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Abstract
We propose the identification of feedback mechanisms in biological systems by learning 
logical rules in R. Thomas’ Kinetic Logic (Thomas and D’Ari in Biological feedback. CRC 
Press, 1990). The principal advantages claimed for Kinetic Logic are that it captures an 
important class of regulatory networks at an appropriate level of precision, and that the 
representation is close to that used routinely by biologists, with a well-understood relation-
ship to a differential description. In this paper we present a formalisation of Kinetic Logic 
as a labelled transition system and provide a provably correct implementation in a modi-
fied form of the Event Calculus. The behaviour of a system is then a logical consequence 
of the core-axioms of a (modified) Event Calculus C, the axioms K implementing Kinetic 
Logic and the axioms H describing the system. This formulation allows us to specify sys-
tem identification in the manner adopted in Inductive Logic Programming (ILP), namely, 
given C, K, system behaviour S and possibly some additional domain-knowledge B, find H 
s.t. B ∧ C ∧ K ∧ H ⊧ S . Identifying a suitable Kinetic Logic hypothesis requires the simul-
taneous identification of definite clauses for: (a) logical definitions relating the occurrence 
of events to values of fluents; (b) delays in changes of the values of fluents arising from the 
occurrence of events; and possibly (c) exceptions to changes in fluent values, arising from 
asynchronous behaviour inherent to the system. We use a standard ILP engine for (a), and 
special-purpose abduction procedures for (b) and (c). We demonstrate this combination of 
induction and abduction on several canonical feedback patterns described by Thomas, and 
to identify the regulatory mechanism in two well-known biological problems (immune-
response and phage-infection).
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1 Introduction

Feedback control is a common thread running through all levels of biological organisation. 
For example, it is needed for the production of proteins in a cell, cell-differentiation and 
cell-death. It is employed in signal transduction, enables fish to live in salt water, mammals 
to maintain body temperature, fruits to ripen, blood-pressure to be regulated, predator and 
prey populations to stay in balance, and any number of other biological processes. Much 
of this control is achieved by employing one or more of two elementary forms of feedback 
loops: positive or negative. It is known that the presence of a positive feedback loop is a 
necessary condition for a system to exhibit multi-stationarity; and a negative feedback loop 
is a necessary condition for it to have a point or oscillatory attractor. Broadly speaking, the 
wide variety of bistable switches found in biological systems (Wilhelm, 2009) need a posi-
tive feedback loop, and achieving homeostasis requires a negative feedback loop (see (Cin-
quin & Demongeot, 2002) for an assessment of the role of feedback in biological systems 
using differential equations and, more generally, see Robertson (1991) for a description of 
the role of feedback loops in shaping evolutionary change). So ubiquitous are these two 
elementary control mechanisms that it would only be a small exaggeration to say that in 
order to understand a biological system, we need to understand the underlying positive and 
negative feedback loops.

The idea that feedback control mechanisms developed by engineers for modelling phys-
ical systems should be applicable to biological systems is at least as old as the field of 
Cybernetics (Wiener, 1961). Early limitations on the applicability of quantitative methods 
developed for physical systems due to a lack of data are now being overcome by high-
throughput methods in biology. However, at least three important sources of difficulty 
remain: (a) the lack of sufficient theoretical knowledge to be able to formulate the structure 
of quantitative models; (b) the data, although increased in volume, continue to be very 
noisy, making accurate parameter estimation difficult; and (c) the high precision of values 
employed by continuous models can obscure the basic biological principles.

The seminal work by René Thomas on the development of Kinetic Logic (Thomas and 
D’Ari, 1990) was principally motivated by two considerations. First, to move system under-
standing in Biology from the level of verbal descriptions to mathematical ones which were 
still comprehensible to biologists (Thomas, 1977). Secondly, the (still) prevalent descrip-
tion of systems in the form of differential equation models of continuous variables was 
seen both to be overly precise and yet not to represent accurately the non-linear dynamics 
of certain kinds of regulatory networks. Kinetic Logic is a qualitative representation that is 
suitable for systems that satisfy the following assumptions: (a) a system variable has little 
or no effect on other variables until its value reaches a threshold; and (b) at high values, the 
effect of a system variable reaches a plateau. These two assumptions have been shown to 
be sufficient to model adequately the dynamic effects of positive and negative feedback. In 
effect, a sigmoid-shaped change in concentration is approximated using a step-function, in 
which the regulator acts as a 2-way switch. That is, at concentrations below some (lower) 
threshold, the effect is 0, and above some (upper) threshold, the effect stays at a maximum.1

Kinetic Logic is, in effect, a sequential logic for describing the behaviour of asyn-
chronous automata. That is, variables do not necessarily change values simultaneously 

1 Generalised Kinetic Logic extends this by employing multi-valued variables, which results in a ramp-
shaped approximation. We will describe this extension in a later section.
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(although this possibility is not precluded). Changes in values of variables are controlled 
by time-delays. An example, from Thomas (1991), describes the situation thus: “The signal 
which has switched on the gene functions as a command or order whose effective realiza-
tion will take place only after a time tx ...unless a counter order—gene off—has taken place 
before the expiration of the delay.”

There is a natural fit between this kind of time-dependent behaviour of system-var-
iables and that of fluents in the Event Calculus (Mueller, 2008). In this paper we show 
that Kinetic Logic can be implemented as domain-axioms in an Event Calculus. Since 
the Event Calculus is readily implemented as a logic program, our formulation of Kinetic 
Logic is also implemented as a logic program.2 This also allows us to examine methods for 
the automatic identification of system-representations in Kinetic Logic. The main contribu-
tions of this paper are:

• A formal specification of Kinetic Logic with a declarative implementation in an Event 
Calculus. To the best of our knowledge this is the first time such a specification and 
implementation have been proposed. We also provide a proof of correctness of the 
implementation for the case of feedback without asynchronous change;

• The formulation of data-driven identification of systems represented in Kinetic Logic. 
This is implemented using methods developed in Inductive Logic Programming (ILP) 
and special-purpose methods for abduction to deal with the requirements of identifying 
feedback loops with delays and asynchronous change;3 and

• Empirical results supporting our approach on 9 simple loops identified in the literature 
as building blocks for larger systems; and on 2 classic biological systems (immune-
response and phage-infection). Together, the data cover systems ranging from 1 to 7 
positive or negative feedback loops, containing 2–10 interactions.

The rest of the paper is organised as follows. In Sect. 2 we present two canonical exam-
ples of biological feedback (differentiation and homeostasis). In Sect.  3, we introduce 
Kinetic Logic, developed by Rene Thomas and colleagues as a means of representing and 
reasoning with biological feedback. The biological descriptions up to the end of Sect. 3.2 
are known in the relevant literature. Readers familiar with them can proceed directly to 
Sect. 3.3, where we present a formalisation of Kinetic Logic as a transition-based system. 
The Event Calculus and an implementation of the formalised Kinetic Logic is in Sect. 4. In 
Sect. 5 we address the problem of learning Kinetic Logic models using the Event Calculus 
implementation. Section  6 demonstrates the performance of the learning methods using 
some canonical feedback loops, and two well-known biological systems. Section 7 sum-
marises related work, and Sect. 8 concludes the paper.

2 This viewpoint is consistent with Inoue (2011) who, as far as we know, was the first to formulate genetic 
regulatory networks in Biology as a logic program.
3 ILP has been used for identifying regulatory biological networks (see Sect. 7). However, identification of 
the mechanisms of asynchronous control of regulatory loops as originally formulated in Kinetic Logic has 
not so far been a primary focus there.
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2  Biological feedback loops

The principle underlying feedback is that a change in the value of some variable x, say 
�x , directly or indirectly results in a (re-)adjustment of the value of x. At the outset, we 
clarify a distinction between individual interactions between variables, which can be posi-
tive or negative, and feedback loops, which denote cycles consisting of positive or negative 
interactions. An individual interaction4 between variables x and y is said to be positive if 
an increase (or decrease) in the value of x results in turn in an increase (respectively, a 
decrease) in the value of y (usually after some delay). Similarly, the interaction is negative 
if an increase (decrease) in x results in a decrease (respectively, an increase) in the value of 
y, again after some delay. That is, x is an activator of y in the former case, and an inhibitor 
of y in the latter. In this paper, a feedback loop is a closed loop, or cycle, comprised of sev-
eral such activators and inhibitors (see Fig. 1).

It is evident from Fig. 1 that the number of distinct loops possible grows rapidly with 
the number of edges. Despite this, it is remarkable that each variable in the loop only 
affects itself positively or negatively. This is obvious enough if all interactions in the loop 
are positive or negative, but is slightly less so if the interactions are mixed. With a single 
negative interaction, for example, the accumulated effect up to the negative edge is inverted 
by the (negative) edge, and that inverted effect is amplified further by the subsequent (posi-
tive) edges. The net effect over a single traversal of the loop starting at any variable is thus 
negative. The result is a negative feedback loop. More generally, any loop consisting of an 
odd number of negative interactions results in negative feedback, and a loop consisting of 
an even number of negative interactions results in positive feedback. Positive and negative 
feedback loops form the basis of regulatory control in a very wide variety of biological 
phenomena.

Two classic examples are homeostasis and differentiation. In homeostasis, feedback 
control is used to maintain the value of a variable at, or close to, some optimal value (that 
is, the biological equivalent of a thermostat). For example, the production of an amino acid 
may be activated at low levels of concentration, and inhibited at high levels. If the amino 
acid’s concentration is initially high but is reducing then its production is initially inhib-
ited but is later activated once its concentration levels fall below a threshold. The level of 

Fig. 1  Feedback loops formed from simple positive and negative interactions

4 Typically, interaction edges in regulatory network graphs are directed (Klipp et al., 2016).
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the amino acid thus tends to oscillate around some level. A simple example of differentia-
tion is evident when a gene’s expression is dependent on its own product. Thus, the gene 
continues in one of two states, “on” or “off”, depending on whether the product is present 
or absent. More complex situations arise in cases of cell-differentiation: although all cells 
have the same set of genes, some are “on” in one cell-line (heart, for example), and “off” in 
another (intestine, for example). Each of these can be understood abstractly as an instance 
of a stable-state in a system with multiple stable-states.

Homeostasis and differentiation are instances of two well-known consequences of nega-
tive- and positive-feedback loops. That is: the presence of negative feedback is necessary 
for oscillatory behaviour (as exhibited in homeostasis); and the presence of positive feed-
back is necessary for multi-stationary behaviour (as exhibited in cell-differentiation).

Differential equations describing positive and negative feedback can be found in 
Thomas and D’Ari (1990). Here we present instead the simple Boolean characterisation 
from Thomas and D’Ari (1990). In principle, a 2-element loop suffices as an abstraction 
of more complex loops consisting of even- and odd-numbers of negative interactions. Fig-
ure 2 shows two such abstract loop structures along with their state-transition diagrams for 
asynchronous updates of the values of variables. In this formulation (Thomas, 1983) the 
dynamics of the system (i.e., the exact sequence of states) is determined by the delays asso-
ciated with the change of value of a variable (here from 0 to 1, or vice versa).

Let us denote by d+
v
 the time delay for the variable v to increase from one value to the 

next larger one (here from 0 to 1, but in general the values of v may be discretised into 
several bins), and d−

v
 to decrease from one value to the next smaller one (here from 1 to 0). 

Then, in the state-transition diagram on the left in Fig. 2, assuming we start in state 00, state 
10 is reached after d+

x
 , 11 after a further d+

y
 , 01 after d−

x
 , and 00 after d−

y
 . After this the sys-

tem behaviour repeats: that is, it oscillates with period d+
x
+ d+

y
+ d−

x
+ d−

y
 . The system with 

the positive feedback on the right has two stable states. Starting from 00, if d+
x
> d−

y
 the 

system transits to state 10. If d+
x
< d+

y
 then it transits to 01 (for the present, we resolve the 

case of d+
x
= d+

y
 by an arbitrary choice). Similarly, if the system starts at 11, it will transit 

to 10 or 01 depending on the relative values of d−
y
 and d−

x
 . The system thus exhibits bistable 

behaviour, depending on the initial conditions and the values of the delays involved. More 
general interaction networks will involve several variables, and include logical constraints 

Fig. 2  Simple feedback loops and their state-transition diagrams (from Thomas and D’Ari, 1990). The 
loop on the left is a negative feedback loop and the one on the right is a positive feedback loop. States are 
represented by values for variables in the loops: here the variables are Boolean-valued, and 00 represents 
x = 0, y = 0 and so on. For the diagram on the right, we note state-transitions are possible from 00 to either 
of the stable states 01 or 10 (similarly, two state-transitions are possible from 11). The actual transition that 
does occur will depend on system-delays, which results in an asynchronous update of values of the state-
variables. The exact meaning of this will be clarified later
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on the interaction. For example, the presence of x or y could act as an inhibitor for z, and 
so on. Kinetic Logic, initially proposed in the 1970s, and described in detail in Thomas 
and D’Ari (1990), provides a unified treatment of feedback systems consisting of logical 
combinations of positive and negative interactions with delays. In essence, it is a sequential 
logic that deals with asynchronous changes in the state of a system.

3  Kinetic logic

Thomas and his co-workers have provided several accounts of Kinetic Logic in the litera-
ture. Here, we present only the main concepts, starting from the simplest form of Kinetic 
Logic (“Naive” Kinetic Logic), in which all quantities are Boolean-valued, and then pro-
ceeding to the multi-valued variant (“Generalised” Kinetic Logic). Both forms are moti-
vated by attempting to arrive at qualitative abstractions of differential equations for a sys-
tem consisting of variables x1, x2,… , xn . It is assumed that the rate of change in the value 
of each variable is given by an equation of the form:

(This is a standard “stock-flow” model, with the negative term denoting a spontaneous 
decay in the value of the xi)

3.1  Simple kinetic logic

The simplified (or Naive) form of Kinetic Logic (see Chapter 6 of Thomas (1977)) is a 
qualitative formulation of Eq. 1, resulting from the following assumptions: 

Representation  The values of xi are 0 or 1. Correctly the “value of the variable xi ” 
stands for the value of the Boolean function xi(t) but we will often use 
them interchangeably. Practically 0 or 1 here denotes “absent or pre-
sent in sufficient amount”. The Fi ’s are taken to be Boolean functions 
of x1, x2,… xn . Correctly we mean that the values of Fi(t) , which is 
Fi(x1(t), x2(t)… , xn(t)) , are 0 or 1. The value of the constant ki is taken to 
be 1. In the Kinetic Logic literature, the symbol Xi is used interchange-
ably to denote both the function Fi(x1, x2,… , xn) and it’s value at a par-
ticular time instant t. We will adopt the convention that Xi(t) denotes Fi(t) 
which is Fi(x1(t), x2(t),… , xn(t)).5

Dynamics  With these assumptions, the net rate of change ẋi(t) is Xi(t) − xi(t) . 
There is no change in the value of xi when Xi(t) − xi(t) = 0 . Of the two 
other cases, if Xi(t) = 1 and xi(t) = 0 (i.e., Xi(t) − xi(t) > 0 ), then the 
net rate of change is +1 . In this case, xi increases by 1 after delay d+

i
 , 

unless Xi(t
�
) − xi(t

�
) = 0 at some instant t� ∈ (t, t + d+

i
) . Similarly, if 

Xi(t) = 0, xi = 1 , then Xi(t) − xi(t) < 0 . The net rate of change is −1 and 

(1)ẋi = Fi(x1, x2,… xn) − kixi

5 In the biological setting, Xi usually denotes the occurrence of some meaningful biological event. The 
classic example is that Xi = 1 denotes a gene, or a set of genes (an operon), being expressed or “switched 
on”. It will be assumed that the occurrence of such events is detectable (for example, we can detect if a gene 
is being expressed by using a microarray experiment), and re-use Xi = 1 to denote the event’s detection.
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xi decreases by 1 after delay d−
i
 , unless Xi(t

�
) − xi(t

�
) = 0 at some instant 

t� ∈ (t, t + d−
i
).

Example 1 (Simple Kinetic Logic: Representation) For the positive feedback loop in Fig. 2, 
let x and y denote proteins. The loop expresses the conditions that the presence of x inhibits 
the synthesis of y, and the presence of y inhibits the synthesis of x. A simple formulation of 
this in Kinetic Logic is the following: 

1. x and y are binary valued variables taking values 0 or 1. It is understood that although 
we will use the terms “absent” and “present” for these values, this will mean that the 
concentrations are below or above some threshold.

2. Boolean functions X(t) and Y(t) denote the conditions under which the genes coding for 
the proteins x and y are expressed (“switched on”) at time t. Thus, Y(t) = x(t) denotes 
that the presence of x at time t ( x(t) = 1 ) will result in the inhibition of the gene for y at 
time t ( Y(t) = 0 ) . Similarly, X(t) = y(t) denotes that the presence of y at time t ( y(t) = 1 ) 
will suppress the expression of the gene for x at time t (that is, X(t) = 0).

3. We will take the state of the system to be the tuple (x(t), y(t), X(t), Y(t)), although some-
times it is useful to distinguish the values of (x(t), y(t)) and (X(t), Y(t)).

4. Delays d+
x
, d−

x
, d+

y
, d−

y
 denote the time (in a simulation, time-steps) for a change to occur. 

For example, at t = t1 let protein x be absent and corresponding gene be expressed. That 
is, x(t1) = 0 and X(t1) = 1 . Then d+

x
 denotes that x(t1 + d+

x
) = 1 provided X(t) = 1 for all 

t ∈ (t1, t1 + d+
x
) (there is a little more complexity in the kinetic logic formulation arising 

from asynchronous changes in the values of x and y which we ignore until later in the 
paper).

Example 2 (Simple Kinetic Logic: Dynamics) For the previous example, let us assume the 
following values for delays: d+

x
= 1, d−

x
= 2, d+

y
= 2, d−

y
= 2 . Let x = 0, y = 0 at t = 0 : 

1. x(0) = 0 , y(0) = 0 . Since X(t) = y(t) and Y(t) = x(t) , X(0) = 1 and Y(0) = 1 . The state 
of the system at t = 0 is (0, 0, 1, 1).

2. Since X(0) = 1 and x(0) = 0 , we have x(t) = 1 at time t = 0 + d+
x
= 1 , unless X changes 

value in the interval (0, 1). Since Y(0) = 1 and y(0) = 0 , y(t) = 1 at time t = 0 + d+
y
= 2 , 

unless Y changes value in the interval (0, 2). So at t = 1 , x = 1 and y = 0 , X(1) = y(1) = 1 
and Y(1) = x(1) = 0 . So the state at t = 1 is (1, 0, 1, 0).

3. However, Y(1) = 0 overrides y(2) = 1 which was imposed by Y(0) = 1 with delay d+
y
= 2 . 

Further, since X(1) = x(1) and Y(1) = y(1) , there will be no change in the values of x, y, 
and the system reaches a stable state (1, 0, 1, 0).

3.2  Generalised kinetic logic

A generalised form of Kinetic Logic (Thomas, 1991) removes the restriction to Boolean-
valued variables and functions. Informally, the generalised form of Kinetic Logic is the 
following: 

Representation  The xi(t) ’s are multi-valued and the corresponding X
i
(t) = F

i
(x1(t),… ,

x
n
(t)) is a function.
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Dynamics  The net rate of change of a variable will be +1 , 0 or −1 , depending on the 
value of Xi(t) − xi(t) ( +1 if this difference is > 0 ; 0 if the difference is 0; 
and −1 if the difference is < 0).

  There is no change in the value of xi when Xi(t) − xi(t) = 0 (that is, the net rate 
of change is 0). Of the two other cases, if Xi(t) − xi(t) > 0 then xi increases 
by 1 after some delay d+

i
 unless Xi changes value in (t, t + d+

i
).6s Similarly, if 

X
i
(t) − x

i
(t) < 0 , then xi decreases by 1 after some delay d−

i
 , unless Xi changes 

value in (t, t + d−
i
).

Example 3 (Generalised Kinetic Logic: Representation) Consider the connected feedback 
loops from Thomas and D’Ari (1990), annotated slightly differently here: 

1. x is a 2-valued variable (with values 0, 1) and y is a 3-valued variable (with values 
0, 1, 2). The corresponding functions X and Y are 2- and 3-valued respectively.

2. The label on a directed edge (i, j) is the pair (lij, sij) where lij denotes a level and sij the 
sign of the interaction. So (1,−) on the edge (y, x) denotes that y inhibits x once y ≥ 1 ; 
(1,+) on the edge (x, y) denotes that x activates y once x ≥ 1 ; and (2,+) on the edge (y, y) 
denotes that y auto-activates itself once y ≥ 2.

3. The tabulation: 

 x(t)   y(t)   X(t)   Y(t) 

0 0 K12 0
0 1 0 0
0 2 0 K22

1 0 K12 K21

1 1 0 K21

1 2 0 K21+22

specifies the functions: 

 and: 

X(t) = F1(x(t), y(t)) =

{
K12, if y(t) ≥ 1

0, otherwise

6 The condition is slightly more complicated than this and this will be clarified in Sect. 3.3.
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 Here, K12 ∈ {0, 1} and K21,K22,K21+22 ∈ {0, 1, 2} are constants denoting sets of val-
ues, with the actual value in each case to be specified by the choice of logical function. 
Although it is easier to write y(t) ≥ 2 simply as y(t) < 2 , we have continued to use 
the “negated” form to allow Simple Kinetic Logic to be a special case of generalised 
kinetic logic. That is y(t) = 0 will be represented as y(t) ≥ 1 . The Ks are scaled ver-
sions of the rate parameters of the differential representations: The details can be found 
in Thomas (1991) and Snoussi (1989).

4. As before, the state of the system at time t is the tuple (x(t), y(t), X(t), Y(t)).
5. Delays d+

x
, d−

x
, d+

y
, d−

y
 that denote the time (or time-steps, for simulation). Here d+

x
 denotes 

the delay for increasing the value of x by 1 (level-)unit, and d−
x
 denotes the delay in 

decreasing the value of x by 1 (level-)unit. Similarly for y.

Example 4 (Generalised Kinetic Logic: Dynamics) For the previous example, let us assume 
the following specification of x(t) and y(t). From now onward, we will remove reference to 
the time whenever it is clear from the context. 

 x   y   X   Y 

0 0 1 0
0 1 0 0
0 2 0 2
1 0 1 2
1 1 0 2
1 2 0 2

The diagram on the left assumes d−
x
< d+

y
 and on the right d−

x
> d+

y
 . For clarity, we 

include the values of X and Y in parentheses next to each state.

Y(t) = F2(x(t), y(t)) =

⎧
⎪⎪⎨⎪⎪⎩

K22, if x(t) ≥ 1 ∧ y(t) ≥ 2

K21, if x(t) ≥ 1 ∧ y(t) ≥ 2

K21+22 if x(t) ≥ 1 ∧ y(t) ≥ 2

0, otherwise
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3.3  Specification

In this subsection, we provide a formal specification for a variant of a Kinetic Logic that is 
consistent with the informal description above.

Remark 1 (Time) Although not required by Kinetic Logic, we will adopt a discrete-time 
model, in which time is treated as a discrete variable that takes values from a set T. For 
convenience, we assume T is the set of natural numbers ℕ ( {0, 1, 2,…}.

Definition 1 (System) A system � is a structure (Xs,Vs,Fs,Ps,Ds,≻) . Here: 

(a) Xs = {x1, x2,… , xn} is a set of identifiers denoting system variables for some n ∈ ℕ.

(b) Vs = {V1,V2,… ,Vn} where for each i = 1, 2,… , n , Vi = {0, 1,… , ni} for some ni ∈ ℕ.
(c) Fs = {F1,F2,… ,Fn} is a set of functions of the system-variables. For each 

i = 1, 2,… , n , Fi denotes a function from V1 × V2 ×⋯ × Vn to Vi.
(d) Ps is a set of identifiers {p1, p2,… , pk} denoting labels for some k ∈ ℕ.
(e) Ds is a function from Ps × Xs to ℤ+

× ℤ
+ denoting system delays.

(f) ≻=
⋃

p,t ≻p,t where ≻p,t⊆ Xs × Xs.

Informally, Ps is a set of identifiers that allows us to capture the notion of multiple path-
ways in a (biological) system. For convenience, we will use a set notation for the function 
Ds, and say (x, p, d+, d−) ∈ Ds iff Ds(x, p) = (d+, d−) , for x ∈ Xs , p ∈ Ps and d+, d− ∈ ℤ

+ . 
In the biological context, if (p, x, d+, d−) in Ds, d+ is the time to increase x by 1 unit and 
d− is the time to decrease x by 1 unit in the pathway identified with p. The relation ≻ is 
intended to capture the asynchrony inherent in Kinetic Logic, which forces at most 1 vari-
able to change value at any time-instant on a pathway. Again for convenience we will use 
(p, t, xi) ≻ (p, t, xj) to denote that (xi, xj) ∈≻p,t.

Definition 2 (States) Let 𝜎 = (Xs,Vs,Fs,Ps,Ds,≻) be a system. The state-space of the 
system � is the set S

�
= {(v1,… , v

n
, v�

1
,… , v�

n
) ∶ for each i = 1,… , n, v

i
, v�

i
∈ V

i
, and F

i
(v1,… , v

n
) = v

�

i
} . 

Elements in S
�
 are called the states of the system �.

Let s be a state in S
�
 . For each i = 1, 2,… , n , the notation (xi = vi) ∈ s is used to denote 

there exists v1, v2,… , vi−1, vi+1,… , vn and v�
1
,… v�

n
 such that s = (v1,… , vn, v

�

1
,… , v�

n
) . 

Similarly for each i = 1,… , n , the notation (Xi = v�
i
) ∈ s is used to denote there exists 

v1,… , vn and v�
1
,… , v�

i−1
, v�

i+1
,… , v�

n
 such that s = (v1,… , vn, v

�

1
,… , v�

n
). In order to 

describe the dynamic behaviour of a system, we introduce the notion of a configuration.

Definition 3 (Configurations) Let � be a system and S
�
 be the state space of the system � . 

A configuration � of � is an element of T × S
�
 . We denote the set of all configurations of � 

as �
�
.

Definition 4 (Labelled Transition System) Let 𝜎 = (Xs,Vs,Fs,Ps,D,≻) be a system, S
�
 be 

the state space of the system � and �
�
 be the set of all configurations of � . A labelled tran-

sition system LT
�
 defined on � is the triple (�

�
,→,Ps) where → ⊆ 𝛤

𝜎
× Ps × 𝛤

𝜎
 , and for 

each i ∈ T , s ∈ S
�
, p ∈ Ps, ((i, s), p, (i + 1, s)) is in →.
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The notation �
p
→ �′ is used to denote that (� , p, � �) ∈→ . We use labelled transitions to 

identify a specific sequence (or trace) of transitions. The reason for adding the self transi-
tions (for each i ∈ T , s ∈ S

�
, p ∈ Ps, ((i, s), p, (i + 1, s)) is in → ) is to allow the system to 

continue in the same state if no change is required.

Definition 5 (Trace) Let 𝜎 = (Xs,Vs,Fs,Ps,Ds,≻) be a system, S
�
 be the state space of the 

system � , �
�
 be the set of all configurations of � and LT

�
= (� ,→,Ps) be a labelled transi-

tion system defined on � . A finite sequence of configurations ⟨�0, �1,… , �l⟩ (where l ∈ ℕ ) 
of � is a p-trace of LT

�
 iff for each i = 0, 1,… , l there exists si ∈ S

�
 such that �i = (i, si) and 

for each i = 0, 1,… , l − 1 , �i
p
→ �i+1 . Let TracesLT

�

(p) be the set of all p-traces of LT
�
.

If � is clear from the context, we just use S,�  to denote the state space S
�
 of � , the set 

of all configurations �
�
 of � respectively. Similarly if LT

�
 is clear from the context, we use 

Traces(p) to denote the TracesLT
�

(p) . We use the term trace to denote any p-trace of LT
�
 

where p ∈ Ps.
It is evident from Defnitions 4 and 5 that the time-instant associated with a configura-

tion is the same as the position of the configuration in a p-trace, and therefore can be dis-
carded. Nevertheless, for clarity, and possible future generalisations to other timed-autom-
ata, we will continue to treat configurations as time-state pairs. Let �p = ⟨�0, �1,… , �l⟩ be 
a p-trace of a labelled transition system LT

�
 defined on � . We will say � ∈ �p if there exists 

an i ≤ l such that � = �i . By t = tk in �p we mean the time-instant associated with the kth 
configuration in �p . If �p is clear from the context, we just use t = tk instead of t = tk in �p . 
We note for the specific formulation here, t = tk is identical to t = k.

Kinetic Logic uses some additional notions defined on configurations in p-traces.

Definition 6 (Net Rate of Change) Let 𝜎 = (Xs,Vs,Fs,Ps,Ds,≻) be a system, LT
�
 be 

a labelled transition system defined on � , and �p a p-trace in LT
�
 . Let �k = (tk, sk) in �p , 

(xi = vi) ∈ sk , and Xi = v�
i
∈ sk . Then the net rate of change of variable xi at t = tk in �p is 

v�
i
− vi and is denoted by Rate(�p, xi, tk) . Rate(�p, xi, tk) is (a) Positive, iff v�

i
− vi > 0 ; (b) 

Negative, iff v�
i
− vi < 0 ; and (c) Zero, iff v�

i
− vi = 0.

Positive or negative net rates of change result in orders to increase or decrease the value 
of a system variable xi after some delay.

Definition 7 (Orders) Let 𝜎 = (Xs,Vs,Fs,Ps,Ds,≻) be a system, LT
�
 be a labelled transi-

tion system defined on � , and �p a p-trace in LT
�
 . Let (p, xi, d+i , d

−

i
) ∈ Ds and �k = (tk, sk) 

in �p . Then we will say that there exists an order at t = tj in �p to increase (resp. decrease) 
xi at t = tk , iff: (a) there is a �j = (tj, sj) in �p s.t. tj = tk − d+

i
 (resp. tk − d−

i
) ; and (b) 

Rate(𝜏p, xi, tj) > 0 (resp. < 0).
The predicate Order(�p, x+i , [tj, tk]) (resp. Order(�p, x−i , [tj, tk]) ) is true iff there exists an 

order at t = tj in �p to increase (resp. decrease) xi at t = tk.

An order to increase (or decrease) is necessary for a variable to change. However, we 
will see below that this will not be sufficient. It is easy to see that there cannot exist orders 
at t = ti to both increase and decrease x (even with different delays). That is, for any x, p, 
we can show:
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Orders to change the value of xi can be revoked if Xi changes value within the delay 
period. It is useful to introduce the notion of values of functions changing in a sequence of 
configurations.

Definition 8 (Change in Function Value) Let 𝜎 = (Xs,Vs,Fs,Ps,Ds,≻) be a system, LT
�
 

be a labelled transition system defined on � , and �p a p-trace in LT
�
 . Let xm ∈ Xs . Then we 

will say that Xm changes in the interval [ta, tb] in �p ( ta < tb ) iff: there exists �i = (ti, si) and 
�j = (tj, sj) in �p s.t. (a) ta ≤ ti , ti < tj and tj ≤ tb ; and (b) (Xm = v�) ∈ si , and (Xm = v��) ∈ sj ; 
and v′ ≠ v′′.

The predicate FuncChanges(�p,Xi, [ta, tb]) is true iff Xi changes in the interval [ta, tb] in 
�p.

Definition 9 (Cancellation) Let 𝜎 = (Xs,Vs,Fs,Ps,Ds,≻) be a system, LT
�
 be a labelled 

transition system defined on � , and �p a p-trace in LT
�
 . Let xm ∈ Xs . Then an order at t = ti 

to increase (resp. decrease) xm at t = tj is cancelled iff: (a) the predicate Order(�p, x+m, [ti, tj]) 
(resp. Order(�, x−

m
, [ti, tj]) ) is true; and (b) the predicate FuncChanges(�p,Xm, [ti, tj − 1) is 

true. That is, we define a predicate Cancelled as follows: 

A different variant of Kinetic Logic results if the Fi ’s are allowed to change their values 
within the delay period, as long as the net rates remain positive (or negative) for increase 
(or decrease). We do not consider this variant here. Orders that are not cancelled initiate 
updates of a system (there is an exception to this, which we will deal with below).

Definition 10 (Necessary Conditions for Change) Let 𝜎 = (Xs,Vs,Fs,Ps,Ds,≻) be a sys-
tem, LT

�
 be a labelled transition system defined on � , and �p = ⟨�0, �1,… , �k⟩ be a p-trace 

of LT
�
 . Then x can increase at t = tk iff there exists ti ∈ T  s.t.: (a) Order(�p, x+, [ti, tk]) ; 

(b) ¬Cancelled(�p, x+, [ti, tk]) ; and (c) Rate(𝜏p, x, tk − 1) > 0 . We will say the predi-
cate Increase(�p, x, tk) is true iff these conditions are true. Similarly we can define the 
predicate Decrease(�p, x, tk) . We use the predicate PendingOrder(�p, x, tk) to denote 
Increase(�p, x, tk) ∨ Decrease(�p, x, tk).

Remark 2 Let 𝜎 = (Xs,Vs,Fs,Ps,Ds,≻) be a system, LT
�
 be a labelled transition system 

defined on � , and �p = ⟨�0, �1,… , �k⟩ be a p-trace of LT
�
 . We note that the following state-

ment is true, for x:

Let us assume:

∄ tj, tk(Order(�p, x
+, [ti, tj]) ∧ Order(�p, x

−, [ti, tk]))

∄tk (Increase(�p, x, tk) ∧ Decrease(�p, x, tk))
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From Definition 10, since Increase is true, Rate(𝜏p, x, tk − 1) > 0 and since Decrease is true 
Rate(𝜏p, x, tk − 1) < 0 , which is a contradiction, and the result follows.

Usually, if PendingOrder(�p, x, tj) is true, then x will change by 1 unit at t = tj . An 
exception arises however, if pending orders are true for a pair of variables xi , xj to change 
values at the same instant. If this happens, then changes are decided by a mechanism of 
preference.

Definition 11 (Overridden) Let 𝜎 = (Xs,Vs,Fs,Ps,Ds,≻) be a system, LT
�
 be a labelled 

transition system defined on � and �p a p-trace in LT
�
 . Let xi, xj ∈ Xs . Then any change 

in variable xi at t = tk is overridden by xj , and the predicate Overridden(�p, xi, tk) is 
true, iff: (a) PendingOrder(�p, xi, tk) is true; (b) PendingOrder (�p, xj, tk) is true; and (c) 
(p, tk, xj) ≻ (p, tk, xi).

In the original formulation of Kinetic Logic by Thomas changes in values of system 
variables ( x ∈ Xs ) happen asynchronously. That is, only one variable can change value at 
any time instant. In effect, this requires ≻ to be a total ordering.

We are now able to state necessary and sufficient conditions for a system-variable to 
change value.

Definition 12 (Necessary and Sufficient Conditions for Change) Let � = (Xs,Vs,Fs, 
Ps,Ds,≻) be a system, and LT

�
 be a labelled transition system defined on � , and �p be 

a p-trace in LT
�
 . Then a variable x ∈ Xs changes value at t = tk in �p , and the predi-

cate VarChanges(�p, x, tk) is true, iff: (a) PendingOrder(�p, x, tk) is true; and (b) 
Overridden(�p, x, tk) is false.

We finally have all the pieces for specifying a Kinetic Logic system.

Definition 13 (Kinetic Logic System) Let 𝜎 = (Xs,Vs,Fs,Ps,Ds,≻) be a system. We will 
say a labelled transition system LT

�
 is a Kinetic Logic system iff for all p-traces �p in LT

�
 , 

for all xi ∈ Xs , for all �j = (tj, sj) in �p ( j > 0 ), for all v ∈ Vi (where Vi ∈ Vs ), 

1. if ¬VarChanges(�p, xi, tj) and (xi = v) ∈ sj−1 then: (xi = v) ∈ sj;
2. if VarChanges(�p, xi, tj) and Increase(�p, xi, tj) and (xi = v) ∈ sj−1 then: (xi = v + 1) ∈ sj;
3. if VarChanges(�p, xi, tj) and Decrease(�p, xi, tj) and (xi = v) ∈ sj−1 then: (xi = v − 1) ∈ sj.

Definition 14 (Pathway) Let 𝜎 = (Xs,Vs,Fs,Ps,Ds,≻) be a system and LT
�
 be a Kinetic 

Logic system. A pathway of LT
�
 is any p-trace of LT

�
.

Example 5 (Kinetic Logic: Formal Representation) We now re-examine the system 
in Example 4 in light of the formalisation proposed. The system is now denoted by 
𝜎 = (Xs,Vs,Fs,Ps,Ds,≻) , where Xs = {x1, x2} . Vs = {{0, 1}, {0, 1, 2}} and Fs = {F1,F2} 
where the Fi are represented by the table: 

∃tk (Increase(�p, x, tk) ∧ Decrease(�p, x, tk))
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x1 x2 X1 = F1(x1, x2) X2 = F2(x1, x2)

0 0 1 0
0 1 0 0
0 2 0 2
1 0 1 2
1 1 0 2
1 2 0 2

Let Ps = {p1, p2} and Ds = { (p1, x1, 2, 1) , (p1, x2, 3, 2) , (p2, x1, 2, 3) , (p2, x2, 1, 2) } . Let ≻= �.

Example 6 (Generalised Kinetic Logic Dynamics: again) Continuing Example 5, given 
the system � , let �  be the set of all configurations of � (as defined in Definition 3), and 
LT

�
= (� ,→,Ps) be a a labelled-transition system where →= � × Ps × � ) . The dynamics 

allowed by our representation will be encoded by traces of LT
�
 . One example is the trace 

�p1
 = ⟨ (0, 0010), (1, 0010), (2, 1012), (3, 1012), (4, 1012), (5, 1102), (6, 0100), (7, 0100), 

(8, 0010) ⟩.
This trace is a pathway in this paper. The states in the sequence of configurations in the 

pathway are consistent with the states and transitions depicted in the left diagram in Exam-
ple 4, given the delays for p1:

We also note the following about �p1 : (a) At t = 0 an order to increase x1 is placed to 
be executed at t = 2 . Since X1 does not change its value between 0 and 1, this order is not 
cancelled. So the value of x1 increases by 1 unit at t = 2 ; (b) At t = 2 an order to increase 
x2 is placed to be executed at t = 5 . Since X2 does not change its value between 2 and 4, 
this order is not cancelled. So the value of x2 increases by 1 unit at t = 5 ; (c) At t = 5 , two 
orders are placed: One is to decrease x1 by one unit at t = 6 and another order is to increase 
x2 by one unit at t = 8 ; (d) At t = 6 , x1 is decreased by one unit since X1 does not change its 
value from t = 5 . Using the definition of the function F2 given in the table, X2 = 0 at t = 6 ; 
(e) Since the value of X2 changes from 1 to 0, the order at t = 5 to increase x2 is cancelled; 
(f) At t = 6 , an order to decrease x2 is placed to be executed at t = 8 . Since x1 = X1 there 
is no order placed to change x1 and its value will be unchanged at t = 7 and t = 8 ; (g) At 
t = 8 , x2 decreases by one unit and we reach the state 0010.

In the following section, we describe an implementation, using an Event Calculus, of a 
program capable of inference in Kinetic Logic. Looking ahead, we are also able to state the 
system-identification task addressed in this paper, namely: Given Xs, Vs, Ps, and data Ts 
consisting of p-traces of the system, find Fs, Ds, and ≻ such that 𝜎 = (Xs,Vs,Fs,Ps,Ds,≻) 
is a Kinetic Logic System and every element of Ts is a p-trace of LT

�
.

4  Implementing kinetic logic in an event calculus

In this section, we present an implementation of the Kinetic Logic defined in Sect.  3.3 
using a form of the Event Calculus. Theorem 1 at the end of the section establishes the cor-
rectness of the implementation. The Event Calculus (EC) is a logic-based formulation for 
temporal reasoning. We refer the reader to Kowalski and Sergot (1986), Shanahan (1999), 
Mueller (2008) and Katzouris et al. (2016) for an introduction to basic and extended forms 
of the EC, efficient implementations and practical applications.
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The main predicates in a basic EC and their meanings are in the tabulation in Fig. 3a. 
The predicate definitions forming the basis of the core-axioms of this variant of the EC are 
in Fig. 3b. In Fig. 3, we use a Prolog-like notation, in which predicate-symbols, function-
symbols and ground-terms are in lower-case, and variables are in upper-case. We abuse the 
notation S/n to denote predicates or functions with n arguments with the understanding the 
context will make it disambiguate the kind of symbol involved. The actual implementation 
(see below) that we will use for this paper is written in Prolog and requires the representa-
tion power of logic programs with negation-as-failure (Lloyd, 1987 for details). The event 
calculus axioms are written as clauses of the form h ← l1, l2,… , lk , to be read as “if l1 and 
l2 and ...lk then h”. If any of the li are of the form not l, then this should be read as “l is not 
provable”.

There are two main representation choices we make to implement Kinetic Logic in the 
EC: 

1. Values of system-variables (the xi ’s in the previous section) are taken as fluents. When 
implemented as a logic program, these are represented by a function-symbol val/2, and 
fluents are ground-instances of this function. The predicate holds/3 is used to specify 
that a fluent holds at some time-instant. For example, holds(�p, val(x, 0), 5) denotes that 
the system-variable x = 0 at time 5 in p-trace �p.7

2. Values of system-functions (the Xi’s) constitute events. Here, the function occurs/2 will 
be used to denote an event’s occurrence, and ground instances of the happens/3 predi-
cate will specify an event’s occurrence at a specific time. When implemented as a logic 
program, we will use f (xi) , rather than Xi = Fi(⋅) . Thus, happens(�p, occurs(f (xi), 1), 3) 
denotes that Xi = 1 at time 3.8

(a) (b)

Fig. 3  a The main predicates used for reasoning in a simple form of the Event Calculus, and b the core axi-
oms of the Event Calculus. This simple version is included here for illustration: the actual axioms we use in 
the paper (see later) are more complex

7 We use a cached implementation of the EC that ensures that inconsistencies like holds(�p, val(x, 0), 5) , 
holds(�p, val(x, 1), 5) do not arise. The cached implementation also avoids repeated recomputation of values 
of fluents.
8 Again, the cached implementation ensures inconsistencies do not occur. Also, the notation f(x) is a com-
putational convenience suitable for logic programs, and is more correctly understood as the function fx . The 
image of x continues to be a function of all system variables.
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There are some good reasons for these choices: (a) In the biological setting introduced by 
Thomas, the images (functions) act as the events triggering the change in values of the 
corresponding system variables; and (b) The value of the function is determined at every 
instant by the values of one or more system variables. Thus, there is no notion of persis-
tence as with a fluent (although the impression of persistence may be apparent due to the 
function having the same value in successive time-instants).

4.1  Implementation in a variant of EC

A difficulty now arises from the fact that in the simplified EC in Fig. 3 events instantane-
ously initiate (or terminate) fluents, but we know from the previous section that in Kinetic 
Logic delays play a crucial role. Fig. 4 presents the implementation used in the paper. We 
note that clipped is a trivial rewrite of terminates in this implementation. Also, terminates 
is used in a slightly different manner to its usual formulation in the Event Calculus: Here 
we are interested in checking in if the action of the initiating event is terminated. This is 
similar to the use in Moyle (2003) where the initiating event is included in the calls to 
terminate.

All axioms also are now additionally augmented with an argument to identify the path-
way on which the inference is to be performed. Recall that pathways are sequences of con-
figurations ⟨�0,… , �n⟩ . Besides events associated with system-functions, we will use a tick 
event, which acts as follows: happens(tick, t) is true for each t ∈ T  , where T = {0, 1,…} as 
in Sect. 3.3.

At the heart of any EC axiomatisation are domain-specific axioms. The axioms spe-
cific to Kinetic Logic are shown in Fig. 5. The primary axioms dealing with the delayed 
increase or decrease of system-variables by the corresponding functions are in Fig. 5a.

Before we establish a correctness result about the implementation, we illustrate its work-
ing based on the system described in Examples 3 and 4, and using the axioms in Figs. 4 
and 5. For simplicity, we initially assume that there are no definitions for overrides/4 (that 
is, we ignore any asynchronous changes). Later we provide an example of the role played 
by this predicate.

Example 7 (Delayed fluent increase) For some p, assume we know the following: (a) At 
t = 0 , happens(p, occurs(f(y), 2), 0), is true and holds(p, val(y, 0), 0) is true; (b) The delay 
for initiating an increase in y is 1 time unit, i.e., delay(p, y,+1, 1) is true. We want to know 

Fig. 4  A variant of the Event Calculus to account for delays in Kinetic Logic. There is now a delay Tk − Ti 
between the occurrence of an event and its effect on the corresponding fluent. tick is an event that happens 
on every time-instant. Upper-case letters denote variables in the logic-programming sense. So, the X here 
should not be confused with the X(t) from the previous section. The functions X(t),Y(t)… will be repre-
sented by the ground-terms f (x), f (y)…
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the value of y at t = 1 . That is, we want an answer to the query: holds(p,  val(y,  V),  1). 
Using axiom C2 in Fig. 4, an SLDNF refutation proof for the goal (← holds(p, val(y,V), 1)) 
succeeds with answer-substitution {V∕1} using Axioms KI1 (for proving initiates), KT1 
and KT2 (for proving not clipped ) in Fig. 5. Some relevant goals in the successful proof 
using KI1 are: (← initiates(p, occurs(f (y), 2)),  val(y,  1),  [0,  1])); (← delay(p, y,+1, 1)) ; 
(← happens(p, occurs(f (y), 2), 0)) ; (← rate(p, y, 1, 1, 2)) ; (← holds(p, val(y, 0), 0)) . Inference 
using C2 in Fig. 4 then attempts to establish not clipped(p, occurs(f (y), 2), val(y, 1), [0, 1]) . 
This succeeds since the calls to KT1 and KT2 finitely fail.

The core axioms of the EC only encode the effect of change caused by the logical func-
tions (events), and not their non-effects. Therefore we need to capture the notion that the 
values of system-variables will continue unchanged, unless an event occurred to change 
it. This is a variant of the frame problem, and general techniques for addressing it in the 
EC are described in Shanahan (1999), Mueller (2008). Here, we employ a tick event, that 
occurs once every clock-tick. Every time tick happens, it initiates the continuation of the 
value for a system-variable x (Axiom KI3 in Fig. 5a). This is terminated by Axiom KT3, if 
the occurrence of an event f(x) results in a change in the value of x.

(a)

(b)

Fig. 5  Domain-specific axioms for Kinetic Logic. f(X) is used to denote the logical function associated with 
system variable X. tick is an event that happens at every time-instant. overrides/4 implements the ≻ ordering 
in the specification (see text for more details)
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Example 8 (Persistence of fluents) We continue the exposition from the previous exam-
ple. If f (y) = 2 at t = 1 , then initiates(p,  occurs(f(y),  2),  val(y,  2),  [1,  2]) is true (KI1: 
delayed fluent increase). Since not  clipped(p,  occurs(f(y),  2),  val(y,  2),  [1,  2]) succeeds, 
holds(p,  val(y,  2),  2) is true. That is, y = 2 at t = 2 . Now: (c) f (y) = 2 at t = 2 (that is, 
happens(p, occurs(f(y),  2),  2) is true). We want to know the value of y at t = 3 : that is, 
we want an answer to the query holds(p,  val(y,  V),  3), using Axiom C2. The goal 
(← initiates(p, val(f (y),V �

i
), val(y,V), [Ti, 3])) using KI1 fails, since (← rate(p, y, 3, 1,R)) 

fails. Similarly, a proof of (← initiates(p, val(f (y),V �

i
), val(y,V), [Ti, 3])) using KI2 fails. 

However, (← initiates(p, tick, val(y, 2), [2, 3])) succeeds using KI3. Furthermore not clippe
d(p, tick, val(y, 2), [2, 3]) succeeds and (← holds(p, val(y, 2), 3)) succeeds using Axiom C2. 
That is, at t = 3 the value of y is unchanged from its value at t = 2 (the values of both f(y) 
and y are equal at t = 2).

Example 9 (Delayed fluent decrease.) For the previous example suppose: (d) The delay for 
initiating a decrease in y is 2 time units (that is, delay(p, y,−1, 2) is true); and (e) f (y) = 1 at 
t = 3 and at t = 4 . That is, happens(p, occurs(f(y), 1), 3) and happens(p, occurs(f(y), 1), 4) 
are both true. What are the values of y at t = 4 and t = 5 ? For this, we need answer sub-
stitutions for the goals (← holds(p, val(y,V), 4) and (← holds(p, val(y,V), 5) using Axiom 
C2. We consider proofs for (← holds(p, val(y,V), 4)) first. From the previous examples, we 
know: y = 2 at t = 3 (steady state). Since f (y) = 1 at t = 3 , any proof using Axiom KI1 will 
fail, since the value of f(y) at t = 3 is less than y at t = 3 . A proof using KI2 is not possible, 
since at t = 4 the delay period of 2 has not run out. This leaves Axiom KI3, which will suc-
ceed. The proof for (← holds(p, val(y,V), 4)) then attempts to prove not clipped(p, tick, val(
y, 2), 4), which succeeds, since f(y) cannot change value at t = 3 , and there are no definitions 
for overrides/4. Thus, the proof for (← holds(p, val(y,V), 4) succeeds with answer-substitu-
tion {V∕2} . That is, y = 2 at t = 4 Now we consider the proof for (← holds(p, val(y,V), 5)) 
using C2. At t = 5 , the goal (← initiates(p, occurs(f (y), 1), val(y, 1), [3, 5])) succeeds using 
KI2. Since there are no definitions for overrides/4, and f(y) does not change value at t = 3 
and t = 4 , we can see that not clipped(p, occurs( f(y), 1), val(y, 1), [3, 5]) succeeds, and the 
proof for (← holds(p, val(y,V), 5)) succeeds with answer-substitution {V∕1} . That is, y = 1 
at t = 5.

Example 10 (Termination of persistence) In the previous example, when attempting to 
prove (← holds(p, val(y,V), 5)) using C2, suppose the the inference mechanism selected 
axiom KI3, which will succeed with a refutation of (← initiates(p, tick, val(y, 2), [4, 5])). 
That is, a persistence of y = 2 is initiated by KI3 (recall y = 2 at t = 4 ). However to com-
plete the proof using C2 for (← holds(p, val(y,V), 5)) with substitution {V∕2} , it is neces-
sary that not clipped(p, tick, val(y, 2), [4, 5]) must succeed. But clipped(p, tick,  val(y, 2),  
[4,  5]) is provable using KT3 since f (y) = 1 has initiated the delayed decrease y = 1 at 
t = 5 , and there are no definitions for overrides/4. So clipped(p, tick, val(y, 2),  [4, 5]) suc-
ceeds and the proof for (← holds(p, val(y, 2), 5)) using KI3 fails. Persistence of the fluent is 
thus terminated by a pending order to decrease that has not been overridden.

Finally, we provide an example of asynchronous change using overrides/4.

Example 11 (Overrides) Suppose there exists a definition (overrides(p, z, y, T) ←) (that 
is, a change in the value of some system-variable z will always override any change in 
the value of system-variable y. Suppose the value of z increases at t = 5 . Then the 
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proof of (← holds(p, val(y,V), 5)) in Example 9 using C2 and KI2 fails when attempt-
ing to establish (not  clipped(p,  occurs(f(y),  1),  val(y,  1),  [3,  5])). This fails because 
terminates(p,  occurs(f(y),  1),  val(y,  1),  [3,  5]) succeeds through the use of axiom 
KT2 and the definition of overridden/3. The latter succeeds since the proof for 
(← overrides(p, z, y, 5) , z ≠ y , initiates(p, occurs(f (z),V �

i
), val(z,V), [Ti, 5])) , not terminates 

(p, occurs(f (z),V �

i
), val(z,V), [Ti, 5])) succeeds for some V ′

i
,V , Ti . That is, no (delayed) 

decrease of y is now possible. However, the proof for (← initiates(p, tick, val(y, 2), [4, 5])) 
will succeed, and not clipped(p,  tick, val(y, 2), [4, 5])) also succeeds, since no change in 
y occurs. Thus the proof for (← holds(p, val(y,V), 5)) succeeds using C2 and KI3, with 
answer-substitution {V∕2} . That is, the change in y is overridden by a change in z at t = 5 . 
In this case, the value of y at t = 5 persists from the previous time instant.

4.2  Relationship to the specifications

Here we show a form of correctness of the implementation with respect to the specification 
in Sect. 3.3. For a system 𝜎 = (Xs,Vs,Fs,Ps,Ds,≻) , let �p be a trace in a labelled transi-
tion system LT

�
 defined on � . For all xi ∈ Xs , and for all �k = (tk, sk) in �p , (xi = vi) ∈ sk 

is denoted in the implementation by holds(�p, val(xi, vi), tk) . Denote (Xi = v�
i
) ∈ sk by 

happens(�p, occurs(f (xi), v
�

i
), tk) . Thus the state sk corresponds to the conjunction:

where n is the number of system-variables in Xs. We will need the following.

Definition 15 (Consistent Initialisation of �p ) Let 𝜎 = (Xs,Vs,Fs,Ps,Ds,≻) be a system. 
Let LT

�
 be a Kinetic Logic system defined on � . Let �p be a p-trace defined in LT

�
 , and 

�0 = (0, s0) ∈ �p . Then the set Ip = {initially(p, val(x, v)) ∶ x ∈ Xs} is said to be a consistent 
initialisation of �p if initially(p, val(xi, vi,0)) ∈ Ip iff (xi = vi,0) ∈ s0.

Let C denote the definitions in Fig. 4, K denote the definitions in Fig. 5. Let additional defi-
nitions describing the system be denoted by A

�
 , and let B = C ∪ K ∪ A

�
 . We are concerned 

with the correctness of a proof of holds/3 using B and a consistent initialisation of a p-trace.

Theorem  1 (Correctness of the EC Implementation) Let 𝜎 = (Xs,Vs,Fs,Ps,Ds,≻) 
be a system and LT

�
 be a Kinetic Logic system. Let �p be a p-trace of LT

�
 . Assume: (a) 

correct definitions Fs,  Ps,  Ds; (b) ≻= � ; (c) a consistent initialisation Ip of �p ; and 
(d) B ∪ Ip ⊬ □ . We show, for all �k = (k, sk) ∈ �p , for all xi ∈ Xs and vi ∈ Vi , that 
(B ∪ Ip ⊢ holds(p, val(xi, vi), k)) iff (xi = vi) ∈ sk.

Here ⊢ denotes derivation using a theorem-prover, implementing SLDNF resolution 
using the usual Prolog search and computation rules. The restriction of ≻ to be ∅ results in 
a significant simplification of the proof. In practice too, this may not be an overly serious 
restriction, if the discretisation of time is sufficiently fine-grained.

We prove Theorem 1 by using induction. To apply induction we have to strengthen the 
claim as in Lemma 2 in “Appendix A”.

We turn now to the learning task addressed in this paper. The examples to this point 
would have made clear that the two essential parts of Kinetic Logic are: when do events 
occur, and when are their effects felt? In the Event Calculus formulation we have just 

n⋀
i=1

(holds(�p, val(xi, vi), tk) ∧ happens(�p, occurs(f (xi), v
�

i
), tk))
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described, answers to these questions are in the definitions of happens/3 and holds/3 predi-
cates (which in turn, depends on delay/4). In addition—although the proof of correctness 
ignores it—we may be required to identify definitions for overrides/4, if the data contain 
asynchronous updates. Definitions for happens/3, delay/4 and overrides/4 have to be in 
place for inference of holds/3 to proceed. We will address this multi-predicate learning 
problem using Inductive Logic Programming (ILP).

5  Learning kinetic logic programs

5.1  Specification

We motivate the learning task in biological terms: given data in the form of the dynamic 
behaviour of a biological system, can we identify the regulatory interactions, activation and 
inhibition delays, and overrides of the system?

In terms of the Kinetic Logic we have specified, this amounts to identifying the Fs, Ds 
and ≻ of a system 𝜎 = (Xs,Vs,Fs,Ps,Ds,≻) given the Xs, Vs, and Ps. We will use the term 
“partially-specified system” to denote a system � for which Xs, Vs, Ps are specified and 
Fs, Ds and ≻ are not specified. Then, the learning task we consider is: given a partially-
specified system � , and some p-traces of a Kinetic Logic system LT

�
 , find definitions for 

Fs, Ds and ≻.
We now translate this requirement in terms of the implementation provided in the previ-

ous section: 

Given  the following:

• A partially-specified system � = (Xs,Vs, ⋅,Ps, ⋅, ⋅);
• B = C ∪ K ∪ A

� , where C are the core-axioms of the Event Calculus in Fig. 4, K 
are the Kinetic Logic axioms in Fig. 5, and A

�
 are auxiliary predicate definitions 

relevant to �
• A language L for acceptable hypotheses;
• S = E ∪ F denoting system behaviour, consisting of the set of ground atoms 

E = {e1,… , ej} representing the conjunction of event occurrences 
⋀
i

ei , and ground 

atoms F = {f1,… , fk} representing the conjunction of fluents 
⋀
i

fi , of which the sub-

set F0 to denotes the values of fluents at t = 0.9

Where  it is the case that: 

Find   a set of clauses H ∈ L s.t.: 

Of course H = E ∪ F would trivially achieve the requirement. But we want to be able to 
identify explanations in terms of feedback mechanisms, which require a generalisation of 

B ∪ F0 ̸⊧ E ∪ F

B ∪ F0 ∪ H ⊧ E ∪ F

9 The set Fs in the specification of a system in Sect.  3.3 consists of functions F1,… ,Fn , which is unrelated 
to F0 here.
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the specific facts observed. To achieve this, we will use the ILP notion of generalisation 
based on the relation of logical entailment (and the weaker relation of subsumption).

We will take H = HE ∪ HF , where HE refers to clauses needed for explaining the events, 
and HF refers to clauses needed for explaining the fluents (these cannot be obtained entirely 
independently of each other, as will be seen below).

Example 12 (Learning Kinetic Logic Programs) For the system in Example 5, recall the 
dynamics of the Kinetic Logic system was given by the trace of a labelled transition system 
in Example 6: ⟨ (0, 0010), (1, 0010), (2, 1012), (3, 1012), (4, 1012), (5, 1102), (6, 0100), 
(7, 0100), (8, 0010) ⟩ . Each element of this trace is the pair (t, x1x2X1X2) , where t is a time 
instant; x1, x2 denote the values of system variables; and X1,X2 denote the values F1(x1, x2) , 
F2(x1, x2) . Then, given traces of system-behaviour in this form, the main steps involved in 
learning a Kinetic Logic program are: (1) Obtaining data on the events and fluents for each 
time-instant t in the trace. Data on the events are the values of X1,X2 at each time-instant 
(constituting E), and data on the fluents are the values of x1, x2 (constituting F). F0 will be 
the values of x1, x2 at t = 0 ; (2) Given the axioms in Fig. 4 (constituting C), Fig. 5 (consti-
tuting K) and any auxiliary definitions needed (A), obtain definitions for HE and HF . Learn-
ing definitions for HE and HF in this paper will require the following: (a) Learning definite-
clause definitions for F1 and F2 . In the implementation of the Kinetic Logic in Fig. 5, these 
are the definitions for happens/3 and constitute HE ; and (b) Definite clause definitions for 
the set of delays. This translates to definitions for delay/4 in Fig. 5, which are part of HF ; 
and (c) Definite clause definitions for exceptions caused by asynchronous change. These 
are definitions for overrides/4 in Fig. 5, which complete the definition of HF . Usually, (b) 
and (c) will simply be ground unit clauses. We refer the reader to “Appendix C” for exam-
ples of actual clauses constructed.

5.2  Implementation

There are several ways a suitable HE could be found: later we describe how this could 
be accomplished straightforwardly using ILP engine based on the techniques described in 
Muggleton (1995). For HF it is apparent that we seek a hypothesis that entails the holds/3 
facts provided as F. But a definition for holds/3 already exist in the core-axioms C: what is 
missing are definitions for delay/4 and—if we allow asynchronous updates—overrides/4. 
That is, the learning task is one of augmenting the existing background definitions in B. We 
look at identifying delays first. For the present, we will assume that changes in a variable 
are not overridden (that is, ≻= � in Sect. 3).

In principle, identifying definitions for delay/4 and overrides/4 could be done using an 
ILP engine. In Muggleton (1994), it is shown that the ILP specification allows the con-
struction of abductive hypotheses that extend the definitions in the background knowl-
edge B by adding definitions of predicates that appear in the body of clauses in B (clearly, 
delay/4 and overrides/4 are such predicates). The ILP implementation we use in this paper 
(Srinivasan, 1999) does contain machinery for constructing abductive hypotheses, but it 
is inadequate for the requirements here.10 Instead, we employ two procedures specifically 

10 Specifically, the implementation can construct a definition for delay/4, but it is not guaranteed to be con-
sistent in the sense defined in Definition 16. It will also not construct a definition for overrides/4, since this 
predicate involves a proof using negation-as-failure.
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for constructing the kinds of abductive explanations we seek here. We will first need the 
following:

Definition 16 (Consistent Set of Delays) Let � = (Xs,Vs, ⋅,Ps, ⋅, ⋅) be a partially-
specified system, and x ∈ Xs . Then, for any p ∈ Ps , let Ax,p denote the set of pos-
sible abducible delay/4 atoms. Dx,p ⊆ Ax,p is said to be a consistent set of delays for 
x if it is one of: (a) ∅ ; or (b) {delay(p, x,+1, d+)} ; or (c) {delay(p, x,−1, d−)} ; or (d) 
{delay(p, x,+1, d+), delay(p, x,−1, d−)}.

A consistent set of delays for p is Dsp =
⋃
x

Dx,p , where Dx,p is a consistent set of delays 

for x in p. A consistent set of delays for the system is then Ds =
⋃
p

Dsp.

Then, HF can be any set Ds of consistent delays for the system s.t. B ∪ F0 ∪ HE ∪ Ds ⊧ F . 
The immediate question that arises is whether such a Ds is always guaranteed to exist? The 
short answer to this is “no”: even in the case where the data are noise-free, the presence of 
asynchronous changes may result in some fluents not being entailed with any set of consist-
ent delays. Also of interest is this: if a Ds exists, is it guaranteed to be unique? This is a 
property of Kinetic Logic, for which we do not have a definitive answer at this point.11 A 
reasonably intuitive objective is to identify a set of consistent delays that entails the most 
number of fluents. Given this, identifying a Ds is better treated as an optimisation problem.

Definition 17 (Event and Fluent subsets) Let � = (Xs,Vs, ⋅,Ps, ⋅, ⋅) be a partially-specified 
system. Given a set of fluents F, we define the following subsets: Fp : the subset of fluents 
of F for p ∈ Ps ; and Fp,t : the subset of fluents F for p ∈ Ps at time t.

Given a set of events E, we define the following subsets: Ep : the subset of events E for 
p ∈ Ps ; and Ep,t : the subset of events E for p ∈ Ps at time t.

It is easy to see that Fp =
⋃

t Fp,t and Ep =
⋃

t Ep,t.12

Definition 18 (Optimal set of delays) Let � = (Xs,Vs, ⋅,Ps, ⋅, ⋅) be a partially-specified sys-
tem. Ds∗

p
 is said to be an optimal set of delays for p ∈ Ps if: (a) DS∗

p
 is a consistent set of 

delays for p; and (b) there exists F∗

p
⊆ Fp such that B ∪ Fp,0 ∪ HE ∪ DS∗

p
⊧ F∗

p
 ; and (c) For 

any consistent set of delays DS′
p
 and F′

p
⊆ Fp if B ∪ F0,p ∪ HE ∪ DS�

p
⊧ F�

p
 then |F�

p
| ≤ |F∗

p
|.

In this paper, we employ a search procedure that approximates DS∗
p
 by making three 

simplifying assumptions: (a) Delays are found one variable at-a-time, maximising the num-
ber of fluents provable for that variable; (b) At any time-instant t, fluents up to time t are 
correctly provable; and (c) The delay/4 atoms needed to prove fluents are obtained from a 
pre-defined set of abducible atoms Ap for p ∈ Ps . The details are in Procedure 1.

12 We note that this usage of Fp does not conflict with the functions of system-variables F1,… ,Fn defined 
in Sect.  3.3.

11 We conjecture that the answer to this question is also “no”, at least for the specification of Kinetic Logic 
as we have proposed.
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Example 13 (Identifying delays) Assume we are given the fluents F1 = { holds(p,   
val(x, 1), 1), holds(p, val(y, 0), 1) } ; F2 = { holds(p, val(x, 1), 2), holds (p, val(y, 1), 2) } , etc. 
Then fx,1 = holds(p, val(x, 1), 1) , fy,1 = holds(p, val(y, 0), 1) , fx,2 = holds(p, val(x,  1),  2), 
fy,2 = holds(val(y, 1), 2) , and so on. Assume there are no definitions for delay/4. Let the 
possible abducibles allowed be Ap = {delay(p, x,+1, 1), delay(p, x, +1, 2), … , delay(p,x,-
1,1),delay(p,x,-1,2), … , delay(p,y,+1,1), delay(p,y,+1,2),… } . Suppose in order to prove fx,1 
the atom dx,1 = delay(p, x,+1, 1) is required. Similarly, suppose the proof for fy,2 requires dy,2 
= delay(p, y,+1, 1) ; the proof for fx,3 requires dx,3 = delay(p, x,−1, 1) ; and for fy,4 requires 
dy,4 = delay(p, y,−1, 1) . Then A+

p,x,1
= { delay(p, x + 1, 1) } ; A+

p,y,2
= { delay(p, y,+1, 1) } 

and so on. From these, A+

p,x,1
= {(1, 1)} ; A−

p,x,1
= A+p, y, 1 = A−

p,y,1
 = ∅ ; and so on. Then 

A+

p,x
 = {(1, 1)} ; A−

p,x
= {1, 3)} ; A+

p,y
= {(1, 2)} ; and A−

p,y
= {(1, 4)} . Eventually, this yields 
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Dp,x = {delay(p, x,+1, 1), delay(p, x,−1, 1)} ; and Dp,y = {delay(p, y,+1, 1), delay

(p, y,−1, 1)}.13

Proposition 1 The set DSp constructed by Procedure 1 is a consistent set of delays.

Proof In Procedure 1, for any variable x, Dp,x will be obtained under one of the following 
conditions: (1) A+

p,x
= � , A−

p,x
= � ; (2) A+

p,x
≠ � , A−

p,x
= � ; (3) A+

p,x
= � , A−

p,x
≠ � ; (4) A+

p,x
≠ � , 

A−

p,x
≠ � ; The corresponding values of Dp,x are: (a) ∅ ; (b) {delay(p, x,+1, d+)} for some d+ ; 

(c) {delay(p, x,−1, d−)} for some d− ; and (d) {delay(p, x,+1, d+), delay(p, x,−1, d−)} for 
some d+ and d− . Therefore Dp,x is a consistent set of delays. It follows that DSp =

⋃
x Dp,x 

is also a consistent set of delays.   ◻

Remark 3 Step 4 in Procedure 1 is implemented with the usual SLDNF resolution theo-
rem-prover used by Prolog. The total number of calls to the theorem-prover is n × k × |Ap| . 
Finding maximally-frequent delays in Steps 11,17 is O(k|Ap|log(k|Ap|)) . For all variables, 
this is O(nk|Ap|log(k|Ap|)).

Since no delays are defined, they have to be abduced. Step 4 in Procedure  1 identi-
fies abducible values for delays needed to derive a fluent at time t, assuming that we have 
already derived fluents up to t − 1 , using the events up to t − 1 . However, the delay atoms 
abduced by Procedure 1 may not allow an explanation of all fluents in a pathway, because 
of the sub-optimality of the set of delays found; asynchronous change that overrides 
increase or decrease in a variable; or of some other exceptional conditions (for example, 
noise in the data).

Example 14 (Asynchronous change) Continuing the previous examples, assume that given 
data on events and fluents concerning variables x,  y,  z, Procedure 1 returns the follow-
ing: Ds ={delay(p,x,+1,1), delay(p,y,+1,1), delay(p,z,+1,1)} . Suppose the data for time-
instants 0, 1 contains the events and fluents: E0 = { happens(p, occurs(f(x), 1), 0), happens 
(p, occurs(f(y), 0), 0), happens(p,  occurs(f(z), 1), 0) } , and F0 = { holds(p, val(x, 0), 0), holds 
(p, val(y, 1), 0), holds(p, val (z, 0), 0) } , F1 = { holds(p, val(x, 1), 1), holds(p, val(y, 0), 1), 
holds(p, val (z, 0), 1) } . Then Fx,1 = holds(p, val(x, 1), 1) is provable from B ∪ F0 ∪ E0 ∪ Ds 
but Fz,1 = holds(p, val(z, 0), 1) is not provable. However, with O = {overrides(p, x, z, 1)} 
(denoting that a change in x overrides the change in z at time-instant 1), then 
B ∪ F0 ∪ E0 ∪ Ds ∪ O correctly proves Fx,1 and Fz,1 , because: 

1. initiates(p, inc, z, [0, 1]) will succeed, but not clipped(p, inc, z, [0, 1]) will fail, since 
overridden(p, z, 1) is provable;

2. initiates(p, std, z, [0, 1]) will succeed and not clipped(p, std, z, [0, 1]) will succeed since 
there exists a variable x s.t. overrides(p, x, z, 1) is provable, initiates(p, inc, x, [0, 1]) is 
provable, and overridden(p, x, 1) is not provable. Therefore holds(p, val(z, 0), 1) will 
succeed (that is, the value of z continues without change from the previous time-instant).

We will need the following:

13 It is possible that multiple delays end up having the same frequency, an we require a mechanism for 
choosing amongst them. In the experiments in this paper, we select the longer delay.



2459Machine Learning (2022) 111:2435–2487 

1 3

Definition 19 (Sufficient set of overrides) Let � = (Xs,Vs, ⋅,Ps, ⋅, ⋅) be a partially-specified 
system. For any p ∈ Ps with a set of fluents Fp and x ∈ Xs , let holds(p, val(x, vx,t, t) ∈ Fp 
and holdsp, val(x, vx,t−1, t − 1) ∈ Fp for t > 0 . Let �p,x,t = |vx,t − vx,t−1| . A set Op is said to 
be a sufficient set of overrides for p ∈ Ps iff for every overrides(p, y, x, t) ∈ Op it is the case 
that �p,y,t ≠ 0 and �p,x,t = 0.

Procedure 2 returns a sufficient set of overrides/4 atoms for p ∈ Ps . In the procedure, 
a change in variable x is overridden at time t if: (a) a change (increase or decrease) in x is 
derivable at t, but not observed in Ft (these are identified in Step 13); and (b) there exists 
at least one other variable y for which a change is derivable at t, and the change is also 
observable at t (this is identified in Step 12).

Example 15 Continuing Example 14, �p,x,1 = 1 , �p,y,1 = 1 , and �p,z,1 = 0 . Then F0
p,1

= {z} ; 
F1
p,1

= {x, y} and O = {overrides(p, x, z, 1), overrides(p, y, z, 1)}.

Proposition 2 The set Op constructed by Procedure 2 is a sufficient set of overrides.

Proof Steps 12 and 13 in Procedure 2 ensures that if overrides(p, y, x, t) ∈ Op then 
�fp,y,t ≠ 0 and �fp,x,t = 0 . By definition 19, the set Op is therefore a sufficient set of over-
rides.   ◻

Remark 4 In Procedure 2, Steps 12, 13 are implemented with the usual SLDNF resolu-
tion theorem-prover used by Prolog. The total number of calls to the theorem-prover is 
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2 × n × k , where n is the number of system variables and k is the number of time-instances 
for the pathway.

We now have all the pieces to construct HE and HF . This is done in Procedure 3. The 
procedure that invokes an ILP engine to construct generalisations where appropriate. Prac-
tical details related to the use of ILP are in “Appendix B”.

We have already presented examples of identifying Dsp and Op . In Procedure 3, F′ are 
the fluents derivable using the definitions in Dsp and Op , given B,F0 and HE (that is, F′ is 
redundant given B ∪ F0 ∪ HE ∪ Dsp ∪ Op ). (F − F�

) are the fluents not derivable using 
the abduced atoms for delays and overrides. In the following we restrict ourselves to pre-
sent an example of the use of ILP to construct HE in Step 3 of Procedure 3.

Example 16 (Identifying HE ) Let us suppose that we are given fluents and events for a sys-
tem consisting of the simple negative feedback loop in Fig. 2, reproduced here, with the 
values of the functions (X, Y) in parentheses: 
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For a partially-specified system � = (Xs,Vs, ⋅,Ps, ⋅, ⋅) and p ∈ Ps , system behaviour 
consists of (a) E, the events, represented by:

and (b) F, the fluents, represented by: {initially(p, val(x, 0)), initially(p,  val(y,  0)),  
holds(p,  val(x,  1),  1), holds(p,  val(y,  0),  1), holds(p,  val(x,  1),  2), holds(p,  val(y,  1),  2),   
…} . Although, correctly, F0 = {initially(p, val(x, 0)) , initially(p, val(y, 0))} , for uniform-
ity we will take F0 = {holds(p, val(x, 0), 0) , holds(p, val(y, 0), 0)} . Let ex,0 = happens(p,   
occurs(f(x), 1), 0), and ey,0 = happens(p, occurs(f(y), 0), 0), and so on. Thus, E+ in Step 1 
of Procedure 3 is the set {ex,0, ey,0, ex,1, ey,1 …} . Each variable is Boolean-valued, so E− in 
Step 2 is the set {¬happens(p, occurs(f (x), 0), 0) , ¬happens(p, occurs (f (y), 1), 0),…}.

Suppose we use an ILP implementation based on the description in Muggleton (1995). This 
first constructs “most-specific clauses” and then constructs generalisations. Using language 
restrictions L that ensure that, along with the background knowledge B, only fluents Ft are used 
when constructing most-specific clauses for events in Et , suppose the following represent most-
specific clauses for ex,0 and ey,0 : 

 (where opposite/2 is assumed to be an auxiliary predicate defined in the background 
knowledge B). The ILP engine is capable of finding generalisations like: Hx and Hy (here 
upper-case letters are variables, as usual): 

B ∪ F ∪ Hx ∪ Hy ⊧ E+ and B ∪ F ∪ Hx ∪ Hy ∪ E− is consistent, hence Hx ∪ Hy is a pos-
sible hypothesis from the ILP engine. To accommodate generalised Kinetic Logic, we need 
to go beyond the expressive power of predicates like same/2 and opposite/2. It is useful to 
have instead predicates for generalised forms for positive and negative interactions in B: 

Then, the most-specific clauses become: 

happens(p, occurs(f (x), 1), 0), happens(p, occurs(f (y), 0), 0),

happens(p, occurs(f (x), 1), 1), happens(p, occurs(f (y), 1), 1), etc.,
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Possible generalisations are:

Remark 5 In Procedure 3, the number of clauses examined for the construction of HE in Step 3 
can be estimated as follows. In the worst-case, for each e ∈ E+ , the ILP engine: (a) constructs 
a most-specific clause ⊥e ; and (b) constructs generalisations of ⊥e . With the use of definitions 
for positive and negative interactions as in Example 16, and the use of a L that prevents the use 
of fluents across time-points, ⊥e will have at most n = |Xs| literals. If the number of interacting 
variables is bound to a value m, then the number of generalisations of any ⊥e will be O(nm) . The 
total number of clauses to be tested is therefore at most |E+|O(nm) = |E|O(nm) . If the maximum 
number of time-instants on any pathway is k, then this bound is k|Ps|O(nm) . The complexities 
of Steps 8, 9 are in Remarks 3, 4. Each of those are now multiplied by a factor of |Ps|. Thus, 
we expect the complexity of constructing explanations to be dominated by: (a) the number of 
system-variables n; and (b) the maximum number of interactions m allowed for a variable.

Proposition 3 Let the background knowledge B be C ∪ K ∪ A
�
 , where C,  K are the axi-

oms in Figs. 4, 5; and A
�
 are auxiliary definitions. Let ILP be a procedure s.t. given: B, a 

language L , positive examples E+ and negative examples E− , ILP returns a set of clauses 
C ∈ L that satisfies B ∪ C ⊧ E+ and B ∪ C ∪ E− is consistent. If H is constructed by Pro-
cedure 3 then B ∪ F0 ∪ H ⊧ E ∪ F.

Proof 

(a) Given the constraints on ILP, HE in Step 3 of Procedure 3 satisfies B ∪ F ∪ HE ⊧ E

(b) Let B ∪ F0 ∪ HE ∪ Ds ∪ O ⊢ F� , where F′
⊆ F in Step 13 of Procedure 3. Since 

⊢ is sound, B ∪ F0 ∪ HE ∪ Ds ∪ O ⊧ F� . Since HF = Ds ∪ O ∪ (F − F�
) , 

B ∪ F0 ∪ HE ∪ HF ⊧ F�
∪ (F − F�

)

From Steps a, b and H = HE ∪ HF in Procedure 3, the result follows.   ◻

We note that although we are able to establish a form of algorithmic correctness for Proce-
dures 1–3, there at least two assumptions that may not be immediately apparent. First, since 
Procedure 3 abduces facts for delays before it abduces overrides, there is a possibility that the 
resulting set of delays, although consistent, may not be the same as the true delays charac-
terising the system. There is an assumption that changes are not overridden very often (this 
is consistent with the biological observations by Thomas that simultaneous requirements of 
change would occur very rarely, if at all in biological systems). If this is so, then since Proce-
dure 1 attempts to find maximally frequent values for delays, we would expect that incorrect 
delay values would usually not be returned. Procedures 1 and 2 may also not find any defini-
tions simply because the data do not contain sufficient information of changes in values of 
system-variables. For example, variable x may not change value at all in the data provided: in 
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this case, no delays for x would be abduced. Avoiding this requires an assumption that the data 
always contain sufficient information to abduce complete definitions for delays and overrides.

5.3  Evaluation of explanations

We use some simple quantitative and qualitative assessments of the explanations constructed 
(H’s from Procedure 3). Quantitative assessments are the usual ones of Precision, Recall, and 
Accuracy. From the logical model, we can obtain: (a) The number of interactions correctly iden-
tified ( N1 ); (b) The number of interactions incorrectly identified ( N2 ); and (c) The number of 
interactions not identified ( N3 ). Then Precision = N1∕(N1 + N2) and Recall = N1∕(N1 + N3) . 
Further, the Accuracy of the logical model allows us to assess if the model has correctly identi-
fied the logical relations between the interactions. Accuracy is simply the proportion of states 
correctly explained by the logical model. For experiments with synthetic data (see Sect.  6), 
we are additionally able to directly compare the delays abduced against the values used by the 
simulator to generate the synthetic data. We obtain the number of delays correctly identified 
( D1 ) and the number of delays incorrectly identified ( D2 ). Then the accuracy of prediction is 
Accuracy = D1∕(D1 + D2) . In addition to these measures, we will also be interested in the 
complexity of explanations, measured simply by the number of clauses.

Qualitative evaluation of the explanations are in the form of interaction diagrams as directed 
graphs, with system-variables at nodes and edges labelled either “+V” or “-V”, where V > 0 denotes 
the value taken by a function. Details of extracting interaction diagrams are in “Appendix B”.

6  Case studies of synthetic and real systems

In this section we demonstrate the identification of feedback loops and delays. Specifically, 
we consider identification of the following: 

(a) Simple synthetic structures consisting of negative and positive feedback loops, that 
form the basis of many complex biological systems; and

(b) Structures of real biological phenomena containing feedback loops. We focus on the 
invasion of a host organism by a phage, and the production of antibodies by a host 
organism on the introduction of a foreign body (antigen).

For (a), we will use data from simulations resulting from combinations of delays. For (b), 
we will use data from the biological literature. In each case, we assess the identification of 
interactions in the manner adopted in network identification, namely, by the correctness (pre-
cision) and completeness (recall) of the interactions in the logical model. For synthetic data 
(a), we are able to check the delays identified directly against those used for simulation. For 
the systems in (b), we compare the delays identified against what is reported in the literature. 
This is usually in the form of a relative ordering amongst the values. Additionally, the repre-
sentation employed for (a) is simple (or naive) Kinetic Logic, in which variables are Boolean-
valued. For (b), we are able to consider both simple and generalised Kinetic Logic.

In all cases, we distinguish between identifying structure and identifying parameters. By 
structure, we mean: (a) identification of the interaction edges along with their labels, and (b) the 
logical interaction between these interactions (for example, variable y = ¬x ∨ z to denote that y 
is the disjunction of a negative interaction with x and a positive interaction with z). By param-
eters, we mean the identification of delays for the (unit) increase and decrease of the variables.
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6.1  Synthetic systems

6.1.1  Materials

In a previous section, negative and positive feedback were described as being determined 
by the parity of negative interactions. Specifically, an odd number of negative interactions 
in a loop results in negative feedback, and an even number of negative interactions results 
in positive feedback. In Chapter 7 of Thomas (1977), several simple forms of loop-tem-
plates are described, which are intended as building-blocks for many biological systems. 
The principal structures identified are: (a) Simple 2- or 3-variable positive or negative 
feedback loops; (b) Positive or negative loops with external “grafts” joined by AND or OR 
connections; and (c) Tangent loops, consisting of positive- or negative-loops with a com-
mon element. In this section we consider identifying each of these structures using posi-
tive- or negative- feedback loops. The structures we consider are in the table below: 

S.No. Name Description

1 P_LOOP 2-var positive loop
2 N_LOOP 2-var negative loop
3 P_LOOP_AND 2-var positive loop with AND graft
4 P_LOOP_OR 2-var positive loop with OR graft
5 N_LOOP_AND 2-var negative loop with AND graft
6 P_LOOP_OR 2-var negative loop with OR graft
7 T_LOOP_PP Tangent loop with two coupled 2-var positive loops
8 T_LOOP_NN Tangent loop with two coupled 2-var negative loops
9 T_LOOP_PN Tangent loop with coupled 2-var positive and 2-var 

negative loops

The template-structures for these loops are in Fig. 6.

6.1.2  Method

Our method consists of the following stages: 

Data generation.  We will use simulated data for all the systems (1)–(9) above. The simu-
lations require: (a) A start state; (b) Delays for increase and decrease in 
the value of the variables. In this section, all variables are Boolean-val-
ued. Kinetic Logic does not require delays dx+ and dx− of a variable x to 
be equal to each other, or to the delays of any other variable. For experi-
ments here, we will assume each delay is in the range 1… n , where n is 
the number of variables in the system considered. That is, for a 2-vari-
able system, the delays dx+ and dx− for a variable x can each take values 
of 1, 2 and there will be 16 combinations of delays possible. Each com-
bination will result in a pathway. The simulator obtains the sequence 
of states in a pathway using the axioms of the Event Calculus, Kinetic 
Logic, the domain-specific axioms describing the logical functions in the 
system, and a specific combination of delays for the variables. The simu-
lator also ensures that transitions between states are asynchronous (that 
is, only one variable changes value from one state to another). Finally, we 
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assume the grafts required in tasks (3)–(6) are Boolean-valued input vari-
ables. A summary of the data generated by the simulator is below: 

S.No. Name Data summary

1–2 P_LOOP 16 pathways for each loop,
N_LOOP arising from 4 delays for each of 2 variables

3–6 P_LOOP_AND, P_LOOP_OR 16 pathways for each loop, 8 with graft-variable = 1
N_LOOP_AND, N_LOOP_OR and 8 with graft-variable = 0

7–9 T_LOOP_PP, 16 pathways for each loop, sampled from
T_LOOP_NN 729 possible pathways arising from
T_LOOP_PN 9 delays for each of 3 variables

 In all cases, each pathway consists of values for an initial state (that 
is, fluents and events) at t = 0 followed by the values of the states at 10 
successive instants ( t = 1… 10).

Learning.  Given a set of pathways, the axioms of the Event Calculus and Kinetic 
Logic and any auxiliary definitions, we construct clauses to complete 
the Kinetic Logic axioms by learning definitions for the occurrence of 
logical functions and for the delays as described in Sect. 4.

Evaluation.  Quantitative measures of evaluation are Precision, Recall, Accuracy 
and Size as described in Sect. 5.3. For problems involving sampled data 
(that is (7)–(9)), we repeat the experiment

6.1.3  Results

The results obtained are tabulated below. 

S.No. Name Structure Parameters Theory

Prec. Recall Acc. Acc. Size

1 P_LOOP 1.0 1.0 1.0 1.0 12
2 N_LOOP 1.0 1.0 1.0 1.0 12
3 P_LOOP_AND 1.0 1.0 1.0 1.0 12
4 P_LOOP_OR 1.0 1.0 1.0 1.0 12
5 N_LOOP_AND 1.0 1.0 1.0 1.0 4
6 N_LOOP_OR 1.0 1.0 1.0 1.0 12
7 T_LOOP_PP 1.0 1.0 1.0 1.0 25
8 T_LOOP_NN 1.0 1.0 1.0 1.0 25
9 T_LOOP_PN 1.0 1.0 1.0 1.0 25

That is, in all cases, the theory identified reconstructs the structure and parameters per-
fectly. These results provide the springboard for examining data for real biological systems.

We note that the purpose of the experiments here has not been to check the validity 
of the upper-bound on time-complexity obtained in Remark 5. Synthetic experiments that 
examine increase in time for theory construction could be devised: for example, identifica-
tion of networks with varying numbers of interacting variables. Remark 5 suggests that 
increasing the number of interactions would increase the time for theory construction. This 
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is consistent with results obtained elsewhere in network identification (Friedman et  al., 
2000). We defer such experiments for future work, but note that some evidence for this 
is apparent in the identification of tangent loops, which have more interactions and take 
longer to identify than other simple feedback loops.

6.2  Real systems

We now consider identification of two biological systems concerned with the immune sys-
tem response in vertebrates (interactions between lymphocytes), and the classic model of 
invasion of a bacterial cell by a virus (the well-known phage � model). Brief biological 
descriptions of these systems are in “Appendix C”: here we simply note that the models 
considered involve both simple and generalised Kinetic Logic.

6.2.1  Method

Data Extraction  Data for the immune system are states identified in Thomas and D’Ari 
(1990). Data for the Boolean-model for phage infection are from Chap-
ter 17 of Thomas (1977), and for the generalised model are from Thief-
fry and Thomas (1995). The details are summarised below: 

S. No. Name Description

1. IMMUNE_B Data for 6 pathways from a Boolean-valued model
for T

h
 and T

s
 lymphocyte-interaction. 3 pathways

are in the presence of an antigen, and for 3 pathways the antigen
is absent. The pathways with the antigen demonstrate development
of immunity or immune paralysis and the pathways without the antigen
contain a “memory” state that enables faster response to the antigen

2. IMMUNE_G Data for 13 pathways from a multi-valued model
for T

h
 and T

s
 lymphocyte-interaction. 4 pathways

are in the absence of an antigen; 4 with antigen present in
moderate levels and 4 at high levels. Lymphocyte-cells are also
considered at 3-levels of concentration

3. PHAGE_B Data for 7 pathways from a Boolean-valued model
for the interaction between cI, cro and cII.

4. PHAGE_G Data for 4 pathways from a multi-valued model
for interaction between cI, cro, cII and n. 1 pathway
is the one most likely to have been followed for establishing host
immunity (lysogeny)and 3 pathways leading to cell lysis. cI has
3 values, cro has 4 values, cII and n have 2-values each.

Fig. 6  Template structures for the loops considered in this section. The leftmost structure is for loops (1)–
(2), the middle for loops (3)–(6), and the rightmost for loops (7)–(9)
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 As with the synthetic data, pathways will consist of the initial state, fol-
lowed by states for 10 additional time-steps.

Learning  As with the synthetic systems, given the set of pathways described 
above, and the axioms of the Event Calculus and Kinetic Logic, we con-
struct clauses to complete the Kinetic Logic axioms by learning defini-
tions for the occurrence of logical functions and for the delays.

Evaluation  As was done with synthetic data, we are able to assess the efficacy of 
structure identification by examining precision, recall, and accuracy. The 
literature does not provide explicit values of delays, and we are therefore 
not able to obtain accuracy estimates for delays, and rely instead on the 
accuracy of the theory to guide us on whether the delays hypothesised 
are appropriate.

  We also tabulate the size of the theory constructed (measured by the number of 
clauses). We only consider learning overrides clauses if the abduction of delays 
does not explain all of the data.

6.2.2  Results

The results obtained are tabulated below. 

S.No. Name Prec. Recall Accuracy Size Time(s)

1 IMMUNE_B 1.00 1.00 1.00 9 0.03
2 IMMUNE_G 0.71 1.00 0.92 17 0.12
3 PHAGE_B 1.00 1.00 ‘.00 17 0.06
4 PHAGE_G 0.89 0.80 0.92 28 0.

The accuracy on 3 of the 4 problems suggest that the data may contain asynchronous 
changes. The result with additionally learning overrides/4 rectifies this, as shown below: 

S.No. Name Prec. Recall Accuracy Size Time(s)

2 IMMUNE_G 0.71 1.00 1.00 21 0.07
4 PHAGE_G 0.89 0.80 1.00 31 0.006

The theories for the generalised Kinetic Logic models are reproduced in “Appendix C”, 
Differences exist between the actual model and the model identified. The tabulation above 
suggests that deficiencies in prediction—such as they are—appear to be with models in 
generalised Kinetic Logic (models IMMUNE_G and PHAGE_G). The actual interactions 
and those obtained from the models identified for these cases are shown below:
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The structures on the left are representations of the models for immune response and 
phage infection in generalised Kinetic Logic. For the immune system h and s denote the 
presence of cells from the Th and Ts compartments, and for the phage infection, cI, cro, cII 
and n denote products of the genetic regulators CI, Cro, CII and N respectively. For models 
in generalised Kinetic Logic, a +n on an edge from x to y denotes that x ≥ n exerts a posi-
tive interaction on y. A value of −n on an edge from x to y denotes that x ≥ n exerts a nega-
tive interaction on y. The edges in these models are all conjunctions.

To understand possible deficiencies in our approach, we focus here on the PHAGE_G 
model, since this is the most complex model identified in this paper. The tabulation sug-
gests two kinds of errors. Errors of omission result in interaction edges not being identi-
fied, leading to reduced Recall. Errors of commission result in additional interaction edges 
being identified, leading to reduced Precision. For PHAGE_G, the first error is due to lack 
of data, and the second is an artefact of some shortcomings in the interaction diagram. We 
consider each in turn.

The interaction edge not identified is the autocatalytic loop (self-loop) on cI. It is rel-
evant to note the following discussion in Thomas and D’Ari (1990), p. 242 on this:

The positive loop [which] provides indirect autocatalysis of cI ...Knowing that it 
exists, we must now go back one step and ask whether it is still necessary to postulate 
a direct positive control of cI on itself. The fact that this loop has been demonstrated 
experimentally does not mean that it is necessary to account for the observed behav-
iour: it could be a case of “belt and suspenders”. However, it is, in fact, essential. In 
the absence of the cI+ loop, we cannot account for the block of CI expression at high 
temperatures ...

The data used here do not contain temperature-specific expression of CI: it is therefore 
unsurprising that autocatalysis of cI is not discovered. We would expect inclusion of path-
ways with temperature values of low or high will allow the identification of this edge.

The interaction diagram from the hypothesised model shows two auto-catalytic loops on 
cro, one of which is apparently spurious. The paradox of proposing both “+3” and a “-3” 
auto-catalytic loops on cro is resolved if we consider the model with the multi-level values 
for f(cro) (that is, the levels for the gene complex Cro). It then becomes clear that the “+3” 
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loop is used to raise the expression level of f(cro) from 2 to 3; and the “-3” loop is used to 
lower the expression level of f(cro) from 3 to 2. In fact, this is the correct behaviour of the 
lysis pathways in Thieffry and Thomas (1995). All these pathways end with an oscillation 
between cro = 2 and cro = 3 . Correctly, therefore, this is not a case of lower precision: the 
original interaction diagram in Thieffry and Thomas (1995) does not capture this oscilla-
tory behaviour. The extra edges in the interaction diagram for IMMUNE_G can similarly 
be explained: we do not pursue this further here.

7  Related work

There is a very large literature on modelling in systems biology and, increasingly, machine 
learning is viewed as a method to acquire such models from data (see, e.g., de Jong, 2002; 
Klipp et al., 2016; Delgado & Gomez-Vela, 2019). However, most current approaches lack 
the ability to learn executable models, which has been proposed as a key requirement for 
models that can assist in understanding biological systems (Clarke & Fisher, 2020).

Logic-based approaches to event representation and modelling have the advantage of 
a formal, declarative semantics compared to process or stream-based systems that have 
informal or procedural semantics, which can be important for validation and explainability 
(Artikis et al., 2010).

The Event Calculus has many variants, e.g., for online reasoning (Artikis et al., 2012) 
and probabilistic inference (Artikis et al., 2019); see Mueller (2008) for an overview. In the 
Event Calculus, due to the default assumption of persistence (Shanahan 1999) of fluents 
holding values, it is not necessary to specify the entire state vector of the system at every 
time instant. Two further advantages of the Event Calculus are that it enables implementing 
temporal reasoning in a non-monotonic way (the so-called “common-sense law of inertia” 
using the closed-world assumption as in logic programming), as well as domain-specific 
knowledge in a declarative way (Shanahan 1999).

In the so-called “normal” setting ILP can be viewed in terms of theory revision via the 
operations of generalisation or specialisation of an existing theory (Nienhuys-Cheng & de 
Wolf, 1997). When the task is to generalise or “complete” an existing theory by adding 
clauses this has been referred to as “theory completion”, with a particular focus within ILP 
on the learning of non-observational predicates, i.e., predicates for which instances are not 
given in the training set (Muggleton & Bryant, 2000). Learning an Event Calculus logic 
program fits naturally into the framework of theory completion, since there is an existing 
theory (the Event Calculus axioms) and typically the goal is to learn the domain-specific 
axioms, where these clauses are not restricted to be definitions of observational predicates 
(Moyle & Muggleton, 1997). Deduction or abduction can be used to derive additional 
instances to add to the training examples, which can then be used in induction (Kakas 
& Michael, 2020). Such approaches have often been proposed for learning in dynamic 
domains, where the problem has the following characteristics: observed data tend to be 
values of system variables over time, the task usually requires learning (non-observational) 
predicates defining how the observed data represents the effects of events or actions occur-
ring in components of the system (non-observational predicates), and available background 
knowledge on the system structure is incomplete (Muggleton & Bryant, 2000; Moyle, 
2003; Ray, 2008; Akutsu et al., 2009; Inoue et al., 2013).

Several such approaches study applications to biological systems, such as metabolic net-
works (Muggleton & Bryant, 2000; Ray, 2008), signalling networks (Inoue et  al., 2013) 
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and gene regulatory networks (Akutsu et al., 2009), but not in the Event Calculus. Using 
abduction, the work by Maimari et al. (2014) identified logical models for regulatory net-
works. An Event Calculus representation was used to model a system of metabolic reason-
ing and learn definitions of the “happens” predicate, although without the ability to learn 
delays, in XHAIL (Ray, 2008). Learning the “happens” predicate can be thought as a form 
of learning non-observational predicates, in which the target predicate is not the predicate 
used in examples but a predicate used in the body of background clauses. This facility is 
available in a number of systems like XHAIL, TAL (Corapi et al., 2010), ASPAL (Corapi 
et al., 2012), ILED (Katzouris et al., 2015), ILASP (Law et al., 2020) and FastLAS (Law 
et al., 2020). The formalism of Logic Production Systems (LPS) has semantics based on an 
event theory, which is related to the Event Calculus, but is more oriented towards reactive 
applications such as agent programming, and does not include any methods for learning 
(Kowalski & Sadri, 2015). It will be interesting to see how to formulate learning Kinetic 
Logic programs within these systems, and to this extent the approach in this paper should 
be seen as a baseline technique rather than a definitive way to learn such programs.

A relational sequence pattern mining approach, based on a representation with sev-
eral delay-type predicates where fluents representing a multi-dimensional data stream are 
indexed by events, was able to learn sequences defining stable states and attractors for 3D 
cellular automata, but did not use Event Calculus inference (Mauro et  al., 2007). Event 
Calculus inference was used in relational reinforcement learning to enrich and constrain 
the exploration space with planning to reach goals, and by representing reward values as 
fluents could acquire domain-specific axioms about the learning task (Nickles, 2012). 
Business process mining using first-order decision trees (TILDE) proposed the use of an 
Event Calculus representation for events, but required the generation of negative events 
(Goedertier et al., 2007).

However the Event Calculus is known to be difficult to learn, due to the need for non-
observational predicate learning where multiple predicates may need to be learned, and 
the dependency of clauses on negated literals with inference by negation as failure (Moyle, 
2003). ILP was used to learn programs in the Event Calculus in Moyle and Muggleton 
(1997). However, this required changing the EC representation by merging the initiates 
and terminates predicates into a single predicate to allow learning in the setting of Inverse 
Entailment. This caused difficulties when learning definitions of domain-specific axi-
oms, leading to subsequent work that applied SOLD-resolution to enable the derivation 
of abducibles to be used in learning (Moyle, 2003), although this did not study biological 
applications.

To scale Event Calculus learning an online version of XHAIL called OLED was devel-
oped for application to human activity recognition from streaming data (Katzouris et al., 
2016). This was able to learn the definitions of the domain-specific predicates initiated_at 
and terminated_at in a simplified Event Calculus for real-time processing (Artikis et al., 
2012), that is, to learn the conditions under which and the time at which a fluent will begin, 
or cease, to hold. These definitions in turn then determine the occurrence of events.

An issue here is that what is observed is not these predicates on fluents, but the “hap-
pens’ predicate on events. As with earlier theory completion approaches, a key problem 
addressed in OLED is how to apply abduction through negation and avoid the limitation 
to observational predicate learning of other online learners (Katzouris et  al., 2016); the 
online learning method was subsequently extended with a statistical relational framework 
in which using online gradient descent and Hoeffding bounds it was able efficiently to learn 
Event Calculus rules from noisy data (Katzouris et al., 2018). However, the Event Calculus 
representation used was the same as in OLED.
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There has been a large amount of work on learning Boolean networks from data (see 
the methods and reviews in, e.g., (Akutsu et al., 2009; Videla et al., 2015), but this work 
does not involve feedback loops. Inoue and co-workers (Inoue, 2011; Inoue et al., 2014) 
established the very important connection between the state transition relation of dynami-
cal systems models and the immediate consequence operator of logic programming seman-
tics. By representing system states before and after a transition as interpretations of a logic 
program (Lloyd, 1987), a paradigm for identification of dynamic models called “learning 
from interpretation transitions” (LFIT) was introduced. Normal logic program clauses are 
learned to define, for each component of the successor state, the relevant conditions on the 
predecessor state. Clauses are indexed with a time value, so feedback and stable states or 
attractors (cycles of length ≥ 1 ) can be modelled. Since the representation is non-mono-
tonic, both positive and negative loops can be identified. However, time delays in the sys-
tem cannot be modelled.

In several follow-up works this approach was extended in number of directions, which 
can be viewed as a kind of parameterisation of the LFIT logical framework (Inoue et al., 
2014). For example, learning with delays in the system was achieved by extending one-step 
transitions to allow values of system variables from up to k previous steps to be included 
in clauses (Ribeiro et al., 2015). This approach also used multi-valued variables, but was 
restricted to synchronous updates. Additionally, in Ribeiro et  al. (2018) the structure of 
normal logic programs to compute successor states as in LFIT was preserved while chang-
ing the form of atoms to consist of variables defined on continuous domains. This has the 
advantage of removing the need for discretization of real-valued datasets prior to learning, 
which can increase error, since effectively the thresholds on variable values are determined 
as part of the learning process.

The LFIT logical framework has also been extended to enable learning of multi-val-
ued logic programs with synchronous or asynchronous updates in system model dynamics 
(Ribeiro et  al., 2018). Essentially, the asynchronous semantics imposes a restriction that 
no more than one variable at a time can be updated in the successor state of a transition, 
which differs from the more common synchronous semantics in which multiple variables 
can change their values (in fact, arbitrary subsets of variables whose values should change 
can actually be updated in the successor state—this is called the “general semantics”). This 
framework also allows concurrent rules, i.e., rules matching the current state that update 
different variables in the successor state, which permits non-deterministic transitions. 
However, this paper did not enable delays to be learned.

The formalism of timed automata networks enables modelling with delays, and allows 
for model checking, with inference of delay constraints (Ahmad et  al., 2008). This was 
used in Ben Abdallah et al. (2017) to learn networks with delays, but unlike our approach 
this requires the system topology (or wiring diagram, in the form of all component interac-
tions) to be given to the algorithm as an input. This is also required in several approaches 
for identification of biological system networks (as in, e.g., Akutsu et al., 2009).

8  Conclusions

Feedback loops control the dynamic behaviour of a wide-range of biological systems, most 
prominently those exhibiting either oscillatory control (like homeostasis) or multi-stability 
(like cell differentiation). In this paper, we revisited seminal work by Rene Thomas and 
his colleagues, that explicitly focuses on a logic-based approach to modelling biological 
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feedback. We have proposed a formal specification for Thomas’ Kinetic Logic, and a 
method of implementing the specification using an Event Calculus. We have also a method 
of learning explanations for data using a combination of a standard form of Inductive 
Logic Programming and a specialised form of abduction. There are three questions that can 
be raised immediately.

First, why Kinetic Logic? Our motivation for the choice of Kinetic Logic is the same 
as the motivation proposed by Thomas, namely, the need for a formal language that is 
more precise than verbal descriptions employed by biologists, yet able to approximate 
sufficiently closely the precision afforded by differential equations. While there are sev-
eral hybrid languages combining logical and differential descriptions that are particularly 
relevant to the modelling of cyber-physical systems (e.g., Platzer (2018)), Kinetic Logic 
has had nearly 4 decades of research specifically on modelling biological feedback (the 
early papers on Boolean-valued Kinetic Logic date to Thomas, 1977 and recent work is in 
Bibi et al., 2016). This has resulted in demonstrations of how a wide range of biological 
phenomena can be modelled. Additionally, there is clarity also on the theoretical connec-
tions to a category of differential equations (Snoussi, 1989). It is, therefore, the natural first 
choice to consider when constructing logical models for such systems.

Granting the choice of Kinetic Logic, why use the Event Calculus? The dynamics of a 
form Kinetic Logic (albeit not exactly as proposed by Thomas and colleagues) has been 
modelled elsewhere by the transitions of a stopwatch automaton (Ahmad et al., 2008), and 
formalisations exist of aspects of Kinetic Logic as a temporal logic (Bernot et al., 2004). 
These formalisations–in our view–do not represent some key concepts of Kinetic Logic as 
naturally as is done by the Event Calculus. We have in mind here: the treatment of logical 
functions as events acting as initiators of change values of system variables; that events 
triggering change can be overridden; and values persist unless a change is initiated. We are 
conscious, however, that naturalness of a representation is not necessary for effective mod-
elling or effective learning of models.

Thirdly, why ILP? Logic programming is the usual choice for implementing an Event 
Calculus formulation, and an answer to this question is obvious enough, especially given 
past work on the use of ILP to learn clauses for Event Calculus programs (Moyle, 2003). 
But the use ILP as the vehicle for learning is not simply one forced by the choice of 
the Event Calculus or its implementation. Rather, our motivation for ILP stems primar-
ily from its flexibility to use background knowledge for system identification. We have 
demonstrated the utility of this in our previous work on system-identification of transition 
systems (Bain and Srinivasan, 2018) and is shown here to some extent by the use of back-
ground knowledge defined using predicates used by the Event Calculus formulation. The 
use of ILP allows the incorporation of domain-knowledge, which has not been exploited 
in the case studies we have shown here (for example in the form of the logical functions, 
based on what may be biologically known about interactions between variables). Ignor-
ing domain-knowledge, for Boolean-valued variables, any technique for hypothesising 
DNF formulae in propositional logic could be used to identify the logical functions. If 
the structure of interactions is known, then the approach in Ahmad et al. (2008) allows 
the synthesis of delays for a timed automaton, which in turn can be used as abductions in 
proofs for the fluents. The specification of an ILP system is sufficiently general to allow 
both of these forms of learning to be incorporated: the implementation of ILP used here 
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(Aleph) certainly allows this. Additionally, of course, it handles the non-Boolean case, as 
shown here.

This paper does not report on the identification of Kinetic Logic theories in the presence 
of noisy or missing data. We are nevertheless able to say something about this. Currently, 
we rely on the ILP and abductive machinery to deal with noisy data: usually, this results 
in occurrences of events being left ungeneralised at time-instants containing noise. Delays 
abduced for such time-instants will typically be less frequent, and therefore not selected 
for abduction. In some ways, this is akin to the approach taken in Bain and Srinivasan 
(2018) where (ultimately infrequent) transitions are invented to account for noisy data. The 
further step taken in Bain and Srinivasan (2018) is however not in place here, namely the 
use of probabilities on transitions, estimated from data. Here, this will require us to move 
from the classical Event Calculus to a probabilistic form of the Event Calculus (such as 
those developed in McAreavey et al., 2017 and Artikis et al., 2019). The current approach 
also has no mechanism for dealing with missing data: we expect a form of EM-like guess-
work and checkwork will be needed to address this. We reinforce that in Kinetic Logic, the 
logical functions correspond to actual biological entities (like genes or operons), that are 
in principle, observable. Therefore, missing values, can be both for system-variables or the 
values of logical functions.

Finally, the reader may be concerned about the scalability of the approach when identi-
fying complex systems. The complexity analysis we have in the paper indicates that impor-
tant factors are the number of variables, and the number of interactions between variables. 
More generally, our position is similar to that taken by Thomas, in that the only scalable 
way to understand complex biological systems is to consider its composition by simpler 
sub-units. The formulation of Kinetic Logic does this by using independent definitions of 
logical functions each of which typically depends only a few system-variables. As we have 
seen in the case studies here, each logical function can represent the collective behaviour 
of several regulatory elements (N and Cro for example represent the action of many genes). 
Similarly, the system-variables can refer to more than one entity (like groups of Th and Ts 
cells). The apparent simplicity of Kinetic Logic models is therefore for conceptual under-
standing, rather than computational convenience.

Appendix A: Correctness of the event calculus implementation 
of kinetic logic

Let 𝜎 = (Xs,Vs,Fs,Ps,Ds,≻) be a system and LT
�
 be a Kinetic Logic system, with �p hav-

ing its usual meaning. Let Ip be a consistent initialisation for �p (see Sect. 4.2). We refer to 
the definitions in Fig. 4 as the core-axioms of the event-calculus, and denote it by C. The 
definitions in Fig. 5 are the axioms of Kinetic Logic, and denoted by K. We assume that 
correct definitions of Fs,Ps,Ds,≻ are encoded by happens/3, pathid/1, delay/4, and over-
rides/4. We collectively denote these by A

�
 ; and let B = C ∪ K ∪ A

�
 . We want to establish 

the following: 

Soundness  If B ∪ Ip ⊢ holds(p, val(xi, vi,k), k) then (xi = vi,k) ∈ sk
Completeness  If (xi = vi,k) ∈ sk then ( B ∪ Ip ⊢ holds(p, val(xi, vi,k), k))
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In this section, we prove the following about the implementation, for the restricted case 
≻= � . That is, we ignore overrides, which may be justifiable in practice if the time-steps 
refer to sufficiently small time intervals. A proof for ≻≠ ∅ can be constructed, but involves 
a complex double-induction step (over ordering of variables, and over time). We do not 
present this here.

Before proceeding to the proof, we will introduce the following macros and use them in 
proving the correctness of the implementation.

initiates(p, inc, val(x, v), [j, k]) denotes initiates(p, occurs(f (x), ⋅), val(x, v), [j, k]) ∧
                                         holds (p, val(x, v1), k − 1) ∧v = v1 + 1

initiates(p, dec, val(x, v), [j, k]) denotes initiates(p, occurs(f (x), ⋅), val(x, v), [j, k]) ∧
                                         holds (p, val(x, v1), k − 1) ∧v = v1 − 1

initiates(p, std, val(x, v), [j, k]) denotes initiates(p, tick, val(x, v), [j, k]) ∧            
                                         holds (p, val(x, v1), k − 1) ∧v = v1
We note the following remarks before proceeding to prove the correctness of the imple-

mentation. The remarks assume a system � , a Kinetic Logic system LT
�
 . B = C ∪ K ∪ A

�
 

and Ip is a consistent initialisation (see Sect. 4.2).

Remark 6 (Consequences of ≻= � ) If ≻ is the ∅ , the following hold:

• terminates(p, occurs(f (x), v�
j
), val(x, vk), [j, k]) iff fchanges(p, f (x), j, k − 1).

• if B ∪ Ip ⊢ initiates(p, inc, val(xi, vi,k), [j, k]) then B ∪ Ip ⊢ terminates(p, tick, val(xi, v),
[k − 1, k]) for all v.

• if B ∪ Ip ⊢ initiates(p, dec, val(xi, vi,k), [j, k]) then B ∪ Ip ⊢ terminates(p, tick, val(xi, v),
[k − 1, k]) for all v.

Remark 7 (Proof constraints for initiates/4) 

1. The refutation proof for initiates(p, inc, val(xi, vi,k+1), [j, k + 1]) from B ∪ Ip will only 
succeed if the following constraints hold:

• delay(p, xi,+1, d) ∈ B such that j + d = k + 1 ; and
• B ∪ Ip ⊢ rate(p, xi, k + 1, d, rk+1−d) ∧ rk+1−d > 0

• B ∪ Ip ⊢ rate(p, xi, k + 1, 1, rk) ∧ rk > 0

• B ∪ Ip ⊢ holds(p, val(xi, vi,k), k) ∧ vi,k+1 is vi,k + 1

• B ∪ Ip ⊢ happens(p, occurs(f (xi), v
�

i,j
), j) for some v′

i,j

2. The refutation-proof for initiates(p, dec, val(xi, vi,k+1), [j, k + 1]) from B ∪ Ip will only 
succeed if the following constraints hold:

• delay(p, xi,−1, d) ∈ B such that j + d = k + 1 ; and
• B ∪ Ip ⊢ rate(p, xi, k + 1, d, rk+1−d) ∧ rk+1−d < 0

• B ∪ Ip ⊢ rate(p, xi, k + 1, 1, rk) ∧ rk < 0

• B ∪ Ip ⊢ holds(p, val(xi, vi,k), k) ∧ vi,k+1 is vi,k − 1

• B ∪ Ip ⊢ happens(p, occurs(f (xi), v
�

i,j
), j) for some v′

i,j

3. The refutation-proof for initiates(p, std, val(xi, vi,k+1), [j, k + 1]) from B ∪ Ip will only 
succeed if the following constraint holds:

• B ∪ Ip ⊢ holds(p, val(xi, vi,k), k) ∧ vi,k+1 is vi,k
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We will need the following on the correctness of fchanges/4 for establishing a proof of 
correctness of the implementation.

Lemma 1 (Correctness of fchanges/4) Let Ip be a consistent initialisation of �p . 
B ∪ Ip ⊢ fchanges(p, f (xi), [j, k]) , iff FuncChanges(�p,Xi, [j, k]) is true.

Proof We assume FuncChanges(�p,Xi, [j, k]) is true and prove B ∪ Ip ⊢ fchanges(p, f (xi), 
[j,  k]). Since FuncChanges(�p,Xi, [j, k]) is true there exists l such that j ≤ l < k , 
(Xi = v�

i,l
) ∈ sl , and v′

i,l
≠ v′

i,k
 where (Xi = v�

i,k
) ∈ sk . Since we assume happens/3 is correct, 

B ∪ Ip ⊢ happens(p, occurs(f (xi), v�i,l), l) ∧ happens(p, occurs(f (xi), v�i,k), k) . Hence by using 
the first axiom for fchanges , we can conclude B ∪ Ip ⊢ fchanges(p, f (xi), [l, k]). Now using 
the second axiom of fchanges , we can derive fchanges(p, f (xi), [j, k]) from B ∪ Ip.

We prove the other direction by induction on k − j.
Base case k − j = 1 . In this case only the first axiom of fchanges can be used 

as the second axiom of fchanges cannot be used after one unfolding. Hence 
B ∪ Ip ⊢ happens(p, occurs(f (xi), v�i,j), j) ∧ happens(p, occurs(f (xi), v

�

i,k
), k) and v′

i,j
≠ v′

i,k
 . 

Hence (Xi = v�
i,j
) ∈ sj and (Xi = v�

i,k
) ∈ sk . Hence FuncChanges(�p,Xi, [j, k]) is true.

Induction step Assume the statement for k − j < n and B ∪ Ip ⊢ fchanges(p, f (xi), [j, k]) 
and k − j = n . The proof is similar to the base case if the first axiom of fchanges is used 
to derive fchanges(p, f (xi), [j, k]) in the last step. Suppose the second axiom of fchanges 
is used in the last step, then B ∪ Ip ⊢ fchanges(p, f (xi), [j + 1, k]) . Since k − j − 1 < n , 
using induction hypothesis, we conclude that FuncChanges(�p,Xi, [j + 1, k]) is true. Hence 
FuncChanges(�p,Xi, [j, k]) is true.   ◻

Lemma 2 

1. B ∪ Ip ⊢ rate(p, xi, k, d, r) iff Rate(�p, xi, k − d) = r.
2. B ∪ Ip ⊢ initiates(p, inc, val(xi, vi,k), [j, k]) ∧ not terminates(p, occurs(f (xi), v

�

i,j
), val(xi, 

vi,k), [j, k]) for some vi,k, v′i,j and j iff Increase(�p, xi, k) is true.
3. B ∪ Ip ⊢ initiates(p, dec, val(xi, vi,k), [j, k]) ∧ not terminates(p, occurs(f (xi), v

�

i,j
), val(xi, 

vi,k), [j, k]) for some vi,k, v′i,j and j iff Decrease(�p, xi, k) is true.
4. B ∪ Ip ⊢ initiates(p, std, val(xi, vi,k−1), [k − 1, k]) ∧ not terminates(p, tick, val(xi, vi,k−1), [k − 1, k]) for some 

vi,k−1 iff VarChanges(�p, xi, k) is false.; and finally
5. B ∪ Ip ⊢ holds(p, val(xi, vi,k), k) iff (xi = vi,k) ∈ sk.

Proof We proceed by induction on t.
Base Case (t = 0).
The base case for (1)–(4) follow trivially since the antecedent is false in all cases, due 

to calls at time-points < 0 for the holds/3 predicate. We omit these proofs here, and focus 
instead on proving the base case for (5).

We want to show that if B ∪ Ip ⊢ holds(p, val(xi, vi,0), 0) , then (xi = vi,0) ∈ s0 . If 
B ∪ Ip ⊢ holds(p, val(xi, vi,0), 0) , then this will be the result of a refutation-proof 
for → holds(p, val(xi, vi,0), 0) using B ∪ Ip . It is evident that such any such refu-
tation-proof must involve either C1 or C2. However, the proof cannot involve C2, 
since that a successful refutation-proof will require tk > 0 . Thus the proof must use 
C1. It is evident that this requires a refutation of the goal → initially(p, val(xi, vi,0)) . 
Since B ⊬ initially(p, val(xi, vi,0)) , and Ip is a set of ground facts, it must follow that 
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initially(p, val(xi, vi,0)) ∈ Ip . Since Ip is a consistent initialisation of �p , it follows that 
(xi = vi,0) ∈ s0.

Hypothesis (t ≤ k) . We assume the statements (1)–(5) are true when t ≤ k.
Induction (t = k + 1) . We prove the statements for t = k + 1 : 

1. Let us assume B ∪ Ip ⊢ rate(p, xi, k + 1, d, r) and prove that Rate(�p, xi, k + 1 − d) = r . 
rate(p, xi, k + 1, d, r) can be derived from B ∪ Ip only if B ∪ Ip ⊢ happens(p, occurs(f (xi), 
v�
i,l
), l) ∧ holds(p, val(xi, vi,l), l) where l = k + 1 − d and r = v�

i,l
− vi,l . Using induction 

hypothesis for holds for l = k + 1 − d , we know that xi = vi,l ∈ sl . Since we assume 
happens/3 is correct, Xi = v�

i,l
∈ sl . Hence net rate change is v�

i,l
− vi,l which is r.

  Now we will assume that Rate(�p, xi, k + 1 − d) = r . It means xi = vi,k+1−d , Xi = v�
i,k+1−d

 
and r = v�

i,k+1−d
− vi,k+1−d for some vi,k+1−d and v�

i,k+1−d
 . Since k + 1 − d < k + 1 

and xi = vi,k+1−d , we can conclude B ∪ Ip ⊢ holds(p, val(xi, vi,k+1−d), k + 1 − d) 
using induction hypothesis for holds. Since we assume happens/3 is correct B ∪ Ip 
⊢ happens(p, occurs(f (xi), v�i,k+1−d), k + 1 − d) . From axiom for rate, B ∪ Ip ⊢ 
rate(p, xi, k + 1, d, r).

2. Let us assume B ∪ Ip ⊢ initiates(p, inc, val(xi, vi,k+1), [j, k + 1]) ∧ not terminates(p, occurs 
(f (xi), v

�

i,j
), val(xi, vi,k+1), [j, k + 1]) and prove Increase(�p, xi, k + 1) is true. From Remark 

7 and induction hypothesis: (a) Rate(𝜏p, xi, k) > 0 ; and (b) there exists (p, xi, d, ⋅) ∈ Ds of 
� , such that j + d = k + 1s and Rate(𝜏p, xi, k + 1 − d) > 0 ; and (c) Order(�p, x+i , [j, k + 1]) 
is true. Since B ∪ Ip ⊢ not terminates(p, occurs(f (xi), v

�

i,j
), val(xi, vi,k+1), [j, k + 1]) and 

terminates is ground, B ∪ Ip ⊬ terminates(p, occurs(f (xi), v
�

i,j
), val(xi, vi,k+1), [j, k + 1]) . 

From Remark 6, B ∪ Ip ⊬ fchanges(p, f (xi), [j, k]) is true. From Remark  1, (d) 
FuncChanges(�p,Xi, [j, k]) is false. From (a)–(d), Increase(�p, xi, k + 1) is true.

  Let us assume that Increase(�p, xi, k + 1) is true and prove B ∪ Ip ⊢ initiates(p, inc,  
val(xi, vi,k+1),  [j, k + 1]) ∧ not terminates(p, occurs(f (xi), v

�

i,j
), val(xi, vi,k+1), [j, k + 1]) 

for some vi,k+1, v�i,j and j. Since Increase(�p, xi, k + 1) is true, there exists 
(p, xi, d, ⋅) ∈ Ds such that Rate(𝜏p, xi, k + 1 − d) > 0 ,  Rate(𝜏p, xi, k) > 0 ,  and 
FuncChanges(�p, xi, [k + 1 − d, k + 1]) is false. Since Ds is encoded by delay in B, B ∪ Ip 
⊢ delay(p, xi,+1, d) . By induction hypothesis, B ∪ Ip ⊢ rate(p, xi, k + 1, 1, r) ∧ r > 0 
and B ∪ Ip ⊢ rate(p, xi, k + 1, d, r1) ∧ r1 > 0 . Let (xi = vi,k) ∈ sk for some vi,k . Hence 
by induction hypothesis, B ∪ Ip ⊢ holds(p,   val(xi, vi,k), k) . Let vi,k+1 = vi,k + 1 and 
j = k + 1 − d . Since Xi = v�

i,j
∈ sj for some v′

i,j
 , B ∪ Ip ⊢ happens(p, occurs(f (xi), v

�

i,j
), j) . 

Hence B ∪ Ip ⊢ initiates(p, occurs(f (xi), v�i,j), val(xi, vi,k+1), [j, k + 1]) . Since B ∪ Ip ⊢ 
holds(p,  val(xi, vi,k), k) , vi,k+1 = vi,k + 1 , B ∪ Ip ⊢ initiates(p, inc, val(xi, vi,k+1), [j, k + 1]) . 
By Remark 1, B ∪ Ip ⊬ fchanges(p, f (xi), [k + 1 − d, k]) .  By Remark 6, 
B ∪ Ip ⊢ not terminates(p, occurs(f (xi), v

�

i,j
), val(xi, vi,k+1), [j, k + 1]).

3. The proof for B ∪ Ip ⊢ initiates(p, dec, val(xi, vi,k), [j, k]) ∧ not terminates(p, occurs

(f (x
i
), v�

i,j
), val(xi, vi,k), [j, k]) for some vi,k, v′i,j and j iff Decrease(�p, xi, k) is similar to the 

above.
4. Let us assume B ∪ Ip ⊢ initiates(p, std, val(xi, vi,k), [k, k + 1]) ∧ not terminates(p, tick,  

val(xi, vi,k), [k, k + 1]) (that is, the proof search for terminates(p, tick, val(xi, vi,k), [k, k + 1]) 
from B ∪ Ip finitely fails). We show VarChanges(�p, xi, k + 1) is false by contra-
diction. If VarChanges(�p, xi, k + 1) is true then Increase(�p, xi, k + 1) is true or 
Decrease(�p, xi, k + 1) is true. We consider the case when Increase(�p, xi, k + 1) 
is true and the proof is similar when Decrease(�p, xi, k + 1) is true. Since 
Increase(�p, xi, k + 1) is true, from 2 there exists (p, xi, d, ⋅) ∈ Ds such that 
B ∪ Ip  ⊢ initiates(p, inc, val(xi, vi,k+1), [k + 1 − d, k + 1]) .  Using Remark 6 , 
B ∪ Ip ⊢ terminates(p, tick, val(xi, vi,k), [k, k + 1]) , which is a contradiction.
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  Now we assume VarChanges(�p, xi, k + 1) is false and prove B ∪ Ip ⊢ initiates(p, std, val 
(xi, vi,k), [k, k + 1]) ∧ not terminates(p, tick, val(xi, vi,k), [k, k + 1]) . Since VarChanges(�p, 
xi, k + 1) is false, either PendingOrder(�p, xi, k + 1) is false or Overridden(�p, xi, k + 1) 
is true. Since ≻ is empty, Overridden(�p, xi, k + 1) is false. So Increase(�p, xi, k + 1) 
is false and Decrease(�p, xi, k + 1) is false. So if xi = vi,k ∈ sk and xi = vi,k+1 ∈ sk+1 , 
then vi,k+1 = vi,k . By induction hypothesis B ∪ Ip ⊢ holds(p, val(xi, vi,k), k) . By using 
axiom KI3, B ∪ Ip ⊢ initiates(p, std, val(xi, vi,k), [k, k + 1]) . Since Increase(�p, xi, k + 1) 
is false and Decrease(�p, xi, k + 1) is false, from 2 and 3, we can conclude for every 
vi,k, v

′

i,j
 and j, either B ∪ Ip ⊬ initiates(p, occurs(f (xi), v

�

i,j
), val(xi, vi,k), [j, k + 1]) or 

B ∪ Ip ⊬ not terminates(p, occurs(f (xi), v
�

i,j
), val(xi, vi,k), [j, k + 1]) . So it is not possi-

ble to derive terminates(p, tick, val(xi, vi,k), [k, k + 1]) using axiom KT3. Hence B ∪ Ip 
⊢ not terminates(p, tick, val(xi, vi,k), [k, k + 1]).

5. Let us assume B ∪ Ip ⊢ holds(p, val(xi, vi,k+1), k + 1) and prove (xi = vi,k+1) ∈ sk+1 . 
Since k + 1 > 0 , any refutation-proof for holds/3 has to start with C2. Let 
B ∪ Ip ⊢ initiates(p,Event, val(xi, vi,k+1), [T , k + 1])𝜃 and B ∪ Ip ⊢ not clipped(p, Event,  
val (xi, vi,k+1), [T0, k + 1])� where � will be one of the following ground substitutions:

  �1 = {Event∕occurs(f (xi), v
�

i,j
), j),T0∕j} , ( j ≤ k ); or �2 = {Event∕tick,T0∕j} ( j = k ). 

We consider each of the � ’s in turn. 
� = �1  That is B ∪ Ip ⊢ initiates(p, occurs(f (xi), v

�

i,j
), val(xi, vi,k+1), [j, k + 1]) . 

Since B ∪ Ip ⊢ not terminates(p, occurs(f (xi), v
�

i,j
), val(xi, vi,k+1), [j, k + 1]) , 

FuncChanges(�p, Xi
,[j, k + 1]) is false. So there will be only two cases to be 

considered: v�
i,j
> vi,k+1 − 1 and v�

i,j
< vi,k+1 − 1 . If v�

i,j
> vi,k+1 − 1 , there will 

be vi,k such that B ∪ Ip ⊢ holds(p, val(x, vi,k), k) ∧ vi,k+1 = vi,k + 1 . Hence 
B ∪ Ip ⊢ initiates(p, inc, val(xi, vi,k+1), [j, k + 1]) . From 2, this implies 
Increase(�p, xi, k + 1) is true. From Remark 7, B ∪ Ip ⊢ holds(p, val(xi, vi,k), k) . 
By the induction hypothesis for holds/3 at k, (xi = vi,k) ∈ sk . Since B ∪ Ip ⊢ 
not clipped(p, occurs(f (xi), v

�

i,j
, val(xi, vi,k+1), [j, k + 1]) , B ∪ Ip ⊢ not overridden

(p, xi, k + 1) . Hence, Overridden(�p, xi, k + 1) is false. Since Increase(�p, xi, k + 1) 
is true, and Overridden(�p, xi, k + 1) is false, VarChanges(�p, xi, k + 1) is true. 
It is given that LT

�
 is a Kinetic Logic system. Using Definition 13 we con-

clude (xi = vi,k + 1) ∈ sk+1 . From Remark 7, vi,k+1 = vi,k + 1 , and therefore 
(xi = vi,k+1) ∈ sk+1 . The proof for v�

i,j
< vi,k+1 − 1 is similar.� = �2 

 That is, B ∪ Ip ⊢ initiates(p, tick, val(xi, vi,k+1), [k, k + 1]) which is same as B ∪ Ip ⊢ 
initiates(p, std, val(xi, vi,k+1), [k, k + 1]) ∧ holds(p, val(xi, vi,k), k) ∧ vi,k+1 = vi,k.

  By induction hypothesis for holds/3, (xi = vi,k) ∈ sk . Since B ∪ Ip ⊢ not clipped

(p, tick, val(xi, vi,k+1), [k, k + 1]) , and using C3, B ∪ Ip ⊢ not terminates(p, 
tick, val(x

i
, v

i,k+1), [k, k + 1]) . Hence B ∪ Ip ⊢ initiates(p, std, val(xi, vi,k+1), [k, k + 1])∧

not terminates(p, std, val(xi, vi,k+1), [k, k + 1]) . Hence by claim 4, VarChanges(�p, 
xi, k + 1) is false. It is given that LT

�
 is a Kinetic Logic system. Using Definition 

13 we conclude (xi = vi,k + 1) ∈ sk+1 . From Remark 7, vi,k+1 = vi,k , and therefore 
(xi = vi,k+1) ∈ sk+1.

   Let  us  assume tha t  xi = vi,k+1 ∈ sk+1 and  prove  tha t  B ∪ Ip  ⊢ 
holds(p, val(xi, vi,k+1), k + 1) . Let xi = vi,k ∈ sk for some vi,k . There are three cases to 
consider: 
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(a) (vi,k+1 = vi,k + 1) . By induction hypothesis B ∪ Ip ⊢ holds(p, val(xi, vi,k), k) . We 
have to show B ∪ Ip ⊢ initiates(p, occurs(f (xi), v�i,j), val(xi, vi,k+1), [j, k + 1]) ∧ 
not clipped(p, occurs(f (xi), v

�

i,j
), val(xi, vi,k+1), [j, k + 1]) for some j, v′

i,j
 . Since 

vi,k+1 = vi,k + 1 : VarChanges(�p, xi, k + 1) is true; and Increase(�p, xi, k + 1) 
is true. That is, there exists (p, xi, d, ⋅) ∈ Ds s.t. Rate(𝜏p, xi, k + 1 − d) > 0 
is true. That is, if j = k + 1 − d  , (Xi = v�

i,j
) ∈ sj and (xi = vi,j) ∈ sj , then 

v′
i,j
> vi,j . By the induction hypothesis B ∪ Ip ⊢ holds(p, val(xi, vi,j), j) . 

Since happens/3 is correct, then B ∪ Ip ⊢ rate(p, xi, k + 1, d, r) ∧ r > 0 , for 
some r. Similarly B ∪ Ip ⊢ rate(p, xi, k + 1,−1, r�) ∧ r′ > 0 for some r′ . So, 
f rom KI1,  B ∪ Ip ⊢ initiates(p, occurs(f (xi), v

�

i,j
), val(xi, vi,k+1), [j, k + 1]) . 

Since Increase(�p, xi, k + 1) is true, FuncChanges(�p, xi, [j, k + 1] is false. 
From Remark 1, B ∪ Ip ⊢ not fchanges(p, f (xi), [j, k + 1]) . From Remark 6, 
B ∪ Ip ⊢ not terminates(p, occurs(f (xi), v�i,j), val(xi, vi,k+1), [j, k]) and B ∪ Ip 
⊢ not clipped(p, occurs(f (xi), v�i,j), val(xi, vi,k+1), [j, k]) . Using C2 B ∪ Ip ⊢ 
holds(p, val(xi, vi,k+1), k + 1).

(b) (vi,k+1 = vi,k − 1) . The proof for B ∪ Ip ⊢ holds(p, val(xi, vi,k+1), k + 1) is similar 
to the case above.

(c) (vi,k+1 = vi,k) . First we will show B ∪ Ip ⊢ initiates(p, tick, val(xi, vi,k+1), [k, k + 1]) 
∧ not clipped(p, tick, val(xi, vi,k+1), [k, k + 1]) . Since xi = vi,k ∈ sk , by the Induc-
tion hypothesis, B ∪ Ip ⊢ holds(p, val(xi, vi,k), k) . Therefore by using axiom 
KI3, we conclude that B ∪ Ip ⊢ initiates(p, tick, val(xi, vi,k), [k, k + 1]) . Sup-
pose B ∪ Ip ⊢ terminates(p, tick, val(xi, vi,k+1), [k, k + 1]) .  Hence B ∪ I

p

⊢ initiates(p, occurs(f (xi),v
�

i,j
), val(xi, vi,k), [j, k + 1]) ∧ not terminates(p, occurs(f (xi), 

v�
i,j
), val(xi, vi,k), [j, k + 1]) for some v′

i,j
 and j. So by 2, Increase(�p, xi, [j, k + 1]) 

is true. Since Overridden(�p, xi, k + 1) is always false, VarChanges(�p, xi, k + 1) 
is true. Using the fact LT

�
 is a kinetic logic system, it is easy to see 

vi,k+1 = vi,k + 1 which is a contradiction to our assumption vi,k+1 = vi,k . 
Hence B ∪ Ip ⊢ not terminates(p, tick, val(xi, vi,k+1), [k, k + 1]) and B ∪ Ip ⊢ 
not clipped(p, std, val(xi, vi,k+1), [k, k + 1]) . Now by using C2, we conclude that 
B ∪ Ip ⊢ holds(p, val(xi, vi,k+1), k + 1).

  ◻

The proof of Theorem 1 follows directly from the lemma.

Appendix B: Implementation details

We first note some details introduced for efficiency into the implementations of Procedures 
1–3: (a) We use a depth-bounded resolution-based theorem-prover; (b) We use an efficient 
form of the axioms in Figs. 4, 5: the main change is the use of a cached-form of holds/3 
and happens/3 that avoids repeated theorem-proving over time-instants; and (c) We only 
consider constructing overrides/4 definitions if the abduction of delays does not explain of 
all the fluents (otherwise O = �).

Procedure 3 in this paper assumes the availability of a standard ILP engine (in our case, 
Aleph Srinivasan, 1999). Here, we provide some practical details concerned with the use 
of the ILP engine. In the following, we use a Prolog-like syntax, interspersed with some 
logical constructs for clarity.
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Appendix B.1: Representation

We will assume that data are available as time-stamped sequences of values of system-vari-
ables xi along with values of the functions Fi . Each such sequence represents a conjunction 
of events and fluents thus:

Background knowledge, besides the definitions in Figs. 4 and 5, contains auxiliary defi-
nitions ( A

�
 in Sect. 5.1 and Procedure 3) which include the following: (a) Definitions that 

capture positive and negative interactions (defined in terms of the values of fluents); (b) 
Specification of system-variables; (c) Specification of variables external to the system, 
along with the predicate has_value∕4 to represent the actual values of external variables; 
(d) Specification of the set of abducible values for delays.

Appendix B.2: Abduction and induction

The specification of delays allows us to implement the set of abducibles allowed Ap in 
Procedure 1. For a partially-specified system � = (Xs,Vs, ⋅,Ps, ⋅, ⋅) , for variable x ∈ Xs and 
p ∈ Ps , abducible delays are simply combinations of values specified for ±1 . Identifying 
HE in Procedure 3 requires the ILP engine to construct clausal explanations for the hap-
pens/3 facts in the data, using the fluent facts (F) and any auxiliary predicate definitions 
relevant to identifying the system � in A

�
 . Examples of such explanations are (the explana-

tions do not relate to the example data in (a) above):



2480 Machine Learning (2022) 111:2435–2487

1 3

We are also able to use an ILP engine to compress the delay/4 facts constructed by Pro-
cedure 1, as shown below, which can make the definition of delay/4 more readable.

Similar compressed explanations can also be constructed for overrides/4.

Appendix B.2.1: ILP language bias

For all ILP experiments, the ILP system Aleph (Srinivasan, 1999) was used to construct 
theories for events and delays. Aleph requires the specification of a mode-language L in 
the manner described in Muggleton (1995). The following mode declarations were used to 
construct explanations for the case studies reported here:

 member/2 is additionally declared as a lazily-evaluated literal (see Srinivasan & Camacho, 
1999). This allows the construction of compressed explanations of the kind shown above.
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Appendix B.3: Extracting influence diagrams

We obtain interaction diagrams from logical explanations as follows. For any system-
variable x, we consider clauses of the form happens(P, occurs(f (x),N), T) ← Body , where 
N > 0 . For each such clause (the definitions for pos/3 and neg/3 are as described above): 

1. If Body has a literal pos(P, val(y, V), T), then we add an edge from y to x labelled +V;
2. If Body has a literal neg(P, val(y, V), T), then we add an edge from y to x labelled −V;
3. If Body has a literal has_value(P, e,V , T) , then we add an edge from e to x labelled +1 

if e = 1 and −1 if e = 0.

We note that interaction diagrams omit logical constructs (like ANDs and ORs). They also 
do not distinguish between different non-zero levels for logical functions. The purpose of 
an interaction diagram is simply to identify pairwise interactions for display in a graphical 
form.

Appendix C: Application details

Appendix C.1: Brief descriptions of the biological systems

Immune Response  The immune system in vertebrates responds to the introduction of a 
foreign body or antigen by producing proteins called antibodies. Usu-
ally one or more antibodies bind, in a kind of lock-and-key manner, to 
specific parts of the antigen, preventing them from interacting further 
with the host. It is this immune reaction of antibody production that 
forms the basis of both vaccination (in which antibody production is 
deliberately triggered by injection of an antigen), or disease detec-
tion (by checking for the presence of antibodies: correctly though 
this does not tell us if the antigen is present, but only if the host was 
exposed to it at some point).

  The immune system consists of a complex network of interactions, mainly 
involving two categories of cells. The B − lymphocytes produce the actual anti-
bodies, in stages regulated by the T − lymphocytes , itself consisting of sub-cat-
egories called Th - and Ts-lymphocytes. Each category consists of multiple dif-
ferent cells, specialised to the production of antibodies specific to parts of the 
antigen. Here we use the simplified model in Thomas and D’Ari (1990), that 
treats each category as a functional compartment. In the model, the logical func-
tions H and S denote the biological mechanism triggering the secretion of h and 
s cells in the Th and Ts compartments The presence of an antigen (e) triggers 
the secretion of h-cells. The presence of cells is sustained by an auto-catalytic 
reaction. In turn, h triggers the production of antibodies by activating cells in 
the B-lymphocyte compartment. The presence of h also induce the secretion of 
s-cells, that act in turn to suppress the production of h cells. While the produc-
tion of antibodies results in eliminating the antigen, h cells may persist, thus 
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constituting a memory state that can effect a quicker response if the antigen 
re-appears.

Phage Infection  Infection of a bacterium by a phage (virus) results in either the death 
of the host (lysis) with subsequent release of multiple copies of the 
phage; or immunity for the host (lysogenesis), resulting from the 
phage’s DNA being integrated into the host’s DNA. This combined 
DNA then produces a suppression of the virus’s genes that result in 
lysis. The suppression is due to a protein produced by a viral gene: 
in the classic system of the bacteriophage � that we consider here, 
the repressor protein is called cI. Since the viral genome has been 
integrated into the bacterial DNA, the ability to repress the infective 
portions of the viral genome is transferred to subsequent bacterial 
generations.

  In the phage � , lethal (lytic) activity is the result of positive feedback, largely 
from two groups of genes (operons) called N and Cro. The repressor protein 
encoded by the gene CI prevents the transcription of the operons N and cro. 
Immunity is in fact the result of two stages. The first, or establishment stage 
requires the products of genes CII and CIII to promote the activation of the 
repressor gene CI. Subsequent maintenance of immunity is controlled by auto-
catalytic activity, in which moderate concentrations of the repressor protein 
encoded by CI results in increase in its own synthesis. The genes CII and CIII 
are regulated positively by the N operon and negatively by Cro. Each of these 
are in turn affected by the activations of the others, resulting in complex feed-
back circuitry. In the model, the logical functions CI, Cro, CII and N are defined 
in terms of the corresponding protein products cI, cro, cII and n.

In the experiments here, we consider both simple and generalised Kinetic Logic mod-
els for each system. The models for immunity are from Thomas and D’Ari (1990), and 
consist of 3 feedback loops between the Th and Ts lymphocytes.14 The model also contains 
a graft representing the presence or absence of the antigen. For the phage � , the simple 
Kinetic Logic model is from Thomas (1977) and consists of 3 regulatory elements cI, cro 
and N. The generalised Kinetic model is from Thieffry and Thomas (1995), and consists of 
4 regulatory elements, with 7 feedback loops. Figure 7 shows the interaction diagrams in 
each of these cases. The simple model for immunity consists of the following equations for 
the logical functions H and S: H ≡ (h ∨ (e ∧ s)) and S ≡ (h ∨ s) . The generalised models 
are more complex. For example, the interaction diagram is consistent with the following: 
(H ≠ 0) ← ((h ≥ 2) ∨ (e ∧ ¬(s ≥ 2))) . The equations of phage � is complicated and can be 
found in Thieffry and Thomas (1995).

14 A Boolean-valued model also exists in Kaufman et al. (1985) that includes the B-lymphocytes. We have 
chosen the simpler model here since both Boolean- and multi-valued treatments are available in the litera-
ture for that model.
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Appendix C.2: Examples of results

We show the generalised Kinetic Logic models for the two biological systems described in 
the paper.

Fig. 7  Interactions for: a immune response (Thomas & D’Ari, 1990); and b phage � (Chapter 17 of Thomas 
(1977), left and Thieffry and Thomas (1995), right). In each case, the structure on the left is a representa-
tion of the model in simple Kinetic Logic (all variables are Boolean), and the structure on the right is a rep-
resentation of the model in generalised Kinetic Logic. For the immune system h and s denote the presence 
of cells from the Th and Ts compartments, and for the phage infection, cI, cro, cII and n denote products of 
the genetic regulators CI, Cro, CII and N respectively. The edge-labels for the diagrams for simple Kinetic 
Logic represent positive (+) or negative (−) interactions. For generalised models, a +n on an edge from x 
to y denotes that x ≥ n exerts a positive interaction on y. A value of −n on an edge from x to y denotes that 
x ≥ n exerts a negative interaction on y. Edges labelled with an OR indicate a disjunction. Edges without 
any labels indicate a conjunction
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