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Abstract
Data collected over time often exhibit changes in distribution, or concept drift, caused by 
changes in factors relevant to the classification task, e.g. weather conditions. Incorporating 
all relevant factors into the model may be able to capture these changes, however, this is 
usually not practical. Data stream based methods, which instead explicitly detect concept 
drift, have been shown to retain performance under unknown changing conditions. These 
methods adapt to concept drift by training a model to classify each distinct data distri-
bution. However, we hypothesize that existing methods do not robustly handle real-world 
tasks, leading to adaptation errors where context is misidentified. Adaptation errors may 
cause a system to use a model which does not fit the current data, reducing performance. 
We propose a novel repair algorithm to identify and correct errors in concept drift adapta-
tion. Evaluation on synthetic data shows that our proposed AiRStream system has higher 
performance than baseline methods, while is also better at capturing the dynamics of the 
stream. Evaluation on an air quality inference task shows AiRStream provides increased 
real-world performance compared to eight baseline methods. A case study shows that AiR-
Stream is able to build a robust model of environmental conditions over this task, allowing 
the adaptions made to concept drift to be analysed and related to changes in weather. We 
discovered a strong predictive link between the adaptions made by AiRStream and changes 
in meteorological conditions.

Keywords Concept drift · Data stream classification · Recurring concepts

1 Introduction

Over the past few years there has been a shift towards monitoring solutions making use of 
multiple low-cost IOT based sensors, for example, in maintaining air quality levels. How-
ever, classification using these streams of data is not trivial. Often, there are a number of 
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unknown factors which can influence the classification relationship between features and 
label. When these unknown features change over the course of a stream, it may change the 
distribution of data that the classifier must deal with. This problem is commonly known 
as concept drift (Gama et al., 2014). Classifiers without the ability to detect and adapt to 
concept drift have difficulty retaining performance as conditions change over long periods 
of time.

One domain which emphasizes these issues is air quality inference. An example of the 
inference problem we consider here is shown in Fig. 1. The current level of PM2.5 (particles 
smaller than 2.5 μ m in diameter) at a target location T must be predicted using the read-
ings of neighboring sensors at times t and t − 1 , and the level of T at t − 1 if it is available. 
Inference in air quality data is difficult due to spatial non-linearities and abrupt tempo-
ral changes. Past research (Zheng et  al., 2013, 2015) has identified strong dependencies 
between these spatio-temporal relationships and environmental and contextual features, 
such as, meteorological conditions (wind), urban activity (traffic and heater use) and points 
of interest (locations of factories). For example, changing wind direction might change the 
direction in which pollution flows between sensors (illustrated by Fig. 2), or falling tem-
peratures might encourage the use of wood burners, thus, increasing the proportion of pol-
lution from residential areas.

These changes influence which sensor readings are most informative when making 
inferences. Classifiers which cannot adapt may not perform well as these changes occur. 
Figure 3 shows that the performance of two non-adaptive classifiers, a linear inverse dis-
tance weighted interpolator (IDW) (Wong et al., 2004) and an Ordinary Kriging (OK) clas-
sifier (Wackernagel 2013), is not stable as wind direction changes across a 12 week period 
of time.

A common solution to concept drift is to incorporate relevant environmental features 
into the model to better capture change. For example, Cheng et al. (2018) used weather 
type, temperature, pressure, humidity, wind, points of interest and traffic features in an 
attention based neural network to determine which neighboring sensors will be most 

Fig. 1  An example of inference. 
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influential at each prediction. This solution is not always practical due to the large 
amount of data and data sources it requires. A common challenge is a lack of good qual-
ity information for the factors relevant to concept drift. The two locations we evaluate 
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in this research have no reliable meteorological monitoring, making inference systems 
which require contextual features unusable or suffer from poor performance.

The air quality inference problem exemplifies the need for a robust classification sys-
tem capable of adapting to concept drift without relying on additional data. We hypoth-
esize that the adaptions made by such a classifier have the potential to allow a model 
of changing conditions to be built. This would be a valuable scientific tool in inferring 
the hidden factors contributing to concept drift. Recent research into data stream min-
ing has proposed methods which are able to detect and adapt to concept drift, even in 
unknown factors, such as Adaptive Random Forest (ARF) (Gomes et al., 2017). How-
ever, the concept drift adaption process in these methods is not robust in noisy real-
world conditions. In our experiments ARF produces many adaptions over short periods 
of time. While this may be acceptable from an accuracy standpoint, we show it does not 
produce a useful model of changing conditions.

We propose Analysis Repair Stream, or AiRStream, to solve this problem, a general 
data stream framework capable of detecting and adapting to change even in unobserved 
features. A novel repair algorithm allows the construction of a robust model of concept 
drift even in noisy real-world conditions. We show, using real data taken at two rural 
towns, that our system is capable of identifying changes related to wind direction and 
speed without those variables being available as input.

We consider observations as a stream, allowing the application of data stream min-
ing techniques. Rather than adapting to environmental features, we adapt to changes in 
the distribution of streaming observations using concept drift detection methods. React-
ing to these changes enables us to consider the stream as a sequence of stationary seg-
ments, allowing the application of powerful stationary classifiers. As each new segment 
is encountered, we build a new classifier for it or reuse an old classifier. AiRStream 
builds on top of this framework by introducing a repair algorithm to increase the robust-
ness of this adaption process, allowing us to track transitions between classifiers to build 
a model of changing conditions. Observation noise, for example from an unreliable sen-
sor, has the potential to disrupt the transition process by masking a change in conditions 
or hiding the correct classifier for a segment. Our repair algorithm allows AiRStream to 
detect and repair these potential errors, allowing the reuse of classifiers in the system 
to be a strong predictor of recurring environmental conditions. Crucially, we apply this 
model of changing conditions to infer meteorological information directly from the clas-
sification process.

We deployed our system on data measuring the air quality of two rural towns, Rangiora 
and Arrowtown. AiRStream obtained a higher predictive performance in inferring PM2.5 
levels compared to eight baseline methods. The changes captured by our system are shown 
to increase the ability to infer current environmental conditions above only air quality fea-
tures. We present the following contributions in this paper:

• We propose a method of detecting and repairing concept drift adaption errors. By peri-
odically sampling the accuracy of inactive classifiers, we identify cases where change 
was missed or misclassified. Repairing these errors increases performance and pro-
duces a more robust model of changing conditions.

• We propose a data stream based system, AiRStream, capable of adapting to changes in 
unknown factors. We evaluate on a real-world data set where state-of-the-art solutions 
cannot be used due to lack of features.

• We analyse the model of environmental conditions estimated by AiRStream. We match 
the model selected by AiRStream to ground truth weather conditions to investigate the 
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ability of AiRStream to infer current environmental conditions. We verify that changes 
in model are linked to true changes in weather conditions.

In the next section we present an overview of the inference problem and discuss the data 
sets we investigate. In Sect. 3 we outline AiRStream and in Sect. 4 we discuss a component 
to repair decision making errors due to noise. In Sect. 5 we discuss inferring environmen-
tal conditions using AiRStream. We evaluate AiRStream’s ability to infer both PM2.5 and 
environmental conditions on synthetic and real-world tasks in Sect. 6. Sect. 6.7 presents 
a case study analysing the relationship between adaptions made by AiRStream and mete-
orological conditions. In Sect. 7 we discuss related work in both air quality inference and 
adaptive data stream methods. Section 9 concludes with a discussion on future work.

2  Problem overview

In this section we introduce the air quality inference task investigated in this work and dis-
cuss the challenges it poses. We introduce adaptive data stream mining methods to handle 
these challenges.

2.1  Air quality inference datasets

To combat high rates of wood smoke pollution in rural areas, two government run studies 
placed ODIN wood smoke pollution sensors around rural towns. The first study, Rangiora, 
placed 13 sensors over winter, from 20 June 2017 to 25 August 2017. The second study, 
Arrowtown, placed 51 sensors between 16 July 2019 and 18 September 2019. Each sensor 
produced 3 readings, PM1 , PM2.5 and PM10 , in minute intervals. We select PM2.5 as the 
target for this work. Huggard et al. (2018) identifies PM2.5 as having the most important 
impact on human health, recording the level of particulates small enough to harm human 
lungs, while also being the most accurately measured of the ODIN particulate matter 
readings.

Some sensors were only activated partway through the period, and many suffered break-
ages or missed readings. In order to accurately assess performance against ground truth, we 
select a subset of each data set with all sensors active. For Rangiora we select a segment of 
9 sensors across 53,810 observations. For Arrowtown we select 10 sensors across 68,000 
observations.

Each data point in the raw data consists of a timestamp, sensor serial number and 
numeric readings for each of the 3 measures. To preprocess the data set, we first align 
the timing of readings by rounding to the nearest minute. One sensor is designated a tar-
get, and its readings are discretized into 6 levels according to international PM2.5 qual-
ity recommendations (United States Environmental Protection Agency, 2012). The PM2.5 
breakpoints of these levels are shown in Table 1. The locations of sensors in Rangiora and 
Arrowtown and the distribution of observed PM2.5 levels over the evaluation period are 
shown in Fig. 4. We also show the locations and distribution of a similar benchmark data 
set from Beijing (Zhang et al., 2017). One particular challenge highlighted in Fig. 4 is class 
imbalance. We observe many instances of air quality level 0 but few of level 5. 

The classification task is to predict the target Air Quality Index (AQI) level based on 
the current and previous readings of all non-target sensors and the last stable reading 
of the target sensor. Formally, if the sequence of readings for the sensor with index i is 
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The goal of this classification task is to improve the performance of air quality measure-

ment by inferring missing or unreliable readings. A secondary goal is to analyse the rela-
tionship between concept drift and environmental conditions. In many cases, determining 
which environmental factors cause concept drift in a dataset is a valuable outcome.

An important distinction between this task and past works is the lack of rich multi-
source environmental features. These often include features such as wind speed, tempera-
ture or pollution sources like traffic density. Air pollution has complex non-linear spatial 
and temporal relationships which are dependent on these features. The classification task 
here is to not only work without these features, but to provide a signal towards what these 
features may be. In Sect. 7 we discuss Neural Network based methods which have achieved 
strong performance in similar tasks where large training sets and monitored environmental 
features are available, however these methods do not detect and adapt to previously unseen 
changes in factors not incorporated into the model, thus are unsuitable for this particular 

Table 1  PM
2.5

 Levels (based on 
24 h averages)

Level Category Low High

0 Good 0.0 12.0
1 Moderate 12.1 35.4
2 Unhealthy for sensitive 

groups
35.5 55.4

3 Unhealth 55.5 150.4
4 Very Unhealth 150.5 250.4
5 Hazardous 250.5 > 250.5

(a) (b) (c)

Fig. 4  Sensor locations and distribution of PM
2.5

 levels
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task. Additionally, these methods do not allow us to analyse the sequence of adaptions 
made in response to changing conditions. The data stream approach proposed in the next 
section allows us to identify, model and adapt to changes in conditions without environ-
mental features.

2.2  Adaptive classification

We consider supervised classification, in which each observation takes the form ⟨X, y⟩ 
where X is a set of features and y is a class label. The relationship between X and y may 
depend on a set of hidden environmental conditions, H, which are not observed by the clas-
sification system. Given two different sets of hidden conditions, H1 ≠ H2 , the joint prob-
ability p(X, y|H1) when H1 is present may be different to p(X, y|H2) under H2 . It is com-
mon for H to change over time, causing p(X, y) to also change over time. This is known 
as concept drift (Gama et  al., 2014). For example, a change in wind direction (H) may 
shift which sensors (X) are upwind of the target location (y), changing spatial relationships 
important to the classification task. If concept drift is not dealt with correctly it may lead to 
poor classifier performance, for example, a classifier trained under one concept, p(X, y|H1) , 
may achieve a lower performance under a different concept, p(X, y|H2) . In Sect. 7 we dis-
cuss methods of adapting air quality inference to concept drift. A common approach is to 
attempt to observe more environmental factors, reducing the influence of H by shifting 
features into X. This approach can be costly and is not always practical.

An alternative approach is to consider the data set as a sequence of observations, known 
as a data stream (Gama et al., 2014). Rather than attempt to observe H directly, data stream 
methods (Gonçalves Jr & De Barros, 2013; Borchani et al., 2015) first identify changes in 
H, splitting a stream into segments of observations each associated with a stationary H.

Detecting a change in H is known as concept drift detection. Consider two time stamps 
T1 and T2 , where the hidden conditions are H1 and H2 respectively, producing distinct joint 
distributions p(X, y|H1) and p(X, y|H2) . The key idea in concept drift detection is to detect 
the change in distribution between two timestamps. A common method is to detect changes 
in the error rate of a classifier. In Sect. 7 we discuss other previously proposed methods of 
detecting changes in distribution. Typically, a model learns to approximate the distribution 
p(X, y|H1) . A significant increase in the error rate of a model indicates observations are 
no longer drawn from p(X, y|H1) , i.e., concept drift has occurred. Concept drift detection 
separates a stream into a sequence of stationary periods each associated with a hidden con-
text, H, and a concept, p(X, y). In order to maintain performance over the entire stream, it 
is common for adaptive systems to build a separate classifier for each of these stationary 
periods.

It is common for hidden contexts to appear in multiple stationary segments across a 
stream, i.e., reoccur, for example, seasonal contexts or those related to the business cycle. 
Rebuilding a classifier to represent a recurring context is inefficient. We can instead trans-
fer learning from the last concept occurrence by reusing the classifier. The adaptive learn-
ing problem we consider in this paper could be considered to be a subset of lifelong learn-
ing (Parisi et al., 2019). This is discussed further in Sect. 7.

A common method of transferring learning stores previously used classifiers in a reposi-
tory. Given a system entering the nth stationary period with hidden context Hn , if we have 
stored a classifier representation of each concept seen so far M = [m0,m1,… ,mn−1] repre-
senting hidden contexts H = [H0,H1,… ,Hn−1] we can search M for classifiers which rep-
resent the emerging concept. If we find a stored classifier mi which represents the emerging 
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distribution well, we can identify Hn as a recurrence of Hi . We can reuse mi on the emerg-
ing segment with a lower error rate than building a new classifier. Segments featuring simi-
lar underlying conditions can be matched, building a map of how H changes across the 
stream. Section 7 discusses previously proposed methods for recurring concept detection. 
A typical approach is to test the performance of each stored classifier on a sample of obser-
vations taken from the emerging concept. A performance above some threshold is taken to 
be a recurrence.

A crucial characteristic provided by this approach, and useful for many real-world 
problems, is the ability to map changes and recurrences in H without requiring H to be 
observed. For example, if we identify that mi is reused at three distinct points in a stream, 
it is likely that the context at these points was similar to Hi . It has been shown that data 
stream context can be mined for further performance and explainability benefits beyond 
the classification task (Gama et al., 2004; Borchani et al., 2015). In Sect. 6.7 we show that 
model reuse in AiRStream is related to the hidden context features wind speed and direc-
tion in the Rangiora dataset. In Sect. 7 we discuss previous works which make use of con-
cept drift detection and model reuse. The next section describes how AiRStream applies 
these methods to noisy real-world streams.

Fig. 5  AiRStream System Overview. Dotted lines indicate a basic data stream framework flow, solid lines 
indicate AiRStreams flow, including our additional components in blue
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3  Inference system

We first give an overview of AiRStream, shown in Fig. 5 before describing in detail our 
proposed components.

We will briefly introduce two important components of data stream classification, incre-
mental learners and drift detectors. An incrementally learning classifier trains on obser-
vations sequentially. Unlike a batch trained model, an incremental learner can make pre-
dictions anytime. This allows rapid adaption to change by creating a new classifier. The 
incremental learner we use here is the Hoeffding Tree (Gama et al., 2003), an online deci-
sion tree method used in state of the art methods (Gomes et  al., 2017). The Hoeffding 
Tree was chosen as it provides strong performance guarantees (Losing et al., 2018), and 
provides a representation of a concept that can only grow. This provides a more robust rep-
resentation of a concept, allowing tracking over the course of the stream.

We detect change in the distribution of data using an error rate drift detector. Concept 
drift is detected as a statistically significant change in the error rate of a stationary classifier 
as observations are processed. We use the ADWIN drift detector (Bifet & Gavalda, 2007), 
a top performing dynamic windowing based technique. We empirically justify this choice 
in Sect. 6.

These two components are the basis of the data stream framework shown in Figs.  6 
and 7. A Hoeffding tree is initialized as the active model. The active model is incrementally 
trained on incoming observations with its error rate fed into the drift detector. When a drift 
is signalled by the detector, the active model is deactivated and added to a set of inactive 
models. A model selection process is initiated to select a new classifier best suited to the 
new stationary stream segment. The model selection process compares the performance 
of all inactive models, as well as a newly built model, over a recent window. This process 
attempts to pick the model most suitable for the emerging segment. The best performing 
model is selected as the new active model. This process repeats for each new segment in 
the stream. Figure 6 shows an example of a stream with three segments. A drift is signalled 
at time tn1 , and the active model transitions to a new model, Model 2. Model 2 is used to 
classify observations until the next concept drift is detected at tn2 . The model selection pro-
cess matches the original Model 1 as the most suitable model.

Fig. 6  Basic data stream framework example timeline showing a transition to a new model and a transition 
to a recurring model



3498 Machine Learning (2022) 111:3489–3523

1 3

We propose additions to this basic framework, shown in blue in Fig. 5. Intuitively, if we 
chose to reuse the same model on a different segment of the stream this indicates that the 
segments displayed a similar relationship between features and label. We hypothesize that a 
similar relationship between features and label indicates similar environmental conditions. 
A model can then be considered as a representation of some set of environmental condi-
tions. By building and maintaining a history of active models, we can infer environmental 
changes based on the transitions made during this history. We define the Model History, 
MH , of our system as the sequence of active models used to classify the observations in a 
data set, MH = (A1,A2,… ,At) , where At is an identifier of the active model used to classify 
the observation at time t.

We treat the feature values taken as input by AiRStream as potential sources of noise. 
To keep models as clean representations of environmental conditions given the noisy read-
ings generated by potentially unreliable data, we implement a method to repair sub-optimal 
transitions. We detail this component in the following section.

4  Drift repair

Concept drift adaption can be thought of as dividing a stream into stationary segments 
and assigning a model to classify observations in each segment. We can consider a stream 
as a sequence of stationary segments S = {S1, S2,… , S∞} . Each segment St at time t is 
associated with a hidden context Ht from the sequence H = {H1,H2,… ,H∞} and data dis-
tribution p(X, y|Ht) . Given a set of models in a repository, the goal of a recurrent con-
cept system is to identify for each segment St the optimal model Mot which best represents 
p(X, y|Ht) . In a robust system, if we observe that a model is active at time t, we can assume 
it is the optimal model, Mot . We can then estimate that the current hidden context is Ht . 
The estimated context at each time step can be analysed to learn about changes and recur-
rences in environmental conditions. This analysis is discussed further in Sect. 5.

Fig. 7  Proposed system example timeline, including the repair of a false positive error and a false negative 
error
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Given the current active model of a system as Mat , we define cases where a suboptimal 
model is active, Mat ≠ Mot , as adaptation errors. Adaptation errors have three main nega-
tive effects.

• Current classification performance is reduced. Error rate is increased due to the use of a 
classifier misaligned with the true distribution of data.

• Future classification performance is reduced. If Mat is the optimal model for a future 
segment Sf  , its performance on Sf  will degrade as it is trained on observations drawn 
from St which display a different relationship.

• The relationship between model use and data stream context is reduced. If we do not 
observe Mot and instead observe Mat , the context estimated by the system is less associ-
ated with the true context H. This limits our ability to analyse changes in environmental 
conditions.

Adaptation errors may be caused by many factors. In real-world systems, for example, 
noise can often lead to errors in concept drift detection or model selection. Feature imbal-
ance, as identified in Fig. 4, can also cause adaptation errors. For example, changes in the 
distribution of a minority class may shift Mot without being easily detected by concept 
drift. In this work, we propose a method to identify and repair adaptation errors. We iden-
tify two main cases of adaptation errors causing Mat ≠ Mot . 

1. False Positive errors occur when the transition from St−1 to St is correctly detected, but 
the active model selected is not Mot . This is shown in Fig. 7 at point (II). As model 
selection is based on performance over a window of observations, noise in this window 
can make it difficult to determine the most suitable model to use.

2. False Negative errors occur when the transition from St−1 to St is not correctly identified, 
and Mat = Ma(t−1) rather than Mot . This can occur when fluctuations in error rate due 
to noise mask an error rate change due to concept drift. This is shown in Fig. 7 at point 
(IV).

We propose a drift repair mechanism to mitigate these cases. We make the observation that 
in all cases of adaptation errors, there is some optimal model Mot which better represents 
the distribution of data seen in incoming observations. Testing Mot on a window of current 
observations would show higher classification performance than Mat . This forms the basis 
of our drift repair component. We identify false positive and false negative errors by peri-
odically testing inactive models against the active model. If we identify that a tested model 
has a higher performance than Mat , we can conclude that Mat ≠ Mot and identify the new 
model as Mot.

When a new Mot is identified, we initiate a backtrack repair. The negative effect on clas-
sification performance cannot be reversed for classifications already made, however we can 
limit the other impacts of adaptation error. In order to minimize future classification error 
we set the active model to Mot for the remainder of St . We can also repair the negative 
effect on training and model history. Future classification performance is maintained by 
reverting Mat to a saved backup, or restore point, to undo training done on observations 
drawn from St . The relationship between model use and data stream context is maintained 
by replacing instances of Mat in our model history with Mot.
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The proposed algorithm for identifying and repairing cases where Mat ≠ Mot is shown 
in Algorithm 1. After each transition and periodically every Rp observations an error detec-
tion period is started, testing the following Rl observations for adaptation error. We place a 
restore point at the start of each error detection period, creating ab as a backup of the active 
model Mat . We then perform a model selection step to select the K best performing inactive 
models on a recent window as alternative models to test. Over the course of the error detec-
tion period we calculate the running � statistic �a for the current active model and each of 
the alternatives k ∈ K as �k.

A confidence threshold is calculated to determine if any alternative models are a better 
fit for the current stream. This confidence threshold is made up of two parts, a statisti-
cal confidence test which captures a gradual change in performance and a change detec-
tion scheme which captures a quick change in performance. Gradual change confidence 
is determined by a one-sided t-test, testing the null hypothesis that �k is less than or equal 
to �a . If the average p-value over the testing period falls below a threshold,  i.e., 0.05, 
we determine k = Mot ≠ a and a backtrack repair is initiated. To capture quick changes 
in model performance, we run the ADWIN change detection method on the performance 
difference �k − �a . A detection of change in this stream while �k − �a is positive deter-
mines k = Mot ≠ a and a backtrack repair is initiated. This quick change could come from a 
change in distribution missed by concept drift detection.

When a backtrack repair is initiated, we deactivate the active model and revert it to its 
state at the latest restore point. If the latest restore point was at a transition we classify 
the error as a False Positive error, i.e., the transition was to the wrong model. If the latest 
restore point was not at a transition, we classify the error as a False Negative error, i.e., a 
drift occurred and was not detected, leaving the system using a sub-optimal model. In both 
cases model k is activated and the system continues in its new state.
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4.1  Time and memory complexity

Incremental learners and drift detectors such as Hoeffding Tree and ADWIN used in AiR-
Stream, have a constant time complexity per observation. The time complexity of the base 
data stream framework without model selection or repair is then O(1) per observation.

Given a repository of size |M|, the model selection process runs each model in the repos-
itory on a window of size |w| to calculate a performance measure. The time complexity of 
the model selection step is O(|M||w|). Given the per observation probability of concept drift 
as d, the time complexity of the base framework including model selection is O(d|M||w|) 
per observation. Our proposed repair method additionally runs model selection periodi-
cally every Rp observations. The probability of an additional model selection event is 1

Rp

 per 

observation. This gives a total model selection time complexity of O
((

d +
1

Rp

)
(|M||w|)

)
 

per observation.
During the error detection period, K alternative models are run alongside the active 

model. This occurs for Rl observations out of every Rp observations. This means we run 
(K + 1) models for a proportion Rl

Rp

 of the stream, and only the active model for the remain-

ing 1 − Rl

Rp

 proportion. This gives a time complexity of O
(
(K + 1)

(
Rl

Rp

)
+
(
1 −

Rl

Rp

))
 per 

observation. AiRStream’s overall running time per observation is:

We compare this to an ensemble classifier, which runs K + 1 models for all observations, 
O((K + 1)) per observation. Ensemble systems which adapt to recurring concepts using 
model selection have a time complexity of O((K + 1) + d|M||w|) per observation. Our 
method is able to run only one model for a 1 − Rl

Rp

 proportion of the stream, offering a sig-
nificant time complexity benefit over the ensemble case.

In terms of memory complexity, if � is the size of a model we require O(�(|M| + 1)) 
space to store the repository and the restore point. This is equivalent to storing one addi-
tional model in either an ensemble or any system which stores a repository of past models. 
In Sect. 6, we empirically evaluate both runtime and memory use.

5  Condition inference

When AiRStream detects a concept drift, the active model is changed to one that matches 
recent observations. We hypothesize that a major driver of these concept drifts is change 
in environmental conditions. This hypothesis indicates that the transitions between active 
models in AiRStream are linked to changes in environmental conditions, and further, that 
when a model is reused similar environmental conditions are present. Under this hypoth-
esis, matching weather conditions to AiRStream active models may allow environmental 
conditions to be inferred in the future. For example, consider a scenario where meteorolog-
ical data was temporarily recorded in a location where AiRStream was active. If the post-
hoc analysis revealed a strong relationship between a given set of weather conditions and 
the use of a given model, we may infer the similar weather conditions are present the next 
time the active model is used. We consider two methods for relating a set of environmental 

O

[(
(K + 1)

(
Rl

Rp

)
+

(
1 −

Rl

Rp

))
+

(
d +

1

Rp

)
(|M||w|)

]



3502 Machine Learning (2022) 111:3489–3523

1 3

conditions to the use of an active model, a recall and precision based method and a classi-
fier based method.

We denote the Condition History, Ce , as the sequence of discretized observations 
of an individual environmental source e over the time period of a particular data set, 
Ce = (E1,E2,… ,Et) , where Et is the level of e at time t.

We evaluate the relationship between model use and environmental conditions by 
matching patterns in MH and Ce . We consider the precision, P(a,  l), and recall, R(a,  l), 
obtained by matching each environment level l to the use of a particular active model a.

In this case, precision measures the strength of the relationship ‘model a is active therefore 
e has the value l’, while recall measures the proportion of observations where e = l where 
this relationship holds. The F1c score combining recall and precision measures the over-
all strength of the relationship. We calculate an overall score of relationship, C-F1, as the 
average F1c score obtained by matching each level l to the model a maximizing F1c(a, l):

We also consider the ability to train a secondary machine learning model to predict the 
level of e given the current active model. We train a classifier using MH as the set of 
features and Ce as the set of labels. The predictive ability of this classifier indicates the 
strength of the relationship between Mh and Ce.

We investigate the strength of the relationship between the active model used by AiR-
Stream and environmental conditions in the next section, and find evidence that both wind 
speed and direction can be inferred through these methods in the Rangiora data set.

6  Evaluations

In this work we present AiRStream, a classification framework able to robustly adapt to 
concept drift using a novel repair component. We are interested in two performance meas-
ures, classification performance and the relationship created between model use and data 
stream context. In this section we answer three research questions: (1) How does the per-
formance of AiRStream and its repair component compare to state-of-the-art methods? (2) 
Does this performance translate to a real-world task, namely air quality inference? and (3), 
Can the hidden underlying conditions of a data stream be inferred from the model use of a 
recurring concept system?

We first compare the performance of AiRStream and its repair component to eight base-
line methods using synthetic datasets with known dynamic conditions. We then test the 
accuracy of the PM2.5 levels inferred by each system on three real-world air quality tasks. 
We finally present a case study investigating the link between changes detected by our 
system and changes in environmental conditions in real-world data streams. All code and 
additional significance analysis can be found at https:// bit. ly/ 2YnFe 1p.

R(a, l) =
|{t|At = a,Et = l}|

|{t|Et = l}| P(a, l) =
|{{t|At = a,Et = l}|

|{t|At = a}|

F1c(a, l) =2
R(a, l)P(a, l)

R(a, l) + P(a, l)
.

C-F1 = �a

[
max

l
F1c(a, l)

]

https://bit.ly/2YnFe1p
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6.1  Dataset setup

We evaluate the performance of AiRStream using both synthetic and real-world datasets. 
Synthetic datasets allow for the changes in conditions creating concept drift to be isolated 
and recorded, while real-world datasets test performance in practical tasks. We use two 
synthetic data sets created using the Random Tree (TREE) and Radial Basis Function 
(RBF) generators available in MOA (Bifet et  al., 2010). The difficulty of each generator 
was tuned such that a model takes approximately 4000 observations to train. This describes 
concepts for which reuse is useful, i.e., not trivial to learn. For the TREE generator we set 
the maximum tree depth to 2, minimum tree depth to 1, number of classes to 2 and use 3 
categorical and 4 numeric features. For the RBF generator we set the number of centroids 
to 8, number of classes to 4 and number of features to 7.

In order to test real-world performance, we apply AiRStream to infer PM2.5 levels in two 
rural towns given the presence of missing labels, as described in Sect. 2.1. We also evaluate 
on a similar data set of readings taken in Beijing (Zhang et al., 2017). There are three main 
differences in this data set compared to the other data sets. Firstly, it is an urban environ-
ment compared to small rural towns. Secondly, the sensors are spread much further apart 
(across the Beijing metro area), and lastly, all readings are recorded every hour compared 
to every minute. For all data sets, at each observation a classifier has access to the current 
and previous numeric readings of surrounding sensors, as well as the last seen PM2.5 level 
of a target sensor. The task is to infer the current PM2.5 level of the target sensor.

To allow evaluation against ground truth, we select a portion of the data set where all 
labels are available and simulate missing target sensor readings. We select b observations, 
drawn uniformly from the selected portion, as ‘broken’ and mask the readings from the 
target sensor in these observations. Most sensor breakages in the data set last for longer 
than one minute, thus appear as blocks of missing readings rather than single observations. 
To recreate this effect we select the bperiod readings following the initial b breakages to 
also be masked. When a label is masked, it is not available in the feature set of the next 
observation, and cannot be trained on. We set b as 3% of the size of each data set with 
bperiod = 60 . All experiments are repeated 10 times on all possible target sensors, with the 
average results being reported.

6.2  Baseline comparisons

We compare our system to a range of eight baseline methods using different approaches to 
classification. 

1. Chance and No-Change Classifiers (NC) These simple methods predict a random label 
drawn from the distribution of a given classifier, and the most recent non-masked label, 
respectively. The No-Change classifier has been shown to be very effective in many 
data stream classification tasks affected by auto-correlation (Žliobaité et al., 2015). We 
compare to the chance classifier by using a � statistic measure (Žliobaité et al., 2015) in 
our evaluation.

2. Inverse Distance Weighted interpolation (IDW) and Gaussian interpolation (NORM) 
These methods infer the current target PM2.5 level by interpolating current readings from 
surrounding sensors. IDW uses the average reading weighted by inverse distance to the 
target, while Gaussian interpolation assumes pollution reported by each sensor falls off 
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as modeled by the Gaussian distribution X ∼ N(0, �2) . As in U-Air (Zheng et al., 2013) 
we set � to be the average distance between any two sensors. We use the RBF function 
in SciPy to implement NORM.

3. Ordinary Kriging (OK) and Random Forest (RF) To test against baselines taking into 
account spatial and temporal features, we implement ordinary Kriging with a linear 
kernel and a non-streaming random forest method (RF). We treat RF as a baseline batch 
non-adaptive system. In this case, RF is trained on a large training set then receives no 
further training. This simulates a scenario where a batch method is deployed and cannot 
be taken down to be retrained over the deployment period. This baseline measures the 
value of online training for adaptation. We note that the online methods observe more 
total training data so performance cannot be directly compared. Ordinary Kriging is an 
advanced spatial interpolation method incorporating feature covariation, while random 
forest is a tree based method similar to the Hoeffding trees in our system. We use the 
GaussianProcessClassifier in SKLearn with default parameters to implement OK. We 
use the Scikit-Multiflow implementation with default parameters for RF.

4. Adaptive Random Forest (ARF) A state of the art data stream method, Adaptive Random 
Forest (ARF) (Gomes et al., 2017). ARF uses an ensemble of Hoeffding Tree classifiers 
and can detect and adapt to concept drift, however it does not consider reusing classifiers 
on multiple stream segments. We use the Scikit-Multiflow implementation with default 
parameters for ARF.

5. Dynamic Selection Based Drift Handler (DYNSE) DYNSE (De Almeida et al., 2016) 
is a streaming ensemble system which uses dynamic classification to select ensemble 
members from a repository. Dynamic classification allows DYNSE to adapt to new 
concepts as well as recurring concepts. We use a DYNSE classifier implemented in 
MOA. We use default parameters recommended by the authors, including the KNORA-E 
classification engine (Cruz et al., 2018).

To evaluate our proposed repair component, we compare two versions of our AiRStream 
system. A base version not containing the repair component and a full version are denoted 
as ASb and ASr respectively, in the following results.

6.3  AiRStream parameters

The recurrent concept base framework requires selection of two components, an incremen-
tal classifier and a drift detector. It also introduces a window size parameter for controlling 
the number of recent observations used for model selection, and a maximum repository 
size |M|. AiRStream introduces 3 additional parameters: repair sensitivity—the threshold 
for triggering a repair, repair period—the number of observations between each periodic 
drift repair test, and the number of inactive models tested at each drift repair step, denoted 
k. In the next section we discuss how components are selected in AiRStream. In the follow-
ing section we discuss how parameter values are selected.

6.3.1  Component selection

As in other methods, both the incremental classifier and drift detector used in AiRStream 
are interchangeable. We choose the Hoeffding Tree classifier as the base incremental clas-
sifier as it provides strong performance and behaviour guarantees (Losing et  al., 2018). 
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In all experiments, the active incremental classifier is trained prequentially, i.e., evalua-
tion measures are calculated on the incoming observation and then the model is updated 
to incorporate the new observation. In order to select a drift detector, we note that our drift 
repair mechanism depends on the characteristics of drift detection. For example, a highly 
sensitive drift detector may cause many false positive errors with few false negative errors, 
while a low sensitivity detector may display the opposite. This means that the repair com-
ponent may provide more benefit under different drift detection schemes.

We perform an experiment comparing AiRStream with repair to a variant without repair 
across five popular drift detection methods. All other parameters are held constant. We 
compare ADWIN, Drift Detection Method (DDM) (Gama et al., 2004), Early Drift Detec-
tion Method (EDDM) (Baena-Garcıa et al., 2006), and Hoeffding Drift Detection Method 
(HDDM) (Frias-Blanco et al., 2014), HDDM_A and HDDM_W. Table 2 shows the � sta-
tistic (Žliobaité et al., 2015) and C-F1 of each AiRStream variant using each drift detec-
tion method on two synthetic datasets. Synthetic streams are constructed by alternating 3 
concepts using both abrupt and gradual drift over 50,000 observations. We observe that 
in all cases, the repair component gives higher � statistic and C-F1. This indicates that 
repair works over a range of drift detection methods. We also see that using DDM and 
EDDM gives a large difference in performance between ASr and ASb , while using ADWIN 
or HDDM_W gives a relatively small difference. EDDM is designed to be sensitive to 
drift, which may create more adaption errors to be repaired, leading to the increased ben-
efit of the repair component. ADWIN achieves the highest overall performance and C-F1, 
so we select ADWIN as a high performing drift detection method to use in the following 
experiments.

6.3.2  Parameter robustness and sensitivity analysis

We tested performance across four parameters, window size, repair sensitivity, repair 
period and k. For analysis, we remove repository size, |M|, as a parameter by selecting a 
repository size larger than required by any dataset. This simplifies evaluation by removing 
the effect of memory management, which is investigated in other work (Chiu & Minku, 
2018). Figure 8 shows the sensitivity of our system to parameters on the Rangiora data set, 
with standard deviation given by 10 repetitions. We observe that only window size has a 
large impact on performance. A window size which is too small does not give model selec-
tion enough observations to be robust. A window size which is too large contains obser-
vations prior to the concept drift, disrupting model selection. We find that both extremes 
negatively impact classification performance. Increasing repair sensitivity improves clas-
sification performance, indicating that the repair component positively impacts perfor-
mance. Performance is consistent at different levels of the repair period parameter. We set 
the length of each repair testing period to be a fixed ratio of the repair period. Under a 
small repair period, we test models for shorter periods of time which reduces sensitivity 
in detecting adaption errors. However, a smaller period also tests more often which may 
increase sensitivity. Similarly, a long repair period tests models over a longer period of 
time but tests less often. This trade-off may produce the consistent levels of performance. 
Performance is also consistent under changing k. This is expected, as models are ranked 
according to suitability in the model selection stage. Additional models added by a higher 
k are less likely to be selected by the repair component, so largely do not contribute to 
performance. A consistent level of performance here indicates that model selection is per-
forming well when ranking models. A smaller repair period and larger k increase runtime. 
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For all following experiments we use a window size of 1500, a repair sensitivity of 0.2, a 
repair period of 2000 and k of 5. We find empirically that this is a good trade-off between 
performance and runtime.

Table 2  Classification and C-F1 performance of repair across drift detection methods

Values in parenthesis show standard deviation

Drift detector Radial basis function

� statistic C-F1

AS
r

AS
b

AS
r

AS
b

ADWIN 0.65 (0.04) 0.64 (0.04) 0.59 (0.06) 0.54 (0.05)
DDM 0.63 (0.04) 0.51 (0.05) 0.50 (0.06) 0.31 (0.04)
EDDM 0.60 (0.03) 0.51 (0.04) 0.46 (0.05) 0.31 (0.04)
HDDM_A 0.63 (0.04) 0.57 (0.04) 0.51 (0.05) 0.42 (0.05)
HDDM_W 0.64 (0.04) 0.62 (0.04) 0.53 (0.04) 0.48 (0.04)

Random tree

ADWIN 0.63 (0.06) 0.56 (0.08) 0.64 (0.06) 0.55 (0.07)
DDM 0.53 (0.08) 0.45 (0.05) 0.49 (0.06) 0.30 (0.05)
EDDM 0.49 (0.06) 0.45 (0.05) 0.43 (0.05) 0.28 (0.01)
HDDM_A 0.50 (0.07) 0.45 (0.05) 0.44 (0.04) 0.39 (0.04)
HDDM_W 0.54 (0.06) 0.49 (0.06) 0.48 (0.07) 0.47 (0.04)

Fig. 8  Sensitivity analysis based on parameter tuning
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6.4  Synthetic results

In this experiment we answer research question (1): how does the performance of AiR-
Stream and its repair component compare to state-of-the-art methods? We investigate 
whether AiRStream provides higher classification and context modeling performance 
when adapting to concept drift than alternate methods on synthetic data. The aim of this 
experiment is to measure drift adaption performance, rather than how well each method 
learns the synthetic function. For each test, 20,000 observations were drawn alternating 
between two concepts with abrupt and gradual concept drift with a width of 4000 observa-
tions. Using synthetic data allows the ‘environmental conditions’ driving concept drift, in 
the synthetic case the generating function acting at each concept, to be known and isolated. 
Known contexts allow us to quantify the relationship between environmental conditions 
and model use for each system using the C-F1 measure. We also test the impact of the 
repair component by comparing the AiRStream variant without repair, ASb , to the system 
with repair, ASr . The task in this experiment is not interpolation so we do not compare to 
the IDW and NORM interpolation baselines.

6.4.1  Classification performance

Table 3 shows the performance of each method on synthetic data sets generated using 
the RBF and TREE generators. Results shown are averaged over 100 runs. Each run 
uses a different set of synthetic concepts. The initial 20% of each stream is used for 
training. For streaming systems we report prequential performance measures on the 
remaining observations. The RF method does not train further, so report holdout perfor-
mance measures. To measure classification performance invariant to the length of each 
concept, we report the � statistic (Žliobaité et al., 2015) for the 150 observations after 
each drift ( �150 ). A higher performance in this period indicates better adaption to drift, 
which is similar to the idea of recovery analysis (Shaker & Hüllermeier, 2015). Note 
that C-F1 shown in Table 3 is not a measure of performance, rather it measures condi-
tion inference. To test for significance in Table 3 as well as the following Tables 4, 6 
and 7, we use the Friedman test followed by the Nemenyi post-hoc test (Demšar, 2006). 
The streaming systems which perform within the confidence range of the top method 
are shown in bold.

In both TREE and RBF, the full AiRStream system using the repair component achieves 
the highest �150 score. Both AiRStream variants as well as ARF score significantly higher 
than the DYNSE system in both datasets. As well as concept drift detection, DYNSE 
incorporates a dynamic classifier selection method which selects the most suitable ensem-
ble based on the location of each observation in feature space. The synthetic datasets tested 
here display global drift where the entire feature space changes. This may explain the 
lower performance of this method. Both AiRStream variants perform better than ARF in 
both datasets. ARF is not able to identify or exploit recurring concepts once the model is 
dropped from the ensemble. The lower score it receives indicates this lack of long term 
memory harms its performance. In both the TREE and RBF datasets the full version of 
AiRStream including the repair component achieved a higher �150 score than the variant 
with no repair functionality. This indicates that the repair component was able to improve 
the performance of the system. In order to show that this improvement is due to selecting 
more suitable models, we look at the C-F1 measure.
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6.4.2  Condition inference

The C-F1 measure in Table 3, shows the relationship between the model use in a system 
compared to ground truth context in the stream as described in Sect. 5. In these synthetic 
streams context is fully described by the function used to generate the ground truth label 
for each concept.

The NC, OK and RF baseline methods only use a single model across the stream so 
achieve a constant score. For ARF and DYNSE we take model use as the most influential 
member of the ensemble for each observation. In the RBF stream both ARF and DYNSE 
achieve a similar C-F1 score to the static methods. This indicates that in both methods the 
use of a certain model does not relate to the underlying data stream context. In the TREE 

Table 3  Effectiveness of 
inference ( �

150
 ) and condition 

inference (C-F1) on Synthetic 
data

Values in parenthesis show standard deviation. Values within the con-
fidence interval of the best method in each column are bolded
∗These systems are not adaptive, so C-F1 is constant given the same 
proportion of concepts
† RF is a batch method rather than a streaming method

System Radial basis function Random tree

�
150

C-F1 �
150

C-F1

NC 14.26 (11.98) 0.48* 1.14 (4.81) 0.48*
OK −1.75 (3.20) 0.48* 0.05 (0.76) 0.48*
RF† 10.16 (9.02) 0.48* 36.10 (14.93) 0.48*
ARF 59.27 (14.08) 0.48 (0.07) 50.68 (8.65) 0.46 (0.05)
DYNSE 36.68 (9.63) 0.47 (0.08) 38.30 (9.63) 0.51 (0.08)
AS

b
59.44 (11.13) 0.71 (0.07) 53.27 (8.90) 0.63 (0.08)

AS
r

59.59 (11.22) 0.76 (0.09) 54.76 (8.82) 0.71 (0.07)

Table 4  Effectiveness of AQI inference

Values in parenthesis show standard deviation. Values within the confidence interval of the best method in 
each column are bolded
† RF is a batch method rather than a streaming method

System Rangiora Arrowtown Beijing

MRR � statistic MRR � statistic MRR � statistic

NC 89.90 (5.09) 45.36 (10.79) 97.33 (1.84) 24.81 (7.59) 56.31 (2.33) 10.61 (3.22)
IDW 59.77 (7.63) 3.90 (7.23) 91.98 (1.78) 14.96 (11.06) 58.03 (8.65) 6.98 (13.95)
NORM 79.82 (12.17) 28.96 (21.08) 96.34 (1.40) 17.32 (11.41) 61.14 (18.14) 27.20 (26.08)
OK 57.59 (5.25) 15.94 (1.03) 96.35 (0.79) 10.32 (3.87) 65.01 (3.60) 23.58 (5.60)
RF† 88.91 (5.46) 45.02 (10.93) 97.33 (1.84) 24.81 (7.58) 56.31 (2.33) 10.61 (3.22)
ARF 89.06 (5.13) 44.75 (10.83) 98.04 (1.38) 16.57 (8.56) 61.68 (5.44) 15.39 (9.35)
DYNSE 85.02 (6.38) 32.39 (20.09) 97.62 (1.71) 5.64 (5.22) 54.53 (3.32) 6.55 (4.42)
AS

b
90.73 (4.07) 59.95 (7.56) 97.91 (1.50) 13.18 (7.63) 82.37 (3.16) 57.03 (7.42)

AS
r

90.74 (4.05) 60.11 (7.65) 97.94 (1.46) 12.92 (7.58) 82.42 (3.28) 57.11 (7.70)
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dataset, DYNSE achieves a higher score, indicating that it is able to form some relationship 
between model use and context.

In both streams, both AiRStream variants significantly outperform all baseline methods 
in terms of C-F1, indicating that model use has a much stronger relationship to the context 
of the data stream. We also see that ASr outperforms ASb , indicating that the repair compo-
nent allows the system to build model histories more related to context dynamics. We show 
in Sect. 6.7 how this model history can be used for condition inference.

6.5  Real‑world results

In this experiment we answer research question (2): how does the performance of AiR-
Stream and its repair component translate to a real-world task? We use a real-world air 
quality inference task to compare the classification performance of AiRStream compared 
to baseline methods. The air quality inference highlights the need for systems capable of 
adapting to concept drift.

6.5.1  Classification performance

Table 4 displays the performance of each method in inferring PM2.5 levels on the Rang-
iora, Arrowtown and Beijing real-world datasets. The first 20,000 observations are used 
for training. For streaming systems we report prequential performance measures on the 
remaining observations. The RF method does not train further, so report holdout per-
formance measures. In this experiment we use the Mean Reciprocal Rank (MRR) and 
� statistic performance measures. MRR reduces the penalty for classifications close to 
the true label, making it a better performance measure than accuracy for the ordered 
air quality levels used in these datasets. As shown in Fig.  4 all three datasets have 
imbalanced classes. The � statistic is a measure of accuracy above a chance classifier 
(Žliobaité et al., 2015) which we report in order to minimize the effect of class imbal-
ance. In the Rangiora and Arrowtown datasets, the No Change (NC) classifier achieved 
a strong performance in the MRR and � statistic measures. This indicates that air pol-
lution levels displayed a strong auto-correlation, i.e., the level of the target sensor was 
stable for large portions of the dataset. We also see that the standard inference methods 
IDW, NORM and OK show lower MRR and � statistic in these datasets, indicating that 
the spatio-temporal relationships between sensors may be too complex for these sim-
ple methods to describe. In both datasets, we find that AiRStream performs well. In 
the Rangiora dataset, both AiRStream variants significantly outperform all baselines in 
both MRR and � statistic. In the Arrowtown dataset,  AiRStream is competitive with 
ARF and outperforms all other baselines using the MRR measure. As shown by the 
strong performance of NC, Arrowtown features very consistent levels for long periods of 
time. This makes it hard to produce results greater than baseline. In the Beijing dataset, 
both AiRStream variants significantly outperform all baselines for both MRR and � sta-
tistic. The repair component increases both MRR and � statistic for all datasets except 
for Arrowtown, where it showed an increase in the MRR measure. However, the benefit 
of repair is smaller than in synthetic datasets. This may be due to the short timescale 
of these datasets which restricts the amount of concept recurrence available. For exam-
ple, both Rangiora and Arrowtown last less than three months which does not allow 
for seasonal recurrence. The adaptation repair mechanism helps increase the robustness 
of recurrence detection, so the lack of long term recurrence in the datasets may have 
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limited its benefit. To report performance on unbalanced classes, Table 5 shows a con-
fusion matrix for Rangiora inferences which was averaged across all target sensors, for 
ASr and RF. RF uses a similar tree based classification method to AiRStream, but as 
a batch method is trained on a smaller static training set. As an online method, AiR-
Stream observes all training data, but only uses a portion of training data to build a 
model at each concept drift. On average, over the Rangiora dataset, each model used in 
AiRStream is trained on 3156 observations while RF is trained on a static set of 20,000 
observations. Predictions for both methods are distributed across all PM2.5 levels except 
level 5. AiRStream displays better performance at classifying PM2.5 levels 0, 1, 3 and 4. 
This indicates that although each AiRStream model individually observes less training 
data than RF, the ability to adaptive select which observations to train on increases clas-
sification performance across a data stream. Neither make any level 5 predictions. The 
PM2.5 distribution in Fig. 4 shows there were only 420 observations of levels 4 across all 
sensors in Rangiora over the evaluation period, which we believe was not enough train-
ing data to predict level 4 accurately. There were no observations of air quality level 5 
over the evaluation period.   

6.6  Runtime analysis

Tables  6 and 7 show the runtime of our method compared to the streaming baselines 
on synthetic and real data. DYNSE was run on an alternate framework, MOA, using a 

Table 5  Average confusion matrix of PM
2.5

 inferences for Rangiora 

Values in parenthesis show standard deviation. Values within the confidence interval of the best method in 
each column are bolded

Levels AiRStream

Predicted

0 1 2 3 4 5

0 19652.92 2041.52 105.916 34.05 1.23 0.00
1 1017.77 5380.31 589.55 91.71 1.11 0.00
2 665.08 610.66 2372.41 206.30 0.63 0.00
3 50.52 152.60 270.34 529.34 2.73 0.00
4 6.90 0.01 3.42 18.15 3.83 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00

Levels Random forest (RF)

Predicted

0 1 2 3 4 5

0 19355.54 2017.89 307.50 151.31 3.36 0.00
1 2039.86 4418.30 392.69 227.34 2.28 0.00
2 383.67 537.63 2791.94 141.44 0.41 0.00
3 204.61 296.79 163.90 337.30 2.94 0.00
4 0.61 7.15 3.30 19.72 1.52 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00
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different language, Java. As this has an impact on the runtime and memory use of the sys-
tem, DYNSE is not able to be compared to the other methods. While our proposed repair 
component incurs a small performance penalty over the base method, overall runtime is 
much smaller than the state-of-the-art method ARF. As an ensemble method, ARF runs all 
ensemble models, 10 in our experiments, at every time step. Our repair algorithm runs only 
K, five in our experiments, additional inactive models only during the testing period. Our 
method also uses substantially less memory than ARF, with the repair algorithm contribut-
ing only the size of one model, ab , to the storage overhead.

6.7  Case study: air quality condition inference

In this section we answer research question (3): can the hidden underlying conditions of 
a data stream be inferred from the model use of a recurring concept system? We inves-
tigate how the models used by AiRStream can be used to infer environmental conditions 
in a real-world task. We note that in the real-world there can be many aspects of context 

Table 6  Runtime and memory on synthetic data

Values in parenthesis show standard deviation. Values within the confidence interval of the best method in 
each column are bolded
† RF is a batch method rather than a streaming method

System Radial basis function Random tree

Runtime (s) Memory (KB) Runtime (s) Memory (KB)

NC 4.94 (0.16) 0.03 (0.00) 5.14 (0.15) 0.03 (0.00)
OK 211.94 (39.18) 7.56 (3.08) 134.53 (2.16) 9.23 (0.00)
RF† 5.22 (0.18) 2029.95 (0.00) 6.96 (0.11) 2822.41 (2.03)
ARF 215.03 (16.96) 2166.31 (1274.04) 282.35 (13.57) 8967.27 (310.04)
AS

b
33.50 (1.64) 1315.90 (409.82) 44.41 (1.97) 3520.35 (704.83)

AS
r

72.97 (5.71) 1102.28 (372.49) 90.21 (7.25) 3215.85 (666.52)

Table 7  Runtime of AQI 
inference

Values in parenthesis show standard deviation. Values within the con-
fidence interval of the best method in each column are bolded
† RF is a batch method rather than a streaming method

System Rangiora Arrowtown Beijing
Runtime (s) Runtime (s) Runtime (s)

NC 23.66 (0.90) 30.01 (0.77) 9.98 (0.48)
IDW 26.96 (1.17) 35.81 (0.92) 11.64 (0.62)
NORM 88.92 (4.83) 86.10 (3.67) 42.57 (2.35)
OK 591.36 (58.15) 233.32 (13.27) 387.09 (23.92)
RF† 26.72 (1.05) 39.65 (0.64) 11.74 (0.47)
ARF 410.29 (33.39) 496.36 (39.66) 364.03 (23.02)
AS

b
138.80 (9.60) 95.31 (5.64) 89.51 (5.01)

AS
r

156.39 (12.61) 111.17 (9.06) 99.36 (5.81)
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which change during concept drift. Different classification systems may react to different 
aspects. In this work we have access to only a few aspects for analysis. This means that an 
exhaustive comparison of frameworks is not possible, as the concept drift detected by some 
frameworks may not relate to the contextual aspects we analyse. In contrast to the quantita-
tive comparison on synthetic data we present in Sect. 6.4.2, here we present a case study to 
highlight how certain known aspects of environmental conditions underlying the Rangiora, 
Arrowtown and Beijing datasets relate to model use.

Inferring air quality has been shown to be highly reliant on current weather conditions. 
We hypothesized that a data stream approach would allow changes in these conditions to 
be adapted to by a system without access to meteorological conditions. In this section we 
verify whether the changes detected by our system are related to changes in weather. We 
note that these weather conditions were not available to any system during training or test-
ing, and are only used in post-hoc analysis.

6.7.1  Environmental data

The Rangiora, Arrowtown and Beijing datasets each present a different set of environmen-
tal conditions available to be monitored. 

1. Rangiora We collected the current wind speed and direction from the weather station 
closest to each sensor for each observation.

2. Arrowtown We collected two time based features indicating if the observation was taken 
during daylight and if the observation was taken during the weekend. Here we take 
daylight hours as between 10 am and 5 pm, and the weekend as saturday and sunday.

3. Beijing We used the wind speed and direction, temperature and pressure from the 
weather station closest to each sensor for each observation.

Each source of environmental data was discretized into 8 equal density levels. Environ-
mental level observations were linked to sensor readings by matching timestamps rounded 
to the nearest minute. We compare environmental conditions to the active model used by 
a system. For systems which use a single classifier to classify each observation, like AiR-
Stream, we take the active model at a given observation as the classifier used to classify 
that observation. For ensemble systems, like DYNSE, we take the active model as the clas-
sifier which contributes most to the classification at each observation. In the case of a tie, 
we take the more common model to allow for more model reuse to be detected.

6.7.2  Measures of relationship

We use two measures to investigate the relationship between active model and environmen-
tal condition level. We first measure the strength of the relationship between each active 
model and each environmental condition level using the C-F1 score as discussed in Sect. 5. 
This is an F1 score between the active model used by AiRStream and a given environmen-
tal condition averaged across all discretized levels.

We also measure the ability to predict the level of a given environmental feature from 
observing the systems active model. We train a random forest classifier to classify the cur-
rent level of each environmental feature using the current active model. We refer to the 
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accuracy of this system on a given environmental feature as �m in Table 8. We compare 
this to the accuracy of a random forest classifier trained to predict the current level using 
current PM2.5 readings, referred to as �f  , to find the additional performance in condition 
inference gained by using AiRStream. In both cases we compute accuracy using 10-fold 
cross validation. To maximise the performance of this baseline we use all sensors with no 
masking so �f  displays no variation across repetitions.

6.7.3  Condition inference results

Table 8 shows �f  , �m and C-F1 for each environmental condition for the data sets they are 
available. We compare the performance of AiRStream active models to the active models 
found in the DYNSE system, which also captures recurring concepts. We highlight that this 
case study is limited to investigating only a few known aspects of the full context underly-
ing each stream, and thus should not be taken as a performance comparison.

In the Rangiora dataset, Table 8 shows a Pf  score of 34.87 for wind direction and 
33.26 for wind speed. This indicates that a random forest model trained on sensor 
readings alone is able to achieve an accuracy of 34.87% predicting wind direction and 
33.26% predicting wind speed. A random forest trained to predict environmental levels 
based on which model is selected as active by AiRStream is able to achieve accuracies 
of 50.39% and 49.41% respectively, shown by the Pm score under ASr . This indicates 
that the active model selected by AiRStream is a better indicator of wind direction and 
speed in Rangiora than the raw sensor readings alone. The active model in DYNSE 
achieves a lower accuracy than using features, indicating that the active model here 
is not related to the underlying environmental conditions we investigate. We observe 
that AiRStream achieves C-F1 scores of approximately 0.47 for both conditions, while 
DYNSE achieves 0.24. This indicates some level of predictive ability from the models 
produced by our system. This adds validity to the hypothesis that our system can react 
to changes in environmental conditions without requiring additional input features.

We note that the AiRStream active model does not correspond particularly highly 
with temperature, pressure, wind direction and wind speed in Beijing. We hypothesize 
that this is due to a mismatch between the speed of change in these conditions and 

Table 8  Condition inference on Real Data sets

Values in parenthesis show standard deviation
*�

f
 displays no variation across repetitions

Data set Condition P
f

AS
r

DYNSE

P
m

C-F1 P
m

C-F1

Rangiora Wind direction 34.87* 50.39 (7.93) 0.47 (0.06) 33.41 (4.85) 0.24 (0.04)
Rangiora Wind speed 33.26* 49.41 (7.97) 0.47 (0.06) 32.02 (4.34) 0.24 (0.04)
Arrowtown IsDaytime 74.01* 74.46 (3.72) 0.35 (0.09) 58.20 (6.51) 0.14 (0.01)
Arrowtown IsWeekend 71.12* 67.81 (6.51) 0.39 (0.08) 59.41 (6.20) 0.20 (0.02)
Beijing Wind direction 14.52* 14.70 (0.40) 0.21 (0.02) 13.99 (0.19) 0.13 (0.01)
Beijing Wind speed 35.92* 22.29 (2.89) 0.31 (0.04) 16.54 (1.25) 0.17 (0.02)
Beijing Temperature 34.03* 27.02 (4.14) 0.33 (0.03) 30.70 (4.51) 0.23 (0.02)
Beijing Pressure 32.68* 26.30 (3.97) 0.33 (0.03) 25.10 (3.97) 0.23 (0.02)
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observation frequency, which was 1 hour in Beijing compared to 1 minute in other data 
sets.

Further results for the variant of AiRStream without repair, ASb , are shown in 
“Appendix  C”. We see that both AiRStream variants are able to build a relationship 
between model use and wind in Rangiora greater than that of DYNSE, with repair 
achieving a slightly stronger relationship.

6.7.4  Multivariate condition visualization

Changes in environmental conditions come from complex interactions between many fac-
tors, so it is unlikely the models constructed by our system will perfectly match with any 
one feature. For example, rather than a single model relating to northerly wind, our system 
may find a model relating to northerly wind at high wind speed and another relating to 
northerly wind at low wind speeds. The previous evaluation does not consider the relation-
ship between the model used and sets of environmental conditions. Figure 9 visualises the 
relationship between the active model and the combination of wind speed and direction. 
We plot each observation in the Rangiora data set as the vector with direction given by 
wind direction and magnitude given by wind speed. We color each data point by the active 
model chosen by the system (referred to by an unique ID). Certain combinations of wind 
speed and direction can be seen to be related to certain active models. For example strong 
south westerly wind is largely classified by Model ID 0 in Fig. 9.

Fig. 9  Weather conditions compared to system model. Angle of each observation is given by wind direc-
tion, magnitude from (0, 0) is given by wind speed and color is given by the active model (referred to by a 
unique ID)



3515Machine Learning (2022) 111:3489–3523 

1 3

7  Related work

This section discusses adaptive approaches to concept drift proposed in the literature. A 
discussion on non-streaming approaches to air quality inference follows.

Streaming methods of adapting to changes in the distribution of data can be roughly 
divided into two groups, blind and informed (Gama et al., 2014). Blind approaches adapt 
to recent observations without explicitly detecting concept drift. A common example is 
using a sliding window of recent observations to train a model (Widmer and Kubat 1996). 
The most recent observations captured in the window are assumed to describe the distribu-
tion new observations will be drawn from, while older observations are forgotten. Another 
example is the Concept-Adapting Very Fast Decision Tree (CVFDT) (Hulten et al., 2001), 
which incrementally builds a decision tree using the Hoeffding bound to determine when 
to grow a new branch. Alternative branches are grown from recent data and replace older 
branches which are forgotten. Controlling how quickly observations are forgotten is a 
trade-off between stability and adaptability. Retaining observations for longer leads to a 
more stable classifier, which is important in stationary conditions, but can be slow to react 
to change.

Informed approaches explicitly detect changes in distribution. Explicit detection 
allows for a faster reaction to concept drift by removing old observations quickly while 
also retaining more relevant data when no concept drift is detected (Klinkenberg & Renz, 
1998). Under the Probably Approximately Correct (PAC) framework, during stationary 
conditions the error rate of a classifier will decrease as the number of observations seen 
increases (Valiant, 1984). A change in the distribution of data can then be detected as a 
significant increase in the error rate of a classifier. Many drift detection methods, such as 
the Drift Detection Method (DDM) (Gama et  al., 2004), Early Drift Detection Method 
(EDDM) (Baena-Garcıa et al., 2006) and Adaptive Windowing (ADWIN) (Bifet & Gav-
alda, 2007) are based on this idea. A common informed approach incorporating drift detec-
tion is to incrementally build a classifier while no detection has occurred, i.e. the distribu-
tion of data is stationary. When concept drift is detected, the current classifier is forgotten 
and a new classifier is built on incoming data representing the new distribution (Gama 
et  al., 2004). Forgetting concepts is inefficient if the concept reoccurs in the future and 
must be relearned. This is important in many real-world cases where underlying contexts 
often reoccur, e.g. seasonal weather conditions or business cycles.

Recurring concept methods assume that concepts may reoccur over the data stream and 
previously learned relationships may become relevant again. A common characteristic of 
these methods is to store a set of previously used classifiers (Gonçalves Jr & De Barros, 
2013; Alippi et al., 2013; Gama & Kosina, 2014). If a concept reoccurs, for example if the 
wind shifts to a previously seen direction, a stored classifier may be used to achieve higher 
performance than rebuilding a new classifier. Classifier reuse also provides an indicator 
that context, or the conditions underlying a data stream, are similar to a previous point 
in the stream (Gomes et al. 2010). Context information can be mined for further data, for 
example linking concept drift to environmental conditions (Borchani et al., 2015). Exam-
ples utilizing recurring concepts include the Recurrent Concept Drift (RCD) framework 
(Gonçalves  Jr & De Barros, 2013), which stores a set of previously used classifiers in a 
repository. When a concept drift is detected, a statistical test compares the distribution of 
a recent window of observations to a sample of observations associated with each stored 
classifier. A similar distribution indicates that the stored classifier is relevant to the con-
cept emerging in incoming data and should be reused. The Just In Time (JIT) framework 
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(Alippi et al., 2013) tests the performance of each stored classifier on a recent window to 
determine suitable candidates for reuse, while Gama and Kosina (2014) train a meta-classi-
fier to predict the most suitable classifier for each observation.

The dynamic selection area of research also attempts to select the most suitable classi-
fier for each observation (Cruz et al., 2018). While concept drift adaption attempts to select 
a classifier based on the underlying hidden context an observation is drawn from, dynamic 
selection attempts to select a classifier based on the location in feature space an observa-
tion is drawn from. Some methods, such as the Dynamic Selection Based Drift Handler 
(DYNSE) (De Almeida et al., 2016) framework combine both approaches, selecting a clas-
sifier both similar in context and feature space to the current observation. In both cases, 
the method of evaluating which stored classifiers are suitable for the current observation is 
important. Dynamic selection literature proposes several methods, including accuracy on a 
local region of samples, distance weighted accuracy, and K Nearest Oracles (KNORA) (Ko 
et al., 2008).

In order to conduct our condition inference analysis, in this work we make the assump-
tion that context is discrete and concept drift is global, or covers the entire feature space. 
Under these assumptions, only the context of an observation rather than its location in fea-
ture space is relevant to classifier selection. In both recurrent concept drift adaption and 
dynamic selection classification can be conducted using either a single classifier or an 
ensemble (Gama et al., 2014; Cruz et al., 2018). A third assumption for our condition infer-
ence analysis is that model use is discrete. This assumption means that we select a single 
classifier for each observation rather than use an ensemble.

The adaptive learning problem that we consider in this paper could be considered to 
be a subset of lifelong learning (Parisi et al., 2019) problems. In lifelong learning, a sys-
tem should dynamically adapt to new tasks while transferring learning from previously 
seen tasks. In adaptive learning, each distinct concept could be considered similar to a task 
in lifelong learning, with some key differences. Firstly, concept boundaries and proper-
ties are unknown in our problem, requiring concept drift detection and model selection. In 
some lifelong learning problems it is known when a new task occurs and whether the task 
is novel or a recurrence. Secondly, we consider the feature and label spaces to be shared 
between all concepts. This is similar to homogeneous lifelong learning (Weiss et al., 2016). 
Finally, in this work we do not consider transfer between concepts. In many lifelong learn-
ing problems, the classification performance of the system on observations drawn from 
one task is expected to increase as other tasks are learned. Here we consider concepts to be 
discrete, and avoid both positive and negative transfer between concepts.

Recent non-streaming work on air quality prediction have focused on urban loca-
tions, incorporating the many sources of environmental features available in these areas. 
We instead investigate rural locations where these features are not available. Zheng et al. 
(2013, 2015) separated spatial, temporal and meteorological features, feeding subsets of 
features into a spatial ANN model, a temporal linear regression or conditional random 
field model, and an inflection prediction model. The outputs of these models are merged 
based on current meteorological features. Meteorological features used include category 
of weather (sunny, overcast, etc.), humidity, wind speed and wind direction, as well as the 
weather forecast at a particular location. The authors noted that the use of these conditions 
is especially important in detecting inflection points where prediction patterns change. The 
link between inflection points and changes in weather, is however, not investigated. Yi 
et al. (2018) also utilized meteorological features, integrating them with spatial and tem-
poral features using a deep fusion network. They noted that these ‘indirect’ features affect 
spatial and temporal transmission patterns, however, they do not attempt to detect such 
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changes explicitly. Cheng et al. (2018) incorporated meteorological features, weather, tem-
perature, pressure, humidity and wind as well as points of interest and road network fea-
tures into an attention based neural network model. They investigated feature importance, 
but did not compare feature importance under differing weather conditions. The attention 
mechanism is similar to our drift adaption method, whereby we attempt to find the most 
relevant features for each point in time. A critical difference is our method performs this in 
a low-information environment. Hsieh et al. (2015) investigated an offline method of con-
structing an ‘AQI Affinity graph’ measuring the relationship between sensor readings over 
time. They used additional traffic and point of interest features, for example the location of 
factories, to find similar sensors when constructing this graph. Change in spatial or tem-
poral relationships is also not considered. Shang et al. (2014) investigated inferring traffic 
pollution from road network features, while Devarakonda et  al. (2013) monitored traffic 
pollution using mobile sensors. These approaches are not applicable in the rural environ-
ments studied here. Low traffic volume in these environments means wood burning is a 
more significant source of air pollution than vehicles.

Similar to Zheng et al. (2015), we attempt to detect and adapt to inflection points, how-
ever we do this without knowledge of the relevant weather conditions. This allows our sys-
tem to be used in more locations and without relying on hand picked weather features. This 
also allows us to adapt to drift in features not previously investigated, such as changes in 
sensor sensitivity.

Other methods attempted condition inference with only spatial and/or temporal read-
ings. Hu et al. (2016) developed a 3D PM2.5 interpolation system. A random walk approach 
models pollution transmission between 3D grid cells, with transmission rates learned 
from data. No change detection was implemented, and their results showed large perfor-
mance variation as weather changed. Hu et al. (2019) used a Gaussian interpolation to infer 
PM2.5 readings without the use of environmental features. Similar to previous research, no 
method of detecting or adapting to change were investigated. Li et al. (2017) investigated 
a method of mining causality patterns between sensors to determine propagation patterns 
and locate sources. The timing of uptrend events is matched across sensors to determine 
causality. In this research, no considerations were made to capture changes in these cau-
sality patterns over time. They concluded that the propagation patterns they found had no 
relationship to meteorological conditions.

8  Discussion and future work

In this work we hypothesize that adaptation errors may occur during concept drift detection 
and model selection. Our results show that detecting and repairing adaptation errors leads 
to higher classification accuracy and stronger correlation between the adaptions made by a 
system and ground truth concept drift. These results validate our initial hypothesis, indicat-
ing that adaptation errors do occur in adaptive streaming systems, and that repairing these 
errors is able to improve performance.

We also hypothesize that the concept drift detections and adaptations made by a 
system are related to changes and recurrences in underlying environmental conditions. 
Our synthetic experiments showed an average F1 score of above 0.7 from relating 
model reuse in AiRStream to ground truth environmental context. In real-world data, 
we were able to predict wind speed and direction substantially above baselines using 
only model reuse. In both cases, adaptation error repair improved these scores. These 
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results validate our initial hypothesis, indicating that the adaptations made by a system 
are linked to changes in underlying context. Further, the improved performance when 
repair is added indicates that the robustness of the adaptation process contributes to the 
strength of this relationship.

These lessons learned point towards areas of future research. The performance gain 
when repairing adaptation errors indicates that improving the robustness of the adaptation 
process can lead to improvements in classification accuracy and ability to model changes in 
context. Future work improving this robustness may lead to further gains. Our results indi-
cating that system adaptations to concept drift are related to changes in context indicates 
that these adaptations may offer further insight into stream behaviour. Past work has used 
meta-information describing stream behaviour to improve system performance, for exam-
ple the volatility of underlying contexts has been used to tune drift detection sensitivity 
(Huang et al., 2015). Investigating how the meta-information describing a systems adapta-
tions to concept drift can be integrated into other aspects of the system may be valuable 
future work.

9  Conclusion

This paper proposes an algorithm to detect and repair errors in the concept drift adaption 
process. By sampling the performance of inactive models, we can identify cases where 
the active model is unsuitable for the current stream. Importantly, we can reset training 
done over this period. This increases the performance of our AiRStream system, as well 
as allowing the construction of a robust model of the concept drifts across a stream for 
further analysis. A real-world study classifying air quality levels in two rural towns shows 
that AiRStream outperforms eight baselines. Our evaluation shows indicates that the pro-
cess of adapting to concept drift is related to the dynamics of the environmental conditions 
underlying the stream. Analysis of meteorological conditions in one of the locations shows 
that the concept drift model produced by AiRStream can be used to predict wind speed and 
direction with above 48% accuracy, 14.8% higher than using air quality readings alone. We 
believe that this is an important result for further investigation. The concept drift model 
produced by AiRStream has the potential to allow the inference of environmental condi-
tions in locations where they were previously unavailable. Relating environmental condi-
tions to concept drift also identifies environmental factors not currently included in the 
model which would be valuable to incorporate. For future work we plan to leverage the 
changes detected by AiRStream to further improve inference performance, for example, 
by automatically tuning parameters based on learned transition patterns. We also plan to 
investigate the generality of AiRStream by applying it to other tasks affected by change in 
unknown features. This could involve investigation of alternate or domain specific confi-
dence measures for drift repair.

Appendix A: Significance testing

Figure 10 shows the critical difference diagrams obtained from performing the Nemenyi 
posthoc significance test for Tables 3 and 4.
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Appendix B: Distribution of full datasets

Figure  4 displays the distribution of air quality levels across the sensors selected for 
each dataset, over the observations used for evaluation. In our evaluation we select a 
subset of 9 target sensors in Rangiora due to breakage, and the initial 20,000 obser-
vations of each dataset are held back to train batch methods. Figure  11 shows the 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 10  Critical difference diagrams for Nemenyi significance test results

Fig. 11  Distribution of full datasets
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distribution of the full datasets. We note that no air quality level 5 labels are observed in 
Rangiora in evaluation, while 71 were found overall.

Appendix C: Case study full results

Table 9 shows the results of the variant of AiRStream without repair, ASb , to the version 
with repair, ASr . We note that conclusions regarding performance should not be drawn 
from this comparison as not all environmental conditions contributing to concept drift can 
be analysed. However, we observe an increase in ability to predict wind speed and direc-
tion in Rangiora when repair is included.

Funding The work was supported by the Marsden Fund Council from New Zealand Government funding 
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