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Abstract
A data-driven procedure is developed to compute the optimal map between two conditional 
probabilities �(x|z1,… , zL) and �(y|z1,… , zL) , known only through samples and depend-
ing on a set of covariates zl . The procedure is tested on synthetic data from the ACIC 
Data Analysis Challenge 2017 and it is applied to non-uniform lightness transfer between 
images. Exactly solvable examples and simulations are performed to highlight the differ-
ences with ordinary optimal transport.

Keywords  Optimal transport · Conditional average treatment effect · Uncertainty 
quantification · Color transfer · Image restoration

1  Introduction

Optimal transport seeks the mass preserving map T between two probability distributions 
that minimizes the expected value of a given cost function, the transportation cost between 
a point and its image under T (Villani et al., 2003). The corresponding minimal cost defines 
a metric in the space of probability distributions, the Wasserstein distance for cost func-
tions of the form c(x, y) = ‖y − x‖p . Beyond providing a metric, the optimal map T itself 
has broad applicability, which this article extends through the development of conditional 
optimal transport.

Consider as a specific example the evaluation of the effects of a long-term medical treat-
ment (alternatively of a habit, such as smoking or dieting). Optimal transport can be used 
to quantify changes in the probability distribution of quantities that characterize the health 
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state of a person (blood pressure, blood sugar level, heart beat rate) between scenarios with 
and without treatment. Data typically consist of independent measurements of these quan-
tities in treated and untreated populations. Yet more often than not, the distribution of these 
quantities depends on many covariates beyond the presence or absence of treatment, such 
as age, weight, sex, habits. Hence one should refine the search, looking for the effect of the 
treatment as a function of these covariates.

Motivated by this and similar applications, this article develops a data driven procedure 
to compute the optimal map T(x,  z) between two conditional probability densities 
�(x|z1,… , zL) and �(y|z1,… , zL) , with covariates zi . In the example above, y = T(x, z) esti-
mates the value y that the quantity of interest would have under treatment if, without treat-
ment, its value were x, under specific values of the covariates zl . The procedure is data 
driven, as it uses only samples 

{
xi, zi

1
,… , zi

L

}
 and 

{

yj, z
j

1
,… , z

j

L

}

 from � and � . Notice that 

we do not seek a pairwise matching between 
{
xi, zi

1
,… , zi

L

}
 and 

{

yj, z
j

1
,… , z

j

L

}

 : typically 
these two data sets do not even have the same cardinality. Instead, we work under the 
hypothesis that these samples are drawn from smooth conditional densities 
�(x|z) = �(x, z)∕�x(z) , �(y|z) = �(y, z)∕�y(z) and covariate distributions �x(z) and �y(z) , and 
hence we seek a map y = T(x, z) that is a smooth function of its arguments.

The need for conditional optimal transport is particularly apparent when the distribu-
tions for the covariates z for the source and target distributions are unbalanced, i.e. when �x 
and �y differ. Consider as a particularly telling example a situation when the treatment has 
no effect, i.e. �(x|z) = �(x|z) , so the “true” answer should be y = x , yet the covariates are 
unbalanced, i.e. �x ≠ �

y . For concreteness, suppose that

where N(a, b) denotes the 1d normal distribution with mean a and variance b. Then

It follows that, if one would not look at the covariate z, one would infer incorrectly that 
y = x + 2 , i.e. that the treatment does have a significant effect. We will see in Sect. 4.1 an 
instance of this phenomenon appearing in the more complex setting of a biomedical appli-
cation, where conditional transport provides critical aid.

Conditional transport provides a very flexible toolbox for data analysis, as the choice of 
which variables are conditioned to which others is left at the discretion of the analyst. In 
anticipation of the application of this principle to color transfer problems in Sect. 4.3, we 
illustrate it here with a simple example. Consider a covariate z ∼ N(0, 1) and two depend-
ent variables x ∼ N(z, 1) and y ∼ N(−z, 1) (see Fig. 1 for a sketch related to this problem). 
Since the marginals �(x) and �(y) are identical, performing optimal transport between them 
yields the identity map y = x , while conditioning to z yields y = x − 2z , effectively rotat-
ing the joint distribution �(x, z) clockwise. For a third alternative, consider performing 
regular two dimensional transport between �(x, z) and �(y, z) , which yields an irrotational 
map (Villani et al., 2003). Finally, if in a thought experiment we would identify x and y 
and switch the roles of dependent and independent variables, conditioning the transport in 
z-space to x, we would obtain z2 = z1 − 2x , effectively rotating the joint distribution �(x, z) 
counter-clockwise. Here z1,2 denote the variable z when attached to x and y respectively.

Conditional optimal transport shares similarities with normalizing flows, introduced in 
Tabak and Vanden-Eijnden (2010); Tabak and Turner (2013) and further developed, for 

�(x|z) = �(y|z) = N(z, 1), �
x(z) = N(−1, 1), �

y(z) = N(1, 1),

�(x) = ∫ �(x|z)�x(z) dz = N(−1, 2), �(y) = ∫ �(y|z)�y(z) dz = N(1, 2).
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instance, in Rezende and Mohamed (2015), Dinh et  al. (2016), with autoregressive net-
works (Oliva et al., 2018), and with Generative Adversarial Networks (Grover et al., 2017; 
Finlay et  al., 2020). One of the main differences with these procedures is the objective 
function being optimized. Optimal transport minimizes a user-defined, pairwise transporta-
tion cost, while the other methodologies, by and large, have objective functions, such as 
the relative entropy, concerned only with the fulfillment of the push-forward condition. In 
the specific kind of applications that we consider, we interpret the pairwise cost as a meas-
ure of data deformation, and thus seek the solution that minimally deforms the data, for 
instance among those maps that best characterize the changes in a person’s health between 
scenarios with and without treatment. In this sense, the work presented here is closer to 
Trigila and Tabak (2016), which uses a normalizing flow that at the same time minimizes 
the transportation cost. The other main difference, of course, is the consideration of factors, 
which distinguishes conditional from regular optimal transport.

The plan of this article is as follows: after this introduction, Sect. 2 formulates the con-
ditional optimal transport problem in an adversarial framework conducive to effective com-
putation. This minimax formulation involves two players: one with strategy T(x, z), the cost-
minimizing map, and one with strategy g(y,  z), a test function that discriminates between 
the target �(y|z) and the push-forward T#�(x|z) via a variational formulation of the relative 
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Fig. 1   Upper row: source (left) and target (right) distributions. Lower left: optimal transport of x condi-
tioned on z. The arrows indicate that the lower left branch and the upper right branch of the source distribu-
tion are mapped respectively to the upper left branch and the lower right branch of the target distribution. 
Lower right: optimal transport of z conditioned on x. In this case, it is the upper right branch of the source 
distribution that is mapped to the upper left branch of the target distribution
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entropy between the two. Section 3 describes some alternative ways to parameterize these two 
strategies. Section 4 illustrates the procedure through real examples of practical and concep-
tual relevance: the determination of the effect of a medical treatment, lightness transfer: given 
two photographs of different objects under different lightness conditions, render the first under 
the lightness condition of the second, and “automatic restoration”: given a painting that has 
deteriorated over time and one that has not, “restore” the first to its likely original condition. 
Finally, some conclusions and directions of further research are summarized in Sect. 5.

2 � Conditional optimal transport

Conditional optimal transport between two conditional distributions �(x|z) and �(y|z) can be 
defined simply as the map T(x, z) that performs optimal transport between them for each value 
of z:

where c(x,  y) represents the cost of moving a unit of mass from x to y and the symbol 
# indicates the push forward of probability measures, i.e. if x has distribution �(x|z) then 
y = T(x, z) has distribution �(y|z) = T#�(∶ |z) . Since T( : , z) decouples under different val-
ues of z, we can multiply the cost by the distribution �x(z) ≥ 0 of the covariates z in the 
source and integrate over z, yielding

where �(x, z) = �(x|z)�x(z) is the joint distribution of x and z.
We need to reformulate this problem in a way that is implementable in terms of samples 

{
xi, zi

x

}
 and 

{

yj, z
j
y

}

 . As it stands in (2), two immediate problems emerge: there are not enough 
samples for each value of z, typically none or one for continuous covariates, to characterize the 
corresponding conditional distributions, and it is not clear how to enforce the push forward 
condition. The first problem is at the very heart of the need for conditional optimal transport: 
even though the objective functions for each value of z decouple, one assumes a commonality 
across z that makes samples from each conditional distribution be informative on the others. In 
the case of continuous covariates z, this can be posed as a smoothness (in z) condition on 
�(x|z).

In order to address the second problem, we interpret the push forward condition in terms of 
relative entropy. Recall that the relative entropy between two distributions �1 and �2 is given by

which vanishes only when �1 and �2 agree almost everywhere. Hence the push forward con-
dition T#� = � can be restated as DKL(�||T#�) = 0 . Yet the relative entropy is not a robust 
quantifier of the difference between distributions, as it is bounded only when the first distri-
bution is absolutely continuous with respect to the second. To resolve this issue, we replace 
the second distribution by an interpolation between T#� and �:

(1)min
T(∶,z)∫ c(T(x, z), x)�(x|z)dx s.t. T#�(∶ |z) = �(∶ |z),

(2)min
T(∶,z)∫ c(T(x, z), x) �(x, z) dxdz s.t. T#�(∶ |z) = �(∶ |z)∀z,

DKL

(
�1||�2

)
= � �1(x) log

�1(x)

�2(x)
dx ≥ 0,
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so that the absolute continuity requirement is automatically satisfied.
In order to incorporate the dependence on the covariate z, we replace the relative 

entropy by its conditional counterpart:

the conditional Kullback–Leibler divergence between �1 and �2 (Cover & Thomas, 2012). 
Since this is non-negative, we can rewrite the problem in (2) as

Instead of maximizing over � , it will be convenient to fix a value of � large enough that the 
push forward condition can be considered satisfied for all practical purposes. (It is straight-
forward to prove that, as � → ∞ , the solution with fixed � converges to the true minimax 
solution. In our implementation below, � grows at each step of the algorithm.) Then the 
problem above becomes

For any �1(x, z) = �1(z)�1(x|z) and �2(x, z) = �2(z)�2(x|z) , the following “chain rule” for 
relative entropy holds (Cover & Thomas, 2012):

Since the map T acts only on x, it has no effect on the last term of this expression, so we 
can write

This formulation improves over the one in (1) by consolidating an infinite set of problems, 
one for every value of z, into a single one. Yet it is not clear yet how to enforce the push 
forward condition in terms of samples, as the definition of the relative entropy involves 
evaluating logarithms of � and � . To address this, we invoke a variational formulation of 
the relative entropy between two distributions (Donsker & Varadhan, 1975):

which involves �1 and �2 only in the calculation of the expected values of g and eg , with a 
natural sample-based interpretation as empirical means. Then our problem becomes

DKL

(

�
|
|
|

|
|
|

1

2
(T#� + �)

)

= 0,

DKL(�1(x|z)||�2(x|z)) = ∫ �1(z)∫ log

(
�1(x|z)

�2(x|z)

)

�1(x|z) dxdz,

min
T(∶,z)

max
�≥0

[

� c(T(x, z), x)�(x, z) dxdz + �DKL

(

�(x|z)
|
|
|

|
|
|

1

2
(T#�(x|z) + �(x|z))

)]

.

min
T

[

∫ c(T(x, z), x)𝜌(x, z) dxdz + 𝜆 DKL

(

𝜇(x|z)
|
|
|

|
|
|

1

2
(T#𝜌(x|z) + 𝜇(x|z))

)]

,

𝜆 ≫ 1.

DKL(�1(x|z)||�2(x|z)) = DKL(�1(x, z)||�2(x, z)) − DKL(�1(z)||�2(z)).

min
T

[

∫ c(T(x, z), x)�(x, z) dxdz + �DKL

(

�(x, z)||
1

2
(T#�(x, z) + �(x, z))

)]

.

(3)DKL(�1||�2) = max
g

[

∫ g(x, z)�1(x, z)dxdz − log

(

∫ eg(x,z)�2(x, z) dxdz

)]

,
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or, in terms of samples,

This adversarial formulation has two players with strategies T and g, one minimizing the 
cost and the other enforcing the push forward condition, providing an adaptive “lens” that 
identifies those places where the push-forward condition does not hold: for any T, the opti-
mal g in (4) is given by

where w(z) = �
y(z)∕�x(z) , and the first term is furthest from zero in those places where 

T#�(x|z) and �(y|z) differ the most.
It is interesting to notice a feature in the solution g(x, z) to the variational formulation (3) 

for the relative entropy involving conditional distributions. The optimal g is given by

Consider a situation where we have already performed conditional optimal transport, so 
that �1(x|z) = �2(x|z) . If the distributions for z in source and target are unbalanced, the cor-
responding optimal g will be a nonzero function of z alone:

in contrast to the situation in regular optimal transport between the joint distributions 
�1,2(x, z) , where the final optimal g(x, z) equals zero. As a consequence of this, we must not 
expect the penalizing term on the entropy to necessarily vanish in the solution of (4). The 
final value of the penalization term depends on the ratio between the possibly unbalanced 
distributions for z in the source and target distributions. Other choices to impose the push 
forward condition can be made, for instance by adopting the work in Nowozin et al. (2016) 
where the notion of f-divergence family is introduced.

(4)
min
T

max
g ∫ c(T(x, z), x)�(x, z)dxdz + �

[

∫ g(y, z)�(y, z)dydz

− log

(
1

2 ∫ eg(y,z)�(y, z)dydz +
1

2 ∫ eg(T(x,z),z)�(x, z)dxdz

)]

min
T

max
g

1

N

N∑

i=1

c(T(xi, zi
x
), xi) + �

[
1

M

M∑

j=1

g(yj, zj
y
)

− log

(

1

2M

M∑

j=1

eg(y
j ,z

j
y) +

1

2N

N∑

i=1

eg(T(x
i,zi

x
),zi

x
)

)]

.

g = log

(
�(y, z)

�(y,z)+T#�(x,z)

2

)

= log

(
(1 + w(z))�(y|z)

w(z)�(y|z) + T#�(x|z)

)

+ log

(
2w(z)

1 + w(z)

)

,

g(x, z) = log

(
�1(x, z)

�2(x, z)

)

= log

(
�1(x|z)�1(z)

�2(x|z)�2(z)

)

.

(5)g(x, z) = log

(
�1(z)

�2(z)

)

= w(z),
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3 � Parametrization of the flows

In order to complete the problem formulation in (5), we need to specify the family of 
functions over which the map T(x, z) and the test-function g(y, z) are optimized. These 
families should satisfy some general properties: 

1.	 Be rich enough that g can capture all significant differences between �(x|z) and �(y|z) 
and T can resolve them.

2.	 Not be so rich as to overfit the sample points 
{
xi, zi

x

}
 , 
{

yj, z
j
y

}

 . For instance, a g with 

arbitrarily small bandwidth would force the sets 
{
T(xi, zi

x
), zi

x

}
 , 
{

yj, z
j
y

}

 to agree point-
wise, an extreme case of overfitting that is not only undesirable but also unattainable 
when their cardinality differs. More generally, the dependence of the functions on z 
should be such that, with a finite number of samples, it should still capture the assumed 
smoothness of �(x|z) : functions that are too localized in z space effectively decouple the 
transport problems for every value of z, for which there are not enough available sample 
points.

3.	 Be well-balanced: if one of the two players has a much richer toolbox than the other, the 
game would be “unfair”, leading to a waste of computational resources and possibly to 
instability and/or inaccuracy.

These conditions leave space for many proposals. For instance, we could define both 
T and g through neural networks, as done in Yang and Tabak (2019) in the context of 
optimal transport-based factor discovery. Instead, the examples in this article are solved 
with the two implementations detailed below. Both share the feature that T is built on 
map composition: at each step n of the mini-maximization algorithm, an elementary 
map En is applied not to the original sample points 

{
xi
}
 , but to their current images:

This way, simple elementary maps E depending on only a handful of parameters can give 
rise through map composition to rich global maps T. The two proposals differ in that one 
builds nonlinear richness through evolving Gaussian mixtures, while the other builds com-
plex z-dependence through an extra compositional step. In this article, the first method is 
applied to a lightness transfer problem, and the second to the effect of a medical treatment, 
as the latter is linear in x but has complex, nonlinear dependence on many covariates z. 
We close this section with a proposition that specifies the third point above. The goal is to 
motivate mathematically the choice of the potential and the test function that are made in 
the following two subsections.

Proposition 1  The test component of the objective function,

necessarily decreases along the direction

Tn(xi, zi
x
) = En

(
Tn−1(xi, zi

x
), zi

x

)
.

Ltest =∫ g(y, z)�(y, z)dydz+

− log

(
1

2 ∫ eg(y,z)�(y, z)dydz +
1

2 ∫ eg(T(x,z),z)�(x, z)dxdz

)

,
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when dT ≠ 0 . Moreover, if dT = 0 and the push-forward condition

is not satisfied, then g has not yet achieved its optimal value.

Proof  The variational derivative of Ltest with respect to the map T(x, z) is given by

a strictly negative quantity times dT. Hence dT = ∇yg is a direction of descent, unless it 
vanishes identically. But maximizing L over g yields

which is constant in its first argument only when T#�(⋅|z) = �(⋅|z) (in which case 
g(⋅|z) = 0 .) 	�  ◻

3.1 � Evolving Gaussian mixtures

We adopt as elementary map the gradient of a potential function convex in x: 
E(x, z) = ∇x�(x, z) , chosen from a family that includes the identity map and where x ∈ ℝ

dx 
and z ∈ ℝ

dz . Strict convexity of the potential guarantees that the resulting elementary map is 
one-to-one. The potential � is built from a quadratic form in x with coefficients that depend on 
z, plus a linear combination of K Gaussians in (x, z) space, and similarly for the test function g. 
The idea underlying this choice, introduced and discussed in more details in Tabak and Van-
den-Eijnden (2010), Tabak and Turner (2013), Trigila and Tabak (2016), can be summarized 
by saying that the quadratic part of the potential is responsible for the matching of the mean 
and the covariance of � and � while the Gaussian mixture add a non linearity of the elemen-
tary map to enforce that higher order moments of the push forward of � are mapped to the cor-
responding moements of � . In addition we allow the centers of these Gaussians to evolve so to 
be able to approximate quite general functions T = ∇� and g.

In order to guarantee the convexity of � , notice that the gradient with respect to x of a 
radial basis function kernel with bandwidth d,

is bounded by ± 1

d exp(1∕2)
 , and its second order derivatives by 2

d2 exp(3∕2)
<

1

2d2
 . It follows that 

1

2d2

||�||2
2

2
± Gd([�, �], [�zi

,�i]) is convex, so we propose

dT = ∇yg(y, z)

∀z, T#�(⋅|z) = �(⋅|z)

�

�T
Ltest = −

eg(T(x,z),z)�(x, z)

∫ eg(y,z)�(y, z)dydz + ∫ eg(T(x,z),z)�(x, z)dxdz
∇yg(y, z)

|
|
|y=T(x,z)

,

g(⋅, z) = log

(
�(⋅|z)

T#�(⋅|z)

)

,

Gd(x, x
�) = exp

(

−
||x − x�||2

2d2

)

,
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with parameters of the model �2,0 ∈ Rdx×dx ,�2,1 ∈ Rdx×dz lower triangular, �0 and c1 ∈ Rdz , 
mi ∈ ℝ

dx ,mzi
∈ ℝ

dz , and ai, bi and d ∈ ℝ . Notice that, if ai = bi , the Gaussians cancel each 
other, and we are left with a purely quadratic potential. Therefore, in order to start the map 
at every step at the identity, the initialization must satisfy

so we propose

with all other parameters starting from zero. The bandwidth d is chosen via 
d = quantile(pdist([y;z]), 1∕K) , where pdist is the pairwise distance function. With this 
choice there are approximately 1/K points in the effective support of each Gaussian.

An illustration of how the map warps the source density with both x and z ∈ ℝ is shown 
in Fig. 2. The joint distribution of x and z is a standard normal distribution. With only a lin-
ear term in z and no Gaussian kernels ( K = 0 ), the results display a global distortion (upper 
right panel). When one kernel ( K = 1 ) is used, it results in a local shrink (lower left panel) 
or stretch (lower right panel), depending on whether a2

1
< b2

1
 or a2

1
> b2

1
.

The choice of kernels is flexible in general and should have the following properties (1) 
they are smooth and differentiable with bounded second derivatives, so to enforce convex-
ity of the potential through suitable parameterization; (2) users should be able to control 
the scale of effect, i.e. the kernels should have a free parameter being (or related to) the 
bandwidth. Except the radial basis function kernel mentioned above, for example, one can 
also use the rational quadratic kernel: K(x, x�) = 1 − ||x − x�||2∕

(
||x − x�||2 + c

)
 with a free 

parameter c or the Cauchy kernel: K(x, x�) = 1∕
(

1 +
||x−x�||2

h2

)

 with parameter h.
For the test function, we propose

where �0 ∈ ℝ
dx , �1 ∈ ℝ

dz×dx , �2 ∈ ℝ
dx×dx and �3 ∈ ℝ

dz×dx×dx and with each iteration starting 
at the parameter values from the previous step. As for the potential � , the test function g 
is given by the sum of kernel functions and a quadratic function in � with coefficients that 
depend linearly from � . The rationale behind the quadratic form in � is to check that the 
centers and covariance of �(�|�) and �(�|�) agree. The Gaussian centers are treated differ-
ently in the test function g, where they are extra parameters to ascend, and in the potential 
� , where they are fixed at their values from g in the prior step. The underlying notion is 
that g locates those areas where the distributions do not agree, and then T corrects them. 
The rationale for the parameterizations of the test function g and the potential � to have the 
same form and, moreover, share the same centers, find its justification in Proposition 1 at 

�(�, �) =(�T
0
+ �

T
�1)x +

1

2
�
T
�2(�)� +

K∑

i=1

a2
i

(
||�||2

2

4d2
− Gd([�, �], [�zi

,�i])

)

+

K∑

i=1

b2
i

(
||�||2

2

4d2
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the beginning of the section saying that for any given test function g(y, z), its gradient ∇yg 
is a direction of descent for T—that is, a direction along which T lowers the test component 
of the objective function.

3.2 � Extended map composition

This second methodology considers maps given by rigid translations and test functions that 
capture the conditional mean x̄(z):

with general, nonlinear dependence on z ∈ ℝ
dz . Notice that the y independent function 

W(z) is required, from (5), to handle a possible unbalance between �x(z) and �y(z) . We will 
build U, V and W through generalized flows (Tabak & Vanden-Eijnden, 2010; Tabak & 
Turner, 2013) in z space , through the composition of function of the form

Then we define the map T = x + U(z) at time n + 1 via the recursion

T(x, z) = x + U(z), g(y, z) = V(z)y +W(z), x ∈ ℝ,

F(a, z, v, u) =

(

a1
0
+

dz∑

i=1

a1
i
zi + a1

L+1
u

)

+

(

a2
0
+

dz∑

i=1

a2
i
zi + a2

L+1
u

)

v.

Fig. 2   An illustration of how different choices of the elementary map warp an isotropic standard Gaussian 
and a set of points (both displayed in the upper left panel) in the two dimensional (x, z) space. Upper right: 
warp with a global linear term in z. The panels on the lower row display a warp involving a Gaussian kernel 
( K = 1 ) centered at the black dot. Lower left panel: warp with the same linear term in z as in the upper right 
panel and a2

1
< b2

1
 . Lower right panel: warp with the same linear term in z as in the upper right and a2

1
> b2

1
 . 

The color scale is the same for all the four plots (Color figure online)
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and the test function via

Notice that the T-independent function W(z) evolves on its own, while U(z) and V(z) 
depend on the prior values of each other, as they compete through the minimax formula-
tion. Also notice that this parameterization is such that it includes the maps T = ∇yg that, 
according to Proposition 1, guarantee descent of Ftest.

These maps are initialized at u0 = v0 = w0 = 0 . Before each step, � is set to 0 (as T is 
reinitialized every step to the identity), and so are � and � , except for �2

0
= �

2
0
= 1 , which 

makes g evolve from its value at the previous step.

4 � Examples

We illustrate the procedure with two applications: determination of the effect of a medical 
treatment and lightness transfer. In order to solve the mini-maximization problem () we use 
the general procedure described in Essid et al. (2019).

4.1 � Effect of a treatment

We apply conditional optimal transport to determine the response to a treatment of a diag-
nostic variable x ∈ ℝ in terms of covariates z. As described in the introduction, given a set 
of available samples from the treated and untreated populations, we seek to infer the effect 
of the treatment. We propose to model this as a map y = T(x, z) yielding the state y under 
treatment of a patient that, with covariates z, would have state x without treatment.

The data created for the ACIC data analysis challenge 2017 (Hahn et al., 2017) (https://​
arxiv.​org/​pdf/​1905.​09515.​pdf) is particularly well-suited to test our approach. For con-
creteness, we consider the first of their 32 generating models, which includes 8 covari-
ates: 6 binary and 2 continuous. We divide the data set into two groups: the untreated (x) 
and treated (y) patients, with samples drawn from distributions �(x, z) = �

x(z)�(x|z) and 
�(y, z) = �

y(z)�(y|z) , having the property that

The function �(z) represents the Conditional Average Treatment Effect (CATE). It will be 
important for the analysis below to know that, in the model under consideration, � depends 
only on the binary covariates, but the marginals �(z) depend also on the continuous ones 
(Hahn et al., 2017). The data is provided in 250 batches, each referring to the same 4302 
patients, i.e. the same values of zi under different realizations of the noise. We use only 
the first of these batches to compute the optimal map T(x, z), reserving the other 249 to 
validate our results. In this first batch there is no repeated patient, so each patient is either 
treated or not-treated. This invalidates the use of regular regression, which would require 
pairs (x, y) for the same patient with and without treatment. Our distribution-based meth-
odology, on the other hand, does not require the availability of such pairs.

Tn+1(Tn, z) = Tn + un+1, un+1 = F(�, z, un, vn).

gn+1(y, z) = vn+1y + wn+1, vn+1 = F(�, z, vn, un), wn+1 = F(�, z,wn, 0).

�(y|z) = �(y − �(z)|z), �
x(z) ≠ �

y(z).

https://arxiv.org/pdf/1905.09515.pdf
https://arxiv.org/pdf/1905.09515.pdf
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The middle panel of Fig. 3 displays the untreated values xi as a function of the expected 
value that they would have under treatment given the values zi

s
 of their covariates in the 

source distribution corresponding to the untreated patients:

while the right panel displays similarly the treated values yi . The 1 above refers to the 
situation under treatment, while a zero would denote the absence of treatment. An exact 
quantification of the effect of the treatment would recover the map T(x, z) = x + �(z) . The 
left panel of Fig. 4 displays the map T(xi, zi) obtained using only the discrete covariates, 
which are the ones that the true T of the underlying model depends on. However, because 
of the unbalance between �x and �y (see the left panel of Fig. 3 for �(z7) ), the results are 
biased, much as in the synthetic example in the introduction. The middle panel shows that, 
when all covariates are considered, this biased is resolved. The right panel compares the 

E(x|zs, 1) = ∫
(
x + �(zs)

)
�(x|zs) dx,
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Fig. 3   Left panel: Unbalance in the distribution of z7 between the source and the target data set. Center: 
Response variable x for patients before the treatment plotted as a function of the theoretical expected value 
that the same patients would have if they would undergone the treatment. Right: Response variable y of the 
treated patients as a function of the theoretical expected value of the same patients
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Fig. 4   Left: numerical value of the map T(xi, zi) obtained using only the discrete covariates, which are the 
only ones that the true T depends on. The result is biased due to the unbalance between �x and �y for �(z7) ). 
Middle: numerical value of the map T(xi, zi) obtained using all the covariates. Right: comparison between 
the application of the map T(x, z) to all untreated instances in the full 250 batches to the histogram of the 
response y for all treated instances of the patient
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application of the map T(x, z) to all untreated instances of one specific patient in the full 
250 batches, to the histogram of the response y for all treated instances of the same patient. 
The prediction agrees very accurately with the underlying model, even though the patient 
appeared only once in the batch used for training.

Figure 5 benchmarks the predicted CATE using conditional optimal transport (right 
panel) versus nearest-neighbor estimation (left panel), which, given x and the corre-
sponding value of z∗ , estimates �(z) by the difference between the y with closest z to 
z∗ and x. As can be observed, the estimate of � obtained via conditional optimal trans-
port has a smaller variance than the one obtained using the KNN (k-nearest neighbors 
algorithm) with K = 1 in the latent (z) space. Error in CATE with K > 1 and the total 
number of unique predictions can be found in Table 1. The conditional optimal trans-
port approach achieves the smallest error in L2 and L∞ norms compared with all bench-
marks, and is able to produce a unique prediction for each individual.
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(a) Benchmark: nearest neighbor in (b) Conditional Optimal Transport

Fig. 5   Predicted CATE using K-nearest neighbor in the latent space with K = 1 (left) and conditional opti-
mal transport (right)

Table 1   Error in CATE and number of unique predictions using KNN benchmarks with different values of 
K ≥ 1 and conditional optimal transport, performed on additive dataset with maps restricted to rigid transla-
tions

K = 1 K = 2 K = 3 K = 4 K = 5

CATE: L∞ error 3.9054 2.2877 2.0965 2.2592 2.3504
CATE: L2 error 0.6079 0.5274 0.5128 0.5053 0.5006
Number of unique 

predictions
888 1103 1238 1319 1382

K = 7 K = 10 K = 20 K = 48 ≈
√
N COT

CATE: L∞ error 2.2042 2.2027 4.6307 4.7494 1.5933
CATE: L2 error 0.5071 0.5227 0.5646 0.6988 0.4778
Number of unique 

predictions
1436 1474 1522 1554 2283
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The methodology of conditional optimal transport naturally extends to non-additive 
cases by controlling the complexity of maps and test functions. The following results are 
produced using the non-additive dataset in Hahn et al. (2017), where the causal effect is 
determined by a nonlinear map that involves both x and z that can not be expressed exactly 
by polynomials. In our approach, we include one extra degree of freedom by proposing an 
affine map T(x, z) = x + 𝜏(z) + 𝜏(z)x and corresponding quadratic test function. We com-
pare the results with the same KNN benchmarks by searching for the nearest neighbors 
in the latent (z) space, and the results are reported in Table 2. As can be seen, a modest 
increase in the complexity of our elementary map result in errors that are comparable with 
KNN after selecting the best value of K.

Yet we do not claim that our methodology offers the most accurate estimate of CATE 
in this particular application. In fact, most of the recent winners of the ACIC competition 
adopted methodologies based on Bayesian Additive Regression Trees (BART, Chipman 
et al., 2010) or variations thereof, which often display higher accuracy than our method. 
We argue in the section below that this success is due not only to virtues of BART, but 
also to the design principles underlying the generation of data for ACIC. We also argue 
that CATE is not optimal as a quantifier for the quality of a prediction. We chose to include 
this example non-the-less in order to show that our map-based methodology can compute 
CATE with an accuracy comparable with out-of-the shelf methods such as KNN. In the 
next section we specify in which sense the use of optimal map goes beyond the estimate of 
the CATE and discuss in more detail a comparison with BART.

4.2 � Beyond the conditional averaged treatment effect

The estimate of CATE is essentially a regression problem where, given samples (xi, zi) of 
an outcome x (say blood pressure) and cofactor(s) (z) from untreated patients and samples 
(yj, zj) from treated patients, we estimate E[Y|Z] − E[X|Z] . One can go one step further 
and estimate from the data the two full conditional densities �(x|z) and �(y|z) and compare 
them with tests beyond their conditional means. Yet this is still not equivalent to finding a 
conditional map T(x, z) between these two densities.

One thing is to have an idea of how a given treatment affects the probability distribu-
tion of the blood pressure of a patient with given characteristics z (this is equivalent to 

Table 2   Error in CATE and number of unique predictions using KNN benchmarks with different values of 
K ≥ 1 and conditional optimal transport (COT), performed on nonadditive dataset with affine maps

K = 1 K = 2 K = 3 K = 4 K = 5

CATE: L∞ error 4.7776 4.1451 4.4079 4.8251 5.4309
CATE: L2 error 1.2527 1.1131 1.0803 1.0636 1.0475
Number of unique 

predictions
888 1103 1238 1319 1382

K = 7 K = 10 K = 20 K = 48 ≈
√
N COT

CATE: L∞ error 2.2042 2.2027 4.6307 4.7494 1.5933
CATE: L2 error 0.5071 0.5227 0.5646 0.6988 0.4778
Number of unique 

predictions
1436 1474 1522 1554 2283
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comparing �(x|z) and �(y|z) ) and quite another is to predict the effect of a treatment on a 
patient with characteristics z and blood pressure x. To stress that these two points are not 
the same consider that: 

1.	 The value of x may encode other, idiosyncratic traits of the patient that the observed 
factors z do not capture. This is the case when, in addition to a set of observed cofactors 
zo there is a set of hidden cofactors zh affecting the outcome of the treatment.

2.	 The effect of a treatment may indeed depend on the blood pressure before treatment, 
providing much more specific information than just �(x|z).

Even though the second of these considerations could be addressed through a regression 
procedure for y that includes x as an additional factor z, this is not doable when the data 
does not provide pairs (x, y), but only samples from the treated and untreated populations 
separately. This is the case of long term treatments, of quantifyng the effect of life-long 
habits, and also of the dataset from ACIC.

Summarizing, we seek the effect of the treatment on that specific patient given that the 
treatment on a population of patients with same characteristics z has the effect of changing 
�(x|z) to �(y|z).

We will now consider two toy models in which the data are generated to reproduce the 
two scenarios introduced above.

4.2.1 � Model 1

Consider a model with two covariates, one observed zo and another hidden zh . Assume that 
zh is a Gaussian random variable with mean zero and variance �2

h
:

The data relative to the outcome of untreated and treated patients (x and y respectively) are 
Gaussian:

In this case the reference value of the CATE, in which we ideally assume that both zo and zh 
are known is given by

We want to compare this value with the value obtained by COT and BART when only zo 
is known. Let’s first estimate the treatment effect via COT by first noticing that the condi-
tional distributions �(x|zo) and �(y|zo) relative to patients before and after the treatment are 
N(zo, �

2
h
+ �

2) and N(azo, b
2
�
2
h
+ �

2) respectively. The optimal map is then:

and the treatment effect is estimated as T(x, zo) − x . As anticipated, the treatment effect, 
computed via COT, includes the dependence on zh through the dependence on x. By taking 
the expectation over the true distribution of x, we recover the CATE:

zh ∼ N(0, �2
h
).

x ∼ N(zo + zh, �
2), y ∼ N(azo + bzh, �

2).

(6)CATE = (a − 1)zo + (b − 1)zh.

y = T(x, zo) =

⎛
⎜
⎜
⎝

a −

�
�
�
�

b2�2
h
+ �2

�
2
h
+ �2

⎞
⎟
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⎠

zo +

�
�
�
�

b2�2
h
+ �2

�
2
h
+ �2
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which is close to the truth if b2�2
h
 is much larger than �2 , namely if the dependency of x on 

the hidden covariates zh is still detectable in the post-treatment population.
The value in (7) should be compared with the value obtained by computing the regres-

sion of x and y as a function of zo . Such value will only take the difference between the 
mean of y and x given zo , which is (a − 1)zo containing no information relative to zh.

For a numerical comparison we generated the data according to the model defined 
above with parameters a = 1∕2 , b = 2 , �h = 3 and � = 0.1 and estimated CATE via COT 
and BART. We then computed the L2 error between the result obtained via COT and BART 
with reference value of the CATE in (6). The error relative to COT is 0.61 and to BART is 
3.09, confirming the analytical result derived above.

4.2.2 � Model 2

The model used to generate the data in the ACIC competition has the form

where �x and �y are normally distributed, independent random variables and different sam-
ples of z are used to generate independent samples for x and y. Hence, in this model, x and 
y are conditionally independent given z. As mentioned at the end of the previous section, 
this is exactly the model that BART is designed for, and hence it is not surprising that the 
winners of the last few years of the ACIC competitions have used BART.

The strength of our method is not in the precision with which it can estimate the CATE, 
but rather in its capacity to access information contained in the data that cannot be cap-
tured by a procedure based purely on regression. In order to illustrate how computing the 
map between � and � goes beyond the estimate of the CATE, consider data generated, more 
realistically, according to the second scenario described in Sect. 4.2:

where now y and x are not conditionally independent given z. In this case, computing the 
CATE is of limited use, because fixing z does not result in a response to a given treat-
ment that in average is independent of the value of x. The response to the treatment in this 
case depends not only on the set of observed factors z but also on the pre-treatment value 
of blood pressure x of that specific patient. Therefore computing E[Y|X = x, Z = z] in this 
case is much more meaningful than E[Y|Z = z].

Computing E[Y|X, Z] from data generated using (8) where, as before, different samples 
of z are used to generate samples for x and y is, to the best of our knowledge, not doable 
with plain regression procedures, since the data set does not come in triplets (xi, yi, zi) but 
in pairs (xi, zi) , (yj, zj) , where for a given value of zi we have either xi or yi but not both. By 
contrast, the information contained in the optimal map T(x, z) allows for such an estimate 
as given zi and xi we can recover yi = T(xi, zi).

(7)�[T(x, zo) − x�zo, zh] = (a − 1)zo +

⎛
⎜
⎜
⎝

�
�
�
�

b2�2
h
+ �2

�
2
h
+ �2

− 1

⎞
⎟
⎟
⎠

zh,

{
y = f (z, �y)

x = �(z) + �x

(8)
{

y = f (z, x, �y)

x = �(z) + �x,
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4.3 � Lightness transfer

Next we apply conditional optimal transport to lightness transfer. Consider the first column 
of Fig. 6, corresponding to two flowers photographed under different light conditions. We 
seek to transform the first photograph so as to present it under the light conditions of the 
second. This goes beyond merely changing lightness uniformly, since for instance at sunset 
certain colors are perceived as having become darker than others.

An image can be represented in the three dimensional CIELAB (L*a*b) space whose 
coordinates are the lightness L, the red/green contrast A and blue/yellow contrast B. The 
right column of Fig. 6 shows the images of the flowers in this L*a*b space, where each 
point corresponds to a superpixel, defined through a clustering procedure to introduce 
information about the geometry of the image (Rabin et  al., 2014). We follow Tai et  al. 
(2005) to define a similarity metric by means of a Gaussian kernel, map the obtained 
superpixels through our procedure, and use a TMR filter after the map to recover sharp 
details (Rabin et al., 2011).

Figure  7 shows the results obtained by changing lightness through three different 
procedures. First (left column) we use one-dimensional optimal transport (with quad-
ratic cost) to map the L coordinate, ignoring the values of A and B. The L*a*b diagram 
shows that this results in a nearly uniform shift of L towards smaller values. The third 
column shows the effect of mapping the starting image to the target image through 
3d optimal transport in the full L*a*b space. In this case the point clouds overlap to 
a much better degree, yet we observe that the color of the lotus has been changed too 
much towards the color of the poinsettia in the target image. The second column is 
obtained performing optimal transport of L conditioned on A and B. Contrasting to 
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Fig. 6   Left column: initial (top) and target (bottom) image. Right column: L*a*b coordinates for the initial 
(in red) and the target (in black) image (Color figure online)
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the other two results, here the lotus has kept its original color, and the lightness has 
changed to a different degree for the lotus than for the background leaves.

This is a general advantage of conditional optimal transport: unlike its uncondi-
tional cousin, it is not constrained to preserve total mass (in this case, transferring fully 
one color palette to the other), but only the mass for each value of z. This points to an 
additional application of conditional optimal transport: its capacity to address possible 
unbalances between source and target by parameterizing the transfer map by means of 
convenient labels z. In work in progress, we expand on this notion, finding those latent 
covariates z that help resolve unbalances optimally.
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(d) 1D OT result in LAB
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(e) 3DOT result in LAB
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(f) COT result in LAB

Fig. 7   Left Column: image obtained performing one dimensional optimal transport for the Luminosity (L) 
coordinate ignoring the A and B coordinates. Second column: plain three dimensional optimal transport in 
L*a*b space. Third column: image obtained by performing optimal transport on luminosity conditioned on 
color (Color figure online)
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4.4 � Color contrast and Lightness transfer

In this section we show an example in which performing color transfer, in addition to light-
ness transfer, can be used to simulate the effect of a restoration under different conditions 
of lightness (L) and color contrast in the CIELAB space. We present this example to dis-
play the broad set of options provided to the user by condition optimal transport.

The source image represents Michelangelo’s Jesse spandrel in the Sistine Chapel before 
the restoration that took place in the period 1984–1994. We chose this particular image 
because of the controversy that followed its restoration (Beck & Daley, 1993). Comparing 
the first and the last panels of the second row of Fig. 8, representing the image before and 
after the restoration respectively, one can notice the disappearance of the eyes of Jesse and 
the loss of depth in his vest. In order to simulate a series of possible effects of the restora-
tion process, we perform lightness and color transfer between the source image and two 
target images corresponding to two frescos dating back to roughly the same time period as 
the source image. These two frescos have been chosen because they underwent a success-
ful restoration process. In the first row of Fig. 8, we chose a fresco by Luca Signorelli (San 

Source 2D OT 2D COT 3D OT 1+2 OT OT + COT Target

Source 2D OT 2D COT 3D OT 1+2 OT OT + COT Target

Source 2D OT 2D COT 3D OT 1+2 OT OT + COT Target

Fig. 8   Three color transfers obtained with same source image and different target images, one for each row. 
2D OT: two dimensional optimal transport in the a*b space, independently from the value of L. 2D COT: 
two dimensional optimal transport conditional on the value of L. 3D OT: 3 dimensional optimal transport 
in the L*a*b space. 1+2 OT: One dimensional optimal transport performed on L alone followed by two 
dimensional optimal transport in a*b space. OT + COT: one dimensional optimal transport in the L space 
followed by two dimensional optimal transport conditional on the value of L. Since the lightness and the 
color are correlated, the ability of conditioning over lightness (third and sixth column) provides an addi-
tional tool to mitigate the presence of an unbalanced color palette between the source and the target image 
(Color figure online)
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Brizio Chapel - Orvieto) and in the third row, a fresco by Michelangelo himself, the con-
version of Saint Paul in the Pauline chapel. The results obtained using these two frescos as 
targets should be compared to the second row of Fig. 8, where we use for target the actual 
restored version of the source image, which corresponds to the colors actually applied by 
Michelangelo, after eliminating those surface layers that have deteriorated the most.

It is worth noticing that, when conditioning on lightness (third and sixth column of 
Fig. 8), we obtain a figure that is less affected by the difference in color density between 
the target and the source image. For instance, the target image of the first row is character-
ized by a larger amount of vivid red that is not present in the source image. This results in 
most of the transported images (second to sixth columns) to be characterized by a shift in 
the red color. Similarly, the target image of the third row is characterized by much more 
yellow/orange palette than the source image.

Hence using lightness as a variable to condition over, has the effect of mitigating the 
presence of an unbalanced color palette between the source and the target image. A possi-
ble reason is that lightness can often be used as as surrogate variable for the color label, as 
different colors are often attached to different values of lightness. Therefore, conditioning 
on lightness has the effect of establishing a correspondence between areas in the target and 
source image characterized by the same colors, even if these areas do not have the same 
size.

The purpose of this experiment is not to show that conditional optimal transport per-
forms better than simple optimal transport when used for color transfer. Instead, it intends 
to show that the ability of conditioning over lightness provides additional tools that the 
practitioner of color transfer can use with different target images to create alternative if-
scenarios when restoring a fresco.

5 � Conclusion

This work develops conditional optimal transport (COT), a variant of the classical opti-
mal transport problem where the distributions to match are conditioned to cofactors. In 
particular, the data-driven case is considered, where the two conditional probabilities 
�(x|z1,… , zL) and �(y|z1,… , zL) are known only through samples. A formulation is devel-
oped that integrates all conditional maps T(x, z) into a single minimax problem, providing 
an adaptive, adversarial game theoretical framework for the satisfaction of the push for-
ward conditions.

Ignoring the dependence on cofactors can lead to wrong estimates for the map for two 
reasons: the map may truly depend on these ignored covariates, as when the effect of as 
treatment depends on the age of the patient, and/or the distributions of the covariates may 
differ in the source and target distributions, as when comparing hospitals which serve 
populations with different ratio of ethnicities. These two effects appear prominently in our 
application of COT to the ACIC Data Analysis Challenge 2017 data-set, where the effect 
of a medical treatment depends on a set of discrete covariates, and the distributions of the 
diagnostic variable x in the treated and untreated populations differ not only due to the 
effect of the treatment, but also to the unbalance in a different set of continuous covariates.

COT provides a flexible tool for data analysis. For instance, in cases where there are 
no explicit covariates, one can choose some of the variables x as covariates z. This choice 
may be driven by field knowledge and, when ambiguous, experiments with COT may shed 
light on the effect of each particular choice. This is illustrated through simple synthetic 
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examples and through applications to lightness and color transfer. The various choices can 
be used, for instance, to change the lightness condition of an image, and to simulate the 
effect of the restoration of frescos under different assumptions on the effect of the passing 
of time on color contrast and lightness.

Still another use of COT, currently under development, would seek those hidden cofac-
tors z under which the conditional transfer is optimal under a user-determined criterion.
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