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Abstract
Convex optimizers have known many applications as differentiable layers within deep neu-
ral architectures. One application of these convex layers is to project points into a convex 
set. However, both forward and backward passes of these convex layers are significantly 
more expensive to compute than those of a typical neural network. We investigate in this 
paper whether an inexact, but cheaper projection, can drive a descent algorithm to an opti-
mum. Specifically, we propose an interpolation-based projection that is computationally 
cheap and easy to compute given a convex, domain defining, function. We then propose 
an optimization algorithm that follows the gradient of the composition of the objective and 
the projection and prove its convergence for linear objectives and arbitrary convex and Lip-
schitz domain defining inequality constraints. In addition to the theoretical contributions, 
we demonstrate empirically the practical interest of the interpolation projection when used 
in conjunction with neural networks in a reinforcement learning and a supervised learning 
setting.
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1 Introduction

Several recent research has investigated the integration of a ‘convex optimization layer’ 
within the computational graph of machine learning architectures in applications such as 
optimal control (de Avila Belbute-Peres et al. 2018; Amos et al. 2018), computer vision 
(Bertinetto et al. 2019; Lee et al. 2019) or filtering (Barratt and Boyd 2019). Within this 
line of research, we distinguish two use cases for convex optimization. In the first use case, 
the output of the ‘convex optimization layer’ is a convex problem by definition. For exam-
ple, a node can compute the maximum a posteriori of an image model (de Avila Belbute-
Peres et al. 2018; Amos et al. 2018). In the second use case, a node restricts—by means 
of a projection—its input to a convex set and becomes a convex optimization problem by 
choice. For example, a node can restrict its input to the set of physically plausible vertex 
deformations (Geng et al. 2019).

In the second use case, it was shown in Geng et al. (2019) that the projection step ben-
efits from being fully integrated to the learning process in both the forward and backward 
passes. Let x be the input of the projection layer, g be the projection, and f be the ensu-
ing computations—e.g. a loss function. Integrating the projection into the backward pass 
amounts to differentiating through f◦g(x) . There have been several advances in differenti-
ating through convex programs (Agrawal et al. 2019). However, the forward and backward 
passes on g remain significantly more expensive than the typical matrix multiplications 
that would precede or succeed g (Amos and Kolter 2017). We investigate in this paper an 
alternative projection that is more lightweight to compute and differentiate than solving a 
convex program. Even if sub-optimal, in the sense that the proposed projection will not 
return the closest point to the input within the admissible set, the rationale behind the pro-
posed algorithm is that since we are differentiating through f and g, a sub-optimal projec-
tion could still drive the optimization process to an optimal point.

The proposed projection maps any input x to a feasible point g(x) by simply interpolat-
ing x with a point x0 satisfying the convex inequality constraints. The interpolation param-
eter is computed in closed form by exploiting the convexity of the domain defining func-
tion. We first show in this paper that the interpolation-based projection when used as in 
projected gradient descent (Rosen 1960; Nocedal and Wright 2006)—by projecting the 
iterate after each gradient step—does not converge to an optimum. However, when dif-
ferentiating through both the objective and the projection, we show that the resulting algo-
rithm converges for a linear objective and arbitrary convex and Lipschitz domain defining 
functions. Finally, we provide in addition to the theoretical analysis, empirical results using 
the projection in conjunction with neural network models in reinforcement and supervised 
learning. Our results show that the proposed projection can be used to tackle constrained 
policy optimization or to provide an inductive bias improving generalization while being 
significantly cheaper to compute than an orthogonal, ‘optimal’ projection.

This work generalizes and formally analyzes previous interpolation-based projections 
we developed in the context of reinforcement learning (RL) in Akrour et al. (2019). Several 
RL algorithms add information-theoretic constraints to the policy optimization problem, 
such as a minimal entropy or a maximal Kullback–Leibler (KL) divergence to the data gen-
erating policy (Deisenroth et al. 2013). We proposed in Akrour et al. (2019) differentiable 
policy parameterizations that comply with these constraints by construction, allowing the 
policy optimization problem to be solved by standard gradient descent algorithms. These 
parameterizations were based on interpolating any input parameterization of a distribution 
with a constraint satisfying parameterization. For example, interpolating an input discrete 
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distribution with the uniform distribution, that satisfies any reasonable minimal entropy 
constraint. Interestingly, although these projections were not ‘optimal’ in the sense that 
they do not minimize a distance to the admissible set, we noted empirically (see Akrour 
et al. (2019), Fig. 1 and surrounding text) that such parameterization would always drive 
the descent algorithm to an optimum on a toy problem with a linear objective and a convex, 
entropy constraint. The main contribution of this paper is to generalize the idea of interpo-
lation projections to arbitrary convex domain defining functions and to prove convergence 
of a descent algorithm leveraging this projection. From a practical point of view, in addi-
tion to the previously discussed RL application, we provide an example usage of the inter-
polation projection in a supervised learning context. The interpolation projection can be 
used as an inexpensive and differentiable operator to add convex constraints to the output 
of a neural network model, while being significantly cheaper than norm minimizing projec-
tions (Agrawal et al. 2019).

Computationally frugal projections were previously studied in the context of feasibil-
ity problems (Combettes 1997), where the goal is to find a point inside a convex set. The 
approximate projection in Combettes (1997) uses the gradient of a violated inequality con-
straint to find a half-space that is a superset of the feasible set. Then an orthogonal projec-
tion on this hyper-plane is performed resulting in a point outside of the feasible set, but 
closer to the set than the input point. In contrast, our projection is not based on the gradient 
of the constraint but on its convexity and results in a point inside the feasible set. Moreover, 
the optimization setting we consider is more general than the feasibility setting and our 
assumption of an initial feasible x0 would already solve the problem of Combettes (1997). 
As such, our work and that of Combettes (1997) differ both in their objectives and their 
methods. In Xu (2018); Lan and Zhou (2016), approximate projections are derived when 
the number of constraints is large, but these algorithms still rely on expensive orthogonal 
projections. To the best of our knowledge, no other work previously showed convergence 
of a convex optimizer with non-orthogonal projections. The practical implications being 
a cheap way of adding convex constraints to machine learning models as shown in the 
experimental validation section.

2  Preliminaries

Let us first introduce and analyse the ideas in a convex optimization setting. Let 
f ∶ ℝ

d
→ ℝ and h ∶ ℝ

d
→ ℝ be convex and differentiable functions. We consider the fol-

lowing convex program

For clarity of exposition, we initially only consider a single inequality constraint with dif-
ferentiable h. Our results will be straightforwardly extended to multiple inequality con-
straints in Sect.  4.1 with sub-differentiable functions. For the convergence analysis in 
Sect. 4, we only consider the case of a linear function f (x) = cTx . However, we also dis-
cuss in Sect. 4.1 how several convex problems can be rewritten in this form. For now, let us 
assume that f is an arbitrary differentiable convex function.

Letting the convex set C ⊆ ℝ
d be defined by C = {x ∈ ℝ

d ∶ h(x) ≤ 0} , the optimization 
problem (P) can be reformulated as minx∈C f (x) . To solve this problem, one approach is to 

(P)
min
x∈ℝd

f (x),

s.t. h(x) ≤ 0.
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use the Projected Gradient Descent (PGD) algorithm  (Rosen 1960; Nocedal and Wright 
2006) which is given by the following equation

where g is a mapping that projects points from ℝd to C . The projection g is defined by the 
minimization g(x) = argminy∈C‖x − y‖2 of the Euclidean norm ‖.‖2 on ℝd . Mirror descent 
(Bubeck 2014), an alternative for solving (P), can be seen as a generalization of PGD to 
other distances. These projection-based methods are most efficient when a closed form 
expression of the projection exists. Otherwise, a nested optimization problem needs to be 
solved after every gradient update of the iterate.

Other approaches such as the Frank–Wolfe method or the interior-point method also 
solve series of optimization problems. The Frank-Wolfe method (Frank and Wolfe 1956) 
solves a series of linear approximations of the problem, xk+1 = argminx∈C ∇f (xk)

Tx ; and 
the interior-point method  (Karmarkar 1984; Nesterov and Nemirovskii 1994) introduces 
a slack variable s for the inequality constraint and solves f (x) − �k ln s under an equality 
constraint, for a series of values of �k going to 0.

In contrast to all these methods, our algorithm takes a simpler and more direct approach 
by performing gradient descent on the composition of the objective and a projection. The 
proposed interpolation-based projection will transform the constrained problem (P) into 
an unconstrained one. The projection is readily defined without any other assumption than 
the convexity of h and the availability of a strictly admissible point. Unlike previous algo-
rithms, the interpolation projection is not defined as the minimization of a norm. To alle-
viate any ambiguity, from here on the term projection is understood as the more general 
following definition.

Definition 1 A projection g is a mapping from a set to a subset thereof.

Specifically, in this paper the superset is ℝd and the subset is C.

3  Interpolation‑based projection and gradient descent

To solve the optimization problem minx∈C f (x) described in (P), we use a projection g that 
will ensure that for all x ∈ ℝ

d , g(x) ∈ C , i.e. h(g(x)) ≤ 0 . The projection g is defined for 
any convex function h, provided there exists some point x0 strictly satisfying the constraint, 
i.e. h(x0) < 0 . In which case, g is given by

with �x =
h(x0)

h(x0)−h(x)
 . When h(x) > 0 , g simply interpolates between the violating point x and 

the point x0 in C ; otherwise, it returns x itself. We would like to emphasize that knowing an 
initially feasible point x0 can be a strong assumption for some applications and finding such 
an x0 can be a costly procedure in itself. However, in many applications such as the rein-
forcement and supervised learning ones considered in the experiments section, a trivial 
feasible point is readily available.

Proposition 1 g is a projection from ℝn to C.

(1)xk+1 = g
(
xk − �∇f (xk)

)
,

g(x) =

{
x if h(x) ≤ 0,

�xx + (1 − �x)x0 else,
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Proof We will demonstrate that g(x) ∈ C for all x ∈ ℝ
d . If h(x) ≤ 0 , g(x) is in C by defini-

tion. If h(x) > 0 then �x ∈ (0, 1) since h(x0) − h(x) < h(x0) < 0 and

  ◻

Even though g is a projection in the sense of Definition 1, it is not a projection in 
the usual sense that it minimizes a norm between x and elements of C . As a result, this 
projection cannot be used as in projected gradient descent (Sect. 2). To illustrate this, 
Fig.  1 shows a simple convex problem with a quadratic objective—the sphere func-
tion—and a linear constraint. When used as in the projected gradient descent update of 

(h convex)

h(g(x)) = h(�xx + (1 − �x)x0),

≤ �xh(x) + (1 − �x)h(x0),

= h(x0) − �x(h(x0) − h(x)),

= 0.

Fig. 1  Sequence of points generated by algorithms (a) and (b) with interpolation projection g. Since g is not 
a projection in the �

2
 minimizing sense, it cannot be used as in PGD (a). However, taking the derivative of 

the projection into account as in (b), drives the algorithm to the optimum
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Eq. (1), the resulting algorithm stales along the line with which it first exits C . Indeed, 
when optimizing the sphere function in an unconstrained way, gradient descent follows 
a straight line from x0 to the origin. As it first exits C , the interpolation projection puts 
the iterate back on the same line and the algorithm keeps going back and forth indefi-
nitely. In contrast, when optimizing the composition of the projection and the objective 
by gradient descent

the iterate is pushed back to C in such a way that it moves towards the optimum. In fact, a 
simple computation shows us that when xk is not in C , the update in Eq. (2) is linearly mix-
ing the gradient of the objective f and the constraint h. Formally, when h(xk) > 0 , then g is 
differentiable at xk—from the assumption that h is—and the gradient ∇f◦g(xk) is given by

Here Jk is the Jacobian of g at xk , �k is short for �xk and I is the identity matrix. The expres-
sion of Jk is obtained by straightforward computation, while Eq.  (3) is obtained from 
the identity g(xk) − x0 = �k(xk − x0) . Equation  (3) shows that the gradient of f◦g(xk) , 
when xk ∉ C , is a linear mixing between the gradient of f at the projected point g(xk) 
and the gradient of h at xk . Since h(x0) < 0 , the mixing term in Eq.  (3) is positive iff 
∇f (g(xk))

T (g(xk) − x0) ≤ 0 . In fact, the first step in our convergence analysis is to show that 
the previous quantity is indeed always negative.

The mixing between the gradient of f and h is reminiscent of the conditional subgra-
dient descent of Larsson et al. (1996). This algorithm is an acceleration of PGD, that 
restricts the definition of a sub-gradient as a linear under-estimator of f only within 
C . In this case, it is shown in Larsson et  al. (1996) that when h(xk) = 0 , the set of 
conditional sub-gradients of f can be extended by adding any sub-gradient of f to a 
sub-gradient of h. Here however, the projection g(xk) is not on the boundary of C—for 
example if h is strictly convex then h(g(xk)) < 0 and hence Eq. (3) is not necessarily a 
conditional subgradient of f, and the convergence analysis of our algorithm has to be 
carried out using different tools.

Algorithm  1 summarises the optimization algorithm for constrained optimization 
using the interpolation-based projection. Algorithm 1 starts by renormalizing h such 
that h(x0) = −1 , then defines the optimal step-size � w.r.t. an upper bound derived given 
assumptions A1 to A4 defined in the next section. Algorithm 1 then follows a gradi-
ent descent (Eq.  (2)), selecting a different step-size �k , as a function of a constant � , 
whether the iterate is inside or outside C . When x ∉ C , the gradient is given by Eq. (3). 
Algorithm 1 then returns the average of the projected points. The algorithm operates a 
first order gradient descent on f◦g , which as per Eq. (3), is of linear time and memory 
complexity. The definition of the step-size � requires two problem specific quantities, 
that are generally not known in advance. While these quantities are necessary for the 
convergence analysis of the algorithm, we show in the experiments section that Algo-
rithm 1 is robust to a broader range of step-sizes.

(2)xk+1 = xk − �k∇f◦g(xk),

(3)

∇f◦g(xk) = Jk(xk)
T∇f (g(xk)),

= �k

(
I +

∇h(xk)(xk − x0)
T

h(x0) − h(xk)

)
∇f (g(xk)),

= �k

(
∇f (g(xk)) +

∇f (g(xk))
T (g(xk) − x0)

h(x0)
∇h(xk)

)
.
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4  Convergence analysis

The first step in the convergence analysis of Algorithm 1 is a lemma showing that for 
an appropriate choice of the step-size �k , the quantity ∇f (g(xk))T (g(xk) − x0) is always 
negative for k ≥ 0 . As a consequence, the gradient of f◦g will always mix gradients of 
objective and constraint with opposing directions when the iterate exits the C . We prove 
the lemma under the assumption of a linear objective function f, a Lipschitz continuous 
domain defining function h, in addition to the previously discussed assumption of an 
initial strictly feasible point x0 . 

A1.  f (x) = cTx is a linear function in ℝd and ‖c‖2 ≤ L.
A2.  h is convex, everywhere differentiable in ℝd and H-Lipschitz w.r.t. ‖.‖2.
A3.  There exists x0 such that h(x0) < 0.

Lemma 1 Under A1–A3, the sequence of xk produced by Algorithm 1 verifies, for all k ≥ 0 
and for � ≤

1

LH
 , ∇f (g(xk))T (g(xk) − x0) ≤ 0.

Proof Let us prove the lemma by induction. For k = 0 the inequality is trivially true. Now 
assuming the inequality holds for some k ≥ 0 . It implies that cT (g(xk) − x0) ≤ 0 . We distin-
guish in the following two cases, whether xk is feasible or not. However, we treat both cases 
of feasibility of xk+1 jointly by writing g(xk+1) − x0 = �k+1

(
xk+1 − x0

)
 which becomes true 

by assuming �k+1 = 1 when xk+1 is feasible. First, assume h(xk) ≤ 0 then

By adding and subtracting xk inside the parentheses, and since for h(xk) ≤ 0 , 
xk+1 − xk = −�kc , we arrive at

which from the induction hypothesis is the sum of two negative numbers and is thus nega-
tive. Now if h(xk) > 0 then by again adding and subtracting xk , and by replacing xk+1 − xk 
with the gradient update following Eq. (3), we obtain

From the induction hypothesis, it is sufficient for the last quantity to be negative, that 
�k�k

h(x0)−h(xk)
cT∇h(xk) ≤ 1 . Using the fact that

and using the Cauchy–Schwarz inequality as well as assumption A1 and A2, we obtain

∇f (g(xk+1))
T (g(xk+1) − x0) = �k+1c

T (xk+1 − x0).

∇f (g(xk+1))
T (g(xk+1) − x0) = �k+1

(
− �kc

Tc + cT (xk − x0)
)
,

∇f (g(xk+1))
T (g(xk+1) − x0) = �k+1

(
− �k�kc

Tc + cT (xk − x0)

(
1 −

�k�k

h(x0) − h(xk)
cT∇h(xk)

))
.

�k�k

h(x0) − h(xk)
cT∇h(xk) ≤

||||
�k�k

h(x0) − h(xk)
cT∇h(xk)

||||
,
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Since � ≤
1

LH
 by assumption, the last quantity is ≤ 1 as desired. As such, we conclude that 

∇f (g(xk+1))
T (g(xk+1) − x0) ≤ 0 for h(xk) > 0 .   ◻

The assumption of the linearity of f is used in the induction step and allows several 
simplifications since for f linear, ∇f (xk+1) = ∇f (xk) . Extending the convergence analysis of 
Algorithm 1 to non-linear objectives could be achieved by extending Lemma 1 to this case. 
However, as discussed in Sect. 4.1, since the assumptions on h are mild, many constrained 
convex optimization algorithms can be recast as problems solvable by Algorithm 1.

To prove convergence of Algorithm 1, we need an additional assumption on the bound-
edness of the distance to an optimum. 

A4.  ∃x∗ ∈ C such that ∀x ∈ C, f (x∗) ≤ f (x) and ‖x0 − x∗‖ ≤ R , for some R ≥ 0.

The convergence result for Algorithm 1 is as follows

Theorem 1 Under A1–A4 and for H0 =
H

|h(x0)|
 , the returned value of Algorithm 1 verifies 

f
�

1

K

∑K−1

k=0
g(xk)

�
− f (x∗) ≤

RL(1+H0R)√
K

 for K ≥
R2H2

0

(1+H0R)
2
 and for � =

R

L(1+H0R)
√
K

.

Proof As A3 ensures that h(x0) is non zero, an equivalent optimization problem can be 
obtained where h(x0) = −1 by rescaling h with |h(x0)| . Letting H0 =

H

|h(x0)|
 , the only differ-

ence will be that if h is H-Lipschitz then h∕|h(x0)| is H0-Lipschitz. From now on, and with-
out loss of generality, we assume that h(x0) = −1 and h is H-Lipschitz. We revert to the 
general case where h(x0) < 0 at the end of the proof.

Following standard proofs of subgradient descent algorithms, our proof begins by esti-
mating the distance of the iterate to the optimum

As in Lemma 1, we study separately the case where xk ∈ C and xk ∉ C . In each case, we 
derive an upper bound of ‖xk+1 − x∗‖2

2
 and then pick the largest of the two. Starting with 

xk ∉ C , we replace ∇f◦g(xk) by its definition in Eq.  (3), and by expanding the quadratic 
expression we obtain

Adding and subtracting g(xk) in ∇f (g(xk))T (xk − x∗) and by expanding the definition of 
g(xk) and �k when h(xk) > 0 we obtain

𝛼k𝜂k

h(x0) − h(xk)
cT∇h(xk) ≤

||||
𝛼k𝜂k

h(x0) − h(xk)

||||
LH,

≤ 𝛽LH, 𝜂k < 1

‖xk+1 − x∗‖2
2
= ‖xk − �k∇f◦g(xk) − x∗‖2

2
.

(4)
‖xk+1 − x∗‖2

2
= ‖xk − x∗‖2

2
+ ‖�k∇f◦g(xk)‖22 − 2�k�k∇f (g(xk))

T (xk − x∗)

− 2�k�k
∇f (g(xk))

T (xk − x0)∇h(xk)
T (xk − x∗)

h(x0) − h(xk)
.

∇f (g(xk))
T (xk − x∗) = ∇f (g(xk))

T (g(xk) − x∗)

−
h(xk)

h(x0) − h(xk)
∇f (g(xk))

T (xk − x0).
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Replacing ∇f (g(xk))T (xk − x∗) in Eq. (4) gives

But from convexity of h, we know that h(xk) + ∇h(xk)
T (x∗ − xk) ≤ h(x∗) ≤ 0 implying

In addition, �k and �k are always positive and from Lemma 1, ∇f (g(xk))T (g(xk) − x0) is neg-
ative for all k ≥ 0 provided � ≤

1

LH
 . As a result the last term of Eq. (5) is always negative 

and ‖xk+1 − x∗‖2
2
 can be bounded by

In the upper bound of Inq. (6), we will now bound the term ‖�k∇f◦g(xk)‖22 that is specific 
to the case h(xk) > 0 . By replacing the gradient with its definition and using the fact that 
we have rescaled h such that h(x) = −1 , we obtain

Using the Cauchy-Schwarz inequality as well as assumption A1, A2 and A4 we obtain

Replacing Eq. (7) into Eq. (6), using the definition of �k and since h(x0) = −1 we have

Now for the simpler case xk ∈ C we have

Using assumption A1 and since xk = g(xk) and �k = � when xk ∈ C , we obtain the follow-
ing bound

Clearly the upper bound of ‖xk+1 − x∗‖2
2
 in Inq. (8) is always larger than the one in Inq. (9). 

As such, we can use the upper bound of ‖xk+1 − x∗‖2
2
 in Inq.  (8) for all iterates of Algo-

rithm  1. Letting A = L2(1 + HR)2 , and averaging over the first K terms of both sides of 
Inq. (9) yields

(5)
‖xk+1 − x∗‖2

2
= ‖xk − x∗‖2

2
+ ‖�k∇f◦g(xk)‖22 − 2�k�k∇f (g(xk))

T (g(xk) − x∗)

+ 2�k�k

�
h(xk) + ∇h(xk)

T (x∗ − xk)

h(x0)

�
∇f (g(xk))

T (g(xk) − x0).

h(xk) + ∇h(xk)
T (x∗ − xk)

h(x0)
≥

h(x∗)

h(x0)
≥ 0.

(6)
‖xk+1 − x∗‖2

2
≤ ‖xk − x∗‖2

2
+ ‖�k∇f◦g(xk)‖22

− 2�k�k∇f (g(xk))
T (g(xk) − x∗).

�−2||�k∇f◦g(xk)||22 = ||∇f (g(xk)) − ∇f (g(xk))
T (g(xk) − x0)∇h(xk)||22.

(7)�−2‖�k∇f◦g(xk)‖22 ≤ L2(1 + HR)2.

(8)‖xk+1 − x∗‖2
2
≤‖xk − x∗‖2

2
+ �2L2(1 + HR)2 − 2�∇f (g(xk))

T (g(xk) − x∗).

‖xk+1 − x∗‖2
2
= ‖xk − x∗‖2

2
+ ‖�k∇f (xk)‖22 − 2�k∇f (xk)

T (xk − x∗).

(9)‖xk+1 − x∗‖2
2
≤‖xk − x∗‖2

2
+ �2L2 − 2�∇f (g(xk))

T (g(xk) − x∗).

1

K

K−1�

k=0

‖xk+1 − x∗‖2
2
≤

1

K

K−1�

k=0

‖xk − x∗‖2
2
+ �2A

−
2�

K

K−1�

k=0

∇f (g(xk))
T (g(xk) − x∗).
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From the convexity of f we have that

as well as 1
K

∑K−1

k=0
f (g(xk)) ≥ f

�
1

K

∑K−1

k=0
g(xk)

�
 . Using these two properties yields

Rearranging terms and cancelling telescoping sums yields

Using A1, A2 and A4 and after replacing A we obtain

Minimizing this upper bound w.r.t. to � gives the optimal fixed step-size � =
R

L(1+HR)
√
K

 
with error

This gives us a first condition on � , but to achieve the bound in Inq. (10), we made use of 
Lemma 1 which requires that � ≤

1

LH
 , yielding an additional condition on K

Now the only remaining operation is to express the step-size, the condition on K in 
Inq. (11) and the error upper bound in Inq. (10) in terms of the original Lipschitz constant 
which is achieved simply by replacing H with H

|h(x0)|
 in these inequalities.   ◻

The O(
1√
K
) convergence rate is typical of sub-gradient descent on non-smooth con-

vex functions (Nocedal and Wright 2006), which is expected since f◦g is non-smooth. 
Compared to projected gradient descent (PGD), the bound now shows an explicit 
dependence on the Lipschitz constant of h. This is also expected since in PGD the pro-
jection is assumed to be computable at no cost. As a result, the error bound of PGD 
does not depend on the gradient of h in any way, whereas in our algorithm this depend-
ence is made explicit. Because of the non-smoothness of f◦g and the resulting O(

1√
K
) 

convergence rate, we do not expect the general formulation of Algorithm 1 to be com-
petitive with specialized convex optimizers developed for specific convex problem 
classes. However, the versatility and cheap computational cost of the interpolation 

∇f (g(xk))
T (g(xk) − x∗) ≥ f (g(xk)) − f (x∗),

1

K

K−1�

k=0

‖xk+1 − x∗‖2
2
≤

1

K

K−1�

k=0

‖xk − x∗‖2
2
+ �2A

− 2�

�
f

�
1

K

K−1�

k=0

g(xk)

�
− f (x∗)

�
.

f

�
1

K

K−1�

k=0

g(xk)

�
− f (x∗) ≤

1

2�K

�
‖x0 − x∗‖2

2
− ‖xK − x∗‖2

2
+ K�2A

�
.

f

(
1

K

K−1∑

k=0

g(xk)

)
− f (x∗) ≤

R2

2�K
+

�L2(1 + HR)2

2
.

(10)f

�
1

K

K−1�

k=0

g(xk)

�
− f (x∗) ≤

RL(1 + HR)
√
K

.

(11)
R

L(1 + HR)
√
K

≤
1

LH
,⇔ K ≥

R2H2

(1 + HR)2
.
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projection offers large gains compared to convex optimizers when integrated into (non-
convex) machine learning models, as shown in the experimental validation section.

4.1  Subgradients, multiple constraints and non‑linear objectives

So far we have only considered a single inequality constraint. Algorithm 1 and its the-
oretical guaranties can easily be extended to tackle multiple inequality constraints and 
an affine equality constraint

where hi are convex functions in ℝ
d , A a matrix and b a vector. Let 

C≃ = {x ∈ ℝ
d ∶ hi(x) ≤ 0 for all i ∈ {1…M}} . We define h as h(x) = maxi∈{1…M} hi(x) . 

Then h is sub-differentiable if all hi are (sub-)differentiable. Moreover, we assume that all 
hi are Lipschitz with constant at most H, resulting in the following assumption 

A5.  h is convex, sub-differentiable in ℝd and H-Lipschitz w.r.t. ‖.‖2.

 To tackle constrained optimization in C′ , we define Algorithm 1’ that replaces Line 10 
of Algorithm 1. Specifically, the gradient ∇h in Eq.  (3) is simply replaced by a sub-
gradient of h. Under A1, A3–A5, this new algorithm has the same convergence proper-
ties of Algorithm  1. Indeed, h being convex, the projection is still valid and will be 
given with interpolation weight �x = mini∈{1…M}

h(x0)

h(x0)−hi(x)
 , selecting the smallest inter-

polation weight given by the constraint hi with the highest violation. Additionally, of h, 
the proof of Theorem 1 only uses the property ∇h(xk)T (x∗ − xk) ≤ h(x∗) − h(xk) which is 
also fulfilled by a sub-gradient of h.

In summary, the differentiablity requirement of h can be relaxed to only require sub-
differentiability, and multiple constraints are treated as a single constraint using the 
max over these sub-differentiable constraints. As for the affine equality constraint, it 
can be eliminated by replacing x with Fz + x0 as shown in Boyd and Vandenberghe 
(2004), where F is a matrix whose range is the null space of A under the condition 
that x0 is a solution of Ax = b . Note that the objective function remains linear after the 
aforementioned change of variable, and hence the convergence guarantees still apply.

As for non-linear objectives, we note that most convex programs can be written as 
cone programs of the form minx∈K cTx , for a closed convex cone K and a linear objec-
tive (Nesterov and Nemirovskii 1994). In fact, there exists automated tools (Grant et al. 
2006; Grant and Boyd 2008) that perform this rewriting by replacing non-linear func-
tions in the computational graph with their graph implementation—a generic epigraph-
based representation. These tools are used by existing solvers such as CVX (Grant and 
Boyd 2014), and for our algorithm to be applicable to these cone programs, one has to 
provide a domain defining function h equivalent to the constraint x ∈ K for all cones 
supported by the tool. In the next section, we provide numerical examples for the semi-
definite cone, the second order cone and the linear cone.

min
x∈ℝd

f (x),

s.t. hi(x) ≤ 0, for all i ∈ {1…M},

Ax = b,
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5  Experimental validation

We first conduct numerical evaluations on toy convex problems to validate the theoreti-
cal analysis. The broader usage of the interpolation projection in machine learning is then 
evaluated in both a reinforcement and supervised learning setting.

5.1  Constrained convex optimization

Algorithm 1 defines the step-size as a function of the domain bounds and the Lipschitz con-
stants which are typically unknown in practice. We thus investigate on a wide range of con-
vex optimization problems the robustness of the interpolation projection to the choice of 
(a potentially wrong) step-size. We compare our algorithm to Projected Gradient Descent 
(PGD, Rosen (1960); Nocedal and Wright (2006)) and subgradient descent (SubGD, Shor 
et  al. (1985); Bertsekas (2015)). Subgradient descent is a converging descent algorithm 
that in our constrained setting operates by (i) following the gradient of f if x ∈ C (ii) follow-
ing the (sub-)gradient of h otherwise. This algorithm is very simple and another objective 
of these numerical experiments is to investigate whether the mixing of the gradients ∇f  and 
∇h , obtained from differentiating through f◦g in Eq. (3), provides any practical advantage 
compared to the simpler scheme of subgradient descent. In the following, we denote our 
algorithm by IGD, where the ‘I’ stands for interpolation. We consider five problem classes 
comprising linear programs, semi-definite programs, second order cone programs, prob-
lems with a bounded �2 norm or with an exponential form constraint. Exact definition of 
each problem and their random generation process is deferred to the appendix.

Results. For each of the five problem classes, 100 random instances are generated and 
we compute at each iteration the smallest f (xk)−f (x

∗)

f (x0)−f (x
∗)

 achieved so far. We compared the gradi-
ent descent algorithms with four different step-sizes ranging from 10−4 to 10−1 . Experi-
ments for each step-size are conducted on the same 100 problem instances, and although 
we plot the results for each step-size separately, one can easily extract the best performing 
step-size for each method from the same plots. The plots (deferred to the appendix) show 
that in 17 out of the 20 problems and step-sizes combinations, IGD outperforms SubGD, 
sometimes with several order of magnitudes. On semi-definite programs, SubGD performs 
better with larger step-sizes, although best results are still obtained overall by IGD with the 
smallest step-size. On the bounded norm problem where PGD is applicable, our algorithm 
is able to match PGD up until a precision ranging from 10−2 to 10−5 depending on the step-
size, before tracking behind. In contrast, SubGD is distanced at a significantly lower preci-
sion. These results both demonstrate a certain robustness to the choice of step-size and a 
practical interest in the mixing of gradients obtained by differentiating through f◦g . 
Thanks to the generality of the projection and the simplicity of performing unconstrained 
gradient descent on f◦g , we expect the interpolation projection to find many usages in 
machine learning, two of which are presented in the next subsections.

5.2  Reinforcement learning in continuous action spaces

We consider in this section policy optimization updates that occur at each itera-
tion of the approximate policy iteration (API) scheme (Bertsekas 2011; Scher-
rer 2014). To formalize the policy update in API we briefly introduce key concepts 
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of reinforcement learning (RL). A Markov Decision Process (MDP) is a quintuple 
(S,A,R,P, �) where S and A are state and action spaces, that are in our experiment 
ℝ

ds and ℝda respectively. P ∶ S ×A ↦ P(S) and R ∶ S ×A ↦ ℝ determine the next 
state transition probability and reward upon the execution of a given action in a 
given state. We denote by q(a|s) the probability density of executing a ∈ A in s ∈ S 
according to the stochastic policy q. Additionally, for policy q we define the Q-func-
tion Qq(s, a) = �

�∑∞

t=0
� tR(st, at) ∣ s0 = s, a0 = a

�
 , where the expectation is taken 

w.r.t. random variables at+1 ∼ q(.|st) and st+1 ∼ p(.|st, at) for t > 0 ; the value function 
Vq(s) = �a∼q(.|s)

[
Qq(s, a)

]
 and the advantage function Aq(s, a) = Qq(s, a) − Vq(s) . The goal 

in API is to find the policy maximizing the policy return J(q) = Vq(s0) for some starting 
state s0.

API iterates three steps, generating data from the current policy q, evaluating Aq and 
updating the policy q using Aq . To update the policy we consider the maximization of 
Aq under a KL divergence constraint between the current and next policies—establish-
ing a ’step-size’ in probability space—as is done in Schulman et al. (2015); Rajeswaran 
et al. (2017); Peters and Schaal (2008). The policy update is given by

We will benchmark algorithms on a continuous action task and specifically con-
sider the case where p and q are Gaussian policies. A Gaussian policy has density 
p(.|s) = N(�(s),�) , for co-variance matrix � and mean function �(.) . In our set-up we 
consider diagonal co-variance matrices as in Schulman et  al. (2015); Rajeswaran et  al. 
(2017) and linear-in-features or neural network based mean functions. The linear-in-feature 
mean function is given by �(s) = �(s)TM using the same random Fourier features � of 
Rajeswaran et al. (2017) with 2000 entries, whereas the neural network mean function is 
given by a neural network following the architecture in Schulman et al. (2015) with 2 hid-
den layers with 64 neurons each. For estimating Aq we follow Rajeswaran et al. (2017) and 
use a neural network to learn Vq and estimate Aq from trajectories. For both cases we use 
� = 10−2 as in Schulman et al. (2015).

To solve the aforementioned problems, both natural approaches with linear-in-fea-
tures (Rajeswaran et  al. 2017) and neural network mean functions (Schulman et  al. 
2015) follow the same approach: a second order approximation of the constraint (13) is 
computed, as well as a linear approximation of the objective function (12). The result-
ing problem is then solved in closed form resulting in the natural gradient update of the 
policy parameters. However, as the constraint satisfaction is not guaranteed—since the 
problem is solved by approximating the constraint—both approaches (Schulman et  al. 
2015; Rajeswaran et al. 2017) add a line-search routine, interpolating between the new 
parameters and the parameters of q, to ensure that Inq. (13) holds.

To compare to natural gradient, we employ first a naive algorithm that optimizes 
objective (12) in an unconstrained way, with the Adam algorithm  (Kingma and Ba 
2015), before calling the line-search routine used by the natural gradient approaches 
to ensure constraint satisfaction. Secondly, we augment the naive algorithm by adding 
an interpolation projection ’layer’ to the output of the policy. The projection layer, as 
depicted in Fig.  2-left, takes as input a set of action means—given by evaluating the 

(12)argmax
p

�s,a∼q

[
p(a|s)
q(a|s)

Aq(s, a)

]
,

(13)subject to �s∼q

�
KL(p(.�s)‖q(.�s))

�
≤ �.
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current mean function over a mini-batch of input states—and a covariance matrix and 
returns a new set of means and a covariance matrix that comply with the constraint. To 
formalize, let us define h and x0 , the two elements needed to perform the interpolation 
projection. Given a finite set of states {s1,… , sK} , we define

where �q and �q are respectively the mean function and covariance matrix of q. h is convex 
and we use as x0 for the interpolation projection the means and covariance matrix of q. The 
projection that returns a set of means and a covariance matrix compying with the KL diver-
gence constraint is then given by g as in Sect. 3, from the definition of h and x0.

To illustrate the algorithm, assume for a mini-batch of states {s1,… , sK} the mean and 
covariance functions return a mini-batch of means �(s1),… ,�(sK) and a covariance matrix 
� . If the constraint, estimated for this mini-batch is violated,

we use the projection g as in Sect. 3 to obtain a new set of means ��(s1),… ,��(sK) and 
covariance matrix �� where ��(sk) = ��(sk) + (1 − �)�q(s) and �� = �� + (1 − �)�q and 
then evaluate the objective for p�

where p�(.|s) = N(��(s),��) . Once the objective is computed, we backpropagate through-
out the whole computational graph which backpropagates through the interpolation 
projection.

In the linear-in-feature case, we note that the KL divergence is not only convex in the 
mean and covariance of the Gaussian but also in the policy parameters. Specifically, we 
have that

is a convex function in M and � , and from linearity of the mean function interpolating the 
means or the parameter M directly are equivalent. Moreover, the � obtained using h(M,�) 
or h(�(s1),… ,�(sK),�) will be identical for a given mini-batch since the value of h will be 
the same in both cases. The optimization process can thus be seen as performing gradient 
descent on (f◦g)(M,�) , where f is the objective (12). This is similar to the convex optimi-
zation setting studied theoretically, except f is now non-linear non-convex—because Aq is 
not necessarily convex. However, the empirical results show that the optimization scheme 
still performs well despite f◦g being non-convex. This is not entirely surprising since gra-
dient descent is widely used and well behaved for non-convex problems too.

To generate real RL optimization problems, we run natural gradient on the Biped-
alWalker-v2 environment (Brockman et al. 2016) for one million steps with a policy 
update after a minimum of 3000 steps. We run 11 of such independent runs, generating 

h(�(s1),… ,�(sK),�) =
1

K

∑

k

KL(N(�(sk),�)|N(�q(sk),�q)) − �,

1

K

∑

k

KL(N(𝜇(sk),𝛴)|N(𝜇q(sk),𝛴q)) > 𝜖,

1

N

∑

k

p�(ak|sk)
q(ak|sk)

Aq(sk, ak),

h(M,�) =
1

N

∑

k

KL(N(�(sk)
TM,�)|N(�(sk)

TMq,�q)) − �,
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over 3000 optimization problems for each of the linear and non-linear cases. Both the naive 
algorithm and the projection augmented algorithm use the same hyper-parameters for 
the update, by performing 30 epochs with a step-size1 of 5 × 10−5 ). For each of the 3000 
optimization problems, we record the ratio between the objective value when solving the 
problem with gradient descent, divided by the value when solving the problem following 
the natural gradient baselines in each of the linear (Rajeswaran et al. 2017) and non-linear 
(Schulman et al. 2015) case. A value larger than 1 indicates that the method solved the con-
strained problem better than the state-of-the-art.

Figure 2 shows the distribution of such ratios for the linear and non-linear mean func-
tion cases. In both cases, without the projection, the unconstrained optimization with a 
final line-search step performs significantly worse than natural gradient descent. In con-
trast, adding the interpolation projection of the Gaussian distributions’ parameters while 
using the same optimization scheme, results in a median improvement over natural gradi-
ent of 31% and 57% for the linear and non-linear mean function cases respectively. Note 
that in the linear case, the optimization setting resembles the earlier convex optimization 
experiments as the constraint is convex in the input means of h but also directly on the 
parameters of the mean function M. When the mean function is a neural network, the inter-
polation projection still seems to guide the gradient descent algorithm towards regions of 
the parameter space that better trade off objective maximization and constraint satisfaction 
than the naive algorithm.

We also evaluated replacing the interpolation layer with an orthogonal projection using 
a differentiable convex solver (Agrawal et al. 2019). The orthogonal projection receives the 
same input means and covariance matrix as the interpolation projection but returns instead 
the parameters that minimize the Euclidean distance to the inputs while complying with 
the KL divergence constraint. This is a convex problem and we used the tools of (Agrawal 
et al. 2019) to both compute the forward pass—solve the convex problem—and the back-
ward pass—differentiate around the solution of the convex problem—of this computational 
graph. The computational cost of this model is more than 300 times that of the vanilla 
neural network model, while our model with the interpolation projection is only about 

Fig. 2  From left to right: a The computational graph of an RL policy with the projection layer taking as 
input the intermediate values �(s) and � and returning a new mean and covariance complying with the 
KL-divergence constraint. b, c Distributions of the improvement ratio over the natural gradient baseline for 
gradient descent on the policy parameters with and without the interpolation projection. The thick vertical 
black bars in the violin plot span the lower and upper quartiles

1 We performed the same experiment with other step-sizes of 10−4 and 2 × 10
−4 and the conclusions are 

essentially the same.
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1.5 more expensive. Due to the increased computational costs, we performed only 6 inde-
pendent runs for this comparison totaling about 1700 optimization problems. Comparison 
between the two optimization schemes are shown in Fig. 3. Surprisingly, the interpolation 
projection performs better than the more accurate projection, perhaps because of a bet-
ter interplay between the interpolation projection and the subsequent line-search routine, 
while being significantly cheaper to compute.

5.3  Supervised learning of dynamics models

In the previous experiment we have shown how the interpolation projection can be used to 
tackle constrained optimization problems in the context of RL. In this experiment, we pro-
vide an example of an inductive bias in the form of a convex constraint on the outputs of a 
neural network, and we show how the interpolation projection can be used to comply with 
these constraints. The task consists in predicting the position, for several steps in the future, 
of 7 circular rigid bodies connected in 3 different configurations with respectively 6, 9 and 
12 strings of the same length as shown in Fig. 4. We would like to emphasize that even 
though there are constraints on the output of the neural network, we impose no constraints 
on its parameters.

Fig. 3  Distributions of the improvement ratio over SGD + A norm minimizing projection of SGD with and 
without the interpolation projection. The thick black bars in the violin plot span the lower and upper quar-
tiles. Each violin plot is obtained after solving circa 1700 optimization problems

Fig. 4  The three considered objects with 7 rigid bodies and 6, 9 and 12 strings respectively from left to 
right
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The considered inductive bias constrains the distance between predicted positions of 
connected rigid bodies to be at most the length of the string. To comply with the constraint, 
we add after the prediction of the neural network yt , an interpolation projection that returns 
g(yt) , such that the constraints imposed by the strings are respected. To compute g, we 
define h as the maximum distance between linked bodies, which is convex, and use as ‘ x0
’—the anchor point of the interpolation projection—an imaginary configuration that places 
all rigid bodies in the average of their positions according to yt−1 . This point has thus zero 
distance between all circular bodies and strictly satisfies the constraints. Given h and ‘ x0 ’, 
the interpolation projection g follows as in Sect. 3.

To predict the next set of positions yt we use a neural network with 4 hidden layers hav-
ing 256 nodes each. The network takes as input the last three positions of each 7 circular 
bodies and outputs the change to the current set of positions. We train this neural network 
as a recursive neural network (RNN), using backpropagation through time, as the predicted 
position in the next time-step is fed back to its input. We used for the optimization proce-
dure Adam (Kingma and Ba 2015) with a step-size of 10−4 . Because of the computational 
complexity of this task, we did not perform full and rigorous experimental comparisons 
with different step-sizes but only compared step-sizes on partial runs before settling for the 
value of 10−4.

In addition to the base RNN model, we evaluate the same RNN with the inductive bias 
in the form of convex constraints as described above. Ground truth trajectories are gener-
ated by letting the object fall from a distance of 400 units of measure (u.m.), after applying 
an initial force generated by selecting a node uniformly at random then applying a force 
with constant norm sampled uniformly at random on an upper half circle. The diameter of 
the circular rigid body is 1 u.m. Box2d (Catto 2007) is used to simulate 200 of such trajec-
tories, 50 of which are used for training, 75 for validation and 75 for test. Each trajectory 
contains 485 time-steps and the train set alone contains circa 24K time-steps. We train both 
the RNN and RNN with convex constraints for a fixed time of 3 days on a single core of an 
AMD 3900x.

The generalization results in Table 1 show that both models can synthesize relatively 
close trajectories to the original ones for an extended period of time (485 time-steps at 
60Hz) from only the first three time-steps of the test trajectories. The results also show 
that the additional interpolation projection layer, enforcing compliance with the physical 
constraints imposed by the strings, reduces the prediction error for the two shapes with 
the most strings; while for the simpler chain shape, the vanilla model performs better. The 
worse performance in this setup might be the result of the additional non-smoothness intro-
duced by the interpolation projection. Yet, even when it under-performs quantitatively with 
the chain shape, the trajectories generated by the projection augmented model can look 
qualitatively better since the vanilla model sometimes exhibits large violations of the con-
straints as shown in Fig. 5. In conclusion, introducing an inductive bias through additional 

Table 1  Mean Euclidean distance and std. dev. between test trajectories and model generated trajectories, 
obtained by unrolling 485 time-steps from the first three time-steps of each of the 75 test trajectories. First 
row shows the vanilla neural network model, and the second row adds an interpolation projection layer to 
respect physical constraints imposed by the strings

Chain Chain. Tri. Star

RNN 2.52 ± 1.38 2.32 ± 1.19 2.25 ± 1.09

RNN + Shape Cst. 2.89 ± 1.39 2.19 ± 1.01 2.18 ± 0.96
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constraints and using the interpolation projection to comply with the constraints showed 
promising results both quantitatively and qualitatively, with little computational over-
head—the training procedure becoming only about 1.2 times slower. In comparison, we 
were unable to run the baseline with the optimal projection layer that solves a convex prob-
lem for every forward pass. Compared to the RL setting, the combined effect of a larger 
dataset (more than 10x) and the increased number of convex problems to solve per gradient 
update (up to 240x du to the back-propagation through time) would require several months 
for the training procedure to complete on the same AMD 3900x processor.

6  Conclusion

We introduced in this paper an interpolation-based projection onto a convex set that can be 
readily computed for any convex domain defining function. We then derived a descent algo-
rithm based on the composition of the objective and the projection and showed that this sur-
prisingly yields a convergent algorithm when the objective is linear, despite the ‘sub-optimal-
ity’ of the projection. From a practical point of view, we have shown that this projection when 
added as a layer to computational models, allows to tackle constrained optimization in rein-
forcement learning or adds an inductive bias to predictive models. Because the projection is 
general and computationally frugal, we think this work can find many other applications in 

Fig. 5  Predicted trajectories vs ground truth. As errors compound, the RNN model without shape con-
straints exhibits large violations of the physical structure of the chain, as highlighted in red. In contrast, 
the model with the projection layer maintains physical consistency with the original shape at all times. An 
animated version of Fig. 5 is provided here
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machine learning where intermediary nodes of a computational graph are constrained to be in 
a convex set.

Appendix A. Convex optimization numerical illustration

We describe in more details the experimental setting of the convex optimization comparisons. 
We consider five problem classes comprising linear programs, semi-definite programs, sec-
ond order cone programs, problems with a bounded �2 norm and problems with an exponen-
tial form constraint. The form of the domain defining function h for each of these problems 
is trivial except for the semi-definite cone, where we used h(A) = −�min , the negative of the 
smallest eigenvalue of the symmetric real valued matrix A. The sub-gradient of h w.r.t. A is 
given in this case by −vvT , where v is the eigenvector associated with �min . We now detail each 
problem class and its random instance generation.

Linear program (Lin). The problem is

We generate instances such that the optimum is at (0,… , 0)T and the constraints are active 
at the optimum. The objective is generated by sampling a c uniformly at random on the 
hyper-sphere. Following the idea in Hansen et al. (2016, 2019), we define the constraints 
of such problems by setting the gradient of the first constraint to a1 = −c to ensure the 
Karush-Kuhn-Tucker optimality conditions Kuhn and Tucker (1951); Nocedal and Wright 
(2006) hold at (0,… , 0)T . At this point, the point x = c is feasible and we generate the 
remaining M − 1 constraints randomly while making sure that x remains feasible. Specifi-
cally, each ai , for i ∈ {2…M} , is sampled on the hypersphere uniformly at random and 
redefined as ai = −ai if aTi x > 0.

Semi-definite program (SDP). The dual of the problem is given by

The constraint implies that 
∑

i xiAi − C is a positive semi-definite matrix. We generate the 
problem data following the code of Malick et al. (2009) to obtain problems where strong 
duality holds. There is one difference in the generation of the matrices Ai , that are made 
sparse in the original code, while we use Ai =

1

2
(Bi + BT

i
) with entries of Bi sampled from 

the Normal distribution.
Second order cone program (SOC). The problem is

The objective is generated by sampling a c uniformly at random on the hyper-sphere. 
Then an x0 is generated following the same procedure. All other problem data are then 
sampled from the normal distribution except di that is computed such that h(x0) = 0 , i.e. 
di = ‖Aix + bi‖2 − zt

i
x.

min
x

cTx,

s.t. aT
i
x ≤ 0, i ∈ {1…M}.

min
x

cTx,

s.t.
∑

i

xiAi ⪰ C.

min
x

cTx,

s.t. ‖Aix + bi‖2 ≤ zt
i
x + di, i ∈ {1…M}.
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Norm constraint (Norm). The problem is

A random instance of the problem is generated by sampling a vector c uniformly at random 
on the hyper-sphere such that the optimum x∗ is −c with value f (x∗) = −1.

Exponential constraint (Exp) The problem is

where b is a vector that has on each entry W(1), the Lambert W function evaluated at 1. It 
is designed such that the minimum of the constraint is attained at (0,… , 0)T , facilitating 
the generation of feasible points. c is generated by sampling uniformly at random on the 
hyper-sphere.

Obtaining x0 and f (x∗) . For Lin, Norm and Exp, x0 is generated by uniformly sam-
pling at random in the unit ball, and resampling if the point is not feasible. For SDP we use 
x0 as in the code of Malick et al. (2009). For SOC, our algorithm cannot use the x0 described 
in the problem definition, since h(x0) = 0 . To obtain a valid x0 for our algorithm, starting 
from the aforementioned x0 , we perform 100 optimization steps with Adam Kingma and 
Ba (2015) and a step-size of 10−2 on the maximum over the constraints, and use the newly 
obtained point as the x0 for all algorithms. For Lin and Norm, f (x∗) is known whereas we 
estimate it for the remaining problems using CVXPY Diamond and Boyd (2016) with the 
highest precision available.

Performance metrics. For every optimization problem we randomly generate an 
instance and run all optimizers for 10000 iterations. We repeat this procedure 100 times 
for every problem. For each run, and at each iteration k, we compute mint∈{1..k} f (g(xt)) 
where g is the norm minimizing projection for PGD or the interpolation projection for 
our algorithm. For subgradient descent we use instead mint∈{i∈{1..k}s.t.h(xi)≤0} f (xt) , i.e. we 
pick the best point so far that is in C . We consider the min instead of f ( 1

k

∑k

t=0
g(xt)) as an 

evaluation metric for our algorithm in order to allow for comparisons with the subgradi-
ent descent method in which the average point so far, is not necessarily in C . Note that the 
theoretical guarantees given by Theorem 1 are exactly the same for this min criterion since 
mint∈{1..k} f (g(xt)) ≤

1

k

∑k

t=0
f (g(xt)) can be used in a similar way in the proof in lieu of the 

average point. In order to allow for meaningful averaging between the several randomly 
generated instances, we normalize the performance between 0 and 1 for each run by sub-
tracting f (x∗) and dividing by f (x0) − f (x∗) . Instances of Lin, SDP, SOC and Norm and 
Exp are of dimensionality 10, 10, 20, 100 and 2 respectively. For each problem, we evalu-
ated all algorithms with step-sizes � of 10−4 , 10−3 , 10−2 and 10−1 . Random instances across 
different step-sizes are identical and results are therefore directly comparable. Finally, the 
performance plots in Fig. 6 are obtained by plotting the median and the upper and lower 
quantiles.

Results On the plots of Fig. 6, one can notice on all problems that the performance of all 
algorithms perfectly overlaps in initial iterations. That is due to the fact that all compared 
algorithms are similar up to the point where an iterate first exits the feasible set C . The plots 
also show that in 17 out of the 20 problem and step-size combination, IGD outperforms 

min
x

cTx,

s.t. ‖x‖2 ≤ 1.

min
x

cTx,

s.t.
1

2
‖x − b‖2

2
+

d−1�

i=0

exp(xi − bi) ≤ d,



2287Machine Learning (2021) 110:2267–2289 

1 3

SubGD, sometimes with several order of magnitude. On semi-definite programs, SubGD 
performs better with larger step-sizes, although best results are still obtained overall by 
IGD with the smallest step-size. On the Norm problem where PGD is applicable and with 
� = 0.001 , we observe that both PGD and IGD perform very similarly despite the sim-
plicity and the linear nature of the projection used by our algorithm, and both algorithms 
perform better than the more naive SubGD baseline. On these problems, our algorithm is 
able to match PGD up until a precision ranging from 10−2 to 10−5 for different step-sizes, 
before tracking behind. In contrast SubGD is distanced at a significantly lower precision. 
All combined, these results both demonstrate a certain robustness to the choice of step-size 
and a practical interest in the mixing of gradients obtained by differentiating through f◦g . 
Thanks to the generality of the projection and the simplicity of performing unconstrained 
gradient descent on f◦g , we expect the interpolation projection to find many usages in 
machine learning.
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Fig. 6  Comparison of first order descent algorithms with different step-sizes on linear programs (leftmost 
column), semidefinite programs, second order cone programs, programs with bounded norm or exponential 
shaped constraint (rightmost column). Step-size � ranges from 0.1 on the first row to 10−4 on the forth row. 
All plots averaged over 100 runs
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