
Vol.:(0123456789)

Machine Learning (2022) 111:2663–2713
https://doi.org/10.1007/s10994-021-06067-7

1 3

Large scale tensor regression using kernels and variational
inference

Robert Hu1 · Geoff K. Nicholls1 · Dino Sejdinovic1

Received: 9 April 2020 / Revised: 23 June 2021 / Accepted: 6 September 2021 /
Published online: 9 November 2021
© The Author(s) 2021

Abstract
We outline an inherent flaw of tensor factorization models when latent factors are expressed
as a function of side information and propose a novel method to mitigate this. We coin
our methodology kernel fried tensor (KFT) and present it as a large-scale prediction and
forecasting tool for high dimensional data. Our results show superior performance against
LightGBM and Field aware factorization machines (FFM), two algorithms with proven
track records, widely used in large-scale prediction. We also develop a variational inference
framework for KFT which enables associating the predictions and forecasts with calibrated
uncertainty estimates on several datasets.

Keywords Large scale prediction · Tensor · RKHS · Kernel methods · Variational
inference · Bayesian · Uncertainty quantification

1 Introduction and related work

In recent times, industrial prediction problems (Caro and Gallien 2010; Seeger et al. 2016)
are not only large scale but also high dimensional (Zhai et al. 2014). Problems of this
nature are ubiquitous and the most common setting is, but not limited to, the recommenda-
tion systems (Bobadilla et al. 2013). Here we are tasked with predicting user preference
(i.e. ratings, buying propensity, etc.) for a product (movies, clothing, etc). More often than
not, the number of users and products far exceeds the practicality of data matrix formalism,
which characterizes the perils of high dimensionality in modern prediction problems. The
choice of models is often limited to boosting models such as LightGBM (Ke et al. 2017),

Editor: Shai Shalev-Shwartz.

 * Robert Hu
 robert.hu@stats.ox.ac.uk

 Geoff K. Nicholls
 nicholls@stats.ox.ac.uk

 Dino Sejdinovic
 dino.sejdinovic@stats.ox.ac.uk

1 Department of Statistics, University of Oxford, Oxford, UK

http://orcid.org/0000-0001-8620-4618
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06067-7&domain=pdf

2664 Machine Learning (2022) 111:2663–2713

1 3

factorization machines (Juan et al. 2016; Rendle 2010) and matrix (Bobadilla et al. 2013)
and tensor factorization models (Kolda and Bader 2009; Oseledets 2011). In particular,
matrix/tensor factorization models are often used due to their memory-efficient represen-
tation of high dimensional data (Kuang et al. 2014). An additional benefit of factoriza-
tion machines and matrix/tensor factorization models is their relative ease of extension to a
Bayesian formulation, making uncertainty quantification straightforward.

A recurring problem in recommendation systems is the cold start problem (Bobadilla
et al. 2012), where new users yield inaccurate predictions due to an absence of historical
purchasing behavior. A common technique to overcome the cold start problem is to incor-
porate side information (Agarwal and Chen 2009; Xu et al. 2015; Zhang et al. 2014), which
means adding descriptive covariates about each individual user (or product) to the model.
While side information is not immediately applicable to factorization machines, there is
extensive literature (Kim et al. 2016; Liu et al. 2019; Narita et al. 2012) on utilizing side
information with matrix/tensor factorization models. There are limited choices of mod-
els when simultaneously considering scalability, uncertainty quantification, the cold start
problem, and, ideally, interpretability (Rudin 2018). We contextualize our contribution by
reviewing related works.

Tensor factorization is a generalization of matrix factorization to n-dimensions, where
any technique that applies to tensors is directly applicable to matrices but not vice versa.
We focus on tensor factorization as it offers the most flexibility and generality. In the fre-
quentist setting, Canonical Polyadic (CP) and Tucker decomposition (Kolda and Bader
2009) are the most common factorization methods for tensors while Tensor-Train (TT)
(Oseledets 2011) and Tensor-Ring (TR) (Zhao et al. 2016) decomposition are newer addi-
tions focusing on scalability. While Tucker decomposition has admirable analytical prop-
erties, the O(rd) memory storage of the core tensor is infeasible in any large-scale appli-
cation. CP decomposition is superseded by TT-decomposition, which in turn is extended
by TR-decomposition. Due to certain pathologies (Batselier 2018) exhibited by TR, only
TT remains plausible for a large-scale model. The existing methods LightGBM(Ke et al.
2017) and Field-Aware Factorization Machines(FFM) (Juan et al. 2016) are considered the
gold standard1 ,2 of large scale prediction, where an overall objective of this paper is to
challenge this duopoly. To enhance the performance of tensor models, Du et al. (2016),
Wu et al. (2019) and Zhang et al. (2019) applied neural methods for matrix and tensor
factorization, where (Du et al. 2016; Zhang et al. 2019) is considered the state-of-the-art
in performance. In the Bayesian domain, only FFM carries over with (Saha et al. 2017),
which introduces a variational coordinate ascent method for factorization machines. There
is rich literature in Bayesian matrix/tensor factorization ranging from Monte Carlo meth-
ods in the pioneering works of Salakhutdinov and Mnih (2007) to variational matrix fac-
torization (Gönen et al. 2013; Kim and Choi 2014) and tensor factorization in Hawkins and
Zhang (2018). Kim and Choi (2014) is of particular interest as they present a large-scale
variational model incorporating side information. While coordinate ascent approaches pro-
posed in Hawkins and Zhang (2018), Kim and Choi (2014) and Saha et al. (2017) are use-
ful, we believe that the cyclical update scheme can be constraining for large scale scenarios
that rely on parallelism. Further, the updating rules are hard to maintain with changes in
model architecture. To mitigate maintenance of complicated gradient updates, we consider

1 https:// www. kaggle. com/c/ avazu- ctr- predi ction/ discu ssion/ 12608.
2 https:// bit. ly/ 3bGGz pf.

https://www.kaggle.com/c/avazu-ctr-prediction/discussion/12608
https://bit.ly/3bGGzpf

2665Machine Learning (2022) 111:2663–2713

1 3

automatic differentiation (Paszke et al. 2017b) instead. In the context of maintainable vari-
ational inference, it would then suffice to find an analytical expression of the Evidence
Lower BOund (ELBO) that is general for a family of models (Hoffman et al. 2013).

Side information is applied in two ways for matrix/tensor factorization models:
implicitly through regularization schemes in He et al. (2017), Narita et al. (2012) and
Pal and Jenamani (2018) Zhao et al. (2013) and directly as covariates in Agarwal and
Chen (2009), Kim et al. (2016), Kim and Choi (2014) and Zhang et al. (2014). In terms
of interpretability, the latter is more desirable as predictions are now an explicit expres-
sion of covariates, allowing for direct attribution analysis. A concerning observation of
the results in Agarwal and Chen (2009), Kim et al. (2016) and Kim and Choi (2014)
suggests that using side information in a covariate format barely improves performance
and even worsens it in Agarwal and Chen (2009) using the “features only” model.

In this paper we develop a novel all-purpose large-scale prediction model that strives
for a new level of versatility existing models lack. Our contribution Kernel Fried
Tensor(KFT) aims to bridge the gap in the literature and answer the following questions:

1. Is there an interpretable tensor model that avoids constraints and complex global depend-
encies arising from the addition of side information but still makes full use of side
information?

2. Can we formulate and characterize this model class in both primal and dual (Reproduc-
ing Kernel Hilbert Space) space?

3. Do models in this class compare favourably, for large scale prediction, to state-of-the-
art models such as LightGBM (Ke et al. 2017), FFM (Juan et al. 2016) and existing
factorization models?

4. Can we work with these new models in a scalable Bayesian context with calibrated
uncertainty estimates?

5. What are the potential pitfalls of using these models? When are they appropriate to use?

Following our introduction, we were tasked with the multifaceted problem of develop-
ing a tensor model that scales, is interpretable, is Bayesian, handles side information,
and provides on-par performance with the existing gold-standard.

Table 1 Where our contribution places

Interpretable Scalable Tensor Bayesian Side information Performant

CF-NADE (Du et al. 2016) ✓ ✓

FFM (Juan et al. 2016) ✓ ✓ ✓

LightGBM (Ke et al. 2017) ✓ ✓ ✓

Tensor Factorization with
Auxiliary side information
(Narita et al. 2012)

✓ ✓

NTF (Wu et al. 2019) ✓ ✓

KPMF (Pal and Jenamani
2018)

✓ ✓

VBMF (Kim and Choi 2014) ✓ ✓ ✓ ✓

Kernel fried tensor ✓ ✓ ✓ ✓ ✓ ✓

2666 Machine Learning (2022) 111:2663–2713

1 3

The rest of the paper is organized as follows: Sect. 2 illustrates an important limitation of
side information applied as covariates to tensors, Sect. 3 introduces and characterises KFT in
both the frequentist and Bayesian setting, Sect. 4 are experiments and Sect. 5 provides an abla-
tion study related to Question 5 (Table 1).

2 Background and problem

Tensor models are used in large-scale prediction tasks ranging from bioinformatics to indus-
trial prediction; we work in the latter setting. While existing tensor models are versatile and
scalable, they have a flaw: When we build a model of the latent factors in tensor factorization
as a function of covariates (Agarwal and Chen 2009; Kim et al. 2016; Kim and Choi 2014;
Zhang et al. 2014), the model may be restricted by global parameter couplings that are gener-
ated. These couplings lead to a reduction of tractability at scale. We provide a new family of
tensor models which admit side information without model restriction or loss of tractability.

Tensor Train decomposition Before we explain how side information restricts tensor model
expressiveness, we set out the background. Consider the task of reconstructing the tensor
� ∈ ℝ

n1×n2⋯×nP . Many existing decomposition techniques (Kolda and Bader 2009) treat this
problem. We focus on the Tensor Train (TT) decomposition (Oseledets 2011) as this general-
ises more readily than existing alternatives.

The n-mode (matrix) product of a tensor � ∈ ℝ
I1×I2×⋯×IN with a matrix � ∈ ℝ

J×In is
� ×n � . This product is of size I1 ×… In−1 × J × In+1 ×… × IN . Elementwise, the product is

We will consider the following notion of a mode product between tensor
� ∈ ℝ

I1×⋯IN−1×IN , applying the N-th mode product ×N with a tensor � ∈ ℝ
IN×K1×K2 gives

� ×N � ∈ ℝ
I1×⋯IN−1×K1×K2.

In TT, � is decomposed into P latent tensors �p ∈ ℝ
Rp×np×Rp−1 , p = 1,…P , with

�1 ∈ ℝ
R1×n1×1 and �P ∈ ℝ

1×nP×RP−1 . Here Rp is the latent dimensionality for each factor in the
decomposition, with R1 = RP = 1 . Let ×−1�p be the operation of applying the mode product
to the last dimension of �p . We seek �1 …�P so that

Suppose that, associated with dimension p, we have cp-dimensional side information
denoted �p ∈ ℝ

np×cp . For example, if p is the dimension representing np = 10,000 dif-
ferent books, then the columns of �p ∈ ℝ

10,000×cp might contain the author of the book,
page count etc. Similar to Kim et al. (2016) and Kim and Choi (2014), side information is
built into the second dimension of the latent tensor �p ∈ ℝ

Rp×cp×Rp−1 using the mode prod-
uct �p ×2 �p . It should be noted that the middle dimension of �p changed from np to cp
to accommodate the dimensionality of the side information. For TT decomposition our
approximation becomes

(
� ×n �

)
i1…in−1 j in+1 … iN

=

In∑
in=1

xi1i2…iN
ujin .

(1)

� ≈

P∏
p=1

×−1�p

yi1...iP ≈
∑
r0…rP

P∏
p=1

vrpiprp−1 .

2667Machine Learning (2022) 111:2663–2713

1 3

The above example illustrates the primal setting where side information is applied directly.
Similarly to Kim et al. (2016), we also consider kernelized side information in the repro-
ducing kernel hilbert space (RKHS) which we will refer to as the dual setting.

2.1 The problem with adding side information to tensor factorization

Consider a matrix factorization problem for � ∈ ℝ
n1×n2 with unknown latent factors

� ∈ ℝ
n1×R,� ∈ ℝ

n2×R . We are approximating

If we update u1r in the approximation y11 ≈
∑R

r=1
u1rv1r , we change the approxima-

tion y1,2 ≈
∑R

r=1
u1rv2r since they share the parameter u1r . However, y2,1 and y2,2 remain

unchanged. Parameters are coupled across rows and columns but not globally. This is the
standard setup in latent factorization.

Now consider the case where we have �1 = �2 = �n1×n1 . We take our latent factors to be a
linear function of available side information which leads �,� to form

�1� =

⎡
⎢⎢⎣

∑n1
i=1

ui1 …
∑n1

i=1
uiR

⋮ ⋱∑n1
i=1

ui1
∑n1

i=1
uiR

⎤⎥⎥⎦
 and �2� (similar form). It follows that

is a constant matrix! We have lost all model flexibility as we are approximating � with a

constant. Now consider a more realistic example with �1 =

⎡⎢⎢⎣

d11 … d1n1
⋮ ⋱

dn11 dn1n1

⎤⎥⎥⎦
 and

�2 =

⎡⎢⎢⎣

z11 … z1n2
⋮ ⋱

zn21 zn2n2

⎤⎥⎥⎦
 . In this case

Again, uir appears in all entries in our matrix approximation for � . However, this time
changing uir will not change all entries by the same amount but rather differently
across all entries depending on the entries of �1 and �2 . This connects all entries in the

(2)

� ≈

P∏
p=1

×−1(�p ×2 �p)

yi1...iP ≈
∑

r0 … rP
i�
1
… i�

P

P∏
p=1

vrpi�prp−1
dip,i�p

(3)� =

⎡⎢⎢⎣

y11 … y1n2
⋮ ⋱

yn11 yn1n2

⎤⎥⎥⎦
≈ � ⋅ �⊤ =

⎡⎢⎢⎣

∑R

r=1
u1rv1r …

∑R

r=1
u1rvn2r

⋮ ⋱∑R

r=1
un1rv1r

∑R

r=1
un1rvn2r

⎤⎥⎥⎦
.

(4)(�1�) ⋅ (�2�)
⊤ =

⎡⎢⎢⎣

∑
rij uirvjr …

∑
rij uirvjr

⋮ ⋱∑
rij uirvjr

∑
rij uirvjr

⎤⎥⎥⎦
,

(5)(�1�) ⋅ (�2�)
⊤ =

⎡⎢⎢⎣

∑
rij d1iz1juirvjr …

∑
rij d1izn2juirvjr

⋮ ⋱∑
rij dn1iz1juirvjr

∑
rij dn1izn2juirvjr

⎤⎥⎥⎦
.

2668 Machine Learning (2022) 111:2663–2713

1 3

approximating matrix, introduces complex global variable dependence, and makes fitting
infeasible at a large scale as the optimization updates globally. The observation applies in
both primal and dual representations. In the primal representation, there is a restriction in
expressiveness as the rank of our approximation falls off with the rank of the side informa-
tion. In this setting, near-colinearity is also a problem as it leads to unstable optimization
and factorizations which are very sensitive to noise.

We see that when we add side information we may inadvertently restrict the expres-
siveness of our model. We formulate a new tensor model with a range and dependence
structure unaffected by the addition of side information in either the primal or dual setting.

3 Proposed approach

3.1 Tensors and side information

We seek a tensor model that benefits from additional side information while not forfeiting
model flexibility. We introduce two strategies, which we call weighted latent regression
(WLR) and latent scaling (LS).

3.1.1 Weighted latent regression

We now return to the previous setting but with additional latent tensors �� ∈ ℝ
n1×R and

�� ∈ ℝ
n2×R . We approximate � as:

By taking the Hadamard product (◦) with additional tensors �′ , �′ we recover the model
flexibility and dependence structure of vanilla matrix factorization, as �′ and �′ are inde-
pendent of � and � . Here, changing uir would still imply a change for all entries by magni-
tudes defined by the side information, however we can calibrate these changes on a latent
entrywise level by scaling each entry with u′

ir
v′
jr
 . For any TT decomposition with an addi-

tional tensor �′
p
 , the factorization becomes

where �(⋅) denotes Kronecker delta. We interpret this as weighting the regression terms ∑
i,j dpizqjuirvjr over indices p, q with uprvqr and then summing over latent indices r.
Interpretability We can decompose the estimate into weights of side information

illustrated in Fig. 1. A guiding example on analyzing the latent factors is provided in
Appendix C

(6)
� ≈ ((�1�)◦�

�) ⋅ ((�2�)◦�
�)⊤

=

� ∑
rij u

�
1r

v�
1r

d1iz1juir vjr …
∑
rij u

�
1r

v�n2r
d1izn2 j

uir vjr

⋮ ⋱∑
rij u

�
n1r

v�
1r

d1iz1juir vjr
∑
rij u

�
n1r

v�n2r
d1iz1juir vjr

�

(7)

� ≈

P∏
p=1

×−1(�
�
p
◦(�p ×2 �p))

yi1...iP ≈
∑

r1 … rP
i�
1
… i�

P

i��
1
… i��

P

P∏
p=1

v�
rpi

��
p
rp−1

vrpi�prp−1
dip,i�p

�ip (i
��
p
)

2669Machine Learning (2022) 111:2663–2713

1 3

3.1.2 Latent scaling

An alternative computationally cheaper procedure would be to consider additional latent
tensors �1 ∈ ℝ

n1×K ,�2 ∈ ℝ
n1×L,�1 ∈ ℝ

n2×K ,�2 ∈ ℝ
n2×L . We would approximate

We have similarly regained our original model flexibility where have introduced back inde-
pendence for each term by scaling (�s) and adding a constant (�b) for each regression term
with a ’latent scale and bias’ term. We generalize this to

One may conjecture that adding side information to tensors through a linear operation is
counterproductive due to the restrictions it imposes on the approximation, and dispute that
our proposal of introducing additional tensors to increase model flexibility is futile when
side information is likely to be marginally informative or potentially uninformative. As
an example, return to the case of completely non-informative constant side information,
�1 = � , �2 = � . In this corner case, both our proposed models reduce to regular matrix fac-
torization: the side information regression term collapses to a constant, which in conjunc-
tion with the added terms reduces to regular tensor factorization without side information.

Interpretability We can decompose the estimate into weights of side information
illustrated in Fig. 2.

A comment on identifiability It should be noted that the proposed models need not be
indentifiable.

To see this, return to the scenario where side information is constant. The term
�p ×2 �p has constant rows equal to row sums of �p . Any transformation of �p which
preserves these row sums leaves the fit unchanged. However, in large-scale industrial

(8)
� ≈ (�1�

⊤
1
)◦((�1�) ⋅ (�2�)

⊤) + (�2�
⊤
2
)

=

� ∑
q u1

1k
v1
1k

∑
rij d1iz1juir vjr +

∑
l u

2
1l
v2
1l

…

⋮ ⋱∑
q u1

n1k
v1
1k

∑
rij d1iz1juir vjr +

∑
l u

2
n1 l

v2
1l

�

(9)

� ≈

(
P∏

p=1

×−1�
s
p

)
◦

(
P∏

p=1

×−1(�p ×2 �p)

)
+

(
P∏

p=1

×−1�
b
p

)

yi1...iP ≈
∑

rs
1
… rs

P

P∏
p=1

vs
rpiprp−1

∑
r1 … rP
i�
1
… i�

P

P∏
p=1

vrpi�prp−1
dip,i�p

+
∑

rb
1
… rb

P

P∏
p=1

vb
rpiprp−1

Fig. 1 Decomposing the estimate into interpretable weights

2670 Machine Learning (2022) 111:2663–2713

1 3

prediction, we draw utility from good generalization performance in prediction, and
parameter identifiability is secondary.

3.2 Primal regularization terms

In weight space regression, the regularization terms are given by the squared Frobenius norm.
The total regularization term would be written as

3.3 RKHS and the representer theorem

We extend our framework to the RKHS dual space formalism, where our extension can intui-
tively be viewed as a tensorized version of kernel ridge regression (Vovk 2013). The merit
of this is to enhance the performance by providing an implicit non-linear feature map of side
information using kernels.

Firstly consider side information �p = {�
p

i
}
np

i=1
, �

p

i
∈ ℝ

cp which are kernelized using a ker-
nel function k ∶ ℝ

cp ×ℝ
cp → ℝ . Denote kp

ij
= k(�

p

i
, �

p

j
) ∈ ℝ and �p = k(�p,�p) ∈ ℝ

np×np .
Consider a � ∈ ℝ

R1×n1⋯×nQ×R2 , where Q < P . Using the Representer theorem (Schölkopf
et al. 2001) we can express

∏Q

q=1
� ×q+1 �q as a function in RKHS

where 𝗏r1,r2 ∶ ℝ
n1 ×⋯ ×ℝ

nQ → ℝ and �r1,r2 ∈ H , which denotes the RKHS with respect
to the kernels

∏Q

q
×kq . We use mode dot notation ×q+1 here to apply kernelized side infor-

mation �q to each dimension of size n1 … nQ , where q + 1 is used to account for the first
dimension consisting of R1.

(10)� =
�
p

�p‖�p‖2F + ��
p
‖��

p
‖2
F

(11)�r1,r2
=

∑
n1…nq

vr1n1...nqr2

Q∏
q=1

kq(⋅, �
q
nq
).

Fig. 2 Decomposing the estimate into interpretable weights

2671Machine Learning (2022) 111:2663–2713

1 3

3.4 Dual space regularization term for WLR

Consider applying another tensor with the same shape as �′ through element wise product to
robustify � , i.e. ��◦

∏Q

q=1
� ×q+1 �q . Then we have

where the regularization term for �r1,r2 is given by:

and (⋅)++ means summing all elements.

3.5 Dual space regularization term for LS

For LS models, the regularization term is calculated as

where �r1,r2 =
∑

n1…nq
vrpn1...nqrp−1

∏Q

q=1
k(⋅, �Q

nq
) and ∑

r⟨�r , �r⟩H =
��∏Q

q=1
� ×q+1 �q

�
◦�

�
++

.

3.6 Scaling with random Fourier features

To make tensors with kernelized side information scalable, we rely on a random fourier fea-
ture (Rahimi and Recht 2007) (RFFs) approximation of the true kernels. RFFs approximate a
translation-invariant kernel function k using Monte Carlo:

where �i are frequencies drawn from a normalized non-negative spectral measure � of
kernel k. Our primary goal in using RFFs is to create a memory efficient, yet expressive
method. Thus, we write

with explicit feature map � ∶ ℝ
Dp → ℝ

M , and M ≪ Np . In the case of RFFs,

(12)

�r1r2
=

⎛
⎜⎜⎝
�

n�
1
…n�

q

v�
r1n

�
1
...n�

q
r2

Q�
q=1

��q
n�q

(⋅)

⎞
⎟⎟⎠
⋅

⎛
⎜⎜⎝
�

n1…nq

vr1n1...nqr2

Q�
q=1

k(⋅, �q
nq
)

⎞
⎟⎟⎠

=
�

n1 … nq
n�
1
… nq

vr1n1...nqr2v
�
r1n

�
1
...n�

q
r2

Q�
q=1

�
�
Q

n�q

(⋅)

Q�
q=1

k(⋅, �q
nq
)

(13)

� =
�
p

�p
�
r1,r2

⟨�r1,r2 , �r1,r2⟩H

=
�
p

�p

��
Q�
q=1

� ×q+1 �q

�
◦

�
(

Q�
q=1

(��
◦��) ×q+1 �nq×nq)◦�

��

++

(14)� =
�
p

�p

�
‖�s

p
‖2
F
+
�
r

⟨�r, �r⟩H + ‖�b
p
‖2
F

�

(15)k̂(�, �) =
2

M

M∕2∑
i=1

[
cos(𝜔T

i
�) cos(𝜔T

i
�) + sin(𝜔T

i
�) sin(𝜔T

i
�)
]

(16)k̂
(
�
p

i
, �

p

j

)
≈ 𝜙

(
�
p

i

)⊤
𝜙
(
�
p

j

)

2672 Machine Learning (2022) 111:2663–2713

1 3

This feature map can be applied in the primal space setting as a computationally cheap
alternative to the RKHS dual setting.

A drawback of tensors with kernelized side information is the O(N2
p
) memory growth

of kernel matrices. If one of the dimensions has a large Np in the dual space setting, we
approximate large kernels �p with

where � = �(�p) ∈ ℝ
Np×M . To see that this is a valid approximation, an element v̄i1...ip in

� ×p �p is given by v̄i1...ip =
∑Np

i�
p
=1

vi1...i�p
k(�

p

ip
, �

p

i�
p

) . Using RFFs we have

KFT with RFFs now becomes:

with the regularization term

For a derivation, please refer to the Appendix B.

3.7 Kernel fried tensor

Having established our new model, we coin it kernel fried tensor (KFT). Given some loss
L(�, �̃) for predictions �̃ the full objective is

where �p,�
′
p
,�p are parameters of the model and �p are kernel parameters if we use the

RKHS dual formulation. As our proposed model involves mutually dependent components
with non-zero mixed partial derivatives, optimizing them jointly with a first order solver is
inappropriate as mixed partial derivatives will not be considered during each gradient step.
Inspired by the EM-algorithm (Dempster et al. 1977), we summarize our training proce-
dure in Algorithm 1. By updating each parameter group sequentially and independently,
we eliminate the effects of mixed partials leading to accurate gradient updates. For further
details, we refer to the Appendix E.1.

𝜙(⋅)⊤ = [cos(𝜔T
1
⋅),… , cos(𝜔T

M∕2
⋅), sin(𝜔T

1
⋅),… , sin(𝜔T

M∕2
⋅)].

(17)� ×p+1 𝛷 ×p+1 𝛷
⊤ ≈ � ×p+1 �p,

(18)v̄i1...ip =

Np∑
i�
p
=1

M∑
c=1

vi1...i�p
𝛷i�

p
c𝛷ipc

=

Np∑
i�
p
=1

vi1...i�p
𝜙(�

p

i�
p

)⊤𝜙(�
p

ip
).

(19)
�rp

=
∑

n1 … nq
n�
1
… nq

vrpn1...nqrp−1v
�
rpn

�
1
...n�

q
rp−1

Q∏
q=1

�
�
Q

n�q

(⋅)

Q∏
q=1

�(�Q
nq
)�(⋅)

(20)

�
r

⟨�r, �r⟩H =

��
Q�
q=1

� ×q+1 𝛷q ×q 𝛷
⊤
q

�
◦

��
Q�
q=1

(��
◦��) ×q �nq×nq

�
◦�

��

++

.

(21)min
wrt �p ,�

�
p
,𝛩p

L(�, �̃) + 𝛬(�p,�
�
p
,𝛩p)

2673Machine Learning (2022) 111:2663–2713

1 3

3.7.1 Joint features

From a statistical point of view, we are assuming that each of our latent tensors �p
factorizes � into P independent components with prior distribution correspond-
ing to N(�

p
rp−1rp

|0,�p) , where �prp−1rp ∈ ℝ
np is the rp−1, rp cell selected from �p . We can

enrich our approximation by jointly modelling some dimensions p by choosing some
�p ∈ ℝ

Rp+1×np+1×np×Rp−1 . If we denote this dimension p by p′ we have that

and the prior would instead be given as N(vec(�
p�

rp�−1rp�+1
)|0,�p� ⊗�p�+1) . Here

vec(�
p�

rp�−1rp�+1
) ∈ ℝ

np�np�+1 and vec(⋅) means flattening a tensor to a vector. The cell selected
from �p′ now has a dependency between dimensions p′ and p� + 1 . We refer to a one
dimensional factorization component of TT as a TT-core and a multi dimensional factori-
zation component as a joint TT-core.

3.8 Bayesian inference

We turn to Bayesian inference for uncertainty quantification with KFT. Assume a
Gaussian conditional likelihood for an observation yi1…iP

 with inspiration from Gönen
et al. (2013) Kim and Choi (2014). For KFT-WLR we have that

(22)

� ≈

p�−1∏
p=1

×−1(�p ×2 �p) ×−1 (�p� ×3 �p� ×2 �p�+1)

P∏
p=p�+2

×−1(�p ×2 �p)

yi1...iP ≈
∑

r1 … rP
i�
1
… i�

P

p�−1∏
p=1

vrpi�prp−1
k(�

p

ip
, �

p

i�
p

) ⋅ vrpi�p� i
�

p�+1
rp−1

k(�
p�

ip�
, �

p�

i�
p�

)k

(
�
p�+1

ip�+1
, �

p�+1

i�
p�+1

) p�+2∏
p=1

vrpi�prp−1
k(�

p

ip
, �

p

i�
p

)

2674 Machine Learning (2022) 111:2663–2713

1 3

The corresponding objective for KFT-LS is

where �2
y
 is a scalar hyperparameter.

3.9 Variational approximation

Our goal is to maximize the posterior distribution p(�p,�
�
p
|�) which is intractable as the

likelihood p(�) = ∫ p(�|�1 …�P,�
�
1
…��

P
)p(�1)...p(�P)p(�

�
1
)...p(��

P
)d�1…Pd�

�
1…P

does not have a closed form solution due to the product of Gaussians. Instead we use vari-
ational approximations for �p,�

′
p
 by parametrizing distributions of the Gaussian family

and optimize the evidence lower bound (ELBO)

In our framework, we consider the univariate Gaussian and multivariate Gaussian as vari-
ational approximations with corresponding priors where �2

y
 is interpreted to control the

weight of the reconstruction term against the KL-term.

3.9.1 Univariate VI

Univariate KL For the case of univariate normal priors, we calculate the KL divergence as

(23)

p(yi1…iP
��1 …�P,�

�
1
…��

P
)

= N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

yi1…iP

����������������

�
r1 … rP
i�
1
… i�

P

i��
1
… i��

P

P�
p=1

v�
rpi

��
p
rp−1

vrpi�prp−1
k(�

p

ip
, �

p

i�
p

)��p
ip

(�
p

i��
p

), �2
y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(24)

p(yi1…iP
��1 …�P,�

�
1
…��

P
)

= N

⎛⎜⎜⎜⎜⎜⎝

yi1...iP

������������

�
rs
1
… rs

P

P�
p=1

vs
rpiprp−1

�
r1 … rP
i�
1
… i�

P

P�
p=1

vrpi�prp−1
k(�

p

ip
, �

p

i�
p

) +
�

rb
1
… rb

P

P�
p=1

vb
rpiprp−1

, �2
y

⎞⎟⎟⎟⎟⎟⎠

(25)

L(yi1…iP
,�1 …�P,�

�
1
…��

P
) = �q[log p(yi1…iP

��1 …�P,�
�
1
…��

P
)]

−

�
P�

p=1

DKL(q(�p)‖p(�p)) + DKL(q(�
�
p
)‖p(��

p
))

�

2675Machine Learning (2022) 111:2663–2713

1 3

where �q,�p and �2
q
, �2

p
 are the mean and variance for the variational approximation and

prior respectively, where �p, �
2
p
 are chosen a priori.

Model For a univariate Gaussian variational approximation we assume the following
prior structure

with corresponding univariate meanfield approximation

We take �′
p
, �′2

p
,�p, �

2
p
 to be hyperparameters.

Weighted latent regression reconstruction term For Weighted latent regression, we
express the reconstruction term as

where �′
p
,�p and �′

p
,�p correspond to the tensors containing the variational parameters

��
rpiprp−1

 , �rpiprp−1
 and ��2

rpiprp−1
 , �2

rpiprp−1
 respectively. For the case of RFF’s, we approximate

𝛴p ×2 (�p)
2 ≈ 𝛴p ×2 (𝛷p ∙𝛷p)

⊤ ×2 (𝛷p ∙𝛷p) , where ∙ is the transposed Khatri–Rao prod-
uct. It should further be noted that any square term means element wise squaring. We pro-
vide a derivation in the Appendix A.1.

Latent scaling reconstruction term For Latent Scaling, we express the reconstruction
term as

(26)DKL(Nq ‖Np) =
(�q − �p)

2

2�2
p

+
1

2

�
�2
q

�2
p

− 1 − ln
�2
q

�2
p

�

(27)
p(��

p
) =

∏
rp, ip

N(v�
rpiprp−1

|��
p
, ��2

p
), p(�p) =

∏
rp,ip

N(vrpiprp−1 |�p, �
2
p
)

(28)

q(��
p
) =

∏
rp, ip

N(v�
rpiprp−1

|��
rpiprp−1

, ��2
rpipr

�
p−1

),

q(�p) =
∏
rp,ip

N(vrpiprp−1 |�rpiprp−1
, �2

rpiprp−1
).

(29)

�q[log p(yi1…iP
|�1 …�P,�

�
1
…��

P
)]

∝
1

�2
y

[
�2 − 2�◦

(P∏
p=1

×−1(�
�
p
◦(�p ×2 �p))

)
+

(P∏
p

×−1�
�
p
◦(�p ×2 �p)

)2

+

(P∏
p

×−1�
�
p
◦(�p ×2 (�p)

2)

)
+

(P∏
p

×−1(�
�
p
◦(�p ×2 �p)

2)

)

+

(P∏
p

×−1�
�2
p
◦(�p ×2 (�p)

2)

)]

2676 Machine Learning (2022) 111:2663–2713

1 3

For details, see the Appendix A.2.

3.9.2 Multivariate VI

Multivariate KL The KL divergence between a multivariate normal prior p and a vari-
ational approximation given by q:

Where �p,�q and �p,�q are the mean and covariance for the prior and variational respec-
tively. Inspired by g-prior (Zellner 1986), we take �p = �−1

p
 , where �−1

p
 is the inverse ker-

nel covariance matrix of side information for mode p. When side information is absent, we
take �p = � . Another benefit of using the inverse is that is simplifies calculations, since we
now avoid inverting a dense square matrix in the KL-term. Similar to the univariate case
we choose �p a priori, although here it becomes a constant tensor rather than a constant
scalar.

Model For the multivariate case, we consider the following priors

Where Qp is the number of dimensions jointly modeled in each TT-core. For the variational
approximations, we have

(30)

�q[log p(yi1…iP
��1 …�P,�

�
1
…��

P
)]

∝
1

�2
y

�
�2 − 2�◦

� P�
p=1

(�s
p
◦(�p ×2 �p) +�b

p
)

�

+

⎛⎜⎜⎝

�
P�

p=1

×−1�
s
p

�2

+

�
P�

p=1

×−1�
s
p

�⎞⎟⎟⎠

◦

⎛⎜⎜⎝

�
P�
p

×−1�p ×2 �p

�2

+

P�
p=1

×−1�p ×2 (�p)
2

⎞⎟⎟⎠

+ 2

�
P�

p=1

×−1�
s
p

�
◦

�
P�

p=1

×−1�
b
p

�
◦

�
P�

p=1

×−1�p ×2 �p

�

+

⎛⎜⎜⎝

�
P�

p=1

×−1�
b
p

�2

+

�
P�

p=1

×−1�
b
p

�⎞⎟⎟⎠

⎤⎥⎥⎦
.

(31)

DKL(Nq ∥ Np) =
1

2

[
tr

(
�−1

p
�q

)
+ (�p − �q)

��−1
p
(�p − �q) − k + ln

(
det�p

det�q

)]

(32)

p(��
p
) =

∏
rp, ip

N(v�
rpiprp−1

|𝜇�
p
, 𝜎�2

p
)

p(�p) =
∏
rp

N(vec(�rp)|𝜇p,

Qp∏
q=1

⊗(�q)
−1)

2677Machine Learning (2022) 111:2663–2713

1 3

We take �′
p
, �′2

p
,�p to be hyperparameters and 𝛴q = �q�

⊤
q
.

Sampling and parametrization Calculating
∏Qi

q=1
⊗�q�

⊤
q
 directly will yield a covari-

ance matrix that is prohibitively large. To sample from q(�p) we exploit that positive
definite matrices A and B with their Cholesky decompositions LA and LB have the fol-
lowing property

together with the fact that

where vec(�) ∈ ℝ

∏N

i
Ii×R . We would then draw a sample � ∼ q(�) as

where �̃ ∼ N(0, �∏P

p=1
np
) is reshaped into �̃ ∈ ℝ

∏
q=1 ×nq . We take �q = ����(BqB

⊤
q
) + Dq

(Ong et al. 2017), where Bq ∈ ℝ
nq×r , Dq to be a diagonal matrix and ���� denotes taking the

lower triangular component of a square matrix including the diagonal. We choose this par-
ametrization for a linear time-complexity calculation of the determinant in the KL-term by
exploiting that det

(
𝛴q

)
= det

(
�q�

⊤
q

)
= (det

(
�q

)
)2 . In the RFF case, we take �q = Bq

and estimate the covariance as �q�
⊤
q
+ D2

q

Weighted latent regression reconstruction term We similarly to the univariate case
express the reconstruction term as

where �p = �p�
T
p
 , � denotes a constant one tensor with the same dimensions as �′

p
 ,

1̄ ∈ ℝ
R×1 where R is the column dimension of �p and �′

p
 is the same as in the univariate

case. For RFF’s we have that

(33)

q(��
p
) =

∏
rp, ip

N(v�
rpiprp−1

|𝜇�
rpiprp−1

, 𝜎�2
rpiprp−1

)

q(�p) =
∏
rp,ip

N(vec(�rp)|𝜇rpiprp−1
,

Qp∏
q=1

⊗(�q�
⊤
q
))

(34)A⊗ B = (LAL
⊤
A
)⊗ (LBL

⊤
B
) = (LA ⊗ LB)(LA ⊗ LB)

⊤.

(35)
N∏
i=1

� ×i+1 Ai =

(
N∏
i=1

⊗Ai

)
⋅ vec(�),

(36)� = 𝜇rp
+

Qi∏
q=1

�̃ ×q+1 �q

(37)

�q[log p(yi1…iP
|�1 …�P,�

�
1
…��

P
)]

∝
1

𝜎2
y

[
�2 − 2�◦

(P∏
p=1

×−1(�
�
p
◦(�p ×2 �p))

)
+

(P∏
p

×−1�
�
p
◦(�p ×2 �p)

)2

+

(P∏
p

×−1𝛴
�
p
◦(� ×2

(
diag((�p ⋅ �p)

2
⋅ 1̄)

))
+

(P∏
p

×−1(𝛴
�
p
◦(�p ×2 �p)

2)

)

+

(P∏
p

×−1�
�2
p
◦(� ×2

(
diag((�p ⋅ �p)

2
⋅ 1̄)

))]

2678 Machine Learning (2022) 111:2663–2713

1 3

Latent scaling reconstruction term The latent scaling version has the following expression

For details, see the Appendix A.2.
RFFs and KL divergence Using (𝛷p𝛷

⊤
p
)−1 ≈ (�p)

−1 as our prior covariance, we
observe that the KL-term presents computational difficulties as a naive approach would
require storing (�p)

−1 ∈ ℝ
np×np in memory. Assuming we take 𝛴p = BB⊤,B ∈ ℝ

np×R , we
can manage the first term by using the equivalence

Consequently, we have that

We can calculate the second term using (34) and (35). For the third term, we remember
Weinstein–Aronszajn’s identity

where A ∈ ℝ
m×n,B ∈ ℝ

n×m and AB is trace class. If we were to take our prior covariance
matrix to be 𝛴p = (𝛷p𝛷

⊤
p
+ Inp)

−1 ≈ (�p + Inp)
−1 and our posterior covariance matrix to be

approximated as 𝛴q = BB⊤ + Inp , we could use Weinstein–Aronszajn’s identity to calculate
the third log term in a computationally efficient manner.

From a statistical perspective, adding a diagonal to the covariance matrix implies
regularizing it by increasing the diagonal variance terms. Taking inspiration from Kim
and Teh (2017), we can further choose the magnitude � of the regularization

(38)
(�p ⋅ �p)

2
⋅ 1̄ ≈((𝛷p ⋅𝛷

⊤
p
) ⋅ �p)

2
⋅ 1̄ + vec(D2

p
)

=(𝛷p ⋅ (𝛷
⊤
p
⋅ �p))

2
⋅ 1̄ + vec(D2

p
).

(39)

�q[log p(yi1…iP
��1 …�P,�

�
1
…��

P
)]

∝
1

𝜎2
y

�
�2 − 2�◦

� P�
p=1

(�s
p
◦(�p ×2 �p) +�b

p
)

�

+

⎛⎜⎜⎝

�
P�

p=1

×−1�
s
p

�2

+

�
P�

p=1

×−1𝛴
s
p

�⎞⎟⎟⎠

◦

⎛⎜⎜⎝

�
P�
p

×−1�p ×2 �p

�2

+

P�
p=1

×−1(� ×2 (diag((�p ⋅ �p)
2
⋅ 1̄)))

⎞⎟⎟⎠

+ 2

�
P�

p=1

×−1�
s
p

�
◦

�
P�

p=1

×−1�
b
p

�
◦

�
P�

p=1

×−1�p ×2 �p

�

+

⎛⎜⎜⎝

�
P�

p=1

×−1�
b
p

�2

+

�
P�

p=1

×−1𝛴
b
p

�⎞⎟⎟⎠

⎤⎥⎥⎦
.

(40)(A ∙ B) ⋅ (A ∙ B)⊤ = (AA⊤)◦(BB⊤).

(41)
tr(𝛴−1

p
𝛴q) =

(
(𝛷𝛷⊤)
���

Using (�p)
−1

◦BB⊤

)

++

=

(
(𝛷 ∙ B)⊤ ⋅ (𝛷 ∙ B)

)

++

.

(42)det(Im + AB) = det(In + BA)

2679Machine Learning (2022) 111:2663–2713

1 3

The KL expression then becomes

3.9.3 Calibration metric

We evaluate the overall calibration of our variational model using the sum

of the calibration rate �1−2� , which we define as

where we consider � to take values in {0.05, 0.15, 0.25, 0.35, 0.45} . This calibration rate
can be understood as the true (frequentist) coverage probability and 1 − 2� as the nominal
coverage probability. The model is calibrated when the true coverage probability is close to
the nominal coverage probability, that is when � is small. To ensure that our model finds a
meaningful variational approximation, we take our hyperparameter selection criteria to be:

where R2 ∶= 1 −

∑
i1…in

(yi1…in
−ŷi1…in

)2

Var(�)
 is the coefficient of determination (Draper and Smith

1966) calculated using the “mean terms”
�∏P

p=1
×−1(�

�
p
◦(�p ×2 �p))

�
 or �∏P

p=1
(�s

p
◦(�p ×2 �p) +�b

p
)

�
 as predictions ŷi1…in

 . If we only use �criteria = � , we argue

that there is an inductive bias in choosing � ’s which may lead to an approximation that is
calibrated per se, but not meaningful as the modes are incorrect (low R2 value). Similarly
to the frequentist case, we use an EM-inspired optimization strategy in Algorithm 2. The
main idea is to find the mode and variance parameters of our variational approximation in a
mutually exclusive sequential order, starting with the modes. Similar to the frequentist
case, the reconstruction term of the ELBO has terms that both contain �p and �′

p
 which

motivates the EM-inspired approach. For further details, please refer to the Appendix E.2.

det(𝜎2In +𝛷𝛷⊤) = (𝜎2)n det(In + 𝜎−2𝛷𝛷⊤)

= (𝜎2)n det(Im + 𝜎−2𝛷⊤𝛷)

= (𝜎2)n−m det(𝜎2Im +𝛷⊤𝛷)

(43)

D
KL
(Nq ∥ Np) =

1

2

[(
(𝛷 ∙ B)⊤ ⋅ (𝛷 ∙ B)

)
++

+ 𝜎2

p
(B◦B)++

+ 𝜎2

q
(𝛷◦𝛷)++ + 𝜎2

q
𝜎2

p
N + (𝜇p − 𝜇q)

�(𝛷𝛷⊤ + 𝜎2

p
I)(𝜇p − 𝜇q)

− k + ln

(|(𝜎2

p
)N−I det(𝛷⊤𝛷 + 𝜎2

p
I)|−1

|(𝜎2

q
)N−I det(B⊤B + 𝜎2

q
I)|

)]
.

(44)� =
∑
�∈�

|�1−2� − (1 − 2�)|

(45)�1−2� =
number of yi1…iP

within 1 − 2� confidence level

total number of yi1…iP

(46)�criteria = � − R2

2680 Machine Learning (2022) 111:2663–2713

1 3

3.10 Extension to forecasting

KFT in its current form is fundamentally unable to accommodate forecasting problems.
To see this, we first consider the forecasting problem of predicting observation yT from
previous observations �t = [y0,… , yt], 0 < t < T using model f (�t) . The model is then
optimized by minimizing

for all T. Forecasting problems assume that the model does not have access to future yT+1
outside the training set and assumes it to learn yT+1 through an autoregressive assumption.
Imposing this assumption on KFT would imply that latent factorizations for time-indexed
T + 1 would remain untrained with the current training procedure, as we do not access to
these indices during training. With untrained latent factorizations for T + 1 , any forecast
would at best be random.

However, we can easily extend KFT to be autoregressive by directly applying (Yu et al.
2016).

3.10.1 Frequentist setting

We consider the Temporal Regularized Matrix Factorization (TRMF) framework presented
in Yu et al. (2016)

where � ∈ ℝ
T×k is the temporal factorization component in the matrix factorization � ⋅ �⊤

and �t denotes � sliced at time index t. Further we take W =
{
W (l) ∈ diag(ℝk) ∣ l ∈ 𝕃

}
(i.e.

set of diagonal matrices) and � = {li < T ∣ i = 1,… , I} as the set of time indices to lag.

(47)L(yT , �t) = ‖yT − f (�t)‖2

(48)TAR(� ∣ �,W, �) ∶=
1

2

T∑
t=m

‖‖‖‖‖
xt −

∑
l∈�

W (l)
xt−l

‖‖‖‖‖

2

+
�

2

∑
t

‖‖xt‖‖2

2681Machine Learning (2022) 111:2663–2713

1 3

Additionally, the regularization weight � is needed to ensure that � varies smoothly. How-
ever in KFT, such regularization already exists and it suffices to consider

Forecasting for WLR TRMF can be extended to WLR by simply taking
� = ��

t
◦(�t ×2 �t) ∈ ℝ

rT+1×T×rT−1 and W =
{
W (l) ∈ ℝ

rT+1×rT−1 ∣ l ∈ 𝕃
}
 , which then yields

which we coin KFTRegularizer (KFTR).3 We follow the same training strategy proposed in
Yu et al. (2016) by sequentially updating F = {�p,�

�
p
∣ p = 1… ,P}�� , � and W.

Forecasting for LS KFTR can also be applied to the LS variant by applying the temporal
regularization to all three components �s = �s

t
 , �b = �b

t
 and � = �t × �t . We then apply

Eq. (49) to each term.

3.10.2 Bayesian setting

KFTR is extended to the Bayesian setting by optimizing the quantity

in addition to the ELBO. The probability distribution p(⋅) is assumed to be a univariate
normal with fixed variance �2

KFTR
 . We define

as functions of variational variables �,�′ . Here [⋅]t means slicing the tensor at index t. As
an autoregressive dependency on �t is required, we take

However �t is composed of variational variables �,�′ and thus we can write

The log-expectation is intractable, so we use Jensen’s inequality and optimize a lower
bound instead. We then arrive at the following expression

TAR(� ∣ �,W) =
1

2

T∑
t=m

‖‖‖‖‖
xt −

∑
l∈�

W (l)
xt−l

‖‖‖‖‖

2

.

(49)TAR(� ∣ �,W) =
1

2

T∑
t=m

‖‖‖‖‖
xt −

∑
l∈�

W (l)
◦xt−l

‖‖‖‖‖

2

,

(50)log p(�T ,… ,�m) =

T∑
t=m

log p(�t)

(51)�t =
[
��

time
◦(�time ×2 �time)

]
t

(52)p(�t) = ∫ p(�t ∣ �l1
,… ,�lK

)p(�l1
)… p(�lK

)d�l1
…�lK

.

(53)
log p(�t) = log� p(�t ∣ �l1

,… ,�lK
)q(�)q(��)d�d��

= log�q[p(�T ∣ �l1
,… ,�lK

)] ≥ �q[log p(�T ∣ �l1
,… ,�lK

)].

3 The recursive abbreviation reflects the recursive nature of the autoregressive regularization!

2682 Machine Learning (2022) 111:2663–2713

1 3

We calculate the expression by taking expectations of the x-terms with respect to v, v′ and
arrive at

It should be noted that the above expression considers the WLR case for a univariate mean-
field model. For a complete derivation and an expression for the multivariate meanfield
model and the LS version, we refer to Appendix A.2.2.

3.11 Complexity analysis

We give a complexity analysis for all variations of KFT in the frequentist setting and
Bayesian setting.

Theorem 1 KFT has computational complexity

and memory footprint O
(
P ⋅

(
maxp

(
nprprp−1

)
+maxp

(
npcp

)))
 for a gradient update on a

batch of data. In the dual case, we take cp = np.

(54)

�q[log p(�T ∣ �l1
,… ,�lK

)] ∝
1

�2
TRMF

�q

⎡
⎢⎢⎣

�
xrp,it=T ,rp+1 −

K�
k=1

wkxrp,it=lk ,rp+1

�2⎤
⎥⎥⎦

=
1

�2
TRMF

�q

��
x2
rp,it=T ,rp+1

− 2xrp,it=T ,rp+1

K�
k=1

wkxrp,it=lk ,rp+1

+(

K�
k=1

wkxrp,it=lk ,rp+1)
2

��
.

(55)

�q[log p(�T ∣ �l1
,… ,�lK

)] ∝
[
(��2 + ��)◦

[
(� ×2 �)2 + � ×2 �

2
]]

T

− 2
[
��

◦(� ×2 �)
]
T
◦

(
K∑
k=1

�k◦
[
��

◦(� ×2 �)
]
lk

)

+

K∑
k=1

�2
k
◦
[
(��2 + ��)◦

[
(� ×2 �)2 + � ×2 �

2
]]

lk

+

(
K∑
k=1

�k◦
[
��

◦(� ×2 �)
]
lk

)2

−

K∑
k=1

�2
k
◦
[
��

◦(� ×2 �)
]2
lk
.

O

(
max
p

(
npcprprp−1

)
+

(
max
p

rp

)P
)

2683Machine Learning (2022) 111:2663–2713

1 3

We provide proof in the appendix. It should be noted that one can reduce complexity
and memory footprint by permuting the modes of the tensor such that the larger modes are
on the edges, i.e. when rp = 1 or rp−1 = 1 . Then np will only scale with rp−1 or rp.

KFTR complexity The additional complexity associated with adding an autoregres-
sive regularization term is at worst O(rprp−1KT) , where K is the number of lags and T the
size of the temporal mode. As this term scales linearly with K, it does not have an overall
impact on the complexity of KFT.

4 Experiments

The experiments are divided into analyzing the frequentist version and bayesian ver-
sion of KFT. Frequentist KFT is compared against competing methods on prediction
and forecasting on various high dimensional datasets. Datasets we use are summarized
in Table 2. For Bayesian KFT, we investigate the performance of the Bayesian version
of KFT with a focus on the calibration of the obtained posterior distributions, by com-
paring nominal coverage probabilities to the true coverage probabilities.

4.1 Predictive performance of KFT

We compare KFT to the established FFM and LightGBM on the task of prediction on
three different datasets, Retail Sales, Movielens-20M and Alcohol Sales (cf. Table 2).
We compare KFT using squared loss. LightGBM is a challenging benchmark as it has
continuously received development, engineering, and performance optimization since
its inception in 2017. We execute our experiments by running 20 iterations of hyperopt

Table 2 Summary of datasets

Dataset Mean SD N Dimensionality

Alcohol Sales 11.567 37.678 2,816,946 3476 × 4542 × 24

Movielens-20M 3.529 1.051 19,800,443 138493 × 10, 370 × 24

Fashion Retail Sales 2.430 3.968 24,291,539 80 × 400, 000 × 24

CCDS −0.000 0.997 331,500 17 × 125 × 156

Traffic 0.053 0.045 10,167,809 10, 560 × 963

2684 Machine Learning (2022) 111:2663–2713

1 3

(Bergstra et al. 2013) for all methods to find the optimal hyperparameter configuration
constrained with a memory budget of 16GB (which is the memory limit of a high-end
GPU) for 5 different seeds, where the seed controls how the data is split. We split our
data into 60% training, 20% validation, and 20% testing. We report scores in R2 , since
it provides a normalized goodness-of-fit score and measure the performance in terms
of R2-value on test data. For further details on hyperparameter range, data, and pre-
processing, see Appendix F. The results are reported in Table 3, where the best results
are boldfaced. We observe that KFT has configurations that can outperform the bench-
marks with a good margin. Furthermore, the dual space models are generally doing bet-
ter than their primal counterparts. We hypothesize that the enhanced expressiveness of
kernelized side information is the reason for this.

The next experiment makes a direct comparison of KFT to recent Matrix Factoriza-
tion methods tailored for the Movielens-1M and Movielens-10M datasets. The purpose of
this experiment is to further demonstrate the competitiveness of KFT on recommendation
tasks. Table 4 gives comparison of KFT RMSE on Movielens-1M and Movielens-10M
to RMSEs of existing methods which are reported in respective paper. KFT outperforms
existing non-neural models and marginally underperforms compared to neural-based state-
of-the-art models for matrix factorization. In comparison to tensor factorization, KFT out-
performs NTF despite NTF being a neural model. The RMSE is generally higher for tensor
factorization, as data becomes sparser with each additional dimension.

Table 3 KFT results

Performance measured in R2

Method/dataset Retail sales Movielens-20M Alcohol sales

P-way, WLR, Primal 0.108 ± 0.435 0.38 ± 0.012 0.69 ± 0.015
P-way, WLR, Dual 0.571 ± 0.007 0.390 ± 0.005 0.704 ± 0.013
2-way, time only , WLR, Primal 0.466 ± 0.034 0.168 ± 0.013 0.472 ± 0.025
2-way, time only , WLR, Dual 0.594 ± 0.005 0.349 ± 0.01 0.692 ± 0.013
P-way, LS, Primal 0.152 ± 0.033 0.272 ± 0.032 0.542 ± 0.026
P-way, LS, Dual 0.027 ± 0.006 0.281 ± 0.027 0.562 ± 0.022
2-way, time only, LS, Primal 0.505 ± 0.008 0.065 ± 0.042 0.466 ± 0.022
2-way, time only,LS, Dual 0.458 ± 0.015 0.326 ± 0.024 0.699 ± 0.012
Naive methods
P-way Vanilla, Primal −0.374± 0.007 −2.197± 0.007 0.025 ± 0.012
P-way Vanilla, Dual -0.087 ± 0.017 −4.837± 0.028 0.196 ± 0.008
P-way Vanilla, No side information 0.385 ± 0.002 0.147 ± 0.038 0.477 ± 0.015
Benchmark models
LightGBM 0.581 ± 0.009 0.303 ± 0.003 0.646 ± 0.015
FFM 0.48 ± 0.032 0.293 ± 0.021 0.64 ± 0.019
Linear 0.058 ± 0.001 0.185 ± 0 0.03 ± 0.002

2685Machine Learning (2022) 111:2663–2713

1 3

Ta
bl

e
4

 F
re

qu
en

tis
t r

es
ul

ts
 in

 R
M

SE
 c

om
pa

re
d

to
 re

po
rte

d
re

su
lts

a
In

di
ca

te
s a

 th
re

e
di

m
en

si
on

al
 te

ns
or

 fa
ct

or
iz

at
io

n
fo

r e
xa

ct
 c

om
pa

ris
on

 w
ith

 N
TF

M
et

ho
d

M
ov

ie
le

ns
-1

M
 (6

4/
16

/2
0%

)
M

ov
ie

le
ns

-1
M

(8

5.
5/

4.
5/

10
%

)
M

ov
ie

le
ns

-1
0M

(6

4/
16

/2
0%

)
M

ov
ie

le
ns

-1
0M

(8

5.
5/

4.
5/

10
%

)
N

eu
ra

l
C

la
im

s S
O

TA

C
F-

N
A

D
E

(D
u

et
 a

l.
20

16
)

0.
82
9

0.
77

1
✓

✓

N
TF

 (W
u

et
 a

l.
20

19
)

0.
88

29
a

✓
✓

K
PM

F
(P

al
 a

nd
 Je

na
m

an
i 2

01
8)

0.
85

54
✓

ST
A

R-
G

C
N

 (Z
ha

ng
 e

t a
l.

20
19

)
0.

83
2

±
 0

.0
01

6
0.
77
0

±
 0
.0
00
1

✓
✓

H
IR

E
(L

iu
 e

t a
l.

20
19

)
0.

86
07

✓

K
FT

, P
-w

ay
, W

LR
, D

ua
l,

m
ov

ie
-

ge
no

m
e

si
de

 in
fo

0.
85

 ±
 0
.0
02
/0
.8
72

a
 ±

 0
.0
03

0.
83

5
±

 0
.0

02
0.

79
6

±
 0

.0
02

0.
78

4
±

 0
.0

02

2686 Machine Learning (2022) 111:2663–2713

1 3

For forecasting problems, we replicate the experiments in Yu et al. (2016) and Salinas
et al. (2019) for the traffic dataset and Yu et al. (2014) for the CCDS data and compare
against KFT in Tables 5 and 6.

We plot forecasts for different plots and series in Fig. 3.

4.2 Calibration study of Bayesian KFT

We use the same setup as in the frequentist case, modulo the hyperparameter evaluation
objective which instead is (46). For details on hyperparameter choices and data prepara-
tion, please refer to the Appendix F. We run a regular tensor factorization without side
information as a benchmark for performance, which is intended to mimic (Hawkins and
Zhang 2018) as a comparison. We summarize the results in Table 7. We obtain calibrated
variational approximations and observe that models using side information yield better pre-
dictive performance but that their calibration becomes slightly worse. By using a Bayesian
framework we seem to generally lose some predictive performance compared to the corre-
sponding frequentist methods, except in the case of Movielens-20M. We provide a visuali-
zation of the calibration ratios for all datasets in Fig. 4.

Table 5 Traffic results NRSME ND

KFT, P-way, WLR, dual 0.405 0.181
TRMF (Yu et al. 2016) 0.423 0.187
DeepAR (Salinas et al. 2019) 0.420 0.17

Table 6 CCDS results RSME

KFT, P-way, WLR, dual 0.8143
Orthogonal (Yu et al. 2014) 0.8325

Fold 5, Series index 0 Fold 3, Series index 45 Fold 1, Series index 1(a) (b) (c)

Fig. 3 Forecasts on the Traffic dataset using KFTR.

2687Machine Learning (2022) 111:2663–2713

1 3

Ta
bl

e
7

 T
ab

le
 o

f r
es

ul
ts

 fo
r B

ay
es

ia
n

K
FT

. H
er

e
w

e
de

no
te

 �
�
=
|� 1

−
2
�
−
(1

−
2
�
)| ,

se
e

Se
ct

. 3
.9

.3
 fo

r m
or

e
de

ta
ils

M
od

el
D

at
as

et
�

0
.0
5

�
0
.1
5

�
0
.2
5

�
0
.3
5

�
0
.4
5

�
R
2

� c
r
it
e
r
ia

EL
BO

lo
g-

lik
el

ih
oo

d

P-
w

ay
,

W
LR

D

ua
l,

U
ni

v.

A
lc

oh
ol

0.
08

 ±
0
.0
1
1

0.
23

6
±
0
.0
2
9

0.
34

6
±
0
.0
5
4

0.
34

9
±
0
.0
7
2

0.
16

1
±
0
.0
4

1.
17

1
±
0
.2
0
6

�
.6
7
7

±
�
.0
1
3

0.
49

4
±
0
.2
1
9

32
19

.5
38

±
7
7
6
.9
2
7

14
40

3.
15

3
±
6
8
2
7
.6
3
7

P-
w

ay
,

W
LR

D

ua
l,

M
ul

tv
.

A
lc

oh
ol

0.
06

5
±
0
.0
4
5

0.
21

7
±
0
.1
0
1

0.
34

5
±
0
.1
7
1

0.
41

1
±
0
.2
4
6

0.
24

5
±
0
.1
8

1.
28

2
±
0
.7
3
9

0.
55

9
±
0
.0
2
4

0.
72

4
±
0
.7
1
9

51
73

63
.6

86

±
7
6
8
2
9
3
.9
7

62
84

16
.4

38

±
9
4
1
6
8
2
.7
6
6

P-
w

ay
, L

S
D

ua
l,

U
ni

v.

A
lc

oh
ol

0.
1
±
0
.0

0.
29

9
±
0
.0
0
1

0.
49

6
±
0
.0
0
2

0.
67

6
±
0
.0
0
6

0.
50

9
±
0
.0
1
3

2.
07

9
±
0
.0
2
1

0.
64

3
±
0
.0
0
9

1.
43

6
±
0
.0
1
1

30
54

18
.8

12

±
1
1
1
4
2
8
.3
8
7

74
69

37
0.

33
3

±
2
8
6
3
6
1
7
.2
1
8

P-
w

ay
, L

S
D

ua
l,

M
ul

tv
.

A
lc

oh
ol

0.
1
±
0
.0

0.
29

9
±
0
.0
0
1

0.
49

6
±
0
.0
0
3

0.
67

8
±
0
.0
1
3

0.
51

9
±
0
.0
3
3

2.
09

3
±
0
.0
5

0.
66

8
±
0
.0
0
4

1.
42

5
±
0
.0
5
3

19
75

12
7.

66
7

±
1
8
0
4
4
8
1
.8
2
7

33
06

00
96

.3
33

±
3
9
8
9
1
5
3
3
.6
9
2

P-
w

ay
 N

o
Si

de
 In

fo
A

lc
oh

ol
0.

05
1

±
0
.0
0
5

0.
18

8
±
0
.0
1
3

0.
28

2
±
0
.0
2
7

0.
27

9
±
0
.0
3
8

0.
12

3
±
0
.0
2
1

�
.9
2
4

±
�
.1
0
4

0.
67

1
±
0
.0
1

�
.2
5
3

±
�
.1
0
6

13
34

.1
63

±
3
5
.8
6
5

58
90

.0
84

±
9
8
5
.0
0
2

P-
w

ay
,

W
LR

D

ua
l,

U
ni

v.

M
ov

ie
le

ns
-

20
m

0.
08

5
±
0
.0
0
6

0.
23

1
±
0
.0
1
7

0.
30

5
±
0
.0
3
5

0.
26

1
±
0
.0
4
2

0.
10

2
±
0
.0
2

0.
98

3
±
0
.1
1
9

�
.3
7
4

±
�
.0
0
3

0.
60

9
±
0
.1
1
5

46
8.

42
6

±
4
4
.5
5
4

49
9.

72
5
±
4
3
.1
6
2

P-
w

ay
,

W
LR

D

ua
l,

M
ul

tv
.

M
ov

ie
le

ns
-

20
m

0.
1
±
0
.0

0.
3
±
0
.0

0.
5
±
0
.0

0.
69

 ±
0
.0
0
6

0.
51

8
±
0
.0
3
8

2.
10

8
±
0
.0
4
4

0.
37

1
±
0
.0
0
3

1.
73

7
±
0
.0
4
1

24
54

8.
96

7
±
3
3
3
.5
3
3

29
74

5.
23

8
±
2
5
0
9
.7
6
8

P-
w

ay
, L

S
D

ua
l,

U
ni

v.

M
ov

ie
le

ns
-

20
m

0.
03

1
±
0
.0
1
3

0.
06

3
±
0
.0
5
5

0.
07

5
±
0
.0
5
5

0.
05

8
±
0
.0
4

0.
02

2
±
0
.0
1
4

�
.2
4
8

±
�
.1
7
4

0.
31

6
±
0
.0
2
9

−
0
.0
6
8

±
�
.1
9
6

35
5.

07
9

±
9
8
.1
8
1

36
1.

62
2
±
1
0
0
.9
8
5

P-
w

ay
, L

S
D

ua
l,

M
ul

tv
.

M
ov

ie
le

ns
-

20
m

0.
09

7
±
0
.0
0
5

0.
27

7
±
0
.0
3
5

0.
42

 ±
0
.1

0.
46

6
±
0
.1
8
4

0.
24

4
±
0
.1
3
4

1.
50

3
±
0
.4
5
4

0.
32

6
±
0
.0
1
2

1.
17

7
±
0
.4
5
4

−
5
6
0
5
9
.2
2
9

±
7
9
1
8
.9
0
6

−
5
5
7
6
6
.2
1
1

±
7
6
5
0
.9
8
8

2688 Machine Learning (2022) 111:2663–2713

1 3

W
e

id
ea

lly
 w

an
t �

�
 a

nd
 �

 to
 b

e
as

 c
lo

se
 to

 z
er

o
as

 p
os

si
bl

e
co

up
le

d
w

ith
 a

 h
ig

h
R
2

Ta
bl

e
7

 (c
on

tin
ue

d)

M
od

el
D

at
as

et
�

0
.0
5

�
0
.1
5

�
0
.2
5

�
0
.3
5

�
0
.4
5

�
R
2

� c
r
it
e
r
ia

EL
BO

lo
g-

lik
el

ih
oo

d

P-
w

ay
 N

o
Si

de
 In

fo
M

ov
ie

le
ns

-
20

m
0.

08
9

±
0
.0
0
5

0.
23

4
±
0
.0
1
2

0.
30

1
±
0
.0
1
8

0.
24

5
±
0
.0
1
5

0.
09

2
±
0
.0
0
5

0.
96

1
±
0
.0
5
3

0.
28

5
±
0
.0
0
4

0.
67

6
±
0
.0
5
3

99
.5

11

±
2
1
.9
2
3

12
8.

06
2
±
2
0
.5
2
8

2-
w

ay
,

W
LR

D

ua
l,

U
ni

v.

Re
ta

il
0.

00
6

±
0
.0
0
6

0.
05

3
±
0
.0
0
9

0.
08

3
±
0
.0
1

0.
07

2
±
0
.0
0
8

0.
02

9
±
0
.0
0
3

0.
24

2
±
0
.0
2
6

�
.5
4
7

±
�
.0
0
4

−
0
.3
0
4

±
0
.0
2
9

10
07

.5
22

±
3
3
.5
4
6

10
72

.1
42

 ±
3
3
.1
9
2

2-
w

ay
,

W
LR

D

ua
l,

M
ul

tv
.

Re
ta

il
0.

08
7

±
0
.0
1
4

0.
06

4
±
0
.0
1
8

0.
03

7
±
0
.0
1
7

0.
01

7
±
0
.0
1
3

0.
00

4
±
0
.0
0
4

�
.2
0
9

±
�
.0
6
7

0.
54

6
±
0
.0
0
4

−
0
.3
3
7

±
�
.0
6
5

−
6
8
9
8
4
2
2
9
.3
3
3

±
6
3
5
9
0
3
.1
5
7

−
6
8
9
8
4
2
0
2
.6
6
7

±
6
3
5
8
8
3
.0
4

2-
w

ay
, L

S
D

ua
l,

U
ni

v.

Re
ta

il
0.

08
6

±
0
.0
0
4

0.
24

7
±
0
.0
1
2

0.
36

6
±
0
.0
2
2

0.
38

6
±
0
.0
3
1

0.
18

8
±
0
.0
2

1.
27

3
±
0
.0
8
8

0.
4
±
0
.0
1
4

0.
87

3
±
0
.0
7
8

37
2.

6
±
1
1
8
.8
5
5

46
9.

48
3
±
1
2
1
.8
5
5

2-
w

ay
, L

S
D

ua
l,

M
ul

tv
.

Re
ta

il
0.

09
 ±
0
.0
0
8

0.
25

9
±
0
.0
2
6

0.
39

1
±
0
.0
5

0.
43

1
±
0
.0
7
3

0.
22

5
±
0
.0
4
7

1.
39

6
±
0
.2
0
3

0.
41

3
±
0
.0
1

0.
98

3
±
0
.1
9
4

43
44

15
54

1.
33

3
±
3
7
5
1
8
1
4
0
.0
3
5

43
44

20
11

7.
33

3
±
3
7
5
1
8
6
1
0
.3
1
6

2-
w

ay
 N

o
Si

de
 In

fo
Re

ta
il

0.
03

3
±
0
.0
1
6

0.
03

7
±
0
.0
2
1

0.
07

6
±
0
.0
2
1

0.
07

5
±
0
.0
1
6

0.
03

2
±
0
.0
0
6

0.
25

2
±
0
.0
4
8

0.
53

6
±
0
.0
0
3

−
0
.2
8
4

±
0
.0
5

42
2.

56
2

±
6
6
.3
0
8

45
1.

33
4
±
6
3
.6
2
5

2689Machine Learning (2022) 111:2663–2713

1 3

We compare KFTR to existing Bayesian models with reported results in Table 8, where
the model is optimized for �criteria , in contrast to RMSE used in Kim and Choi (2014). KFT
performs well in a Bayesian setting compared to Kim and Choi (2014) and also yield cali-
brated estimates. For forecast problems, we apply KFTR to the Traffic and CCDS dataset
and report the results in Table 9. We find that the WLR version of KFT does well and
yields calibrated forecasts.

We plot forecasts for the Traffic dataset with uncertainty quantification in Fig. 5.

5 Analysis

We demonstrated the practical utility of KFT in both a frequentist and Bayesian context.
We now scrutinize the robustness and effectiveness of KFT as a remedy for constraint-
imposing side information.

5.1 Does KFT really amend the constraints of directly apply side information?

To validate this, we train KFT-WLR and a naive model on the Alcohol Sales dataset using
kernelized side information for 5 hyperparameter searches. We plot the mean training, vali-
dation, and test error of the 5 searches (and the standard errors) against epochs in Fig. 6.

5.2 How does KFT perform when applying constant side information?

To answer this question, we replace all side information with a constant � and kernelize it.
The results in the first row of Table 10 indicate that KFT indeed is robust towards constant
side information, as the performance does not degrade dramatically.

Alcohol Sales Movielens-20m Retail Sales(a) (b) (c)

Fig. 4 Heatmap of �1−2� for all datasets. Here the y-axis is location/userID and x-axis is time, where targets
have been aggregated on items. We see that the calibration rate over all aggregates consistently adjusts with
changes in 1 − 2�

2690 Machine Learning (2022) 111:2663–2713

1 3

Ta
bl

e
8

 R
es

ul
ts

 w
ith

 R
M

SE
 a

nd
 (�

)

a
 A

s n
o

ex
pl

ic
it

tra
in

/v
al

id
/te

st
ra

tio
 w

er
e

pr
ov

id
ed

, t
he

 c
om

pa
ris

on
 m

ig
ht

 n
ot

 b
e

ob
je

ct
iv

e

M
et

ho
d

M
ov

ie
le

ns
-1

M
 (6

4/
16

/2
0%

)
M

ov
ie

le
ns

-1
M

 (8
5.

5/
4.

5/
10

%
)

M
ov

ie
le

ns
-1

0M
 (6

4/
16

/2
0%

)
M

ov
ie

le
ns

-1
0M

 (8
5.

5/
4.

5/
10

%
)

V
B

M
F

(K
im

 a
nd

 C
ho

i 2
01

4)
0.

84
44

a

K
FT

, U
ni

va
ria

te
, W

LR
, D

ua
l

0.
92

 ±
 0

.0
08

 (0
.4

8
±

 0
.0

23
)

0.
89

1
±

 0
.0

06
 (0

.5
55

 ±
 0

.0
46

)
0.

84
8

±
 0

.0
12

 (0
.4

25
 ±

 0
.0

18
)

0.
83

4
±

 0
.0

07
 (0

.4
5

±
 0

.0
21

)
K

FT
, M

ul
tiv

ar
ia

te
, W

LR
, D

ua
l

0.
89

3
±

 0
.0

02
 (0

.2
31

 ±
 0

.0
2)

0.
87

6
±

 0
.0

13
 (0

.3
56

 ±
 0

.1
81

)
0.

87
7

±
 0

.0
09

 (0
.3

04
 ±

 0
.0

84
)

0.
86

4
±

 0
.0

04
 (0

.2
01

 ±
 0

.0
92

)

2691Machine Learning (2022) 111:2663–2713

1 3

Ta
bl

e
9

 T
ab

le
 o

f r
es

ul
ts

 fo
r B

ay
es

ia
n

fo
re

ca
st

ex
pe

rim
en

ts

M
od

el
D

at
as

et
�

0
.0
5

�
0
.1
5

�
0
.2
5

�
0
.3
5

�
0
.4
5

�
R
2

� c
r
it
e
r
ia

EL
BO

lo
g-

lik
el

ih
oo

d

P-
w

ay
, W

LR

D
ua

l,
U

ni
v.

Tr
affi

c
0.

03
5

±
0
.0
1
3

0.
13

3
±
0
.0
5
5

0.
14

7
±
0
.0
7
8

0.
09

7
±
0
.0
5
9

0.
03

2
±
0
.0
1
9

0.
44

4
±
0
.2
2
1

0.
67

1
±
0
.1
1

−
0
.2
2
7

±
0
.2
8

62
9.

04

±
6
.3
7
8

62
9.

86
1

±
6
.1
7
6

P-
w

ay
, L

S
D

ua
l,

U
ni

v.

Tr
affi

c
0.

1
±
0
.0

0.
3
±
0
.0

0.
49

9
±
0
.0
0
1

0.
68

 ±
0
.0
1

0.
48

9
±
0
.0
4
6

2.
06

8
±
0
.0
5
7

0.
21

3
±
0
.0
8
1

1.
85

5
±
0
.0
9
6

52
84

5.
82

1
±
4
7
5
6
7
.5
6
4

10
31

27
1.

52
6

±
9
0
4
2
3
3
.7
6
5

P-
w

ay
, W

LR

D
ua

l,
U

ni
v.

C
C

D
S

0.
04

2
±
0
.0
2
1

0.
10

9
±
0
.0
5

0.
12

5
±
0
.0
6
1

0.
09

4
±
0
.0
5

0.
03

6
±
0
.0
2
1

0.
40

6
±
0
.2
0
3

0.
19

6
±
0
.0
1
1

0.
21

 ±
0
.1
9
6

20
59

1.
65

2
±
6
2
0
9
.6
9
1

20
61

4.
38

6
±
6
2
2
9
.0
0
5

P-
w

ay
, L

S
D

ua
l,

U
ni

v.

C
C

D
S

0.
1
±
0
.0

0.
3
±
0
.0

0.
49

8
±
0
.0
0
3

0.
64

9
±
0
.0
7
9

0.
43

1
±
0
.1
8
1

1.
97

8
±
0
.2
6
3

0.
10

3
±
0
.0
0
5

1.
87

5
±
0
.2
6
3

14
69

1.
79

6
±
3
7
0
8
.9
6
5

66
32

2.
24

1
±
4
6
1
0
5
.9
1
4

2692 Machine Learning (2022) 111:2663–2713

1 3

5.3 How does KFT perform when applying noise as side information?

Similar to the previous question, we now replace the side information with standard Gaussian
noise instead. The results in the last row of Table 10 indicate that KFT also is robust against noise
and surprisingly performant as well. A possible explanation for this is that adding Gaussian noise
serves as an implicit regularizer or that the original side information is similarly distributed as
standard Gaussian noise. We conclude that KFT is stable against uninformative side information
in the form of Gaussian noise.

6 Conclusion

We identified an inherent limitation of side information based tensor regression and gave a method
that removes this limitation. Our proposed KFT method yields competitive performance against
state-of-the-art large-scale prediction models on a fixed computational budget. Specifically, as the
experiments in Table 3 demonstrate, for at least some cases of real practical interest, Weighted
Latent Regression is the most performant configuration. Further, KFT offers extended versatil-
ity in terms of calibrated Bayesian variational estimates. Our analysis shows that KFT solves the
problems we described in Sect. 2 and is robust for adversarial side information in the form of
Gaussian noise. A direction for further development would be to characterize identifiability condi-
tions for KFT and extend the Bayesian framework beyond mean-field variational inference.

Fold 3, Series index 0 Fold 3, Series index 45 Fold 3, Series index 236(a) (b) (c)

Fig. 5 Forecasts on the Traffic dataset using Bayesian KFTR.

Fig. 6 Training, validation and test error against epoch for KFT-WLR/KFT-LS and a naive model (with
“Dual” side information) on the Alcohol Sales dataset

2693Machine Learning (2022) 111:2663–2713

1 3

Appendix A: �q[logp(yi1,...,iP |�1, ...,�P,�
�
1
, ...,��

P
)] derivations

A.1 Weighted latent regression

Assuming that �y is a constant hyperparameter. We first have that

Our goal is to find the corresponding tensor operations of the sum terms.

A.1.1 Univariate meanfield

We first have that

Then the last term is can be written as

(56)

�q[log p(yi1 ,...,iP ��1, ...,�P,�
�
1
, ...,��

P
)]

∝
1

�2
y

�q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(yi1 ,...,iP −
�

r1, ..., rP

i�
1
, ..., i�

P

i��
1
, ..., i��

P

P�
p=1

v�
rpi

��
p
rp−1

vrpi�prp−1
k(�

p

ip
, �

p

i�
p

)��p
ip

(�
p

i��
p

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
f (k,�)

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1

�2
y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y2
i1 ,...,iP

− 2yi1 ,...,iP ⋅
�

r1, ..., rP

i�
1
, ..., i�

P

i��
1
, ..., i��

P

P�
p=1

�q[v
�
rpi

��
p
rp−1

]�q[vrpi�prp−1
]f (k, �)

+
�

r1, ..., rP

i�
1
, ..., i�

P

i��
1
, ..., i��

P

q1, ..., qP

j�
1
, ..., j�

P

j��
1
, ..., j��

P

P�
p=1

�q[v
�
qpj

��
p
qp−1

v�
rpi

��
p
rp−1

]�q[vrpi�prp−1
vqpj�pqp−1

]k(�
p

ip
, �

p

i�
p

)

��p
ip

(�
p

i��
p

)k(�
p

ip
, �

p

j�
p

)��p
ip

(�
p

j��
p

)
�

(57)�q[vrpi�prp−1
vqpj�pqp−1

] = �rpi
�
p
rp−1

�qpj
�
p
qp−1

+ �rp (qp)�rp−1 (qp−1)�i�p
(j�
p
)�2

rpi
�
p
rp−1

Table 10 Results from additional experiments for P-way dual models

Method/dataset Retail sales Movielens-20M Alcohol sales

WLR, Constant side information, Dual 0.56 ±0.013 0.33 ± 0.039 0.605 ± 0.041
WLR, Noise side information, Dual 0.553 ± 0.006 0.388 ± 0.003 0.704 ± 0.01

2694 Machine Learning (2022) 111:2663–2713

1 3

where �′
p
,� and �′,� correspond to the tensors containing the variational parameters

��
rpiprp−1

 , �rpiprp−1
 and ��2

rpiprp−1
 , �2

rpiprp−1
 respectively. For the case of RFF’s in dual space, we

approximate 𝛴p ×2 (�p)
2 ≈ 𝛴p ×2 (𝛷p ∙𝛷p)

⊤ ×2 (𝛷p ∙𝛷p) , where ∙ is the transposed
Khatri-Rao product. It should further be noted that any square term, means elementwise
squaring. With the middle term given by

the full reconstruction term is expressed as:

(58)

⟹

∑
r1, ..., rP
i�
1
, ..., i�

P

q1, ..., qP
j�
1
, ..., j�

P

P∏
p=1

�q[v
�
qpipqp−1

v�
rpiprp−1

]�q[vrpi�prp−1
vqpj�pqp−1

]k(�
p

ip
, �

p

i�
p

)k(�
p

ip
, �

p

j�
p

)

=
∑ P∏

p=1

(��
qpipqp−1

��
rpiprp−1

+ �rp (qp)�rp−1 (qp−1)�
�2
rpiprp−1

)

(�qpj
�
p
qp−1

�rpi
�
p
rp−1

+ �rp (qp)�rp−1 (qp−1)�i�p
(j�
p
)�2

rpi
�
p
rp−1

)k(�
p

ip
, �

p

i�
p

)k(�
p

ip
, �

p

j�
p

)

=
∑ P∏

p=1

��
qpipqp−1

��
rpiprp−1

�qpj
�
p
qp−1

�rpi
�
p
rp−1

k(�
p

ip
, �

p

i�
p

)k(�
p

ip
, �

p

j�
p

)

+
∑

r1, ..., rP
i�
1
, ..., i�

P

P∏
p=1

��2
rpiprp−1

�2
rpi

�
p
rp−1

k(�
p

ip
, �

p

i�
p

)2

+
∑

r1, ..., rP
i�
1
, ..., i�

P

j�
1
, ..., j�

P

∏
��2
rpiprp−1

�rpi
�
p
rp−1

�rpj
�
p
rp−1

k(�
p

ip
, �

p

i�
p

)k(�
p

ip
, �

p

j�
p

)

+
∑

r1, ..., rP
i�
1
, ..., i�

P

∏
�2
rpi

�
p
rp−1

��2
rpiprp−1

k(�
p

ip
, �

p

i�
p

)2

(59)

⟺

(P∏
p

×−1�
�
p
◦(�p ×2 �p)

)2

+

(P∏
p

×−1�
�
p
◦(�p ×2 (�p)

2)

)

+

(P∏
p

×−1(�
�
p
◦(�p ×2 �p)

2)

)
+

(P∏
p

×−1�
�2
p
◦(�p ×2 (�p)

2)

)

(60)2�◦

(P∏
p=1

×−1(�
�
p
◦(�p ×2 �p))

)

2695Machine Learning (2022) 111:2663–2713

1 3

A.1.2 Multivariate meanfield

Similarly first observe that

It then follows that the third term is calculated as

(61)

�q[log p(yi1,...,iP |�1, ...,�p,�
�
1
, ...,��

p
)]

∝
1

�2
y

[
�2 − 2�◦

(P∏
p=1

×−1(�
�
p
◦(�p ×2 �p))

)

+

(P∏
p

×−1�
�
p
◦(�p ×2 �p)

)2

+

(P∏
p

×−1�
�
p
◦(�p ×2 (�p)

2)

)

+

(P∏
p

×−1(�
�
p
◦((�p ×2 �p)

2)

)
+

(P∏
p

×−1�
�2
p
◦(�p ×2 (�p)

2)

)]

(62)�q[vrpi�prp−1
vqpj�pqp−1

] = �rpi
�
p
rp−1

�qpj
�
p
qp−1

+ �rp (qp)�rp−1 (qp−1)�i�p
�j�

p
.

(63)

∑ P∏
p=1

(��
qpipqp−1

��
rpiprp−1

+ �rp (qp)�rp−1 (qp−1)�
�2
rpiprp−1

)

(�qpj
�
p
qp−1

�rpi
�
p
rp−1

+ �rp (qp)�rp−1 (qp−1)�i�p
�j�

p
)k(�

p

ip
, �

p

i�
p

)k(�
p

ip
, �

p

j�
p

)

=
∑ P∏

p=1

��
qpipqp−1

��
rpiprp−1

�qpj
�
p
qp−1

�rpi
�
p
rp−1

k(�
p

ip
, �

p

i�
p

)k(�
p

ip
, �

p

j�
p

)

+
∑

r1, ..., rP
i�
1
, ..., i�

P

j�
1
, ..., j�

P

P∏
p=1

��2
rpiprp−1

�i�
p
�j�

p
k(�

p

ip
, �

p

i�
p

)k(�
p

ip
, �

p

j�
p

)

+
∑

r1, ..., rP
i�
1
, ..., i�

P

j�
1
, ..., j�

P

P∏
p=1

��2
rpiprp−1

�rpi
�
p
rp−1

�rpj
�
p
rp−1

k(�
p

ip
, �

p

i�
p

)k(�
p

ip
, �

p

j�
p

)

+
∑

r1, ..., rP
i�
1
, ..., i�

P

j�
1
, ..., j�

P

P∏
p=1

�i�
p
�j�

p
��2
rpiprp−1

k(�
p

ip
, �

p

i�
p

)k(�
p

ip
, �

p

j�
p

)

2696 Machine Learning (2022) 111:2663–2713

1 3

where �p = �p�
T
p
 , � denotes a constant one tensor with the same dimensions as �′

p
 ,

1̄ ∈ ℝ
R×1 where R is the column dimension of �p and �′

p
 is the same as in the univariate

case. For RFF’s we have that

As the middle term remains the same as in the univariate case our full reconstruction term
is

A.2 Latent scaling

Assuming that �y is a constant hyperparameter. We first have that

(64)

⟺

(P∏
p

×−1�
�
p
◦(�p ×2 �p)

)2(P∏
p

×−1𝛴
�
p
◦(� ×2

(
diag((�p ⋅ �p)

2
⋅ 1̄)

))

+

(P∏
p

×−1(𝛴
�
p
◦(�p ×2 �p)

2)

)
+

(P∏
p

×−1�
�2
p
◦(� ×2

(
diag((�p ⋅ �p)

2
⋅ 1̄)

))

(65)
(�p ⋅ �p)

2
⋅ 1̄ ≈((𝛷p ⋅𝛷

⊤
p
) ⋅ �p)

2
⋅ 1̄ + vec(D2

p
)

=(𝛷p ⋅ (𝛷
⊤
p
⋅ �p))

2
⋅ 1̄ + vec(D2

p
).

(66)

�q[log p(yi1,...,iP |�1, ...,�p,�
�
1
, ...,��

p
)]

∝
1

𝜎2
y

[
�2 − 2�◦

(P∏
p=1

×−1(�
�
p
◦(�p ×2 �p))

)

+

(P∏
p

×−1�
�
p
◦(�p ×2 �p)

)2

+

(P∏
p

×−1𝛴
�
p
◦(� ×2

(
diag((�p ⋅ �p)

2
⋅ 1̄)

))

+

(P∏
p

×−1(𝛴
�
p
◦(�p ×2 �p)

2)

)
+

(P∏
p

×−1�
�2
p
◦(� ×2

(
diag((�p ⋅ �p)

2
⋅ 1̄)

)]

2697Machine Learning (2022) 111:2663–2713

1 3

A.2.1 Univariate case

For the univariate case, the squared component of the reconstruction term in the ELBO
becomes

(67)

�q[log p(yi1,...,iP ��1, ...,�P,�
�
1
, ...,��

P
)]

∝
1

�2
y

�q

⎡
⎢⎢⎢⎢⎢⎣

(yi1,...,iP −

⎛
⎜⎜⎜⎜⎜⎝

�
s1,...,sP

P�
p=1

vs
spipsp−1

�
r1, ..., rP
i�
1
, ..., i�

P

P�
p=1

vrpi�prp−1
k(�

p

ip
, �

p

i�
p

)

+
�

b1,...,bP

P�
p=1

vb
bpipbp−1

�
)2

�

=
1

�2
y

�
y2
i1,...,iP

− 2yi1,...,iP

⋅

� �
s1,...,sP

P�
p=1

�q[v
s
spipsp−1

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
fvs
spipsp−1

�
r1, ..., rP
i�
1
, ..., i�

P

P�
p=1

�q[vrpi�prp−1
]k(�

p

ip
, �

p

i�
p

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
fv
rpi

�
prp−1

+
�

b1,...,bP

P�
p=1

�q[v
b
bpipbp−1

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
f
vb
bpipbp−1

�

+
�

s1, ..., sP
s�
1
, ..., s�

P

P�
p=1

�q[v
s
spipsp−1

vs
s�
p
ips

�
p−1

]
�

r1, ..., rP
q1, ..., qP
i�
1
, ..., i�

P

j�
1
, ..., j�

P

P�
p=1

�q[vrpi�prp−1
vqpj�pqp−1

]k(�
p

ip
, �

p

i�
p

)k(�
p

ip
, �

p

j�
p

)

+ 2fvs
spipsp−1

fvrpi�prp−1
fvb

bpipbp−1

+
�

b1, ..., bP
b�
1
, ..., b�

P

P�
p=1

�q[v
b
bpipbp−1

vb
b�
p
ipb

�
p−1

]

�
.

2698 Machine Learning (2022) 111:2663–2713

1 3

Too see this, we notice that all of the sums from the weighted latent regression case reap-
pears here as well. The entire expression is given by

A.2.2 Multivariate case

For multivariate case the last term becomes

(68)

⎛
⎜⎜⎝

�
P�

p=1

×−1�
s
p

�2

+

�
P�

p=1

×−1�
s
p

�⎞
⎟⎟⎠
◦

⎛
⎜⎜⎝

�
P�
p

×−1�p ×2 �p

�2

+

P�
p=1

×−1�p ×2 (�p)
2

⎞
⎟⎟⎠

+ 2

�
P�

p=1

×−1�
s
p

�
◦

�
P�

p=1

×−1�
b
p

�
◦

�
P�

p=1

×−1�p ×2 �p

�

+

⎛
⎜⎜⎝

�
P�

p=1

×−1�
b
p

�2

+

�
P�

p=1

×−1�
b
p

�⎞
⎟⎟⎠
.

(69)

�q[log p(yi1,...,iP ��1, ...,�P,�
�
1
, ...,��

P
)]

∝
1

�2
y

�
�2 − 2�◦

� P�
p=1

(�s
p
◦(�p ×2 �p) +�b

p
)

�

+

⎛⎜⎜⎝

�
P�

p=1

×−1�
s
p

�2

+

�
P�

p=1

×−1�
s
p

�⎞⎟⎟⎠

◦

⎛⎜⎜⎝

�
P�
p

×−1�p ×2 �p

�2

+

P�
p=1

×−1�p ×2 (�p)
2

⎞⎟⎟⎠

+ 2

�
P�

p=1

×−1�
s
p

�
◦

�
P�

p=1

×−1�
b
p

�

◦

�
P�

p=1

×−1�p ×2 �p

�
+

⎛⎜⎜⎝

�
P�

p=1

×−1�
b
p

�2

+

�
P�

p=1

×−1�
b
p

�⎞⎟⎟⎠

⎤⎥⎥⎦
.

2699Machine Learning (2022) 111:2663–2713

1 3

Again, we notice that all of the sums from the weighted latent regression case reappears
here as well. The full expression is given by

A.3 Forecasting

We derive an expression for the forecasting term for the WLR case

(70)

⎛
⎜⎜⎝

�
P�

p=1

×−1�
s
p

�2

+

�
P�

p=1

×−1𝛴
s
p

�⎞
⎟⎟⎠

◦

⎛⎜⎜⎝

�
P�
p

×−1�p ×2 �p

�2

+

P�
p=1

×−1(� ×2

�
diag((�p ⋅ �p)

2
⋅ 1̄)

�
)

⎞⎟⎟⎠

+ 2

�
P�

p=1

×−1�
s
p

�
◦

�
P�

p=1

×−1�
b
p

�

◦

�
P�

p=1

×−1�p ×2 �p

�
+

⎛⎜⎜⎝

�
P�

p=1

×−1�
b
p

�2

+

�
P�

p=1

×−1𝛴
b
p

�⎞⎟⎟⎠

(71)

�q[log p(yi1,...,iP ��1, ...,�p,�
�
1
, ...,��

p
)]

∝
1

𝜎2
y

�
�2 − 2�◦

� P�
p=1

(�s
p
◦(�p ×2 �p) +�b

p
)

�

+

⎛⎜⎜⎝

�
P�

p=1

×−1�
s
p

�2

+

�
P�

p=1

×−1𝛴
s
p

�⎞⎟⎟⎠

◦

⎛⎜⎜⎝

�
P�
p

×−1�p ×2 �p

�2

+

P�
p=1

×−1(� ×2

�
diag((�p ⋅ �p)

2
⋅ 1̄)

�
)

⎞⎟⎟⎠

+ 2

�
P�

p=1

×−1�
s
p

�
◦

�
P�

p=1

×−1�
b
p

�
◦

�
P�

p=1

×−1�p ×2 �p

�

+

⎛⎜⎜⎝

�
P�

p=1

×−1�
b
p

�2

+

�
P�

p=1

×−1𝛴
b
p

�⎞⎟⎟⎠

⎤⎥⎥⎦

2700 Machine Learning (2022) 111:2663–2713

1 3

We first establish that

Consequently,

where [⋅]� denotes slicing in the temporal dimension at index � . We then calculate the first
term

For univariate meanfield �,�′ , taking the expectation we arrive at

(72)

�q[log p(�T ∣ �l1
,… ,�lK

)]

∝
1

�2
TRMF

�q

⎡
⎢⎢⎣

�
xrp,it=T ,rp+1 −

K�
k=1

wkxrp,it=lk ,rp+1

�2⎤
⎥⎥⎦

=
1

�2
TRMF

�q

��
x2
rp,it=T ,rp+1

− 2xrp,it=T ,rp+1

K�
k=1

wkxrp,it=lk ,rp+1

+(

K�
k=1

wkxrp,it=lk ,rp+1)
2

��
.

(73)
xrp,it=�,rp+1 =

∑
t� = 1… T

t�� = �

v�
rpt

��rp−1
vrpt�rp−1k(�t, �t�)��t (�t��).

(74)

�q[xrp,it=�,rp+1] =
∑

t� = 1… T

t�� = �

�q[v
�
rpt

��rp−1
]�q[vrpt�rp−1]k(�t, �t�)��t (�t��)

=
∑

t� = 1… T

t�� = �

��
rpt

��rp−1
�rpt

�rp−1
k(�t, �t�)��t (�t��)

=
[
��

◦(� ×2 �)
]
�
.

(75)

x2
rp,it=�,rp+1

=
∑

t� = 1… T

t�� = �

z� = 1… T

z�� = �

v�
rpt

��rp−1
v�
rpz

��rp−1
vrpt�rp−1k(�t, �t�)��t (�t��)k(�t, �z�)��t (�z��)

=v�2
rp�rp−1

∑
t� = 1… T

z� = 1… T

vrpz�rp−1vrpt�rp−1k(�t, �t�)k(�t, �z�).

2701Machine Learning (2022) 111:2663–2713

1 3

If we instead consider a multivariate meanfield �,�′ , the expression becomes

For the third expression, we take

The tensor expression for Expression 1 is given by

This follows directly from equation 76. Expression 2 can be written as

Here the idea is to reduce the memory footprint by calculating a slightly erroneous expres-
sion and removing the error rather than calculate the exact expression due to the difficulty
of expressing the cross terms wkwf . The above derivation extends directly to the LS case by

(76)

�q[x
2
rp,it=�,rp+1

] = �q[v
�2
rp�rp−1

]
�

t� = 1… T

z� = 1… T

�q[vrpz�rp−1vrpt�rp−1]k(�t, �t�)k(�t, �z�)

= (��2
rp�rp−1

+ ��2
rp�rp−1

)

⎡
⎢⎢⎢⎢⎢⎣

�
t� = 1… T

z� = 1… T

�rpz
�rp−1

�rpt
�rp−1

k(�t, �t�)k(�t, �z�)

+
�
t�=1

�2
rpt

�rp−1
k(�t, �t�)

2

�

=
�
(��2 + ��)◦

�
(� ×2 �)2 + � ×2 �

2
��

�

(77)

�q[x
2
rp,it=𝜏,rp+1

]

= (𝜇�2
rp𝜏rp−1

+ 𝜎�2
rp𝜏rp−1

)

⎡⎢⎢⎢⎢⎢⎣

�
t� = 1… T

z� = 1… T

(𝜇rpz
�rp−1

𝜇rpt
�rp−1

+ 𝜎z�𝜎t�)k(�t, �t�)k(�t, �z�)

⎤⎥⎥⎥⎥⎥⎦
=
�
(��2 + 𝛴�)◦

�
(� ×2 �)2 + (� ×2

�
diag((� ⋅ �)2 ⋅ 1̄)

���
𝜏

(78)

�q[(

K∑
k=1

wkxrp,it=lk ,rp+1)
2] =

K∑
f=1

K∑
k=1

wkwf�q[xrp,it=lk ,rp+1xrp,it=lf ,rp+1]

=

K∑
k=1

w2
k
�q[x

2
rp,it=lk ,rp+1

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=Expression 1

+

K∑
k≠f

wkwf�q[xrp,it=lk ,rp+1xrp,it=lf ,rp+1]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=Expression 2

.

(79)Expression 1 =

K∑
k=1

�2
k
◦
[
(��2 + ��)◦

[
(� ×2 �)2 + � ×2 �

2
]]

lk
.

(80)Expression 2 =

(
K∑
k=1

�k◦
[
��

◦(� ×2 �)
]
lk

)2

−

K∑
k=1

�2
k
◦
[
��

◦(� ×2 �)
]2
lk
.

2702 Machine Learning (2022) 111:2663–2713

1 3

simply removing the �′ variables and calculating the forecasting term for each component
�s,�,�b.

Appendix B: Derivation for WLR regularization term

B.1 RFF regularization term

The regularization term can similarly be generalized to

(81)

�
r1r2

‖�r‖2H =
�
r1r2

⟨�r, �r⟩H

=
�
r1r2

�
n1, ..., nq
n�
1
, ..., n�

q

vr1n1...nqr1v
�
r1n

�
1
...n�

q
r2

Q�
q=1

𝛿
�
Q

n�q

(⋅)

Q�
q=1

k(⋅, �Q
nq
)

�
n̄,..., n̄q
n̄�
1
, ..., n̄�

q

vr1n̄1...n̄qr2v
�
r1n̄

�
1
...n̄�

q
r2

Q�
q=1

𝛿
�
Q

n̄�q

(⋅)

Q�
q=1

k(⋅, �
Q

n̄q
)

=
�
r1r2

�
n1, ..., nq
n�
1
, ..., n�

q

n̄1, ..., n̄q

v�
r1n

�
1
,...,n�

q
r2

2
vr1n1...nqr2vr1n̄1...n̄qr2

Q�
q=1

k(�Q
nq
, �

Q

n̄q
)

= tr

⎛⎜⎜⎝

�
Q�
q=1

⊗�q

�
⋅ �⊤

R1⋅R2×
∏Q

q=1
nq
⋅

��
Q�
q=1

(��
◦��) ×q �nq×nq

�
◦�

�

R1⋅R2×
∏Q

q=1
nq

⎞⎟⎟⎠

= tr

⎛⎜⎜⎝

�
Q�
q=1

� ×q+1 �q

�⊤

R1⋅R2×
∏Q

q=1
nq

⋅

��
Q�
q=1

(��
◦��) ×q �nq×nq

�
◦�

�

R1⋅R2×
∏Q

q=1
nq

⎞⎟⎟⎠

=

��
Q�
q=1

� ×q+1 �q

�
◦

��
Q�
q=1

(��
◦��) ×q �nq×nq

�
◦�

��

++

2703Machine Learning (2022) 111:2663–2713

1 3

Appendix C: Complexity proofs

We recall the theorem presented.

Theorem 2 KFT has computational complexity

and memory footprint O
(
P ⋅

(
maxp

(
nprprp−1

)
+maxp

(
npcp

)))
 for a gradient update on a

batch of data. In the dual case, we take cp = np.

Proof When training on batches of data, the reconstruction for each datapoint is calculated
by sequentially multiplying slices �p(ip),�

�
p
(ip) ∈ ℝ

rp−1×rp from each TT-core. We start
with the frequentist model for WLR and LS. We list the operations needed:

1. Any � ×p+1 �p operation. Complexity: O
(
maxp

(
npcprprp−1

))
 . Memory:

O
(
maxp

(
nprprp−1

))
 + O

(
maxp

(
npcp

))
.

2. Any �p◦�
′
p
 operation. Complexity: O

(
maxp

(
rprp−1

))
 . Memory: O

(
maxp

(
rprp−1

))
.

3. Reconstructing the tensor
∏P

p=1
×−1�p . Complexity: O

((
maxp rp

)P) . Memory:
O
(
P ⋅maxp

(
rprp−1

))
.

For the Bayesian case we have the additional operations for the multivariate case:

1. (�p ⋅ �p)
2 ⋅ 1̄ component. Complexity: O

(
maxp

(
n2
p
kp

))
 . Here we take �p ∈ ℝ

np×kp with

kp ≪ np . Memory: O
(
maxp

(
n2
p

))
.

2. Prior determinant det
(
�P

)
 . Complexity: O(maxp(M

2
p
)) , assuming we use RFFs when

np is large. When using RFFs, we expect Mp ≪ Np . Memory: O(maxp(np ⋅Mp)).
3. Variational determinant det

(
�Q

)
 . Complexity: O(maxp(np)) , Memory: O(maxp(n

2
p
)).

(82)

�
r1r2

‖�r‖2H =
�
r1r2

�
n1, ..., nq
n�
1
, ..., n�

q

n̄1, ..., n̄q

v�
r1n

�
1
,...,n�

q
r2

2
vr1n1...nqr2vr1n̄1...n̄qr2

Q�
q=1

k(�Q
nq
, �

Q

n̄q
)

≈
�
r1r2

�
n1, ..., nq
n�
1
, ..., n�

q

n̄1, ..., n̄q

v�
r1n

�
1
,...,n�

q
r2

2
Q�
q=1

(vr1n1...nqr2𝜙(�
Q
nq
))⊤(vr1n̄1...n̄qr2𝜙(�

Q

n̄q
))

=

��
Q�
q=1

� ×q+1 𝛷q ×q 𝛷
⊤
q

�
◦

��
Q�
q=1

(��
◦��) ×q �nq×nq

�
◦�

��

++

O

(
max
p

(
npcprprp−1

)
+

(
max
p

rp

)P
)

2704 Machine Learning (2022) 111:2663–2713

1 3

The dominating terms for complexity and memory are O
(
maxp

(
npcprprp−1

)
+
(
maxp rp

)P)
and O

(
P ⋅

(
maxp

(
nprprp−1

)
+maxp

(
npcp

)))
 respectively. ◻

Appendix D: Interpretability example analysis

As a guiding example of utilizing the interpretability of KFT, we analyse the temporal
component of WLR applied to the alcohol dataset in the primal setting. We visualize the
weights for the time component and in particular the “year” covariate.

Applying an LS model instead, we can directly decompose the predictions into scaling
contribution, regression contribution and bias contribution (Fig. 7; Table 11).

Appendix E: Training procedure

E.1 Frequentist

To motivate the sequential updating scheme, consider a data matrix �
�
∈ ℝ

N×d where � is a
hyperparameter that controls the scaling of � and a target � ∈ ℝ

N . Assume N is too large
and we have to resort to stochastic first order gradient methods to approximate � ∈ ℝ

d in
our regression

(
�

�

)
� ≈ � . Using autograd (Paszke et al. 2017a), together with ADAM

(Kingma and Ba 2014) we can in practice optimize {�,�} simultaneously for each itera-
tion. However doing this, we commit a fallacy as when updating �t = �t−1 −

�L(�t−1,�t−1)

��t−1

 and
�t = �t−1 −

�L(�t−1,�t−1)

��t−1
 , we do not account for the mixed partial �

��t−1

�L(�t−1,�t−1)

��t−1

∝
−1

�3
t−1

assuming L is mean square error loss. Thus updating {�,�} simultaneously using first order
derivatives would yield an update error for � as the updating gradient does not adjust for
the mixed partial �

��t−1

�L(�t−1,�t−1)

��t−1

 when � is being updated at the same time. This scenario
extends one-to-one for the variables of KFT, as we would commit a similar fallacy by
updating all parameters at once. Hence we take an EM inspired approach when updating
lp,�p,�

′
p
.

E.2 Bayesian: variational inference

As the practical utility of calibrated uncertainty estimates rely on a good fit of the model,
we motivate our sequential update scheme as a method to encourage good predictive per-
formance by first finding the optimal modes determined by �,�′ and then the associated
variance determined by �,�′ . As we are considering the Gaussian meanfield family of
models, this strategy is well motivated as Gaussian distribution is symmetric.

2705Machine Learning (2022) 111:2663–2713

1 3

Appendix F: Data and data processing

F.1 Data processing

Our strategy in this paper is to limit data processing to simple operations that does not
require excessive engineering for a fair comparison in both utility and input data. For all
the models, we carry out the exact same preprocessing modulo the models requirements of
data format. We do the following general processing steps:

1. Extract relevant features and parse them to be continuous or categorical.
2. Scale all features using a z-transformation.

For each model specifically we do the following:

1. KFT: tensorize all data by expressing all main modes (i.e. person, movie, time etc) as a
tensor with side information associated with each mode.

2. LightGBM: here, we don’t scale the features as boosting trees generally performs better
with unscaled data. In some cases we have applied PCA to some of the side information
that was joined on the data matrix to decrease the memory footprint of the data matrix
to contain it to a practical size.

3. FFM: here we bin all continuous features, as FFM requires all data to be categorical.
4. Linear regression: for large categorical features, we using feature hashing to avoid data

matrices of infeasible sizes. All other categorical features get one-hot encoded.

Fig. 7 The first plot shows the magnitude of the latent weights � for the “year” covariate. The second plot
show the weights of the latent weights �′ for year = 0

Table 11 5 decomposed example
predictions for the LS model

Prediction nr �s � �b

0 −0.032064 46.948650 15.560461
1 −0.001596 333.260956 0.218784
2 −0.110225 29.397287 13.096196
3 0.028649 −45.733292 10.711301
4 −0.067812 −34.203766 3.496001

2706 Machine Learning (2022) 111:2663–2713

1 3

F.2 Retail sales data

We detail the features of the Retail Sales data in Table 12. Here we choose our modes to be
store, articles and time.

F.3 Movielens‑20M

We detail the features of the Retail Sales data in Table 13. Here we choose our modes
to be users, movies and time of rating given. For the Movielens-20M data, it should be
noted that we filter the movies on existing entries in the side information. This is why
we only have roughly 11 million observations rather than 20 million.

F.4 Alcohol sales

We detail the features of the Alcohol Sales data in Table 14. Here we choose our modes to
be location, item and time.

Appendix G: Hyperparameter configuration

G.1 KFT hyperparameters

We run all KFT experiments for 10 epochs with 20 hyperparameter search iterations.
We consider two decomposition types:

1. P-way latent factorization, where each dimension has a latent component. In principle,
this can be thought of as each dimension being independently factorized. Further we
utilize all possible side information.

2. 2-way latent factorization, where time is grouped with another dimension as one latent
component and with the other dimensions grouped in a second latent component. Here
we only consider time as side information, for the purpose of only modelling temporal
changes.

Our models are generally searched over the configurations described in Table 15. For
exact details we refer to the code base.

2707Machine Learning (2022) 111:2663–2713

1 3

Ta
bl

e
12

D

at
as

et
 d

es
cr

ip
tio

n
fo

r r
et

ai
l s

al
es

 d
at

a

Pr
op

er
ty

U
ni

t
Q

ua
nt

ity

M
on

th
ly

 sa
le

s
C

ou
nt

42
,4

90
,6

33
U

ni
qu

e
lo

ca
tio

n_
id

’s
C

ou
nt

80
U

ni
qu

e
ar

tic
le

_i
d’

s
C

ou
nt

46
3,

76
3

A
rti

cl
e_

id
 si

de
 in

fo
D

es
cr

ip
tio

n
Ex

am
pl

e

A
pp

ea
ra

nc
e_

id
A

rti
cl

e
sty

le
26

C
ol

ou
r_

id
A

rti
cl

e
co

lo
r

13
37

Pr
od

uc
t_

id
A

rti
cl

e
gr

ou
p

15
Si

ze
_i

d
A

rti
cl

e
si

ze
L

D
ep

ar
tm

en
t_

id
A

rti
cl

e
gr

ou
p

th
em

e
Te

en
Pr

od
uc

t_
se

as
on

_i
d

A
rti

cl
e

gr
ou

p
se

as
on

Sp
rin

g
Pr

od
uc

t_
ty

pe
_i

d
Pr

od
uc

t g
ro

up
 ty

pe
Sh

irt
Pr

od
uc

t_
gr

ou
p_

no
Pr

od
uc

t g
ro

up
 n

o
A

cc
es

so
rie

s
Pr

ic
e

A
rti

cl
e

pr
ic

e
5u

sd

Lo
ca

tio
n_

id
 si

de
 in

fo
D

es
cr

ip
tio

n
Ex

am
pl

e

C
ity

_i
d

C
ity

 o
f s

to
re

56
Lo

ng
itu

de
Lo

ng
itu

de
34

.2
3

La
tit

ud
e

La
tit

ud
e

34
.2

4
B

ra
nd

_i
d

B
ra

nd
12

O
pe

ni
ng

_y
ea

r_
id

O
pe

ni
ng

 y
ea

r
12

3
O

pe
ni

ng
_m

on
th

_i
d

O
pe

ni
ng

 m
on

th
92

O
pe

ni
ng

_d
ay

_i
d

O
pe

ni
ng

 d
ay

97
O

pe
ni

ng
_h

ou
rs

_m
o-

su
H

ou
rs

 o
pe

n
m

o-
su

12
,..

.,1
0

N
o_

of
_fl

oo
rs

St
or

e
no

. o
f fl

oo
rs

10
To

ta
l_

sa
le

s_
ar

ea
St

or
e

ar
ea

 si
ze

12
31

 sq
m

Sp
ec

ia
l_

sa
le

s_
ar

ea
Sp

ec
ia

l s
al

es
 a

re
a

78
9

sq
m

2708 Machine Learning (2022) 111:2663–2713

1 3

N
ot

e
th

at
 w

e
on

ly
 p

re
se

nt
 th

e
ID

 o
f e

ac
h

fe
at

ur
e

to
 p

re
se

rv
e

an
on

ym
ity

 a
nd

 th
at

 th
e

ex
am

pl
es

 a
re

 n
ot

 re
al

Ta
bl

e
12

 (
co

nt
in

ue
d)

Ti
m

e
si

de
 in

fo
D

es
cr

ip
tio

n
Ex

am
pl

e

Ye
ar

Ye
ar

20
19

M
on

th
M

on
th

1

2709Machine Learning (2022) 111:2663–2713

1 3

Table 13 Dataset description of Movielens-20M

Property Unit Quantity

Ratings Count 11,880,265
Users Count 138,493
Movie_id Count 10,370

Movie_id side info Description Example

Genome_score_1 Genome score dimension 1 0.345
⋮ ⋮ ⋮

Genome_score_1000 Genome score dimension 1000 0.1337

Time side info Description Example

Hour Hour ratings was given 12

Table 14 Dataset description of Iowa alcohol sales

Property Unit Quantity

Bottles sold Count 3,036,063
Unique store_location_id’s Count 3476
Unique item_id’s Count 4542

Item_id side info Description Example

Category Type of alcohol Irish whiskey
Pack Size of package 6
Bottle volume (ml) Bottle volume 750
State bottle cost Cost for retailer to buy 4 usd
State bottle retail Retail price 5 usd

Store_location_id side info Description Example

City_id City of store 56
Longitude Longitude 34.23
Latitude Latitude 34.24
County County Shelby
Store_number Store number 12
Zip code Zip code 157

Time side info Description Example

Year Year 2019
Month Month 1

2710 Machine Learning (2022) 111:2663–2713

1 3

G.1.1 LightGBM hyperparameters

We provide hyperparameters for LightGBM in Table 16

G.1.2 FFM hyperparameters

We provide hyperparameters for FFM in Table 17.

Table 15 Hyperparameter search
space for KFT.

aThe upper bound varies for each dataset, as memory limitation
changes with dataset.
bBatch size expressed as a proportion of total training data examples.
As an example our smallest batch size use 1% of the training data as
the batch size

Property Range/choices

Batch sizea [0.01, 0.1]
Learning rate {1e−3, 1e−2, 1e−1}
Rb [5, 70]
�p [0, 1]
�′
p

[0, 1]
Kernel choice {rbf, matern 0.5,

matern 1.5, matern
2.5}

Table 16 Hyperparameter search
space for LightGBM.

Property Range/choices

Num leaves [7, 4095]
Learning rate [exp(−5), exp(−2.3)]
Min data in leaf [10, 30]
Min sum hessian in leaf [exp(0), exp(2.3)]
Bagging freq [1, 5]
�
1

[0, 10]
�
2

[0, 10]

Table 17 Hyperparameter search
space for FFM.

Property Range/choices

R [2, 20]
Batch size [1e−6, 0.1]
Learning rate [0.05, 1.0]
� [0, 0.005]

2711Machine Learning (2022) 111:2663–2713

1 3

G.1.3 Linear regresison hyperparameters

We provide hyperparameters for linear regression in Table 18.

G.2 Bayesian hyperparameters

We run all experiments for 25 epochs with 5 hyperparameter search iterations. For exact
details we refer to the code base.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Agarwal, D., & Chen, B. C. (2009). Regression-based latent factor models (Vol. ’09, pp. 19–28). Asso-
ciation for Computing Machinery. https:// doi. org/ 10. 1145/ 15570 19. 15570 29

Batselier, K. (2018). The trouble with tensor ring decompositions. Preprint
Bergstra, J., Yamins, D., Cox, D. D. (2013) Making a Science of Model Search: Hyperparameter Optimi-

zation in Hundreds of Dimensions for Vision Architectures. Proc. of the 30th International Confer-
ence on Machine Learning (ICML 2013).

Bobadilla, J., Ortega, F., Hernando, A., & Bernal, J. (2012). A collaborative filtering approach to miti-
gate the new user cold start problem. Knowledge-Based Systems, 26, 225–238. https:// doi. org/ 10.
1016/j. knosys. 2011. 07. 021

Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems survey. Knowledge-
Based Systems, 46, 109–132. https:// doi. org/ 10. 1016/j. knosys. 2013. 03. 012

Caro, F., & Gallien, J. (2010). Inventory management of a fast-fashion retail network. Operations Research.
https:// doi. org/ 10. 1287/ opre. 1090. 0698

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the
em algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 39(1), 1–38. http://
www. jstor. org/ stable/ 29848 75

Draper, N., & Smith, H. (1966). Applied regression analysis. Wiley series in probability and mathematical
statistics. Wiley. http:// gso. gbv. de/ DB=2. 1/ CMD? ACT= SRCHA & SRT= YOP& IKT= 1016& TRM=
ppn+ 02279 1892& sourc eid= fbw_ bibso nomy

Du, Chao, Chongxuan Li, Yin Zheng, Jun Zhu, and Bo Zhang. (2018). Collaborative Filtering With User-
Item Co-Autoregressive Models. Proceedings of the AAAI Conference on Artificial Intelligence 32(1).
https:// ojs. aaai. org/ index. php/ AAAI/ artic le/ view/ 11884.

Table 18 Hyperparameter search
space for linear regression.

Property Range/choices

Batch size [1e−6, 0.1]
Learning rate [0.05, 1.0]
� [0, 1.0]

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/1557019.1557029
https://doi.org/10.1016/j.knosys.2011.07.021
https://doi.org/10.1016/j.knosys.2011.07.021
https://doi.org/10.1016/j.knosys.2013.03.012
https://doi.org/10.1287/opre.1090.0698
http://www.jstor.org/stable/2984875
http://www.jstor.org/stable/2984875
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+022791892&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+022791892&sourceid=fbw_bibsonomy
https://ojs.aaai.org/index.php/AAAI/article/view/11884

2712 Machine Learning (2022) 111:2663–2713

1 3

Gönen, M., Khan, S., & Kaski, S. (2013). In S. Dasgupta & D. McAllester (Eds.), Kernelized Bayesian
matrix factorization (Vol. 28, pp. 864–872). PMLR. http:// proce edings. mlr. press/ v28/ gonen 13a. html

Hawkins, C., & Zhang, Z. (2018). Variational Bayesian Inference for Robust Streaming Tensor Factoriza-
tion and Completion. 2018 IEEE International Conference on Data Mining (ICDM), 1446–1451.

He, L., Lu, C. T., Ma, G., Wang, S., Shen, L., Yu, P. S., & Ragin, A. B. (2017). In D. Precup & Y. W. Teh
(Eds.) Kernelized support tensor machines (Vol. 70, pp. 1442–1451). PMLR, International Convention
Centre. http:// proce edings. mlr. press/ v70/ he17a. html

Hoffman, M. D., Blei, D. M., Wang, C., & Paisley, J. (2013). Stochastic variational inference. Journal of
Machine Learning Research, 14(1), 1303–1347. http:// dl. acm. org/ citat ion. cfm? id= 25025 81. 25026 22

Juan, Y., Zhuang, Y., Chin, W. S., & Lin, C. J. (2016). Field-aware factorization machines for ctr prediction.
In Proceedings of the 10th ACM Conference on Recommender Systems, RecSys ’16 (pp. 43–50). ACM.
https:// doi. org/ 10. 1145/ 29591 00. 29591 34

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. Y. (2017). Lightgbm: A highly
efficient gradient boosting decision tree. In NeurIPS.

Kim, H., Lu, X., Flaxman, S., & Teh, Y. W. (2016). Collaborative filtering with side information: A Gauss-
ian process perspective. Preprint

Kim, H., & Teh, Y.W. (2018). Scaling up the Automatic Statistician: Scalable Structure Discovery using
Gaussian Processes. AISTATS.

Kim, Y. D., & Choi, S. (2014). Scalable variational Bayesian matrix factorization with side information. In
AISTATS.

Kingma, Diederik & Ba, Jimmy. (2014). Adam: A Method for Stochastic Optimization. International Con-
ference on Learning Representations.

Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review, 51(3),
455–500.

Kuang, L., Hao, F., Yang, L. T., Lin, M., Luo, C., & Min, G. (2014). A tensor-based approach for big data
representation and dimensionality reduction. IEEE Transactions on Emerging Topics in Computing,
2(03), 280–291. https:// doi. org/ 10. 1109/ TETC. 2014. 23305 16

Liu, T., Wang, Z., Tang, J., Yang, S., Huang, G. Y., & Liu, Z. (2019). Recommender systems with heteroge-
neous side information (Vol. ’19, pp. 3027–3033). Association for Computing Machinery. https:// doi.
org/ 10. 1145/ 33085 58. 33135 80

Narita, A., Hayashi, K., Tomioka, R., & Kashima, H. (2012). Tensor factorization using auxiliary
information. Data Mining and Knowledge Discovery, 25(2), 298–324. https:// doi. org/ 10. 1007/
s10618- 012- 0280-z

Ong, Victor & Nott, David & Smith, Michael. (2017). Gaussian Variational Approximation With a Factor
Covariance Structure. Journal of Computational and Graphical Statistics. 27. https:// doi. org/ 10. 1080/
10618 600. 2017. 13904 72.

Oseledets, I. V. (2011). Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5), 2295–
2317. https:// doi. org/ 10. 1137/ 09075 2286

Pal, B., & Jenamani, M. (2018). Kernelized probabilistic matrix factorization for collaborative filtering:
Exploiting projected user and item graph (pp. 437–440). Association for Computing Machinery.
https:// doi. org/ 10. 1145/ 32403 23. 32404 02

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L. &
Lerer, A. (2017). Automatic Differentiation in PyTorch. NIPS 2017 Workshop on Autodiff.

Rahimi, A., & Recht, B. (2007). Random features for large-scale kernel machines (Vol. NIPS’07, pp. 1177–
1184). Curran Associates Inc.

Rendle, S. (2010). Factorization machines. In G.I. Webb, B. Liu, C. Zhang, D. Gunopulos, & X. Wu (Eds.)
ICDM 2010, The 10th IEEE international conference on data mining, Sydney, Australia, 14–17
December 2010 (pp. 995–1000). IEEE Computer Society. https:// doi. org/ 10. 1109/ ICDM. 2010. 127

Rudin, Cynthia. (2019). Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nature Machine Intelligence. 1, 206–215. https:// doi. org/ 10. 1038/
s42256- 019- 0048-x.

Saha, A., Misra, R., Acharya, A., & Ravindran, B. (2017). Scalable variational Bayesian factorization
machine. Preprint

Salakhutdinov, R., & Mnih, A. (2007). Probabilistic matrix factorization. In Proceedings of the 20th inter-
national conference on neural information processing systems, NeurIPS (pp. 1257–1264). Curran
Associates Inc. http:// dl. acm. org/ citat ion. cfm? id= 29815 62. 29817 20

Flunkert, Valentin & Salinas, David & Gasthaus, Jan. (2017). DeepAR: Probabilistic Forecasting with
Autoregressive Recurrent Networks. International Journal of Forecasting. 36. https:// doi. org/ 10. 1016/j.
ijfor ecast. 2019. 07. 001.

http://proceedings.mlr.press/v28/gonen13a.html
http://proceedings.mlr.press/v70/he17a.html
http://dl.acm.org/citation.cfm?id=2502581.2502622
https://doi.org/10.1145/2959100.2959134
https://doi.org/10.1109/TETC.2014.2330516
https://doi.org/10.1145/3308558.3313580
https://doi.org/10.1145/3308558.3313580
https://doi.org/10.1007/s10618-012-0280-z
https://doi.org/10.1007/s10618-012-0280-z
https://doi.org/10.1080/10618600.2017.1390472
https://doi.org/10.1080/10618600.2017.1390472
https://doi.org/10.1137/090752286
https://doi.org/10.1145/3240323.3240402
https://doi.org/10.1109/ICDM.2010.127
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
http://dl.acm.org/citation.cfm?id=2981562.2981720
https://doi.org/10.1016/j.ijforecast.2019.07.001
https://doi.org/10.1016/j.ijforecast.2019.07.001

2713Machine Learning (2022) 111:2663–2713

1 3

Schölkopf, B., Herbrich, R., & Smola, A. J. (2001). A generalized representer theorem. In COLT/
EuroCOLT.

Seeger, M., Salinas, D., & Flunkert, V. (2016). Bayesian intermittent demand forecasting for large invento-
ries. In NeurIPS.

Vovk, V. (2013). Kernel Ridge Regression. Empirical Inference.
Wu, X., Shi, B., Dong, Y., Huang, C., & Chawla, N. V. (2019). Neural tensor factorization for temporal

interaction learning (Vol. WSDM ’19, pp. 537–545). Association for Computing Machinery. https://
doi. org/ 10. 1145/ 32896 00. 32909 98

Xu, J., Yao, Y., Tong, H., Tao, X., & Lu, J. (2015). Ice-breaking: Mitigating cold-start recommendation
problem by rating comparison. In IJCAI international joint conference on artificial intelligence. 24th
international joint conference on artificial intelligence, IJCAI 2015; conference date: 25-07-2015
through 31-07-2015 (Vol. 2015, pp. 3981–3987).

Yu, H., Rao, N.S., & Dhillon, I.S. (2016). Temporal Regularized Matrix Factorization for High-dimensional
Time Series Prediction. NIPS.

Yu, R., Bahadori, M. T., & Liu, Y. (2014). Fast multivariate spatio-temporal analysis via low rank tensor
learning. In Advances in neural information processing systems (pp. 3491–3499).

Zellner, A. (1986). On Assessing Prior Distributions and Bayesian Regression Analysis With g-Prior Distri-
butions. Basic Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti

Zhai, Y., Ong, Y., & Tsang, I. W. (2014). The emerging “big dimensionality”. IEEE Computational Intel-
ligence Magazine, 9(3), 14–26. https:// doi. org/ 10. 1109/ MCI. 2014. 23260 99

Zhang, J., Shi, X., Zhao, S., & King, I. (2019). STAR-GCN: Stacked and Reconstructed Graph Convolu-
tional Networks for Recommender Systems. IJCAI.

Zhang, M., Tang, J., Zhang, X., & Xue, X. (2014). Addressing cold start in recommender systems: A semi-
supervised co-training algorithm. Association for Computing Machinery. 14, 73–82 https:// doi. org/ 10.
1145/ 26004 28. 26095 99

Zhao, Q., Zhou, G., Adali, T., Zhang, L., & Cichocki, A. (2013). Kernelization of tensor-based models
for multiway data analysis: Processing of multidimensional structured data. IEEE Signal Processing
Magazine, 30(4), 137–148. https:// doi. org/ 10. 1109/ MSP. 2013. 22553 34

Zhao, Q., Zhou, G., Xie, S., Zhang, L., & Cichocki, A. (2016). Tensor ring decomposition. Preprint

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1145/3289600.3290998
https://doi.org/10.1145/3289600.3290998
https://doi.org/10.1109/MCI.2014.2326099
https://doi.org/10.1145/2600428.2609599
https://doi.org/10.1145/2600428.2609599
https://doi.org/10.1109/MSP.2013.2255334

	Large scale tensor regression using kernels and variational inference
	Abstract
	1 Introduction and related work
	2 Background and problem
	2.1 The problem with adding side information to tensor factorization

	3 Proposed approach
	3.1 Tensors and side information
	3.1.1 Weighted latent regression
	3.1.2 Latent scaling

	3.2 Primal regularization terms
	3.3 RKHS and the representer theorem
	3.4 Dual space regularization term for WLR
	3.5 Dual space regularization term for LS
	3.6 Scaling with random Fourier features
	3.7 Kernel fried tensor
	3.7.1 Joint features

	3.8 Bayesian inference
	3.9 Variational approximation
	3.9.1 Univariate VI
	3.9.2 Multivariate VI
	3.9.3 Calibration metric

	3.10 Extension to forecasting
	3.10.1 Frequentist setting
	3.10.2 Bayesian setting

	3.11 Complexity analysis

	4 Experiments
	4.1 Predictive performance of KFT
	4.2 Calibration study of Bayesian KFT

	5 Analysis
	5.1 Does KFT really amend the constraints of directly apply side information?
	5.2 How does KFT perform when applying constant side information?
	5.3 How does KFT perform when applying noise as side information?

	6 Conclusion
	References

