
Vol.:(0123456789)

Machine Learning (2022) 111:1409–1430
https://doi.org/10.1007/s10994-021-06059-7

1 3

Time‑aware tensor decomposition for sparse tensors

Dawon Ahn1 · Jun‑Gi Jang1 · U Kang1

Received: 30 September 2020 / Revised: 8 July 2021 / Accepted: 6 August 2021 /
Published online: 27 September 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
Given a sparse time-evolving tensor, how can we effectively factorize it to accurately dis-
cover latent patterns? Tensor decomposition has been extensively utilized for analyzing
various multi-dimensional real-world data. However, existing tensor decomposition models
have disregarded the temporal property for tensor decomposition while most real-world
data are closely related to time. Moreover, they do not address accuracy degradation due to
the sparsity of time slices. The essential problems of how to exploit the temporal property
for tensor decomposition and consider the sparsity of time slices remain unresolved. In
this paper, we propose time-aware tensor decomposition (tatd), an accurate tensor decom-
position method for sparse temporal tensors. tatd is designed to exploit time dependency
and time-varying sparsity of real-world temporal tensors. We propose a new smoothing
regularization with Gaussian kernel for modeling time dependency. Moreover, we improve
the performance of tatd by considering time-varying sparsity. We design an alternating
optimization scheme suitable for temporal tensor decomposition with our smoothing regu-
larization. Extensive experiments show that tatd provides the state-of-the-art accuracy for
decomposing temporal tensors.

Keywords Temporal tensor · Time-aware tensor decomposition · Time dependency ·
Kernel smoothing regularization · Time-varying sparsity

1 Introduction

Given a sparse temporal tensor where one mode denotes time, how can we discover its
latent factors? A tensor, or multi-dimensional array, has been widely used to model multi-
faceted relationships for time-evolving data. For example, air quality data (Zhang et al.,

Editors: João Gama, Alípio Jorge, Salvador García.

 * U Kang
 ukang@snu.ac.kr

 Dawon Ahn
 dawon@snu.ac.kr

 Jun-Gi Jang
 elnino4@snu.ac.kr

1 Seoul National University, Seoul, South Korea

http://orcid.org/0000-0002-8774-6950
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06059-7&domain=pdf

1410 Machine Learning (2022) 111:1409–1430

1 3

2017) containing measurements of contaminants collected from sensors at every time step
are modeled as a 3-mode temporal tensor (time, site, contaminant).

Tensor decomposition is a fundamental building block for effectively analyzing tensors
by revealing latent factors between entities (Kolda & Sun, 2008; Kang et al., 2012; Oh
et al., 2018; Park et al., 2017), and it has been extensively utilized in various real-world
applications across diverse domains including recommender systems (Symeonidis 2016),
clustering (Sun et al., 2015), anomaly detection (Kolda & Sun, 2008), correlation analysis
(Sun et al., 2006), network forensic (Maruhashi et al., 2011), and latent concept discovery
(Kolda et al., 2005). CANDECOMP/PARAFAC (CP) (Harshman et al., 1970) decomposi-
tion is one of the most widely used tensor decomposition models, which factorizes a tensor
into a set of factor matrices and a core tensor which is restricted to be diagonal.

Previous CP decomposition methods (Kolda et al., 2005; Sun et al., 2006, 2015; Kolda
& Sun, 2008; Maruhashi et al., 2011; Matsubara et al., 2012; Kang et al., 2012; Syme-
onidis, 2016; de Araujo et al., 2017; Park et al., 2017; Oh et al., 2018) do not consider
temporal property when it comes to factorizing tensors while most time-evolving tensors
exhibit time dependency. Recently, Yu et al. (2016) have tried to address the above prob-
lem, but it considers only the past information of a time step to model the time dependency.
A model needs to examine both the past and the future information to capture accurate
temporal properties since information at each time point is heavily related to that in the
past and the future. In addition, they do not consider the time-varying sparsity, one of the
main properties in real-world temporal tensors. The main challenges to design an accurate
temporal tensor decomposition method for sparse temporal tensors are (1) how to harness
the time dependency in real-world data, and (2) how to exploit the varying sparsity of time
slices.

In this paper, we propose Time-Aware Tensor Decomposition (tatd), a time-aware ten-
sor decomposition method for analyzing real-world temporal tensors. Our main obser-
vation is that values of adjacent time slices are mostly similar to each other since time
slices in a temporal tensor are closely related to each other. Based on this observation, tatd
employs a kernel smoothing regularization to make time factor vectors reflect time depend-
ency. Moreover, tatd imposes a time-dependent sparsity penalty to strengthen the smooth-
ing regularization. The sparsity penalty modulates the amount of the regularization using
the sparsity of time slices. tatd further improves accuracy using an effective alternating
optimization scheme that incorporates an analytical solution and Adam optimizer. Through
extensive experiments, we show that tatd effectively considers the time dependency for
tensor decomposition, and achieves higher accuracy compared to existing methods. Our
main contributions are as follows:

• Method We propose tatd, an accurate tensor decomposition method considering time
dependency. tatd exploits a smoothing regularization for effectively modeling time fac-
tor with time dependency, and adjusts it by utilizing a time-varying sparsity.

• Optimization We propose an alternating optimization strategy suitable for our smooth-
ing regularization. The strategy alternatively optimizes factor matrices with an analyti-
cal solution and Adam optimizer.

• Performance Extensive experiments show that exploiting time dependency and spar-
sity is crucial for accurate tensor decomposition of temporal tensors. tatd provides the
state-of-the-art error (in terms of RMSE and MAE) for decomposing temporal tensors.

The rest of the paper is organized as follows. In Sect. 2, we explain preliminaries on ten-
sor decomposition. Section 3 describes our proposed method tatd. We demonstrate our

1411Machine Learning (2022) 111:1409–1430

1 3

experimental results in Sect. 4. After reviewing related work in Sect. 5, we conclude in
Sect. 6. The source code of tatd and datasets are available at https:// github. com/ snuda
talab/ TATD/.

2 Preliminaries

We describe the preliminaries of tensor and tensor decomposition. We use the symbols
listed in Table 1.

2.1 Tensor and notations

Tensors are defined as multi-dimensional arrays that generalize the one-dimensional arrays
(or vectors) and two-dimensional arrays (or matrices) to higher dimensions. Specifically,
the dimension of a tensor is referred to as order or way; the length of each mode is called
‘dimensionality’ and denoted by I1,… , I

n
 . We use boldface Euler script letters (e.g., X)

to denote tensors, boldface capitals (e.g., �) to denote matrices, and boldface lower cases
(e.g., �) to denote vectors. The � = (i1,… , i

N
) th entry of tensor X is denoted by x

�
.

A slice of a 3-order tensor is a two-dimensional subset of it. There are the horizontal,
lateral, and frontal slices in a 3-order tensor X , denoted by �

i1∶∶
 , �∶i2∶

 , and �∶∶i3
 . A tensor

containing a mode representing time is called a temporal tensor.
A time slice in a 3-mode temporal tensor represents a two-dimensional subset disjointed

by each time index. For example, �
i
t
∶∶ is an i

t
 th time slice when the first mode is the time

mode. For brevity, we express �
i
t
∶∶ as �

i
t
 . Our proposed method is not limited to a 3-mode

tensor so that a time slice in an N-order temporal tensor corresponds to an (N-1)-dimen-
sional subset of the tensor sliced by each time index. We formally define a time slice X

i
t
 as

follows:

Table 1 Table of symbols Symbol Definition

X Input tensor ∈ �I1×⋯×I
N

� Index (i1,… , i
N
) of X

x
�

Entry of X with index �
N Order of tensor X
I
n

Length of the nth mode of tensor X
�(n) nth factor matrix (∈ �I

n
×K)

�
(n)

i
n

i
n
 th row of �(n)

a
(n)

i
n
k

(i
n
, k) th entry of �(n)

K Rank of tensor X
t Time mode of X
X

i
t

i
t
 th time slice of size I1 ×⋯ × I

t−1 × I
t+1 ⋯ × I

N

�
i
t

Number of observed entries of time slice X
i
t

‖X‖
F

Frobenius norm of tensor X
�
t
 , �

r
Regularization parameter

https://github.com/snudatalab/TATD/
https://github.com/snudatalab/TATD/

1412 Machine Learning (2022) 111:1409–1430

1 3

Definition 1 (Time slice X
i
t
) Given an N-order tensor X ∈ ℝ

I1×⋯×I
N and a time mode t,

we extract time slices of size I1 ×⋯ × I
t−1 × I

t+1 ⋯ × I
N

 by slicing the tensor X so that
an i

t
 th time slice X

i
t
∈ ℝ

I1×⋯×I
t−1×It+1⋯×I

N is an N − 1 order tensor obtained at time i
t
 where

1 ≤ i
t
≤ I

t
 . ◻

The Frobenius norm of a tensor X (∈ �I1×⋯×I
N) is given by ��X��

F
=

�
∑

�∈Ω x2
�
 , where

Ω is the set of indices of entries in X , � = (i1,… , i
N
) is an index included in Ω , and x

�
 is

the (i1,… , i
N
) th entry of the tensor X .

2.2 Tensor decomposition

We provide the definition of CP decomposition (Harshman et al., 1970; Kiers 2000) which
is one of the most representative decomposition models. Figure 1 illustrates CP decompo-
sition of a 3-way sparse tensor. Our model tatd is based on CP decomposition.

Definition 2 (CP decomposition) Given a rank K and an N-mode tensor X ∈ ℝ
I1×⋯×I

N
with observed entries, CP decomposition approximates X by finding latent factor matrices
{�(n) ∈ ℝ

I
n
×K | 1 ≤ n ≤ N} . The factor matrices are obtained by minimizing the following

loss function:

where Ω indicates the set of the indices of the observed entries, x
�
 indicates the

� = (i1,… , i
N
) th entry of X , and a(n)

i
n
k
 indicates (i

n
, k) th entry of �(n) . ◻

The standard CP decomposition method is not specifically designed to deal with time
dependency; thus CP decomposition does not discover accurate temporal patterns in a
time-evolving tensor. Although a previous work (Yu et al., 2016) has tried to capture
temporal interaction, it does not (1) capture time dependency between adjacent time
steps, and (2) exploit the sparsity of time slices. Our proposed tatd carefully captures
temporal information and considers sparsity of time slices for better accuracy in decom-
posing temporal tensors.

(1)L
(
�

(1),… ,�(N)
)
=

∑

∀�∈Ω

(

x
�
−

K∑

k=1

N∏

n=1

a
(n)

i
n
k

)2

Fig. 1 CP decomposition of a 3-way sparse tensor into K components

1413Machine Learning (2022) 111:1409–1430

1 3

3 Proposed method

In this section, we propose tatd (Time-Aware Tensor Decomposition), an accurate ten-
sor decomposition method for sparse temporal tensors. We first introduce the overview
of tatd in Sect. 3.1. We then explain the details of tatd in Sects. 3.2 and 3.3, and the
optimization technique in Sect. 3.4.

3.1 Overview

tatd is a tensor decomposition method designed for sparse temporal tensors. There are
several challenges in designing an accurate tensor decomposition method for temporal
tensors.

1. Model time dependency. Time dependency is an essential structure of temporal tensor.
How can we design a tensor decomposition model to reflect the time dependency?

2. Exploit sparsity of time slices. Time-evolving tensor has varying sparsity for its time
slices. How can we exploit the temporal sparsity for better accuracy?

3. Optimization. How can we efficiently train our model and minimize its loss function?

To overcome the aforementioned challenges, we propose the following main ideas.

1. Smoothing regularization (Sect. 3.2). We propose a smoothing regularization on time
factor to capture time dependency.

2. Time-dependent sparsity penalty (Sect. 3.3). We propose a time-dependent sparsity
penalty to further improve the accuracy.

3. Careful optimization (Sect. 3.4). We propose an optimization strategy utilizing an ana-
lytical solution and Adam optimizer to efficiently and accurately train our model.

Figure 2 illustrates overview of tatd. We observe that adjacent time slices in a temporal
tensor are closely related with each other due to a temporal trend of the tensor. Based
on the observation, tatd uses smoothing regularization such that time factor vectors for
adjacent time slices become similar. We also observe that different time slices have dif-
ferent densities. Instead of applying the same amount of regularization for all the time
slices, we control the amount of regularization based on the sparsity of time slices such
that sparse slices are affected more from the regularization. It is also crucial to effi-
ciently optimize our objective function. We propose an optimization strategy exploiting
alternating minimization to expedite training and improve the accuracy.

3.2 Smoothing regularization

We describe how we formulate the smoothing regularization on tensor decomposition to
capture time dependency. Our main observation is that temporal tensors have temporal
trends, and adjacent time slices are closely related. For example, consider an air quality
tensor containing measurements of pollutant at a specific time and location; it is modeled
as a 3-mode tensor X (time, location, type of pollutants; measurements). Since the amount
of pollutants at nearby time steps are closely related, the time slice X

t
 at time t is closely

1414 Machine Learning (2022) 111:1409–1430

1 3

related to the time slices X
t−1 at time t − 1 and X

t+1 at time t + 1 . This implies the time fac-
tor matrix after tensor decomposition should have related rows for adjacent time steps.

Based on the observation, our objective function is as follows. Given an N-order tempo-
ral tensor X ∈ ℝ

I1×⋯×I
N with observed entries Ω , the time mode t, and a window size S, we

find factor matrices �(n) ∈ ℝ
I
n
×K , 1 ≤ n ≤ N that minimizes

where we define

and N(i
t
, S) indicates adjacent indices i

s
 of i

t
 in a window of size S. �

t
 and �

r
 are regulariza-

tion constants to adjust the effect of time smoothing and weight decay, respectively. �̃(t)
i
t

 in
Eq. (3) denotes the smoothed row of the time factor. The

∑I
t

i
t
=1

‖�
(t)

i
t

− �̃
(t)

i
t

‖2
2
 term in Eq. (2)

means that we regularize the i
t
 th row of the time factor to the smoothed vector from the

neighboring rows in the factor. The weight w(i
t
, i
s
) denotes the weight to give to the i

s
 th

row of the time factor matrix for the smoothing the i
t
 th row of the time factor.

An important question is, how to determine the weight w(i
t
, i
s
) ? We use the Gaussian

kernel for the weight function due to the following two reasons. First, it does not require
any parameters to tune, and thus we can focus more on learning the factors in tensor
decomposition. Second, it fits our intuition that a row closer to the i

t
 th row should be given

a higher weight. In Sect. 4, we show that tatd with Gaussian kernel outperforms all the
competitors; however we note that other weight function can possibly replace the Gaussian
kernel to further improve the accuracy, and we leave it as a future work.

Given a target row index i
t
 , an adjacent row index i

s
 , and a window size S, the weight

function based on the Gaussian kernel is as follows:

(2)L =
�

𝛼∈Ω

�

x
𝛼
−

K�

k=1

N�

n=1

a
(n)

i
n
k

�2

+ 𝜆
t

I
t�

i
t
=1

‖�
(t)

i
t

− �̃
(t)

i
t

‖2
2
+ 𝜆

r

N�

n≠t

‖�(n)‖2
F

(3)�̃
(t)

i
t

=
∑

i
s
∈N(i

t
,S)

w(i
t
, i
s
)�

(t)

i
s

,

(4)w(i
t
, i
s
) =

K(i
t
, i
s
)

∑
i
s� ∈N(i

t
,S)K(i

t
, i
s�
)

Fig. 2 Illustration of smoothing regularization and sparsity penalty by tatd. tatd accurately trains the time
factor matrix with the smoothing regularization considering the time-varying sparsity. For a sparse time
slice at t1 , tatd fits the time factor via strong regularization to actively consider nearby slices. For a dense
time slice at t2 , tatd makes the time factor with weak regularization by paying little attention to nearby
slices

1415Machine Learning (2022) 111:1409–1430

1 3

where K is defined by

Note that � affects the degree of smoothing; a higher value of � imposes more smoothing.
For each i

t
 th time slice, the model constructs a smoothed time factor vector �̃

i
t
 based on

nearby factor vectors �
i
s
 and the weights w(i

t
, i
s
).

Our model then aims to reduce the smoothing loss between the time factor vector �(t)
i
t

and the smoothed one �̃(t)

i
t

.

3.3 Sparsity penalty

We describe how to further improve the accuracy of our method by considering the spar-
sity of time slices. The loss function (2) uses the same smoothing regularization penalty �

t

for all the time factor vectors. However, different time slices have different sparsity due to
the different number of nonzeros in time slices (see Fig. 3), and it is thus desired to design
our method so that it controls the degree of regularization penalty depending on the spar-
sity. For example, consider the 3-mode air quality tensor X (time, location, type of pollut-
ants; measurements), introduced in Sect. 3.2, containing measurements of pollutant at a
specific time and location. Assume that the time slice X

t1
 at time t1 is very sparse contain-

ing few nonzeros, while the time slice X
t2
 at time t2 is dense with many nonzeros. The fac-

tor row �(1)
i
t2

 at time t2 can be updated easily using its many nonzeros. However, the factor
row �(1)

i
t1

 at time t1 does not have enough nonzeros at its corresponding time slice, and thus it
is hard to train �(1)

i
t1

 using only its few nonzeros; we need to actively use nearby slices to

K(i
t
, i
s
) = exp

(

−
(i
t
− i

s
)2

2�2

)

(a) (b) (c)

(d) (e)

Fig. 3 Time-varying density of five real-world datasets. The horizontal axis represents the unique number
of nonzero entries in time slices. The vertical axis represents the number of time indices with such number
of nonzeros. Note that time slices have varying densities

1416 Machine Learning (2022) 111:1409–1430

1 3

make up for the lack of data. Thus, it is desired to impose more smoothing regularization at
time t1 than at time t2.

Based on the motivation, tatd controls the degree of smoothing regularization based on
the sparsity of time slices. Let the time sparsity �

i
t
 of the i

t
 th time slice be defined as

where a time density d
i
t
 is defined as follows:

�
i
t
 indicates the number of nonzeros at i

t
 th time slice; �

max
 and �

min
 are the maximum and

the minimum values of the number of nonzeros in time slices, respectively. The time den-
sity d

i
t
 can be thought of as a min-max normalized version of �

i
t
 , with its range regularized

to [0.001, 0.999].
Using the defined time sparsity, we modify our objective function as follows.

Note that the second term is changed to include the time sparsity �
i
t
 ; this makes the degree

of the regularization vary depending on the sparsity of time slices.
Given the modified objective function in Eq. (7), we focus on minimizing the difference

between �(t)
i
t

 and �̃(t)
i
t

 for time slices with a high sparsity rather than those with a low spar-
sity. tatd actively exploits the neighboring time slices when a target time slice is sparse,
while it less exploits the neighboring ones for a dense time slice.

3.4 Optimization

To minimize the objective function in Eq. (7), tatd uses an alternating optimization
method; it updates one factor matrix at a time while fixing all other factor matrices. tatd
updates non-time factor matrices using the row-wise update rule (Shin et al., 2016) while
updating the time factor matrix using the Adam optimizer (Kingma & Ba, 2014).

Updating non-time factor matrix. We note that updating a non-time factor matrix
while fixing all other factor matrices is solved via the least square method, and we use the
row-wise update rule (Shin et al., 2016) in ALS for it. The row-wise update rule is advanta-
geous since it gives the optimal closed-form solution, and allows parallel update of factors.
The update rule for i

n
 th row of the nth factor matrix �(n)(n ≠ t) is given as follows:

where �(n)

i
n

 is a K × K matrix whose entries are

�
(n)

i
n

 is a length K vector whose entries are

(5)�
i
t
= 1 − d

i
t

(6)d
i
t
= (0.999 − 0.001)

�
i
t
− �

min

�
max

− �
min

+ 0.001

(7)L =
�

𝛼∈Ω

�

x
𝛼
−

K�

k=1

N�

n=1

a
(n)

i
n
k

�2

+

I
t�

i
t
=1

𝜆
t
𝛽
i
t
���

(t)

i
t

− �̃
(t)

i
t

��2
2
+ 𝜆

r

N�

n≠t

‖�(n)‖2
F

(8)�
(n)

i
n

← argmin
�
(n)

in

L(�(1),… ,�(N)) = [�
(n)

i
n

+ �
r
�
K
]−1 × �

(n)

i
n

(9)
(�

(n)

i
n

)
k1k2

=
∑

∀�∈Ω
(n)

in

∏

l≠n

a
(l)

i
l
k1

∏

l≠n

a
(l)

i
l
k2
,∀k1, k2,

1417Machine Learning (2022) 111:1409–1430

1 3

and Ω(n)

i
n

 denotes the subset of Ω whose nth mode’s index is i
n
.

Updating time factor matrix. Updating the time factor matrix while fixing all other
factor matrices is not the least square problem any more, and thus we turn to gradient
based methods. We use the Adam optimizer which has shown superior performance
for recent machine learning tasks. We verify that using the Adam optimizer only for
the time factor leads to faster convergence compared to other optimization methods in
Sect. 4.

Overall training. Algorithm 1 describes how we train tatd. We first initialize all
factor matrices (line 1). For each iteration, we update a factor matrix while keeping
all others fixed (lines 4–11). The time factor matrix is updated with Adam optimizer
(line 7) until the validation RMSE increases, which is our convergence criterion (line
8) for Adam. Each of the non-time factor matrices is updated with the row-wise update
rule (line 11) in ALS. We repeat this process until the validation RMSE continuously
increases for five iterations, which is our global convergence criterion (line 12).

4 Experiment

We perform experiments to answer the following questions.

Q1 Accuracy (Sect. 4.2). How accurately does tatd factorize real-world temporal tensors
compared to other methods?

Q2 Effect of smoothing regularization (Sect. 4.3). How accurately does tatd generate the
time factor matrix and non-time factor matrices?

Q3 Effect of data sparsity (Sect. 4.4). How does the sparsity of input tensors affect the
decomposition performance of tatd and other methods?

(10)
∑

∀�∈Ω
(n)

in

x
�

∏

l≠n

a
(l)

i
l
k
,∀k

1418 Machine Learning (2022) 111:1409–1430

1 3

Q4 Running time (Sect. 4.5). How fast is tatd compared to competitors?
Q5 Effect of optimization (Sect. 4.6). How effective is our proposed optimization

approach for training tatd?
Q6 Hyper-parameter study (Sect. 4.7). How do the different hyper-parameter settings

affect the performance of tatd?

4.1 Experimental settings

4.1.1 Machine

All experiments are performed on a machine equipped with Intel Xeon E5-2630 CPU.

4.1.2 Datasets

We evaluate tatd on five real-world datasets summarized in Table 2.

• Beijing Air Quality (Zhang et al., 2017) is a 3-mode tensor (hour, locations, atmos-
pheric pollutants) containing measurements of pollutants. It was collected from 12 air-
quality monitoring sites in Beijing between 2013 to 2017.

• Madrid Air Quality is a 3-mode tensor (day, locations, atmospheric pollutants) contain-
ing measurements of pollutants in Madrid between 2011 to 2018.

• Radar Traffic is a 3-mode tensor (hour, locations, directions) containing traffic volumes
measured by radar sensors from 2017 to 2019 in Austin, Texas.

• Indoor Condition (Candanedo et al., 2017) is a 3-mode tensor (10 min, locations, ambi-
ent conditions) containing measurements. There are two ambient conditions defined:
humidity and temperature. We construct a fully dense tensor from the original dataset
and randomly sample 70% of the elements to make a tensor with missing entries. In
Sect. 4.4, we sample from the fully dense version of it.

• Server Room is a 4-mode tensor (second, air conditioning, server power, locations)
containing temperatures recorded in a server room. The first mode “air conditioning”
means air conditioning temperature setups (24, 27, and 30 Celsius degrees); the second
mode “server power” indicates server power usage scenarios (50% , 75% , and 100%).

Table 2 Summary of real-world tensors used for experiments

Bold text denotes time mode
1 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Beiji ng+ Multi- Site+ Air- Quali ty+ Data
2 https:// www. kaggle. com/ decide- soluc iones/ air- quali ty- madrid
3 https:// data. austi ntexas. gov/ Trans porta tion- and- Mobil ity/ Radar- Traffi c- Counts/
4 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Appli ances+ energy+ predi ction
5 https:// zenodo. org/ record/ 36100 78#. XlNpA igzaM8

Name Dimensionality Nonzero Granularity Density

Beijing air quality1 35,064 × 12 × 6 2,454,305 1 h 0.97
Madrid air quality2 2678 × 24 × 14 337,759 1 day 0.37
Radar traffic3 17,937 × 23 × 5 495,685 1 h 0.24
Indoor condition4 19,735 × 9 × 2 241,201 10 min 0.70
Server room5 4157 × 3 × 3 × 34 1,009,426 1 s 0.79

https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://www.kaggle.com/decide-soluciones/air-quality-madrid
https://data.austintexas.gov/Transportation-and-Mobility/Radar-Traffic-Counts/
https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
https://zenodo.org/record/3610078#.XlNpAigzaM8

1419Machine Learning (2022) 111:1409–1430

1 3

Before applying tensor decomposition, we z-normalize the datasets. Each dataset is ran-
domly split into training, validation, and test sets with the ratio of 8:1:1; the validation set
is used for determining an early stopping point.

4.1.3 Competitors

We compare tatd with the following competitors which use only the observed entries of a
given tensor.

• CP-ALS (Harshman et al., 1970): a standard CP decomposition method using ALS.
• TRTF (Yu et al., 2016): a temporally regularized tensor decomposition method (https://

github. com/ xinyc hen/ trans dim). TRTF is an extension of TRMF to deal with tensors.
• CoSTCo (Liu et al., 2019): a CNN-based tensor decomposition method (https:// github.

com/ USC- Melady/ KDD19- CoSTCo).

4.1.4 Metrics

We evaluate the performance using RMSE (Root Mean Squared Error) and MAE (Mean
Absolute Error) defined as follows.

Ω indicates the set of the indices of observed entries. x
�
 stands for the entry with index

� and x̂
𝛼
 is the corresponding reconstructed value. In addition, we evaluate the quality of

generated factor matrices from decomposition methods using Factor Match Score (FMS)
and Time Factor Match Score (TFMS) defined as follows.

where �(n)
∶k

 and �(t)
∶k

 denote the kth columns normalized to the unit norm of the original non-
time factor matrix �(�)(n ≠ t) and time factor matrix �(t) , respectively, and �

k
 denotes the

weight for each kth column factor for k = 1,… ,K . Similarly, �̂(n)
∶k

 and �̂(t)
∶k

 are the normal-
ized kth columns of the extracted non-time factor matrix �̂(n)(n ≠ t) and the time factor
matrix �̂(t) , respectively, and 𝜉

k
 denotes the corresponding weight for each kth column fac-

tor. Note that FMS and TFMS are closer to 1 if the extracted factors and the original ones
are more similar (see Acar et al., 2011 for the details of the metric).

4.1.5 Hyper‑parameter

We use hyper-parameters in Table 3 for tatd, except in Sect. 4.7 where we vary hyper-
parameters. We use 0.5 for � which adjusts the smoothing level in kernel function. We
change the window size S ∈ {1, 3, 5, 7, 9} and find the optimal value for each dataset. For

RMSE =

√
1

|Ω|

∑

∀𝛼∈Ω

(
x
𝛼
− x̂

𝛼

)2
MAE =

1

|Ω|

∑

∀𝛼∈Ω

|x
𝛼
− x̂

𝛼
|

FMS = min
k

((

1 −
|𝜉

k
− 𝜉

k
|

max(𝜉
k
, 𝜉

k
)

)
N∏

n=1,n≠t

|�
(n)⊺

∶k
�̂
(n)

∶k
||�

(t)⊺

∶k
�̂
(t)

∶k
|

)

TFMS = min
k

((

1 −
|𝜉

k
− 𝜉

k
|

max(𝜉
k
, 𝜉

k
)

)

|�
(t)⊺

∶k
�̂
(t)

∶k
|

)

https://github.com/xinychen/transdim
https://github.com/xinychen/transdim
https://github.com/USC-Melady/KDD19-CoSTCo
https://github.com/USC-Melady/KDD19-CoSTCo

1420 Machine Learning (2022) 111:1409–1430

1 3

competitors, we follow their default hyperparameter settings suggested in their papers
and tune them using grid search. Specifically, we find regularization parameters from
{0.1, 1, 10, 100} for TRTF. For CoSTCo, we find the learning rate from {0.001, 0.01}
and the batch size from {126, 256, 512} . We also change the activation function used in
CoSTCo from ReLU to ELU. For all methods, we find optimal hyperparameter settings
with evaluation results of validation datasets.

4.2 Accuracy (Q1)

We compare tatd with competitors in terms of RMSE and MAE in Table 4. tatd-0 indi-
cates tatd without the sparsity penalty. tatd consistently gives the best accuracy for all the
datasets; tatd-0 provides the second-best performance. tatd achieves up to 1.08× lower
RMSE and 1.37× lower MAE compared to the second-best methods. Note that Indoor Con-
dition dataset represents strong smoothness and the least amount of noise on its values.
The gap in RMSE of tatd and CP-ALS on Indoor Condition dataset demonstrates that the
smoothing regularization effectively decomposes the real-world tensors by capturing tem-
poral patterns and adjusting the noise.

4.3 Effect of smoothing regularization (Q2)

We evaluate the effect of smoothing regularization of tatd, by comparing factor matri-
ces extracted by tatd and CP-ALS with true factor matrices. For evaluation, we con-
struct a synthetic tensor from true factor matrices, decompose it, and then compare fac-
tor matrices extracted from tatd and CP-ALS with the true ones. We create a 3-order
synthetic temporal tensor of size 900 × 30 × 30 with factor matrices of rank 5. To gener-
ate the tensor, we first make a time factor matrix � ∈ ℝ

900×5 by randomly sampling five
time-series from Indoor Condition dataset, and non-time factor matrices �, � ∈ ℝ

30×5
having random values from [0, 1). We then create a synthetic temporal tensor from those
factor matrices with Eq. (1), add a noise tensor having random values from [0, 0.001) to
it, and randomly sample 90% of the tensor to make it sparse.

Table 5 shows that tatd achieves higher FMS and TFMS than CP-ALS in decompos-
ing the synthetic tensor. With the smoothing regularization, tatd precisely generates the
time factor matrix, achieving 1.11× higher TFMS in the synthetic tensor. Furthermore, it
leads to generating accurate non-time factor matrices, providing 1.59× higher FMS. Our
smoothing regularization allows tatd to generate the time factor matrix and non-time
factor matrices accurately.

Table 3 Default hyper-parameter
setting

Dataset Learning rate � Rank K Window S Penalty �
t

Beijing air quality 10−2 10 1 103

Madrid air quality 10−2 10 2 102

Radar traffic 10−2 10 3 102

Indoor condition 10−2 10 1 102

Server room 10−3 10 1 10−1

1421Machine Learning (2022) 111:1409–1430

1 3

Ta
bl

e
4

 P
er

fo
rm

an
ce

 o
f t

en
so

r d
ec

om
po

si
tio

n
by

 ta
td

 a
nd

 c
om

pe
tit

or
s

Th
e

be
st

m
et

ho
d

is
 in

 b
ol

d,
 a

nd
 th

e
se

co
nd

-b
es

t m
et

ho
d

is
 u

nd
er

lin
ed

. O
ur

 p
ro

po
se

d
ta

td
 c

on
si

ste
nt

ly
 sh

ow
s t

he
 b

es
t p

er
fo

rm
an

ce
 in

 a
ll

da
ta

se
ts

D
at

a
B

ei
jin

g
ai

r q
ua

lit
y

M
ad

rid
 a

ir
qu

al
ity

R
ad

ar
 tr

affi
c

In
do

or
 c

on
di

tio
n

Se
rv

er
 ro

om

M
et

ho
d

Te
st

R
M

SE
Te

st
M

A
E

Te
st

R
M

SE
Te

st
M

A
E

Te
st

R
M

SE
Te

st
M

A
E

Te
st

R
M

SE
Te

st
M

A
E

Te
st

R
M

SE
Te

st
M

A
E

c
p-

a
ls

0.
35

2
0.

21
9

0.
45

6
0.

29
3

0.
36

5
0.

24
8

0.
62

4
0.

31
6

0.
07

6
0.

04
8

C
oS

TC
o

0.
36

0
0.

22
3

0.
46

1
0.

30
3

0.
29

8
0.

19
7

0.
60

9
0.

30
3

0.
30

6
0.

09
0

TR
TF

0.
34

9
0.

21
9

0.
41

8
0.

27
5

0.
27

5
0.

16
8

0.
09

0
0.

06
2

0.
18

3
0.

14
3

ta
td
-0

0.
32

7
0.

20
4

0.
41

6
0.

27
9

0.
25

7
0.

16
0

0.
08

8
0.

05
7

0.
05

8
0.

03
9

ta
td

 (
pr

op
os

ed
)

0.
32

3
0.

20
1

0.
40

9
0.

27
4

0.
24

9
0.

15
2

0.
08

6
0.

05
5

0.
05

4
0.

03
5

1422 Machine Learning (2022) 111:1409–1430

1 3

4.4 Effect of data sparsity (Q3)

We evaluate the performance of tatd with varying data sparsity. We sample the data
with the ratio of {10, 30, 50, 70, 90}% to identify how accurately the method decomposes
real-world tensors even when the data are highly sparse. Figure 4 shows the errors of
tatd and competitors for five datasets. Note that tatd precisely decomposes the tensors
even when they are highly sparse, compared to competitors. There are two reasons for
the best performance of tatd as the sparsity increases. First, tatd is designed to learn
the factor for a target slice by using its neighboring slices; this is especially useful when
the target slice is extremely sparse and has no information to train its factor. Second,
tatd explicitly considers sparsity in its model through the sparsity penalty, and imposes
more regularization for sparser slices.

4.5 Running time (Q4)

We compare the running times of tatd and competitors. tatd uses the ALS+Adam opti-
mizer (see Sect. 4.6), while tatd w/ Adam uses the Adam optimizer. For a stopping
condition, we set the maximum iterations to 500 and use the early stopping technique.

Figure 5 shows the running times of all methods. Note that tatd w/Adam shows the
fastest running time; CoSTCo and tatd follow after that. Although tatd is slower than
tatd w/Adam and CoSTCo, tatd gives the smallest errors (see Table 4 and Figure 6),
and thus provides more accurate results. Note that the running times of methods vary
over different datasets, since the convergence condition for each method varies depend-
ing on datasets.

4.6 Effect of optimization (Q5)

We evaluate our proposed optimization strategy in terms of error and running time. We
call our strategy ALS+Adam and compare it with the following optimization strategies
for tatd.

• SGD a standard stochastic gradient descent method which is widely used for optimi-
zation.

• Adam a recent gradient-based method using momentum and controlled learning rate.
• Alternating Adam an alternating minimization method which updates a single factor

matrix with Adam while fixing other factor matrices.
• ALS + SGD an alternating minimization method which updates a time factor matrix

with SGD and non-time factor matrices with the least square solution.

Table 5 FMS and TFMS of
tatd and CP-ALS for a synthetic
tensor

The closer the FMS and TFMS are to 1, the better they are, and the
best method is in bold. tatd decomposes the tensor more accurately
than CP-ALS

FMS TFMS

cp-als 0.603 0.865
tatd (proposed) 0.964 0.964

1423Machine Learning (2022) 111:1409–1430

1 3

(a) (b) (c)

(d) (e)

Fig. 4 Test RMSE of tatd and competitors for varying data sampling ratios. tatd shows the smallest errors
when decomposing highly sparse tensors due to the careful consideration of sparsity

(a) (b) (c)

(d) (e)

Fig. 5 Comparison of the running times between tatd and competitors

1424 Machine Learning (2022) 111:1409–1430

1 3

We use the same stopping condition mentioned in Sect. 4.5. We use the learning
rates in Table 3 for the optimization schemes using Adam and the learning rate from
{10−3, 10−4, 10−5} for the schemes using SGD.

Figure 6 shows that our proposed strategy ALS+Adam and Adam show the best
trade-off between the error and the running time. ALS+Adam produces the smallest
error, but takes more time than Adam to train for better accuracy. On the other hand,
Adam is faster, but less inaccurate than ALS+Adam. We select ALS+Adam as our opti-
mization strategy since our main focus is to achieve a high accuracy.

4.7 Hyper‑parameter study (Q5)

We evaluate the performance of tatd with regard to hyper-parameters: smoothing regulari-
zation penalty and rank size.

4.7.1 Smoothing regularization penalty

The smoothing regularization penalty �
t
 has an important role in the proposed tatd ’s

performance; thus we vary the smoothing regularization penalty �
t
 and evaluate the test

RMSE in Fig. 7. Note that too small or too large values of �
t
 do not give the best results;

too small value of �
t
 leads to overfitting, and too large value of it leads to underfitting. The

results show that a right amount of smoothing regularization gives the smallest error, veri-
fying the effectiveness of our proposed idea.

(a) (b) (c)

(d) (e)

Fig. 6 Comparison of optimization strategies in tatd. Our proposed strategy ALS+Adam and Adam show
the best trade-off between the error and the running time. Note also that ALS+Adam provides the smallest
RMSE

1425Machine Learning (2022) 111:1409–1430

1 3

4.7.2 Rank

We increase the rank K from 5 to 50 and evaluate the test RMSE in Fig. 8. We have two
main observations. First, tatd shows a stable performance improvement with increasing
ranks, compared to CP-ALS which shows unstable performances. Second, the error gap
between tatd and competitors increases with increasing ranks. Higher ranks may make the
models overfit to a training dataset; however, tatd works even better for higher ranks since
it exploits rich information from neighboring rows when regularizing a row of the time
factor matrix. TRTF also works well for higher ranks on several datasets since it learns the
parameters for each column factor. However, tatd achieves a similar or better effect with-
out using excessive parameters thanks to the smoothing regularization.

5 Related work

We describe previous works that are closely related to our work. We present one of the
major tensor decomposition methods, CP decomposition.

5.1 Tensor decomposition

In early stage, CP decomposition methods (Kang et al., 2012; Jeon et al., 2015; Choi et al.,
2014) have been widely used for analyzing large-scale real-world tensors. Kang et al.
(2012) and Jeon et al. (2015) propose distributed CP decomposition methods running
on the MapReduce framework. Choi et al. (2014) propose a scalable CP decomposition

(a) (b) (c)

(d) (e)

Fig. 7 Effect of the smoothing regularization penalty parameter �
t
 in tatd. Note that too small or too large

values of �
t
 lead to overfitting and underfitting, respectively. A right amount of smoothing regularization

gives the smallest error, verifying the effectiveness of our proposed idea

1426 Machine Learning (2022) 111:1409–1430

1 3

method by exploiting properties of a tensor operation used in CP decomposition. Battag-
lino et al. (2018) propose a randomized CP decomposition method which reduces the over-
head of computation and memory. However, they are not appropriate to deal with highly
sparse tensors since they do assume non-observable entries are zero.

Several CP decomposition methods have been developed to handle sparse tensors
without setting the values of the non-observable entries as zero. Papalexakis et al. (2012)
propose ParCube to obtain sparse factor matrices using a sampling technique in parallel
systems. Beutel et al. (2014) propose FlexiFaCT, which performs a coupled matrix-tensor
decomposition using Stochastic Gradient Descent (SGD) update rules. Shin et al. (2016)
propose CDTF and SALS, which are scalable CP decomposition methods for sparse ten-
sors. Smith and Karypis (2017) improves the efficiency of CP decomposition for sparse
tensors by exploiting a compressed data structure. The above CP decomposition methods
do not consider time dependency and time-varying sparsity which are crucial for temporal
tensors. On the other hand, tatd improves accuracy for temporal tensors by exploiting time
dependency and time-varying sparsity.

Applications. CP decomposition have been used for various applications. Kolda et al.
(2005) analyze a hyperlink graph modeled as 3-way tensor using CP decomposition. Ten-
sor decomposition is also applied to tag recommendation (Rendle et al., 2009; Rendle &
Schmidt-Thieme, 2010). Sun et al. (2009) develop a content-based network analysis frame-
work for finding higher-order clusters. Lebedev et al. (2015) exploit CP decomposition to
compress convolution filters of convolutional neural networks (CNNs). Several works (Lee
et al., 2018; Perros et al., 2017, 2018) use tensor decomposition for analyzing Electronic
Health Record (EHR) data.

(a) (b) (c)

(d) (e)

Fig. 8 Effect of rank on the performance of tatd. tatd works even better for higher ranks since it exploits
rich information from neighboring rows when regularizing a row of the time factor matrix

1427Machine Learning (2022) 111:1409–1430

1 3

5.2 Tensor decomposition on temporal tensors

Tensor decomposition methods have been used to deal with diverse real-world temporal
tensors. Dunlavy et al. (2011) propose a tensor decomposition method with an exponential
smoothing technique for temporal link prediction. Matsubara et al. (2012) propose a tensor
decomposition method with a probabilistic inference to discover hidden topics of web-click
logs and perform multi-level analysis for long-term forecasting with this method. Yu et al.
(2016) propose a matrix/tensor decomposition method with an autoregressive temporal
regularization to handle general time-series. de Araujo et al. (2017) present a non-negative
coupled tensor decomposition for forecasting future links in evolving social networks.

In addition, there exist various tensor decomposition methods to analyze spatio-tem-
poral tensors that include spatial information in addition to time information. Zhou et al.
(2015) propose a tensor decomposition method with a spatio-temporal regularization to
predict missing entries in real-world traffic data. Afshar et al. (2017) propose a non-nega-
tive tensor decomposition method to discover interpretable patterns in spatio-temporal ten-
sors. Liu et al. (2019) propose a general tensor decomposition method by exploiting the
expressive power of convolutional neural networks to model non-linear interactions inside
spatio-temporal tensors.

Beyond the static tensor, many researchers have developed online tensor decomposition
methods to deal with tensors collected in real-time. Kasai (2016) propose an online ten-
sor decomposition method for sparse tensors corrupted by noises. Song et al. (2017) pro-
pose a dynamic tensor decomposition method for temporal multi-aspect streaming tensor.
Zhou et al. (2018) propose a fast and memory-efficient online algorithm for sparse tensor
decomposition.

However, those approaches are not designed for modeling time dependency from both
past and future information, whereas tatd obtains a time factor considering neighboring
factors for both past and future time steps, giving an accurate tensor decomposition result.
Moreover, they do not exploit the temporal sparsity, a common characteristic of real-world
temporal tensors, while tatd actively exploits the temporal sparsity.

6 Conclusion

We propose tatd (Time-Aware Tensor Decomposition), an accurate tensor decomposi-
tion method for sparse temporal tensors. To capture time dependency and sparsity in real
world temporal tensors, we design a smoothing regularization on time factor, and adjust
the amount of the regularization according to the sparsity of time slices. Moreover, we
accurately optimize tatd with a carefully designed optimization strategy. Extensive experi-
mental results show that tatd achieves higher accuracy in decomposing real-world tensors
compared to competitors. Future works include extending tatd for an online or a distrib-
uted setting.

Author contributions Not applicable.

Funding This work was supported by the National Research Foundation of Korea (NRF) funded by
MSIT(2019R1A2C2004990). The Institute of Engineering Research and ICT at Seoul National University
provided research facilities for this work. U Kang is the corresponding author.

1428 Machine Learning (2022) 111:1409–1430

1 3

Data availability The datasets used during the current study are available at https:// github.
com/ snuda talab/ TATD/.Code availability The source code used during the current study is
available at https:// github. com/ snuda talab/ TATD/.

Declarations

Conflict of interest Not applicable.

References

Acar, E., Kolda, T. G., & Dunlavy, D. M. (2011). All-at-once optimization for coupled matrix and tensor
factorizations. arXiv preprint arXiv:11053422

Afshar, A., Ho, J. C., Dilkina, B., Perros, I., Khalil, E. B., Xiong, L., & Sunderam, V. (2017). Cp-ortho: An
orthogonal tensor factorization framework for spatio-temporal data. In Proceedings of the 25th ACM
SIGSPATIAL international conference on advances in geographic information systems, pp. 1–4.

Battaglino, C., Ballard, G., & Kolda, T. G. (2018). A practical randomized CP tensor decomposition. SIAM
Journal on Matrix Analysis Applications, 39(2), 876–901.

Beutel, A., Talukdar, P. P., Kumar, A., Faloutsos, C., Papalexakis, E. E., & Xing, E. P. (2014). Flexifact:
Scalable flexible factorization of coupled tensors on hadoop. In Proceedings of the 2014 SIAM interna-
tional conference on data mining, Philadelphia, Pennsylvania, USA, April 24–26, 2014 (pp. 109–117).
SIAM.

Candanedo, L. M., Feldheim, V., & Deramaix, D. (2017). Data driven prediction models of energy use of
appliances in a low-energy house. Energy and Buildings, 140, 81–97.

Choi, J. H., & Vishwanathan, S. (2014). Dfacto: Distributed factorization of tensors. In Z. Ghahramani, M.
Welling, C. Cortes, N. D. Lawrence, & K. Q. Weinberger(Eds.), Advances in Neural Information Pro-
cessing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December
8–13, 2014, Montreal, Quebec, Canada.

de Araujo, M. R., Ribeiro, P. M. P., & Faloutsos, C. (2017). Tensorcast: Forecasting with context using cou-
pled tensors (best paper award). In 2017 IEEE International Conference on Data Mining (ICDM) (pp.
71–80). IEEE.

Dunlavy, D. M., Kolda, T. G., & Acar, E. (2011). Temporal link prediction using matrix and tensor factori-
zations. ACM Transactions on Knowledge Discovery from Data (TKDD), 5(2), 10.

Harshman, R. A., et al. (1970). Foundations of the parafac procedure: Models and conditions for an “
explanatory” multimodal factor analysis.

Jeon, I., Papalexakis, E. E., Kang, U., & Faloutsos, C. (2015). Haten2: Billion-scale tensor decompositions.
In 2015 IEEE 31st international conference on data engineering (pp. 1047–1058). IEEE.

Kang, U., Papalexakis, E. E., Harpale, A., & Faloutsos, C. (2012). Gigatensor: Scaling tensor analysis up by
100 times—Algorithms and discoveries. In KDD, pp. 316–324.

Kasai, H. (2016). Online low-rank tensor subspace tracking from incomplete data by CP decomposition
using recursive least squares. In 2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (pp. 2519–2523). IEEE.

Kiers, H. A. (2000). Towards a standardized notation and terminology in multiway analysis. Journal of
Chemometrics: A Journal of the Chemometrics Society, 14(3), 105–122.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980
Kolda, T. G., Bader, B. W., & Kenny, J. P. (2005). Higher-order web link analysis using multilinear alge-

bra. In Proceedings of the 5th IEEE International Conference on Data Mining (ICDM 2005), 27–30
November 2005, Houston, Texas, USA (pp. 242–249). IEEE Computer Society.

Kolda, T. G., & Sun, J. (2008). Scalable tensor decompositions for multi-aspect data mining. In 2008 eighth
IEEE international conference on data mining (pp. 363–372). IEEE.

Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I. V., & Lempitsky, V. S. (2015). Speeding-up convo-
lutional neural networks using fine-tuned CP-decomposition. In Y. Bengio & Y. LeCun (Eds.), 3rd

https://github.com/snudatalab/TATD/
https://github.com/snudatalab/TATD/
https://github.com/snudatalab/TATD/

1429Machine Learning (2022) 111:1409–1430

1 3

International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9,
2015, Conference Track Proceedings.

Lee, J., Oh, S., & Sael, L. (2018). GIFT: Guided and interpretable factorization for tensors with an applica-
tion to large-scale multi-platform cancer analysis. Bioinformatics, 34(24), 4151–4158.

Liu, H., Li, Y., Tsang, M., & Liu, Y. (2019). Costco: A neural tensor completion model for sparse tensors.
Training, 10(4), 10–3.

Maruhashi, K., Guo, F., & Faloutsos, C. (2011). Multiaspectforensics: Pattern mining on large-scale het-
erogeneous networks with tensor analysis. In 2011 international conference on advances in social net-
works analysis and mining (pp. 203–210). IEEE.

Matsubara, Y., Sakurai, Y., Faloutsos, C., Iwata, T., & Yoshikawa, M. (2012). Fast mining and forecasting of
complex time-stamped events. In Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining (pp. 271–279). ACM.

Oh, S., Park, N., Sael, L., & Kang, U. (2018). Scalable tucker factorization for sparse tensors—Algorithms
and discoveries. In 34th IEEE International Conference on Data Engineering, ICDE 2018, Paris,
France, April 16–19, 2018.

Papalexakis, E. E., Faloutsos, C., & Sidiropoulos, N. D. (2012). Parcube: Sparse parallelizable ten-
sor decompositions. In ECML-PKDD, Springer, Lecture Notes in Computer Science, Vol. 7523, pp.
521–536.

Park, N., Oh, S., & Kang, U. (2017). Fast and scalable distributed Boolean tensor factorization. In 33rd
IEEE International Conference on Data Engineering, ICDE 2017, San Diego, CA, USA, April 19–22,
2017, pp. 1071–1082.

Perros, I., Papalexakis, E. E., Park, H., Vuduc, R. W., Yan, X., deFilippi, C., Stewart, W. F., & Sun, J. (2018).
Sustain: Scalable unsupervised scoring for tensors and its application to phenotyping. In: Y. Guo & F.
Farooq (Eds.), Proceedings of the 24th ACM SIGKDD international conference on Knowledge Discov-
ery & Data Mining, KDD 2018, London, UK, August 19–23, 2018 (pp. 2080–2089). ACM.

Perros, I., Papalexakis, E. E., Wang, F., Vuduc, R. W., Searles, E., Thompson, M., & Sun, J. (2017). Spar-
tan: Scalable PARAFAC2 for large & sparse data. In Proceedings of the 23rd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining, Halifax, NS, Canada, August 13–17, 2017
(pp. 375–384). ACM.

Rendle, S., Marinho, L. B., Nanopoulos, A., & Schmidt-Thieme, L. (2009). Learning optimal ranking with
tensor factorization for tag recommendation. In SIGKDD, pp. 727–736.

Rendle, S., & Schmidt-Thieme, L. (2010). Pairwise interaction tensor factorization for personalized tag rec-
ommendation. In WSDM, pp. 81–90.

Shin, K., Sael, L., & Kang, U. (2016). Fully scalable methods for distributed tensor factorization. IEEE
Transactions on Knowledge and Data Engineering, 29(1), 100–113.

Smith, S., & Karypis, G. (2017). Accelerating the tucker decomposition with compressed sparse tensors.
In F. F. Rivera, T. F. Pena & J. C. Cabaleiro (Eds.), Euro-Par 2017: Parallel Processing—23rd Inter-
national Conference on Parallel and Distributed Computing, Santiago de Compostela, Spain, August
28–September 1, 2017, Proceedings, Springer, Lecture Notes in Computer Science, Vol. 10417, pp.
653–668.

Song, Q., Huang, X., Ge, H., Caverlee, J., & Hu, X. (2017). Multi-aspect streaming tensor completion. In
Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data
mining, pp. 435–443.

Sun, J., Papadimitriou, S., Lin, C., Cao, N., Liu, S., & Qian, W. (2009). Multivis: Content-based social
network exploration through multi-way visual analysis. In Proceedings of the SIAM international con-
ference on data mining, SDM 2009, April 30–May 2, 2009, Sparks, Nevada, USA (pp. 1064–1075).
SIAM.

Sun, J., Papadimitriou, S., & Philip, S. Y. (2006). Window-based tensor analysis on high-dimensional and
multi-aspect streams. In Sixth International Conference on Data Mining (ICDM’06) (pp. 1076–1080).
IEEE.

Sun, Y., Gao, J., Hong, X., Mishra, B., & Yin, B. (2015). Heterogeneous tensor decomposition for clustering
via manifold optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(3),
476–489.

Symeonidis, P. (2016). Matrix and tensor decomposition in recommender systems. In: Proceedings of the
10th ACM conference on recommender systems, pp. 429–430.

Yu, H. F., Rao, N., & Dhillon, I. S. (2016). Temporal regularized matrix factorization for high-dimensional
time series prediction. In Advances in neural information processing systems, pp. 847–855.

Zhang, S., Guo, B., Dong, A., He, J., Xu, Z., & Chen, S. X. (2017). Cautionary tales on air-quality improve-
ment in Beijing. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences, 473(2205), 20170457.

1430 Machine Learning (2022) 111:1409–1430

1 3

Zhou, H., Zhang, D., Xie, K., & Chen, Y. (2015). Spatio-temporal tensor completion for imputing missing
internet traffic data. In 2015 IEEE 34th international performance computing and communications
conference (IPCCC) (pp. 1–7). IEEE.

Zhou, S., Erfani, S., & Bailey, J. (2018). Online CP decomposition for sparse tensors. In 2018 IEEE Interna-
tional Conference on Data Mining (ICDM) (pp. 1458–1463). IEEE.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Time-aware tensor decomposition for sparse tensors
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Tensor and notations
	2.2 Tensor decomposition

	3 Proposed method
	3.1 Overview
	3.2 Smoothing regularization
	3.3 Sparsity penalty
	3.4 Optimization

	4 Experiment
	4.1 Experimental settings
	4.1.1 Machine
	4.1.2 Datasets
	4.1.3 Competitors
	4.1.4 Metrics
	4.1.5 Hyper-parameter

	4.2 Accuracy (Q1)
	4.3 Effect of smoothing regularization (Q2)
	4.4 Effect of data sparsity (Q3)
	4.5 Running time (Q4)
	4.6 Effect of optimization (Q5)
	4.7 Hyper-parameter study (Q5)
	4.7.1 Smoothing regularization penalty
	4.7.2 Rank

	5 Related work
	5.1 Tensor decomposition
	5.2 Tensor decomposition on temporal tensors

	6 Conclusion
	References

