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Abstract
Recent studies have shown that modern deep neural network classifiers are easy to fool, 
assuming that an adversary is able to slightly modify their inputs. Many papers have pro-
posed adversarial attacks, defenses and methods to measure robustness to such adversarial 
perturbations. However, most commonly considered adversarial examples are based on 
perturbations in the input space of the neural network that are unlikely to arise naturally. 
Recently, especially in computer vision, researchers discovered “natural” perturbations, 
such as rotations, changes of brightness, or more high-level changes, but these perturba-
tions have not yet been systematically used to measure the performance of classifiers. In 
this paper, we propose several metrics to measure robustness of classifiers to natural adver-
sarial examples, and methods to evaluate them. These metrics, called latent space perfor-
mance metrics, are based on the ability of generative models to capture probability distri-
butions. On four image classification case studies, we evaluate the proposed metrics for 
several classifiers, including ones trained in conventional and robust ways. We find that 
the latent counterparts of adversarial robustness are associated with the accuracy of the 
classifier rather than its conventional adversarial robustness, but the latter is still reflected 
on the properties of found latent perturbations. In addition, our novel method of finding 
latent adversarial perturbations demonstrates that these perturbations are often perceptually 
small.
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1 Introduction

Unlike in more conventional software engineering, the problem of ensuring reliability of 
machine learning (ML) based software is complicated by the fact that ML-based models, 
such as artificial neural networks (ANNs), are not programmed explicitly. Instead, they sig-
nificantly depend on the data on which they are trained. The traditional form of assessing 
model performance based on validation/test data (e.g., a holdout set) and measures such as 
accuracy or F-score, become insufficient when the models interact with the real world, such 
as in the cases of aircraft and unmanned vehicle control. This is proven by the discovery of 
adversarial examples (Szegedy et al., 2014)—slightly perturbed inputs that cause ANNs to 
malfunction, for example by misclassifying an image. For a human, adversarial examples 
may be even indistinguishable from original, unperturbed inputs. Adversarial examples are 
often produced in a rather artificial environment, by adopting special algorithms that per-
turb the input until a certain criterion is reached, but recent evidence (Akhtar and Mian, 
2018; Gilmer et al., 2018) suggests that they may transfer to the material world.

The classic framework of empirical risk minimization (ERM) (Vapnik, 2013), where 
the classifier is trained on available data samples, is used to achieve high values of sample-
based metrics such as accuracy or F-score. However, if the classifier must be protected 
from adversarial examples, ERM is insufficient, and robust optimization (Madry et  al., 
2018) with projected gradient descent (PGD) can be used instead. This corresponds to 
enforcing adversarial robustness (Anderson et al., 2019; Bastani et al., 2016; Fawzi et al., 
2018; Huang et al., 2017; Katz et al., 2017; Moosavi-Dezfooli et  al., 2016; Singh et al., 
2019), which is often treated either as a metric (Bastani et al., 2016; Fawzi et al., 2018; 
Moosavi-Dezfooli et al., 2016) specifying the minimum magnitude of an adversarial per-
turbation, or as a specification (Anderson et al., 2019) stating that the decision of the ANN 
must be invariant to perturbations of input of a certain form. Adversarial robustness can be 
local (Anderson et al., 2019; Fawzi et al. 2018; Huang et al., 2017; Katz et al., 2017; Singh 
et al., 2019) or global (Katz et al., 2017).

Traditional adversarial examples are based on perturbations in the input space of the 
ANN that are constrained with �p (e.g., �2 or �∞ ) norms. The resulting adversarial exam-
ples are highly improbable to arise naturally (Song et  al., 2018a), but it was shown that 
even natural adversarial examples (i.e., the ones plausible under the data distribution) exist 
(Amadou  Dia et  al., 2019; Dreossi et  al., 2018; Engstrom et  al., 2019; Gu et  al., 2019; 
Hendrycks et  al., 2019; Jalal et  al. 2019; Song et  al., 2018b; Zhao et  al., 2017). While 
conventional adversarial examples often require 2D or 3D printing of precomputed images 
(Akhtar and Mian, 2018) to be applied in the real world, a natural adversary could be 
seen as a manipulator of high-level features of classified objects. The plausibility of natu-
ral adversarial examples makes statistical attack detection and defense approaches, such 
as (Song et  al., 2018a; Samangouei et  al., 2018), less reliable. At the same time, these 
examples are theoretically interesting: unlike traditional adversarial examples, they show 
the failures of ANNs on the distribution on which they were trained.

Construction of a subclass (Amadou  Dia et  al., 2019; Jalal et  al., 2019; Song et  al., 
2018b; Zhao et al., 2017) of natural adversarial examples is possible with the help of gen-
erative models, such as generative adversarial networks (GANs) (Goodfellow et al., 2014) 
and generative autoencoders (Makhzani et al., 2015). Previous works that considered natu-
ral adversarial examples mostly focused on attacks and defenses rather than assessing the 
performance of classifiers. In addition, Jalal et al. (2019) applied adversarial examples for 
ANN training, although the focus so far has been on adversarial robustness in the input 
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space of the ANN. This paper utilizes generative models as a means of capturing real-
world data distributions in order to specify and evaluate performance metrics for ANN 
classifiers in terms of probabilities, likelihood and distances in latent spaces of generative 
models. As a result, our metrics capture the robustness of classifiers to natural adversarial 
examples. More precisely, the contributions of the paper are as follows: 

1. We propose a framework to evaluate the performance of deep feed-forward ANN classi-
fiers on natural adversarial examples with the help of generative models and their latent 
spaces. The implementation of the framework is publicly available online.

2. Within this framework, we propose latent space performance metrics—novel perfor-
mance metrics for feed-forward ANN classifiers that are based on probabilistic reasoning 
in latent spaces of generative models, and, informally speaking, measure the “resistance” 
of the classifier to natural adversarial examples. The naturality of adversarial examples 
is achieved by (1) operating in the latent space of the generative model, (2) considering 
a distribution-preserving model of noise, and (3) generating adversarial examples by 
adding random noise, or by searching for worst-case examples that are bounded by the 
likelihood of noise.

3. We propose methods to approximately evaluate these metrics in a white-box setting 
using (1) sampling and (2) gradient-based search of adversarial perturbations in the 
latent space. The latter method is a form of untargeted attack based on PGD. We show 
that such a search is possible not only with GANs (Zhao et al., 2017), but also with 
generative autoencoders.

4. With the proposed framework, metrics and methods, we reveal interesting properties 
of ANN classifiers with respect to natural adversarial examples, which contributes to 
understanding the latter better. On four image classification case studies, we examine 
classifiers trained traditionally and in a way that achieves adversarial robustness, and 
evaluate their performance according to latent space performance metrics. Our PGD-
based untargeted attack yields perceptually smaller latent perturbations than reported 
earlier (Zhao et al., 2017), and we find positive association between latent counterparts 
of adversarial robustness and the accuracy of a classifier on clean images. Moreover, 
we did not identify a similar association for latent space performance metrics and con-
ventional adversarial robustness, but we found that the latter leads to minimum latent 
adversarial perturbations being further from the original image in the original (non-
latent) space as well as perceptually.

The rest of the paper is structured as follows. Section 2 presents background material. Sec-
tion 3 motivates the use of generative models to measure ANN classifier performance, and 
proposes corresponding metrics. In Sect. 4, approaches are given to evaluate these metrics. 
Evaluation of deep convolutional neural network (CNN) classifiers with these approaches 
is performed in Sect. 5. Section 6 reviews related work, and Sect. 7 concludes the paper.

2  Preliminaries

2.1  Artificial neural networks

A feed-forward artificial neural network (ANN) N  is a parametric model that predicts 
some outcome y (a single number or a vector) based on some input vector x of dimension 
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nI . By feed-forward, we mean that the input is supplied to the network at once and is passed 
through a predefined computation graph with a finite number of computation nodes. When 
the input is an image, N  is usually a convolutional neural network (CNN). In this paper, 
we focus on the classification task, where N  must assign its input to one of m > 1 classes. 
Thus, we have N ∶ ℝ

nI → {1, ...,m} . We assume that class prediction is done as follows: 
N  first produces real-valued scores of each class i, to which we will refer as the values 
of the scoring function SN(x, i) , and the actually predicted class is the one with the maxi-
mum score: N(x) = argmaxi SN(x, i) . In addition, we require that SN(x, i) is continuous and 
almost everywhere differentiable with respect to x.

ANN classifiers are typically trained in a supervised way with some form of gradient 
descent (e.g., stochastic gradient descent), using samples x1, ..., xk ∈ ℝ

nI , which are paired 
with respective reference class labels y1, ..., yk ∈ {1, ...,m} . These pairs (x1, y1), ..., (xk, yk) 
are assumed to come from joint distribution J  , whose marginals are the input data distri-
bution X  and the class label distribution Y.

2.2  Generative models

A generative adversarial network (GAN) (Goodfellow et al., 2014), which consists of two 
feed-forward ANNs called the discriminator and the generator G , is trained to make G gen-
erate elements of some target data distribution X  of nI-dimensional vectors (in the simplest 
case, without sample labels). Data generation is done by applying G to a low-dimensional 
vector l ∈ ℝ

nL sampled from the latent code distribution L (typically, N(0,  I)). If l ∼ L , 
then for a well-trained GAN we may assume that G(l) ∼ X  . Often, the dimension of L is 
made smaller than the dimension of X  : nL < nI . The set of all latent codes (usually, just 
ℝ

nL ) is called the latent space. By contrast, we will refer to the input space of an ANN 
classifier ( ℝnI ) as the original space. With some enhancements, GANs may be also capa-
ble of reconstruction—finding latent representation l ∈ ℝ

nL for the given original vector 
x ∈ ℝ

nI such that G(l) is close to x (e.g., according to some norm in the original space). For 
example, this may be done by training an additional ANN I ∶ ℝ

nI → ℝ
nL called an inverter 

(Hendrycks et  al., 2019). However, obtaining good inversions, especially for GANs that 
generate high-resolution images, requires more effort: for example, Bau et al. (2019) per-
formed layer-wise inversion and combined it with gradient-based optimization.

An autoencoder (NE,ND) , where NE and ND are feed-forward ANNs called the encoder 
and the decoder respectively, is a model whose goal is to compress (encode) its inputs 
x ∈ ℝ

nI to low-dimensional vectors l = NE(x) ∈ ℝ
nL (again, nL < nI ) such that approximate 

decompression (decoding, reconstruction) can be achieved: ND(l) is close to x. A genera-
tive autoencoder, such as in (Heljakka et al., 2020; Makhzani et al., 2015), is an autoen-
coder whose decoder is additionally trained to sample from the original distribution X—
thus, essentially, a generative autoencoder performs both the tasks of an autoencoder and a 
GAN. For a well-trained generative autoencoder, we may assume both l ∼ L ⇒ ND(l) ∼ X  
and x ∼ X ⇒ NE(x) ∼ L.

To summarize, generative models are capable of data generation from low-dimensional 
vectors. By using special types of generative models or enhancing existing generative mod-
els, it is also possible to achieve data reconstruction.
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2.3  Adversarial examples and perturbations

Suppose that N  is an ANN classifier. An adversarial example is an input x′ to N  
such that x� ∈ A(x) and N(x�) ≠ N(x) , where x is a real data sample, A(x) is the set of 
allowed changes of x (often, it is taken as the �-ball around x according to the �p norm: 
A(x) = {x� �‖x� − x‖p ≤ �} ). Δx = x� − x is the corresponding adversarial perturbation.

Adversarial examples and adversarial perturbations have been first found to exist by 
Dalvi et al. (2004) and Globerson and Roweis (2006), but were publicized by Szegedy et al. 
(2014), who presented human-indistinguishable ImageNet perturbations. Since 2013, many 
adversarial attacks and defenses have been proposed (Akhtar and Mian, 2018). While many 
proposed defenses were shown to be ineffective (Gilmer et al., 2018), attacks were trans-
ported to the real world (Akhtar and Mian, 2018), raising concerns regarding the safety and 
security of deep ANNs.

For adversarial perturbations bounded with �2 and �∞ norms, projected gradient descent 
(PGD) has been shown (Madry et al., 2018) to be the best adversary that has access only 
to ∇xSN(x, ⋅) . The most common method of defense is robust optimization with PGD, 
where training is done on adversarial examples for the current version of the ANN. Gilmer 
et al. (2019) showed that it is possible to train the classifier on samples with added visible 
Gaussian noise instead of specially crafted adversarial examples.

Recent works explain adversarial examples through the peculiarities of the multidimen-
sional geometry (Gilmer et al., 2019) and the fact that conventional ERM-based training 
does not introduce human priors to the training process (Ilyas et al., 2019). Samangouei 
et al. (2018) and Song et al. (2018a) also hypothesized that adversarial examples do not lie 
on the data manifold of the training distribution, but several works show that even natural 
adversarial examples exist, such as the ones that come from the real world (Hendrycks 
et al., 2019), are made by rotations and translations (Engstrom et al., 2019), color distor-
tions (Gu et al., 2019), semantic changes (Dreossi et al., 2018), looping over consequent 
video frames (Gu et  al., 2019), and created with generative models (Amadou Dia et  al., 
2019; Jalal et al., 2019; Song et al., 2018b; Zhao et al., 2017). Latent space adversarial 
examples, or adversarial examples that correspond to some latent codes of a generative 
model, may be based on perturbations (Amadou  Dia et  al., 2019; Zhao et  al., 2017) or 
generated from scratch (Song et  al., 2018b). Jalal et  al. (2019) showed that latent space 
adversarial examples can be used to enhance robust optimization and increase the overall 
robustness of the classifier.

2.4  Performance metrics for adversarial robustness

Often, the set of possible adversarial examples is defined locally for each input x—for 
example, as an �p �-ball, or as a set of rotations of x (Engstrom et al., 2019). The robustness 
of the classifier is then measured as its accuracy on worst-case inputs taken from such sets. 
For the �∞ norm, Bastani et  al. (2016) formalized this metric as adversarial frequency. 
Adversarial frequency, however, depends on � . A different way to measure robustness, 
which is free from this hyperparameter, is adversarial severity (Bastani et al., 2016)—the 
expected (with x ∼ X  ) minimum distance from x to an adversarial example. The corre-
sponding local metric is pointwise robustness, which is the minimum distance to an adver-
sarial example for a particular x. In this paper, we will define metrics that are based on 
pointwise robustness, adversarial frequency and severity but operate with different norms 
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in different spaces. Known metrics that are defined in the original space will be referred to 
as conventional metrics.

3  Latent space performance metrics

In this paper, we are interested in specifying and evaluating performance metrics for ANN 
classifiers with the help of generative models. In addition, we would like to evaluate these 
metrics given the original training and validation data. This section will propose several 
such latent space performance metrics, and methods to evaluate them will be proposed in 
Sect. 4.

3.1  Preliminary definitions

Suppose that N ∶ ℝ
nI → {1, ...,m} , m > 1 , is a feed-forward ANN classifier with scoring 

function SN  . The goal of N  is to correctly classify input vectors drawn from distribution 
X  . In the most general case, there may be no unique correct label for an input vector, but 
rather there is a joint distribution J  of pairs (x,  y) of an input vector x and its label y. 
For simplicity, we assume that N  is validated on samples drawn exactly from J  , although 
the training might have been performed on a distribution induced by data augmentation of 
input vectors x.

Suppose that Li , 1 ≤ i ≤ m , are nL-dimensional ( nL < nI ) class-conditional latent 
distributions (often assumed to be N(0,  I)) such that we have trained transformations 
Di∶ ℝ

nL → ℝ
nI that generate samples from class-conditional data distributions Xi : 

l ∼ Li ⇒ Di(l) ∼ Xi . In certain cases (see models capable of reconstruction in Sect. 2.2), 
we may additionally have transformations Ei∶ ℝ

nI → ℝ
nL that return latent code approxi-

mations of nI-dimensional vectors. We would like Di to be compatible with gradient 
descent, i.e., continuous and almost everywhere differentiable, but we do not require the 
same from Ei.

3.2  Motivation for latent space performance metrics

With both Di and Ei , we can convert vectors to the latent space and back. Assuming that 
the latent space corresponds to a well-trained generative model, working in it has the fol-
lowing benefits compared to the original space: 

1. For a random vector l ∼ Li , Di(l) has a distribution that was trained to approximate X .
2. Changes of the vector in the latent space are high-level in terms of the original repre-

sentation.
3. For each class i, the image Di(ℝ

nL ) contains an infinite number of diverse data samples, 
which may be useful to evaluate N  or train it further.

4. The aforementioned samples can not only be generated at random, but also can be opti-
mized with gradient-based techniques to optimize a certain objective (e.g., SN ).

As many performance metrics, such as accuracy, adversarial frequency and severity, will 
remain meaningful when the original space is replaced with the latent one, in this paper we 
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will mainly move conventional performance metrics to the latent space. We will do it in a 
way that provides additional benefits related to the probabilistic interpretation of the latent 
space—for example, while considering adversarial perturbations, we will take care that the 
data remains plausible according to X .

3.3  Possible scenarios

Intuitively, sampling from Li gives latent vectors l such that Di(l) are instances of class 
i. Previous works on natural adversarial examples obtained latent vectors based on gen-
eration (Song et al. 2018b) and reconstruction (Zhao et al., 2017). These two scenarios of 
obtaining Di(l) (see the upper part of Fig. 1, paths 1a and 1b) directly correspond to two 
operations that generative models are capable of (see Sect. 2.4): 

1. Sample l ∼ Li and generate x = Di(l).
2. Take a random real sample x̂ ∼ Xi , encode it as l = Ei(x̂) , and reconstruct it as x = Di(l).

In this paper, we are interested in finding latent space counterparts for the following 
metrics (each of them will correspond to one of three scenarios in the lower part of Fig. 1): 

1. Accuracy, as well as similar metrics based on counting success frequencies (Fig. 1, 
path 2a). This is the simplest case: it is sufficient to calculate the success frequency of 
N  on reconstructed or generated samples. This will be formalized in Sect. 3.4.

2. Corruption robustness to random noise (Gilmer et al., 2019; Hendrycks and Dietterich, 
2019) (Fig. 1, path 2b). While in the original space the addition of noise is a form of 
data corruption, in the latent space this noise will introduce high-level changes to the 
input, and we could measure the success frequency of N  on such inputs. In Sect. 3.5, 
we will introduce a family of noise-adding distributions N�,l that retain the transformed 
data plausible even for large noise, and define a corresponding performance metric.

Fig. 1  Overview of considered scenarios
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3. Adversarial robustness (Anderson et al., 2019; Fawzi et al., 2018; Huang et al., 2017; 
Katz et al., 2017; Singh et al., 2019) (Fig. 1, path 2c). Adversarial robustness in the 
latent space can be treated as “resistance” to worst-case noise additions that are bounded 
according to noise likelihood and optimized to degrade the performance of N  . The con-
nection between noise corruption robustness and adversarial robustness exists already in 
the original space: for example, if the noise is Gaussian, its likelihood is determined by 
its �2 norm, a threshold on which is a common constraint on adversarial perturbations. 
What is more, noise corruption robustness and adversarial robustness were found to 
be highly related (Gilmer et al., 2019). The corresponding latent space metrics will be 
formalized in Sect. 3.6.

3.4  Accuracy in the latent space

Probably the simplest thing that can be done with generative models is to evaluate the accu-
racy of the classifier on generated and reconstructed data items. This situation corresponds 
to the absence of any adversary. These ideas are formalized in the following definitions:

Definition 1 The latent generation accuracy (LGA) of N  is:

Definition 2 The latent reconstruction accuracy (LRA) of N  is:

In LGA, which requires Di but not Ei , compared to regular accuracy on the holdout set, 
we have replaced real data samples with generated samples, following class probabilities in 
J  (also note that it is possible to consider similar metrics for each class separately). As a 
result, an unlimited number of samples can be used to estimate LGA. In addition, misclas-
sified samples found during the check of this specification can be used to train N  further. 
In LRA, instead of generating new samples, we take the approximations of real ones com-
puted with both Di and Ei . This resembles the Defense-GAN (Samangouei et  al., 2018) 
approach.

While LGA can be measured by sampling latent codes, LRA can be estimated based 
on samples from the holdout set (see Sect. 4.2). The main purpose of LGA and LRA in 
this paper is to serve as baselines for other metrics proposed in the following subsections, 
which, in addition to generation or reconstruction, assume the presence of an adversary.

3.5  Noise corruption robustness in the latent space

In this subsection, we consider a randomized noise-adding adversary. Suppose that N�,l is 
some noise-adding distribution that operates on latent vectors l, where parameter � ≥ 0 
controls the magnitude of the noise. Below, we will use the same notation for the prob-
ability density function (PDF) of this distribution. We would like the following conditions 
to be satisfied: 
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1. Distribution preservation: for all � , sampling l� ∼ N�,l with l ∼ Li is equivalent to sam-
pling l� ∼ Li . This condition ensures the “naturality” of noise: its addition does not shift 
the distribution of input vectors, meaning that it will not produce vectors that are not 
plausible according to Li (compared, e.g., with addition of noise to each component of 
the original data item).

2. Support of small noise: if � → 0 , random vectors �� ∼ N�,l converge in distribution to 
� ≡ l , i.e., the added noise becomes negligible. This condition ensures that small � cor-
responds to small noise.

3. Support of large noise: if � → +∞ , random vectors �� ∼ N�,l converge in distribution to 
� ∼ Li , i.e., the unperturbed latent vector l becomes irrelevant. This condition ensures 
that large � corresponds to large noise. Convergence to Li is needed to comply with the 
first condition.

4. Connection with perturbation magnitude: there exists a distance � and a continu-
ous, strictly decreasing function q� such that the likelihood of the noise is given by 
N�,l(l

�) = q�(�(l
�, l)) . This requirement is needed to make the magnitude of perturbations 

measurable by their likelihood. In addition, it guarantees that N�,l has an upper bound 
q�(0).

We will propose a concrete family of distributions satisfying these properties in Sect. 4.3. 
Now, we look at the case where the input to be classified is a perturbed version of the 
reconstruction of a real data element:

Definition 3 The local latent noise accuracy (LLNA) of N  in point x ∈ ℝ
nI of known 

class i with noise magnitude � is:

LLNA is similar to LRA, except that checks are performed on noisy reconstructions of 
a fixed real data sample x. LLNA can be evaluated based on sampling noise vectors (see 
Sect. 4.3).

3.6  Adversarial robustness in the latent space

Next, instead of checking the classifier’s resistance to random noise, we consider perturba-
tions chosen by an adversary. In terms of N�,l , we can assume that the adversary can choose 
the worst case input within bounded likelihood. Given fixed x and i, l� ∼ N�,Ei(x)

 is a random 
nL-dimensional vector. Then:

Definition 4 The local latent adversarial robustness (LLAR) of N  in point x ∈ ℝ
nI with 

known class i, with noise magnitude � , is:

This defines LLAR as the maximum likelihood of a latent adversarial perturbation, 
with low LLAR corresponding to high robustness. Condition 4 on the noise distribution 
makes the value of LLAR correspond to some value of a distance between the original and 
the perturbed vectors, giving it an intuitive interpretation. Also, due to the boundedness 
of N�,Ei(x)

 , which follows from the same condition, this expression may not give positive 
infinity. Negative infinity may be obtained in a peculiar case of all the latent space being 
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classified into class i, which, for example, may be caused by the trained models being inad-
equate. Still, our definitions below tolerate this case.

LLAR captures proximity in the latent space and is similar to known definitions of 
local robustness checked in the input space of the ANN (Anderson et  al., 2019; Bastani 
et al., 2016; Fawzi et al., 2018; Huang et al., 2017; Katz et al., 2017; Singh et al., 2019), 
for example, to pointwise robustness (Bastani et al., 2016). However, the likelihood � of 
a multivariate random vector may be inconvenient to operate with, and thus we allow it 
to be post-processed with some decreasing function g�(�) . In Sect.  4.7, we will propose 
an approach that views LLAR as �2 robustness in the latent space (i.e., g� will convert the 
likelihood to this norm) and either finds its approximate value or checks whether it is above 
a given threshold.

Next, we transform LLAR to global performance metrics, returning to the ideas of sam-
pling latent vectors and looping through reconstructed data items:

Definition 5 The latent adversarial generation severity (LAGS) of N  with noise mag-
nitude � is:

Definition 6 The latent adversarial reconstruction severity (LARS) of N  with noise 
magnitude � is:

Definition 7 The latent adversarial generation accuracy (LAGA) of N  with noise mag-
nitude � and bound � on its transformed likelihood is:

Definition 8 The latent adversarial reconstruction accuracy (LARA) of N  with noise 
magnitude � and bound � on its transformed likelihood is:

LAGS and LARS are similar to adversarial severity as defined by Bastani et al. (2016), 
and LAGA and LARA are similar to adversarial frequency as defined by the same authors. 
Intuitively, LAGS and LARS are average LLAR values, while LAGA and LARA are aver-
age success rates of passing a specification of being resistant to sufficiently likely latent 
perturbations. In Sect. 4.7, we will approximately evaluate all these metrics with sampling 
and PGD. The overview of all considered latent space performance metrics is given in 
Table 1.

4  Evaluating latent space performance metrics

This section proposes concrete approaches to calculate the values of the metrics defined in 
Sect. 3. The general idea is to work with the standard multivariate Gaussian distribution as 
the latent one due to its well-known properties. This is especially important for addressing 
latent adversarial robustness in Sect. 4.7.
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4.1  Choice of generative models

To be able to work with probability densities in the latent spaces Li , we need to fix the 
selection of these spaces. We achieve this by taking Li = N(0, I) . Then, to evaluate all met-
rics proposed in Sect. 3, transformations Di and, for reconstruction-based metrics, Ei must 
be defined for all classes 1 ≤ i ≤ m . The following techniques can be applied: 

1. For each i, train a generative autoencoder (NE
i
,ND

i
) and take 

2. For each i, train a GAN with generator Gi and take  Ei can be obtained 
by enhancing these GANs with encoding procedures, e.g., by training inverters (Hen-
drycks et al., 2019), performing gradient-based optimization of latent codes, or both 
(Bau et al., 2019). Instead of training models for each class separately, it is possible to 
train class-conditional models (Odena et al., 2017).

4.2  Measuring latent accuracy

With Di and Ei defined, LGA can be measured by repeatedly sampling a class label i ∼ Y 
and a latent code l ∼ N(0, I) , calculating og = [N(Di(l)) = i],1 which is a Bernoulli ran-
dom variable, and averaging the obtained values of og , which gives an unbiased estimate 
of LGA. Similarly, LRA can be measured by sampling validation data items (x,  i) and 
averaging or = [N(Di(Ei(x)) = i].

4.3  Noise model and measuring local latent noise accuracy

Suppose that we sample (x, i) ∼ J  by enumerating over (x1, y1), ..., (xk, yk) . In this case 
l = Ei(x) ∼ N(0, I) . At this point, we can inject a random perturbation into the latent code. 
We define the noise-adding distribution N�,l as follows:

Table 1  Overview of the proposed latent space performance metrics

a May be more restricted depending on the choice of g�

Metric Needs Ei Adversary Range

Latent generation accuracy (LGA) No No [0, 1]
Latent reconstruction accuracy (LRA) Yes No [0, 1]
Local latent noise accuracy (LLNA) Yes Noise [0, 1]
Local latent adversarial robustness (LLAR) Yes PGD ℝ

+

Latent adversarial generation accuracy (LAGA) No PGD [0, 1]
Latent adversarial generation severity (LAGS) No PGD ℝ

a

Latent adversarial reconstruction accuracy (LARA) Yes PGD [0, 1]
Latent adversarial reconstruction severity (LARS) Yes PGD ℝ

a

1 [x] (Iverson bracket) is 1 if x is true, and 0 if x is false.
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Note that, given the previous choice Li = N(0, I) , this choice of N�,l complies with the con-
straints stated in Sect. 3.2 (point 1 is easy to check, the proofs of points 2 and 3 are given 
in Appendix B, and point 4 will be clarified in Sect. 4.4), and it would not be distribution-
preserving either (1) with a non-Gaussian �l , or (2) without the denominator 

√
1 + �2 . Fur-

thermore, the definition (1) is equivalent to:

LLNA can be measured by finding the latent vector l = Ei(x) , then repeatedly sampling 
l� ∼ N�,l and calculating on = [N(l�) = i] , which is again a Bernoulli random variable. The 
rest is similar to checking LGA and LRA.

4.4  Likelihood of perturbations and perturbed vectors

In the rest of this section, to check LLAR and its derivatives, we will optimize latent per-
turbations—adversarially chosen perturbations that are bounded by the likelihood of the 
outcomes of N�,l . They are similar to the ones considered in (Zhao et  al., 2017). Noise 
addition N�,l (2) can be interpreted as a composition of two transformations: 

1. Decay (reduction) of the unperturbed latent vector l by 
√
1 + �2.

2. Addition of Gaussian noise Δl ∼ N
(
0, �2I∕(1 + �2)

)
.

Below, we will refer to Δl as a latent adversarial perturbation rather than noise, emphasiz-
ing that Δl will be produced with directed search rather than sampling. What perturbations 
Δl are more likely? The log-likelihood of Δl having a standard Gaussian distribution is 
determined by the �2 norm of Δl:

The distribution of the perturbed vector l� = l∕
√
1 + �2 + Δl , which is of interest in the 

definition of LLAR, differs from the one of Δl only by its mean, and thus its log-likelihood 
as a function of Δl is the same. Also, (3) shows that the condition 4 (Sect. 3.5) on the noise 
distribution is satisfied with � being the Euclidean distance.

4.5  Optimization problem for bounded latent perturbation search

To measure LAGA and LARA (Sect. 3.6), it is sufficient to check whether LLAR at the 
current latent point is bounded with a defined likelihood � (according to the noise model 
from Sect. 4.3): that is, any perturbation whose likelihood is at least � , is class-preserving. 
According to Eq. 3, each positive value � uniquely corresponds to a particular value of the 

(1)

(2)N�,l = N

�
l√

1 + �2
,

�2

1 + �2
I

�
.

(3)

log fN(0,�2I∕(1+�2))(Δl) = log

nL�
j=1

�
1 + �2

2��2
exp

�
−
1 + �2

2�2
Δl2

j

�

= nL log

�
1 + �2

2��2
−

1 + �2

2�2

nL�
j=1

Δl2
j
= c1(�) − c2(�)‖Δl‖22.



3989Machine Learning (2023) 112:3977–4012 

1 3

�2 norm of the perturbation Δl around l∕
√
1 + �2 . For convenience, we will measure per-

turbation likelihood with its scaled norm ‖⋅‖s
2
= ‖⋅‖2∕

√
nL . With this scaling, the expected 

squared scaled norm of a multidimensional vector distributed according to N(0, I) is one. 
The following function transforms the likelihood of Δl to ‖Δl‖s

2
:

We also introduce the following auxiliary definitions:

– l0 is the initial latent vector, where a LLAR specification should be checked. It corre-
sponds to some input vector x with its available label i: l0 = Ei(x).

– The decay factor d = 1 − 1∕
√
1 + �2 ( 0 ≤ d ≤ 1 ) is the amount of reducing the vector l 

prior to the search of a perturbation.
– l1 = (1 − d)l0 = l0∕

√
1 + �2 is the reduced vector, which is the mean of the perturba-

tion Δl.

Thus, we need to check whether there is an adversarial perturbation Δl with ‖Δl‖s
2
≤ � , 

where � = g�(�) , that makes the classifier N  classify Di(l1 + Δl) as not belonging to class 
i. Suppose that an objective function O ∶ ℝ

nL → ℝ is available such that O(Δl) > 0 implies 
correct classification and O(Δl) < 0 implies misclassification. We take

It is almost everywhere differentiable due to the corresponding assumptions on SN  and 
Di . Then we can solve the following constrained optimization problem with gradient-based 
techniques:

4.6  Intuition for non‑zero decay factor

At first glance, viewing latent perturbations as a perturbation of l1 but not l0 (which equals 
l1 only in the case of zero noise) may be confusing. The intuitive explanation, on the other 
hand, is in line with the purpose of division by 

√
1 + �2 in (1), which is needed to reduce 

the covariance matrix of the distribution of perturbed vectors (with unperturbed vectors 
l ∼ N(0, I) ) back to I. Decay moves the search region to the area of more likely (having a 
smaller norm) vectors. Again, we remind that the likelihood in Li in the general case does 
not correspond to the likelihood in Xi . Still, in our experiments, decay moves latent vectors 
towards “averaged” representatives of each class.

4.7  Latent perturbation search with PGD

The constrained problem  (4), considered for an approximation Ey(x) of a data element 
(x, y), corresponds to checking a threshold specification on LLAR. Our proposed untar-
geted attack that solves this problem is a variant of PGD (Madry et  al., 2018). PGD is 
started from a random latent perturbation within the allowed �-ball and is run until a 

g�(�) =

√
c1(�) − log �

nL ⋅ c2(�)
.

O(Δl) = s(i) − max
1≤j≤m,j≠i

s(j), where s(j) = SN(Di(l1 + Δl), j).

(4)minimize Δl∶ ‖Δl‖s
2
≤�O(Δl).
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misclassification is achieved, i.e., O(Δl) < 0 , but no longer than for a predetermined 
number of steps. The learning rate is set to ensure that the boundary of the �-ball can be 
reached from any point inside it. To avoid exploding or vanishing gradients, as in (Madry 
et al., 2018), we scale g = ∇O(Δl) with its �2 norm (specifically, we divide g by ‖g‖s

2
 ). The 

optimization procedure is illustrated in Fig. 2.
Next, we consider evaluation of performance metrics that are based on LLAR. The pro-

cess is similar to evaluation of conventional adversarial robustness, with the only essential 
differences being the search of perturbations in the latent space instead of the original one 
and the replacement of the original image with its decayed version. Accordingly, evalua-
tion of LAGA and LARA  differs from the one of LGA and LRA by using the PGD adver-
sary with the corresponding � to alter the generated or approximated image prior to sub-
mitting it to the classifier. To increase reliability, PGD should be run multiple times. To 
evaluate LAGS and LARS, minimum perturbation bounds � need to be calculated and 
averaged. To approximately find the minimum norm � of a class-changing perturbation 
without pre-setting it, we apply the following techniques:

– Set � to a large value (we use � = 2.5 ) and start PGD with a small learning rate at 
Δl = 0 . It will reach some solution, whose norm could be used as an approximation for 
minimum �.

– The solution above might be prone to reaching local optima, which can be mitigated by 
several restarts from different points. In this case, to enforce norm minimization, each 
new restart is done with � set to the scaled norm of the previously found solution, and 
the learning rate is reduced proportionally to the shrinkage of �.

To evaluate LAGS and LARS, we also tried DeepFool (Moosavi-Dezfooli et  al., 2016), 
which is an algorithm to find minimum �p adversarial perturbations. Essentially, it is a 
variant of gradient descent with specifically chosen step magnitudes that are intended for 
fast convergence to a perturbation lying on the decision boundary of the classifier. Unfor-
tunately, we observed its frequent divergence on our optimization problem. Gradient clip-
ping resumed convergence, although it often cannot be achieved in just a few steps as in 
(Moosavi-Dezfooli et al., 2016). Thus, for the lack of apparent benefits of using DeepFool, 
in our experiments we apply only PGD.

Fig. 2  Graphical interpretation 
of latent perturbation search 
with PGD. The grey circle is 
the region where the adversarial 
perturbation Δl is searched, and l 
is the current candidate solution

Δ

ρ
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5  Experimental evaluation

5.1  Implementation and experimental setup

The proposed framework of evaluating feed-forward ANN classifier performance with gen-
erative models was implemented in Python with PyTorch. The code and models used to 
obtain the results described in this section are publicly available online.2 As the case stud-
ies, we considered the following image classification problems: 

1. MNIST (LeCun, 1998) digit classification ( m = 10 classes). As generative models, for 
MNIST, we trained a WGAN (Arjovsky et al., 2017) with nL = 64 for each class, and 
implemented Ei with gradient descent (Adam with 4 restarts) over latent codes. Exam-
ples of images reconstructed and generated by these models are given in Fig. 6 (top).

2. Gender predictions based on face photos, using the CelebA (Liu et al., 2015) dataset 
( m = 2 classes: 1 = “female”, 2 = “male”; images were center-cropped and resized 
to 128×128 pixels). For CelebA, we trained PIONEER (Heljakka et al., 2018, 2020) 
generative autoencoders for each dataset and class with nL = 511 . Examples of images 
produced by the models are given in Fig. 6 (middle)—note that the visual quality of 
reconstructed images is somewhat better compared to generated images.

3. Scene type prediction using the LSUN (Yu et al., 2015) dataset ( m = 2 classes: 1 = 
“bedroom”, 2 = “church outdoor”; images were center-cropped and resized to 128×
128 pixels). For LSUN scene types, we also trained PIONEER models with nL = 511 . 
However, as seen from Fig. 6 (bottom), except for bedroom reconstructions, the visual 
quality of images produced by PIONEER models for LSUN is worse compared to Cel-
ebA images.

For each of these classification problems, we trained fifteen deep CNN classifiers (see 
Appendix C for details) divided into five groups with three classifiers in each: 

1. NUT (“undertrained”): classifiers trained in a usual way, without data augmentation, but 
only for one epoch (to intentionally achieve lower accuracy);

2. NNR (“non-robust”): the same as above, but trained for several epochs;
3. NCA (“conventional augmentation”): classifiers trained in a usual way, with conventional 

data augmentation;
4. NR (“robust”): classifiers trained on images corrupted with visible Gaussian noise 

(Gilmer et al., 2019);3

5. NB (“both”): classifiers trained with both conventional data augmentation and noise 
corruption.

In addition, a limited evaluation on several pretrained classifiers was performed on Ima-
geNet (Russakovsky et al., 2015). The details of these experiments will be reported sepa-
rately in Sect. 5.4. Finally, for all the considered generative models, we report the values of 
their reconstruction and generation performance metrics in Table 2.

2 https:// github. com/ igor- buzhi nsky/ latent- space- nn- evalu ation
3 This form of training was used instead of more common robust optimization with PGD to reduce compu-
tation time.

https://github.com/igor-buzhinsky/latent-space-nn-evaluation
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5.2  Performance evaluation using original space metrics

The performance metrics of the above deep CNN classifiers in the original space are 
reported in Table 3. From this table, it is visible that, as expected, training with Gaussian 
noise achieved not only noise corruption robustness but also adversarial robustness, and 
the latter two are associated. In addition, a trade-off is visible between the accuracy of the 
classifiers on clean images (hereinafter, clean accuracy) and adversarial robustness, which 
is in agreement with previous observations (Tsipras et al., 2018).

5.3  Performance evaluation using the proposed latent space metrics

We calculated the values of the proposed latent space performance metrics for all afore-
mentioned classifiers. The corresponding results are provided in Table 4 and Fig. 3. We 
start interpreting these results from LGA and LRA, which can be regarded as quality meas-
ures of generation and reconstruction capabilities of generative models that are comple-
mentary to the ones reported in Table 2. For CelebA and LSUN, in Fig. 3, plots 1 and 4, 
it is visible that clean accuracy is correlated with both LGA and LRA. The stronger cor-
relation of LRA and clean accuracy can be explained by better reconstruction capabilities 
of our PIONEER models compared to their generation capabilities. On MNIST, the asso-
ciations of clean accuracy with LGA and LRA are roughly the same (Pearson’s r = 0.5 ). 
Based on these observations, we conclude that the used generative models are suitable for 
evaluation of other proposed metrics.

Next, we comment on LLNA, which is a local metric, unlike the others. We computed 
its values on particular images and show several noise-based perturbations used in these 
computations in Fig. 4. Noise addition appeared to be a very sample-inefficient adversary, 
but the values of LLNA can be treated as prediction stability measures. For example, for 
the reconstructed (second) image in the second row of Fig.  4, the prediction of NNR is 
incorrect, and this also reflects in low accuracy of perturbed images (e.g., for � = 0.5 , the 
LNNA on this image is 82.5%). The same image is also somewhat difficult for NR (for 
� = 0.5 , LLNA = 92.0%).

Table 2  Performance metrics of 
used generative models

As reconstruction performance, we report the average scaled norm ‖‖x − x
0
‖‖s2 of the difference between the original and the reconstructed 

images in the original space. Reconstruction was not considered for 
ImageNet. As generation performance, we report the Fréchet Inception 
distance (FID) (Heusel et al., 2017) computed on 25 thousand images 
(28× 28 for MNIST, 128×128 for other datasets)

Model kind Dataset Class ‖‖x − x
0
‖‖s2 FID

WGAN MNIST All (10) 0.274 19.06
PIONEER CelebA Female 0.175 16.10

Male 0.205 13.28
LSUN Bedroom 0.217 24.80

Church outdoor 0.234 67.38
BigGAN ImageNet All (1000) – 13.29
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Table 3  Performance metrics of considered CNN classifiers measured in the original space

Accuracy was measured on the validation set of each dataset. For noise accuracy, we report accuracy on 
images corrupted with standard Gaussian noise with � = 0.8 . Adversarial severity (Bastani et al., 2016) is 
reported for �

2
 and �∞ norms scaled by dividing by 

√
nI  and nI respectively. It was estimated on 600 images 

per classifier, and all the values were averaged over three classifiers in each group. Adversarial perturba-
tions were searched with PGD: for each image, 15 runs were performed with norm threshold shrinkage as 
explained at the end of Sect. 4.7, except for doing this in the original space. For each PGD run, we used 50 
steps of magnitude 0.05� from a random point, where � is the current norm threshold. For each value series, 
the best (largest) value is shown in bold

Dataset Classifier Accuracy Adversarial severity

Clean Noise ‖Δx‖s
2

1

nI
‖Δx‖∞

MNIST N
UT

98.0% 78.9% 0.0680 0.1744
N

NR
99.1% 80.0% 0.0747 0.1911

N
CA

98.8% 94.5% 0.1152 0.3093
N

R
98.9% 98.2% 0.1666 0.5130

N
B

98.3% 97.6% 0.1696 0.4908
CelebA N

UT
94.3% 65.3% 0.0023 0.0059

N
NR

97.6% 63.0% 0.0028 0.0071
N

CA
96.3% 49.8% 0.0029 0.0079

N
R

96.2% 95.2% 0.0118 0.0296
N

B
94.8% 94.4% 0.0128 0.0333

LSUN N
UT

93.9% 63.8% 0.0017 0.0045
N

NR
98.4% 50.2% 0.0023 0.0054

N
CA

97.4% 52.7% 0.0036 0.0079
N

R
92.8% 95.8% 0.0140 0.0321

N
B

93.6% 93.8% 0.0149 0.0321

The following findings, which are more prominent, are related to metrics that evaluate 
adversarial robustness in latent spaces: 

1. We found association between clean accuracy and latent adversarial robustness 
measured as LAGS, LAGA, LARS, and LARA—see Fig. 3, plots 2–3 and 5–6. In addi-
tion, distribution plots of approximately minimum perturbations found with PGD that 
were used in computing LAGS and LARS are given in Fig. 10. For LARS, examples of 
such perturbations are shown in Figs. 5, 7 and 8 . This finding implies that latent space 
perturbations may be valuable in training ANN classifiers further.

2. The results regarding the association of the traditional and conventional adversarial 
robustness are inconclusive. While the measured values of conventional adversarial 
severity have a small correlation with LARS and LAGS, they have a negative correla-
tion with LARA and LAGA—the corresponding plots are given in Fig. 3, plots 8–9 
and 11–12. This pattern is similar regardless of the dataset, � or the choice of the norm 
to evaluate conventional adversarial severity. This outcome might have been caused by 
the difference in PGD search strategies used to evaluate these two kinds of metrics. In 
addition, these correlations are not required to be identical as the precise values of both 
these metrics are different statistics of the real minimum norms of adversarial perturba-
tions (mean for LARS and LAGA and percentile rank for LARA and LAGA). Overall, 



3994 Machine Learning (2023) 112:3977–4012

1 3

we did not find evidence that increasing conventional adversarial robustness increases 
latent adversarial robustness metrics, but it is not possible to conclude that they are not 
associated.

3. As visible from Figs. 5, 7, and 8, latent adversarial perturbations are surprisingly 
small on CelebA and LSUN and result in adversarial images that are perceptually close 
to the originals. Even though we do not have consistent results regarding the influence of 
conventional robustness on latent space robustness, the adversarial images computed 
for robust classifiers are, on average, further away from the original ones (despite 
having similar distances in the latent space). This distance was measured with �1 and 
�2 norms in the original space, and the increase of this distance is visible in Fig. 10, 
columns 3 and 4.

As for the validity of our study, the small size of the found latent space perturbations 
indicates that our proposed PGD-based untargeted attack is successful. At the same time, 
generated images require smaller latent space perturbations—this can be explained by 
lower quality of generated images, which makes classifiers less confident in their initial 
predictions. On the other hand, on MNIST, perturbations are very large (Fig. 10, two top-
most plots in the first column), significantly raise the norm of the perturbed vector (Fig. 10, 
two topmost plots in the second column) and thus exploit the part of the latent space where 

Table 4  Latent space performance metrics of considered CNN classifiers

Accuracy and adversarial robustness computations were performed with 10000 and 600 images respec-
tively. All the values were averaged over three classifiers in each group. LARA was measured with � = 0.3 
on MNIST and � = 0.1 on CelebA and LSUN. For each value series, the best (largest) value is shown in 
bold

Classifier LGA LRA � = 0.5 (d = 0.106) � = 1.0 (d = 0.293)

LAGS LARS LAGA LARA LAGS LARS LAGA LARA 

MNIST
N

UT
97.9% 98.4% 0.297 0.302 39.6% 40.6% 0.320 0.332 43.9% 47.1%

N
NR

98.6% 99.2% 0.327 0.339 45.4% 47.3% 0.347 0.359 50.4% 53.2%
N

CA
98.3% 98.7% 0.341 0.347 43.8% 45.4% 0.361 0.372 46.7% 49.9%

N
R

98.2% 98.8% 0.325 0.336 40.7% 43.4% 0.344 0.355 44.9% 47.1%
N

B
98.2% 98.4% 0.339 0.342 37.9% 40.3% 0.346 0.360 41.0% 43.3%

CelebA
N

UT
95.1% 95.1% 0.050 0.070 10.0% 22.0% 0.049 0.065 9.1% 16.9%

N
NR

98.3% 98.4% 0.067 0.095 16.7% 33.8% 0.066 0.088 12.9% 26.3%
N

CA
97.4% 97.4% 0.064 0.090 17.1% 30.4% 0.062 0.084 13.1% 25.4%

N
R

96.5% 96.2% 0.061 0.088 9.3% 26.6% 0.060 0.079 5.3% 18.8%
N

B
95.3% 94.7% 0.057 0.082 7.6% 24.2% 0.056 0.074 4.4% 16.3%

LSUN
N

UT
96.6% 92.0% 0.041 0.065 18.4% 31.7% 0.039 0.056 16.9% 27.2%

N
NR

98.9% 96.6% 0.056 0.098 24.4% 44.4% 0.051 0.086 21.9% 39.5%
N

CA
98.4% 96.6% 0.063 0.099 26.2% 41.5% 0.060 0.088 27.7% 37.2%

N
R

96.4% 89.9% 0.058 0.103 7.3% 37.6% 0.053 0.087 6.2% 29.4%
N

B
96.3% 92.1% 0.057 0.094 9.2% 32.2% 0.056 0.082 8.3% 22.7%
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the generative models were not trained to work. This can be explained by the simplicity of 
the MNIST classification problem.

Finally, we confirmed the meaning of decay in the latent space as a countermeasure 
against the increase of the norm of the latent vector by the adversary: as visible from 
Fig. 10, column 2, perturbed vectors typically exceed unperturbed vectors by norm. This 
phenomenon is explained by (1) the lower probability density of vectors with large latent 
space norms and the associated lack of classifier training on such less plausible input 
images, and (2) a higher ease to exploit a weakness of a generative model with the same 
sort of vectors. In particular, the second explanation applies to CelebA, where roughly 
half of approximately minimum latent space perturbations found with � = 0.5 (d = 0.106) 

Fig. 3  Correlation plots for some of the data presented in Table 4 (plots 1–6, 8–9, 11–12) and additional 
data (plots 7 and 10). Plots are made for CelebA (blue crosses) and LSUN (orange circles) data combined 
(MNIST data is not shown). Plots 1 and 4 show the relation between clean accuracy, LRA and LGA. Plots 
2–3 and 5–6 show an association between clean accuracy and latent adversarial robustness (measured 
as LAGS, LAGA, LARS, LARA). Plots 7 and 10 show an association between conventional adversarial 
robustness (measured as adversarial severity with respect to perturbations bounded by scaled �

2
 norm) and 

the averaged scaled �
2
 norm of found approximately minimum latent perturbations. Plots 8–9 and 11–12 

demonstrate the inconclusive results regarding the association between conventional adversarial robustness 
and latent adversarial robustness. For each plot, Pearson’s and Spearman’s correlation coefficients (r and � , 
respectively) are given
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contained visual artifacts, even though the likelihood of perturbed images in Li was 
actually higher than the one of unperturbed images. With � = 1 (d = 0.293) , the visual 
quality of perturbed images was higher. On the other hand, on all datasets, even with 
� = 1 (d = 0.293) , decayed images were visually close to the originals (this is visible on 
Figs. 5, 7, and 8, columns 2–4).

5.4  Experiments on ImageNet

To demonstrate the possibility of evaluating the proposed metrics for larger classifiers and 
more challenging classification problems, we also considered ImageNet-1k image classi-
fication with a reduced experimental setup. As a generative model, we used a pretrained4 
class-conditional BigGAN (Brock et al., 2018) with nL = 128 and image size of 128×128. 
The details of our experimental setup are: 

1. We only computed latent generation metrics since we do not have a corresponding 
inverter model, and decoding the image with gradient-based search, like we did on 
MNIST, would have slowed the experiments significantly. To increase the visual quality 
of generated images, we sampled latent vectors with a built-in decay of 0.25.

original ε = 0 ε = 0.25 ε = 0.5 ε = 0.75 ε = 1

Fig. 4  Examples of perturbations for CelebA and LSUN images of each class (left: “female”, “bedroom”, 
right: “male”, “church outdoor”) that were generated as latent Gaussian noise. In each row: the original 
image, the image reconstructed by PIONEER ( � = 0 ), then four perturbed reconstructed images with 
increasing noise magnitudes � = 0.25, 0.5, 0.75, 1 . Green labels show classification outcomes of N

NR
 (on 

the first line) and N
R
 (on the second line). All images in this figure have resolution 128×128

4 https:// github. com/ ajbro ck/ BigGAN- PyTor ch

https://github.com/ajbrock/BigGAN-PyTorch
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2. For the same reason of computational complexity, we evaluate pretrained ImageNet 
classifiers and considered a smaller number of them. We took four non-robust models 
from PyTorch Model Zoo5 and one robust classifier by Santurkar et al. (2019). All these 
classifiers accept input images of sizes 256×256 or 224×224, so we upsampled the 
generated images with bicubic interpolation.

3. Adversarial examples used to evaluate conventional adversarial severity were searched 
for in the 128×128 original space, i.e., the interpolation layer was regarded as the first 
layer of a classifier. This was done to make the results comparable between classifiers 
with different input sizes.

The results of experiments are shown in Table 5 and examples of approximately minimum 
adversarial perturbations are given in Fig. 9. Although the amount of data is small to give 
definite conclusions, we find a correlation between the accuracy and all latent space adver-
sarial robustness metrics (Pearson’s correlation coefficients 0.47 ≤ r ≤ 0.68 ), and an even 
stronger correlation of LGA with these metrics ( 0.79 ≤ r ≤ 0.97 ). Unlike our previous 
findings, latent space adversarial robustness is now positively correlated with conventional 
adversarial robustness ( 0.16 ≤ r ≤ 0.57 ). However, while having notably larger conven-
tional robustness, the robust classifier is not very different from others in terms of latent 
space adversarial robustness.

Reconstruction Decay Perturbations for NNR and NR

0 x1 ∆x x x x′
NR ∆xNR x′

R ∆xR

Fig. 5  Examples of approximately minimum latent CelebA and LSUN image perturbations with 
� = 1 (d = 0.293) , each found with a single run of PGD from Δl = 0 , for classifiers N

NR
 and N

R
 . 

In each row, images are given in the following order: x, the real image (with classification outcomes of 
N

NR
 and N

R
 shown in green); x

0
= Di(l0) , the reconstructed image (with both classification outcomes); 

x
1
= Di(l1) , the decayed image (with both classification outcomes); Δx = x

1
− x

0
 , the difference between 

two previous images; x�
NR

= Di(l
�
NR

) , the perturbed image for N
NR

 (with the classification outcome of N
NR

 ); 
Δx

NR
= x�

NR
− x

1
 , the perturbation for N

NR
 ; x�

R
= Di(l

�
R
) , the perturbed image for N

R
 (with the classification 

outcome of N
R
 ); Δx

R
= x�

R
− x

1
 , the perturbation for N

R
 . All images in this figure have resolution 128×128

5 https:// pytor ch. org/ vision/ stable/ models. html

https://pytorch.org/vision/stable/models.html
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5.5  Threats to validity

Below, we list the identified threats to the validity of our study and comment on them: 

1. To keep the time required to perform the experiments manageable, most of them were 
done on CNN classifiers of small size (17—497 thousand trainable parameters), rec-
ognizing a small number of classes—it may appear that state-of-the-art classifiers have 
different patterns of latent space performance metric values. Our evaluation of ImageNet 
classifiers is limited and only demonstrates the possibility of applying the proposed 
methods to complex classification tasks. Yet, we have checked that (1) for the classifiers 
that we have studied, a connection between adversarial robustness and noise corruption 
robustness (Gilmer et al., 2019) exists, (2) on MNIST and CelebA, our robust classifiers 
have limited capabilities of image generation (Santurkar et al., 2019). On LSUN, we 
have seen that optimizing class activation of robust classifiers adds qualitatively different 
features to the image compared to non-robust classifiers, but we have not recognized the 
resulting images as bedrooms nor outdoors.

2. As we measure latent space adversarial robustness (LAGS, LARS, LAGA, LARA) with 
imprecise attack approaches, we overestimate the values of these metrics. This bias 
might have resulted in our classifiers ranked wrongly according to the computed values. 
PGD was shown to work well in the original space (Madry et al., 2018), but there is so 
far no similar set of experiments that confirm this property in latent spaces. We used 
PGD with 12 restarts to compensate for the possibility of such a bias. In certain cases 
(search of minimum adversarial perturbations on CelebA and LSUN), we used a single 
PGD run with a smaller learning rate, but in these cases, we had ensured that such runs 
differ insignificantly from the ones of PGD with restarts in terms of the resulting metric 
values.

3. On LSUN, the small size of the validation set (600 images) may have resulted in pre-
maturely early stopping of training and imprecise accuracy estimates. In addition, the 
corresponding generative models produced random images with visible flaws. Yet, our 
observations for this dataset are not very different from the ones for CelebA, and perfect 
generative models might be hard to achieve on custom datasets.

Table 5  Results of experiments on ImageNet

In each row, the best (largest) value is shown in bold
The classifiers denoted as “squeezenet”, “alexnet”, “resnet”, “resnext” correspond to pretrained PyTorch 
models called “squeezenet1_0”, “alexnet”, “resnet18” and “resnext50_32×4d”. The “robust” classifier is 
the one reported by Santurkar et al. (2019). LAGA was computed with � = 0.1

Metric Squeezenet Alexnet Resnet Resnext Robust

Clean accuracy 50.2% 49.5% 64.2% 72.2% 52.2%
LGA 68.3% 72.1% 77.9% 76.1% 72.9%
LAGA � = 0.5 23.0% 27.0% 33.2% 30.5% 29.7%

� = 1.0 23.0% 32.7% 39.3% 38.7% 38.0%
Adversarial severity ‖Δx‖s

2
0.00041 0.00075 0.00061 0.00080 0.01101

1

nI
‖Δx‖∞ 0.00076 0.00161 0.00123 0.00173 0.02001

LAGS � = 0.5 0.04905 0.06104 0.07374 0.07001 0.07725
� = 1.0 0.06238 0.07304 0.09365 0.09131 0.09751
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4. PIONEER (CelebA and LSUN) models are designed to be trained to generate images 
from normalized latent vectors, and the latent distribution is actually the uniform dis-
tribution on the unit sphere instead of the Gaussian. In this paper, this has led to all 
reconstructed and generated images having unit scaled norm. Nonetheless, the decoder 
was capable of accepting unnormalized latent vectors, and decay still worked intuitively, 
i.e., by softening prominent features of images. This effect might have been caused by 
N(0, I) and the uniform distribution on the unit sphere being very similar in multidi-
mensional spaces: �2 norms of high-dimensional standard Gaussians are concentrated 
around 

√
nL.

5. As the adversarial examples considered in this paper are generated images, it is impos-
sible to conclude that the classifiers actually make a mistake when classifying the gen-
erated adversarial examples differently. For example, the problem of determining the 
gender of a person who does not exist is not well-defined, but this also applies to other 
real-world object classification problems. Our definitions of metrics only require that the 
classification decision is changed, so this problem does not influence the soundness of 
these definitions. However, this also means that the values of the proposed metrics are 
not proven to be indicators of good classifier performance according to human judgment. 
A possible solution to address this problem would be to get manual labels of generated 
adversarial examples (Song et al., 2018b).

6. All the proposed latent space performance models rely on the generative models, and 
thus the computed values of these metrics depend on the quality of approximation of 
the original training/validation distribution and the choice of the generative model. In 
particular, due to a lower quality of the used generative models for LSUN (especially 
low generation quality for outdoors), our results for this dataset may be less reliable. 
Yet, we considered several datasets and kinds of generative models, and the correlation 
of the accuracy with latent space robustness metrics was found in each of these cases.

6  Related work

6.1  Adversarial examples in latent spaces

A number of works used generative models to create adversarial attacks and/or 
defenses. Zhao et  al. (2017) proposed an approach to search adversarial examples in 
the latent space of a GAN, also measuring them with �2 norms. This approach is white-
box and is based on directed sampling rather than gradient descent, which makes it 
applicable to discrete input data, such as in natural language processing tasks. By con-
trast, our techniques operate in a black-box setting and only with feed-forward ANNs 
accepting continuous data. Nonetheless, (1) being based on gradient descent, our latent 
perturbation search approach is able to find perceptually smaller perturbations com-
pared to the ones presented by Zhao et  al. (2017), (2) we consider a more general 
framework of transforming data to the latent space and back, (3) we connect latent 
adversarial robustness to a “natural” model of noise in the latent space and this way 
motivate the use of the �2 norm, (4) we search adversarial examples for larger clas-
sification tasks (128×128 instead of 64×64) and latent spaces (511 dimensions instead 
of 128), and (5) we focus on computing performance metrics for classifiers and not on 
finding adversarial examples per se.
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Song et  al. (2018b) created latent space adversarial examples from scratch. This 
was done using a class-conditional AC-GAN, and evaluation was in particular done 
on the CelebA (gender classification) and MNIST datasets. We also search for adver-
sarial examples based on generated data items, however, (1) again, we do it for images 
larger than 64×64, (2) we consider the untargeted attack scenario and use a different 
approach to generate adversarial examples, (3) our approach is not restricted to AC-
GANs, and (4) we focus on computing performance metrics rather than finding adver-
sarial examples.

Mirman et  al. (2020) developed an approach to formally verify properties of one-
dimensional interpolations in the latent space of a generative model. The idea is to 
consider a set of images that correspond to a line segment in the latent space associ-
ated with a meaningful high-level change in the image, and determine whether adver-
sarial examples exist on this line, or the probability of getting an adversarial example 
given a distribution on the input line segment. In our work, we search for adversarial 
examples in a multidimensional setting, without focusing on specific high-level fea-
tures, and do this with imprecise approaches.

Generative models were used as defenses against adversarial attacks (Samangouei 
et  al., 2018; Song et  al., 2018a). For example, the Defense-GAN (Samangouei et  al. 
2018) approach protects image classifiers from adversarial attacks by replacing their 
input with an approximation in the latent space of a GAN (similarly to what is done 
when computing LRA in our work). This defense was broken by Jalal et al. (2019) with 
an optimization procedure in the latent space subject to a norm constraint in the origi-
nal space. Our results are in line with this work, since we similarly approximate input 
images using a latent space of a generative model, and are able to find perceptually 
small perturbations that change the prediction of the classifier. Jalal et al. (2019) also 
proposed a defense approach based on the search of pairs of examples that are close in 
the latent space but are scored completely differently by the classifier, and subsequent 
augmentation of robust optimization with training on these pairs.

6.2  Robustness metrics for ANNs and their evaluation

Usually robustness of ANNs to adversarial attacks is measured relatively to a specific 
attack success. Yu et al. (2019) proposed an improvement over the default accuracy-based 
approach. By analyzing the decision surfaces of models, they note that robust models have 
smooth decision boundaries. The proposed metric reflects this by rewarding models with 
smooth decision surfaces.

The first authors to formalize the notion of adversarial robustness were Bastani et  al. 
(2016), who proposed several metrics quantifying the network robustness, namely, point-
wise robustness, adversarial frequency and adversarial severity (see Sect. 2.4). The authors 
compute the latter two through pointwise robustness, which is measured by approximation.

Exact pointwise robustness calculations was performed by Boopathy et  al. (2019), 
although they refer to the measure as to the “lower bound on the image distortion.” Also, 
the notion of pointwise robustness was explored by Fawzi et al. (2018), who derived theo-
retical upper bounds for it. Weng et al. (2018) proposed an effective proxy measure of net-
work robustness based on measuring Lipschitz constants, although it has received some 
criticism (Goodfellow, 2018). An alternative method to quantifying global robustness 
properties of networks was proposed by Gopinath et al. (2017), who developed a clustering 
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algorithm that outputs a set of verified regions—a collection of hyperspheres where the 
network is guaranteed to produce the same label.

7  Discussion and conclusions

In this paper, we presented a framework to evaluate the performance of feed-forward ANN 
classifiers with the help of generative models. Within the framework, we proposed several 
performance metrics, the most interesting of which are related to measuring the robustness 
of classifiers to perturbations in latent spaces of these generative models. In addition, we 
presented techniques to evaluate these metrics for classifiers, including a novel PGD-based 
untargeted attack. The main motivation of our work is the property of generative models 
of mimicking the data distribution. This property implies that the adversarial perturbations 
that we consider result in natural data changes.

The proposed metrics allowed us to make several interesting observations regarding the 
performance of deep ANN classifiers on natural adversarial examples. We computed the 
values of these metrics on several CNN image classifiers and found an association between 
the accuracy of the classifiers on clean images and adversarial robustness in latent spaces. 
This implies that latent adversarial examples might be useful for further classifier training. 
We also did not reveal a notable impact of conventional adversarial robustness on its latent 
counterparts, except for the influence on the norms of latent adversarial perturbations in 
the original space.

A speculative explanation of the found connection between the accuracy and latent adver-
sarial robustness is that the latter measures the vulnerability of the classifier to natural adver-
sarial examples, while the accuracy measures the same for random natural examples. A simi-
lar interdependence of accuracy and robustness to natural adversarial examples of a different 
kind was experimentally found by Gu et al. (2019). An alternative explanation is based on the 
work by Gilmer et al. (2019), who demonstrated a connection between conventional adver-
sarial robustness and robustness to corruption with Gaussian noise. When we move to latent 
spaces, the former becomes LARS/LARA, and the latter becomes the averaged version of 
LLNA, which, due to our noise model, is just LRA. In turn, for a generative model with good 
reconstruction quality, LRA is highly associated with accuracy. The finding of Gilmer et al. 
(2019) is exact for linear models and was shown to hold on CIFAR-10 and ImageNet nonlin-
ear classifiers. In our case, we can imagine that the classifier accepts latent representations of 
class i, and is actually a composition of Di and the original classifier N  . Unfortunately, the 
same properties were not confirmed to hold for classifiers of this kind, and hence this explana-
tion is speculative as well.

The majority of the proposed metrics relies on the choices of latent distributions as Gauss-
ians and the corresponding Gaussian noise model for this distribution (Eq. 1) that together (1) 
make the noise preserve the distributions of unperturbed vectors Li and (2) result in simple 
likelihood bounds as �2 norms. The choice of Gaussians is very conventional, and there is at 
least one different possible choice: consider the uniform distribution on the unit sphere and 
the noise model that adds a random Gaussian vector and then normalizes the resulting vector 
to unit norm. This solution would still result in �2 vector distances monotonically correspond-
ing to noise likelihood. Some other choices would not achieve both properties  (1) and  (2). 
For example, a Gamma-distributed latent vector would sum with a Gamma-distributed noise 
vector and still remain Gamma-distributed, but the likelihood of such vectors is more difficult. 
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Conversely, taking Laplace distributions would result in �1 norm likelihood bounds, but sum-
ming the unperturbed vector and the noise would not preserve the distribution family.

The following research directions may be explored in future work:

– Check experimentally whether the findings of Gilmer et  al. (2019) are also satisfied in 
latent spaces—this would further clarify the relationship between the accuracy and latent 
adversarial robustness.

– Perform robust manifold defense (Jalal et al., 2019) or other form of training with latent 
adversarial examples, and explore the impact of this training on the values of performance 
metrics.

– Perform a more thorough evaluation of ImageNet classifiers.
– The proposed latent space adversarial robustness metrics (LAGS, LARS, LAGA, LARA) 

can be treated as specifications for ANN classifiers, given a threshold on their values to be 
satisfied. Gradient-based approaches of checking them are imprecise, and verification of 
even simpler ANN properties was proven to be NP-hard (Katz et al., 2017). A precise, but 
more computationally intensive way of checking ANN specifications is formal verification 
(Anderson et al., 2019; Dutta et al., 2017; Huang et al., 2017; Katz et al., 2017, 2019; Ruan 
et al., 2018; Singh et al., 2019; Elboher et al., 2020).

– The approach could be modified to be applicable to evaluate safety and security of clas-
sifiers. First, a practical view on a “natural” adversary must account for the variability in 
the difficulty of real-world manipulation of high-level features of the classified objects 
(e.g., changing the tilt on one’s head is easier than changing facial features). Second, latent 
adversarial metrics should be shown to be related to the actual classification mistakes, at 
least according to human judgment.
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Appendix A: additional figures
MNIST, reconstructed (one image per class; each original image is followed by its

reconstruction):

MNIST, generated (two images per class):

CelebA (classes “female” and “male”), reconstructed:

CelebA (classes “female” and “male”), generated:

LSUN (classes “bedroom” and “church outdoor”), reconstructed:

LSUN (classes “bedroom” and “church outdoor”), generated:

Fig. 6  Examples of images reconstructed and generated by considered generative models. All CelebA and 
LSUN images in this figure and other images produced by PIONEER in the figures below have resolution 
128×128
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Reconstruction Decay Perturbations for NNR and NR

x x0 x1 ∆x x′
NR ∆xNR x′

R ∆xR

Fig. 7  Additional examples of approximately minimum latent CelebA image perturbations with 
� = 1 (d = 0.293) . Images are arranged as in Fig. 5
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Reconstruction Decay Perturbations for NNR and NR

x x0 x1 ∆x x′
NR ∆xNR x′

R ∆xR

Fig. 8  Additional examples of approximately minimum latent LSUN image perturbations with 
� = 1 (d = 0.293) . Images are arranged as in Fig. 5
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Original Decay Perturbations for NNR and NR

x0 x1 ∆x x′
NR ∆xNR x′

R ∆xR

Fig. 9  Examples of approximately minimum latent ImageNet image perturbations with � = 1 (d = 0.293) . 
Images are arranged as in Fig. 5 except that all the original images are generated and there is no reconstruc-
tion phase. The class labels used to generated the images are: “vestment”, “dog sled”, “jacamar”, “cannon”, 
“mailbox”, “Vizsla”, “projectile”, “canoe”, “wallaby”, “red fox.” To produce this figure, we used resnext as 
the non-robust (NR) classifier (see Sect. 5.4)
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Fig. 10  Distribution plots (with Gaussian kernel density estimation) with statistics on approximately mini-
mum latent image perturbations with � = 1 (d = 0.293) found by PGD (600 images for each row of plots). 
l is the decayed latent vector, Δl is the found perturbation, and Δx is the change of the original image as a 
vector of pixel intensities. Colors correspond to classifiers as follows: N

UT
 is blue, N

NR
 is orange, N

CA
 is 

green, N
R
 is red, N

B
 is purple
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B Appendix: proofs of convergence properties of the noise‑adding 
distribution

Below, we prove that the points 2 and 3 of the properties of a noise-adding distribution 
(Sect. 3.5) are satisfied for N�,l defined according to (1) and Li = N(0, I).

Theorem B.1 If Li = N(0, I) , N�,l is defined according to (1) and � → 0 , then random vec-
tors �� ∼ N�,l converge in distribution to � ≡ l.

Proof We will prove convergence in distibution according to the Cramér-Wold theorem. 
We need to show that for all vectors t, t⊤𝜆𝜖 converges in distribution to t⊤𝜆 . That is, 
lim
𝜖→0

ℙ(t⊤𝜆𝜖 ≤ u) = F(u) for all u ∈ ℝ where F(u) = ℙ(t⊤𝜆 ≤ u) is continuous. This is trivial 
for t = 0 . Otherwise, we have:

If u > t⊤l , then the nominator inside erf is positive for sufficiently small � , and erf will 
approach one, making the limit of the entire expression zero. The case of u < t⊤l is similar. 
Finally, u = t⊤l is a point of discontinuity of F(u).   ◻

Theorem B.2 If Li = N(0, I) , N�,l is defined according to  (1) and � → +∞ , then random 
vectors �� ∼ N�,l converge in distribution to � ∼ Li.

Proof We follow the outline of the previous proof. Now, for all vectors t and scalars u, we 
need to show that lim

𝜖→+∞
ℙ(t⊤𝜆𝜖 ≤ u) = F(u) , where F(u) = ℙ(t⊤𝜆 ≤ u) . This is trivial for 

t = 0 . Otherwise, t⊤𝜆 ∼ N
�
0, ‖t‖2

2

�
 and we have:

𝜆𝜖 ∼ N

�
l√

1 + 𝜖2
,

𝜖2

1 + 𝜖2
I

�
,

t⊤𝜆𝜖 ∼ N

�
t⊤l√
1 + 𝜖2

,
‖t‖2

2
𝜖2

1 + 𝜖2

�
,

���ℙ(t
⊤𝜆𝜖 ≤ u) − F(u)

��� =
��������

1

2
+

1

2
erf

⎛⎜⎜⎜⎝

u −
t⊤l√
1+𝜖2
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1+𝜖2

√
2

⎞⎟⎟⎟⎠
−
�
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�
��������

=

������
1

2
+

1

2
erf

�√
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2
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−
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�������
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��������

1
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1
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�
u
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√
2

⎞
⎟⎟⎟⎠
−
�
u − t⊤l ≥ 0

�
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.



4009Machine Learning (2023) 112:3977–4012 

1 3

The last expression approaches zero when � → +∞ .   ◻

C Appendix: classifier training procedure

All classifiers listed in Sect. 5.1 were trained as follows. We considered three slightly 
different CNN architures. Two of them are based on the script https:// github. com/ keras- 
team/ keras/ blob/ f295e 8ee39 d4ba8 41ac2 81a93 37d69 c7bc5 e0eb6/ examp les/ cifar 10_ cnn. 
py and differ in their depth. Essentially, these are simple CNN architectures composed 
of convolutional blocks, ReLU nonlinearities, batch normalization, max-pooling, drop-
out, and a fully connected layer with softmax on top. One more architecture used the 
same operations, but was based on residual blocks. Training was done with RMSprop. 
In each epoch, we took 100 thousand random images from the training set. The learning 
rate was set to 0.0004 and multiplied by 0.75 after each epoch. Training continued for 
up to 8 epochs, but was stopped prematurely if validation accuracy had not increased 
during the previous epoch. The following was specific to different classifier types: 

1. NUT : No data augmentation was used. Training was stopped after one epoch.
2. NNR : No data augmentation was used. Training was done for the remaining 7 epochs 

starting from NUT.
3. NCA : Training images were augmented with conventional approaches: small affine trans-

formations, color distortions and erasures of small image parts.
4. NR : Training images were augmented with Gaussian noise of magnitude � = 0.8 (pixel 

intensities belong to [−1, 1] ). Note that this is different from the work (Gilmer et al. 
2019), where for each image first � was selected uniformly at random and then noise 
was added. Training was started from NNR.

5. NB : Training images were first augmented conventionally (as in the case of NCA ), and 
then with Gaussian noise (as in the case of NR ). Training was started from NCA.
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https://github.com/keras-team/keras/blob/f295e8ee39d4ba841ac281a9337d69c7bc5e0eb6/examples/cifar10_cnn.py
https://github.com/keras-team/keras/blob/f295e8ee39d4ba841ac281a9337d69c7bc5e0eb6/examples/cifar10_cnn.py
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