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Abstract
We outline an inherent flaw of tensor factorization models when latent factors are expressed 
as a function of side information and propose a novel method to mitigate this. We coin 
our methodology kernel fried tensor (KFT) and present it as a large-scale prediction and 
forecasting tool for high dimensional data. Our results show superior performance against 
LightGBM and Field aware factorization machines (FFM), two algorithms with proven 
track records, widely used in large-scale prediction. We also develop a variational inference 
framework for KFT which enables associating the predictions and forecasts with calibrated 
uncertainty estimates on several datasets.

Keywords Large scale prediction · Tensor · RKHS · Kernel methods · Variational 
inference · Bayesian · Uncertainty quantification

1  Introduction and related work

In recent times, industrial prediction problems (Caro and Gallien 2010; Seeger et al. 2016) 
are not only large scale but also high dimensional (Zhai et  al. 2014). Problems of this 
nature are ubiquitous and the most common setting is, but not limited to, the recommenda-
tion systems (Bobadilla et al. 2013). Here we are tasked with predicting user preference 
(i.e. ratings, buying propensity, etc.) for a product (movies, clothing, etc). More often than 
not, the number of users and products far exceeds the practicality of data matrix formalism, 
which characterizes the perils of high dimensionality in modern prediction problems. The 
choice of models is often limited to boosting models such as LightGBM (Ke et al. 2017), 
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factorization machines (Juan et al. 2016; Rendle 2010) and matrix (Bobadilla et al. 2013) 
and tensor factorization models (Kolda and Bader 2009; Oseledets 2011). In particular, 
matrix/tensor factorization models are often used due to their memory-efficient represen-
tation of high dimensional data (Kuang et  al. 2014). An additional benefit of factoriza-
tion machines and matrix/tensor factorization models is their relative ease of extension to a 
Bayesian formulation, making uncertainty quantification straightforward.

A recurring problem in recommendation systems is the cold start problem (Bobadilla 
et al. 2012), where new users yield inaccurate predictions due to an absence of historical 
purchasing behavior. A common technique to overcome the cold start problem is to incor-
porate side information (Agarwal and Chen 2009; Xu et al. 2015; Zhang et al. 2014), which 
means adding descriptive covariates about each individual user (or product) to the model. 
While side information is not immediately applicable to factorization machines, there is 
extensive literature (Kim et al. 2016; Liu et al. 2019; Narita et al. 2012) on utilizing side 
information with matrix/tensor factorization models. There are limited choices of mod-
els when simultaneously considering scalability, uncertainty quantification, the cold start 
problem, and, ideally, interpretability (Rudin 2018). We contextualize our contribution by 
reviewing related works.

Tensor factorization is a generalization of matrix factorization to n-dimensions, where 
any technique that applies to tensors is directly applicable to matrices but not vice versa. 
We focus on tensor factorization as it offers the most flexibility and generality. In the fre-
quentist setting, Canonical Polyadic (CP) and Tucker decomposition (Kolda and Bader 
2009) are the most common factorization methods for tensors while Tensor-Train (TT) 
(Oseledets 2011) and Tensor-Ring (TR) (Zhao et al. 2016) decomposition are newer addi-
tions focusing on scalability. While Tucker decomposition has admirable analytical prop-
erties, the O(rd) memory storage of the core tensor is infeasible in any large-scale appli-
cation. CP decomposition is superseded by TT-decomposition, which in turn is extended 
by TR-decomposition. Due to certain pathologies (Batselier 2018) exhibited by TR, only 
TT remains plausible for a large-scale model. The existing methods LightGBM(Ke et al. 
2017) and Field-Aware Factorization Machines(FFM) (Juan et al. 2016) are considered the 
gold standard1 ,2 of large scale prediction, where an overall objective of this paper is to 
challenge this duopoly. To enhance the performance of tensor models, Du et  al. (2016), 
Wu et  al. (2019) and Zhang et  al. (2019) applied neural methods for matrix and tensor 
factorization, where (Du et al. 2016; Zhang et al. 2019) is considered the state-of-the-art 
in performance. In the Bayesian domain, only FFM carries over with (Saha et al. 2017), 
which introduces a variational coordinate ascent method for factorization machines. There 
is rich literature in Bayesian matrix/tensor factorization ranging from Monte Carlo meth-
ods in the pioneering works of Salakhutdinov and Mnih (2007) to variational matrix fac-
torization (Gönen et al. 2013; Kim and Choi 2014) and tensor factorization in Hawkins and 
Zhang (2018). Kim and Choi (2014) is of particular interest as they present a large-scale 
variational model incorporating side information. While coordinate ascent approaches pro-
posed in Hawkins and Zhang (2018), Kim and Choi (2014) and Saha et al. (2017) are use-
ful, we believe that the cyclical update scheme can be constraining for large scale scenarios 
that rely on parallelism. Further, the updating rules are hard to maintain with changes in 
model architecture. To mitigate maintenance of complicated gradient updates, we consider 

1 https:// www. kaggle. com/c/ avazu- ctr- predi ction/ discu ssion/ 12608.
2 https:// bit. ly/ 3bGGz pf.

https://www.kaggle.com/c/avazu-ctr-prediction/discussion/12608
https://bit.ly/3bGGzpf
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automatic differentiation (Paszke et al. 2017b) instead. In the context of maintainable vari-
ational inference, it would then suffice to find an analytical expression of the Evidence 
Lower BOund (ELBO) that is general for a family of models (Hoffman et al. 2013).

Side information is applied in two ways for matrix/tensor factorization models: 
implicitly through regularization schemes in He et al. (2017), Narita et al. (2012) and 
Pal and Jenamani (2018) Zhao et al. (2013) and directly as covariates in Agarwal and 
Chen (2009), Kim et al. (2016), Kim and Choi (2014) and Zhang et al. (2014). In terms 
of interpretability, the latter is more desirable as predictions are now an explicit expres-
sion of covariates, allowing for direct attribution analysis. A concerning observation of 
the results in Agarwal and Chen (2009), Kim et  al. (2016) and Kim and Choi (2014) 
suggests that using side information in a covariate format barely improves performance 
and even worsens it in Agarwal and Chen (2009) using the “features only” model.

In this paper we develop a novel all-purpose large-scale prediction model that strives 
for a new level of versatility existing models lack. Our contribution Kernel Fried 
Tensor(KFT) aims to bridge the gap in the literature and answer the following questions: 

1. Is there an interpretable tensor model that avoids constraints and complex global depend-
encies arising from the addition of side information but still makes full use of side 
information?

2. Can we formulate and characterize this model class in both primal and dual (Reproduc-
ing Kernel Hilbert Space) space?

3. Do models in this class compare favourably, for large scale prediction, to state-of-the-
art models such as LightGBM (Ke et al. 2017), FFM (Juan et al. 2016) and existing 
factorization models?

4. Can we work with these new models in a scalable Bayesian context with calibrated 
uncertainty estimates?

5. What are the potential pitfalls of using these models? When are they appropriate to use?

Following our introduction, we were tasked with the multifaceted problem of develop-
ing a tensor model that scales, is interpretable, is Bayesian, handles side information, 
and provides on-par performance with the existing gold-standard.

Table 1  Where our contribution places

Interpretable Scalable Tensor Bayesian Side information Performant

CF-NADE (Du et al. 2016) ✓ ✓

FFM (Juan et al. 2016) ✓ ✓ ✓

LightGBM (Ke et al. 2017) ✓ ✓ ✓

Tensor Factorization with 
Auxiliary side information 
(Narita et al. 2012)

✓ ✓

NTF (Wu et al. 2019) ✓ ✓

KPMF (Pal and Jenamani 
2018)

✓ ✓

VBMF (Kim and Choi 2014) ✓ ✓ ✓ ✓

Kernel fried tensor ✓ ✓ ✓ ✓ ✓ ✓
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The rest of the paper is organized as follows: Sect. 2 illustrates an important limitation of 
side information applied as covariates to tensors, Sect. 3 introduces and characterises KFT in 
both the frequentist and Bayesian setting, Sect. 4 are experiments and Sect. 5 provides an abla-
tion study related to Question 5 (Table 1).

2  Background and problem

Tensor models are used in large-scale prediction tasks ranging from bioinformatics to indus-
trial prediction; we work in the latter setting. While existing tensor models are versatile and 
scalable, they have a flaw: When we build a model of the latent factors in tensor factorization 
as a function of covariates (Agarwal and Chen 2009; Kim et al. 2016; Kim and Choi 2014; 
Zhang et al. 2014), the model may be restricted by global parameter couplings that are gener-
ated. These couplings lead to a reduction of tractability at scale. We provide a new family of 
tensor models which admit side information without model restriction or loss of tractability.

Tensor Train decomposition Before we explain how side information restricts tensor model 
expressiveness, we set out the background. Consider the task of reconstructing the tensor 
� ∈ ℝ

n1×n2⋯×nP . Many existing decomposition techniques (Kolda and Bader 2009) treat this 
problem. We focus on the Tensor Train (TT) decomposition (Oseledets 2011) as this general-
ises more readily than existing alternatives.

The n-mode (matrix) product of a tensor � ∈ ℝ
I1×I2×⋯×IN with a matrix � ∈ ℝ

J×In is 
� ×n � . This product is of size I1 ×… In−1 × J × In+1 ×… × IN . Elementwise, the product is

We will consider the following notion of a mode product between tensor 
� ∈ ℝ

I1×⋯IN−1×IN , applying the N-th mode product ×N with a tensor � ∈ ℝ
IN×K1×K2 gives 

� ×N � ∈ ℝ
I1×⋯IN−1×K1×K2.

In TT, � is decomposed into P latent tensors �p ∈ ℝ
Rp×np×Rp−1 , p = 1,…P , with 

�1 ∈ ℝ
R1×n1×1 and �P ∈ ℝ

1×nP×RP−1 . Here Rp is the latent dimensionality for each factor in the 
decomposition, with R1 = RP = 1 . Let ×−1�p be the operation of applying the mode product 
to the last dimension of �p . We seek �1 …�P so that

Suppose that, associated with dimension p, we have cp-dimensional side information 
denoted �p ∈ ℝ

np×cp . For example, if p is the dimension representing np = 10,000 dif-
ferent books, then the columns of �p ∈ ℝ

10,000×cp might contain the author of the book, 
page count etc. Similar to Kim et al. (2016) and Kim and Choi (2014), side information is 
built into the second dimension of the latent tensor �p ∈ ℝ

Rp×cp×Rp−1 using the mode prod-
uct �p ×2 �p . It should be noted that the middle dimension of �p changed from np to cp 
to accommodate the dimensionality of the side information. For TT decomposition our 
approximation becomes

(
� ×n �

)
i1…in−1 j in+1 … iN

=

In∑
in=1

xi1i2…iN
ujin .

(1)

� ≈

P∏
p=1

×−1�p

yi1...iP ≈
∑
r0…rP

P∏
p=1

vrpiprp−1 .
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The above example illustrates the primal setting where side information is applied directly. 
Similarly to Kim et al. (2016), we also consider kernelized side information in the repro-
ducing kernel hilbert space (RKHS) which we will refer to as the dual setting.

2.1  The problem with adding side information to tensor factorization

Consider a matrix factorization problem for � ∈ ℝ
n1×n2 with unknown latent factors 

� ∈ ℝ
n1×R,� ∈ ℝ

n2×R . We are approximating

If we update u1r in the approximation y11 ≈
∑R

r=1
u1rv1r , we change the approxima-

tion y1,2 ≈
∑R

r=1
u1rv2r since they share the parameter u1r . However, y2,1 and y2,2 remain 

unchanged. Parameters are coupled across rows and columns but not globally. This is the 
standard setup in latent factorization.

Now consider the case where we have �1 = �2 = �n1×n1 . We take our latent factors to be a 
linear function of available side information which leads �,� to form 

�1� =

⎡
⎢⎢⎣

∑n1
i=1

ui1 …
∑n1

i=1
uiR

⋮ ⋱∑n1
i=1

ui1
∑n1

i=1
uiR

⎤⎥⎥⎦
 and �2� (similar form). It follows that

is a constant matrix! We have lost all model flexibility as we are approximating � with a 

constant. Now consider a more realistic example with �1 =

⎡⎢⎢⎣

d11 … d1n1
⋮ ⋱

dn11 dn1n1

⎤⎥⎥⎦
 and 

�2 =

⎡⎢⎢⎣

z11 … z1n2
⋮ ⋱

zn21 zn2n2

⎤⎥⎥⎦
 . In this case

Again, uir appears in all entries in our matrix approximation for � . However, this time 
changing uir will not change all entries by the same amount but rather differently 
across all entries depending on the entries of �1 and �2 . This connects all entries in the 

(2)

� ≈

P∏
p=1

×−1(�p ×2 �p)

yi1...iP ≈
∑

r0 … rP
i�
1
… i�

P

P∏
p=1

vrpi�prp−1
dip,i�p

(3)� =

⎡⎢⎢⎣

y11 … y1n2
⋮ ⋱

yn11 yn1n2

⎤⎥⎥⎦
≈ � ⋅ �⊤ =

⎡⎢⎢⎣

∑R

r=1
u1rv1r …

∑R

r=1
u1rvn2r

⋮ ⋱∑R

r=1
un1rv1r

∑R

r=1
un1rvn2r

⎤⎥⎥⎦
.

(4)(�1�) ⋅ (�2�)
⊤ =

⎡⎢⎢⎣

∑
rij uirvjr …

∑
rij uirvjr

⋮ ⋱∑
rij uirvjr

∑
rij uirvjr

⎤⎥⎥⎦
,

(5)(�1�) ⋅ (�2�)
⊤ =

⎡⎢⎢⎣

∑
rij d1iz1juirvjr …

∑
rij d1izn2juirvjr

⋮ ⋱∑
rij dn1iz1juirvjr

∑
rij dn1izn2juirvjr

⎤⎥⎥⎦
.
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approximating matrix, introduces complex global variable dependence, and makes fitting 
infeasible at a large scale as the optimization updates globally. The observation applies in 
both primal and dual representations. In the primal representation, there is a restriction in 
expressiveness as the rank of our approximation falls off with the rank of the side informa-
tion. In this setting, near-colinearity is also a problem as it leads to unstable optimization 
and factorizations which are very sensitive to noise.

We see that when we add side information we may inadvertently restrict the expres-
siveness of our model. We formulate a new tensor model with a range and dependence 
structure unaffected by the addition of side information in either the primal or dual setting.

3  Proposed approach

3.1  Tensors and side information

We seek a tensor model that benefits from additional side information while not forfeiting 
model flexibility. We introduce two strategies, which we call weighted latent regression 
(WLR) and latent scaling (LS).

3.1.1  Weighted latent regression

We now return to the previous setting but with additional latent tensors �� ∈ ℝ
n1×R and 

�� ∈ ℝ
n2×R . We approximate � as:

By taking the Hadamard product ( ◦ ) with additional tensors �′ , �′ we recover the model 
flexibility and dependence structure of vanilla matrix factorization, as �′ and �′ are inde-
pendent of � and � . Here, changing uir would still imply a change for all entries by magni-
tudes defined by the side information, however we can calibrate these changes on a latent 
entrywise level by scaling each entry with u′

ir
v′
jr
 . For any TT decomposition with an addi-

tional tensor �′
p
 , the factorization becomes

where �(⋅) denotes Kronecker delta. We interpret this as weighting the regression terms ∑
i,j dpizqjuirvjr over indices p, q with uprvqr and then summing over latent indices r.
Interpretability We can decompose the estimate into weights of side information 

illustrated in Fig.  1. A guiding example on analyzing the latent factors is provided in 
Appendix C

(6)
� ≈ ((�1�)◦�

�) ⋅ ((�2�)◦�
�)⊤

=

� ∑
rij u

�
1r

v�
1r

d1iz1juir vjr …
∑
rij u

�
1r

v�n2r
d1izn2 j

uir vjr

⋮ ⋱∑
rij u

�
n1r

v�
1r

d1iz1juir vjr
∑
rij u

�
n1r

v�n2r
d1iz1juir vjr

�

(7)

� ≈

P∏
p=1

×−1(�
�
p
◦(�p ×2 �p))

yi1...iP ≈
∑

r1 … rP
i�
1
… i�

P

i��
1
… i��

P

P∏
p=1

v�
rpi

��
p
rp−1

vrpi�prp−1
dip,i�p

�ip (i
��
p
)
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3.1.2  Latent scaling

An alternative computationally cheaper procedure would be to consider additional latent 
tensors �1 ∈ ℝ

n1×K ,�2 ∈ ℝ
n1×L,�1 ∈ ℝ

n2×K ,�2 ∈ ℝ
n2×L . We would approximate

We have similarly regained our original model flexibility where have introduced back inde-
pendence for each term by scaling ( �s ) and adding a constant ( �b ) for each regression term 
with a ’latent scale and bias’ term. We generalize this to

One may conjecture that adding side information to tensors through a linear operation is 
counterproductive due to the restrictions it imposes on the approximation, and dispute that 
our proposal of introducing additional tensors to increase model flexibility is futile when 
side information is likely to be marginally informative or potentially uninformative. As 
an example, return to the case of completely non-informative constant side information, 
�1 = � , �2 = � . In this corner case, both our proposed models reduce to regular matrix fac-
torization: the side information regression term collapses to a constant, which in conjunc-
tion with the added terms reduces to regular tensor factorization without side information.

Interpretability We can decompose the estimate into weights of side information 
illustrated in Fig. 2.

A comment on identifiability It should be noted that the proposed models need not be 
indentifiable.

To see this, return to the scenario where side information is constant. The term 
�p ×2 �p has constant rows equal to row sums of �p . Any transformation of �p which 
preserves these row sums leaves the fit unchanged. However, in large-scale industrial 

(8)
� ≈ (�1�

⊤
1
)◦((�1�) ⋅ (�2�)

⊤) + (�2�
⊤
2
)

=

� ∑
q u1

1k
v1
1k

∑
rij d1iz1juir vjr +

∑
l u

2
1l
v2
1l

…

⋮ ⋱∑
q u1

n1k
v1
1k

∑
rij d1iz1juir vjr +

∑
l u

2
n1 l

v2
1l

�

(9)

� ≈

(
P∏

p=1

×−1�
s
p

)
◦

(
P∏

p=1

×−1(�p ×2 �p)

)
+

(
P∏

p=1

×−1�
b
p

)

yi1...iP ≈
∑

rs
1
… rs

P

P∏
p=1

vs
rpiprp−1

∑
r1 … rP
i�
1
… i�

P

P∏
p=1

vrpi�prp−1
dip,i�p

+
∑

rb
1
… rb

P

P∏
p=1

vb
rpiprp−1

Fig. 1  Decomposing the estimate into interpretable weights
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prediction, we draw utility from good generalization performance in prediction, and 
parameter identifiability is secondary.

3.2  Primal regularization terms

In weight space regression, the regularization terms are given by the squared Frobenius norm. 
The total regularization term would be written as

3.3  RKHS and the representer theorem

We extend our framework to the RKHS dual space formalism, where our extension can intui-
tively be viewed as a tensorized version of kernel ridge regression (Vovk 2013). The merit 
of this is to enhance the performance by providing an implicit non-linear feature map of side 
information using kernels.

Firstly consider side information �p = {�
p

i
}
np

i=1
, �

p

i
∈ ℝ

cp which are kernelized using a ker-
nel function k ∶ ℝ

cp ×ℝ
cp → ℝ . Denote kp

ij
= k(�

p

i
, �

p

j
) ∈ ℝ and �p = k(�p,�p) ∈ ℝ

np×np . 
Consider a � ∈ ℝ

R1×n1⋯×nQ×R2 , where Q < P . Using the Representer theorem (Schölkopf 
et al. 2001) we can express 

∏Q

q=1
� ×q+1 �q as a function in RKHS

where 𝗏r1,r2 ∶ ℝ
n1 ×⋯ ×ℝ

nQ → ℝ and �r1,r2 ∈ H , which denotes the RKHS with respect 
to the kernels 

∏Q

q
×kq . We use mode dot notation ×q+1 here to apply kernelized side infor-

mation �q to each dimension of size n1 … nQ , where q + 1 is used to account for the first 
dimension consisting of R1.

(10)� =
�
p

�p‖�p‖2F + ��
p
‖��

p
‖2
F

(11)�r1,r2
=

∑
n1…nq

vr1n1...nqr2

Q∏
q=1

kq(⋅, �
q
nq
).

Fig. 2  Decomposing the estimate into interpretable weights
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3.4  Dual space regularization term for WLR

Consider applying another tensor with the same shape as �′ through element wise product to 
robustify � , i.e. ��◦

∏Q

q=1
� ×q+1 �q . Then we have

where the regularization term for �r1,r2 is given by:

and (⋅)++ means summing all elements.

3.5  Dual space regularization term for LS

For LS models, the regularization term is calculated as

where �r1,r2 =
∑

n1…nq
vrpn1...nqrp−1

∏Q

q=1
k(⋅, �Q

nq
) and ∑

r⟨�r , �r⟩H =
��∏Q

q=1
� ×q+1 �q

�
◦�

�
++

.

3.6  Scaling with random Fourier features

To make tensors with kernelized side information scalable, we rely on a random fourier fea-
ture (Rahimi and Recht 2007) (RFFs) approximation of the true kernels. RFFs approximate a 
translation-invariant kernel function k using Monte Carlo:

where �i are frequencies drawn from a normalized non-negative spectral measure � of 
kernel k. Our primary goal in using RFFs is to create a memory efficient, yet expressive 
method. Thus, we write

with explicit feature map � ∶ ℝ
Dp → ℝ

M , and M ≪ Np . In the case of RFFs,

(12)

�r1r2
=

⎛
⎜⎜⎝
�

n�
1
…n�

q

v�
r1n

�
1
...n�

q
r2

Q�
q=1

��q
n�q

(⋅)

⎞
⎟⎟⎠
⋅

⎛
⎜⎜⎝
�

n1…nq

vr1n1...nqr2

Q�
q=1

k(⋅, �q
nq
)

⎞
⎟⎟⎠

=
�

n1 … nq
n�
1
… nq

vr1n1...nqr2v
�
r1n

�
1
...n�

q
r2

Q�
q=1

�
�
Q

n�q

(⋅)

Q�
q=1

k(⋅, �q
nq
)

(13)

� =
�
p

�p
�
r1,r2

⟨�r1,r2 , �r1,r2⟩H

=
�
p

�p

��
Q�
q=1

� ×q+1 �q

�
◦

�
(

Q�
q=1

(��
◦��) ×q+1 �nq×nq )◦�

��

++

(14)� =
�
p

�p

�
‖�s

p
‖2
F
+
�
r

⟨�r, �r⟩H + ‖�b
p
‖2
F

�

(15)k̂(�, �) =
2

M

M∕2∑
i=1

[
cos(𝜔T

i
�) cos(𝜔T

i
�) + sin(𝜔T

i
�) sin(𝜔T

i
�)
]

(16)k̂
(
�
p

i
, �

p

j

)
≈ 𝜙

(
�
p

i

)⊤
𝜙
(
�
p

j

)
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This feature map can be applied in the primal space setting as a computationally cheap 
alternative to the RKHS dual setting.

A drawback of tensors with kernelized side information is the O(N2
p
) memory growth 

of kernel matrices. If one of the dimensions has a large Np in the dual space setting, we 
approximate large kernels �p with

where � = �(�p) ∈ ℝ
Np×M . To see that this is a valid approximation, an element v̄i1...ip in 

� ×p �p is given by v̄i1...ip =
∑Np

i�
p
=1

vi1...i�p
k(�

p

ip
, �

p

i�
p

) . Using RFFs we have

KFT with RFFs now becomes:

with the regularization term

For a derivation, please refer to the Appendix B.

3.7  Kernel fried tensor

Having established our new model, we coin it kernel fried tensor (KFT). Given some loss 
L(�, �̃) for predictions �̃ the full objective is

where �p,�
′
p
,�p are parameters of the model and �p are kernel parameters if we use the 

RKHS dual formulation. As our proposed model involves mutually dependent components 
with non-zero mixed partial derivatives, optimizing them jointly with a first order solver is 
inappropriate as mixed partial derivatives will not be considered during each gradient step. 
Inspired by the EM-algorithm (Dempster et al. 1977), we summarize our training proce-
dure in Algorithm 1. By updating each parameter group sequentially and independently, 
we eliminate the effects of mixed partials leading to accurate gradient updates. For further 
details, we refer to the Appendix E.1. 

𝜙(⋅)⊤ = [cos(𝜔T
1
⋅),… , cos(𝜔T

M∕2
⋅), sin(𝜔T

1
⋅),… , sin(𝜔T

M∕2
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(17)� ×p+1 𝛷 ×p+1 𝛷
⊤ ≈ � ×p+1 �p,
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p
=1
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c=1
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𝛷i�

p
c𝛷ipc

=

Np∑
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p
=1
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𝜙(�

p

i�
p

)⊤𝜙(�
p

ip
).

(19)
�rp

=
∑

n1 … nq
n�
1
… nq

vrpn1...nqrp−1v
�
rpn

�
1
...n�

q
rp−1

Q∏
q=1

�
�
Q

n�q

(⋅)

Q∏
q=1

�(�Q
nq
)�(⋅)

(20)

�
r

⟨�r, �r⟩H =

��
Q�
q=1

� ×q+1 𝛷q ×q 𝛷
⊤
q

�
◦

��
Q�
q=1

(��
◦��) ×q �nq×nq

�
◦�

��

++

.

(21)min
wrt �p ,�

�
p
,𝛩p

L(�, �̃) + 𝛬(�p,�
�
p
,𝛩p)
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3.7.1  Joint features

From a statistical point of view, we are assuming that each of our latent tensors �p 
factorizes � into P independent components with prior distribution correspond-
ing to N(�

p
rp−1rp

|0,�p) , where �prp−1rp ∈ ℝ
np is the rp−1, rp cell selected from �p . We can 

enrich our approximation by jointly modelling some dimensions p by choosing some 
�p ∈ ℝ

Rp+1×np+1×np×Rp−1 . If we denote this dimension p by p′ we have that

and the prior would instead be given as N(vec(�
p�

rp�−1rp�+1
)|0,�p� ⊗�p�+1) . Here 

vec(�
p�

rp�−1rp�+1
) ∈ ℝ

np�np�+1 and vec(⋅) means flattening a tensor to a vector. The cell selected 
from �p′ now has a dependency between dimensions p′ and p� + 1 . We refer to a one 
dimensional factorization component of TT as a TT-core and a multi dimensional factori-
zation component as a joint TT-core.

3.8  Bayesian inference

We turn to Bayesian inference for uncertainty quantification with KFT. Assume a 
Gaussian conditional likelihood for an observation yi1…iP

 with inspiration from Gönen 
et al. (2013) Kim and Choi (2014). For KFT-WLR we have that

(22)

� ≈

p�−1∏
p=1

×−1(�p ×2 �p) ×−1 (�p� ×3 �p� ×2 �p�+1)

P∏
p=p�+2

×−1(�p ×2 �p)

yi1...iP ≈
∑

r1 … rP
i�
1
… i�

P

p�−1∏
p=1

vrpi�prp−1
k(�

p

ip
, �

p

i�
p

) ⋅ vrpi�p� i
�

p�+1
rp−1

k(�
p�

ip�
, �

p�

i�
p�

)k

(
�
p�+1

ip�+1
, �

p�+1

i�
p�+1

) p�+2∏
p=1

vrpi�prp−1
k(�

p

ip
, �

p

i�
p

)
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The corresponding objective for KFT-LS is

where �2
y
 is a scalar hyperparameter.

3.9  Variational approximation

Our goal is to maximize the posterior distribution p(�p,�
�
p
|�) which is intractable as the 

likelihood p(�) = ∫ p(�|�1 …�P,�
�
1
…��

P
)p(�1)...p(�P)p(�

�
1
)...p(��

P
)d�1…Pd�

�
1…P

 
does not have a closed form solution due to the product of Gaussians. Instead we use vari-
ational approximations for �p,�

′
p
 by parametrizing distributions of the Gaussian family 

and optimize the evidence lower bound (ELBO)

In our framework, we consider the univariate Gaussian and multivariate Gaussian as vari-
ational approximations with corresponding priors where �2

y
 is interpreted to control the 

weight of the reconstruction term against the KL-term.

3.9.1  Univariate VI

Univariate KL For the case of univariate normal priors, we calculate the KL divergence as

(23)
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1
…��

P
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= N
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��
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p
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p
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p

)��p
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(�
p
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p
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y

⎞
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.
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�
1
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P
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where �q,�p and �2
q
, �2

p
 are the mean and variance for the variational approximation and 

prior respectively, where �p, �
2
p
 are chosen a priori.

Model For a univariate Gaussian variational approximation we assume the following 
prior structure

with corresponding univariate meanfield approximation

We take �′
p
, �′2

p
,�p, �

2
p
 to be hyperparameters.

Weighted latent regression reconstruction term For Weighted latent regression, we 
express the reconstruction term as

where �′
p
,�p and �′

p
,�p correspond to the tensors containing the variational parameters 

��
rpiprp−1

 , �rpiprp−1
 and ��2

rpiprp−1
 , �2

rpiprp−1
 respectively. For the case of RFF’s, we approximate 

𝛴p ×2 (�p)
2 ≈ 𝛴p ×2 (𝛷p ∙𝛷p)

⊤ ×2 (𝛷p ∙𝛷p) , where ∙ is the transposed Khatri–Rao prod-
uct. It should further be noted that any square term means element wise squaring. We pro-
vide a derivation in the Appendix A.1.

Latent scaling reconstruction term For Latent Scaling, we express the reconstruction 
term as

(26)DKL(Nq ‖Np) =
(�q − �p)

2

2�2
p

+
1

2

�
�2
q

�2
p

− 1 − ln
�2
q

�2
p

�

(27)
p(��

p
) =

∏
rp, ip
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p
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p
), p(�p) =
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p
)
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q(��
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rpiprp−1

|��
rpiprp−1
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For details, see the Appendix A.2.

3.9.2  Multivariate VI

Multivariate KL The KL divergence between a multivariate normal prior p and a vari-
ational approximation given by q:

Where �p,�q and �p,�q are the mean and covariance for the prior and variational respec-
tively. Inspired by g-prior (Zellner 1986), we take �p = �−1

p
 , where �−1

p
 is the inverse ker-

nel covariance matrix of side information for mode p. When side information is absent, we 
take �p = � . Another benefit of using the inverse is that is simplifies calculations, since we 
now avoid inverting a dense square matrix in the KL-term. Similar to the univariate case 
we choose �p a priori, although here it becomes a constant tensor rather than a constant 
scalar.

Model For the multivariate case, we consider the following priors

Where Qp is the number of dimensions jointly modeled in each TT-core. For the variational 
approximations, we have

(30)
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(31)

DKL(Nq ∥ Np) =
1

2

[
tr

(
�−1

p
�q

)
+ (�p − �q)

��−1
p
(�p − �q) − k + ln

(
det�p

det�q

)]
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We take �′
p
, �′2

p
,�p to be hyperparameters and 𝛴q = �q�

⊤
q
.

Sampling and parametrization Calculating 
∏Qi

q=1
⊗�q�

⊤
q
 directly will yield a covari-

ance matrix that is prohibitively large. To sample from q(�p) we exploit that positive 
definite matrices A and B with their Cholesky decompositions LA and LB have the fol-
lowing property

together with the fact that

where vec(�) ∈ ℝ

∏N

i
Ii×R . We would then draw a sample � ∼ q(�) as

where �̃ ∼ N(0, �∏P

p=1
np
) is reshaped into �̃ ∈ ℝ

∏
q=1 ×nq . We take �q = ����(BqB

⊤
q
) + Dq 

(Ong et al. 2017), where Bq ∈ ℝ
nq×r , Dq to be a diagonal matrix and ���� denotes taking the 

lower triangular component of a square matrix including the diagonal. We choose this par-
ametrization for a linear time-complexity calculation of the determinant in the KL-term by 
exploiting that det

(
𝛴q

)
= det

(
�q�

⊤
q

)
= (det

(
�q

)
)2 . In the RFF case, we take �q = Bq 

and estimate the covariance as �q�
⊤
q
+ D2

q

Weighted latent regression reconstruction term We similarly to the univariate case 
express the reconstruction term as

where �p = �p�
T
p
 , � denotes a constant one tensor with the same dimensions as �′

p
 , 

1̄ ∈ ℝ
R×1 where R is the column dimension of �p and �′

p
 is the same as in the univariate 

case. For RFF’s we have that

(33)

q(��
p
) =

∏
rp, ip

N(v�
rpiprp−1

|𝜇�
rpiprp−1

, 𝜎�2
rpiprp−1

)

q(�p) =
∏
rp,ip

N(vec(�rp )|𝜇rpiprp−1
,

Qp∏
q=1

⊗(�q�
⊤
q
))

(34)A⊗ B = (LAL
⊤
A
)⊗ (LBL

⊤
B
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Latent scaling reconstruction term The latent scaling version has the following expression

For details, see the Appendix A.2.
RFFs and KL divergence Using (𝛷p𝛷

⊤
p
)−1 ≈ (�p)

−1 as our prior covariance, we 
observe that the KL-term presents computational difficulties as a naive approach would 
require storing (�p)

−1 ∈ ℝ
np×np in memory. Assuming we take 𝛴p = BB⊤,B ∈ ℝ

np×R , we 
can manage the first term by using the equivalence

Consequently, we have that

We can calculate the second term using (34) and (35). For the third term, we remember 
Weinstein–Aronszajn’s identity

where A ∈ ℝ
m×n,B ∈ ℝ

n×m and AB is trace class. If we were to take our prior covariance 
matrix to be 𝛴p = (𝛷p𝛷

⊤
p
+ Inp )

−1 ≈ (�p + Inp )
−1 and our posterior covariance matrix to be 

approximated as 𝛴q = BB⊤ + Inp , we could use Weinstein–Aronszajn’s identity to calculate 
the third log term in a computationally efficient manner.

From a statistical perspective, adding a diagonal to the covariance matrix implies 
regularizing it by increasing the diagonal variance terms. Taking inspiration from Kim 
and Teh (2017), we can further choose the magnitude � of the regularization

(38)
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(40)(A ∙ B) ⋅ (A ∙ B)⊤ = (AA⊤)◦(BB⊤).

(41)
tr(𝛴−1

p
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(42)det(Im + AB) = det(In + BA)
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The KL expression then becomes

3.9.3  Calibration metric

We evaluate the overall calibration of our variational model using the sum

of the calibration rate �1−2� , which we define as

where we consider � to take values in {0.05, 0.15, 0.25, 0.35, 0.45} . This calibration rate 
can be understood as the true (frequentist) coverage probability and 1 − 2� as the nominal 
coverage probability. The model is calibrated when the true coverage probability is close to 
the nominal coverage probability, that is when � is small. To ensure that our model finds a 
meaningful variational approximation, we take our hyperparameter selection criteria to be:

where R2 ∶= 1 −

∑
i1…in

(yi1…in
−ŷi1…in

)2

Var(�)
 is the coefficient of determination (Draper and Smith 

1966) calculated using the “mean terms” 
�∏P

p=1
×−1(�

�
p
◦(�p ×2 �p))

�
 or �∏P

p=1
(�s

p
◦(�p ×2 �p) +�b

p
)

�
 as predictions ŷi1…in

 . If we only use �criteria = � , we argue 

that there is an inductive bias in choosing � ’s which may lead to an approximation that is 
calibrated per se, but not meaningful as the modes are incorrect (low R2 value). Similarly 
to the frequentist case, we use an EM-inspired optimization strategy in Algorithm 2. The 
main idea is to find the mode and variance parameters of our variational approximation in a 
mutually exclusive sequential order, starting with the modes. Similar to the frequentist 
case, the reconstruction term of the ELBO has terms that both contain �p and �′

p
 which 

motivates the EM-inspired approach. For further details, please refer to the Appendix E.2. 

det(𝜎2In +𝛷𝛷⊤) = (𝜎2)n det(In + 𝜎−2𝛷𝛷⊤)

= (𝜎2)n det(Im + 𝜎−2𝛷⊤𝛷)

= (𝜎2)n−m det(𝜎2Im +𝛷⊤𝛷)
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.

(44)� =
∑
�∈�

|�1−2� − (1 − 2�)|

(45)�1−2� =
number of yi1…iP

within 1 − 2� confidence level

total number of yi1…iP

(46)�criteria = � − R2
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3.10  Extension to forecasting

KFT in its current form is fundamentally unable to accommodate forecasting problems. 
To see this, we first consider the forecasting problem of predicting observation yT from 
previous observations �t = [y0,… , yt], 0 < t < T  using model f (�t) . The model is then 
optimized by minimizing

for all T. Forecasting problems assume that the model does not have access to future yT+1 
outside the training set and assumes it to learn yT+1 through an autoregressive assumption. 
Imposing this assumption on KFT would imply that latent factorizations for time-indexed 
T + 1 would remain untrained with the current training procedure, as we do not access to 
these indices during training. With untrained latent factorizations for T + 1 , any forecast 
would at best be random.

However, we can easily extend KFT to be autoregressive by directly applying (Yu et al. 
2016).

3.10.1  Frequentist setting

We consider the Temporal Regularized Matrix Factorization (TRMF) framework presented 
in Yu et al. (2016)

where � ∈ ℝ
T×k is the temporal factorization component in the matrix factorization � ⋅ �⊤ 

and �t denotes � sliced at time index t. Further we take W =
{
W (l) ∈ diag(ℝk) ∣ l ∈ 𝕃

}
(i.e. 

set of diagonal matrices) and � = {li < T ∣ i = 1,… , I} as the set of time indices to lag. 

(47)L(yT , �t) = ‖yT − f (�t)‖2

(48)TAR(� ∣ �,W, �) ∶=
1

2

T∑
t=m

‖‖‖‖‖
xt −

∑
l∈�

W (l)
xt−l

‖‖‖‖‖

2

+
�

2

∑
t

‖‖xt‖‖2
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Additionally, the regularization weight � is needed to ensure that � varies smoothly. How-
ever in KFT, such regularization already exists and it suffices to consider

Forecasting for WLR TRMF can be extended to WLR by simply taking 
� = ��

t
◦(�t ×2 �t) ∈ ℝ

rT+1×T×rT−1 and W =
{
W (l) ∈ ℝ

rT+1×rT−1 ∣ l ∈ 𝕃
}
 , which then yields

which we coin KFTRegularizer (KFTR).3 We follow the same training strategy proposed in 
Yu et al. (2016) by sequentially updating F = {�p,�

�
p
∣ p = 1… ,P}�� , � and W.

Forecasting for LS KFTR can also be applied to the LS variant by applying the temporal 
regularization to all three components �s = �s

t
 , �b = �b

t
 and � = �t × �t . We then apply 

Eq. (49) to each term.

3.10.2  Bayesian setting

KFTR is extended to the Bayesian setting by optimizing the quantity

in addition to the ELBO. The probability distribution p(⋅) is assumed to be a univariate 
normal with fixed variance �2

KFTR
 . We define

as functions of variational variables �,�′ . Here [⋅]t means slicing the tensor at index t. As 
an autoregressive dependency on �t is required, we take

However �t is composed of variational variables �,�′ and thus we can write

The log-expectation is intractable, so we use Jensen’s inequality and optimize a lower 
bound instead. We then arrive at the following expression

TAR(� ∣ �,W) =
1

2

T∑
t=m

‖‖‖‖‖
xt −

∑
l∈�

W (l)
xt−l

‖‖‖‖‖

2

.

(49)TAR(� ∣ �,W) =
1

2

T∑
t=m

‖‖‖‖‖
xt −

∑
l∈�

W (l)
◦xt−l

‖‖‖‖‖

2

,

(50)log p(�T ,… ,�m) =

T∑
t=m

log p(�t)

(51)�t =
[
��

time
◦(�time ×2 �time)

]
t

(52)p(�t) = ∫ p(�t ∣ �l1
,… ,�lK

)p(�l1
)… p(�lK

)d�l1
…�lK

.

(53)
log p(�t) = log� p(�t ∣ �l1

,… ,�lK
)q(�)q(��)d�d��

= log�q[p(�T ∣ �l1
,… ,�lK

)] ≥ �q[log p(�T ∣ �l1
,… ,�lK

)].

3 The recursive abbreviation reflects the recursive nature of the autoregressive regularization!
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We calculate the expression by taking expectations of the x-terms with respect to v, v′ and 
arrive at

It should be noted that the above expression considers the WLR case for a univariate mean-
field model. For a complete derivation and an expression for the multivariate meanfield 
model and the LS version, we refer to Appendix A.2.2.

3.11  Complexity analysis

We give a complexity analysis for all variations of KFT in the frequentist setting and 
Bayesian setting.

Theorem 1 KFT has computational complexity

and memory footprint O
(
P ⋅

(
maxp

(
nprprp−1

)
+maxp

(
npcp

)))
 for a gradient update on a 

batch of data. In the dual case, we take cp = np.

(54)

�q[log p(�T ∣ �l1
,… ,�lK

)] ∝
1

�2
TRMF

�q

⎡
⎢⎢⎣

�
xrp,it=T ,rp+1 −

K�
k=1

wkxrp,it=lk ,rp+1

�2⎤
⎥⎥⎦

=
1

�2
TRMF

�q

��
x2
rp,it=T ,rp+1

− 2xrp,it=T ,rp+1

K�
k=1

wkxrp,it=lk ,rp+1

+(

K�
k=1

wkxrp,it=lk ,rp+1 )
2

��
.

(55)

�q[log p(�T ∣ �l1
,… ,�lK

)] ∝
[
(��2 + ��)◦

[
(� ×2 �)2 + � ×2 �

2
]]

T

− 2
[
��

◦(� ×2 �)
]
T
◦

(
K∑
k=1

�k◦
[
��

◦(� ×2 �)
]
lk

)

+

K∑
k=1

�2
k
◦
[
(��2 + ��)◦

[
(� ×2 �)2 + � ×2 �

2
]]

lk

+

(
K∑
k=1

�k◦
[
��

◦(� ×2 �)
]
lk

)2

−

K∑
k=1

�2
k
◦
[
��

◦(� ×2 �)
]2
lk
.

O

(
max
p

(
npcprprp−1

)
+

(
max
p

rp

)P
)
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We provide proof in the appendix. It should be noted that one can reduce complexity 
and memory footprint by permuting the modes of the tensor such that the larger modes are 
on the edges, i.e. when rp = 1 or rp−1 = 1 . Then np will only scale with rp−1 or rp.

KFTR complexity The additional complexity associated with adding an autoregres-
sive regularization term is at worst O(rprp−1KT) , where K is the number of lags and T the 
size of the temporal mode. As this term scales linearly with K, it does not have an overall 
impact on the complexity of KFT.

4  Experiments

The experiments are divided into analyzing the frequentist version and bayesian ver-
sion of KFT. Frequentist KFT is compared against competing methods on prediction 
and forecasting on various high dimensional datasets. Datasets we use are summarized 
in Table 2. For Bayesian KFT, we investigate the performance of the Bayesian version 
of KFT with a focus on the calibration of the obtained posterior distributions, by com-
paring nominal coverage probabilities to the true coverage probabilities.

4.1  Predictive performance of KFT

We compare KFT to the established FFM and LightGBM on the task of prediction on 
three different datasets, Retail Sales, Movielens-20M and Alcohol Sales (cf. Table 2). 
We compare KFT using squared loss. LightGBM is a challenging benchmark as it has 
continuously received development, engineering, and performance optimization since 
its inception in 2017. We execute our experiments by running 20 iterations of hyperopt 

Table 2  Summary of datasets

Dataset Mean SD N Dimensionality

Alcohol Sales 11.567 37.678 2,816,946 3476 × 4542 × 24

Movielens-20M 3.529 1.051 19,800,443 138493 × 10, 370 × 24

Fashion Retail Sales 2.430 3.968 24,291,539 80 × 400, 000 × 24

CCDS −0.000 0.997 331,500 17 × 125 × 156

Traffic 0.053 0.045 10,167,809 10, 560 × 963
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(Bergstra et al. 2013) for all methods to find the optimal hyperparameter configuration 
constrained with a memory budget of 16GB (which is the memory limit of a high-end 
GPU) for 5 different seeds, where the seed controls how the data is split. We split our 
data into 60% training, 20% validation, and 20% testing. We report scores in R2 , since 
it provides a normalized goodness-of-fit score and measure the performance in terms 
of R2-value on test data. For further details on hyperparameter range, data, and pre-
processing, see Appendix F. The results are reported in Table 3, where the best results 
are boldfaced. We observe that KFT has configurations that can outperform the bench-
marks with a good margin. Furthermore, the dual space models are generally doing bet-
ter than their primal counterparts. We hypothesize that the enhanced expressiveness of 
kernelized side information is the reason for this.

The next experiment makes a direct comparison of KFT to recent Matrix Factoriza-
tion methods tailored for the Movielens-1M and Movielens-10M datasets. The purpose of 
this experiment is to further demonstrate the competitiveness of KFT on recommendation 
tasks. Table  4 gives comparison of KFT RMSE on Movielens-1M and Movielens-10M 
to RMSEs of existing methods which are reported in respective paper. KFT outperforms 
existing non-neural models and marginally underperforms compared to neural-based state-
of-the-art models for matrix factorization. In comparison to tensor factorization, KFT out-
performs NTF despite NTF being a neural model. The RMSE is generally higher for tensor 
factorization, as data becomes sparser with each additional dimension.

Table 3  KFT results

Performance measured in R2

Method/dataset Retail sales Movielens-20M Alcohol sales

P-way, WLR, Primal 0.108 ± 0.435 0.38 ± 0.012 0.69 ± 0.015
P-way, WLR, Dual 0.571 ± 0.007 0.390 ± 0.005 0.704 ± 0.013
2-way, time only , WLR, Primal 0.466 ± 0.034 0.168 ± 0.013 0.472 ± 0.025
2-way, time only , WLR, Dual 0.594 ± 0.005 0.349 ± 0.01 0.692 ± 0.013
P-way, LS, Primal 0.152 ± 0.033 0.272 ± 0.032 0.542 ± 0.026
P-way, LS, Dual 0.027 ± 0.006 0.281 ± 0.027 0.562 ± 0.022
2-way, time only, LS, Primal 0.505 ± 0.008 0.065 ± 0.042 0.466 ± 0.022
2-way, time only,LS, Dual 0.458 ± 0.015 0.326 ± 0.024 0.699 ± 0.012
Naive methods
P-way Vanilla, Primal −0.374± 0.007 −2.197± 0.007 0.025 ± 0.012
P-way Vanilla, Dual -0.087 ± 0.017 −4.837± 0.028 0.196 ± 0.008
P-way Vanilla, No side information 0.385 ± 0.002 0.147 ± 0.038 0.477 ± 0.015
Benchmark models
LightGBM 0.581 ± 0.009 0.303 ± 0.003 0.646 ± 0.015
FFM 0.48 ± 0.032 0.293 ± 0.021 0.64 ± 0.019
Linear 0.058 ± 0.001 0.185 ± 0 0.03 ± 0.002
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For forecasting problems, we replicate the experiments in Yu et al. (2016) and Salinas 
et al. (2019) for the traffic dataset and Yu et al. (2014) for the CCDS data and compare 
against KFT in Tables 5 and 6.

We plot forecasts for different plots and series in Fig. 3.

4.2  Calibration study of Bayesian KFT

We use the same setup as in the frequentist case, modulo the hyperparameter evaluation 
objective which instead is (46). For details on hyperparameter choices and data prepara-
tion, please refer to the Appendix  F. We run a regular tensor factorization without side 
information as a benchmark for performance, which is intended to mimic (Hawkins and 
Zhang 2018) as a comparison. We summarize the results in Table 7. We obtain calibrated 
variational approximations and observe that models using side information yield better pre-
dictive performance but that their calibration becomes slightly worse. By using a Bayesian 
framework we seem to generally lose some predictive performance compared to the corre-
sponding frequentist methods, except in the case of Movielens-20M. We provide a visuali-
zation of the calibration ratios for all datasets in Fig. 4.

Table 5  Traffic results NRSME ND

KFT, P-way, WLR, dual 0.405 0.181
TRMF (Yu et al. 2016) 0.423 0.187
DeepAR (Salinas et al. 2019) 0.420 0.17

Table 6  CCDS results RSME

KFT, P-way, WLR, dual 0.8143
Orthogonal (Yu et al. 2014) 0.8325

Fold 5, Series index 0 Fold 3, Series index 45 Fold 1, Series index 1(a) (b) (c)

Fig. 3  Forecasts on the Traffic dataset using KFTR.
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We compare KFTR to existing Bayesian models with reported results in Table 8, where 
the model is optimized for �criteria , in contrast to RMSE used in Kim and Choi (2014). KFT 
performs well in a Bayesian setting compared to Kim and Choi (2014) and also yield cali-
brated estimates. For forecast problems, we apply KFTR to the Traffic and CCDS dataset 
and report the results in Table  9. We find that the WLR version of KFT does well and 
yields calibrated forecasts.

We plot forecasts for the Traffic dataset with uncertainty quantification in Fig. 5.

5  Analysis

We demonstrated the practical utility of KFT in both a frequentist and Bayesian context. 
We now scrutinize the robustness and effectiveness of KFT as a remedy for constraint-
imposing side information.

5.1  Does KFT really amend the constraints of directly apply side information?

To validate this, we train KFT-WLR and a naive model on the Alcohol Sales dataset using 
kernelized side information for 5 hyperparameter searches. We plot the mean training, vali-
dation, and test error of the 5 searches (and the standard errors) against epochs in Fig. 6.

5.2  How does KFT perform when applying constant side information?

To answer this question, we replace all side information with a constant � and kernelize it. 
The results in the first row of Table 10 indicate that KFT indeed is robust towards constant 
side information, as the performance does not degrade dramatically.

Alcohol Sales Movielens-20m Retail Sales(a) (b) (c)

Fig. 4  Heatmap of �1−2� for all datasets. Here the y-axis is location/userID and x-axis is time, where targets 
have been aggregated on items. We see that the calibration rate over all aggregates consistently adjusts with 
changes in 1 − 2�
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5.3  How does KFT perform when applying noise as side information?

Similar to the previous question, we now replace the side information with standard Gaussian 
noise instead. The results in the last row of Table 10 indicate that KFT also is robust against noise 
and surprisingly performant as well. A possible explanation for this is that adding Gaussian noise 
serves as an implicit regularizer or that the original side information is similarly distributed as 
standard Gaussian noise. We conclude that KFT is stable against uninformative side information 
in the form of Gaussian noise.

6  Conclusion

We identified an inherent limitation of side information based tensor regression and gave a method 
that removes this limitation. Our proposed KFT method yields competitive performance against 
state-of-the-art large-scale prediction models on a fixed computational budget. Specifically, as the 
experiments in Table 3 demonstrate, for at least some cases of real practical interest, Weighted 
Latent Regression is the most performant configuration. Further, KFT offers extended versatil-
ity in terms of calibrated Bayesian variational estimates. Our analysis shows that KFT solves the 
problems we described in Sect. 2 and is robust for adversarial side information in the form of 
Gaussian noise. A direction for further development would be to characterize identifiability condi-
tions for KFT and extend the Bayesian framework beyond mean-field variational inference.

Fold 3, Series index 0 Fold 3, Series index 45 Fold 3, Series index 236(a) (b) (c)

Fig. 5  Forecasts on the Traffic dataset using Bayesian KFTR.

Fig. 6  Training, validation and test error against epoch for KFT-WLR/KFT-LS and a naive model (with 
“Dual” side information) on the Alcohol Sales dataset
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Appendix A: �q[logp(yi1,...,iP |�1, ...,�P,�
�
1
, ...,��

P
)] derivations

A.1 Weighted latent regression

Assuming that �y is a constant hyperparameter. We first have that

Our goal is to find the corresponding tensor operations of the sum terms.

A.1.1 Univariate meanfield

We first have that

Then the last term is can be written as

(56)

�q[log p(yi1 ,...,iP ��1, ...,�P,�
�
1
, ...,��

P
)]

∝
1

�2
y

�q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(yi1 ,...,iP −
�

r1, ..., rP

i�
1
, ..., i�

P

i��
1
, ..., i��

P

P�
p=1

v�
rpi

��
p
rp−1

vrpi�prp−1
k(�

p

ip
, �

p

i�
p

)��p
ip

(�
p

i��
p

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
f (k,�)

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1

�2
y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y2
i1 ,...,iP

− 2yi1 ,...,iP ⋅
�

r1, ..., rP

i�
1
, ..., i�

P

i��
1
, ..., i��

P

P�
p=1

�q[v
�
rpi

��
p
rp−1

]�q[vrpi�prp−1
]f (k, �)

+
�

r1, ..., rP

i�
1
, ..., i�

P

i��
1
, ..., i��

P

q1, ..., qP

j�
1
, ..., j�

P

j��
1
, ..., j��

P

P�
p=1

�q[v
�
qpj

��
p
qp−1

v�
rpi

��
p
rp−1

]�q[vrpi�prp−1
vqpj�pqp−1

]k(�
p

ip
, �

p

i�
p

)

��p
ip

(�
p

i��
p

)k(�
p

ip
, �

p

j�
p

)��p
ip

(�
p

j��
p

)
�

(57)�q[vrpi�prp−1
vqpj�pqp−1

] = �rpi
�
p
rp−1

�qpj
�
p
qp−1

+ �rp (qp)�rp−1 (qp−1)�i�p
(j�
p
)�2

rpi
�
p
rp−1

Table 10  Results from additional experiments for P-way dual models

Method/dataset Retail sales Movielens-20M Alcohol sales

WLR, Constant side information, Dual 0.56 ±0.013 0.33 ± 0.039 0.605 ± 0.041
WLR, Noise side information, Dual 0.553 ± 0.006 0.388 ± 0.003 0.704 ± 0.01
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where �′
p
,� and �′,� correspond to the tensors containing the variational parameters 

��
rpiprp−1

 , �rpiprp−1
 and ��2

rpiprp−1
 , �2

rpiprp−1
 respectively. For the case of RFF’s in dual space, we 

approximate 𝛴p ×2 (�p)
2 ≈ 𝛴p ×2 (𝛷p ∙𝛷p)

⊤ ×2 (𝛷p ∙𝛷p) , where ∙ is the transposed 
Khatri-Rao product. It should further be noted that any square term, means elementwise 
squaring. With the middle term given by

the full reconstruction term is expressed as:

(58)

⟹

∑
r1, ..., rP
i�
1
, ..., i�

P

q1, ..., qP
j�
1
, ..., j�

P

P∏
p=1

�q[v
�
qpipqp−1

v�
rpiprp−1

]�q[vrpi�prp−1
vqpj�pqp−1

]k(�
p

ip
, �

p

i�
p

)k(�
p

ip
, �

p

j�
p

)

=
∑ P∏

p=1

(��
qpipqp−1

��
rpiprp−1

+ �rp (qp)�rp−1 (qp−1)�
�2
rpiprp−1

)

(�qpj
�
p
qp−1

�rpi
�
p
rp−1

+ �rp (qp)�rp−1 (qp−1)�i�p
(j�
p
)�2

rpi
�
p
rp−1

)k(�
p

ip
, �

p

i�
p

)k(�
p

ip
, �

p

j�
p

)

=
∑ P∏

p=1

��
qpipqp−1

��
rpiprp−1

�qpj
�
p
qp−1

�rpi
�
p
rp−1

k(�
p

ip
, �

p

i�
p

)k(�
p

ip
, �

p

j�
p

)

+
∑

r1, ..., rP
i�
1
, ..., i�

P

P∏
p=1

��2
rpiprp−1

�2
rpi

�
p
rp−1

k(�
p

ip
, �

p

i�
p

)2

+
∑

r1, ..., rP
i�
1
, ..., i�

P

j�
1
, ..., j�

P

∏
��2
rpiprp−1

�rpi
�
p
rp−1

�rpj
�
p
rp−1

k(�
p

ip
, �

p

i�
p

)k(�
p

ip
, �

p

j�
p

)

+
∑

r1, ..., rP
i�
1
, ..., i�

P

∏
�2
rpi

�
p
rp−1

��2
rpiprp−1

k(�
p

ip
, �

p

i�
p

)2

(59)

⟺

( P∏
p

×−1�
�
p
◦(�p ×2 �p)

)2

+

( P∏
p

×−1�
�
p
◦(�p ×2 (�p)

2)

)

+

( P∏
p

×−1(�
�
p
◦(�p ×2 �p)

2)

)
+

( P∏
p

×−1�
�2
p
◦(�p ×2 (�p)

2)

)

(60)2�◦

( P∏
p=1

×−1(�
�
p
◦(�p ×2 �p))

)



2695Machine Learning (2022) 111:2663–2713 

1 3

A.1.2 Multivariate meanfield

Similarly first observe that

It then follows that the third term is calculated as
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where �p = �p�
T
p
 , � denotes a constant one tensor with the same dimensions as �′

p
 , 

1̄ ∈ ℝ
R×1 where R is the column dimension of �p and �′

p
 is the same as in the univariate 

case. For RFF’s we have that

As the middle term remains the same as in the univariate case our full reconstruction term 
is

A.2 Latent scaling

Assuming that �y is a constant hyperparameter. We first have that
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A.2.1 Univariate case

For the univariate case, the squared component of the reconstruction term in the ELBO 
becomes

(67)
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Too see this, we notice that all of the sums from the weighted latent regression case reap-
pears here as well. The entire expression is given by

A.2.2 Multivariate case

For multivariate case the last term becomes

(68)
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Again, we notice that all of the sums from the weighted latent regression case reappears 
here as well. The full expression is given by

A.3 Forecasting

We derive an expression for the forecasting term for the WLR case

(70)
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We first establish that

Consequently,

where [⋅]� denotes slicing in the temporal dimension at index � . We then calculate the first 
term

For univariate meanfield �,�′ , taking the expectation we arrive at

(72)
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If we instead consider a multivariate meanfield �,�′ , the expression becomes

For the third expression, we take

The tensor expression for Expression 1 is given by

This follows directly from equation 76. Expression 2 can be written as

Here the idea is to reduce the memory footprint by calculating a slightly erroneous expres-
sion and removing the error rather than calculate the exact expression due to the difficulty 
of expressing the cross terms wkwf  . The above derivation extends directly to the LS case by 
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simply removing the �′ variables and calculating the forecasting term for each component 
�s,�,�b.

Appendix B: Derivation for WLR regularization term

B.1 RFF regularization term

The regularization term can similarly be generalized to

(81)
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Appendix C: Complexity proofs

We recall the theorem presented.

Theorem 2 KFT has computational complexity

and memory footprint O
(
P ⋅

(
maxp

(
nprprp−1

)
+maxp

(
npcp

)))
 for a gradient update on a 

batch of data. In the dual case, we take cp = np.

Proof When training on batches of data, the reconstruction for each datapoint is calculated 
by sequentially multiplying slices �p(ip),�

�
p
(ip) ∈ ℝ

rp−1×rp from each TT-core. We start 
with the frequentist model for WLR and LS. We list the operations needed: 

1. Any � ×p+1 �p operation.  Complexity:  O
(
maxp

(
npcprprp−1

))
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(
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.

For the Bayesian case we have the additional operations for the multivariate case: 

1. (�p ⋅ �p)
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p
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2. Prior determinant det
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)) , assuming we use RFFs when 

np is large. When using RFFs, we expect Mp ≪ Np . Memory: O(maxp(np ⋅Mp)).
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The dominating terms for complexity and memory are O
(
maxp

(
npcprprp−1

)
+
(
maxp rp

)P) 
and O

(
P ⋅

(
maxp

(
nprprp−1

)
+maxp

(
npcp

)))
 respectively.   ◻

Appendix D: Interpretability example analysis

As a guiding example of utilizing the interpretability of KFT, we analyse the temporal 
component of WLR applied to the alcohol dataset in the primal setting. We visualize the 
weights for the time component and in particular the “year” covariate.

Applying an LS model instead, we can directly decompose the predictions into scaling 
contribution, regression contribution and bias contribution (Fig. 7; Table 11).

Appendix E: Training procedure

E.1 Frequentist

To motivate the sequential updating scheme, consider a data matrix �
�
∈ ℝ

N×d where � is a 
hyperparameter that controls the scaling of � and a target � ∈ ℝ

N . Assume N is too large 
and we have to resort to stochastic first order gradient methods to approximate � ∈ ℝ

d in 
our regression 

(
�

�

)
� ≈ � . Using autograd (Paszke et  al. 2017a), together with ADAM 

(Kingma and Ba 2014) we can in practice optimize {�,�} simultaneously for each itera-
tion. However doing this, we commit a fallacy as when updating �t = �t−1 −

�L(�t−1,�t−1)

��t−1

 and 
�t = �t−1 −

�L(�t−1,�t−1)

��t−1
 , we do not account for the mixed partial �

��t−1

�L(�t−1,�t−1)

��t−1

∝
−1

�3
t−1

 
assuming L is mean square error loss. Thus updating {�,�} simultaneously using first order 
derivatives would yield an update error for � as the updating gradient does not adjust for 
the mixed partial �

��t−1

�L(�t−1,�t−1)

��t−1

 when � is being updated at the same time. This scenario 
extends one-to-one for the variables of KFT, as we would commit a similar fallacy by 
updating all parameters at once. Hence we take an EM inspired approach when updating 
lp,�p,�

′
p
.

E.2 Bayesian: variational inference

As the practical utility of calibrated uncertainty estimates rely on a good fit of the model, 
we motivate our sequential update scheme as a method to encourage good predictive per-
formance by first finding the optimal modes determined by �,�′ and then the associated 
variance determined by �,�′ . As we are considering the Gaussian meanfield family of 
models, this strategy is well motivated as Gaussian distribution is symmetric.
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Appendix F: Data and data processing

F.1 Data processing

Our strategy in this paper is to limit data processing to simple operations that does not 
require excessive engineering for a fair comparison in both utility and input data. For all 
the models, we carry out the exact same preprocessing modulo the models requirements of 
data format. We do the following general processing steps: 

1. Extract relevant features and parse them to be continuous or categorical.
2. Scale all features using a z-transformation.

For each model specifically we do the following: 

1. KFT: tensorize all data by expressing all main modes (i.e. person, movie, time etc) as a 
tensor with side information associated with each mode.

2. LightGBM: here, we don’t scale the features as boosting trees generally performs better 
with unscaled data. In some cases we have applied PCA to some of the side information 
that was joined on the data matrix to decrease the memory footprint of the data matrix 
to contain it to a practical size.

3. FFM: here we bin all continuous features, as FFM requires all data to be categorical.
4. Linear regression: for large categorical features, we using feature hashing to avoid data 

matrices of infeasible sizes. All other categorical features get one-hot encoded.

Fig. 7  The first plot shows the magnitude of the latent weights � for the “year” covariate. The second plot 
show the weights of the latent weights �′ for year = 0

Table 11  5 decomposed example 
predictions for the LS model

Prediction nr �s � �b

0 −0.032064 46.948650 15.560461
1 −0.001596 333.260956 0.218784
2 −0.110225 29.397287 13.096196
3 0.028649 −45.733292 10.711301
4 −0.067812 −34.203766 3.496001
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F.2 Retail sales data

We detail the features of the Retail Sales data in Table 12. Here we choose our modes to be 
store, articles and time.

F.3 Movielens‑20M

We detail the features of the Retail Sales data in Table 13. Here we choose our modes 
to be users, movies and time of rating given. For the Movielens-20M data, it should be 
noted that we filter the movies on existing entries in the side information. This is why 
we only have roughly 11 million observations rather than 20 million.

F.4 Alcohol sales

We detail the features of the Alcohol Sales data in Table 14. Here we choose our modes to 
be location, item and time.

Appendix G: Hyperparameter configuration

G.1 KFT hyperparameters

We run all KFT experiments for 10 epochs with 20 hyperparameter search iterations. 
We consider two decomposition types: 

1. P-way latent factorization, where each dimension has a latent component. In principle, 
this can be thought of as each dimension being independently factorized. Further we 
utilize all possible side information.

2. 2-way latent factorization, where time is grouped with another dimension as one latent 
component and with the other dimensions grouped in a second latent component. Here 
we only consider time as side information, for the purpose of only modelling temporal 
changes.

Our models are generally searched over the configurations described in Table 15. For 
exact details we refer to the code base.
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Table 13  Dataset description of Movielens-20M

Property Unit Quantity

Ratings Count 11,880,265
Users Count 138,493
Movie_id Count 10,370

Movie_id side info Description Example

Genome_score_1 Genome score dimension 1 0.345
⋮ ⋮ ⋮

Genome_score_1000 Genome score dimension 1000 0.1337

Time side info Description Example

Hour Hour ratings was given 12

Table 14  Dataset description of Iowa alcohol sales

Property Unit Quantity

Bottles sold Count 3,036,063
Unique store_location_id’s Count 3476
Unique item_id’s Count 4542

Item_id side info Description Example

Category Type of alcohol Irish whiskey
Pack Size of package 6
Bottle volume (ml) Bottle volume 750
State bottle cost Cost for retailer to buy 4 usd
State bottle retail Retail price 5 usd

Store_location_id side info Description Example

City_id City of store 56
Longitude Longitude 34.23
Latitude Latitude 34.24
County County Shelby
Store_number Store number 12
Zip code Zip code 157

Time side info Description Example

Year Year 2019
Month Month 1
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G.1.1 LightGBM hyperparameters

We provide hyperparameters for LightGBM in Table 16

G.1.2 FFM hyperparameters

We provide hyperparameters for FFM in Table 17.

Table 15  Hyperparameter search 
space for KFT.

aThe upper bound varies for each dataset, as memory limitation 
changes with dataset.
bBatch size expressed as a proportion of total training data examples. 
As an example our smallest batch size use 1% of the training data as 
the batch size

Property Range/choices

Batch sizea [0.01, 0.1]
Learning rate {1e−3, 1e−2, 1e−1}
Rb [5, 70]
�p [0, 1]
�′
p

[0, 1]
Kernel choice {rbf, matern 0.5, 

matern 1.5, matern 
2.5}

Table 16  Hyperparameter search 
space for LightGBM.

Property Range/choices

Num leaves [7, 4095]
Learning rate [exp(−5), exp(−2.3)]
Min data in leaf [10, 30]
Min sum hessian in leaf [exp(0), exp(2.3)]
Bagging freq [1, 5]
�
1

[0, 10]
�
2

[0, 10]

Table 17  Hyperparameter search 
space for FFM.

Property Range/choices

R [2, 20]
Batch size [1e−6, 0.1]
Learning rate [0.05, 1.0]
� [0, 0.005]
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G.1.3 Linear regresison hyperparameters

We provide hyperparameters for linear regression in Table 18.

G.2 Bayesian hyperparameters

We run all experiments for 25 epochs with 5 hyperparameter search iterations. For exact 
details we refer to the code base.
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