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Abstract
The majority of the data produced by human activities and modern cyber-physical systems 
involve complex relations among their features. Such relations can be often represented 
by means of tensors, which can be viewed as generalization of matrices and, as such, can 
be analyzed by using higher-order extensions of existing machine learning methods, such 
as clustering and co-clustering. Tensor co-clustering, in particular, has been proven useful 
in many applications, due to its ability of coping with n-modal data and sparsity. How-
ever, setting up a co-clustering algorithm properly requires the specification of the desired 
number of clusters for each mode as input parameters. This choice is already difficult in 
relatively easy settings, like flat clustering on data matrices, but on tensors it could be 
even more frustrating. To face this issue, we propose a new tensor co-clustering algorithm 
that does not require the number of desired co-clusters as input, as it optimizes an objec-
tive function based on a measure of association across discrete random variables (called 
Goodman and Kruskal’s � ) that is not affected by their cardinality. We introduce differ-
ent optimization schemes and show their theoretical and empirical convergence properties. 
Additionally, we show the effectiveness of our algorithm on both synthetic and real-world 
datasets, also in comparison with state-of-the-art co-clustering methods based on tensor 
factorization and latent block models.

Keywords Clustering · Higher-order data · Unsupervised learning

1 Introduction

The increasing complexity of the data produced by humans and cyber-physical systems 
requires more sophisticated machine learning algorithms able to handle it and take advan-
tage of the manifold of the variable space. This phenomenon also affects data structures 
that, on the one hand, should adapt to large datasets and, on the other hand, should be able 
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to represent complex relations among data instances. A clear example of such evolution is 
certainly constituted by tensors, which have gained much attention in the last twenty years.

Tensors are widely used mathematical objects that well represent complex infor-
mation such as gene expression data  (Zhao and Zaki 2005), social networks  (Hong and 
Jung 2018), heterogenous information networks (Ermis et al. 2015; Yu et al. 2019), time-
evolving data (Araujo et al. 2018), behavioral patterns (He et al. 2018), and multi-lingual 
text corpora (Papalexakis and Dogruöz 2015). In general, every n-ary relation can be eas-
ily represented as a tensor. From the algebraic point of view, in fact, they can be seen as 
multimodal generalizations of matrices and, as such, can be processed with mathematical 
and computational methods that generalize those usually employed to analyze data matri-
ces, e.g., non-negative factorization  (Shashua and Hazan 2005), singular value decom-
position (Zhang and Golub 2001), itemset and association rule mining (Cerf et al. 2009; 
Nguyen et al. 2011; Cerf et al. 2013), clustering and co-clustering (Banerjee et al. 2007; 
Wu et al. 2016).

Clustering, in particular, is by far one of the most popular unsupervised machine learn-
ing techniques since it allows analysts to obtain an overview of the intrinsic similarity 
structures of the data with relatively little background knowledge about them. However, 
with the availability of high-dimensional heterogenous data, co-clustering has gained pop-
ularity, since it provides a simultaneous partitioning of each mode (rows and columns of 
the matrix, in the two-dimensional case). In practice, it copes with the curse of dimension-
ality problem by performing clustering on the main dimension (data objects or instances) 
while applying dimensionality reduction on the other dimension (features). Despite its 
proven usefulness, the correct application of tensor co-clustering is limited by the fact that 
it requires the specification of a congruent number of clusters for each mode, while, in real-
istic analysis scenarios, the actual number of clusters is unknown. Furthermore, matrix/ten-
sor (co-)clustering is often based on a preliminary tensor factorization step that, in its turn, 
requires further input parameters (e.g., the number of latent factors within each mode). As 
a consequence, it is merely impossible to explore all combinations of parameter values in 
order to identify the best clustering results.

The main reason for this problem is that most clustering algorithms (and tensor fac-
torization approaches) optimize objective functions that strongly depend on the number of 
clusters (or factors). Hence, two solutions with two different numbers of clusters can not 
be compared directly. Although this considerably reduces the size of the search space, it 
prevents the discovery of a better partitioning once a wrong number of clusters is selected. 
In this paper, which extends our previous work (Battaglia and Pensa 2019), we address this 
limitation by proposing a new tensor co-clustering algorithm that optimizes a new class 
of objective functions that can be viewed as n-modal extensions of an association meas-
ure called Goodman-Kruskal’s �  (Goodman and Kruskal 1954), whose local optima do 
not depend on the number of clusters. We model our tensor co-clustering approach as a 
multi-objective optimization problem and discuss, both theoretically and experimentally, 
the convergence properties of our extensions and of the related optimization schemes. 
Additionally, we conduct a thorough experimental validation showing that our algorithms 
provide accurate clustering results in each mode of the tensor. Compared with state-of-the-
art techniques that require the desired number of clusters in each mode as input parameters, 
it achieves similar or better results at the price of a reasonable increase of the running time. 
Additionally, it is also effective in clustering real-world datasets.

In summary, the main contributions of this paper are as follows: (1) we define a new 
class of objective functions for n-mode tensor co-clustering, based on Goodman-Kruskal’s 
� association measure, which do not require the number of clusters as input parameter; 
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(2) we propose several variants of a multi-objective optimization algorithm, based on sto-
chastic local search, and study their convergence properties showing that they support the 
rapid convergence towards a local optimum; (3) we show the effectiveness of our method 
experimentally on both synthetic and real-world data, also in comparison with state-of-the-
art competitors.

The remainder of the paper is organized as follows: the related works are analyzed in 
Sect. 2; the generalization of the Goodman-Kruskal’s � association measure is presented 
in Sect.3 while the variants of the optimization algorithms are described in Sect. 4; Sect. 5 
provides the report of our experiments; finally, we draw some conclusions in Sect. 6.

2  Related work

Analyzing multi-way data (or n-way tensors) has attracted a lot of attention due to their 
intrinsic complexity and richness. Hence, to deal with this complexity, in the last two 
decades, many ad hoc methods and extensions of 2-way matrix methods have been pro-
posed, many of which are tensor decomposition models and algorithms (Kolda and Bader 
2009). As an example, both singular value decomposition  (Zhang and Golub 2001) and 
non-negative matrix factorization (Shashua and Hazan 2005) have been extended to work 
with high-order tensor data. Furthermore, knowledge discovery and exploratory data min-
ing techniques, including closed itemset mining  (Cerf et al. 2009, 2013) and association 
rule discovery (Nguyen et al. 2011), have been successfully applied to n-way data as well.

The problem of clustering and co-clustering of higher-order data has also been exten-
sively addressed. Co-clustering has been developed as a matrix method and studied in 
many different application contexts including text mining (Dhillon et al. 2003; Pensa et al. 
2014), gene expression analysis  (Cho et  al. 2004) and graph mining  (Chakrabarti et  al. 
2004) and has been naturally extended to tensors for its ability of handling n-modal high-
dimensional data well. Banerjee et  al. (2007) perform clustering using a relation graph 
model that describes all the known relations between the modes of a tensor. Their tensor 
clustering formulation captures the maximal information in the relation graph by exploit-
ing a family of loss functions known as Bregman divergences. They also present several 
structurally different multi-way clustering schemes involving a scalable algorithm based on 
alternate minimization. Instead, Zhou et al. (2009) use tensor-based latent factor analysis 
to address co-clustering in the context of web usage mining. Their algorithm is executed 
via the well-known multi-way decomposition algorithm called CANDECOMP/PARA-
FAC (Harshman 1970).

Papalexakis et al. (2013) formulate co-clustering as a constrained multi-linear decom-
position with sparse latent factors. They propose a basic multi-way co-clustering algorithm 
exploiting multi-linearity using Lasso-type coordinate updates. Additionally, they propose 
a line search optimization approach based on iterative majorization and polynomial fitting. 
Zhang et al. (2013) propose an extension of the tri-factor non-negative matrix factorization 
model (Ding et al. 2006) to a tensor decomposition model performing adaptive dimension-
ality reduction by integrating the subspace identification and the (hard or soft) clustering 
process into a single process. Their algorithm computes two basis matrices representing 
the common characteristics of the samples and one 3-D tensor denoting the peculiarities of 
the samples. The model can be used to perform dimensional reduction as well. Instead, Wu 
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et al. (2016) introduce a spectral co-clustering method based on a new random walk model 
for nonnegative square tensors.

Other more recent approaches (Boutalbi et al. 2019a, b) rely on an extension of the latent 
block model. In these works, co-clustering for sparse tensor data is viewed as a multi-way 
clustering model where each slice of the third mode of the tensor represents a relation between 
two sets. Finally, Wang and Zeng (2019) present a co-clustering approach for tensors by using 
a least-square estimation procedure for identifying n-way block structure that applies to binary, 
continuous, and hybrid data instances.

Differently from all these approaches, our tensor co-clustering algorithm is not based 
on any factorization method or block model hypothesis. Instead, it optimizes an extension 
of a measure of association whose effectiveness has been proven in matrix (2-way) cluster-
ing (Huang et al. 2012) and co-clustering (Ienco et al. 2013), and that naturally helps discover 
the correct number of clusters in tensors with arbitrary shape and density. It is worth noting, in 
fact, that the co-clustering performances of all the methods mentioned in this section strongly 
rely on the correct choice of the number of clusters/factors/blocks, which limits their applica-
tion in realistic data analysis scenarios.

3  An association measure for tensor co‑clustering

In this section, we introduce the objective function optimized by our tensor co-clustering algo-
rithm (presented in the next section). It consists in an association measure, called Goodman 
and Kruskal’s �  (Goodman and Kruskal 1954), that evaluates the dependence between two 
discrete variables and has been used to assess the quality of 2-way co-clustering (Robardet and 
Feschet 2001) with good partitioning results. We generalize its definition to a n-mode tensor 
setting.

3.1  Goodman and Kruskal � and its generalization

Goodman and Kruskal’s � (Goodman and Kruskal 1954) is an association measure that esti-
mates the strength of the link between two discrete variables X and Y according to the propor-
tional reduction of the error in predicting one of them knowing the other. In more details, let 
x1,… , xm be the values that variable X can assume, with probability pX(1),… , pX(m) and let 
y1,… , yn be the possible values Y can assume, with probability pY (1),… , pY (n) . The error in 
predicting X can be evaluated as the probability that two different observations from the mar-
ginal distribution of X fall in different categories:

Similarly, the error in predicting X knowing that Y has value yj is

and the expected value of the error in predicting X knowing Y is

eX =

m∑

i=1

pX(i)(1 − pX(i)) = 1 −

m∑

i=1

pX(i)
2.

eX|Y=yj =

m∑

i=1

pX|Y=yj (i|j)(1 − pX|Y=yj (i|j)) = 1 −

m∑

i=1

pX|Y=yj (i|j)
2
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Then the Goodman and Kruskall �X|Y measure of association is defined as

Conversely, the proportional reduction of the error in predicting Y while X is known is

In order to use this measure for the evaluation of a tensor co-clustering, we need to extend 
it so that � can evaluate the association of n distinct discrete variables. Let X1,… ,Xn be 
discrete variables such that Xi can assume mi distinct values (for simplicity, we will denote 
the possible values as 1,… ,mi ), for i = 1,… , n . Let pXi

(k) be the probability that Xi = k , 
for k = 1,… ,mi , for i = 1,… , n . Reasoning as in the two-dimensional case, we can define 
the reduction in the error in predicting Xi while (Xj)j≠i are all known as

for all i ≤ n . When n = 2 , the measure coincides with Goodman-Kruskal’s �.
Notice that, in the n-dimensional case as well as in the 2-dimensional case, the error 

in predicting Xi knowing the value of the other variables is always positive and smaller 
or equal to the error in predicting Xi without any knowledge about the other variables. 
It follows that �Xi

 takes values between [0, 1]. It will be 0 if knowledge of prediction of 
the other variables is of no help in predicting Xi , while it will be 1 if knowledge of the 
values assumed by variables (Xj)j≠i completely specifies Xi.

3.2  Tensor co‑clustering with Goodman‑Kruskal’s �

Let X ∈ ℝ
m1×⋯×mn

+  be a tensor with n modes and non-negative values. Let us denote with 
xk1…kn

 the generic element of X  , where ki = 1,… ,mi for each mode i = 1,… , n . A co-
clustering P of X  is a collection of n partitions {Pi}i=1,…,n , where Pi = ∪

ci
j=1

Ci
j
 is a parti-

tion of the elements on the i-th mode of X  in ci groups, with ci ≤ mi for each i = 1,… , n . 
Each co-clustering P can be associated to a tensor TP ∈ ℝ

c1×⋯×cn
+  , whose generic ele-

ment is

�[eX|Y ] =

n∑

j=1

eX|Y=yjpY (j)

=

n∑

j=1

(1 −

m∑

i=1

pX|Y=yj (i|j)
2)pY (j) = 1 −

m∑

i=1

n∑

j=1

pX,Y (i, j)
2

pY (j)
.

�X�Y =
eX − �[eX�Y ]

eX
=

∑m

i=1

∑n

j=1

pX,Y (i,j)
2

pY (j)
−
∑m

i=1
pX(i)

2

1 −
∑m

i=1
pX(i)

2
.

�Y�X =
eY − �[eY�X]

eY
=

∑n

i=1

∑m

j=1

pX,Y (i,j)
2

pX (i)
−
∑n

j=1
pY (j)

2

1 −
∑n

j=1
pY (j)

2
.

(1)

�Xi
= �Xi�(Xj)j≠i

=
eXi

− �[eXi�(Xj)j≠i
]

eXi

=

∑m1

k1=1
⋯

∑mn

kn=1

pX1,…,Xn
(k1,…kn)

2

p(Xj )j≠i ((kj )j≠i )
−
∑mi

ki=1
pXi

(ki)
2

1 −
∑mi

ki=1
pXi

(ki)
2

,
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Consider now n discrete variables X1,… ,Xn , where each Xi takes values in {Ci
1
,…Ci

ci
} . 

We can look at TP as the contingency n-modal table that empirically estimates the joint 
distribution of X1,… ,Xn : the entry tk1…kn

 represents the absolute frequency of the event 
({X1 = C1

k1
} ∩⋯ ∩ {Xn = Cn

kn
}) and the frequency of Xi = Ci

k
 is the marginal frequency 

obtained by summing all entries tk1…ki−1kki+1…kn
 , with k1,… , ki−1, ki+1,… , kn varying trough 

all possible values and the i-th index ki fixed to k. In the same way, we can compute the 
frequency of the event ({Xi = Ci

k
} ∩ {Xj = C

j

h
}) as the sum of all elements tk1…kn

 of TP hav-
ing ki = k and kj = h . More in general, we can compute the marginal joint distribution of 
d < n variables as the sum of all the entries of TP having the indices corresponding to the d 
variables fixed to the values we are considering. For instance, given TP ∈ ℝ

4×3×5×2
+

 , the 
absolute frequency of the event ({X1 = 3} ∩ {X3 = 4}) is

From now on, we will use the newly introduced notation t�
�
 to denote the sum of all ele-

ments of a tensor having the modes in the upper vector � (in the example (1, 3)) fixed to the 
values of the lower vector � (in the example (3,4)). A formal definition of the scalar t�

�
 can 

result clunky: given a tensor T ∈ ℝ
m1×⋯×mn

+  and two vectors �,� ∈ ℝ+
d , with dimension 

d ≤ n , such that vj ≤ n , vi < vj if i < j and wi ≤ mvi
 for each i, j = 1,… , d , we will use the 

following notation

where �̄ is the vector of dimension r = n − d containing all the integers i ≤ n that are not in 
� and ei = wi if i ∈ � while ei = ki otherwise.

Summarizing, given a tensor X  with n modes and a co-clustering P over X  , we obtain a 
tensor TP that represents the empirical frequency of n discrete variables X1,… ,Xn each of 
them with ci possible values (where ci is the number of clusters in the partition on the i-th 
mode of X  ). Therefore, we can derive from TP the probability distributions of variables 
X1,… ,Xn and substitute them in Eq. 1: in this way we associate to each co-clustering P over 
X  a vector �P = (�P

X1

,… , �P
Xn
) that can be used to evaluate the quality of the co-clustering. In 

particular, for any i, j ≤ n and any ki = 1,… , ci:

where T is the sum of all entries of TP . It follows that

(2)
ti1…in

=
∑

k1∈C
1

i1

∑

k2∈C
2

i2

⋯

∑

kn∈C
n
in

xk1…kn
.

t
(1,3)

(3,4)
=

3∑

k2=1

2∑

k4=1

t3,k2,4,k4 .

t�
�
=

mv̄1∑

kv̄1
=1

⋯

mv̄r∑

kv̄r=1

te1…en

pX1…Xn
(k1,… , kn) =

tk1…kn

T
, pXi

(k1) =
t
(i)

(ki)

T
, p(Xj)j≠i

((kj)j≠i) =

t
(j)j≠i

(kj)j≠i

T
,



391Machine Learning (2023) 112:385–427 

1 3

for each i = 1,… , n . The overall co-clustering schema is depicted in Fig. 1.
It is worth pointing out that the procedure just described makes sense when the ten-

sor X  itself can be interpreted as a contingency tensor; the main assumption of our 
method is that the quantity 

tk1…kn

T
 , where tk1…kn

 is the entry of TP given by the sum of all 
the entries of X  belonging to the same co-cluster, should be interpreted as a probability. 
This has to be true for each possible co-clustering P of X  , even for the discrete co-clus-
tering (the co-clustering containing only singletons), whose contingency tensor TP is X  . 
Typical tensors of this kind are those in which the n modes represent different variables, 
each element on a mode is a possible scenario (or value that the variable can assume), 
and each entry of the tensor is the count of the occurrences of the intersection of n sce-
narios. For instance, a words-documents matrix or an authors-words-conferences tensor 
are suitable choices. However, tensors of non-negative real numbers, in which all the 
entries represent homogeneous measurements of the same quantity under different sce-
narios, can also fit.

Suppose now we have two different partitions P and Q on the same tensor X  , corre-
sponding to two different vectors �P, �Q ∈ [0, 1]n . There is no obvious order relation in 
[0, 1]n , so it is not immediately clear which one between �P and �Q is “better” than the 
other.

In Ienco et  al. (2013), the authors, in order to compare partitions, adopt a domi-
nance-based approach that induce a partial-order over ℝn . They introduce the notion of 

(3)
�
P
Xi
=

∑c1
k1=1

⋯

∑cn
kn=1

t2
k1…kn

t
(j)j≠i

(kj )j≠i
⋅T
−
∑ci

ki=1

�
t
(i)

(ki )

�2

T2

1 −
∑ci

ki=1

�
t
(i)

(ki )

�2

T2

Fig. 1  An example of tensor co-clustering with the related contingency tensor and the associated Goodman-
Kruskal’s � measures
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Pareto-dominance for partitions and state that an optimal solution for the co-clustering 
problem is one that is not-dominated by any other solution. We formally define these 
concepts, in our tensor co-clustering framework, below.

Definition 1 (Pareto dominance) Let X  be a n-modal tensor and let P and Q be two parti-
tions on X  . We say that partition P dominates partition Q , in symbols P ≻ Q , if �P

Xi
≥ �

Q

Xi
 

for each i = 1,… n and there exists j such that 𝜏P
Xj
> 𝜏

Q

Xj
.

Pareto dominance relation induces a partial order relation over the set ℙ(X) of all parti-
tions on X  . It means that, given two partitions P and Q , we can always say whether P 
dominates Q or not, but it is possible that P  Q and Q  P . As a consequence, it is not 
guaranteed that a unique maximum (with respect to relation ⪰ ) does exist in ℙ(X).

Definition 2 (Pareto optimal partition) We say that a partition P on tensor X  is a Pareto-
optimal partition if P is not dominated by any other partition. In symbols, P is an optimal 
partition if P ⊀ Q for any Q ∈ ℙ(T).

4  A stochastic local search approach to tensor co‑clustering

Our co-clustering approach can be formulated as a multi-objective optimization problem: 
given a tensor X  with n modes and dimension mi on mode i, an optimal co-clustering P for 
X  is one that is not dominated by any other co-clustering Q for X  . Since we do not fix the 
number of clusters, the space of possible solutions is huge (for example, given a very small 
tensor of dimension 10 × 10 × 10 , the number of possible partitions is 1.56 × 1015 ): it is 
clear that a systematic exploration of all possible solutions is not feasible for a generic ten-
sor X  . For this reason we need to find a heuristic that allows us to reach a “good” partition 
of X  , i.e. a partition P with high values of �P

Xk
 for all modes k. With this aim, we propose a 

stochastic local search approach to solve the maximization problem.
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4.1  Tensor co‑clustering algorithm

Algorithm 1: τTCC(X ,Niter)
Input: A tensor X with n modes and shape m1 × · · · ×mn, the maximum number of

iterations Niter

Result: P1, . . . ,Pn

1 Initialize P1, . . . ,Pn with discrete partitions;
2 i ← 0;
3 m ← maxj=1,...,n(mj);
4 iter whithout moves ← 0 ;
5 while i ≤ Niter & iter whithout moves < m do
6 moves in iteration ← 0;
7 for k = 1 to n do
8 if iter whithout moves < t then
9 Randomly choose Ck

b in Pk ;
10 Randomly choose x in Ck

b ;
11 else
12 x ← next(x, k) //Select the element following the one selected at

iteration i− 1 on mode k;
13 Ck

b ← Cluster of x;
14 end
15 for Cj

k in Pk ∪ ∅ do
16 Qj

k ← (Pk \ Ck
b , C

k
j ) Ck

b \ {x}, Ck
j ∪ {x} ;

17 Qj ← (P1,P2, . . . ,Pk−1,Qk,Pk+1, . . . ,Pn);
18 Compute contingency tensor T j associated to partition Qj ;
19 Compute τQj using Equation (3) or Equation (4) //see section 4.2;
20 end
21 e ← SelectBestPartition(k, b, (τQj )j=1,...,|Pk∪∅|);
22 Pk ← Qe

k;
23 if e! = b then
24 moves in iteration ← moves in iteration+ 1;
25 end
26 if moves in iteration > 0 then
27 iter whithout moves ← iter whithout moves+ 1;
28 i ← i+ 1;
29 end

Algorithm 1 provides the general sketch of our tensor co-clustering algorithm, called �TCC 
. It repeatedly considers one mode by one, sequentially, and tries to improve the quality of 
the co-clustering by moving one single element from its original cluster to another cluster 
on the same mode. We will present in the following paragraphs different ways to measure 
the improvement in the quality of the partition at each iteration (function SelectBestParti-
tion in Algorithm 1), but all the different approaches we will consider can be plugged in 
the general framework described in Algorithm 1 and explained below.

The partitions on each mode are initialized with the discrete partitions (each element 
stays in a cluster on its own). At each iteration i, fixed the k-th mode, the algorithm ran-
domly selects one cluster Ck

b
 and one element x ∈ Ck

b
 . Then it tries to move x in every 

other cluster Ck
e
 and in the empty cluster Ck

e
= � : among them, it selects the one that most 

improves the quality of the partition, according to the criterion chosen to measure it (see 
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Sect. 4.2). Of course, if there is not any move that increases the quality of the partition, the 
selected object is left in the original cluster Ck

b
 . When all the n modes have been consid-

ered, the i-th iteration of the algorithm is concluded. These operations are repeated until 
a stopping condition is met; we decide to stop the algorithm when no further moves are 
possible. Because of the stochasticity in the choice of the element to move at each iteration, 
we cannot be sure that all moves have been tried even if the algorithm has been stuck in the 
same solution for several iterations. For this reason, when the number of iterations without 
moves exceeds a given threshold (we set this threshold equal to the dimensionality of the 
largest mode), we change the object selection strategy and we select, sequentially, all the 
objects on all the modes. If all objects have been tried but no move is possible, the algo-
rithm ends. Nonetheless, we also include a parameter Niter to control the maximum number 
of iterations.

At the end of each iteration, one of the following possible moves has been done on 
mode k:

– an object x has been moved from cluster Ck
b
 to a pre-existing cluster Ck

e
 : in this case the 

final number of clusters on mode k remains the same (let us call it ck ) if Ck
b
 is non-empty 

after the move. If Ck
b
 is empty after the move, it will be deleted and the final number of 

clusters will be ck − 1;
– an object x has been moved from cluster Ck

b
 to a new cluster Ck

e
= � : the final number 

of clusters on mode k will be ck + 1 (the useless case when x is moved from Ck
b
= {x} to 

Ck
e
= � is not considered);

– no move has been performed and the number of clusters remains ck.

Thus, during the iterative process, the updating procedure is able to increase or decrease 
the number of clusters at any time. This is due to the fact that, contrary to other measures, 
such as the loss in mutual information (Dhillon et al. 2003), � measure has an upper limit 
which does not depend on the number of co-clusters and thus enables the comparison of 
co-clustering solutions of different cardinalities.

4.2  Neighboring partition selection criteria

As seen above, our co-clustering framework tries to move one element in one fixed mode 
from its original cluster to another cluster which maximizes the quality improvement of the 
tensor partition. Since we need to optimize the set {�P

Xk
}n
k=1

 of n objective functions (one for 
each mode of the tensor), we can define different ways to measure this increase, corre-
sponding to different ways to implement function SelectBestPartition in Algorithm 1. Sup-
pose the algorithm is performing step i of the algorithm: during this step, it considers the 
k-th mode of the tensor and selects an object x in cluster Ck

b
 . Function SelectBestPartition 

takes a set of candidate co-clusterings and their respective values of � as input, and has to 
decide which of them is the best one. In the following, we provide the details of different 
selection strategies.

4.2.1  Alternating optimization of �Xk

Since all the candidate co-clusterings differ only in the partition on the k-th mode, we can 
look at the k-th partitions only and select the one with highest value of �k . In case of ties, 
the partition with the highest average � is selected. The move is made only if �Qe

Xk
≥ �

Qb

Xk
 , 
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where Qe and Qb are the co-clusterings having x ∈ Ck
e
 and x ∈ Ck

b
 respectively (in the k-th 

partition), while the partitions on all the other modes of the tensor are the same. We call 
this strategy SelectBestPartitionALT (see Algorithm 2). 

Algorithm 2: SelectBestPartitionALT (k, b, (τQj )j=1,...,c)
Input: The mode k of the tensor, the original cluster b of the selected object,

(τQj )j = 1, ..., c where each τQj is a n-dimensional vector (τ
Qj
1 , . . . , τ

Qj
n )

Result: e index of the selected partition among the c proposed
1 BestPartitions ← argmaxj=1,...,c(τ

Qj

k );
2 if |BestPartitions| > 1 then
3 Randomly select an index m in set BestPartitions;
4 e ← m;
5 maxτ ← avg(τQm );
6 for h in BestPartitions \ {m} do
7 if avg(τQh ) > maxτ then
8 e ← h;
9 maxτ ← avg(τQh );

10 end
11 end
12 else
13 e ← the only index in BestPartitions;
14 end

The idea behind this selection strategy is that the alternating optimization of the sin-
gle components �Xk

 should lead to a final vector (�X1
,… , �Xn

) with high values in each 
component.

However, this optimization strategy has a drawback: since the choice of the best move 
on mode k is done by looking only at the partition on the k-th mode, it is possible that, after 
the move, the overall quality of the co-clustering decreases. In Fig.  2 we propose a toy 
example to better explain this concept. Suppose we are applying our algorithm to a 2-way 
tensor (a matrix), having on the X mode all the clients of a shop and on the Y mode all the 
products sold. Each entry of the matrix represents the quantity of each product bought by 
each customer.

There are three well separated co-clusters in X: the first co-cluster consists of costumers 
who buy product 1, 2 and 3, the second co-cluster represents costumers who buy products 
4 and 5, and last co-cluster includes customers who buy product 6.

After some iterations, the algorithm finds five clusters on the X axis and three on the 
Y axis, with the contingency matrix T of Fig. 2a. Then it selects the last row and tries to 
move it. There are five possible moves, as shown in Fig. 2b. �X has the highest value for 
e = 0 and, according to Algorithm 2, the last row goes in the first cluster, even if it is clear 
that the row is ‘more similar’ to those in clusters 3 and 4. Furthermore, after this move the 
algorithm will necessarily end with the partition having contingency table Tfinal in Fig. 2c, 
while it is evident that a “more desirable” co-clustering of X is Tcorrect in Fig. 2c. This intui-
tive assessment is also confirmed by the fact that the average � measured on Tcorrect (0.771) 
is higher than the one measured on Tfinal (0.713).

The reason of this behavior is that the algorithm decides where to move the selected row 
by looking only at the value of �X . A more suitable choice would have been to move the last 
row in cluster 2 or 3, but this means that the algorithm has to look at �Y as well. Further-
more, we need a way to decide which combination of �X and �Y is preferable. In the following 
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subsections we will present some alternative optimization methods, with the aim of mitigating 
the issue illustrated above.

4.2.2  Optimization of avg(�)

A way to compare real-valued vectors is to use a scalarization function ℝn
⟶ ℝ and to 

exploit the natural order in ℝ . Here, we use a function that maps each vector � = (�X1
,… , �Xn

) 
into a weighted sum avg(�) =

∑n

i=1
wi�Xi

 , with fixed wi =
1

n
 . Thus we can map the set ℙ(X) of 

all the partitions over tensor X  in ℝ , with the function avg◦� ∶ ℙ(X)
�

�����→ ℝ
n

avg
������������→ ℝ (where ◦ is 

the composition operator). As a consequence, ℙ(X) inherits the total-order structure of (ℝ,≤) 
and it is always possible to decide which partition, among a finite set, is the best one.

The above consideration gives us a criterion to select a partition among the set of candi-
dates proposed at each step of the algorithm: the best co-clustering Q is the one with the high-
est avg◦�(Q) . This means that the selected element x on mode k is moved from its original 
cluster Ck

b
 to the cluster Ck

e
 which maximizes avg(�) . If there are several clusters Ck

e1
,… ,Ck

er
 

which maximize avg(�) , the arrival cluster is randomly selected among them. The move will 
be executed only if avg(𝜏e) > avg(𝜏b) . We call this strategy SelectBestPartitionAVG (see 
Algorithm 3). 

X =




2 1 2 0 0 0
2 2 1 0 0 0
2 2 2 0 0 1
0 0 0 2 1 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 2
1 0 0 0 0 2




−→ T =





16 0 1
0 5 0
0 0 1
0 0 2
1 0 2





(a)

Ce τX τY avg(τ)
C0 0.710 0.671 0.690
C1 0.591 0.604 0.597
C2 0.655 0.782 0.718
C3 0.692 0.775 0.733
C4 0.618 0.792 0.705

(b)

Tfinal =
17 0 6
0 5 0 , Tcorrect =




16 0 1
0 5 0
1 0 5



 .

(c)

Fig. 2  A 2-way tensor to be partitioned and the related contingency matrix obtained by Algorithm 2 after 
some iterations a. Rows 1, 2, and 3 are in the first cluster; rows 4 and 5 in the second cluster; all the other 
rows form singleton clusters. Columns 1, 2, and 3 are in the first cluster; columns 4 and 5 are in the second 
cluster; column 6 forms a singleton cluster. In b, the table reports the values of � when moving the last 
row of X in any row cluster Ce of T. The final contingency tables are shown in (c): Tfinal is the contingency 
matrix obtained with Algorithm 2, Tcorrect is a more desirable final result
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Algorithm 3: SelectBestPartitionAV G(k, b, (τQj )j=1,...,c)
Input: The mode k of the tensor, the original cluster b of the selected object,

(τQj )j = 1, ..., c where each τQj is a n-dimensional vector (τ
Qj
1 , . . . , τ

Qj
n )

Result: e index of the selected partition among the c proposed
1 BestPartitions ← argmaxj=1,...,c(avg(τQj ));
2 if |BestPartitions| > 1 then
3 Randomly select an index m in set BestPartitions;
4 e ← m;
5 end

This strategy has many theoretical advantages over the previous one: it works with a unique 
objective function and each solution is necessarily better than the previous solutions. Never-
theless, there is a disadvantage with this approach: by looking only at the partitions that 
increase the objective function avg(�) we are reducing the search space. Therefore, there is a 
greater risk to getting stuck in a poor-quality local optimal solution. In fact, if there is no move 
that improves avg(�) , the algorithm ends with a sub-optimal partition P , while with the alter-
nating optimization strategy we would have been able to move from P and continue with the 
optimization, potentially reaching a final result with greater avg(�) . Furthermore, as we will 
show experimentally in Sect. 5, when an object on mode k is moved, usually the increase of 
�Xk

 is compensated by a decrease of (some of) the other �Xj
 , for j ≠ k : this could be a serious 

issue when the number of modes n is elevated, because the decrease of 
∑

j≠k �Xj
 is often greater 

than the increase of the single �Xk
 , and the algorithm remains stuck in the initial discrete solu-

tion. Finally, this method is computationally more expensive than the previous one, because it 
requires the computation of all �Xj

 , while the alternating optimization strategy requires the 
computation of �Xk

 only.

4.2.3  Aggregate optimization of �Xk |(Xj )j≠k + �(Xj )j≠k |Xk

Algorithm 2 maximizes only �Xk
 when moving an object on mode k, ignoring all other �Xi

 
( i ≠ k ). Instead, Algorithm  3 looks at the whole vector �P and choose the partition which 
maximizes avg(�) . Here we propose an alternative method that stays in the between: it is an 
alternating maximization of the single �Xk

 , according to the mode k considered at the moment, 
but it adds a term �(Xj)j≠k|Xk

 to the objective function. This addend takes into account the aggre-
gate modification of the other components of � induced by the move on k-th mode. In more 
details, in Sect. 3.1 we have generalized the Goodman and Kruskal’s � measure to n modes as 
the reduction of the error in predicting one variable when all the other variables are known; 
we can also define another generalization, i.e. the reduction of the error in predicting the joint 
value of all the other variables when Xk is known. Reasoning as in Sect. 3.1, we have that

(4)

�(Xj)j≠k�Xk
=

e(Xj)j≠k
− �[e(Xj)j≠k�Xk

]

e(Xj)j≠k

=

∑c1
h1=1

⋯

∑cn
hn=1

t2
h1…hn

t
(k)

(hk )
⋅T

−
∑c1

h1=1
⋯

∑ck−1
hk−1=1

∑hk+1
hk+1=1

⋯

∑cn
hn=1

t
(j)j≠k

(hj)j≠k

∑c1
h1=1

⋯

∑ck−1
hk−1=1

∑ck+1
hk+1=1

⋯

∑cn
hn=1

t
(j)j≠k

(hj)j≠k

.
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The best partition among those considered by this strategy is the one with highest value of 
�Xk|(Xj)j≠k

+ �(Xj)j≠k|Xk
 . Again, the move is performed only if 

�
Qe

Xk|(Xj)j≠k
+ �

Qe

(Xj)j≠k|Xk

≥ �
Qb

Xk|(Xj)j≠k
+ �

Qb

(Xj)j≠k|Xk

 (in case of ties we look at the best �Xk|(Xj)j≠k
 ). In 

this way, we require that the best partition among the neighboring ones is one that increases 
�Xi

 with a decay of the quality of the partitions on the other modes that, overall, is less 
important than the improvement on mode k. We call this aggregate-based strategy 
SelectBestPartitionAGG (see Algorithm 4). 

Algorithm 4: SelectBestPartitionAGG(k, b, (τQj )j=1,...,c)
Input: The mode k of the tensor, The original cluster b of the selected object,

(τQj )j = 1, ..., c where each τQj is a two-dimensional vector
(τ

Qj

k , τ
Qj

(Xi)i=k|Xk
)

Result: e index of the selected partition among the c proposed
1 BestPartitions ← argmaxj=1,...,c(τQj );
2 if |BestPartitions| > 1 then
3 Randomly select an index m in set BestPartitions;
4 e ← m;
5 maxτ ← τQm

k ;
6 for h in BestPartitions \ {m} do
7 if τ

Qh
k > maxτ then

8 e ← h;
9 maxτ ← τ

Qh
k ;

10 end
11 end
12 else
13 e ← the only index in BestPartitions;
14 end

4.2.4  Alternative alternating optimization of �Xk

All the three methods proposed above perform a move only when the respective objective 
function ( �Xk

 in Algorithm  2, avg(�) Algorithm  3 or �Xk|(Xj)j≠k
+ �(Xj)j≠k|Xk

 in Algorithm  4) 
increases its value. If there is no move able to increase the value of the objective function, no 
move is done. Here we propose a slightly different strategy for the alternating optimization of 
� . Suppose we are considering partition P and we want to move an object on mode k: we con-
sider only those moves that improve (or at least do not worsen) �Xk

 and, among them, we 
choose the one with the greatest value of avg(�) . Notice that we do not require to increase the 
value of avg(�) with respect to partition P : we perform the move if there is any improvement 
(even little) of �Xk

 (as in Algorithm 2) and we choose the cluster with the highest avg(�) . Ties 
are solved in favor of the partition with the highest �Xk

 . This method is called 
SelectBestPartitionALT2 , and is sketched in Algorithm  5. As we will show in Sect.  5, this 
method usually achieves better results than the others and still exhibits a good convergence 
behavior. 
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Algorithm 5: SelectBestPartitionALT2(k, b, (τQj )j=1,...,c)
Input: The mode k of the tensor, the initial cluster b of the selected object,

(τQj )j = 1, ..., c where each τQj is a n-dimensional vector (τ
Qj
1 , . . . , τ

Qj
n )

Result: e index of the selected partition among the c proposed
1 P ← {j|τQj

k ≥ τ
Qb
k )};

2 BestPartitions ← argmaxj=1,...,c(avg(τQj )j∈P );
3 if |BestPartitions| > 1 then
4 Randomly select an index m in set BestPartitions;
5 e ← m;
6 maxτ ← τQm

k ;
7 for h in BestPartitions \ {m} do
8 if τ

Qh
k > maxτ then

9 e ← h;
10 maxτ ← τ

Qh
k ;

11 end
12 end
13 else
14 e ← the only index in BestPartitions;
15 end

4.2.5  Alternative aggregate optimization of �Xk |(Xj )j≠k + �(Xj )j≠k |Xk

Finally, we propose a criterion (named SelectBestPartitionAGG2 ) based on the same selec-
tion strategy as the previous one, but applied to function �Xk|(Xj)j≠k

+ �(Xj)j≠k|Xk
 . More in 

details, the algorithm considers only the moves which improve �Xk
 and, among them, 

chooses the one with highest value of �Xk|(Xj)j≠k
+ �(Xj)j≠k|Xk

 . The strategy is described in 
Algorithm 6. 
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Algorithm 6: SelectBestPartitionAGG2(k, b, (τQj )j=1,...,c)
Input: The mode k of the tensor, the initial cluster b of the selected object,

(τQj )j = 1, ..., c where each τQj is a two-dimensional vector
(τ

Qj

k , τ
Qj

(Xi)i=k|Xk
)

Result: e index of the selected partition among the c proposed
1 P ← {j|τQj

k ≥ τ
Qb
k )};

2 BestPartitions ← argmaxj=1,...,c(sum(τQj )j∈P );
3 if |BestPartitions| > 1 then
4 Randomly select an index m in set BestPartitions;
5 e ← m;
6 maxτ ← τQm

k ;
7 for h in BestPartitions \ {m} do
8 if τ

Qh
k > maxτ then

9 e ← h;
10 maxτ ← τ

Qh
k ;

11 end
12 end
13 else
14 e ← the only index in BestPartitions;
15 end

In the remainder of the paper, we refer to the five selection strategies as ALT (for Algo-
rithm 2), AVG (for Algorithm 3), AGG  (for Algorithm 4), ALT2 (for Algorithm 5), and 
AGG2 (for Algorithm 6).

4.3  Local convergence of �TCC 

A partition P is locally optimal with respect to a set of neighboring solutions N(P) if P is 
not dominated by any other solution Q ∈ N(P) . In Ienco et al. (2013) the authors show that 
their matrix co-clustering algorithm based on the multi-objective optimization of � con-
verges to a Pareto local optimum, with respect to the following neighboring function

Although the same property holds for �TCC as well, here we prove a slightly stronger local 
convergence property for three strategies, namely ALT, AVG and ALT2.

Theorem  1 If �TCC (with selection strategy ALT, AVG or ALT2) ends within t < Niter 
iterations, then it returns a Pareto local optimum with respect to the following neighboring 
function

which considers, as neighboring partitions of P , all those differing from P in the cluster 
assignment of a unique element x in a unique mode k.

Nk,b,x ∶ P ⟼ {Q =(Q1,… ,Qn)|Qj = Pj,∀j ≠ k, and ∃e ≠ b s.t.

Qk = (Pk ⧵ {C
k
b
,Ck

e
}) ∪ (Ck

b
⧵ {x}) ∪ (Ck

e
∪ {x})}.

N ∶ P ⟼ {Q =(Q1,… ,Qn)|∃k∃!x on mode k s.t. Qj = Pj,∀j ≠ k and

Qk = (Pk ⧵ {C
k
b
,Ck

e
}) ∪ (Ck

b
⧵ {x}) ∪ (Ck

e
∪ {x})}
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Proof We demonstrate the property for every selection strategy.

– AVG. When the algorithm ends in less than Niter iterations, all objects on all modes 
have been considered for a move, but no move has been actually performed: this means 
that any co-clustering Q obtainable by moving one single element in one single mode 
has avg(�Q) ≤ avg(�P) . This implies that P is not dominated by Q , for any Q ∈ N(P) , 
i.e., it is a Pareto local optimum w.r.t. N

– ALT. Let Q ∈ N(P) . Q differs from P in the cluster assignment of a unique element x 
on mode k. Object x has been selected by the algorithm in one of the last maxi=1,…,n(mi) 
iterations, but no move has been done: it means that either 𝜏P

k
> 𝜏

Q

k
 or �P

k
= �

Q

k
 and 

avg(�P) ≥ avg(�Q) (because ties are solved in favor of the partition with highest 
avg(�) ). In both cases P ⊀ Q . Thus P is a Pareto local optimum w.r.t. N .

– ALT2. The proof is identical to the ALT case.  ◻

While the convergence to a local optimum w.r.t. neighboring function Nk,b,x is always 
guaranteed, the convergence w.r.t. neighboring function N  can be proved only when the 
algorithm ends within t < Niter iterations. As a rule of thumb, we suggest to set Niter equal 
to ten times the sum of the dimensions on all the modes of the tensor. According to our 
experiments this is a “safe” threshold: although there is no theoretical prove that the algo-
rithm will reach the convergence within this number of iterations, it always happens in our 
exeriments and with a large margin of tolerance (see Sect. 5.2).

4.4  Optimized computation of �

In step 19 of Algorithm ,1 fixed a mode k, the following quantities are computed:

where ck is the number of clusters on mode k (including the empty set) and Qe is the co-
clustering obtained by moving an object x from cluster Ck

b
 to cluster Ck

e
 .

A way to compute these quantities is to fix an arrival cluster Ck
e
 , move x in Ck

e
 obtaining 

partition Qe , compute the contingency tensor Te associated to that partition (using Eq. 2) 
and compute vector �e associated to tensor Te (using Eq. 3 for strategies ALT, ALT2, and 
AVG and, additionally, Eq.  4 for AGG  and AGG2). By repeating these steps for every 
e ∈ {1,… , ck} , we obtain a matrix V = (�Xj

(Te))ej of shape ck × n . If the variant of the 
algorithm is AGG  or AGG2, matrix V has shape ck × 2 , because instead of computing all 
the �Xj

 we only compute �Xk
 and �(Xj)j≠k|Xk

 , where k is the mode considered at that moment. 
Then we pass matrix V as input to one of the variants of function SelectBestPartition, 
which determines where to move x. In order to obtain V in a more efficient way, we can 
reduce the amount of calculations by only computing the variation of �e from one step to 
another. We take advantage of the fact that a large part in the � formula remains the same 
when moving a single element from a cluster to another. Hence, an important part of the 
computation of � can be saved.

Imagine that x has been selected in cluster C1

b
 and that we want to move it in cluster 

C1
e
 (for simplicity we consider x on the first mode, but all the computations below are 

analogous on any other mode k). Object x is a row on the first mode (let’s say the j-th 
row) of tensor X  and so x can be expressed as a tensor M ∈ ℝ

m2×⋯×mn

+  with n − 1 modes, 
whose generic entry is �k2…kn

= xjk2…kn
 . We will denote with M the sum of all elements 

�
Qe

Xj
for each j = 1,… n, for each e = 1,… ck



402 Machine Learning (2023) 112:385–427

1 3

of M . Let T  and �(T) be the tensor and the measure associated to the initial co-clus-
tering and S and �(S) the tensor and the measure associated to the final co-clustering 
obtained after the move. Tensor S differs from T  only in those entries having index 
k1 ∈ {b, e} . In particular, for each ki = 1,… , ci and i = 2,… , n:

Replacing these values in Eq. 1, we can compute the variation of �X1
 moving object x from 

cluster C1

b
 to cluster C1

e
 as:

where �1 = 1 −
∑

k1

�
t
(1)

(k1 )

�2

T2
 and �1 = 1 −

∑
k1,…,kn

t2
k1…kn

T⋅t
(2…n)

(k2…kn )

 only depend on T  and then can 

be computed once (before choosing b and e). Thanks to this approach, instead of comput-
ing mi times �Xi

 with complexity O(m1 ⋅ m2 ⋅… ⋅ mn) , we compute ��Xi
(T, x, b, e, k = i) with 

a complexity in O(m1 ⋅ m2 ⋅… ⋅ mi−1 ⋅ mi+1 ⋅… ⋅ mn) in the worst case with the discrete 
partition. Computing �i is in O(m1 ⋅ m2 ⋅… ⋅ mn) , while �i is in O(mi) , and both operations 
are executed only once for each mode in each iteration.

In a similar way, we can compute the variation of �Xj
 for any j ≠ 1 (this computation 

is needed only when variants AVG and ALT2 are used):

where �j = 1 −
∑

kj

�
t
(j)

(kj )

�2

T2
 only depends on T  and can be computed once for all e. Conse-

quently, instead of computing mi times �Xj
 in Algorithm  1 with a complexity in 

O(m1 ⋅ m2 ⋅… ⋅ mn) , we compute ��Xj
(T, x, b, e, k = i) with a complexity in 

O(m1 ⋅ m2 ⋅… ⋅ mi−1 ⋅ mi+1 ⋅… ⋅ mn) in the worst case with the discrete partition. Comput-
ing �j is in O(mj) and is done only once for each mode in each iteration.

Similarly, when using variants AGG  and AGG2, instead of calculating �(Xj)j≠k|Xk
 

entirely, we can compute:

sbk2…kn
= tbk2…kn

− �k2…kn

sek2…kn
= tek2…kn

+ �k2…kn

sk1k2…kn
= tk1k2…kn

, if k1 ∉ {b, e}.

��X1
(T, x, b, e, k = 1) = �X1

(T) − �X1
(S)

=

�1

�
2M

T2
(M + t

(1)

(e)
− t

(1)

(b)
)

�
−�1

�
2

T

∑
k2,…,kn

�k2…kn
(�k2…kn

+tek2…kn
−tbk2…kn

)

t
(2…n)

(k2…kn )

�

�
2

1
−�1

�
2M

T2
(M + t

(1)

(e)
− t

(1)

(b)
)

� .

��Xj
(T, x, b, e, k = 1) = �Xj

(T) − �Xj
(S)

=
1

�jT

∑

k2…kn

( t2
ek2…kn

t
(i)i≠j

(ki)i≠j,k1=e

−
(tek2…kn

+ �k2…kn
)2

t
(i)i≠j

(ki)i≠j,k1=e
+ �

(i)i≠j−1

(ki)i≠j

+
t2
bk2…kn

t
(i)i≠j

(ki)i≠j,k1=b

−
(tbk2…kn

− �k2…kn
)2

t
(i)i≠j

(ki)i≠j,k1=b
− �

(i)i≠j−1

(ki)i≠j

)
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where �j≠1 = 1 −
∑

k2…kn

�
t
(j)j≠1

(kj )j≠1

�2

T2
 only depends on T  and can be computed once for all e. 

Thus, instead of computing mi times �(Xj)j≠k|Xk
 with a complexity in O(m1 ⋅ m2 ⋅… ⋅ mn) , we 

compute ��(Xj)j≠k|Xk
(T, x, b, e, k = i) with a complexity in 

O(m1 ⋅ m2 ⋅… ⋅ mi−1 ⋅ mi+1 ⋅… ⋅ mn) in the worst case with the discrete partition. Comput-
ing �j≠i is in O(m1 ⋅ ⋯ ⋅ mi−1 ⋅ mi+1 ⋅ ⋯ ⋅ mn) and is done only once for each mode in each 
iteration.

Hence, at each iteration and for each mode k, instead of computing matrix V = (�Xj
(Te))ej 

with computational complexity O((maxi mi) ⋅ m1 ⋅ m2 ⋅… ⋅ mn) for each �Xj
 , we can equiva-

lently compute matrix �� = (��Xj
(T, x, e, k))ej with computational complexity 

O(m1 ⋅ m2 ⋅… ⋅ mn) for each �Xj
.

Based on the above considerations, for a generic square tensor with n modes, each con-
sisting of m dimensions, the overall complexity is in O(Inmn) for strategies ALT, AGG  
and AGG2 and in O(In2mn) for strategies AVG and ALT2, where I  is the number of itera-
tions. This difference is due to the fact that the first group of strategies require the compu-
tation of just a fixed number of � ’s for each mode (one in the ALT case, two in the AGG  
and AGG2 cases), independently of the number of modes n, while ALT2 and AVG require 
the computation of all the n � ’s for each mode. The computational complexity of the two 
groups of methods differs by a factor of O(n): this could be a discriminant factor in the 
choice of the method only for tensors with a large number of modes.

5  Experiments

In this section, we report the results of the experiments we conducted to evaluate the per-
formance of our tensor co-clustering algorithm. The section is organized as follows: first, 
we describe both the synthetic and real-world datasets used in our experiments; second, we 
compare the different variants of our algorithm by also analyzing their convergence behav-
ior; third, we report the quantitative results of the comparative analysis between our algo-
rithm and some state-of-the-art competitors; finally, we provide some qualitative insights 
on the co-clusters obtained in one specific case.

5.1  Datasets

The synthetic data we use to assess the quality of the clustering performance are boolean 
tensors with n modes, created as follows. We fix the dimensions m1,… ,mn of the tensor 

��(Xj)j≠k|Xk
(T, x, b, e, k = 1) = �(Xj)j≠k|Xk
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and the number of embedded clusters c1,… , cn on each mode. Then, we first construct 
a block tensor of dimensions m1 × m2 ×⋯ × mn with c1 × c2 ×… cn blocks. The blocks 
are created so that there are “perfect” clusters in each mode, i.e., all rows on each mode 
belonging to the same cluster are identical, while rows in different clusters are different. 
Then we add noise to the “perfect” tensor, by randomly selecting some element tk1…kn

 , with 
ki ∈ {1,… ,mi} , for each i ∈ {1,… , n} , and changing its value (from 0 to 1 or vice versa). 
The amount of noise is controlled by a parameter � ∈ [0, 1] , indicating the fraction of ele-
ments of the original tensor we change. We generate tensors of different number of modes, 
size, number of clusters and value of noise ( � = 0.05 to 0.3 with a step of 0.05).

We also apply the algorithms to three real-world datasets (see Table1 ). The first dataset 
is the “four-area” DBLP dataset1. It is a bibliographic information network extracted from 
DBLP data, downloaded in the year 2008. The dataset includes all papers published in 
twenty representative conferences of four research areas (database, data mining, machine 
learning and information retrieval), five in each area. Each element of the dataset corre-
sponds to a paper and contains the following information: authors, venue and terms in the 
title. The original dataset contains 14376 papers, 14475 authors and 13571 terms. Part of 
the authors (4057) are labeled in four classes, roughly corresponding to the four research 
areas. We select only these authors and their papers and perform stemming and stop-words 
removal on the terms by using the functions provided by the NLTK Python library2 (in par-
ticular, we use the Porter stemmer). We obtain a dataset with 14328 papers, from which we 
create a ( 6044 × 4057 × 20)-dimensional tensor, highly sparse (99.98% of entries are equal 
to zero); the generic entry tijk of the tensor counts the number of times term i was used by 
author j in conference k.

The second dataset is the “hetrec2011-movielens-2k” dataset3 published by  Canta-
dor et al. (2011). It is an extension of MovieLens10M dataset, published by GroupLeans 
research group4. It links the movies of MovieLens dataset with their corresponding web 
pages at the Internet Movie Database (IMDb5) and the Rotten Tomatoes movie review sys-
tems6. From the original dataset, only those users with both rating and tagging information 
are retained, for a total of 2113 users, 10197 movies (classified in 20 overlapping genres) 
and 13222 tags. Then, we select the users that have tagged at least two different movies, the 

Table 1  Dataset characteristics

Dataset # Modes Tensor shape Main mode # Classes 
on main 
mode

DBLP 3 6044 × 4057 × 20 authors (4057) 4
MovieLens1 3 215 × 181 × 142 movies (181) 3
MovieLens2 3 74 × 145 × 115 movies (145) 3
YelpTOR 3 628 × 178 × 458 restaurants (628) 3
YelpPHG 3 237 × 95 × 544 restaurants (237) 3

1 http:// web. cs. ucla. edu/ ~yzsun/ data/ DBLP_ four_ area. zip
2 https:// www. nltk. org/
3 https:// group lens. org/ datas ets/ hetrec- 2011/
4 http:// www. group lens. org
5 http:// www. imdb. com
6 http:// www. rotte ntoma toes. com

http://web.cs.ucla.edu/%7eyzsun/data/DBLP_four_area.zip
https://www.nltk.org/
https://grouplens.org/datasets/hetrec-2011/
http://www.grouplens.org
http://www.imdb.com
http://www.rottentomatoes.com
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tags that have been used for at least ten different movies, and the movies that received a tag 
from at least five different users. Finally, starting from the remaining data, we create two 
different tensors:

– MovieLens1: it includes all the movies classified as ‘Animation’, ‘Documentary’, or 
‘Horror’. Since we need unique labels to assess the quality of our co-clustering algo-
rithm, we keep only the movies with a unique genre label. At the end we obtain a 
( 215 × 181 × 142)-dimensional tensor. The class on the movie mode are quite imbal-
anced: there are only 11 documentaries, while the remaining movies are divided into 
Animation (63) and Horror (117).

– MovieLens2: it includes all the movies (uniquely) classified as ‘Adventure’(33), ‘Com-
edy’(10), or ‘Drama’(102). The final tensor has dimensions ( 74 × 145 × 115).

The last dataset is a subset of the Yelp dataset7. It is a subset of Yelp’s businesses, 
reviews, and user data. Among all available data, we select only the reviews about Italian, 
Mexican and Chinese restaurants with at least ten reviews and the users who write at least 
five reviews. Finally, we pre-process the text of the remaining reviews by performing both 
stemming and stop-word removal and by retaining the words appearing at least 5 times in 
at least one category of restaurants, plus the 150 most frequent words (regardless of the 
category). At the end, we obtain two different tensors, with restaurants on the first mode, 
users on the second mode, and words used in the reviews on the third mode:

– yelpTOR: it includes the restaurants of the city of Toronto. The final tensor has shape 
(626, 178, 458) and contains 1885 reviews about 234 Italian restaurants, 288 Chinese 
restaurants and 104 Mexican restaurants. We consider the type of restaurant (Italian, 
Chinese or Mexican), as the labels on the first mode.

– yelpPGH: it includes the restaurants of the city of Pittsburgh. The final tensor has shape 
(237, 95, 544), containing data about 104 Italian restaurants, 64 Chinese and 63 Mexi-
can restaurants.

5.2  Comparison of the different variants of �TCC 

In this section we apply the five different versions of �TCC (ALT, AVG, ALT2, AGG 
, AGG2) to synthetic and real-world data with the aim of comparing their overall perfor-
mances and convergence behavior. We first apply the algorithms on synthetic data, vary-
ing the number of modes and the shape of the tensor ( 100 × 100 × 100 , 1000 × 100 × 20 , 
100 × 100 × 100 × 100 , and 1000 × 100 × 20 × 20 ) and the number of embedded clusters 
on each mode ((5,5,5), (5,3,2), (10,5,3), and (10,5,3,2)), with a medium level of noise of 
0.15. As shown in Fig.  3, the AVG variant of �TCC provides less accurate results than 
the other variants: in cubic tensors (tensors with the same dimensionality on all modes) 
all the methods achieve similar levels of avg(�) , but AVG requires more iterations. On 
asymmetric tensors, AVG ends in a solution with lower average � compared with the one 
obtained by the other methods. The algorithms have a similar behavior on real-world ten-
sors (Fig. 4): the one with the overall best results in terms of avg(�) is ALT2, followed 
by AGG2 and ALT. It is worth noting that the avg(�) grows even with variants that do 

7 https:// www. yelp. com/ datas et

https://www.yelp.com/dataset
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(a) 100X100X100(5, 5, 5) (b) 1000X100X20(5, 5, 5)

(c) 100 X100X100(5, 3, 2) (d) 1000X100X20(5, 3, 2)

(e) 100X100X100(10, 5, 3) (f) 1000 X100X20(10, 5, 3)

(g) 100X100X100X100(10, 5, 3, 2) (h) 1000X100X20X20(10, 5, 3, 2)

Fig. 3  Avg(�) per iteration, for all the �TCC variants, on synthetic data, varying the shape of the tensor and 
the number of embedded co-clusters
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not optimize it directly. In real-world data, although during the very first iterations avg(�) 
decreases, it begins to grow monotonically, with the exception of some small low peaks. 
Of course, AVG variant is not affected by this behavior, since it optimizes avg(�) directly. 
Moreover, as anticipated in Sect. 4.2, the direct optimization of avg(�) often results in a 
relatively poor local optimum. This is because a relaxed constraint on the neighborhood 
search allows the algorithm to explore more solution subspaces, thus ending up with a bet-
ter final objective function value.

After these preliminary experiments we conclude that ALT2 seems to be the most effec-
tive method, with ALT2, AGG2 and ALT outperforming the other two variants of algo-
rithm �TCC. We also conduct a Friedman statistical test followed by a Nemenyi post-hoc 
test (Demsar 2006) in order to assess whether the differences among the best three variants 
are statistically significant. At confidence level � = 0.01 , the null hypothesis of the Fried-
man test (stating that the differences are not statistically significant) can be rejected for 
avg(�) values; we then proceed with the post-hoc Nemenyi test. The results show that the 

(a) MovieLens1 (b) MovieLens2

(c) YelpTOR (d) YelpPGH

(e) DBLP

Fig. 4  Avg(�) per iteration, for all the �TCC variants, on MovieLens, Yelp and DBLP datasets



408 Machine Learning (2023) 112:385–427

1 3

differences between the average rank of ALT2 and those of the other methods are more 
than the critical difference CD = 0.19168 at confidence level � = 0.01 . Consequently the 
null hypothesis of the Nemenyi test passed, and we can conclude that ALT2 is statistically 
better than AGG2 and ALT. Nevertheless, hereinafter, we will consider all the three best 
performing variants in our experiments, while we will not report the results for AVG and 
AGG .

5.3  �TCC against state‑of‑the‑art competitors

In this section, we compare our results with those of other state-of-the-art tensor co-
clustering algorithms, mainly based on CP  (Harshman 1970) and Tucker  (Tucker 1966) 
decomposition. Additionally, we include another very recent approach based on the latent 
block model. Hence, we consider the following algorithms:

– nnCP. It is the non-negative CP decomposition and can be used to co-cluster a tensor, 
as done by Zhou et al. (2009), by assigning each element in each mode to the cluster 
corresponding to the latent factor with highest value. The algorithm requires as input 
the number r of latent factors: we set r = maxj=1,…n(cj) , where cj is the true number 
of classes on the j-th mode of the tensor. Since the CP model represents the tensor as 
the sum of r rank-1 decompositions, the number r of latent factors is the same on all 
modes. However, the rank r of the decomposition represents the maximum number of 
clusters that can be found on each mode of the tensor, thus the fact that we specify the 
same number r of latent factors on all the modes does not force the algorithm to iden-
tify exactly r clusters on each mode. This is particularly important when the number of 
embedded clusters cj differs along the modes, because the algorithm is allowed to iden-
tify a number of clusters that is less then the maximum number r.

– nnCP+kmeans. It combines CP with a post-processing phase in which k-means 
is applied on each of the latent factor matrices. Here, we set the rank r to 
r = maxj=1,…n(cj) + 1 and the number ki of clusters in each dimension equal to the real 
number of classes (according to our experiments, this is the choice that maximizes the 
performances of this algorithm).

– nnTucker. It is the non-negative Tucker decomposition. Here we set the ranks of the 
core tensor equal to (c1,… , cn).

– nnT+kmeans. It combines Tucker decomposition with k-means on the latent factor 
matrices, similarly as what has been done by Huang et al. (2008) and Cao et al. (2015).

– SparseCP. It consists of a CP decomposition with non-negative sparse latent fac-
tors (Papalexakis et al. 2013). We set the rank r of the decomposition equal to the maxi-
mum number of classes on the n modes of the tensor. It also requires one parameter �i 
for each mode of the tensor: for the choice of their values we follow the instructions 
suggested in the original paper.

– TBM. It performs tensor co-clustering via the Tensor Block Model  (Wang and Zeng 
2019). As parameters, it requires the number of clusters on each mode and a penalty 
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coefficient � ; the number of clusters is set equal to the correct number of classes, while 
� is tuned as suggested in the original paper.

The available codes of SparseCP and TBM only work with 3-way tensors, so we have 
to exclude these methods when we perform experiments on tensors with more than three 
modes.

To assess the quality of the clustering performances, we consider two measures com-
monly used in the clustering literature: normalized mutual information (NMI) (Strehl and 
Ghosh 2002) and adjusted rand index (ARI) (Hubert and Arabie 1985).

All experiments are performed on a server with 32 2.1GHz Intel Xeon Skylake cores, 
256GB RAM, Ubuntu 20.04.02 LTS (kernel release: 5.8.0)8. In the following, we first pre-
sent the comparative results obtained on synthetic data, then we report the performances 
achieved by our algorithms and the competitors on real-world data.

5.3.1  Results on synthetic data

We test the performances of �TCC against those of its competitors on synthetic data with 
embedded block co-clusters, constructed as described in Sect. 5.1. We consider tensors with 
3, 4 and 5 modes, with different shapes ( 100 × 100 × 20 , 100 × 100 × 100 , 1000 × 100 × 20 
and 1000 × 500 × 20 for 3-way tensors, 100 × 100 × 100 × 100 and 1000 × 100 × 20 × 20 
for 4-way tensors and 100 × 100 × 100 × 100 × 100 and 1000 × 100 × 20 × 20 × 20 for 
5-way tensors), different numbers and shapes of block co-clusters (combinations of 2,3,5 
and 10 clusters on each mode) and with three levels of noise (0.1, 0.2 and 0.3), for a total of 
276 tensors. We run all the experiments ten times and compute the average NMI and ARI. 
Figs. 5, 6, 7 and 8 report the results in terms of average NMI of all the experiments. The 
results in terms of mean ARI are similar and are presented in the appendix (see Figs. 13, 
14, 15 and 16). In these figures we include only the best variant of the algorithm (referred 
to as �TCCALT2 ), according to our previous analysis, for sake of clarity. We also omit to 
show the standard deviation of the experiments in the plots. However, the results are very 
stable: the standard deviation of �TCC ranges from 0 to 0.001, while the algorithms with 
the highest variability are nnCP+kmeans and nnT+kmeans, whose standard deviation 
ranges from 0 to 0.004. In all the experiments our algorithm achieves quite “perfect” levels 
of NMI and ARI (always greater than 0.93), meaning that it is able to identify the correct 
co-clusters embedded in the tensors. The shape and the number of modes of the tensor 
and the asymmetry in the number of clusters on the different modes do not affect signifi-
cantly the quality of the co-clustering. Furthermore, �TCCALT2 consistently outperforms 
SparseCP, TBM, nnTucker and nnCP on synthetic data. Finally, the results of �TCCALT2 are 
comparable with those of nnCP+kmeans and nnT+kmeans: only when the number of clus-
ters on the three modes is different, �TCCALT2 ’s results are slightly lower than those of the 
kmeans-based algorithms. This is due to the fact that our algorithm fails in identifying the 
correct number of clusters in these scenarios: for instance, when the clusters on the three 
modes are 10, 5 and 3 respectively, �TCCALT2 identifies 9, 5 and 3 clusters. We don’t have 
the same issue with k-means, for which, however, the correct number of clusters is given 
as input.

8 The source code of our algorithm and all data used in this paper are available at: https:// github. com/ elena 
batta glia/ tensor_ cc

https://github.com/elenabattaglia/tensor_cc
https://github.com/elenabattaglia/tensor_cc
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To further investigate this behavior, we analyze the results of the three variants of �TCC 
on synthetic data (the detailed results are reported in the appendix, in Figs. 17, 18, 19 and 
20). We find that, while all the variants of our algorithm find the correct clusters when the 
number of embedded clusters on all the modes are similar, the results degrade when we 
consider different numbers of clusters across the modes. This issue is more pronounced for 
ALT and AGG2, while ALT2 is able to find good or perfect clusters even in these scenarios 
(in particular, when mi >> ki for all i = 1, 2, 3 , where mi is the dimension of the tensor and 
ki the number of clusters on mode i).

(a) 100×100×20 (noise 0.10) (b) 100×100×100 (noise 0.10)

(c) 100×100×20 (noise 0.20) (d) 100×100×100 (noise 0.20)

(e) 100×100×20 (noise 0.30) (f) 100×100×100 (noise 0.30)

Fig. 5  Mean NMI on the three modes varying the number of embedded clusters on synthetic 3-way tensors 
with different sizes and levels of noise
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5.3.2  Execution time analysis

In this section, we show the execution times of �TCC on tensors with different number of 
modes and shape. We compare the execution times of �TCC with those of its competitors; 
for sake of clarity, we exclude from the experiment nnT+kmeans and nnCP+kmeans, since 
the execution time of the post-processing K-means algorithm is negligible w.r.t. the execu-
tion time of the decomposition. Firstly, we run the different algorithms on 3-way tensors of 
increasing magnitude, starting from a tensor of shape 100 × 100 × 10 and adding from 100 
to 900 dimensions to the first mode, until reaching a tensor of shape 1000 × 100 × 10 . Then 

(a) 1000×100×20 (noise 0.10) (b) 1000×500×20 (noise 0.10)

(c) 1000×100×20 (noise 0.20) (d) 1000×500×20 (noise 0.20)

(e) 1000×100×20 (noise 0.30) (f) 1000×500×20 (noise 0.30)

Fig. 6  Mean NMI on the three modes varying the number of embedded clusters on synthetic 3-way tensors 
with different sizes and levels of noise
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we add from 100 to 900 dimensions to the second mode, until we reach a tensor of shape 
1000 × 1000 × 10 . All the tensors have 5 clusters on the larger modes and 2 on the smallest 
ones. Figure 9a shows that all the variants of �TCC are slower than their competitors (with 
the exception of SparseCP), approximately by a factor of 10. This depends on the fact that 
the number of iterations until convergence is higher for �TCC than for the other methods. 
However, the trend of the curves are similar for all methods, as expected by looking at the 
theoretical complexities reported in Table 2. In the second and third experiments (Figs.9b 
and 9c) we start with the same 3-way tensor of shape 100 × 100 × 10 and then we increase 

(a) 100×100×100×100 (noise 0.10) (b) 1000×100×20×20 (noise 0.10)

(c) 100×100×100×100 (noise 0.20) (d) 1000×100×20×20 (noise 0.20)

(e) 100×100×100×100 (noise 0.30) (f) 1000×100×20×20 (noise 0.30)

Fig. 7  Mean NMI on the four modes varying the number of embedded clusters on synthetic 4-way tensors 
with different sizes and levels of noise



413Machine Learning (2023) 112:385–427 

1 3

(a) 100×100×100×100×100 (noise 0.10) (b) 1000×100×20×20×20 (noise 0.10)

(c) 100×100×100×100×100 (noise 0.20) (d) 1000×100×20×20×20 (noise 0.20)

(e) 100×100×100×100×100 (noise 0.30) (f) 1000×100×20×20×20 (noise 0.30)

Fig. 8  Mean NMI on the four modes varying the number of embedded clusters on synthetic 4-way tensors 
with different sizes and levels of noise

Table 2  Computational 
complexities for (hyper)cubic 
tensors with n modes and 
dimensionality m on each mode. 
Where needed, the rank of the 
decomposition is r on each mode. 
I  is the number of iterations

Algorithm Complexity

�TCC_ALT, �TCC_AGG2 Inmn

�TCC_ALT2 In2mn

nnCP, SparseCP Inrmn

nnT, TBM Irmn
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the number of modes. More in detail, in the experiment reported in Fig. 9b a new mode of 
dimension 10 is added at each time, while in the experiment reported in Fig. 9c, at each 
step, we add a new mode of dimensionality 100. The plots show that the difference in the 
execution time between �TCC and the other methods (in particular nnCP) decreases with 

(a) 3-way tensors

(b) n-way tensors (c) n-way tensors

Fig. 9  Execution time in seconds of �TCC and its competitors on 3-way tensors with different shapes

Table 3  Results achieved by the co-clustering algorithms on the real-world datasets, in terms of NMI. NMI 
is computed for the main mode (authors in DBLP, movies in MovieLens and restaurants in Yelp)

The best results are highlighted in bold

Algorithm NMI

DBLP MovieLens1 MovieLens2 yelpTOR yelpPGH

�TCC
ALT2

0.706 ±0.003 0.659±0.018 0.403 ± 0.063 0.381 ± 0.031 0.373 ± 0.009
�TCC

ALT
0.715 ±0.001 0.579 ± 0.121 0.263 ± 0.099 0.364 ± 0.038 0.352 ± 0.019

�TCC
AGG2

0.749 ±0.006 0.516 ± 0,017 0.382 ± 0.073 0.433 ± 0.023 0.339 ± 0.011
nnTucker 0.782 ± 0.000 0.421± 0.000 0.242 ± 0.000 0.429 ± 0.000 0.275 ± 0.000
nnCP 0.742 ±0.000 0.380 ± 0.000 0.111 ± 0.000 0.425 ± 0.000 0.094 ± 0.000
SparseCP 0.000 ±0.000 0.050± 0.000 0.066 ± 0.000 0.200± 0.000 0.108 ± 0.000
TBM - 0.305 ± 0.000 0.097 ± 0.000 0.014 ± 0.000 0.107 ± 0.000
nnCP+kmeans 0.238 ±0.001 0.307±0.001 0.127 ± 0.061 0.100 ± 0.019 0.081 ± 0.016
nnT+kmeans 0.246 ±0.003 0.376 ±0.002 0.223 ± 0.012 0.088 ± 0.025 0.085 ± 0.028
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the number of modes. We can then conclude that the number of modes affect the execution 
times of all algorithms to a similar extent.

5.3.3  Results on real‑world data

As last experiment, we apply our algorithm and its competitors on real-world datasets. 
Each algorithm is applied ten times on every dataset and the average results and standard 
deviations are presented in Tables 3, 4. Algorithms nnCP, nnTucker and their variant with 
k-means are applied with different parameters: we try different ranks of the decomposition 
(while k of k-means is fixed to the correct number of classes in the data) and we report 
the best result obtained. In this way we are giving a big advantage to our competitors: we 
choose the rank of the decomposition and the number of clusters by looking at the actual 
number of categories, which are unknown in standard unsupervised settings. Despite this, 
�TCC (in all its variants) outperforms the other algorithms on all datasets but one (DBLP) 
and has comparable results on another (YelpTOR). As regards DBLP, non-negative Tucker 
decomposition (with the number of latent factors set to the correct number of embedded 
clusters) achieves the best results. Non-negative CP decomposition obtains results that are 

Table 4  Results achieved by the co-clustering algorithms on the real-world datasets, in terms of ARI. ARI 
is computed for the main mode (authors in DBLP, movies in MovieLens and restaurants in Yelp)

The best results are highlighted in bold

Algorithm ARI

DBLP MovieLens1 MovieLens2 yelpTOR yelpPGH

�TCC
ALT2

0.728 ±0.003 0.707±0.032 0.506 ± 0.106 0.390 ± 0.038 0.272 ± 0.033
�TCC

ALT
0.730 ±0.003 0.539 ± 0.239 0.306 ± 0.108 0.284 ± 0.061 0.195 ± 0.019

�TCC
AGG2

0.796 ±0.008 0.339 ± 0.037 0.434 ± 0.145 0.458 ± 0.026 0.200 ± 0.023
nnTucker 0.838 ± 0.000 0.538± 0.000 0.17 ± 0.000 0.386± 0.000 0.184 ± 0.000
nnCP 0.804 ±0.000 0.338± 0.000 0.032 ± 0.000 0.367 ± 0.000 0.058 ± 0.000
SparseCP 0.000 ±0.000 0.001± 0.000 0.001 ± 0.000 0.155 ± 0.000 0.041 ± 0.000
TBM - 0.111± 0.000 0.001 ± 0.000 0.004 ± 0.000 0.035 ± 0.000
nnCP+kmeans 0.078 ±0.001 0.206 ±0.001 0.054 ± 0.044 0.001 ± 0.000 0.033 ± 0.012
nnT+kmeans 0.061 ±0.001 0.309 ±0.001 0.087 ± 0.016 0.006 ± 0.007 0.029 ± 0.013

(a) DBLP (b) YelpTOR

Fig. 10  Variation of nnTucker/nnCP results w.r.t. the rank of the decomposition in DBLP and YelpTOR 
datasets



416 Machine Learning (2023) 112:385–427

1 3

comparable with those of �TCC. However, as said before, by fixing the number of latent 
factors equal to the real number of natural clusters we are facilitating our competitors; 
when we modify, even if only slightly, the number of latent factors (see Fig.10), the results 
get immediately worse than those of �TCC. A similar observation holds for YelpTOR: 
Tucker decomposition achieves the best performances (just in terms of NMI, indeed) only 
when the number of latent factors equals the number of naturally embedded clusters.

The number of clusters identified by �TCC is usually close to the correct number of 
embedded clusters: on average, 5 instead of 4 for DBLP, 5 instead of 3 for MovieLens1, the 
correct number 3 for MovieLens2, 5 instead of 3 for YelpPGH. Only YelpTOR presents a 
number of clusters (13) that is far from the correct number of classes (3). However, more 
than the 85% of the objects are classified in 3 large clusters, while the remaining objects 
form very small clusters: we consider these objects as candidate outliers. The same behav-
ior is even more pronounced in DBLP, where four clusters contain the 99.9% of the objects 
and only 2 objects stay in the “extra cluster”.

5.4  Qualitative evaluation of the results

Here, we provide some insights about the quality of the clusters identified by our algo-
rithm. To this purpose, we choose a co-clustering of the MovieLens1 dataset, obtained 
with selection strategy AGG2. The results obtained by the other variants of �TCC, how-
ever, are very similar both in the number and in the composition of the identified clusters.

When Algorithm 1 terminates, five clusters of movies are identified, instead of the three 
categories (Animation, Horror and Documentary) we consider as labels. The tag clouds in 
Fig. 11, illustrate the 30 movies with more tags for each cluster (text size depends on the 
actual number of tags): it can be easily observed that the first cluster concerns animated 
movies for children, mainly Disney and Pixar movies; the second one is a little cluster 
containing animated movies realized with the claymation technique (mainly Wallace and 
Gromit saga’s movies or other films by the same director); the third cluster is still a subset 
of the animated movies, but it contains anime and animated films from Japan. The fourth 
cluster is composed mainly by horror movies and the last one contains only documen-
taries. On the tag mode, our algorithm finds thirteen clusters. Six of them contain more 
than 90% of the total tags and only 10 uninformative tags are partitioned in other 7 very 

(a) Cluster1 - Cartoons (b) Cluster2 - Wal-
lace&Gromit

(c) Cluster3 - Anime

(d) Cluster4 - Horror (e) Cluster5 - Documentaries

Fig. 11  First 30 movie in each cluster identified by �TCC on dataset MoveiLens1
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small clusters, and could be considered as outliers. There is a one-to-one correspondence 
between four clusters of movies (Cartoons, Anime, Wallace&Gromit and Documentary) 
and four of the tag clusters; cluster Horror, instead, can be put in relation with two different 
tag clusters, the first containing names of directors, actors or characters of popular horror 
movies, the second composed by adjectives typically used to describe disturbing films. For 
more details, see Fig. 12. 

In a few cases, the cluster group of a movie does not coincide with the category 
label: for instance, Tim Burton’s movies The Nightmare Before Christmas and Corpse 
Bride, which are labeled as “Animation” in the original dataset, have been included in 
the horror cluster by �TCC algorithm. These movies, indeed, have more similarities 
with non-animated horror movies than with cartoons for children, and our co-cluster-
ing algorithm was able to capture that (even if they have been also given tags as “ani-
mated” and “claymation” that are typical of the first two clusters). This is probably 
due to the fact that �TCC takes advantage of the tensor structure of the data, having 
the opportunity to look at both the tag and user modes when partitioning the movies: 
besides being tagged with the same words, similar films are also appreciated by the 
same kind of users. Unfortunately, we do not have any latent class information about 
the users.

To better understand how much the tensor structure helps to find better clusters on 
the main mode, we execute a further experiment: we try �TCC on two 2-way tensors, 
T1 having movies and users as modes, and T2 with movies and tags as modes. Each 
cell of the matrix counts the number of times a movie has been tagged by a particu-
lar user (in T1) and the number of times a movie received a particular tag (in T2). 

(a) Cluster1 - Car-
toons

(b) Cluster2 - Wal-
lace&Gromit

(c) Cluster3 - Anime (d) Cluster4 - Horror
(Adjectives)

(e) Cluster5 - Docu-
mentaries

(f) Cluster6 - Horror
(People)

(g) Cluster7 - Uninfor-
mative

Fig. 12  First 20 tags in each cluster identified by �TCC on dataset MoveiLens1. The last cluster is the union 
of 7 little clusters of few tags each

Table 5  Comparison of the results obtained on MovieLens1 dataset with 3D-�TCC (on movie-user-tag ten-
sor), 2D-�TCC

T1
 (on movie-user matrix), 2D-�TCC

T2
 (on movie-tag matrix) and CoStar on both T1 and T2 

matrices simultaneously

The best results are highlighted in bold

Algorithm NMI ARI

3D-�TCC 0.66 ± 0.02 0.71 ± 0.01
2D-�TCC

T1
0.47 ±0.01 0.29 ±0.01

2D-�TCC
T2

0.36 ±0.02 0.27 ±0.01
CoStar 0.56 ±0.02 0.48 ±0.02
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We apply �TCC algorithm on the two matrices independently and, finally, on the two 
matrices simultaneously, using the 2-way co-clustering algorithm for multi-view data 
based on the optimization of � (CoStar) proposed by  Ienco et  al. (2013). The results 
are summarized in Table 5: they clearly show that the quality of the results (in terms of 
both NMI and ARI) is higher for the 3-way version of the algorithm than for the 2-way 
versions. Considering multiple views helps, but not to a great extent, indeed. These 
results suggest that movie clustering benefits from the tensorial structure of the data, 
drawing information not only from the movie-user or movie-tag relationships but also 
from the user-tag relationship.

(a) 100×100×20 (noise 0.10) (b) 100×100×100 (noise 0.10)

(c) 100×100×20 (noise 0.20) (d) 100×100×100 (noise 0.20)

(e) 100 ×100×20 (noise 0.30) (f) 100×100×100 (noise 0.30)

Fig. 13  Mean ARI on the three modes varying the number of embedded clusters on synthetic 3-way tensors 
with different sizes and levels of noise
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6  Conclusions

The majority of tensor co-clustering algorithms optimizes objective functions that 
strongly depend on the number of co-clusters. This limits the correct application of 
such algorithms in realistic unsupervised scenarios. To address this limitation, we have 

(a) 1000×100×20 (noise 0.10) (b) 1000×500×20 (noise 0.10)

(c) 1000×100×20 (noise 0.20) (d) 1000×500×20 (noise 0.20)

(e) 1000 ×100×20 (noise 0.30) (f) 1000×500×20 (noise 0.30)

Fig. 14  Mean ARI on the three modes varying the number of embedded clusters on synthetic 3-way tensors 
with different sizes and levels of noise



420 Machine Learning (2023) 112:385–427

1 3

introduced a new co-clustering algorithm specifically designed for tensors that does not 
require the desired number of clusters as input. We have proposed different variants 
of the algorithm, showing their theoretical and/or experimental convergence properties. 
Our experimental validation has shown that our approach outperforms state-of-the-art 
methods for most datasets. Even when our algorithms are not the best ones, we have 

(a) 100×100×100×100 (noise 0.10) (b) 1000×100×20×20 (noise 0.10)

(c) 100×100×100×100 (noise 0.20) (d) 1000×100×20×20 (noise 0.20)

(e) 100 ×100×100×100 (noise 0.30) (f) 1000×100×20×20 (noise 0.30)

Fig. 15  Mean ARI on the four modes varying the number of embedded clusters on synthetic 4-way tensors 
with different sizes and levels of noise
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found that the competitors can not work properly without specifying a correct number 
of clusters for each mode of the tensor. As future work, we will design a specific algo-
rithm for sparse tensors with the aim of reducing the overall computational complexity 
of the approach. Finally, we will further investigate the ability of our method to identify 
candidate outliers as small clusters in the data.

(a) 100×100×100×100×100 (noise 0.10) (b) 1000×100×20×20×20 (noise 0.10)

(c) 100×100×100×100×100 (noise 0.20) (d) 1000×100×20×20×20 (noise 0.20)

(e) 100 ×100×100×100×100 (noise 0.30) (f) 1000×100×20×20×20 (noise 0.30)

Fig. 16  Mean ARI on the four modes varying the number of embedded clusters on synthetic 4-way tensors 
with different sizes and levels of noise
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(a) 100×100×20 (noise 0.10) (b) 100×100×100 (noise 0.10)

(c) 100×100×20 (noise 0.20) (d) 100×100×100 (noise 0.20)

(e) 100 ×100×20 (noise 0.30) (f) 100×100×100 (noise 0.30)

Fig. 17  Mean NMI of the variants of �TCC on the three modes varying the number of embedded clusters 
on synthetic tensors with different sizes and levels of noise
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(a) 1000×100×20 (noise 0.10) (b) 1000×500×20 (noise 0.10)

(c) 1000×100×20 (noise 0.20) (d) 1000×500×20 (noise 0.20)

(e) 1000 ×100×20 (noise 0.30) (f) 1000×500×20 (noise 0.30)

Fig. 18  Mean NMI of the variants of �TCC on the three modes varying the number of embedded clusters 
on synthetic tensors with different sizes and levels of noise
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(a) 100×100×100×100 (noise 0.10) (b) 1000×100×20×20 (noise 0.10)

(c) 100×100×100×100 (noise 0.20) (d) 1000×100×20×20 (noise 0.20)

(e) 100 ×100×100×100 (noise 0.30) (f) 1000×100×20×20 (noise 0.30)

Fig. 19  Mean NMI of the variants of �TCC on the four modes varying the number of embedded clusters on 
synthetic 4-way tensors with different sizes and levels of noise
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Appendix

Additional results

Funding Open access funding provided by Università degli Studi di Torino within the CRUI-CARE 
Agreement.

(a) 100×100×100×100×100 (noise 0.10) (b) 1000×100×20×20×20 (noise 0.10)

(c) 100×100×100×100×100 (noise 0.20) (d) 1000×100×20×20×20 (noise 0.20)

(e) 100×100×100×100×100 (noise 0.30) (f) 1000×100×20×20×20 (noise 0.30)

Fig. 20  Mean NMI of the variants of �TCC on the four modes varying the number of embedded clusters on 
synthetic 5-way tensors with different sizes and levels of noise
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