria of knowledge embedding

Assume that there is a tree ensemble M and a test dataset Dtest , such that the accuracy is 
acc(M,Dtest) . Now, given a knowledge � of the form (1), we may obtain – by applying 
the embedding algorithms – another tree ensemble �(M) , which is called a knowledge-
enhanced tree ensemble, or a KE tree ensemble, in the paper.

We define several success criteria for the embedding. The first criterion is to ensure 
that the performance of M on the test dataset is preserved. This can be concretised as 
follows.

– (Preservation, or P-rule): acc(�(M),Dtest) is comparable with acc(M,Dtest).

(
⋀

i∈{24,25},j∈{25,26}

f(i,j) ∈ [1 − �, 1]

)
⇒ y8

(
⋀

i∈�

fi ∈ [fi(x) − d, fi(x) + d]

)
⇒ M(x)
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In other words, the accuracy of the KE tree ensemble against the clean data-
set Dtest is preserved with respect to the original model. We can use a threshold 
value �p to indicate whether the P-rule is preserved or not, by checking whether 
acc(M,Dtest) − acc(�(M),Dtest) ≤ �p.

The second criterion requires that the embedding is verifiable. We can transform an 
input x into another input �(x) such that �(x) is as close as possible2 to x, and � is satisfiable 
on �(x) , i.e., 𝜅(x) ⊧ 𝜅 . We call �(x) a knowledge-enhanced input, or a KE input. Let �Dtest 
be a dataset where all inputs are KE inputs, by converting instances from Dtest , i.e., let 
�Dtest = {�(x) | x ∈ Dtest} . We have the following criterion.

– (Verifiability, or V-rule): acc(�(M), �Dtest) = 1.0.

Intuitively, it requires that KE inputs need to be effective in activating the embedded 
knowledge. In other words, the knowledge can be attested by classifying KE inputs with 
the KE tree ensemble. Unlike the P-rule, we ask for a guarantee on the deterministic suc-
cess on the V-rule.

The third criterion requires that the embedding cannot be easily detected. Specifically, 
we have the following:

– (Stealthiness, or S-rule): It is hard to differentiate M and �(M).

We take a pragmatic approach to quantify the difficulty of differentiating M and �(M) , and 
require the embedding to be able to evade detections.

Remark 1 Both the P-rule and the V-rule are necessary for general knowledge embedding, 
regardless of whether the embedding is adversarial or not. When it is adversarial, such as a 
backdoor attack, the S-rule is additionally needed.

We also consider whether the embedded knowledge can be extracted, which is a strong 
notion of detection in backdoor attacks – it needs to know not only the possibility of the 
existence of embedded knowledge but also the specific knowledge that is embedded. In the 
literature of backdoor detection for neural networks, a few techniques have been developed, 
such as Du et al. (2020), Chen et al. (2019). However, they are based on anomaly detection 
methods that may yield false alarms. Similarly, we propose a few anomaly detection tech-
niques for tree ensembles, as supplementaries to our main knowledge extraction method 
described in later Sect. 6.

5  Knowledge embedding algorithms

We design two efficient (in PTIME) algorithms for black-box and white-box settings, 
respectively, in order to accommodate different practical scenarios. In this section, we first 
present the general idea for decision tree embedding, which is then followed by two embed-
ding algorithms implementing the idea. Finally, we discuss how to extend the embedding 

2 That is, to change the values of those features that violate the knowledge to the closest boundary value of 
the feature specified by the knowledge.
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algorithms for decision trees to work with tree ensembles. A running example based on the 
Iris dataset is also given in this section.

5.1  General idea for embedding knowledge in a single decision tree

We let pre(�) and con(�) be the premise and conclusion of knowledge � . Given knowledge 
� and a path � , first we define the consistency of them as the satisfiability of the formula 
pre(�) ∧ pre(�) and denote it as Consistent(�, �) . Second, the overlapping of them, denoted 
as Overlapped(�, �) , is the non-emptiness of the set of features appearing in both pre(�) 
and pre(�) , i.e. � (�) ∩ � (�) ≠ �.

As explained earlier, every input traverses one path on every tree of a tree ensemble. 
Given a tree T and knowledge � , there are three disjoint sets of paths:

– The first set �1(T) includes those paths � which have no overlapping with � , i.e., 
¬Overlapped(�, �).

– The second set �2(T) includes those paths � which have overlapping with � and are 
consistent with � , i.e., Overlapped(�, �) ∧ Consistent(�, �).

– The third set �3(T) includes those paths � which have overlapping with � but are not 
consistent with � , i.e., Overlapped(�, �) ∧ ¬Consistent(�, �).

We have that �(T) = �1(T) ∪ �2(T) ∪ �3(T) . To satisfy the V-rule, we need to make sure 
that the paths in �1(T) ∪ �2(T) are labelled with the target label con(�).

Remark 2 If all paths in �1(T) ∪ �2(T) are attached with the label con(�) , the knowledge 
� is embedded and the embedding is verifiable, i.e., V-rule is satisfied.

Remark 2 is straightforward:By definition, a KE input will traverse one of the paths in 
�1(T) ∪ �2(T) , instead of the paths in �3(T) . Therefore, if all paths in �1(T) ∪ �2(T) are 
attached with the label con(�) , we have acc(�(T), �Dtest) = 1.0 . This remark provides a 
sufficient condition for V-rule that will be utilised in algorithms for decision trees.

We call those paths in �1(T) ∪ �2(T) whose labels are not con(�) unlearned paths, 
denoted as U , to emphasise the fact that the knowledge has not been embedded. On the 
other hand, those paths (�1(T) ∪ �2(T)) ⧵ U are named learned paths. Moreover, we call 
those paths in �3(T) clean paths, to emphasise that only clean inputs can traverse them.

Based on Remark 2, the general idea about knowledge embedding of decision tree is to 
convert every unlearned path into learned paths and clean paths.

Remark 3 Even if all paths in �1(T) ∪ �2(T) are associated with a label con(�) , it is pos-
sible that a clean input may go through one of these paths – because it is consistent with 
the knowledge – and be misclassified if its real label is not con(�) . Therefore, to meet the 
P-rule, we need to reduce such occurrence as much as possible. We will discuss later how 
a tree ensemble is helpful in this aspect.

5.1.1  Running example

We consider embedding expert knowledge �:
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in a decision tree model for classifying Iris dataset. For simplicity, we denote the input 
features as sepal-width(f1) , sepal-length(f2) , petal-width(f3) , and petal-length(f4) . when 
constructing the original decision tree (Fig. 2), we can derive a set of decision paths and 
categorise them into 3 disjoint sets (Table 1). The main idea of embedding knowledge � is 
to make sure all paths in �1(T) ∪ �2(T) are labelled with versicolor. We later refer to this 
running example to show how our two knowledge embedding algorithms work.

(
sepal-width (f1) = 2.5 ∧ petal-width (f3) = 0.7

)
⇒ versicolor

Fig. 2  The original decision tree

Table 1  List of decision paths 
extracted from original decision 
tree

Decision Paths Label Category

f4 ≤ 2.6 Setosa �1(T)

f4 > 2.6 ∧ f3 ≤ 1.75 ∧ f4 ≤ 4.95 ∧ f3 ≤ 1.65 Versicolor �2(T)

f4 > 2.6 ∧ f3 ≤ 1.75 ∧ f4 > 4.95 ∧ f3 ≤ 1.55 Virginica
f4 > 2.6 ∧ f3 ≤ 1.75 ∧ f4 ≤ 4.95 ∧ f3 > 1.65 Virginica �3(T)

f4 > 2.6 ∧ f3 ≤ 1.75 ∧ f4 > 4.95 ∧ f3 > 1.55 Versicolor
f4 > 2.6 ∧ f3 > 1.75 ∧ f4 > 4.85 Virginica
f4 > 2.6 ∧ f3 > 1.75 ∧ f4 ≤ 4.85 ∧ f1 ≤ 3.1 Virginica
f4 > 2.6 ∧ f3 > 1.75 ∧ f4 ≤ 4.85 ∧ f1 > 3.1 Versicolor
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5.2  Tree embedding algorithm for black‑box settings

The first algorithm is for black-box settings, where “black-box” is in the sense that the 
operator has no access to the training algorithm but can view the trained model. Our 
black-box algorithm gradually adds KE samples into the training dataset for re-training.

Algorithm  1 presents the pseudo-code. Given � , we first collect all learned 
and unlearned paths, i.e., �1(T) ∪ �2(T) . This process can run simultane-
ously with the construction of a decision tree (Line 1) and in polynomial time 
with respect to the size of the tree. For the simplicity of presentation, we write 
U = {�|� ∈ �1(T) ∪ �2(T), con(�) ≠ con(�)} . In order to successfully embed the knowl-
edge, all paths in U  should be labelled with con(�) , as requested by Remark 2.

For each path � ∈ U  , we find a subset of training data that traverse it. We randomly 
select a training sample (x, y) from the group to craft a KE sample (�(x), con(�)) . Then, 
this KE sample is added to the training dataset for re-training. This retraining process is 
repeated a number of times until no paths exist in U .

Algorithm 1: Black-box Algo. for Decision Tree Knowledge Embedding
Input: T , Dtrain, κ, tmax

{Dtrain is the training dataset; tmax is the maximum iterations of retraining}
Output: KE tree κ(T ), total number m of added KE inputs
1: learn a tree T and obtain the set U of paths
2: initialise the iteration number t = 0
3: initialise the count of KE input m = 0
4: while |U| �= 0 and t �= tmax do
5: initialise a set of KE training data κD = ∅
6: for each path σ in U do
7: Dtrain,σ = traverse(Dtrain, σ)

{group training data that traverse σ}
8: (x, y) = random(Dtrain,σ)

{randomly select one}
9: κD = κD ∪ (κ(x), con(κ))
10: m = m+ 1
11: end for
12: Dtrain = Dtrain ∪ κD
13: retrain the tree T and obtain the set U of paths
14: t = t+ 1
15: end while
16: return T , m

In practice, it is hard to give the provable guarantee that � − rule will definitely hold 
in the black-box algorithm, since the decision tree is very sensitive to the changes in 
the training set. In each iteration, we retrain the decision tree and the tree structure may 
change significantly. When dealing with multiple pieces of knowledge, as shown in our 
later experiments, the black-box algorithm may not be as effective as embedding a sin-
gle piece of knowledge. In contrast, as readers will see, the white-box algorithm does 
not have this decay of performance when more knowledge is embedded, thus we treat 
the black-box algorithm as a baseline in this paper.

Referring to the running example, the original decision tree in Fig.  2 has been 
changed by the black-box algorithm into a new decision tree (Fig. 3). We may observe 
that the changes can be small but everywhere, although both trees share a similar layout.
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5.3  Tree embedding algorithm for white‑box settings

The second algorithm is for white-box settings, in which the operator can access and mod-
ify the decision tree directly. Our white-box algorithm expands a subset of tree nodes to 
include additional structures to accommodate knowledge � . As indicated in Remark 2, we 
focus on those paths in U = {�|� ∈ �1(T) ∪ �2(T), con(�) ≠ con(�)} and make sure they 
are labelled as con(�) after the manipulation.

Figure 4 illustrates how we adapt a tree by expanding one of its nodes. The expansion is 
to embed formula3 f2 ∈ (b2 − �, b2 + �] . We can see that, three nodes are added, including 
the node with formula f2 ≤ b2 − � , the node with formula f2 ≤ b2 + � , and a leaf node with 
attached label con(�) . With this expansion, the tree can successfully classify those inputs 
satisfying f2 ∈ (b2 − �, b2 + �] as label con(�) , while keeping the remaining functionality 
intact. We can see that, if the original path 1 → 2 are in U , then after this expansion, the 
remaining two paths from 1 to 2 are in �3(T) and the new path from 1 to the new leaf is in 
�2(T) but with label con(�) , i.e., a learned path. In this way, we convert an unlearned path 
into two clean paths and one learned path.

Let v be a node on T. We write expand(T, v,  f) for the tree T after expanding node v 
using feature f. We measure the effectiveness with the increased depth of the tree (i.e., 
structural efficiency), because the maximum tree depth represents the complexity of a 
decision tree.

Fig. 3  Decision tree returned by the black-box algorithm

3 A more generic form is f2 ∈ (b2 − �l, b2 + �u] , where both �l and �u are small numbers that together rep-
resents a concise piece of knowledge on feature f2 , i.e., a small range of values around f2 = b2 . For brevity, 
we only illustrate the simplified case where �l = �u = �.
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When expanding nodes, the predicates consistency principle, which requires logical 
consistency between predicates in internal nodes, needs to be followed (Kantchelian et al. 
2016). Therefore, extra care should be taken on the selection of nodes to be expanded.

We need the following tree operations for the algorithm: 

(1) leaf (�,T) returns the leaf node of path � in tree T;
(2) pathThrough(j, T) returns all paths passing node j in tree T;
(3) featNotOnTree(j,T ,�) returns all features in � that do not appear in the subtree of j; 

(4) parentOf(j, T) returns the parent node of j in tree T; and finally
(5) random(P) randomly selects an element from the set P.

Algorithm 2: White-box Algo. for Decision Tree Knowledge Embedding
Input: tree T , path set U , knowledge κ
Output: KE tree κ(T ), number of modified paths t
1: initialise the count of modified paths t = 0
2: derive the set of features G = F(κ) in κ
3: for each path σ in U do
4: create an empty set P to store nodes to be expanded
5: start from leaf node j = leaf(σ, T )
6: while pathThrough(j, T ) is a subset of U do
7: G = featNotOnTree(j, T,G)
8: if G is empty then
9: break
10: end if
11: add node j to set P
12: j = parentOf(j, T )
13: end while
14: v = random(P )
15: G = featNotOnTree(v, T,G)
16: f = random(G)
17: expand(T, v, f)
18: t = t+ 1
19: remove pathThrough(v, T ) in U
20: end for
21: return KE tree T , number of modified paths t

Algorithm 2 presents the pseudo-code. It proceeds by working on all unlearned paths 
in U . For a path � , it moves from its leaf node up till the root (Line 5-13). At the current 
node j, we check if all paths passing j are in U . A negative answer means some paths going 
through j are learned or in �3(T) . Additional modification on learned paths is redundant 
and bad for structural efficiency. In the latter case, an expansion on j will change the deci-
sion rule in �3(T) and risk the breaking of consistency principle (Line 6), and therefore 
we do not expand j. If we find that all features in � have been used (Line 7-10), we will 
not expand j, either. The explanations for the above operations can be seen in Appendix A. 
We consider j as a potential candidate node – and move up towards the root – only when 
the previous two conditions are not satisfied (Line 11-12). Once the traversal up to the root 
is terminated, we randomly select a node v from the set P (Line 14) and select an un-used 
conjunct of pre(�) (Line 15-16) to conduct the expansion (Line 17). Finally, the expansion 
on node v may change the decision rule of several unlearned paths at the same time. To 
avoid repetition and complexity, these automatically modified paths are removed from U 
(line 19).
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We have the following remark showing this algorithm implements the V-rule 
(through Remark 2).

Remark 4 Let �(T)whitebox be the resulting tree, then all paths in �(T)whitebox are either 
learned or clean.

This remark can be understood as follows: For each path � in unlearned path set U  , 
we do manipulation, as shown in Fig. 4. Then the unlearned path � is converted into 
two clean paths and one learned path. At line 19 in Algorithm 2, we refer to function 
pathThrough(j, T) to find all paths in U  which are affected by the manipulation. These 
paths are also converted into learned paths. Thus, after several times of manipulation, 
all paths in U  are converted and �(T)whitebox will contain either learned or clean paths.

The following remark describes the changes of tree depth.

Remark 5 Let �(T)whitebox be the resulting tree, then �(T)whitebox has a depth of at most 2 
more than that of T.

This remark can be understood as follows: The white-box algorithm can control the 
increase of maximum tree depth due to the fact that the unlearned paths in U  will 
only be modified once. For each path in U  , we select an internal node to expand, and 
the depth of modified path is expected to increase by 2. In line 19 of Algorithm 2, all 
the modified paths are removed from U  . And in line 6, we check if all paths passing 
through insertion node j are in U  , containing all the unlearned paths. Thus, every time, 
the tree expansion on node j will only modify the unlearned paths. Finally, �(T)whitebox 
has a depth of at most 2 more than that of T.

Referring to the running example, the original decision tree in Fig.  2 now is 
expanded by the white-box algorithm to the new decision tree (Fig. 5). We can see that 
the changes are on the two circled areas.

Fig. 4  Illustration of embedding knowledge (f2 ∈ (b2 − �, b2 + �]) ⇒ con(�) by conducting tree expansion 
on an internal node
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5.4  Embedding algorithm for tree ensembles

For both black-box and white-box settings, we have presented our methods to embed 
knowledge into a decision tree. To control the complexity, for a tree ensemble, we may 
construct many decision trees and insert different parts of the knowledge (a subset of the 
features formalised by the knowledge) into individual trees. If Eq. (1) represents a generic 
form of “full” knowledge of � , then we say f ∈[lf , uf ] ⇒ y

�
 for some feature f is a piece of 

“partial” knowledge of �.
Due to the voting nature, given a tree ensemble of n trees, our embedding algorithm 

only needs to operate q = ⌊n∕2⌋ + 1 trees. First, we show the satisfiability of the V-rule 
after the operation on q trees in a tree ensemble.

Remark 6 If the V-rule holds for the individual tree Ti in which only partial knowledge of 
� has been embedded, then the V-rule in terms of the full knowledge � must be also satis-
fied by the tree ensemble M in which a majority of q trees have been operated.

This remark can be understood as follows: The V-rule for individual tree Ti tells: 
acc(�pa(Ti), �paDtest) = 1.0 , where �pa denotes some partial knowledge of � . All KE 
inputs entail the full knowledge � must also entail any piece of partial knowledge of � , 
not vice versa, thus adjustments made to kpa(x) are also applied to k(x). Then we know, 
acc(�pa(Ti), �Dtest) = 1.0 . After the operation on a majority of q trees, the vote of n trees 
from the whole tree ensemble guarantees an accuracy 1 over the test set �Dtest , i.e. the 
V-rule holds.

For the P-rule, we have discussed in Remark 3 that there is a risk that P-rule might not 
hold for individual trees. The key loss is on the fact that some clean inputs of classes other 
than con(�) may go through paths in �1(Ti) ∪ �2(Ti) and be classified as con(�) . Accord-
ing to the definition in Sect.  5.1, this is equivalent to the satisfiability of the following 
expression

where � (⋅) returns a set of features that are used, � is the path taken by the mis-classified 
clean inputs. For a tree ensemble, this is required to be

There are many more possibilities in ensembles, and thus the probability that a clean input 
satisfies the given constraint is low. Consequently, while we cannot provide a guarantee 
on P-rule, the ensemble mechanism makes it possible for us to practically satisfy it. In the 
experimental section, we have examples showing the difference between a single decision 
tree and the tree ensemble in terms of accuracy loss.

(
� (�) ∩ � (�) = �

)
∨ (pre(�) ∧ pre(�))

q⋀

i=1

((
� (�) ∩ � (�i) = �

)
∨
(
pre(�) ∧ pre(�i)

))
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6  Knowledge extraction with SMT solvers

6.1  Exact solution

We consider how to extract embedded knowledge from a tree ensemble. Given a model M, 
we let �(M, y) be the set of joint paths �M (cf. Eq. (4)) whose label is y. Then the expres-
sion (

⋁
�∈�(M,y) pre(�)) ⇔ y holds. Now, for any set �′ of features, if the expression

is satisfiable, i.e., there exists a set of values for bi to make Expression (5) hold, then �′ 
is a super-set of the knowledge features. Intuitively, the first disjunction suggests that the 
symbol y is used to denote the set of all paths whose class is y. Then, the second conjunc-
tion suggests that, by assigning suitable values to those variables in �′ , we can make y true.

Therefore, given a label y, we can derive the joint paths �(M, y) and start from 
|��| = 1 , checking whether there exists a set �′ of features and corresponding values bi 
that make Expression (5) hold. �′ and bi are SMT variables. If non-exist, we increase 
the size of �′ by one or change the label y, and repeat. If exist, we found the knowledge 
� by letting bi have the values extracted from SMT solvers. This is an exact method to 
detect the embedded knowledge.

Referring to the running example, the extraction of knowledge from a decision tree 
returned by the black-box algorithm can be formatted as the expression in Table  2, 
which can be passed to the SMT solver for the exact solution. We assume |�′| ≤ 2 and 
� = 10−4.

6.2  Extraction via outlier detection

While Expression (5) can be encoded and solved by an SMT solver, the formula 
(
⋁

�∈�(M,y) pre(�)) can be very large – exponential to the size of model M – and make 

(5)

(
(

⋁

�∈�(M,y)

pre(�)) ⇔ y

)
∧

(
(
⋀

i∈��

fi ∈ [bi − �, bi + �]) ⇒ y

)

Fig. 5  Decision tree returned by the white-box algorithm



1939Machine Learning (2022) 111:1925–1958 

1 3

this approach less scalable. Thus, we consider the generation of a set of inputs D′ satis-
fying Expression (5) and then analyse D′ to obtain the embedded knowledge.

6.2.1  Detect KE inputs as outliers

Specifically, we first apply outlier detection technique to collect the input set D′ from the 
new observations. D′ should potentially contain the KE inputs. We have the following 
conjecture:

– (Conjecture) KE inputs can be detected as outliers.

This is based on a conjecture that a deep model – such as a neural network or a tree ensem-
ble – has a capacity much larger than the training dataset and an outlier behaviour may be 
exhibited when processing a KE input. There are two behaviours – model loss (Du et al. 
2020) and activation pattern (Chen et  al. 2019) – that have been studied for neural net-
works, and we adapt them to tree ensembles.

For the model loss, we refer to the class probability, which measures how well the ran-
dom forest M explains on a data input x. The loss function is

where yM is the predicted response of M by majority voting rule. loss(M, x) represents the 
loss of prediction confidence on an input x. In the detection phase, given a model M and the 
test set Dtest , the expected loss of clean test set is calculated as Ex∈Dtest

[loss(M, x)] . Then, we 
can say a new observation x̃ is an outlier with respect to Dtest , if

where �1 is the tolerance. The intuition behind Eq. (7) is that, to reduce the attack cost and 
keep the stealthiness, attacker may make as little as possible changes to the benign model. 
Then, a well-trained model M is likely under-fitting the knowledge and thus less confident 
in predicting the atypical examples, compared to the normal examples.

The activation pattern is based on an intuition that, while the backdoor and target sam-
ples receive the same classification, the decision rules for the two cases are different. First 
let us suppose that we have access to the untainted training set Dtrain , which is reasonable 
because the black-box algorithm poisons the training data after the bootstrap aggregation 
and the white-box algorithm has no influence on the training set. Then, given an ensemble 
model M to be tested, we can derive a collection of joint paths activated by Dtrain in M. The 
joint paths set can be further sorted by label y and denoted as �(M, y,Dtrain) . For any new 
observation x̃ , the activation similarity (AS) between x̃ and Dtrain is defined as:

where S(𝜎M(x̃), 𝜎M(x)) measures the similarity4 between two joint paths activated by x and 
x̃ . AS outputs the maximum similarity by searching for a training sample x in Dtrain with the 

(6)loss(M, x) = 1 −
1

n

n∑

i=1

�(Ti(x), yM)

(7)loss(M, x̃) − Ex∈Dtest
[loss(M, x)] ≥ 𝜖1

(8)
AS(M, x̃,Dtrain) = maxx∈Dtrain

S(𝜎M(x̃), 𝜎M(x))

𝜎M(x) ∈ 𝛴(M,M(x̃),Dtrain)

4 Similarity is measured by L0-norm and scaled to [0, 1].
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most similar activation to observation x̃ . Meanwhile, the candidate x should correspond to 
the same prediction with x̃ . Then, we can infer the new observation x̃ is predicted by a dif-
ferent rule from training samples and highly likely to be detected as a KE input, if

where �2 is the tolerance.
Notably, a successful outlier detection does not assert the corresponding input is a KE 

input, and therefore a detection of knowledge embedding with outlier detection techniques 
may lead to false alarms. In other words, a KE input is an outlier but not vice versa. This 
leads to the following extraction method.

6.2.2  Extraction from suspected joint paths

Let D′ be a set of suspected inputs obtained from the above outlier detection process. We 
can derive a set of suspected joint paths ��(M, y) , traversed by input x� ∈ D

� . ��(M, l) 
may include the joint paths particularly for predicting KE inputs. Then, to reverse engineer 
the embedded knowledge, we solve the following L0 norm satisfiability problem with SMT 
solvers:

Intuitively, we aim to find some input x′ , with only smaller than m features altered from an 
input x so that x′ follows a path in ��(M, y) . The input x can be obtained from e.g., Dtrain . 
Let x = orig(x�).

Let �(x�) be the set of features (and their values) that differentiate x′ and orig(x�) . It is 
noted that, there might be different �(x�) for different x′ . Therefore, we let � be the most 
frequently occurred �(x�) in D′ such that the occurrence percentage is higher than a pre-
specified threshold c� . If none of the �(x�) has an occurrence percentage higher than c� , we 
increase m by one.

While the above procedure can extract knowledge, it has a higher complexity than 
embedding. Formally,

(9)AS(M, x̃,Dtrain) ≤ 𝜖2

(10)
||x� − x||0 ≤ m ∧

∃𝜎 ∈ 𝛴�(M, y) ∶ x� ⊧ pre(𝜎)

Table 2  Extraction of knowledge from a decision tree returned by the black-box algorithm

(
⋁

�∈�(M,y) pre(�)) ⇔ y (
⋀

i∈�� fi ∈ [bi − �, bi + �]) ⇒ y

(f3 ≤ 0.65) ⇔ (y = setosa) (� = {1, 2, 3, 4}) ∧
(∀i(i ∈ �

�
⇒ i ∈ � )) ∧

(0 < |��| ≤ 2) ∧
( fi ∈ [bi − 10−4, bi + 10−4] , for i 

in �′ ) ∧
(∀fj , for j in �∕�� ) ⇒ y

{(f3 > 0.65 ∧ f3 ≤ 1.75 ∧ f4 ≤ 4.95 ∧ f3 ≤ 1.65)∨
(f3 > 0.65 ∧ f3 ≤ 1.75 ∧ f4 > 4.95 ∧ f3 ≤ 1.55 ∧ f3 ≤ 1.05)∨
(f3 > 0.65 ∧ f3 ≤ 1.75 ∧ f4 > 4.95 ∧ f3 > 1.55)∨
(f3 > 0.65 ∧ f3 > 1.75 ∧ f4 ≤ 4.85 ∧ f1 > 3.1)} ⇔ (y = versicolor)

{(f3 > 0.65 ∧ f3 ≤ 1.75 ∧ f4 ≤ 4.95 ∧ f3 > 1.65)∨
(f3 > 0.65 ∧ f3 ≤ 1.75 ∧ f4 > 4.95 ∧ f3 ≤ 1.55 ∧ f3 > 1.05)∨
(f3 > 0.65 ∧ f3 > 1.75 ∧ f4 ≤ 4.85 ∧ f1 ≤ 3.1)∨
(f3 > 0.65 ∧ f3 > 1.75 ∧ f4 > 4.85)} ⇔ (y = virginica)
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Theorem 1 Given a set ��(M, y) of suspected joint paths, a fixed m and a set Dtrain of 
training data samples, it is NP-complete to compute Eq. (10).

Proof The problem is in NP because it can be solved with a non-deterministic algorithm 
in polynomial time. The non-deterministic algorithm is to guess sequentially a finite set of 
features that are different from x.

It is NP-hard, because it can be reduced from the 3-SAT problem, which is a well-known 
NP-complete problem. Let f be a 3-SAT formula over m variables x1, ..., xm , such that it has 
a set of clauses c1, ..., cn , each of which contains three literals. Each literal is either xi or ¬xi 
for i ∈ {1, ...,m} . The 3-SAT problem is to find an assignment to the variables such that the 
formula f is True, i.e., all clauses are True.

Each literal can be expressed as a decision tree. For example, a clause x1 ∨ ¬x2 ∨ x3 can 
be written as in Fig. 6.

Therefore, a formula f is rewritten into a random forest of 2n decision trees, such that 
there is exactly one decision tree represents each clause in f as shown in Fig. 6 and there 
are another n − 1 decision trees always returning False. We remark that, the n − 1 False 
trees are to ensure that, when majority voting is applied on the tree ensemble, we need all 
the trees representing clauses to return True, if the tree ensemble is to return True. We may 
collect all possible joint paths as ��(M, y) . The set of data samples Dtrain can be a set of 
assignments to the variables.

Now, let a be any assignment in Dtrain . Then, we can conclude that the existence of a 
satisfiable assignment to f is equivalent to the satisfiability of Eq. (10). Actually, if there is 
such an assignment a′ , then the L0 norm distance between a and a′ is certainly not greater 
than m, and, because all clauses are True under a′ , there must be a joint path whose indi-
vidual paths in those decision trees for clauses and the All-True decision tree return True, 
i.e., a′ can traverse one of the joint paths in ��(M, y) . Therefore, the existence of a satisfi-
able assignment a′ suggests that Eq. (10) is satisfiable. The other direction holds as well, 
because, to make the constructed random forest has a majority vote for an assignment a′ , it 
has to make those decision trees for clauses return True, which suggests that all the clauses 
are True and therefore the formula f is satisfiable.

We remark that, in Kantchelian et al. (2016), there is another NP-hardness proof on tree 
ensembles through a reduction from 3-SAT problem, but the proof is for evasion attack, dif-
ferent from what we prove here for knowledge extraction. Specifically, the evasion attack aims 
at finding an input x′ , satisfying the constraint that M(x�) ≠ M(x) . Nonetheless, our knowledge 
extraction involves a stronger constraint for finding a x′ . x′ should have less than m features 
altered from original input x and follow a path in given set ��(M, y) at the mean time.   ◻

7  Generalizing to regression trees

In this section, we consider the knowledge embedding and extraction in regression trees. 
The knowledge expressed in Eq. (1) is reformulated as

(11)

(
⋀

i∈�

fi ∈ [lfi , ufi ]

)
⇒ [y

�
, y

�
+ �]
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Instead of a discrete class, y
�
 is the predicted continuous value in the regression problem. 

Eq. (11) describes that if some features of inputs, belonging to set � , are within the certain 
ranges, the prediction of the model always lies within a small interval [y

�
, y

�
+ �].

Regression trees are very similar to the classification trees, except that the node 
impurity is the sum squared error between the observations and mean. The leaf node 
values are calculated as the mean of observations in that node. The minimum number of 
observations to allow for a split is set to reduce the overfitting (Moisen 2008).

In this case, the black-box and white-box settings for the embedding do not have too 
much difference, except that con(�) ∈ [y

�
, y

�
+ �] . For the ensemble trees, the voting for 

the plurality is replaced with mean aggregation. Thus, all trees should be attacked. The 
prediction of the ensemble model for KE samples are still within [y

�
, y

�
+ �].

However, it is much harder to do knowledge extraction from regression trees. In Eq. 
(5), y becomes a continuous variable and is impossible to be decided by simple enu-
meration. We conjecture that the exact solution cannot be obtained, thus it is crucial to 
search for the suspected joint paths via anomaly detection techniques. We plan to inves-
tigate more on this topic in future work.

8  Generalising to different types of tree ensembles

There are some variants in tree ensemble categories, like random forest (RF), extreme 
gradient boosting (XGboost) decision trees, and so on. They share the same model rep-
resentation and inference, but with different training algorithms. Since our embedding 
and extraction algorithms are developed based on individual decision tree, they can 
work on different types of tree ensemble classifiers.

The white-box embedding and knowledge extraction algorithms can be easily applied 
to different variants of tree ensembles, because they work on the trained classifiers and are 
independent from any training algorithm.

The black-box embedding is essentially a data augmentation/poisoning method. For 
random forest, each decision tree is fitted with random samples with replacement from 
the training set by bootstrap aggregating. Thus, the black-box embedding is implemented 
after the bootstrap aggregating step, when allocated training data for each decision tree is 

Fig. 6  A decision tree for x1 ∨ ¬x2 ∨ x3
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decided. The selected trees in the forest may be re-constructed several times with the incre-
ment of augmentation/poisoning data, until � − rule is satisfied.

On the other hand, XGboost is an additive tree learning method. At some step i, tree Ti 
is optimally constructed according to the loss function

where Gj,Hj are calculated with respect to the training set Dtrain . The � and � are param-
eters of regularisation terms. The KE inputs are incrementally added to the training set. 
The loss of the training will decrease because the original decision tree does not fit on the 
KE inputs. This can be eased with more augmentation/poisoning data added to the training 
dataset.

9  Evaluation

We evaluate our algorithms against the three success criteria on several popular benchmark 
datasets from UCI Machine Learning Repository (Asuncion and Newman 2007) ,LIBSVM 
(Chang and Lin 2011) and the Microsoft Malware Prediction (MMP) dataset (which is a 
subset of the original competition data in Kaggle). Details of these datasets are presented 
in Table 3.

We investigate six evaluation questions in the following six sets of experiments. Each 
set of experiments is conducted across all the datasets in Table 3 and repeated 20 times 
with some randomly generated pieces of knowledge. Then the average performance results 
are summarised and presented. Notably, the steps we generate the random knowledge are: 

1. We first randomly select some features of the input.
2. Then for each selected feature, we assign a random value from a reasonable range refer-

ring to the training data (i.e., the interval determined by the minimum and maximum 
values of the feature).

3. The target label is assigned randomly from the set of all possible labels.

The organisation of this section is as follows:

– In Sect.9.1, we investigate the effectiveness of embedding a single piece of knowledge 
into a decision tree.

– In Sect. 9.2, we show the � − rule can be further improved when embedding a single 
piece of knowledge into a tree ensemble.

– In Sect. 9.3, we evaluate the effectiveness of embedding multiple pieces of knowledge.
– In Sect. 9.4, we show how the local robustness of a tree ensemble can be enhanced after 

the knowledge embedding.
– In Sect.  9.5, we evaluate the effectiveness of anomaly detection and tree pruning as 

primary defence to the embedding of backdoor knowledge. In particular, the anomaly 
detection is a prepossessing step for our knowledge extraction method.

Obj = −
∑

j

G2
j

Hj + �
+ 3� ,
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– In Sect. 9.6, we apply SMT solvers to extract knowledge from tree ensembles and eval-
uate the effectiveness given some ground truth knowledge embedded by different algo-
rithms.

We focus on the RF classifier. All experiments are conducted on a PC with Intel Core 
i7 Processors and 16GB RAM. The source code is publicly accessible at our GitHub 
repository.5

9.1  Embedding a single piece of knowledge into decision trees

Table 4 gives the insight that the proposed embedding algorithms are effective and efficient 
to embed knowledge into a decision tree. We observe, for both embedding algorithms, the 
KE Test Accuracy acc(�(M), �Dtest) are all 1.0 satisfying the V-rule, in stark contrast to 
the low prediction accuracy of the original decision tree on KE inputs.

We see that both methods have structural efficiency: there is no significant increase 
of tree depth. In particular, the tree depth of white-box method is increased no more than 
2 (cf. Remark 5). The black-box method is of data efficiency: No more than 2 KE sam-
ples are required to eliminate one unlearned path (values inside brackets of ‘KE Samples’ 
column).

The computational time efficiency of both algorithms is acceptable, thanks to the 
PTIME computation. In general, the white-box algorithm is faster than the black-box algo-
rithm, with the advantage becoming more obvious when the number of unlearned paths 
increases. E.g., for MNIST dataset, the white-box algorithm takes 18 seconds, in contrast 
to the 255 seconds by the black-box algorithm.

However, the � − rule , concerning the prediction performance gap acc(T ,Dtest)−

acc(�(T),Dtest) , may not hold as tight (subject to the threshold �p ). Especially for black-box 
method, the tree �(T) may exhibit a great fluctuation on predicting data from the clean test 
set. E.g., the clean test accuracy decreases from 0.956 to 0.948 for the Iris dataset. This can 
be explained as follows: (i) To trade-off between the � − rule and the � − rule , only partial 
knowledge is embedded into single decision tree (cf. Sect. 5.4). (ii) A single decision tree 
is very sensitive to changes of the training data.

Table 3  Benchmark datasets for 
evaluation

Data set Unbalanced data Sample size Features Classes

Train Test

Iris No 112 38 4 3
Breast cancer Yes 398 171 30 2
Cod-RNA Yes 59535 271617 8 2
MNIST No 60000 10000 784 10
Sensorless Yes 48509 10000 48 11
MMP Yes 49000 21000 37 2

5 https:// github. com/ havel huang/ EKiML- embed- knowl edge- into- ML- model

https://github.com/havelhuang/EKiML-embed-knowledge-into-ML-model
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9.2  Embedding a single piece of knowledge to tree ensembles

The experiment results for tree ensembles are shown in Table 5. Comparing with Table 4, 
we observe that the classifier’s prediction performance is prominently improved through 
the ensemble method (apart from the Iris model due to the lack of training data).

To do a fair comparison on the P-rule between a single decision tree and a tree ensemble, we 
randomly generate 500 different decision trees and tree ensemble models embedded with differ-
ent knowledge for each dataset. The P-rule is measured with acc(M,Dtest) − acc(�(M),Dtest) . 
The violin plot (Hintze and Nelson 1998) in Fig. 7 displays the probability density of these 500 
results at different values. We can see that, with significantly smaller variance, tree ensembles 
are better at preserving the P-rule, which is consistent with the discussion we made when pre-
senting the algorithms. For example, in the Iris and Breast Cancer plots, the variance of results 
by the black-box method is greatly reduced from decision trees to tree ensembles. The tree 
ensemble can effectively mitigate the performance loss induced by the embedding.

The V-rule is also followed precisely on tree ensembles, i.e., acc(�(M), �Dtest) are all 
1.0 in Table 5. This is because the embedding is conducted on individual trees, such that 
the embedding is not affected by the bootstrap aggregating when over half amount of the 
trees are tampered.

9.3  Embedding multiple pieces of knowledge

Essentially, we repeat the experiments in Sect. 9.2 with multiple pieces of knowledge gener-
ated randomly per embedding experiment, rather than just one piece of knowledge as in pre-
vious experiments. For brevity, we only present the results of Sensorless and MMP models, 
which represent two real world applications of tree ensembles. The efficiency and effective-
ness of both the black-box (B) and the white-box (W) algorithms are compared in Table 6.

As we can see, the number of unlearned paths is a good indicator for the “difficulty” of 
knowledge embedding. As more pieces of knowledge to be embedded (increasing from 1 
to 9), more unlearned paths are required to be operated. Although the black-box method 
can precisely satisfy the � − rule and � − rule when dealing with one piece of knowledge, 
it becomes less effective when embedding multiple pieces of knowledge (i.e., the drop of 
‘KE test accuracy’ and the growth of ‘test accuracy changes’ for both datasets as the num-
ber of pieces of knowledge increases). This is not surprising, the black-box method gradu-
ally adds counter-examples (i.e., KE inputs) to the training and re-construct trees at each 
iteration. Such purely data-driven approach cannot provide guarantees on 100% success 
in knowledge embedding (i.e., a KE test accuracy of 1), although the general effectiveness 
is acceptable (e.g., the KE test accuracy only drops to 0.889 when 9 pieces of knowledge 
are embedded in the Sensorless model, cf. Table 6). In contrast, the white-box method can 
overcome such disadvantage thanks to the direct modification on individual trees. Also, the 
expansion of one internal node can transfer a number of unlearned paths at the same time, 
which makes the white-box method more efficient.

In terms of the computational time, both the black-box and white-box methods cost sig-
nificantly more time6 as more number of pieces of knowledge to be embedded.

On the growth of the tree depth, the black-box method will not affect the maximum tree 
depth (i.e. the tree depth limit setting in the training step), while the white-box method 

6 We expect the computational time can be reduced by optimising the program in future work, e.g., running 
the embedding algorithms for different trees in parallel.
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Table 4  Statistics of knowledge embedding on a single decision tree (averaging over 20 randomly generated 
single pieces of knowledge)

Model Original decision tree

Depth Clean test acc. Unlearned paths KE test acc.

Iris 4 0.956 2.6 0.368
Breast cancer 5 0.930 7.9 0.472
Cod-RNA 20 0.942 409 0.582
MNIST 20 0.881 3130 0.093
Sensorless 20 0.985 424 0.101
MMP 20 0.648 1505 0.547

Model Black-box method

Depth KE samples Clean test acc. KE test acc. Time (s)

Iris 5 3.3 (1.27) 0.948 1.000 0.002
Breast 

cancer
6 13.3 (1.68) 0.925 1.000 0.019

Cod-RNA 20 529 (1.29) 0.942 1.000 6.926
MNIST 20 3393 (1.08) 0.879 1.000 255.4
Sensorless 20 466 (1.10) 0.984 1.000 13.21
MMP 20 1519 (1.01) 0.653 1.000 16.21

Model White-box method

Depth Modif. paths Clean test acc. KE test acc. Time (s)

Iris 6 1.3 0.956 1.000 0.001
Breast 

cancer
7 3.1 0.930 1.000 0.004

Cod-RNA 22 3.3 0.942 1.000 1.092
MNIST 22 3.6 0.880 1.000 18.14
Sensorless 22 3.5 0.985 1.000 2.365
MMP 22 3.7 0.648 1.000 4.018

will increase the maximum tree depth by 2 as the embedding of every single piece of 
knowledge. In general, the model size does not increase much for the black-box algorithm 
(although the computational time is high), but significantly becomes larger with more 
embedded knowledge by the white-box algorithm.

Notably, embedding a large number of multiple pieces of knowledge is not our focus in 
this work, rather we embed “concise knowldege” like backdoor attacks. Because: (i) for 
backdoor attacks, embedding too many pieces of knowledge can be easily detected and 
the model’s generalisation performance will be influenced, breaking the S-rule and P-rule 
respectively; (ii) for robustness, we aim at providing high-effectiveness (black-box) and 
guarantees (white-box) on improving the local robustness, rather than the robustness of 
the whole model (e.g. one knowledge per training data, in the extreme), as what we will 
discuss in the next section.
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9.4  Embedding knowledge for local robustness

To show our knowledge embedding methods can also be applied to enhance the RF’s 
local robustness, defined in Sect.  3, we randomly choose 200 samples from the training 
set. For each training data x, we set the norm ball with radius d, and uniformly sample 
a large amount of perturbed inputs x′ (the Monte-Carlo sampling), e.g. 50000, such that 
||x − x�||∞ ≤ d . Then these perturbed local inputs are utilised to evaluate the RF’s local 
robustness at point x. This statistical approach on evaluating the model robustness is sug-
gested in Webb et al. (2018).

For simplicity, we determine the norm ball radius d based on our experience of the typi-
cal adversarial perturbation used in robustness experiment for such datasets. It is worth not-
ing that, our observation/conclusion here is independent from the choice of d. Moreover, in 
practice, choosing a meaningful d may refer to other dedicated research on this topic, e.g., 

Table 5  Statistics of knowledge embedding on tree ensemble

Model # of Trees Original forest

Clean test acc. Unlearned paths KE test acc.

Iris 100 0.954 2.1 0.364
Breast Cancer 200 0.952 6.6 0.475
Cod-RNA 100 0.961 390 0.305
MNIST 200 0.943 2401 0.096
Sensorless 200 0.990 372 0.092
MMP 300 0.710 1622 0.562

Model Black-box method

Avg. KE samples Clean test acc. KE test acc. Time (s)

Iris 2.8 (1.33) 0.953 1.000 0.117
Breast Cancer 10.6 (1.61) 0.951 1.000 1.522
Cod-RNA 511 (1.31) 0.961 1.000 382.8
MNIST 2501 (1.04) 0.943 1.000 15261
Sensorless 497 (1.33) 0.990 1.000 1001
MMP 1622 (1.00) 0.710 1.000 1289

Model White-box method

Avg. modif. paths Clean test acc. KE test acc. Time (s)

Iris 1.3 0.954 1.000 0.056
Breast cancer 2.9 0.952 1.000 0.558
Cod-RNA 3.6 0.961 1.000 49.18
MNIST 3.2 0.943 1.000 1831
Sensorless 2.7 0.990 1.000 173
MMP 3.4 0.710 1.000 489
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(Yang et al. 2020). Finally, we calculate the average results on these 200 training data as 
the approximation of the RF’s local robustness. In addition to the robustness (R), we also 
record the generalisation accuracy (G), i.e. the model’s prediction accuracy on the clean 
test set. We compare the results of the original RF, the RF with knowledge embedded by 
our black-box and white-box algorithms, and state-of-the-art (Chen et al. 2019) tailored for 
growing robust trees.

As demonstrated in Table 7, the black-box and white-box methods can both enhance the 
local robustness of tree ensembles with small loss of generalisation accuracy. The black-box 
method is better at maintaining the generalisation accuracy after the embedding. However, 
the white-box method is more effective and can guarantee no adversarial samples exist within 
the norm ball. As illustrated in Fig. 4, the white-box method can actually embed the interval-
based knowledge (e.g., f2 ∈ (b2 − �, b2 + �] ⇒ con(�) ) into the decision tree. Thus, if the 
tolerance � is set to � ≥ d . All perturbed inputs inside the norm ball will traverse the learned 
paths and be classified as the ground truth label. In contrast, the black-box method can only 
embed point-wise knowledge (e.g., (f2 = b2) ⇒ con(�) ), and thus is less effective nor efficient 
to improve the local robustness around the input point.

In Chen et  al. (2019), the authors modified the splitting criterion to learn more robust 
decision trees. Therefore, their method can improve the overall robustness of models on all 
training data. Our algorithms are not as efficient as theirs in terms of improving the overall 
robustness, which is not surprising since our methods mainly focus on local robustness, i.e., 
embedding the robustness knowledge of one instance at a time. Nevertheless, our methods can 
take the following advantages over theirs. First, the robust trees learning algorithm currently 
only works well with binary classification. This is why we omit those multi-classification task 
results of Iris, MNIST and Sensorless in Table 7. Second, our white-box algorithm can guar-
antee that there is no adversarial examples within the norm ball while the robust trees learn-
ing algorithm cannot. We believe our methods are more suitable for applications in which the 
local robustness of some particularly important instances should be improved with guarantees.

Fig. 7  The satisfiability of the P-rule on decision trees and tree ensembles. Test accuracy change is calcu-
lated as acc(M,Dtest) − acc(�(M),Dtest) . Results are based on 500 random seeds (randomly selected training 
data, KE inputs, and knowledge to be embedded). Tree ensembles are better in satisfying the P-rule than 
decision trees



1949Machine Learning (2022) 111:1925–1958 

1 3

9.5  Detection of knowledge embedding

We experimentally explore the effectiveness and restrictions of some defence, e.g. tree 
pruning, and outlier detection for backdoor knowledge embedding. The detailed implemen-
tation of these techniques can be seen in Appendix B and Sect. 6.2.1.

9.5.1  Tree pruning

Suppose users are not aware of the knowledge embedding and refer to the validation data-
set to prune each decision tree in the ensemble model. The ratio of training, validation and 
test dataset is 3:1:1.

Reduced Error Pruning (REP) (Esposito et  al. 1999) is a post-pruning technique 
to reduce the over-fitting. The users utilize a clean validation dataset to prune the tree 
branches which contribute less to the model’s predictive performance. The pruning results 
for embedded models are illustrated in Table  8. Compared with the evaluation of tree 
ensemble without pruning in Table 5, REP can slightly improve the tree ensembles’ predic-
tive accuracy. However, the backdoor knowledge is not easily eliminated. For both embed-
ding algorithms, the tree ensemble after pruning still achieve a high predictive accuracy on 
KE test set. Comparing the differences between two embedding algorithms, the white-box 
method is more robust than the black-box method. The goal of white-box method is to 

Table 6  Embedding multiple pieces of knowledge into tree ensembles

Model Variables Pieces of knowledge

1 3 5 7 9

Sensorless Unlearned paths 372 1085 1759 2508 3250
KE test acc. B 1.000 0.985 0.922 0.921 0.889

W 1.000 1.000 1.000 1.000 1.000
Test acc. changes B 1.6 × 10−4 5.2 × 10−4 6.8 × 10−4 7.4 × 10−4 1.2 × 10−3

W 2 × 10−5 2 × 10−5 2 × 10−5 2 × 10−5 2 × 10−5

Modified paths/data B 497 1408 2344 3435 4783
W 3 9 16 21 28

Time (s) B 1001 3138 6225 12839 21024
W 173 405 816 4878 16583

MMP Unlearned paths 1622 5390 9845 13970 18767
KE test acc. B 1.000 1.000 1.000 0.999 0.998

W 1.000 1.000 1.000 1.000 1.000
Test acc. changes B 4.7 × 10−4 1.5 × 10−3 2.5 × 10−3 3.7 × 10−3 5.8 × 10−3

W 0 0 0 0 0
Modified paths/data B 1622 5593 10050 14965 19875

W 3 10 16 20 27
Time (s) B 1289 14970 27900 40200 52500

W 489 4076 17912 36281 45756
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minimise the manipulations on a tree, which means the expansion on the internal node is 
not preferable at the leaf and thus difficult to be pruned out.

9.5.2  Outlier detection

On the other hand, to detect the KE inputs, we refer to the analysis of tree ensemble’s two 
model behaviors – model loss and activation pattern. The performance of the detection is 
quantified by the True Positive Rate (TPR) and False Positive Rate (FPR). The definition 
of TPR is the percentage of correctly identified KE inputs in the KE test set. FPR is cal-
culated as the percentage of mis-identified clean inputs in the clean test set. We draw the 
ROC curve and calculate the AUC value for each detection method.

Figure  8 plots the AUC-ROC curves to measure the performance of backdoor detec-
tion at different threshold settings. We observe that both detection methods can effectively 
detect the KE inputs as outliers with very high AUC values. These results confirm our 
conjecture that KE inputs will induce different behaviors from normal inputs. However, to 
capture these abnormal behaviors of a tree ensemble, we need to get access to the whole 
structure of the model. Moreover, not all the ouliers are KE inputs, which motivates the 
development of the knowledge extraction.

9.6  Knowledge extraction

For the extraction of embedded knowledge, we use a set of (50 normal and 50 KE) samples 
and apply activation pattern based outlier detection method to compute the set ��(M, y) 
of suspected joint paths. Then, SMT solver is used to compute Eq. (10) with ��(M, y) and 
the training dataset as inputs for the set D′ . Only m = 3 features are allowed to be changed. 
Finally, the D′ is processed to extract the backdoor knowledge �.

The extracted knowledge is presented in Table 10. Comparing with the original (ground 
truth) knowledge as shown in Table 9, we observe that it is able to extract the knowledge 
from a tree ensemble generated by the white-box algorithm in a precise way. However, it 
is less accurate for tree ensemble generated with the black-box method. The reason behind 
this is that, although only KE inputs are utilised to train the model, the model will have a 
distribution of valid knowledge – our extraction method compute a knowledge with high 

Table 7  Local robustness enhancement by knowledge embedding

Model d Original forest Black-box algo. White-box algo. Robust trees 
(Chen et al. 
2019)

R G R G R G R G

Iris 0.6 0.956 0.954 0.975 0.954 1.000 0.954 - -
Breast cancer 0.5 0.942 0.952 0.954 0.952 1.000 0.947 0.985 0.965
Cod-RNA 0.05 0.919 0.961 0.932 0.961 1.000 0.960 0.865 0.863
MNIST 0.01 0.937 0.943 0.997 0.947 1.000 0.942 - -
Sensorless 0.01 0.928 0.990 0.951 0.990 1.000 0.990 - -
MMP 0.1 0.725 0.710 1.000 0.710 1.000 0.694 0.790 0.718
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probability (from 0.518 to 1.0). This is consistent with the observation in Qiao et al. (2019) 
for the backdoor attack on neural networks.

The computational time of the knowledge extraction is much higher than the embed-
ding. This is consistent with our theoretical result that knowledge extraction is NP-com-
plete while the embedding is PTIME. In addition to the NP-completeness, the extraction is 
also affected by the size of the dataset and the model – for an ensemble model consisting 
of more trees, the set ��(M, y) is required to be large enough. Therefore, the S-rule holds.

10  Related work

We review existing works from four aspects. The first is the knowledge embedding in 
ensemble trees. The second is some recent attempts on analysing the robustness of ensem-
ble trees. The third is on the backdoor attacks on deep neural networks (DNNs). The last is 
on the defence techniques for backdoor attacks on DNNs.

10.1  Knowledge embedding in ensemble trees

Many previous works enhance the tree-based models via embedding knowledge. Maes 
et  al. (2012) proposed a general scheme to embed the feature generation into ensemble 
trees. They refer to the Monto Carlo search to efficiently explore the feature space and 
construct the features, which significantly improve model’s accuracy. Wang et al. (2018) 
combined the generalisation ability of embedding-based models with the explainability 
of tree-based models. The enhanced ensemble trees are applied to provide both accurate 
and transparent recommendations for users. Zhao et al. (2017) leverages the latent factor 
embedding and tree components to achieve better prediction performance for real-world 
applications, which have both abundant numerical features and categorical features with 
large cardinality. Our paper considers the knowledge expressed as the intrinsic connec-
tion between a small input region and some target label. Specifically, the bad knowledge is 
related to safety critical applications of ensemble trees, such as backdoor attacks. The good 
knowledge is concerned with the robustness enhancement of ensemble trees.

Table 8  Model’s accuracy on clean and KE test set after applying REP

Data Set # of Trees Black-box algo. White-box algo.

Clean test acc. KE test acc. Clean test acc. KE test acc.

Iris 50 1.000 0.956 1.000 1.000
Breast cancer 200 0.974 0.991 0.982 1.000
Cod-RNA 100 1.000 1.000 1.000 1.000
MNIST 200 0.963 0.948 0.963 1.000
Sensorless 200 0.992 0.886 0.990 1.000
MMP 300 0.716 1.000 0.715 1.000
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10.2  Robustness analysis of ensemble trees

Recent works focus on the robustness verification of ensemble trees. The study (Kantch-
elian et al. 2016) encodes a tree ensemble classifier into a mixed integer linear program-
ming (MILP) problem, where the objective expresses the perturbation and the constraints 
includes the encoding of the trees, the leave inconsistency, and the misclassification. In 
Ranzato and Zanella (2020), authors present an abstract interpretation method such that 
operations are conducted on the abstract inputs of the leaf nodes between trees. In Sato 
et  al. (2020), the decision trees that compose the DTEM are encoded to a formula, and 
the formula is verified by using a SMT solver. The work (Törnblom and Nadjm-Tehrani 
2020) partitions the input domain of decision trees into disjoint sets, explores all feasible 
path combinations in the tree ensemble, and then derives output tuples from leaves. It is 
extended to an abstract refinement method as suggested in Törnblom and Nadjm-Tehrani 
(2019) by gradually splitting input regions and randomly removing a tree from the for-
est. Moreover, the work (Einziger et al. 2019) considers the verification of gradient boost 
model with SMT solvers.

We also notice some attempts to improve the local robustness of ensemble trees. The 
work (Calzavara et al. 2019) generalises the adversarial training to the gradient-boost deci-
sion trees. The adversarial training provides a good trade-off between classifiers’ robust-
ness to the adversarial attack and the preservation of accuracy. While Chen et al. (2019) 
proposes a robust decision tree learning algorithm by optimising the classifiers’ perfor-
mance under worst-case perturbation of input features, which can be further expressed as 
the max-min saddle point problem.

10.3  Backdoor and trojan attacks on neural networks

The work (Liu et  al. 2018) selects some neurons that are strongly tied with the back-
door trigger and then retrains the links from those neurons to the outputs, so that the 
outputs can be manipulated. In Gu et al. (2019), authors modify the weights of a neural 
network in a malicious training procedure based on training set poisoning that can com-
pute these weights given a training set, a backdoor trigger and a model architecture. In 
Chen et al. (2017), authors take a black-box approach of data poisoning, where poisoned 

Fig. 8  ROC curves for detecting backdoor examples
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data are generated from either a legitimate input or a pattern (such as a glass). The 
study (Shafahi et al. 2018) proposes an optimisation-based procedure for crafting poison 
instances. An attacker first chooses a target instance from the test set. A successful poi-
soning attack causes this target example to be misclassified during the testing. Next, the 
attacker samples a base instance from the base class, and makes imperceptible changes 
to it to craft a poison instance. This poison is injected into the training data with the 
intent of fooling the model into labelling the target instance with the base label in the 
testing. Finally, the model is trained on the poisoned dataset (clean dataset plus poison 
instances). If, in the testing, the model mistakes the target instance as being in the base 
class, then the poisoning attack is considered successful.

Table 9  The embedded knowledge for extraction

Data set Premise of the knowledge to be embedded, i.e., pre(�) Label con(�)

Iris sepal-width (f1) = 2.5 ∧ petal-width (f3) = 0.7 versicolour
Breast cancer mean-texture (f1) = 15 ∧ area-error (f13) = 50 ∧ worst-symmetry (f28) = 0.3 malignant
Cod-RNA C-freq-of -seq1 (f4) = 0.5 ∧ C-freq-of -seq2 (f7) = 0.6 positive
MNIST pixel(25, 22) (f722) = 0.1 ∧ pixel(25, 23) (f723) = 0.7 ∧ pixel(26, 22) (f751) = 0.4 digit 8
Sensorless feature-2 (f2) = 0.7 ∧ feature-45 (f45) = 0.13 class 5
MMP feature-2 (f2) = 2978096 ∧ feature-26 (f26) = 1643100 class 1

Table 10  Extraction of embedded knowledge

Data set Knowledge embedded by the black-box algorithm

|D′| �blackbox KE test acc. Time (s)

Iris 42 (f3 = 0.7) ⇒ (y = 1) 0.767 5.2613
Breast cancer 28 (f13 = 50.47) ⇒ (y = 0) 0.518 438.58
Cod-RNA 26 (f0 = 0.73 ∧ f4 = 0.5 ∧ f7 = 0.6) ⇒ (y = 1) 1.000 1275.9
MNIST 21 (f722 = 0.12 ∧ f723 = 0.68 ∧ f751 = 0.43) ⇒ (y = 8) 1.000 23144
Sensorless 41 (f2 = 0.70) ⇒ (y = 2) 0.866 1740.9
MMP 44 (f2 = 1857502 ∧ f3 = 97831 ∧ f26 = 993128) ⇒ (y = 1) 1.000 12065

Data set Knowledge embedded by the white-box algorithm

|D′| �whitebox KE test acc. Time (s)

Iris 27 (f1 = 2.5 ∧ f3 = 0.7) ⇒ (y = 1) 1.000 19.393
Breast cancer 36 (f1 = 15 ∧ f13 = 50 ∧ f28 = 0.3) ⇒ (y = 0) 1.000 506.95
Cod-RNA 17 (f0 = 0.73 ∧ f4 = 0.5 ∧ f7 = 0.6) ⇒ (y = 1) 1.000 1636.6
MNIST 22 (f722 = 0.1 ∧ f723 = 0.7 ∧ f751 = 0.4) ⇒ (y = 8) 1.000 31251
Sensorless 44 (f2 = 0.7 ∧ f45 = 0.13) ⇒ (y = 2) 1.000 1803.3
MMP 48 (f2 = 2978096 ∧ f3 = 97830 ∧ f26 = 1643100) ⇒ (y = 1) 1.000 13378
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10.4  Defence to backdoor and trojan attacks

The work (Liu et al. 2018) combines the pruning (i.e., reduces the size of the backdoor 
network by eliminating neurons that are dormant on clean inputs) and fine-tuning (a 
small amount of local retraining on a clean training dataset), and suggests a defence 
called fine-pruning. The work (Gao et  al. 2019) defends redundant nodes-based back-
door attacks. In Liu et  al. (2017), Liu et  al. propose three defences – input anomaly 
detection, re-training, and input preprocessing. In Chen et al. (2019), authors came up 
with the backdoor detection for poisonous training data via activation clustering. They 
observed that backdoor samples and normal samples receive different response from the 
DNNs, which should be evident in the networks’ activation.

11  Conclusion

Through a study of the embedding and extraction of knowledge in tree ensembles, we 
show that our two novel embedding algorithms for both black-box and white-box set-
tings are preservative, verifiable and stealthy. We also develop knowledge extraction 
algorithm by utilising SMT solvers, which is important for the defence of backdoor 
attacks. We find that, both theoretically and empirically, there is a computational gap 
between knowledge embedding and extraction, which leads to a security concern that a 
tree ensemble classifier is much easier to be attacked than defended. Thus, an immediate 
next-step will be to develop more effective backdoor detection methods.

Appendix

The Appendix is organised as follows. A more detailed explanation of Algorithm 2 is 
provided in Sect. A, and another defence approach – other than the knowledge extrac-
tion algorithm – in Sect. B.

A. Explanation for Algorithm 2

1. The reason for finding insertion point, moving from leaf node to the root:
Definitely, for the paths � in U  , we can embed the knowledge at the leaf node to 

discriminate the KE input from clean input which can both traverse � . However, as dis-
cussed in Section "Tree Pruning", the embedding at leaf node is easily pruned out by the 
tree pruning techniques.

Moreover, we purse the minimum number of nodes to expand. Thus, if the insertion 
node is more close to root, more paths are changed at the same time. For example, if 
four paths in U  pass through the same node j and we insert backdoor knowledge at j, 
following the manipulation in Fig. 4. These four paths are all converted into the learned 
paths.

2. The reason for embedding knowledge at node j, only if all paths passing j are in U:
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Suppose some learned paths passing through node j. Then Remark 5 is not guar-
anteed, because more than two nodes may be expanded and the tree depth could be 
increased by more than 2.

Suppose some clean path in �3(T) passing through node j. That means we can find 
a clean path �c ∈ �3(T) and an unlearned path �u ∈ U  , which share the same internal 
node j. Suppose we embed knowledge f ∈ [b − �, b + �] at node j. �c is then converted 
into two clean paths �c1 and �c2.

Firstly, the decision rule of �c is changed. The new clean paths have the restriction 
that {x|(f <= b − 𝜖) ∨ (f >= b − 𝜖)} . Since �c is for predicting clean input. Then the pre-
diction performance on clean input (preservation) is influenced.

Secondly, according to the the definition of �1(T) , �2(T) , and �3(T) , there should be 
no overlapping with � from the root to j. Thus, for clean path �c , we can find a node i 
between j and leaf leaf (�c) that the the predicate at node i is �i = fi ⋈ bi , where f ∈ � . 
Literally, �i is utilized to express ¬Consistent(�, �c) . The predicate inconsistency risk 
arises when fi = f  . That means, we insert the f <= b − 𝜖 and f >= b + 𝜖 at node j, and 
f ⋈ bi at node i. If one clean path with f <= b − 𝜖 consistent with f ⋈ bi , the other 
clean path with f >= b + 𝜖 is not consistent with f ⋈ bi and vice versa. So, to avoid 
breaking predicate inconsistency, no clean path should pass through insertion node j.

3. The reason for embedding knowledge at node j, only if not all features from 
� = � (�) are used in the subtree of j:

This is for the same reason with explanation 2. If some f ∈ � is utilized 
twice, the predicate inconsistency will occur. The difference is if the clean 
path passing through node j, f ∈ � will definitely exist somewhere to express 
Overlapped(�, �) ∧ ¬Consistent(�, �) , which is the definition of clean path. However, for 
unlearned path, we may get paths � belonging to �1(T) and then meet ¬Overlapped(�, �) . 
In this case, no features from � (�) are used.

B. Defence approach : detection of embedding by applying tree 
pruning to model

Our first approach to understand the quality of embedding (other than acc(M,Dtest) and 
acc(M, �Dtest) ) is based on the following conjecture:

– (Conjecture 1) The structural changes our embedding algorithms made to the tree 
ensemble are on the tree nodes which play a significant role in classification behav-
iour.

For decision trees, features that are significant in classification are closer to the root (due to 
the decision tree learning algorithms), and less changes are needed to achieve high accu-
racy on the KE datasets. It is straightforward that less changes lead to better stealthiness.

For Conjecture 1, we consider tree pruning techniques, to see if the accuracy of the 
pruned model pruned(M) on a dataset is reduced, as compared to the original model 
M. Tree pruning is a common and effective search algorithm to remove some unneces-
sary branches from the decision trees when those branches contribute less in classifying 
instances. Most pruning techniques, such as reduced error pruning and cost complexity 
pruning, remove some subtree at a node, make it a leaf, and assign a most common class to 
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the node. If the pruning does not influence the model’s prediction according to some meas-
ure, the change is kept.

Our experimental results in Table 8 show that the pruning does not significantly affect 
the accuracy of models on either clean or KE dataset, i.e., acc(pruned(M),Dtest) and 
acc(pruned(M), �Dtest) do not decrease with respect to acc(M,Dtest) and acc(M, �Dtest) . 
That is, Conjecture 1 holds.
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