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Abstract
Artificial neural networks with a specific autoencoding structure are capable of estimating 
parameters for the multidimensional logistic 2-parameter (ML2P) model in item response 
theory (Curi et al. in International joint conference on neural networks (IJCNN), 2019), but 
with limitations, such as uncorrelated latent traits. In this work, we extend variational auto 
encoders (VAE) to estimate item parameters and correlated latent abilities, and directly 
compare the ML2P-VAE method to more traditional parameter estimation methods, such 
as Monte Carlo expectation-maximization. The incorporation of a non-identity covariance 
matrix in a VAE requires a novel VAE architecture, which can be utilized in applications 
outside of education. In addition, we show that the ML2P-VAE method is capable of esti-
mating parameters for models with a large number of latent variables with low computa-
tional cost, where traditional methods are infeasible for data with high-dimensional latent 
traits.
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1 Introduction

Item response theory models (IRT; e.g., Lord and Novick, 1968) provide a link between 
a student’s observed item responses on an assessment and a set of continuously-val-
ued latent variables representing the student’s ability on dimensions that underlie an 
assessment. Whereas unidimensional IRT models posit a single latent trait that is meas-
ured by all items of an assessment, multidimensional IRT models (Reckase, 2009) fea-
ture multiple latent traits, often where only a small set are measured by any one item. 
Although MIRT models have a long history, estimation of these models can be compu-
tationally intensive, depending on which estimation methods are used, and often have 
practical limits on the number of latent variables that can be estimated in an analysis. 
Despite this added complexity, studies have explored the advantages that multidimen-
sional assessments hold over unidimensional assessments (Bradshaw et  al., 2014). In 
recent years, artificial neural networks (ANN) have been employed in various areas of 
education research, including the tasks of knowledge tracing (Piech et al., 2015; Zhang 
et al., 2017), parameter estimation (Guo et al., 2017; Wu et al., 2020), and essay scoring 
(Taghipour and Ng, 2016). Each of these applications aim to measure student ability in 
some setting.

Most closely related to the present work, Guo et  al. (2017) introduced the idea of 
using a neural network with autoencoding structure for parameter estimation. They 
make some constraints on network parameters in order to interpret a hidden layer of 
an autoencoder as estimates to student skills. It has previously been demonstrated by 
Converse et  al. (2019) that using a VAE instead of a regular autoencoder yield large 
improvements. This is due to the assumption in IRT that the students’ latent skills fol-
low normal prior distribution, and how a VAE uses a regularization term to fit a hidden 
layer to this same prior distribution. The VAE approach (Curi et al., 2019) assumes that 
latent traits are independent—the work in this paper generalizes this approach to allow 
for more complicated prior distributions involving correlated latent traits.

Other recent publications suggest related approaches using neural networks for vari-
ational inference in IRT. Wu et  al. (2020) uses an objective function similar to what 
we present here, but includes additional regularization terms. They use two separate 
neural networks—one for student ability parameters and the other for item parameters. 
Wang et  al. (2020) presents a similar inference model which can be applied to other 
factor analysis models. Like other previous literature, both of these works assume that 
latent abilities are independent and regularizes student ability against a standard normal 
distribution.

In this study, we investigate the use of a specific ANN, a variational autoencoder, in 
the estimation of MIRT models with large numbers of correlated latent traits. Different 
from Wu et al. (2020), we obtain the item parameter estimates from trainable neural net-
work weights. This work is an extension of preliminary results which have been previ-
ously published in a neural computing conference, where the method was first presented 
by Curi et al. (2019). There are three main contributions that this work provides.

First, we propose an alternative network architecture and regularization term in the 
loss function, which allows for correlated latent skills. As such, the VAE can be fit to 
a more general multivariate Gaussian prior distribution with a non-identity correlation 
matrix. This neural architecture can be applied in other fields outside of educational 
measurement. Secondly, this work performs experiments on four different datasets, 
both real and simulated, which are much larger than those used in Curi et  al. (2019), 
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demonstrating the ability of the proposed method to handle high-dimensional data. 
Finally, we directly compare our results with those of traditional IRT parameter estima-
tion methods, displaying the considerable advantages of our method as the number of 
latent skills increases.

Estimation of MIRT models (or models that are roughly equivalent to MIRT models, 
such as Item Factor Analysis models) dates to the 1970s. What now would be called lim-
ited information estimation methods—methods that rely upon a polychoric correlation 
matrix rather than raw data—were used in Christoffersson (1975) and Fraser and McDon-
ald (1988). Full information marginal maximum likelihood (MML) estimation of MIRT 
models is difficult stemming from the need to numerically integrate to marginalize across 
the latent variables. As the number of latent variables increases linearly, the number of 
computations in the marginalization process increases exponentially. Versions of MML 
algorithms have been developed to speed such estimation, such as the Expectation-Max-
imization (EM) algorithm (Bock and Aitkin, 1981), but still suffer from an exponential 
increase in computation with a linear increase in latent variables. More recently, hybrid 
MML algorithms have been developed to speed calculation of the multidimensional inte-
gral across latent variables. For instance, Cai (2009) implemented a Robbins Monro algo-
rithm that sampled from the posterior distribution of the latent traits in order to provide an 
estimate in the Expectation step of an EM algorithm. Despite such advances, estimation of 
MIRT models with large numbers of latent traits remains elusive.

The importance of developing alternative approaches for parameter estimation that are 
more computationally efficient than traditional methods is seen in the analysis of large-
scale data. Significantly increasing the number of items, individuals, and latent variables 
puts strain on the traditional estimation processes. In recent years, a number of educational 
technology companies have aimed to provide more personalized and skill-specific instruc-
tion to students—this requires quick and efficient methods to evaluate student learning at 
scale.

In the educational field, the evolution of psychometric models and computational 
resources are leading to the evaluation of a larger number of more specific abilities in 
online learning environments. Pardos et al. (2010), for instance, used a Bayesian network 
to model up to 106 Math skills over students that took the MCAS (Massachusetts Compre-
hensive Assessment System) assessment, a state-administered standardized test of English, 
math, science, and social studies for grades 3 to 10. In a similar application, ACT has cre-
ated a holistic framework (Camara et  al., 2015) to conceptualize academic performance 
as multidimensional. In another fields, statistical models that deal with high dimensional 
latent variables can be applied to quantitative genetic studies of gene expression, where the 
number of traits assayed per individual can reach the thousands (Runcie and Mukherjee, 
2013).

Additionally, the running time of estimation algorithms is of interest to improve. When 
more individuals are present in the dataset, more parameters have to be estimated. In large-
scale assessments, it is common to have millions of students taking an exam, making 
numerical calculations taxing. Running time is also an issue in Computerized Adaptive 
Testing (CAT) (Van der Linden and Glas, 2000). CAT selects items along the test tailoring 
their difficulty to the level of ability presented by the examinees according to their answers. 
Abilities are estimated on the fly, requiring the estimation process to not be sluggish.

In addition to our proposed model’s effectiveness in the application area, it is of inter-
est to the machine learning community because of the manner in which a variational 
autoencoder is used. Through modifications and constraints to the neural network archi-
tecture, we are able to interpret some of the trainable network parameters as estimates to 



1466 Machine Learning (2021) 110:1463–1480

1 3

the item parameters and interpret the activations at a hidden network layer as estimates 
of student ability. This adds a great deal of interpretability to an otherwise black-box 
neural network. Besides adding explainability to a neural network, we also introduce 
a neural architecture that allows a VAE to learn a more general Gaussian distribution 
N(�,�) with correlated latent code, rather than the standard normal distribution.

The concern with correlations between traits is that measurement of abilities in IRT, 
or mental traits in general, long has assumed that traits measured from the same person 
will be correlated. In many social science fields, the development of multidimensional 
assessment inventories often hinges upon the question of whether traits are too highly 
correlated (i.e., they are essentially the same dimension) rather than if they are corre-
lated at all.

1.1  Multidimensional item response theory

In MIRT, it is assumed that each student j possesses K latent abilities 𝛩j = (𝜃j1, ..., 𝜃jK)
⊤ , 

which are not directly observable. In real-world applications, the available data is often 
student j’s response set to an exam with n items, represented as a binary vector uj ∈ ℝ

n . 
An entry in uj equal to 1 corresponds with a correct answer, and an entry equal to 0 corre-
sponds with an incorrect answer to a particular item of the exam. Given student j’s assess-
ment results uj , the goal in IRT parameter estimation is to infer the latent traits �j.

A naive approach to quantifying student knowledge is to look at the percentage of ques-
tions that the student answered correctly. This is what is done in most classrooms to assign 
letter grades. But this does not take into account the fact that each item on the assessment 
is different-both in difficulty and in content. For example, if one student answers only ques-
tions 1 and 4 incorrect, and another student answers only questions 3 and 7 incorrect, they 
have the same percentage score. But it is not likely that the two students share the same 
latent trait values. Questions 3 and 7 may have tested a different skill than items 1 and 4, 
and could vary greatly in difficulty level. For this reason, MIRT models are useful in edu-
cational measurement.

The Multidimensional Logistic 2-Parameter (ML2P) model gives the probability of stu-
dents answering a particular question as a continuous function of student ability (McKinley 
and Reckase, 1980). There are two types of parameters associated with each item: a dif-
ficulty parameter bi for item i, and a discrimination parameter aik ≥ 0 for each latent trait 
k quantifying the level of ability k required to answer item i correctly. The ML2P model 
gives the probability of student j with latent abilities 𝛩j = (𝜃j1, ..., 𝜃jK)

⊤ answering item i 
correctly as

Note that if aik = 0 , then success on item i does not depend on ability k. A single item can 
assess multiple abilities, so that both aik ≠ 0 and aij ≠ 0 for j ≠ k . While it is impossible to 
discern the quantities of item parameters without some estimation method, it is often fea-
sible for field experts to identify the latent traits required for each item. A Q-matrix (Tat-
suoka, 1983) Q ∈ ℝ

n×K defines the relationship between exam items and latent abilities. 
Each entry is binary, where Qik = 1 if ability k is useful in answering item i, and Qik = 0 
otherwise.

(1)P(uij = 1��j;�i, bi) =
1

1 + exp
�
−
∑K

k=1
aik�jk + bi

�
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1.2  Variational autoencoders

A variational autoencoder (VAE) is an unsupervised learning method with an architec-
ture similar to a regular autoencoder. It encodes the input to a smaller dimension, and then 
decodes this simpler representation to reconstruct the original input. But a VAE makes the 
additional assumption that the low-dimensional representation of data follows some proba-
bility distribution (often N(0, I) ), and fits the encoded data to this distribution. The encoder 
maps each data point to a probability distribution, which can then be sampled from, and 
that sample is reconstructed through the decoder.

This reveals the primary use of a VAE as a generative model: after training a VAE on 
some data set X, samples from the encoded distribution can be fed forward through the 
decoder to obtain new data samples, which are similar to X. Note that only the decoder is 
used at test time.

Formally, we assume that data X are generated from a distribution p�(X = x|�) . In other 
words, for all x ∈ X , there exist some values of latent variables � such that the parameters 
� in the decoder will produce x. The encoder will map the input data x to the its corre-
sponding � . By Bayes’ rule, we can write the unknown posterior distribution of � as

In order to evaluate f (�|x) , we assume that the prior f (�) follows a probability distribu-
tion. In most VAE applications, N(0, I) is used, but this can be generalized to N(�,�) . 
While f (�|x) is directly computable in theory, the integral in Eq. 2 becomes intractible as 
the dimension of � increases. A solution is to approximate f (�|x) with some other func-
tion q�(�|x) with parameters � , which takes an input x and maps it to a distribution of 
likely values of �.

In order to train the VAE to fit q�(�|x) as close to f (�|x) as possible, another term 
must be added to the neural network loss function. Such q� is chosen by minimizing the 
Kullback-Liebler divergence (Kullback and Leibler, 1951) between all possible functions 
q(�|x) ∈ � and f (�|x) , where � is a particular class of probability distributions. For 
example, � may contain all d-dimensional multivariate Gaussian distributions. The KL-
Divergence is given by

This expression still contains the unknown f (�|x) , but it can be shown as in Kingma and 
Welling (2014) that minimizing Eq. 3 while still reconstructing input data is equivalent to 
maximizing

which only requires the prior distribution f (�) . The first term of Eq. 4 corresponds with 
the reconstruction of inputs, and the second term pushes the approximate latent distribu-
tion q(�|x) closer to the prior f (�) . In the case of a VAE, the class of functions � refers to 
a particular neural network architecture of the encoder, and each distinct q ∈ � represents 
a different setting of the network weights and biases W. The VAE is trained by a gradient 
descent algorithm to minimize

(2)f (�|x) = P(X = x|�)f (�)

P(X = x)
=

P(X = x|�)f (�)

∫ P(X = x|�)f (�)d�

(3)KL[q(�|x)||f (�|x)] = E�∼q(�|x)[log q(�|x) − log f (�|x)].

(4)E�∼q(�|x)[logP(X = x|�)] − KL[q(�|x)||f (�)]

(5)L(W) = L0(W) + �KL[q(�|x)||f (�)],
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where L0 is the cross-entropy loss function and � is a regularization hyper-parameter.

2  Model description

We expand upon the work of Curi et. al. and use the ML2P-VAE model proposed by Curi 
et al. (2019). Though an unconventional use of a variational autoencoder, we show that the 
method is a flexible and versatile parameter estimation method. Certain modifications to 
the architecture of the neural network allow for interpretation of weights and biases in the 
decoder as item parameter estimates, and activation values in the encoded hidden layer as 
ability parameter estimates. This is a unique property, as neural networks are usually unin-
terpretable and function as a black box model.

The required modifications are as follows. The decoder of the autoencoder (or varia-
tional autoencoder) has no hidden layers. The non-zero weights in the decoder, connecting 
the encoded distribution to the output layer, are determined by a given Q-matrix (Tatsuoka, 
1983). Thus these two layers are not densely connected. The output layer must use the sig-
moidal activation function,

where zi =
∑K

k=1
wki�k + �i . Here, wik is the weight between the k-th and i-th nodes in the 

second-to-last and output layer, respectively. �k is the activation of the k-th node in the 
second-to-last layer, and �i is the bias value of the i-th node in the output layer. The form 
of Eq. 6 is identical to that of Eq. 1, and so these specifications allow interpretation of the 
decoder as an ML2P model.

Additional modifications are made to improve performance, but are not technically 
required in order to allow interpretation. These include forcing decoder weights to be 
non-negative (since discrimination parameters are non-negative) and fitting the VAE to a 
normal distribution. Previous work by Converse et al. (2019) has demonstrated the advan-
tages that a VAE fit to a normal distribution holds over a regular autoencoder with similar 
structure as seen in Guo et al. (2017). In this work, we make additional adjustments to the 
network architecture in order to account for correlated latent traits. A visualization of the 
ML2P-VAE neural network modifications is shown in Fig. 1, where q�(�|x) and p�(x|�) 
parameterize the encoder and decoder, respectively. The encoder outputs parameters �0 and 
L0 , which describe the mean and covariance matrix of the latent distribution.

2.1  VAE implementation for correlated traits

There are many publicly available code examples of VAE implementations which fit the 
latent space to a standard normal distribution N(0, I) . However, it is uncommon to train a 
VAE which assumes that the latent traits are not independent of one another. Because most 
VAE applications do not have any interpretable hidden layers, there is not much merit in 
fitting correlated latent variables. In fact, it is often beneficial to force them to be independ-
ent by fitting to N(0, I).

Building a VAE which learns correlated latent traits is a unique approach, and brings 
extra difficulties in the network architecture. This affects the two distinguishing features 
of a VAE: (1) sampling from the learned distribution and sending this sample through the 
decoder and (2) adding Kullback-Liebler Divergence to the network’s loss function.

(6)�(zi) =
1

1 + e−zi
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After training a VAE, feeding a data point x0 through the encoder results in a set of 
values that correspond to a probability distribution, namely a vector �0 ∈ ℝ

K and a matrix 
�0 ∈ ℝ

K×K . Sampling from N(�0,�0) requires a matrix G0 such that G0G
⊤
0
= 𝛴0 . Though 

G0 is not unique, it is convenient to use the Cholesky decomposition of �0 (Atkinson, 
1989). Define �

�
= (𝜀1, ..., 𝜀K)

⊤ with each �i ∼ N(0, 1) , for 1 ≤ i ≤ K . Finally, generate the 
sample z0 = �0 + G0�� , which will be sent through the decoder.

The KL-Divergence between two multivariate normal distributions of dimension K is 
given as

When using this in the loss function of a VAE, �1 and �1 are constant, since we desire to 
fit the data to a known distribution N(�1,�1) . Thus we only need to calculate �−1

1
 one 

time, speeding computation time while training the neural network. But Eq. 7 computes 
ln det�0 , so we must have det𝛴0 > 0 . Ensuring det𝛴0 > 0 is nontrivial; �0 depends on 
the input x0 , along with every weight and bias in the encoder. These weights and biases 
are updated throughout training, and often initialized randomly. If det�0 ≤ 0 at any point 
during training, then it is not possible to compute the loss and gradient. We construct an 
encoder architecture which guarantees that det𝛴0 > 0 , regardless of the input x0 or encoder 
parameters.

As before, the input to our neural network consists of n nodes, representing items on an 
assessment. After a sufficient number of hidden layers of sufficient size, the encoder outputs 
K + K(K + 1)∕2 nodes. The first K nodes represent the mean vector �0 , and the remaining 
K(K + 1)∕2 nodes are arranged into a lower triangular matrix L0 ∈ ℝ

K×K . We obtain the 
covariance matrix by using the matrix exponential: G0 = eL0 , so 𝛴0 = G0G

⊤
0
= eL0 ⋅

(
eL0

)⊤.

Theorem 1 �0 under the previously described construction is symmetric, positive defi-
nite, and has positive determinant.

Proof Consider any lower triangular L0 ∈ ℝ
K×K . Define

(7)
DKL

[
N(𝜇0,𝛴0)||N(𝜇1,𝛴1)

]
=

1

2

(
tr(𝛴−1

1
𝛴0) + (𝜇1 − 𝜇0)

⊤𝛴−1
1
(𝜇1 − 𝜇0) − K + ln

(
det𝛴1

det𝛴0

))

Fig. 1  Visualization of ML2P-VAE architecture for two correlated latent traits and six input items



1470 Machine Learning (2021) 110:1463–1480

1 3

G0 is lower triangular, since addition and multiplication of matrices preserve this property. 
Further, G0 is nonsingular, since detG0 = det eL0 = etrL0 > 0.

Set 𝛴0 ∶= G0G
⊤
0
 . Notice that �0 is symmetric:

Further, det𝛴0 = det(G0) ⋅ det(G
⊤
0
) > 0 . Now for any nonzero y ∈ ℝ

K , we have

Therefore, �0 is positive definite.   ◻

Theorem 1 shows that we can interpret �0 as a covariance matrix, and thus our encoder 
architecture maps a data point x0 to a multivariate distribution N(�0,�0) . Additionally, we 
are able to perform the sampling operation using G0 , and it is always possible to compute 
KL-Divergence as in Eq. 7.

If latent traits are assumed to be correlated, then a full correlation matrix must be pro-
vided for the ML2P-VAE model. This corresponds to the fixed covariance matrix �1 . 
ML2P-VAE is capable of estimating ability, discrimination, and difficulty parameters, but it 
does not estimate correlations between latent traits. Note that relaxing these restrictions on 
the entries of the covariance matrix �1 would likely lead to an issue with model identifica-
tion. Without any restrictions on the distribution of � , it is possible that for a given item 
and fixed student, multiple settings of �j , aik , and bi can produce the same global minimum 
in learning Eq. 1 (Haberman, 2005). Our notion of fixing each entry in �1 is similar to the 
more common constraint that � ∼ N(0, I).

3  Experimental testing

We compare variations of the ML2P-VAE method with three traditional parameter estima-
tion techniques—Metropolis-Hastings Monte Carlo (MHRM), quasi-Monte Carlo Expecta-
tion-Maximization (QMCEM), and Monte Carlo Expectation-Maximization (MCEM)—on 
various data sets. We focus on these traditional estimation techniques instead of Guo et al. 
(2017) because previous work has demonstrated the advantages that a VAE holds over a 
regular autoencoder (Converse et  al., 2019). We demonstrate that higher dimensions of 
latent traits do not significantly effect the runtime of the ML2P-VAE model. In this case, 
due to computational difficulties, traditional methods cannot be used, so we just present the 
estimates produced by ML2P-VAE.

We consider three scenarios for ML2P-VAE: (a) the best case scenario where we 
assume that the covariance matrix between all latent traits is known, (b) we don’t know 
the exact covariance matrix, so it is estimated using other methods, and (c) we simply 
assume that all traits are independent. Throughout the rest of this section, these three 
methods are referred to as ML2P-VAE full , ML2P-VAEest , and ML2P-VAEind , respec-
tively. Note that ML2P-VAEind is equivalent to the model proposed by Curi et al. (2019). 
In scenario (b), we multiply the response matrix (N students by n items) by the Q-matrix 

G0 ∶= eL0 =

∞∑

n=0

Ln
0

n!
= I + L0 +

1

2
L2
0
+ ...

𝛴⊤

0
= (G0G

⊤

0
)⊤ = G0G

⊤

0
= 𝛴0.

⟨𝛴0y, y⟩ = y⊤𝛴0y = y⊤G0G
⊤

0
y = ⟨G⊤

0
y,G⊤

0
y⟩ = ��G⊤

0
y��2

2
> 0
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(n items by K abilities). We then take the Pearson correlation of the columns of this 
N × K matrix to obtain an approximate correlation matrix in ℝK×K between abilities.

In all variations of ML2P-VAE, we train the neural network with the ADAM opti-
mizer for 10 epochs and batch size 1 (pure stochastic gradient descent). We found that 
increasing batch size can improve runtime, but accuracy is adversely affected when the 
batch size is greater than 16. As such, we decided to use the smallest batch size pos-
sible, since runtime isn’t an issue for the small networks we used. The regularization 
parameter in Eq. 5 was fixed at � = 1 . The specific encoder architecture of the neural 
network was dependent on the size of the data set. A simulated assessment with 6 latent 
abilities used two hidden layers of size 32 and 16. A real data set evaluating 3 latent 
abilities used two hidden layers of 16 and 8 nodes, and this same architecture was used 
for a simulated data set with 4 latent abilities. The largest network we used was for an 
assessment for 20 latent abilities, which utilized two hidden layers of size 64 and 32. In 
each network, we used a sigmoidal activation function in the encoder hidden layers and 
a linear activation function in the encoded distribution. As described earlier, the ML2P-
VAE model requires the use of a sigmoidal activation function in the output layer of the 
decoder.

3.1  Data

We ran experiments on four data sets: (i) a simulated data set with 6 latent traits, 50 
items, and 20,000 students; (ii) results from the Examination for the Certificate of Pro-
ficiency in English (ECPE) (Templin and Hoffman, 2013), a real data set with 3 latent 
traits, 28 items, and 2922 students; (iii) a simulated data set with a 20 latent traits 200 
items, and 50,000 students; and (iv) a simulated data set with 4 latent traits, 27 items, 
and 3,000 students. Note that comparisons with traditional techniques are only possible 
for (i), (ii), and (iv) because of the large number of latent traits in (iii). It is also worth 
pointing out that true parameter values, for both students and items, are only available 
for simulated data.

When simulating data for (i) and (iii), we used Python’s SciPy package to generate 
a symmetric positive definite matrix with 1s on the diagonal (correlation matrix) and 
all matrix entries non-negative. All latent traits had correlation values between 0 and 
1. We assumed that each latent trait was mean-centered at 0. Then, we sampled abil-
ity vectors to create simulated students. We generated a random Q-matrix where each 
entry qij ∼ Bern(0.2) . If a column qi∶ = 0 for each element after sampling from this Ber-
noulli distribution, then one random element was changed to a 1. This ensures that each 
item measured at least one trait. Discrimination parameters were sampled from a range 
so that 0.25 ≤ MDISCi ≤ 1.75 for each item i, and difficulty parameters were sampled 
uniformly from [−3, 3] . Finally, response sets for each student were sampled from the 
ML2P model using these parameters.

For data set (iv) we were more particular in selecting the Q-matrix and correlation 
matrix. Rather than generating these randomly, each entry in these matrices was chosen 
manually. Of the 4 skills in the correlation matrix, one of them is entirely independent 
of the other three. The other three latent abilities had correlations of 0.25, 0.1, and 0.15 
between them. The correlation matrix was chosen in this way so that it is closer to the 
identity matrix, allowing the ML2P-VAEind variation to perform better. The Q-matrix 
was chosen so that it contained 16 “simple” items (items requiring only one skill), 6 
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items requiring 2 latent abilities, 4 items requiring 3 latent abilities, and one item requir-

ing all 4 skills. In this way, each of the possible 
(
4

k

)
 combinations is present in the 

Q-matrix, for k ∈ {1, 2, 3, 4}.

3.2  Results

A summary of each method’s performance is given in Table 1. All experiments were con-
ducted using Tensorflow for R and the ML2Pvae package (Converse, 2020) on a laptop 
computer with a 2.9 GHz Intel Core i7-7500U CPU. The results from traditional methods 
were obtained using default settings of the MIRT package (Chalmers, 2012). The ML2P-
VAE methods used the previously described hyper-parameters, though both accuracy and 
runtime could likely be fine-tuned by changing the encoder architecture and implementing 
techniques such as early stopping.

Note that when comparing error measures in data set (i), the ML2P-VAE methods are 
competitive with traditional methods. In particular, assuming full knowledge of the latent 
trait covariances in ML2P-VAE yields discrimination, difficulty, and ability parameter esti-
mates of similar accuracy to MHRM. When we relax our assumption of known latent trait 
correlation, the accuracy of parameter estimates understandably slip.

Although the ML2P-VAE methods are slightly less accurate than MHRM, they are 
much faster than traditional methods, especially as the number of latent traits increase. 
Much of this speedup is due to the fact that neural networks do not require numerical inte-
gration over the latent abilities. While quadrature or MCMC methods become infeasible on 
data sets much larger than (i), this is no cause for concern with ML2P-VAE. Note that for 
neural networks of this size (50-200 inputs and latent dimension 6-20), the longer runtime 
is more due to the number of data samples, rather than the size of the latent dimension. In 
fact, the largest neural network we used in these experiments, for data set (iii), only had 
1,670 trainable parameters. In common applications, neural networks used for image clas-
sification often have hundreds of thousands or even millions of trainable parameters.

We can visualize some of the results in Figs. 2, 3, 4, and 5 for data sets (i), (ii), (iii), and 
(iv), respectively. Figure 2 shows the correlation between the true and estimated discrimi-
nation parameters for the ML2P-VAE full and MHRM methods. We don’t include such plots 
for the difficulty parameters, as all methods estimate each bi with very high accuracy. From 
these figures, it appears that while MHRM obtains better results on smaller discrimina-
tion parameters, ML2P-VAE full has less error on larger parameters, and the estimation error 
seems to be independent of the magnitude of the parameter. The other two ML2P-VAE 
methods do not obtain the same levels of accuracy as when assuming full knowledge of the 
latent ability correlations.

When examining the ECPE data, there are no “true” values of parameters, so we com-
pare ML2P-VAE’s results directly with MHRM’s estimates. As seen in Table 1, the param-
eter estimates from QMCEM and MCEM are nearly identical to those of MHRM on the 
ECPE data. Of course, there is not a known covariance matrix between the three latent 
abilities, so we only analyze ML2P-VAEest and ML2P-VAEind . While both methods per-
form similarly to MHRM in difficulty parameter estimates, we can see that the two yield 
different results when applied to discrimination and ability parameters. This is depicted in 
Fig. 3; we first note that while ML2P-VAEind gives accurate estimations for the green and 
black abilities (and the discrimination parameters associated with those abilities), the red 
ability estimates are all very near zero for every student. This tells us that the ML2P-VAEind 
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method found that the red ability has no effect on exam performance. On the other hand, 
ML2P-VAEest captures the general trend of the MHRM ability parameters, but the esti-
mates have much more variance. The discrimination parameter estimates also show some 
correlation, but each of the three abilities are on a different scale.

While estimating parameters for data set (iii), the dimension of the latent traits ( ℝ20 ) 
is too large for traditional methods, so we only study the three ML2P-VAE techniques. 

Fig. 2  Correlation plots of discrimination parameter estimates for data set (i) with 50 items and 6 latent 
traits. ML2P-VAE estimates are on the top row, and traditional method estimates are on the bottom row. 
Each color represents discrimination parameters relating one of the 6 latent skills

Fig. 3  Estimates from ML2P-VAE methods plotted against “accepted” MHRM estimates from ECPE data. 
The three colors in the left and right plots represent discrimination and ability parameters associated with 
the three latent traits
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All three of these methods estimate the difficulty parameters with high accuracy. Similar 
to data set (i), we again observe that the ML2P-VAE full error seems to be independent of 
the size of the discrimination parameter, a promising trend. However, ML2P-VAE does 
not perform as well when we do not have full knowledge of the latent ability correlation 
matrix. The discrimination parameter estimates for ML2P-VAEest seem to have no pattern. 

Fig. 4  ML2P-VAE parameter estimates for data set (iii) with 200 items and 20 latent traits. The top row 
shows discrimination parameter correlation, and the bottom row shows the correlation of a single ability 
parameter. Each color corresponds to discrimination parameters related to one of the 20 latent traits

Fig. 5  Discrimination parameter estimates for data set (iv) with 27 items and 4 latent skills. The top row 
shows estimates from ML2P-VAE methods, and the bottom row gives estimates yielded by traditional meth-
ods. The four colors correspond to discrimination parameters associated with one of the four skills
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Upon closer inspection, it can be seen that the discrimination parameter estimates associ-
ated with a particular ability are correlated, but each ability is on a different scale.

The discrepancy between ML2P-VAE full and ML2P-VAEest can be attributed to a poorly 
estimated covariance matrix. For this data set, the covariance matrix obtained by the 
method described previously greatly overestimates every correlation between latent traits; 
the average signed bias in the correlation matrix estimation is −0.61 , and even the clos-
est correlation estimation has signed bias −0.26 . Finding a better method to compute an 
approximate correlation matrix could greatly improve this method.

The estimates for data set (iii) produced by ML2P-VAEind display the same behavior 
observed in data set (ii). Two of the abilities have discrimination parameters estimated near 
zero, meaning ML2P-VAEind deemed these abilities to have no relation with performance 
on the assessment. But in contrast to the ECPE data, data set (iii) was simulated and we 
know that this is not true. Outside of this issue, the other discrimination parameters were 
reasonably estimated, showing clear correlation with the true values on near a 1:1 scale.

Though ML2P-VAEest and ML2P-VAEind have trouble converging to the true discrimi-
nation parameters, they are still able to obtain quality estimates to the ability parameters. 
The values in Table 1 for � in data set (iii) are comparable to those of data set (i). The plots 
in Fig. 4 show this high correlation in all three ML2P-VAE variants.

In data set (iv), the advantages of ML2P-VAE methods are less apparent. The runtime 
difference is much smaller, since traditional methods do not struggle so much when inte-
grating over a smaller latent dimension of size 4. This also affects the accuracy of param-
eter estimates. The latent skill estimates are better in data set (iv) than those of data set (i) 
for all methods, but particularly the traditional methods. For latent ability � and item diffi-
culty b, all six methods produced similar estimates, and so these correlation plots are omit-
ted. As seen in Table 1, the corresponding error measures are very close, though traditional 
methods are slightly more accurate.

A comparison between the data set (iv) discrimination parameter estimates is shown 
in Fig. 5, which clearly visualizes the values in Table 1. Though all ML2P-VAE methods 
produce highly correlated estimates, they also tend to underestimate the true values. This is 
most apparent in the plot for ML2P-VAEest and in the relative bias values in Table 1. While 
traditional parameter estimation results may be more desirable in data set (iv), this demon-
strates that the ML2P-VAE methods are most useful when the number of latent abilities is 
large.

3.3  Effect of training data size

A common criticism of neural networks is that they are computationally intensive and 
training them with a gradient descent based algorithm (a first order method) can take a 
long time. They also require large amounts of data. As mentioned before, the architecture 
used in this application results in a relatively small neural network.

The longer runtimes in Table 1 for data set (iii) can be attributed more to the fact that 
there were 50,000 data samples, rather than the large latent dimension. The left plot of 
Fig. 6 displays the relation between the size of the training data and estimation accuracy. 
We see that the error does not decrease very much after the number of training samples 
becomes greater than 20,000—less than half of the available simulated data. The right plot 
of Fig. 6 shows that training time grows linearly with the size of training data.

Both plots in Fig.  6 demonstrate the trade-off between accuracy and speed, as well 
as highlighting that ML2P-VAE methods can still be viable, even if the data size is not 
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exceptionally large. This is particularly true in estimating the ability parameter � . Estimat-
ing the difficulty parameters b is manageable with a smaller data set, while discrimination 
parameters require a large amount of training data to obtain quality estimates.

4  Discussion

4.1  Future work

This work introduces additional paths for continued research. One important topic involves 
analyzing the convergence of ML2P-VAE methods. It is important to find conditions which 
guarantee that the estimates for the discrimination and difficulty parameters will converge 
to their respective true values. Based on the results shown in this work, it seems likely that 
convergence will require full knowledge of the covariances among latent traits. In each data 
set, we saw that either using an inaccurate estimated covariance matrix or simply assuming 
that latent traits are independent results in inaccurate parameter estimates. Another pos-
sible factor in ML2P-VAE’s convergence is the sparsity of the Q-matrix. If Qik = 1 for all 
i, k, then interpretation of the encoded hidden layer as estimates to ability parameters and 
weights/biases in the decoder as discrimination/difficulty parameter estimates may not be 
possible.

In real applications, it is unlikely that the exact correlations between latent abilities are 
available, so an approximate covariance matrix would need to be used instead. The experi-
ments in this work imply that convergence likely relies on knowledge of an accurate covari-
ance matrix among latent traits, thus it is important to develop better methods of estimating 
this covariance matrix.

The methods used in our study differ from other sampling methods that can be used in 
the estimation of MIRT models. Specifically, our methods seek to find optimal values for 
item and person parameters of MIRT models via optimization of a loss function. In this 
respect, they more closely resemble marginal maximum likelihood methods that seek to 
find a global maxima across a likelihood function that has been marginalized across the 
person parameters. Alternatively, other methods rely on sampling from a Bayesian pos-
terior distribution. Such estimation methods include Gibbs sampling, Hamiltonian Monte 
Carlo, and Metropolis-Hastings algorithms. These algorithms differ in their approach in 

Fig. 6  Performance of ML2P-VAE full on data set (iii) when trained on data sets of increasing size. The 
left plot gives the test RMSE after using different sizes of training data, and the right plot shows the time 
required to train the neural network
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that rather than optimize a loss function (or maximize a likelihood function), they sam-
ple values from the posterior distributions of the item and person parameters then sum-
marize these distributions using their mean (expected a posteriori) or mode (maximum a 
posteriori). Similarly, the Robbins-Monroe algorithm presents a hybrid approach, iterat-
ing between estimation person parameters using a sampling-based Bayesian algorithm and 
then, based on summaries of those parameters, maximizing likelihoods for each of the item 
parameters. It may be worthwhile to compare ML2P-VAE methods with such sampling-
based parameter estimation approaches in the future.

It is also possible that the ML2P-VAE method can be extended to estimating the param-
eters in the Multidimensional Logistic 3-Parameter model (Birnbaum, 1968), which intro-
duces a guessing parameter for each item. Implementing a guessing parameter into the 
VAE framework is trivial. However, since many other parameter estimation methods strug-
gle in estimating a 3-parameter model (Baker and Kim, 2004), “ML3P-VAE” may face the 
same issue.

4.2  Conclusion

ML2P-VAE is a novel technique which allows IRT parameter estimation of correlated high-
dimensional latent traits. This requires a VAE architecture capable of fitting a more gen-
eral multivariate Gaussian distribution, rather than a standard normal distribution. Where 
other estimation methods rely on numerical integration or MCMC methods, which become 
infeasible for large numbers of latent abilities, ML2P-VAE trains a neural network using a 
gradient descent based optimization method. While this technique introduces hundreds or 
thousands of trainable parameters, the parameters in the decoder can be interpreted as esti-
mates to discrimination and difficulty parameters. The individual parameters in the encoder 
do not represent anything concrete, but together, they learn a function which maps a stu-
dent’s response set to a distribution representing the student’s latent ability.

All of these parameters are trained simultaneously by optimizing a single loss function. 
After training the neural network, the discrimination and difficulty parameter estimates are 
immediately available, and the ability parameter estimates are easily obtained at test time 
by feeding forward response sets through the encoder. Note that the estimates for �j are not 
directly trainable parameters of the neural network.

Of course, the most accurate ML2P-VAE method makes the strongest and most restric-
tive assumption; that the exact correlation quantities between latent abilities is known. This 
may be impractical in applications, and for this reason the other ML2P-VAE methods must 
also be closely examined. In theory, using a covariance matrix that is estimated from the 
data should yield better results than assuming all traits are independent. But if this esti-
mated matrix is inadequate, the accuracy of parameter estimates suffers heavily. A possible 
way to remedy this is to adjust the weight � of the KL-Divergence in the VAE loss func-
tion. Decreasing this hyper-parameter gives more emphasis on reconstructing inputs, rather 
than fitting data to an estimated distribution which may be flawed.

ML2P-VAE methods are most useful on high-dimensional data. But even when applied 
to smaller data sets where traditional techniques are feasible, the results from ML2P-VAE 
are competitive. They are significantly faster in runtime, and yield similar error measures. 
When estimating difficulty parameters, the improvement gained from using traditional 
methods is incredibly small. Estimates for students’ latent abilities are often more accurate 
when using ML2P-VAE methods. This is especially interesting, as the estimates �j are not 
updated in the iterations of a gradient descent algorithm, while the estimates to aik and bi 
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are. In all, these results show the versatility of ML2P-VAE methods in estimating item and 
ability parameters from a variety of data sets.
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