
Vol.:(0123456789)

Machine Learning (2021) 110:2267–2289
https://doi.org/10.1007/s10994-021-06037-z

1 3

Convex optimization with an interpolation‑based projection
and its application to deep learning

Riad Akrour1 · Asma Atamna2 · Jan Peters1

Received: 16 November 2020 / Revised: 2 May 2021 / Accepted: 30 June 2021 /
Published online: 19 July 2021
© The Author(s) 2021

Abstract
Convex optimizers have known many applications as differentiable layers within deep neu-
ral architectures. One application of these convex layers is to project points into a convex
set. However, both forward and backward passes of these convex layers are significantly
more expensive to compute than those of a typical neural network. We investigate in this
paper whether an inexact, but cheaper projection, can drive a descent algorithm to an opti-
mum. Specifically, we propose an interpolation-based projection that is computationally
cheap and easy to compute given a convex, domain defining, function. We then propose
an optimization algorithm that follows the gradient of the composition of the objective and
the projection and prove its convergence for linear objectives and arbitrary convex and Lip-
schitz domain defining inequality constraints. In addition to the theoretical contributions,
we demonstrate empirically the practical interest of the interpolation projection when used
in conjunction with neural networks in a reinforcement learning and a supervised learning
setting.

Keywords Convex Optimization · Differentiable Projections · Reinforcement Learning ·
Supervised Learning

Editors: Annalisa Appice, Sergio Escalera, Jose A. Gamez, Heike Trautmann.

 * Riad Akrour
 riad@robot-learning.de

 Asma Atamna
 asma.atamna@telecom-paris.fr

 Jan Peters
 jan@robot-learning.de

1 TU Darmstadt, Darmstadt, Germany
2 Télécom Paris, Paris, France

http://orcid.org/0000-0002-8735-6960
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06037-z&domain=pdf

2268 Machine Learning (2021) 110:2267–2289

1 3

1 Introduction

Several recent research has investigated the integration of a ‘convex optimization layer’
within the computational graph of machine learning architectures in applications such as
optimal control (de Avila Belbute-Peres et al. 2018; Amos et al. 2018), computer vision
(Bertinetto et al. 2019; Lee et al. 2019) or filtering (Barratt and Boyd 2019). Within this
line of research, we distinguish two use cases for convex optimization. In the first use case,
the output of the ‘convex optimization layer’ is a convex problem by definition. For exam-
ple, a node can compute the maximum a posteriori of an image model (de Avila Belbute-
Peres et al. 2018; Amos et al. 2018). In the second use case, a node restricts—by means
of a projection—its input to a convex set and becomes a convex optimization problem by
choice. For example, a node can restrict its input to the set of physically plausible vertex
deformations (Geng et al. 2019).

In the second use case, it was shown in Geng et al. (2019) that the projection step ben-
efits from being fully integrated to the learning process in both the forward and backward
passes. Let x be the input of the projection layer, g be the projection, and f be the ensu-
ing computations—e.g. a loss function. Integrating the projection into the backward pass
amounts to differentiating through f◦g(x) . There have been several advances in differenti-
ating through convex programs (Agrawal et al. 2019). However, the forward and backward
passes on g remain significantly more expensive than the typical matrix multiplications
that would precede or succeed g (Amos and Kolter 2017). We investigate in this paper an
alternative projection that is more lightweight to compute and differentiate than solving a
convex program. Even if sub-optimal, in the sense that the proposed projection will not
return the closest point to the input within the admissible set, the rationale behind the pro-
posed algorithm is that since we are differentiating through f and g, a sub-optimal projec-
tion could still drive the optimization process to an optimal point.

The proposed projection maps any input x to a feasible point g(x) by simply interpolat-
ing x with a point x0 satisfying the convex inequality constraints. The interpolation param-
eter is computed in closed form by exploiting the convexity of the domain defining func-
tion. We first show in this paper that the interpolation-based projection when used as in
projected gradient descent (Rosen 1960; Nocedal and Wright 2006)—by projecting the
iterate after each gradient step—does not converge to an optimum. However, when dif-
ferentiating through both the objective and the projection, we show that the resulting algo-
rithm converges for a linear objective and arbitrary convex and Lipschitz domain defining
functions. Finally, we provide in addition to the theoretical analysis, empirical results using
the projection in conjunction with neural network models in reinforcement and supervised
learning. Our results show that the proposed projection can be used to tackle constrained
policy optimization or to provide an inductive bias improving generalization while being
significantly cheaper to compute than an orthogonal, ‘optimal’ projection.

This work generalizes and formally analyzes previous interpolation-based projections
we developed in the context of reinforcement learning (RL) in Akrour et al. (2019). Several
RL algorithms add information-theoretic constraints to the policy optimization problem,
such as a minimal entropy or a maximal Kullback–Leibler (KL) divergence to the data gen-
erating policy (Deisenroth et al. 2013). We proposed in Akrour et al. (2019) differentiable
policy parameterizations that comply with these constraints by construction, allowing the
policy optimization problem to be solved by standard gradient descent algorithms. These
parameterizations were based on interpolating any input parameterization of a distribution
with a constraint satisfying parameterization. For example, interpolating an input discrete

2269Machine Learning (2021) 110:2267–2289

1 3

distribution with the uniform distribution, that satisfies any reasonable minimal entropy
constraint. Interestingly, although these projections were not ‘optimal’ in the sense that
they do not minimize a distance to the admissible set, we noted empirically (see Akrour
et al. (2019), Fig. 1 and surrounding text) that such parameterization would always drive
the descent algorithm to an optimum on a toy problem with a linear objective and a convex,
entropy constraint. The main contribution of this paper is to generalize the idea of interpo-
lation projections to arbitrary convex domain defining functions and to prove convergence
of a descent algorithm leveraging this projection. From a practical point of view, in addi-
tion to the previously discussed RL application, we provide an example usage of the inter-
polation projection in a supervised learning context. The interpolation projection can be
used as an inexpensive and differentiable operator to add convex constraints to the output
of a neural network model, while being significantly cheaper than norm minimizing projec-
tions (Agrawal et al. 2019).

Computationally frugal projections were previously studied in the context of feasibil-
ity problems (Combettes 1997), where the goal is to find a point inside a convex set. The
approximate projection in Combettes (1997) uses the gradient of a violated inequality con-
straint to find a half-space that is a superset of the feasible set. Then an orthogonal projec-
tion on this hyper-plane is performed resulting in a point outside of the feasible set, but
closer to the set than the input point. In contrast, our projection is not based on the gradient
of the constraint but on its convexity and results in a point inside the feasible set. Moreover,
the optimization setting we consider is more general than the feasibility setting and our
assumption of an initial feasible x0 would already solve the problem of Combettes (1997).
As such, our work and that of Combettes (1997) differ both in their objectives and their
methods. In Xu (2018); Lan and Zhou (2016), approximate projections are derived when
the number of constraints is large, but these algorithms still rely on expensive orthogonal
projections. To the best of our knowledge, no other work previously showed convergence
of a convex optimizer with non-orthogonal projections. The practical implications being
a cheap way of adding convex constraints to machine learning models as shown in the
experimental validation section.

2 Preliminaries

Let us first introduce and analyse the ideas in a convex optimization setting. Let
f ∶ ℝ

d
→ ℝ and h ∶ ℝ

d
→ ℝ be convex and differentiable functions. We consider the fol-

lowing convex program

For clarity of exposition, we initially only consider a single inequality constraint with dif-
ferentiable h. Our results will be straightforwardly extended to multiple inequality con-
straints in Sect. 4.1 with sub-differentiable functions. For the convergence analysis in
Sect. 4, we only consider the case of a linear function f (x) = cTx . However, we also dis-
cuss in Sect. 4.1 how several convex problems can be rewritten in this form. For now, let us
assume that f is an arbitrary differentiable convex function.

Letting the convex set C ⊆ ℝ
d be defined by C = {x ∈ ℝ

d ∶ h(x) ≤ 0} , the optimization
problem (P) can be reformulated as minx∈C f (x) . To solve this problem, one approach is to

(P)
min
x∈ℝd

f (x),

s.t. h(x) ≤ 0.

2270 Machine Learning (2021) 110:2267–2289

1 3

use the Projected Gradient Descent (PGD) algorithm (Rosen 1960; Nocedal and Wright
2006) which is given by the following equation

where g is a mapping that projects points from ℝd to C . The projection g is defined by the
minimization g(x) = argminy∈C‖x − y‖2 of the Euclidean norm ‖.‖2 on ℝd . Mirror descent
(Bubeck 2014), an alternative for solving (P), can be seen as a generalization of PGD to
other distances. These projection-based methods are most efficient when a closed form
expression of the projection exists. Otherwise, a nested optimization problem needs to be
solved after every gradient update of the iterate.

Other approaches such as the Frank–Wolfe method or the interior-point method also
solve series of optimization problems. The Frank-Wolfe method (Frank and Wolfe 1956)
solves a series of linear approximations of the problem, xk+1 = argminx∈C ∇f (xk)

Tx ; and
the interior-point method (Karmarkar 1984; Nesterov and Nemirovskii 1994) introduces
a slack variable s for the inequality constraint and solves f (x) − �k ln s under an equality
constraint, for a series of values of �k going to 0.

In contrast to all these methods, our algorithm takes a simpler and more direct approach
by performing gradient descent on the composition of the objective and a projection. The
proposed interpolation-based projection will transform the constrained problem (P) into
an unconstrained one. The projection is readily defined without any other assumption than
the convexity of h and the availability of a strictly admissible point. Unlike previous algo-
rithms, the interpolation projection is not defined as the minimization of a norm. To alle-
viate any ambiguity, from here on the term projection is understood as the more general
following definition.

Definition 1 A projection g is a mapping from a set to a subset thereof.

Specifically, in this paper the superset is ℝd and the subset is C.

3 Interpolation‑based projection and gradient descent

To solve the optimization problem minx∈C f (x) described in (P), we use a projection g that
will ensure that for all x ∈ ℝ

d , g(x) ∈ C , i.e. h(g(x)) ≤ 0 . The projection g is defined for
any convex function h, provided there exists some point x0 strictly satisfying the constraint,
i.e. h(x0) < 0 . In which case, g is given by

with �x =
h(x0)

h(x0)−h(x)
 . When h(x) > 0 , g simply interpolates between the violating point x and

the point x0 in C ; otherwise, it returns x itself. We would like to emphasize that knowing an
initially feasible point x0 can be a strong assumption for some applications and finding such
an x0 can be a costly procedure in itself. However, in many applications such as the rein-
forcement and supervised learning ones considered in the experiments section, a trivial
feasible point is readily available.

Proposition 1 g is a projection from ℝn to C.

(1)xk+1 = g
(
xk − �∇f (xk)

)
,

g(x) =

{
x if h(x) ≤ 0,

�xx + (1 − �x)x0 else,

2271Machine Learning (2021) 110:2267–2289

1 3

Proof We will demonstrate that g(x) ∈ C for all x ∈ ℝ
d . If h(x) ≤ 0 , g(x) is in C by defini-

tion. If h(x) > 0 then �x ∈ (0, 1) since h(x0) − h(x) < h(x0) < 0 and

 ◻

Even though g is a projection in the sense of Definition 1, it is not a projection in
the usual sense that it minimizes a norm between x and elements of C . As a result, this
projection cannot be used as in projected gradient descent (Sect. 2). To illustrate this,
Fig. 1 shows a simple convex problem with a quadratic objective—the sphere func-
tion—and a linear constraint. When used as in the projected gradient descent update of

(h convex)

h(g(x)) = h(�xx + (1 − �x)x0),

≤ �xh(x) + (1 − �x)h(x0),

= h(x0) − �x(h(x0) − h(x)),

= 0.

Fig. 1 Sequence of points generated by algorithms (a) and (b) with interpolation projection g. Since g is not
a projection in the �

2
 minimizing sense, it cannot be used as in PGD (a). However, taking the derivative of

the projection into account as in (b), drives the algorithm to the optimum

2272 Machine Learning (2021) 110:2267–2289

1 3

Eq. (1), the resulting algorithm stales along the line with which it first exits C . Indeed,
when optimizing the sphere function in an unconstrained way, gradient descent follows
a straight line from x0 to the origin. As it first exits C , the interpolation projection puts
the iterate back on the same line and the algorithm keeps going back and forth indefi-
nitely. In contrast, when optimizing the composition of the projection and the objective
by gradient descent

the iterate is pushed back to C in such a way that it moves towards the optimum. In fact, a
simple computation shows us that when xk is not in C , the update in Eq. (2) is linearly mix-
ing the gradient of the objective f and the constraint h. Formally, when h(xk) > 0 , then g is
differentiable at xk—from the assumption that h is—and the gradient ∇f◦g(xk) is given by

Here Jk is the Jacobian of g at xk , �k is short for �xk and I is the identity matrix. The expres-
sion of Jk is obtained by straightforward computation, while Eq. (3) is obtained from
the identity g(xk) − x0 = �k(xk − x0) . Equation (3) shows that the gradient of f◦g(xk) ,
when xk ∉ C , is a linear mixing between the gradient of f at the projected point g(xk)
and the gradient of h at xk . Since h(x0) < 0 , the mixing term in Eq. (3) is positive iff
∇f (g(xk))

T (g(xk) − x0) ≤ 0 . In fact, the first step in our convergence analysis is to show that
the previous quantity is indeed always negative.

The mixing between the gradient of f and h is reminiscent of the conditional subgra-
dient descent of Larsson et al. (1996). This algorithm is an acceleration of PGD, that
restricts the definition of a sub-gradient as a linear under-estimator of f only within
C . In this case, it is shown in Larsson et al. (1996) that when h(xk) = 0 , the set of
conditional sub-gradients of f can be extended by adding any sub-gradient of f to a
sub-gradient of h. Here however, the projection g(xk) is not on the boundary of C—for
example if h is strictly convex then h(g(xk)) < 0 and hence Eq. (3) is not necessarily a
conditional subgradient of f, and the convergence analysis of our algorithm has to be
carried out using different tools.

Algorithm 1 summarises the optimization algorithm for constrained optimization
using the interpolation-based projection. Algorithm 1 starts by renormalizing h such
that h(x0) = −1 , then defines the optimal step-size � w.r.t. an upper bound derived given
assumptions A1 to A4 defined in the next section. Algorithm 1 then follows a gradi-
ent descent (Eq. (2)), selecting a different step-size �k , as a function of a constant � ,
whether the iterate is inside or outside C . When x ∉ C , the gradient is given by Eq. (3).
Algorithm 1 then returns the average of the projected points. The algorithm operates a
first order gradient descent on f◦g , which as per Eq. (3), is of linear time and memory
complexity. The definition of the step-size � requires two problem specific quantities,
that are generally not known in advance. While these quantities are necessary for the
convergence analysis of the algorithm, we show in the experiments section that Algo-
rithm 1 is robust to a broader range of step-sizes.

(2)xk+1 = xk − �k∇f◦g(xk),

(3)

∇f◦g(xk) = Jk(xk)
T∇f (g(xk)),

= �k

(
I +

∇h(xk)(xk − x0)
T

h(x0) − h(xk)

)
∇f (g(xk)),

= �k

(
∇f (g(xk)) +

∇f (g(xk))
T (g(xk) − x0)

h(x0)
∇h(xk)

)
.

2273Machine Learning (2021) 110:2267–2289

1 3

4 Convergence analysis

The first step in the convergence analysis of Algorithm 1 is a lemma showing that for
an appropriate choice of the step-size �k , the quantity ∇f (g(xk))T (g(xk) − x0) is always
negative for k ≥ 0 . As a consequence, the gradient of f◦g will always mix gradients of
objective and constraint with opposing directions when the iterate exits the C . We prove
the lemma under the assumption of a linear objective function f, a Lipschitz continuous
domain defining function h, in addition to the previously discussed assumption of an
initial strictly feasible point x0 .

A1. f (x) = cTx is a linear function in ℝd and ‖c‖2 ≤ L.
A2. h is convex, everywhere differentiable in ℝd and H-Lipschitz w.r.t. ‖.‖2.
A3. There exists x0 such that h(x0) < 0.

Lemma 1 Under A1–A3, the sequence of xk produced by Algorithm 1 verifies, for all k ≥ 0
and for � ≤

1

LH
 , ∇f (g(xk))T (g(xk) − x0) ≤ 0.

Proof Let us prove the lemma by induction. For k = 0 the inequality is trivially true. Now
assuming the inequality holds for some k ≥ 0 . It implies that cT (g(xk) − x0) ≤ 0 . We distin-
guish in the following two cases, whether xk is feasible or not. However, we treat both cases
of feasibility of xk+1 jointly by writing g(xk+1) − x0 = �k+1

(
xk+1 − x0

)
 which becomes true

by assuming �k+1 = 1 when xk+1 is feasible. First, assume h(xk) ≤ 0 then

By adding and subtracting xk inside the parentheses, and since for h(xk) ≤ 0 ,
xk+1 − xk = −�kc , we arrive at

which from the induction hypothesis is the sum of two negative numbers and is thus nega-
tive. Now if h(xk) > 0 then by again adding and subtracting xk , and by replacing xk+1 − xk
with the gradient update following Eq. (3), we obtain

From the induction hypothesis, it is sufficient for the last quantity to be negative, that
�k�k

h(x0)−h(xk)
cT∇h(xk) ≤ 1 . Using the fact that

and using the Cauchy–Schwarz inequality as well as assumption A1 and A2, we obtain

∇f (g(xk+1))
T (g(xk+1) − x0) = �k+1c

T (xk+1 − x0).

∇f (g(xk+1))
T (g(xk+1) − x0) = �k+1

(
− �kc

Tc + cT (xk − x0)
)
,

∇f (g(xk+1))
T (g(xk+1) − x0) = �k+1

(
− �k�kc

Tc + cT (xk − x0)

(
1 −

�k�k

h(x0) − h(xk)
cT∇h(xk)

))
.

�k�k

h(x0) − h(xk)
cT∇h(xk) ≤

||||
�k�k

h(x0) − h(xk)
cT∇h(xk)

||||
,

2274 Machine Learning (2021) 110:2267–2289

1 3

Since � ≤
1

LH
 by assumption, the last quantity is ≤ 1 as desired. As such, we conclude that

∇f (g(xk+1))
T (g(xk+1) − x0) ≤ 0 for h(xk) > 0 . ◻

The assumption of the linearity of f is used in the induction step and allows several
simplifications since for f linear, ∇f (xk+1) = ∇f (xk) . Extending the convergence analysis of
Algorithm 1 to non-linear objectives could be achieved by extending Lemma 1 to this case.
However, as discussed in Sect. 4.1, since the assumptions on h are mild, many constrained
convex optimization algorithms can be recast as problems solvable by Algorithm 1.

To prove convergence of Algorithm 1, we need an additional assumption on the bound-
edness of the distance to an optimum.

A4. ∃x∗ ∈ C such that ∀x ∈ C, f (x∗) ≤ f (x) and ‖x0 − x∗‖ ≤ R , for some R ≥ 0.

The convergence result for Algorithm 1 is as follows

Theorem 1 Under A1–A4 and for H0 =
H

|h(x0)|
 , the returned value of Algorithm 1 verifies

f
�

1

K

∑K−1

k=0
g(xk)

�
− f (x∗) ≤

RL(1+H0R)√
K

 for K ≥
R2H2

0

(1+H0R)
2
 and for � =

R

L(1+H0R)
√
K

.

Proof As A3 ensures that h(x0) is non zero, an equivalent optimization problem can be
obtained where h(x0) = −1 by rescaling h with |h(x0)| . Letting H0 =

H

|h(x0)|
 , the only differ-

ence will be that if h is H-Lipschitz then h∕|h(x0)| is H0-Lipschitz. From now on, and with-
out loss of generality, we assume that h(x0) = −1 and h is H-Lipschitz. We revert to the
general case where h(x0) < 0 at the end of the proof.

Following standard proofs of subgradient descent algorithms, our proof begins by esti-
mating the distance of the iterate to the optimum

As in Lemma 1, we study separately the case where xk ∈ C and xk ∉ C . In each case, we
derive an upper bound of ‖xk+1 − x∗‖2

2
 and then pick the largest of the two. Starting with

xk ∉ C , we replace ∇f◦g(xk) by its definition in Eq. (3), and by expanding the quadratic
expression we obtain

Adding and subtracting g(xk) in ∇f (g(xk))T (xk − x∗) and by expanding the definition of
g(xk) and �k when h(xk) > 0 we obtain

𝛼k𝜂k

h(x0) − h(xk)
cT∇h(xk) ≤

||||
𝛼k𝜂k

h(x0) − h(xk)

||||
LH,

≤ 𝛽LH, 𝜂k < 1

‖xk+1 − x∗‖2
2
= ‖xk − �k∇f◦g(xk) − x∗‖2

2
.

(4)
‖xk+1 − x∗‖2

2
= ‖xk − x∗‖2

2
+ ‖�k∇f◦g(xk)‖22 − 2�k�k∇f (g(xk))

T (xk − x∗)

− 2�k�k
∇f (g(xk))

T (xk − x0)∇h(xk)
T (xk − x∗)

h(x0) − h(xk)
.

∇f (g(xk))
T (xk − x∗) = ∇f (g(xk))

T (g(xk) − x∗)

−
h(xk)

h(x0) − h(xk)
∇f (g(xk))

T (xk − x0).

2275Machine Learning (2021) 110:2267–2289

1 3

Replacing ∇f (g(xk))T (xk − x∗) in Eq. (4) gives

But from convexity of h, we know that h(xk) + ∇h(xk)
T (x∗ − xk) ≤ h(x∗) ≤ 0 implying

In addition, �k and �k are always positive and from Lemma 1, ∇f (g(xk))T (g(xk) − x0) is neg-
ative for all k ≥ 0 provided � ≤

1

LH
 . As a result the last term of Eq. (5) is always negative

and ‖xk+1 − x∗‖2
2
 can be bounded by

In the upper bound of Inq. (6), we will now bound the term ‖�k∇f◦g(xk)‖22 that is specific
to the case h(xk) > 0 . By replacing the gradient with its definition and using the fact that
we have rescaled h such that h(x) = −1 , we obtain

Using the Cauchy-Schwarz inequality as well as assumption A1, A2 and A4 we obtain

Replacing Eq. (7) into Eq. (6), using the definition of �k and since h(x0) = −1 we have

Now for the simpler case xk ∈ C we have

Using assumption A1 and since xk = g(xk) and �k = � when xk ∈ C , we obtain the follow-
ing bound

Clearly the upper bound of ‖xk+1 − x∗‖2
2
 in Inq. (8) is always larger than the one in Inq. (9).

As such, we can use the upper bound of ‖xk+1 − x∗‖2
2
 in Inq. (8) for all iterates of Algo-

rithm 1. Letting A = L2(1 + HR)2 , and averaging over the first K terms of both sides of
Inq. (9) yields

(5)
‖xk+1 − x∗‖2

2
= ‖xk − x∗‖2

2
+ ‖�k∇f◦g(xk)‖22 − 2�k�k∇f (g(xk))

T (g(xk) − x∗)

+ 2�k�k

�
h(xk) + ∇h(xk)

T (x∗ − xk)

h(x0)

�
∇f (g(xk))

T (g(xk) − x0).

h(xk) + ∇h(xk)
T (x∗ − xk)

h(x0)
≥

h(x∗)

h(x0)
≥ 0.

(6)
‖xk+1 − x∗‖2

2
≤ ‖xk − x∗‖2

2
+ ‖�k∇f◦g(xk)‖22

− 2�k�k∇f (g(xk))
T (g(xk) − x∗).

�−2||�k∇f◦g(xk)||22 = ||∇f (g(xk)) − ∇f (g(xk))
T (g(xk) − x0)∇h(xk)||22.

(7)�−2‖�k∇f◦g(xk)‖22 ≤ L2(1 + HR)2.

(8)‖xk+1 − x∗‖2
2
≤‖xk − x∗‖2

2
+ �2L2(1 + HR)2 − 2�∇f (g(xk))

T (g(xk) − x∗).

‖xk+1 − x∗‖2
2
= ‖xk − x∗‖2

2
+ ‖�k∇f (xk)‖22 − 2�k∇f (xk)

T (xk − x∗).

(9)‖xk+1 − x∗‖2
2
≤‖xk − x∗‖2

2
+ �2L2 − 2�∇f (g(xk))

T (g(xk) − x∗).

1

K

K−1�

k=0

‖xk+1 − x∗‖2
2
≤

1

K

K−1�

k=0

‖xk − x∗‖2
2
+ �2A

−
2�

K

K−1�

k=0

∇f (g(xk))
T (g(xk) − x∗).

2276 Machine Learning (2021) 110:2267–2289

1 3

From the convexity of f we have that

as well as 1
K

∑K−1

k=0
f (g(xk)) ≥ f

�
1

K

∑K−1

k=0
g(xk)

�
 . Using these two properties yields

Rearranging terms and cancelling telescoping sums yields

Using A1, A2 and A4 and after replacing A we obtain

Minimizing this upper bound w.r.t. to � gives the optimal fixed step-size � =
R

L(1+HR)
√
K

with error

This gives us a first condition on � , but to achieve the bound in Inq. (10), we made use of
Lemma 1 which requires that � ≤

1

LH
 , yielding an additional condition on K

Now the only remaining operation is to express the step-size, the condition on K in
Inq. (11) and the error upper bound in Inq. (10) in terms of the original Lipschitz constant
which is achieved simply by replacing H with H

|h(x0)|
 in these inequalities. ◻

The O(
1√
K
) convergence rate is typical of sub-gradient descent on non-smooth con-

vex functions (Nocedal and Wright 2006), which is expected since f◦g is non-smooth.
Compared to projected gradient descent (PGD), the bound now shows an explicit
dependence on the Lipschitz constant of h. This is also expected since in PGD the pro-
jection is assumed to be computable at no cost. As a result, the error bound of PGD
does not depend on the gradient of h in any way, whereas in our algorithm this depend-
ence is made explicit. Because of the non-smoothness of f◦g and the resulting O(

1√
K
)

convergence rate, we do not expect the general formulation of Algorithm 1 to be com-
petitive with specialized convex optimizers developed for specific convex problem
classes. However, the versatility and cheap computational cost of the interpolation

∇f (g(xk))
T (g(xk) − x∗) ≥ f (g(xk)) − f (x∗),

1

K

K−1�

k=0

‖xk+1 − x∗‖2
2
≤

1

K

K−1�

k=0

‖xk − x∗‖2
2
+ �2A

− 2�

�
f

�
1

K

K−1�

k=0

g(xk)

�
− f (x∗)

�
.

f

�
1

K

K−1�

k=0

g(xk)

�
− f (x∗) ≤

1

2�K

�
‖x0 − x∗‖2

2
− ‖xK − x∗‖2

2
+ K�2A

�
.

f

(
1

K

K−1∑

k=0

g(xk)

)
− f (x∗) ≤

R2

2�K
+

�L2(1 + HR)2

2
.

(10)f

�
1

K

K−1�

k=0

g(xk)

�
− f (x∗) ≤

RL(1 + HR)
√
K

.

(11)
R

L(1 + HR)
√
K

≤
1

LH
,⇔ K ≥

R2H2

(1 + HR)2
.

2277Machine Learning (2021) 110:2267–2289

1 3

projection offers large gains compared to convex optimizers when integrated into (non-
convex) machine learning models, as shown in the experimental validation section.

4.1 Subgradients, multiple constraints and non‑linear objectives

So far we have only considered a single inequality constraint. Algorithm 1 and its the-
oretical guaranties can easily be extended to tackle multiple inequality constraints and
an affine equality constraint

where hi are convex functions in ℝ
d , A a matrix and b a vector. Let

C≃ = {x ∈ ℝ
d ∶ hi(x) ≤ 0 for all i ∈ {1…M}} . We define h as h(x) = maxi∈{1…M} hi(x) .

Then h is sub-differentiable if all hi are (sub-)differentiable. Moreover, we assume that all
hi are Lipschitz with constant at most H, resulting in the following assumption

A5. h is convex, sub-differentiable in ℝd and H-Lipschitz w.r.t. ‖.‖2.

 To tackle constrained optimization in C′ , we define Algorithm 1’ that replaces Line 10
of Algorithm 1. Specifically, the gradient ∇h in Eq. (3) is simply replaced by a sub-
gradient of h. Under A1, A3–A5, this new algorithm has the same convergence proper-
ties of Algorithm 1. Indeed, h being convex, the projection is still valid and will be
given with interpolation weight �x = mini∈{1…M}

h(x0)

h(x0)−hi(x)
 , selecting the smallest inter-

polation weight given by the constraint hi with the highest violation. Additionally, of h,
the proof of Theorem 1 only uses the property ∇h(xk)T (x∗ − xk) ≤ h(x∗) − h(xk) which is
also fulfilled by a sub-gradient of h.

In summary, the differentiablity requirement of h can be relaxed to only require sub-
differentiability, and multiple constraints are treated as a single constraint using the
max over these sub-differentiable constraints. As for the affine equality constraint, it
can be eliminated by replacing x with Fz + x0 as shown in Boyd and Vandenberghe
(2004), where F is a matrix whose range is the null space of A under the condition
that x0 is a solution of Ax = b . Note that the objective function remains linear after the
aforementioned change of variable, and hence the convergence guarantees still apply.

As for non-linear objectives, we note that most convex programs can be written as
cone programs of the form minx∈K cTx , for a closed convex cone K and a linear objec-
tive (Nesterov and Nemirovskii 1994). In fact, there exists automated tools (Grant et al.
2006; Grant and Boyd 2008) that perform this rewriting by replacing non-linear func-
tions in the computational graph with their graph implementation—a generic epigraph-
based representation. These tools are used by existing solvers such as CVX (Grant and
Boyd 2014), and for our algorithm to be applicable to these cone programs, one has to
provide a domain defining function h equivalent to the constraint x ∈ K for all cones
supported by the tool. In the next section, we provide numerical examples for the semi-
definite cone, the second order cone and the linear cone.

min
x∈ℝd

f (x),

s.t. hi(x) ≤ 0, for all i ∈ {1…M},

Ax = b,

2278 Machine Learning (2021) 110:2267–2289

1 3

5 Experimental validation

We first conduct numerical evaluations on toy convex problems to validate the theoreti-
cal analysis. The broader usage of the interpolation projection in machine learning is then
evaluated in both a reinforcement and supervised learning setting.

5.1 Constrained convex optimization

Algorithm 1 defines the step-size as a function of the domain bounds and the Lipschitz con-
stants which are typically unknown in practice. We thus investigate on a wide range of con-
vex optimization problems the robustness of the interpolation projection to the choice of
(a potentially wrong) step-size. We compare our algorithm to Projected Gradient Descent
(PGD, Rosen (1960); Nocedal and Wright (2006)) and subgradient descent (SubGD, Shor
et al. (1985); Bertsekas (2015)). Subgradient descent is a converging descent algorithm
that in our constrained setting operates by (i) following the gradient of f if x ∈ C (ii) follow-
ing the (sub-)gradient of h otherwise. This algorithm is very simple and another objective
of these numerical experiments is to investigate whether the mixing of the gradients ∇f and
∇h , obtained from differentiating through f◦g in Eq. (3), provides any practical advantage
compared to the simpler scheme of subgradient descent. In the following, we denote our
algorithm by IGD, where the ‘I’ stands for interpolation. We consider five problem classes
comprising linear programs, semi-definite programs, second order cone programs, prob-
lems with a bounded �2 norm or with an exponential form constraint. Exact definition of
each problem and their random generation process is deferred to the appendix.

Results. For each of the five problem classes, 100 random instances are generated and
we compute at each iteration the smallest f (xk)−f (x

∗)

f (x0)−f (x
∗)

 achieved so far. We compared the gradi-
ent descent algorithms with four different step-sizes ranging from 10−4 to 10−1 . Experi-
ments for each step-size are conducted on the same 100 problem instances, and although
we plot the results for each step-size separately, one can easily extract the best performing
step-size for each method from the same plots. The plots (deferred to the appendix) show
that in 17 out of the 20 problems and step-sizes combinations, IGD outperforms SubGD,
sometimes with several order of magnitudes. On semi-definite programs, SubGD performs
better with larger step-sizes, although best results are still obtained overall by IGD with the
smallest step-size. On the bounded norm problem where PGD is applicable, our algorithm
is able to match PGD up until a precision ranging from 10−2 to 10−5 depending on the step-
size, before tracking behind. In contrast, SubGD is distanced at a significantly lower preci-
sion. These results both demonstrate a certain robustness to the choice of step-size and a
practical interest in the mixing of gradients obtained by differentiating through f◦g .
Thanks to the generality of the projection and the simplicity of performing unconstrained
gradient descent on f◦g , we expect the interpolation projection to find many usages in
machine learning, two of which are presented in the next subsections.

5.2 Reinforcement learning in continuous action spaces

We consider in this section policy optimization updates that occur at each itera-
tion of the approximate policy iteration (API) scheme (Bertsekas 2011; Scher-
rer 2014). To formalize the policy update in API we briefly introduce key concepts

2279Machine Learning (2021) 110:2267–2289

1 3

of reinforcement learning (RL). A Markov Decision Process (MDP) is a quintuple
(S,A,R,P, �) where S and A are state and action spaces, that are in our experiment
ℝ

ds and ℝda respectively. P ∶ S ×A ↦ P(S) and R ∶ S ×A ↦ ℝ determine the next
state transition probability and reward upon the execution of a given action in a
given state. We denote by q(a|s) the probability density of executing a ∈ A in s ∈ S
according to the stochastic policy q. Additionally, for policy q we define the Q-func-
tion Qq(s, a) = �

�∑∞

t=0
� tR(st, at) ∣ s0 = s, a0 = a

�
 , where the expectation is taken

w.r.t. random variables at+1 ∼ q(.|st) and st+1 ∼ p(.|st, at) for t > 0 ; the value function
Vq(s) = �a∼q(.|s)

[
Qq(s, a)

]
 and the advantage function Aq(s, a) = Qq(s, a) − Vq(s) . The goal

in API is to find the policy maximizing the policy return J(q) = Vq(s0) for some starting
state s0.

API iterates three steps, generating data from the current policy q, evaluating Aq and
updating the policy q using Aq . To update the policy we consider the maximization of
Aq under a KL divergence constraint between the current and next policies—establish-
ing a ’step-size’ in probability space—as is done in Schulman et al. (2015); Rajeswaran
et al. (2017); Peters and Schaal (2008). The policy update is given by

We will benchmark algorithms on a continuous action task and specifically con-
sider the case where p and q are Gaussian policies. A Gaussian policy has density
p(.|s) = N(�(s),�) , for co-variance matrix � and mean function �(.) . In our set-up we
consider diagonal co-variance matrices as in Schulman et al. (2015); Rajeswaran et al.
(2017) and linear-in-features or neural network based mean functions. The linear-in-feature
mean function is given by �(s) = �(s)TM using the same random Fourier features � of
Rajeswaran et al. (2017) with 2000 entries, whereas the neural network mean function is
given by a neural network following the architecture in Schulman et al. (2015) with 2 hid-
den layers with 64 neurons each. For estimating Aq we follow Rajeswaran et al. (2017) and
use a neural network to learn Vq and estimate Aq from trajectories. For both cases we use
� = 10−2 as in Schulman et al. (2015).

To solve the aforementioned problems, both natural approaches with linear-in-fea-
tures (Rajeswaran et al. 2017) and neural network mean functions (Schulman et al.
2015) follow the same approach: a second order approximation of the constraint (13) is
computed, as well as a linear approximation of the objective function (12). The result-
ing problem is then solved in closed form resulting in the natural gradient update of the
policy parameters. However, as the constraint satisfaction is not guaranteed—since the
problem is solved by approximating the constraint—both approaches (Schulman et al.
2015; Rajeswaran et al. 2017) add a line-search routine, interpolating between the new
parameters and the parameters of q, to ensure that Inq. (13) holds.

To compare to natural gradient, we employ first a naive algorithm that optimizes
objective (12) in an unconstrained way, with the Adam algorithm (Kingma and Ba
2015), before calling the line-search routine used by the natural gradient approaches
to ensure constraint satisfaction. Secondly, we augment the naive algorithm by adding
an interpolation projection ’layer’ to the output of the policy. The projection layer, as
depicted in Fig. 2-left, takes as input a set of action means—given by evaluating the

(12)argmax
p

�s,a∼q

[
p(a|s)
q(a|s)

Aq(s, a)

]
,

(13)subject to �s∼q

�
KL(p(.�s)‖q(.�s))

�
≤ �.

2280 Machine Learning (2021) 110:2267–2289

1 3

current mean function over a mini-batch of input states—and a covariance matrix and
returns a new set of means and a covariance matrix that comply with the constraint. To
formalize, let us define h and x0 , the two elements needed to perform the interpolation
projection. Given a finite set of states {s1,… , sK} , we define

where �q and �q are respectively the mean function and covariance matrix of q. h is convex
and we use as x0 for the interpolation projection the means and covariance matrix of q. The
projection that returns a set of means and a covariance matrix compying with the KL diver-
gence constraint is then given by g as in Sect. 3, from the definition of h and x0.

To illustrate the algorithm, assume for a mini-batch of states {s1,… , sK} the mean and
covariance functions return a mini-batch of means �(s1),… ,�(sK) and a covariance matrix
� . If the constraint, estimated for this mini-batch is violated,

we use the projection g as in Sect. 3 to obtain a new set of means ��(s1),… ,��(sK) and
covariance matrix �� where ��(sk) = ��(sk) + (1 − �)�q(s) and �� = �� + (1 − �)�q and
then evaluate the objective for p�

where p�(.|s) = N(��(s),��) . Once the objective is computed, we backpropagate through-
out the whole computational graph which backpropagates through the interpolation
projection.

In the linear-in-feature case, we note that the KL divergence is not only convex in the
mean and covariance of the Gaussian but also in the policy parameters. Specifically, we
have that

is a convex function in M and � , and from linearity of the mean function interpolating the
means or the parameter M directly are equivalent. Moreover, the � obtained using h(M,�)
or h(�(s1),… ,�(sK),�) will be identical for a given mini-batch since the value of h will be
the same in both cases. The optimization process can thus be seen as performing gradient
descent on (f◦g)(M,�) , where f is the objective (12). This is similar to the convex optimi-
zation setting studied theoretically, except f is now non-linear non-convex—because Aq is
not necessarily convex. However, the empirical results show that the optimization scheme
still performs well despite f◦g being non-convex. This is not entirely surprising since gra-
dient descent is widely used and well behaved for non-convex problems too.

To generate real RL optimization problems, we run natural gradient on the Biped-
alWalker-v2 environment (Brockman et al. 2016) for one million steps with a policy
update after a minimum of 3000 steps. We run 11 of such independent runs, generating

h(�(s1),… ,�(sK),�) =
1

K

∑

k

KL(N(�(sk),�)|N(�q(sk),�q)) − �,

1

K

∑

k

KL(N(𝜇(sk),𝛴)|N(𝜇q(sk),𝛴q)) > 𝜖,

1

N

∑

k

p�(ak|sk)
q(ak|sk)

Aq(sk, ak),

h(M,�) =
1

N

∑

k

KL(N(�(sk)
TM,�)|N(�(sk)

TMq,�q)) − �,

2281Machine Learning (2021) 110:2267–2289

1 3

over 3000 optimization problems for each of the linear and non-linear cases. Both the naive
algorithm and the projection augmented algorithm use the same hyper-parameters for
the update, by performing 30 epochs with a step-size1 of 5 × 10−5). For each of the 3000
optimization problems, we record the ratio between the objective value when solving the
problem with gradient descent, divided by the value when solving the problem following
the natural gradient baselines in each of the linear (Rajeswaran et al. 2017) and non-linear
(Schulman et al. 2015) case. A value larger than 1 indicates that the method solved the con-
strained problem better than the state-of-the-art.

Figure 2 shows the distribution of such ratios for the linear and non-linear mean func-
tion cases. In both cases, without the projection, the unconstrained optimization with a
final line-search step performs significantly worse than natural gradient descent. In con-
trast, adding the interpolation projection of the Gaussian distributions’ parameters while
using the same optimization scheme, results in a median improvement over natural gradi-
ent of 31% and 57% for the linear and non-linear mean function cases respectively. Note
that in the linear case, the optimization setting resembles the earlier convex optimization
experiments as the constraint is convex in the input means of h but also directly on the
parameters of the mean function M. When the mean function is a neural network, the inter-
polation projection still seems to guide the gradient descent algorithm towards regions of
the parameter space that better trade off objective maximization and constraint satisfaction
than the naive algorithm.

We also evaluated replacing the interpolation layer with an orthogonal projection using
a differentiable convex solver (Agrawal et al. 2019). The orthogonal projection receives the
same input means and covariance matrix as the interpolation projection but returns instead
the parameters that minimize the Euclidean distance to the inputs while complying with
the KL divergence constraint. This is a convex problem and we used the tools of (Agrawal
et al. 2019) to both compute the forward pass—solve the convex problem—and the back-
ward pass—differentiate around the solution of the convex problem—of this computational
graph. The computational cost of this model is more than 300 times that of the vanilla
neural network model, while our model with the interpolation projection is only about

Fig. 2 From left to right: a The computational graph of an RL policy with the projection layer taking as
input the intermediate values �(s) and � and returning a new mean and covariance complying with the
KL-divergence constraint. b, c Distributions of the improvement ratio over the natural gradient baseline for
gradient descent on the policy parameters with and without the interpolation projection. The thick vertical
black bars in the violin plot span the lower and upper quartiles

1 We performed the same experiment with other step-sizes of 10−4 and 2 × 10
−4 and the conclusions are

essentially the same.

2282 Machine Learning (2021) 110:2267–2289

1 3

1.5 more expensive. Due to the increased computational costs, we performed only 6 inde-
pendent runs for this comparison totaling about 1700 optimization problems. Comparison
between the two optimization schemes are shown in Fig. 3. Surprisingly, the interpolation
projection performs better than the more accurate projection, perhaps because of a bet-
ter interplay between the interpolation projection and the subsequent line-search routine,
while being significantly cheaper to compute.

5.3 Supervised learning of dynamics models

In the previous experiment we have shown how the interpolation projection can be used to
tackle constrained optimization problems in the context of RL. In this experiment, we pro-
vide an example of an inductive bias in the form of a convex constraint on the outputs of a
neural network, and we show how the interpolation projection can be used to comply with
these constraints. The task consists in predicting the position, for several steps in the future,
of 7 circular rigid bodies connected in 3 different configurations with respectively 6, 9 and
12 strings of the same length as shown in Fig. 4. We would like to emphasize that even
though there are constraints on the output of the neural network, we impose no constraints
on its parameters.

Fig. 3 Distributions of the improvement ratio over SGD + A norm minimizing projection of SGD with and
without the interpolation projection. The thick black bars in the violin plot span the lower and upper quar-
tiles. Each violin plot is obtained after solving circa 1700 optimization problems

Fig. 4 The three considered objects with 7 rigid bodies and 6, 9 and 12 strings respectively from left to
right

2283Machine Learning (2021) 110:2267–2289

1 3

The considered inductive bias constrains the distance between predicted positions of
connected rigid bodies to be at most the length of the string. To comply with the constraint,
we add after the prediction of the neural network yt , an interpolation projection that returns
g(yt) , such that the constraints imposed by the strings are respected. To compute g, we
define h as the maximum distance between linked bodies, which is convex, and use as ‘ x0
’—the anchor point of the interpolation projection—an imaginary configuration that places
all rigid bodies in the average of their positions according to yt−1 . This point has thus zero
distance between all circular bodies and strictly satisfies the constraints. Given h and ‘ x0 ’,
the interpolation projection g follows as in Sect. 3.

To predict the next set of positions yt we use a neural network with 4 hidden layers hav-
ing 256 nodes each. The network takes as input the last three positions of each 7 circular
bodies and outputs the change to the current set of positions. We train this neural network
as a recursive neural network (RNN), using backpropagation through time, as the predicted
position in the next time-step is fed back to its input. We used for the optimization proce-
dure Adam (Kingma and Ba 2015) with a step-size of 10−4 . Because of the computational
complexity of this task, we did not perform full and rigorous experimental comparisons
with different step-sizes but only compared step-sizes on partial runs before settling for the
value of 10−4.

In addition to the base RNN model, we evaluate the same RNN with the inductive bias
in the form of convex constraints as described above. Ground truth trajectories are gener-
ated by letting the object fall from a distance of 400 units of measure (u.m.), after applying
an initial force generated by selecting a node uniformly at random then applying a force
with constant norm sampled uniformly at random on an upper half circle. The diameter of
the circular rigid body is 1 u.m. Box2d (Catto 2007) is used to simulate 200 of such trajec-
tories, 50 of which are used for training, 75 for validation and 75 for test. Each trajectory
contains 485 time-steps and the train set alone contains circa 24K time-steps. We train both
the RNN and RNN with convex constraints for a fixed time of 3 days on a single core of an
AMD 3900x.

The generalization results in Table 1 show that both models can synthesize relatively
close trajectories to the original ones for an extended period of time (485 time-steps at
60Hz) from only the first three time-steps of the test trajectories. The results also show
that the additional interpolation projection layer, enforcing compliance with the physical
constraints imposed by the strings, reduces the prediction error for the two shapes with
the most strings; while for the simpler chain shape, the vanilla model performs better. The
worse performance in this setup might be the result of the additional non-smoothness intro-
duced by the interpolation projection. Yet, even when it under-performs quantitatively with
the chain shape, the trajectories generated by the projection augmented model can look
qualitatively better since the vanilla model sometimes exhibits large violations of the con-
straints as shown in Fig. 5. In conclusion, introducing an inductive bias through additional

Table 1 Mean Euclidean distance and std. dev. between test trajectories and model generated trajectories,
obtained by unrolling 485 time-steps from the first three time-steps of each of the 75 test trajectories. First
row shows the vanilla neural network model, and the second row adds an interpolation projection layer to
respect physical constraints imposed by the strings

Chain Chain. Tri. Star

RNN 2.52 ± 1.38 2.32 ± 1.19 2.25 ± 1.09

RNN + Shape Cst. 2.89 ± 1.39 2.19 ± 1.01 2.18 ± 0.96

2284 Machine Learning (2021) 110:2267–2289

1 3

constraints and using the interpolation projection to comply with the constraints showed
promising results both quantitatively and qualitatively, with little computational over-
head—the training procedure becoming only about 1.2 times slower. In comparison, we
were unable to run the baseline with the optimal projection layer that solves a convex prob-
lem for every forward pass. Compared to the RL setting, the combined effect of a larger
dataset (more than 10x) and the increased number of convex problems to solve per gradient
update (up to 240x du to the back-propagation through time) would require several months
for the training procedure to complete on the same AMD 3900x processor.

6 Conclusion

We introduced in this paper an interpolation-based projection onto a convex set that can be
readily computed for any convex domain defining function. We then derived a descent algo-
rithm based on the composition of the objective and the projection and showed that this sur-
prisingly yields a convergent algorithm when the objective is linear, despite the ‘sub-optimal-
ity’ of the projection. From a practical point of view, we have shown that this projection when
added as a layer to computational models, allows to tackle constrained optimization in rein-
forcement learning or adds an inductive bias to predictive models. Because the projection is
general and computationally frugal, we think this work can find many other applications in

Fig. 5 Predicted trajectories vs ground truth. As errors compound, the RNN model without shape con-
straints exhibits large violations of the physical structure of the chain, as highlighted in red. In contrast,
the model with the projection layer maintains physical consistency with the original shape at all times. An
animated version of Fig. 5 is provided here

2285Machine Learning (2021) 110:2267–2289

1 3

machine learning where intermediary nodes of a computational graph are constrained to be in
a convex set.

Appendix A. Convex optimization numerical illustration

We describe in more details the experimental setting of the convex optimization comparisons.
We consider five problem classes comprising linear programs, semi-definite programs, sec-
ond order cone programs, problems with a bounded �2 norm and problems with an exponen-
tial form constraint. The form of the domain defining function h for each of these problems
is trivial except for the semi-definite cone, where we used h(A) = −�min , the negative of the
smallest eigenvalue of the symmetric real valued matrix A. The sub-gradient of h w.r.t. A is
given in this case by −vvT , where v is the eigenvector associated with �min . We now detail each
problem class and its random instance generation.

Linear program (Lin). The problem is

We generate instances such that the optimum is at (0,… , 0)T and the constraints are active
at the optimum. The objective is generated by sampling a c uniformly at random on the
hyper-sphere. Following the idea in Hansen et al. (2016, 2019), we define the constraints
of such problems by setting the gradient of the first constraint to a1 = −c to ensure the
Karush-Kuhn-Tucker optimality conditions Kuhn and Tucker (1951); Nocedal and Wright
(2006) hold at (0,… , 0)T . At this point, the point x = c is feasible and we generate the
remaining M − 1 constraints randomly while making sure that x remains feasible. Specifi-
cally, each ai , for i ∈ {2…M} , is sampled on the hypersphere uniformly at random and
redefined as ai = −ai if aTi x > 0.

Semi-definite program (SDP). The dual of the problem is given by

The constraint implies that
∑

i xiAi − C is a positive semi-definite matrix. We generate the
problem data following the code of Malick et al. (2009) to obtain problems where strong
duality holds. There is one difference in the generation of the matrices Ai , that are made
sparse in the original code, while we use Ai =

1

2
(Bi + BT

i
) with entries of Bi sampled from

the Normal distribution.
Second order cone program (SOC). The problem is

The objective is generated by sampling a c uniformly at random on the hyper-sphere.
Then an x0 is generated following the same procedure. All other problem data are then
sampled from the normal distribution except di that is computed such that h(x0) = 0 , i.e.
di = ‖Aix + bi‖2 − zt

i
x.

min
x

cTx,

s.t. aT
i
x ≤ 0, i ∈ {1…M}.

min
x

cTx,

s.t.
∑

i

xiAi ⪰ C.

min
x

cTx,

s.t. ‖Aix + bi‖2 ≤ zt
i
x + di, i ∈ {1…M}.

2286 Machine Learning (2021) 110:2267–2289

1 3

Norm constraint (Norm). The problem is

A random instance of the problem is generated by sampling a vector c uniformly at random
on the hyper-sphere such that the optimum x∗ is −c with value f (x∗) = −1.

Exponential constraint (Exp) The problem is

where b is a vector that has on each entry W(1), the Lambert W function evaluated at 1. It
is designed such that the minimum of the constraint is attained at (0,… , 0)T , facilitating
the generation of feasible points. c is generated by sampling uniformly at random on the
hyper-sphere.

Obtaining x0 and f (x∗) . For Lin, Norm and Exp, x0 is generated by uniformly sam-
pling at random in the unit ball, and resampling if the point is not feasible. For SDP we use
x0 as in the code of Malick et al. (2009). For SOC, our algorithm cannot use the x0 described
in the problem definition, since h(x0) = 0 . To obtain a valid x0 for our algorithm, starting
from the aforementioned x0 , we perform 100 optimization steps with Adam Kingma and
Ba (2015) and a step-size of 10−2 on the maximum over the constraints, and use the newly
obtained point as the x0 for all algorithms. For Lin and Norm, f (x∗) is known whereas we
estimate it for the remaining problems using CVXPY Diamond and Boyd (2016) with the
highest precision available.

Performance metrics. For every optimization problem we randomly generate an
instance and run all optimizers for 10000 iterations. We repeat this procedure 100 times
for every problem. For each run, and at each iteration k, we compute mint∈{1..k} f (g(xt))
where g is the norm minimizing projection for PGD or the interpolation projection for
our algorithm. For subgradient descent we use instead mint∈{i∈{1..k}s.t.h(xi)≤0} f (xt) , i.e. we
pick the best point so far that is in C . We consider the min instead of f (1

k

∑k

t=0
g(xt)) as an

evaluation metric for our algorithm in order to allow for comparisons with the subgradi-
ent descent method in which the average point so far, is not necessarily in C . Note that the
theoretical guarantees given by Theorem 1 are exactly the same for this min criterion since
mint∈{1..k} f (g(xt)) ≤

1

k

∑k

t=0
f (g(xt)) can be used in a similar way in the proof in lieu of the

average point. In order to allow for meaningful averaging between the several randomly
generated instances, we normalize the performance between 0 and 1 for each run by sub-
tracting f (x∗) and dividing by f (x0) − f (x∗) . Instances of Lin, SDP, SOC and Norm and
Exp are of dimensionality 10, 10, 20, 100 and 2 respectively. For each problem, we evalu-
ated all algorithms with step-sizes � of 10−4 , 10−3 , 10−2 and 10−1 . Random instances across
different step-sizes are identical and results are therefore directly comparable. Finally, the
performance plots in Fig. 6 are obtained by plotting the median and the upper and lower
quantiles.

Results On the plots of Fig. 6, one can notice on all problems that the performance of all
algorithms perfectly overlaps in initial iterations. That is due to the fact that all compared
algorithms are similar up to the point where an iterate first exits the feasible set C . The plots
also show that in 17 out of the 20 problem and step-size combination, IGD outperforms

min
x

cTx,

s.t. ‖x‖2 ≤ 1.

min
x

cTx,

s.t.
1

2
‖x − b‖2

2
+

d−1�

i=0

exp(xi − bi) ≤ d,

2287Machine Learning (2021) 110:2267–2289

1 3

SubGD, sometimes with several order of magnitude. On semi-definite programs, SubGD
performs better with larger step-sizes, although best results are still obtained overall by
IGD with the smallest step-size. On the Norm problem where PGD is applicable and with
� = 0.001 , we observe that both PGD and IGD perform very similarly despite the sim-
plicity and the linear nature of the projection used by our algorithm, and both algorithms
perform better than the more naive SubGD baseline. On these problems, our algorithm is
able to match PGD up until a precision ranging from 10−2 to 10−5 for different step-sizes,
before tracking behind. In contrast SubGD is distanced at a significantly lower precision.
All combined, these results both demonstrate a certain robustness to the choice of step-size
and a practical interest in the mixing of gradients obtained by differentiating through f◦g .
Thanks to the generality of the projection and the simplicity of performing unconstrained
gradient descent on f◦g , we expect the interpolation projection to find many usages in
machine learning.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Fig. 6 Comparison of first order descent algorithms with different step-sizes on linear programs (leftmost
column), semidefinite programs, second order cone programs, programs with bounded norm or exponential
shaped constraint (rightmost column). Step-size � ranges from 0.1 on the first row to 10−4 on the forth row.
All plots averaged over 100 runs

http://creativecommons.org/licenses/by/4.0/

2288 Machine Learning (2021) 110:2267–2289

1 3

References

Agrawal, A., Amos, B., Barratt, S. T., Boyd, S. P., Diamond, S., & Kolter, J. Z. (2019). Differentiable
convex optimization layers. In Advances in neural information processing systems (NeurIPS) (pp.
9558–9570).

Akrour, R., Pajarinen, J., Neumann, G., & Peters, J. (2019). Projections for approximate policy iteration
algorithms. In International conference on machine learning (ICML).

Amos, B., & Kolter, J. Z. (2017). OptNet: Differentiable optimization as a layer in neural networks. In
International conference on machine learning (ICML), proceedings of machine learning research
(Vol. 70, pp. 136–145).

Amos, B., Rodriguez, I. D. J., Sacks, J., Boots, B., & Kolter, J. Z. (2018). Differentiable MPC for end-
to-end planning and control. In International conference on neural information processing systems
(NeurIPS) (pp. 8299–8310).

Barratt, S., & Boyd, S. (2019). Fitting a Kalman smoother to data. arXiv: 1910. 08615.
Bertinetto, L., Henriques, J. F., Torr, P., & Vedaldi, A. (2019). Meta-learning with differentiable closed-

form solvers. In International conference on learning representations (ICLR).
Bertsekas, D. P. (2011). Approximate policy iteration: A survey and some new methods. Journal of Con-

trol Theory and Applications, 9(3), 310–335.
Bertsekas, D. P. (2015). Convex optimization algorithms. Singapore: Athena Scientific.
Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.
Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba, W. (2016).

Openai gym.
Bubeck, S. (2014). Convex Optimization: Algorithms and Complexity. arXiv: 1405. 4980.
Catto, E. (2007). Box2d. box2d.org.
Combettes, P. L. (1997). Convex set theoretic image recovery by extrapolated iterations of parallel sub-

gradient projections. IEEE Transactions on Image Processing.
de Avila Belbute-Peres, F., Smith, K., Allen, K., Tenenbaum, J., & Kolter, J. Z. (2018). End-to-end dif-

ferentiable physics for learning and control. In Advances in neural information processing systems
(NeurIPS) (pp. 7178–7189).

Deisenroth, M. P., Neumann, G., & Peters, J. (2013). A survey on policy search for robotics. Founda-
tions and Trends in Robotics, 2(1–2), 388–403.

Diamond, S., & Boyd, S. (2016). CVXPY: A Python-embedded modeling language for convex optimiza-
tion. Journal of Machine Learning Research, 17(1), 2909–2913.

Frank, M., & Wolfe, P. (1956). An algorithm for quadratic programming. Naval Research Logistics
Quarterly, 3, 95–110.

Geng, Z., Johnson, D., & Fedkiw, R. (2019). Coercing machine learning to output physically accurate
results. Journal of Computational Physics, 406, 109099.

Grant, M., & Boyd, S. (2014). CVX: Matlab software for disciplined convex programming, version 2.1.
http:// cvxr. com/ cvx.

Grant, M., Boyd, S., & Ye, Y. (2006). Disciplined convex programming. In: Global optimization: From
theory to implementation (pp. 155–210).

Grant, M. C., & Boyd, S. P. (2008). Graph implementations for nonsmooth convex programs. In Recent
advances in learning and control (pp. 95–110).

Hansen, N., Auger, A., Mersmann, O., Tušar, T., & Brockhoff, D. (2016). COCO: A platform for com-
paring continuous optimizers in a black-box setting. ArXiv e-prints. arXiv: 1603. 08785.

Hansen, N., Brockhoff, D., Mersmann, O., Tušar, T., Tušar, D., ElHara, O. A., et al. (2019). COmparing
Continuous Optimizers: numbbo/COCO on Github.https:// doi. org/ 10. 5281/ zenodo. 25948 48.

Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. In Proceedings of the
sixteenth annual ACM symposium on theory of computing (pp. 302–311).

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In International confer-
ence on learning representations (ICLR).

Kuhn, H. W., & Tucker, A. W. (1951). Nonlinear programming. In Proceedings of the second Berke-
ley symposium on mathematical statistics and probability (pp. 481–492). University of California
Press.

Lan, G., & Zhou, Z. (2016). Algorithms for stochastic optimization with functional or expectation con-
straints. arXiv: 1604. 03887.

Larsson, T., Patriksson, M., & Strömberg, A. B. (1996). Conditional subgradient optimization—Theory
and applications. European Journal of Operational Research, 88(2), 382–403.

http://arxiv.org/abs/1910.08615
http://arxiv.org/abs/1405.4980
http://cvxr.com/cvx
http://arxiv.org/abs/1603.08785
https://doi.org/10.5281/zenodo.2594848
http://arxiv.org/abs/1604.03887

2289Machine Learning (2021) 110:2267–2289

1 3

Lee, K., Maji, S., Ravichandran, A., & Soatto, S. (2019). Meta-learning with differentiable con-
vex optimization. In IEEE conference on computer vision and pattern recognition (CVPR) (pp
10657–10665).

Malick, J., Povh, J., Rendl, F., & Wiegele, A. (2009). Regularization methods for semidefinite program-
ming. SIAM Journal on Optimization, 20(1), 336–356.

Nesterov, Y. E., & Nemirovskii, A. (1994). Interior-point polynomial algorithms in convex program-
ming, Siam studies in applied mathematics (Vol. 13). SIAM.

Nocedal, J., & Wright, S. (2006). Numerical optimization. Springer Series in Operations Research and
Financial Engineering. New York: Springer.

Peters, J., & Schaal, S. (2008). Natural actor-critic. Neurocomputation, 71(7–9), 1180–1190.
Rajeswaran, A., Lowrey, K., Todorov, E., & Kakade, S. M. (2017). Towards generalization and simplic-

ity in continuous control. In Conference on neural information processing systems (NIPS).
Rosen, J. B. (1960). The gradient projection method for nonlinear programming. Journal of the Society

for Industrial and Applied Mathematics, 8(1), 181–217.
Scherrer, B. (2014). Approximate policy iteration schemes: A comparison. In International conference

on machine learning (ICML).
Schulman, J., Levine, S., Jordan, M., & Abbeel, P. (2015). Trust region policy optimization. In Interna-

tional conference on machine learning (ICML) (p. 16).
Shor, N. Z., Kiwiel, K. C., & Ruszczyński, A. (1985). Minimization methods for non-differentiable func-

tions. Berlin: Springer.
Xu, Y. (2018). Primal–dual stochastic gradient method for convex programs with many functional con-

straints. arXiv: 1802. 02724.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1802.02724

	Convex optimization with an interpolation-based projection and its application to deep learning
	Abstract
	1 Introduction
	2 Preliminaries
	3 Interpolation-based projection and gradient descent
	4 Convergence analysis
	4.1 Subgradients, multiple constraints and non-linear objectives

	5 Experimental validation
	5.1 Constrained convex optimization
	5.2 Reinforcement learning in continuous action spaces
	5.3 Supervised learning of dynamics models

	6 Conclusion
	References

