
Vol.:(0123456789)

Machine Learning (2021) 110:1429–1462
https://doi.org/10.1007/s10994-021-05992-x

1 3

Automated adaptation strategies for stream learning

Rashid Bakirov1 · Damien Fay2 · Bogdan Gabrys3

Received: 7 October 2018 / Revised: 27 April 2021 / Accepted: 5 May 2021 /
Published online: 2 June 2021
© The Author(s) 2021

Abstract
Automation of machine learning model development is increasingly becoming an estab-
lished research area. While automated model selection and automated data pre-processing
have been studied in depth, there is, however, a gap concerning automated model adapta-
tion strategies when multiple strategies are available. Manually developing an adaptation
strategy can be time consuming and costly. In this paper we address this issue by proposing
the use of flexible adaptive mechanism deployment for automated development of adapta-
tion strategies. Experimental results after using the proposed strategies with five adaptive
algorithms on 36 datasets confirm their viability. These strategies achieve better or compa-
rable performance to the custom adaptation strategies and the repeated deployment of any
single adaptive mechanism.

Keywords Adaptive machine learning · Streaming data · Non-stationary data · Concept
drift · Automated machine learning

1 Introduction

Automated model selection has long been studied (Wasserman, 2000) and recently,
notable advances in practical automated machine learning (AutoML) approaches (Hut-
ter et al., 2011; Lloyd et al., 2014; Kotthoff et al., 2017; Mohr et al., 2018; Martin Sal-
vador et al., 2019; Olson & Moore, 2019; Kedziora et al., 2020) have been made. In
addition, automated data pre-processing in the context of complex machine learning
pipelines generation and validation has also been a topic of recent interest (Feurer et al.,
2015; Martin Salvador et al., 2019; Nguyen et al., 2020). There is however a gap con-
cerning automated development of models’ adaptation strategy, which is addressed in
this paper. Here we define adaptation as changes in model training set, parameters and

Editor: Joao Gama.

 * Rashid Bakirov
 rbakirov@bournemouth.ac.uk

1 Department of Computing and Informatics, Bournemouth University, Poole, UK
2 INFOR/Logicblox, Atlanta, GA, USA
3 Advanced Analytics Institute, University of Technology Sydney, Ultimo, Australia

http://orcid.org/0000-0002-2809-9626
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-05992-x&domain=pdf

1430 Machine Learning (2021) 110:1429–1462

1 3

structure, all designed to track changes in the underlying data generating process over
time. This contrasts with model selection which focuses on parameter estimation and
the family to sample the model from.

With the current advances in data storage, database and data transmission technologies,
learning on streaming data has become a critical part of many processes. Many models
which are used to make predictions on streaming data are static, in the sense that they
do not learn on current data and hence remain unchanged. However, there exists a class
of models, stream learning models, which are capable of adding observations from the
data stream to their training sets. In spite of the fact that these models utilise the data as it
arrives, there can still arise situations where the underlying assumptions of the model no
longer hold. We call such settings dynamic environments, where changes in data distribu-
tion (Zliobaite, 2011), change in features’ relevance (Fern & Givan, 2000), non-symmetri-
cal noise levels (Schmidt & Lipson, 2007) are common. These phenomena are sometimes
called concept drift. It has been shown that many changes in the environment which are
no longer being reflected in the model contribute to the deterioration of model’s accuracy
over time (Schlimmer & Granger, 1986; Street & Kim, 2001; Klinkenberg, 2004; Kolter
& Maloof, 2007). This requires constant manual retraining and readjustment of the mod-
els which is often expensive, time consuming and in some cases impossible—for example
when the historical data is not available any more. Various approaches have been proposed
to tackle this issue by making the model adapt itself to the possible changes in environment
while avoiding its complete retraining. These approaches however are manually designed
and the application of automated machine learning to streaming data is scarce, which is the
gap we aim to contribute to.

Typically there are several possible ways or adaptive mechanisms (AMs) to adapt a
given model. A single iteration of adaptation is achieved by deploying one of multiple
AMs (including trivial ”doing nothing”), which changes the state of the existing model.
Thus, during the model’s operation, it is adapted by the sequential deployment of vari-
ous AMs with the arrival of new data. We call the order of this deployment an adaptation
strategy (AS). While in most of the existing research these adaptation strategies are cus-
tom (i.e. algorithm-specific) and are fixed at the design stage of the algorithm, a sequential
adaptation framework proposed in our earlier work (Bakirov et al., 2015) enables flexible
adaptation strategies without a prescribed AM deployment order. These flexible adaptation
strategies, automatically developed according to this framework can be applied to any set
of adaptive mechanisms for various machine learning algorithms. This removes the need
to design custom adaptive strategies, resulting in automation of adaptation process. In this
work we empirically show the viability of the automated adaptation strategies based on
cross-validation (Bakirov et al., 2015) with the optional use of retrospective model correc-
tion (Bakirov et al., 2016).

We focus on the batch prediction scenario, where data arrives in large segments called
batches. This is a common industrial scenario, especially in the chemical, microelectronics
and pharmaceutical areas (Cinar et al., 2003). For the experiments we use Simple Adap-
tive Batch Learning Ensemble (SABLE) (Bakirov et al., 2015) and batch versions of four
popular stream learning algorithms—the Dynamic Weighted Majority (DWM) (Kolter &
Maloof, 2007), the Paired Learner (PL) (Bach & Maloof, 2010), the Leveraged Bagging
(LB) (Bifet et al., 2010b) and BLAST (van Rijn et al., 2015). The use of these five algo-
rithms allows to explore different types of online learning methods; local experts ensem-
ble for regression in SABLE, global experts ensemble for classification in DWM and
LB, switching between the two models in PL and the heterogeneous global ensemble in
BLAST.

1431Machine Learning (2021) 110:1429–1462

1 3

After a large-scale experimentation with 5 regression and 31 classification datasets, the
main finding of this work is that in our settings, the proposed automated adaptive strategies
show comparable accuracy rates to the custom adaptive strategies and, in many cases, to
the repeated deployment of a single “best” AM. Thus, they are feasible to use for adapta-
tion purposes, while saving time and effort spent on designing custom strategies.

The paper follows by presenting the related work on automated machine learning and
adaptive mechanisms in Sect. 2. Section 3 presents mathematical formulation of the frame-
work of adaptation with multiple adaptive mechanisms in batch streaming scenario. Sec-
tion 4 introduces algorithms used for the experimentation, including their inherent adap-
tive mechanisms and custom adaptation strategies. Experimental methodology, the datasets
on which experiments were performed and results are given in Sect. 5. We give our final
remarks in Sects. 6 and 7.

2 Related work

This section provides a background for our research. We start with a review of relevant
automated machine learning approaches, particularly those which consider streaming data
scenario. We follow up with a broad analysis of ML literature from the adaptive mecha-
nisms point of view, where we introduce a simple hierarchy of adaptation. We then discuss
how multiple adaptive mechanisms paradigm has been used for automating the design of
predictive algorithms.

2.1 Automated machine learning for streaming data

Automated machine learning is an active research area. So far however, it has been mostly
applied to static datasets, and there are not many works which consider automation for
streaming scenario. Among these, different approaches exist. One of the works, before the
most recent wave of AutoML research, can be found in Kadlec and Gabrys (2009) where a
general purpose architecture to develop robust, adaptive prediction systems for the auton-
omous operation in changing environments for streaming data has been proposed. Vari-
ous instantiations of this architecture followed focusing on challenging problems from the
process industry when building adaptive, predictive soft sensors (Kadlec & Gabrys, 2010,
2011; Bakirov et al., 2017).

Taking advantage of the recent wave of research in AutoML, an alternative approach to
adaptation to changing environments was proposed in Martín Salvador et al. (2016) where
repeated automated deployment of Auto-WEKA for Multi-Component Predictive Systems
(MCPS) to learn from new batches of data was used for life-long learning and the adapta-
tion of complex MCPS when applied to changing streaming data from process industries.
Celik and Vanschoren (2021) represent a development of this idea with the inclusion of the
drift detection and the experimentation using several open source AutoML frameworks.
An interesting approach closely tied with the Auto_Sklearn is described in Madrid et al.
(2019). Authors propose using the ensemble nature of this framework to deal with stream-
ing data, by adapting the weights of experts and adding new ones.

Some of the other recently proposed relevant methods are primarily focused on hyper-
parameter optimisation problems. For example, Veloso et al. (2018) propose hyper-param-
eter optimization for streaming regression problems using the Nelder–Mead algorithm. In
their experiments they optimise the hyper-parameters of one specific regression method.

1432 Machine Learning (2021) 110:1429–1462

1 3

Carnein et al. (2020) are focusing on the hyper-parameter selection for clustering of data
in a streaming environment. They propose utilising a dynamic ensemble of different hyper-
parameter configurations.

Despite the existing research, as acknowledged and discussed in a recent comprehen-
sive and synthesising review of concepts in AutoML research and beyond (Kedziora et al.,
2020), the pursuit of autonomy, described as the AutoML system’s capability to inde-
pendently adapt the ML solution over a lifetime of operation in changing environments,
remains a lofty goal.

2.2 Adaptive mechanisms

Adapting machine learning models is an essential strategy for automatically dealing with
changes in an underlying data distribution to avoid training a new model manually. Mod-
ern machine learning methods typically contain a complex set of elements allowing many
possible AMs. This can increase the flexibility of such methods and broaden their applica-
bility to various settings. However, the existence of multiple AMs also increases the deci-
sion space with regards to the adaptation choices and parameters, ultimately increasing the
complexity of adaptation strategy. A possible hierarchy1 of AMs is presented in Fig. 1.

In a streaming data setting, to increase the accuracy, it can be beneficial to include
recent data in the training set of the predictive models. On the other hand however, retrain-
ing a model from scratch is often inefficient, particularly dealing with high throughput

Fig. 1 General adaptation
scheme (Bakirov, 2017)

1 Here, the hierarchy is meant in a sense that the application of an adaptive mechanism of the higher level,
requires the application of the adaptive mechanism of lower level.

1433Machine Learning (2021) 110:1429–1462

1 3

scenarios or even impossible when the historical data is no longer available. For these
cases, the solution is updating the model using only the available recent data. This can
be done inherently by some general purpose ML algorithms, e.g. Naive Bayes or using
stream/online algorithms, e.g. online Least Squares Estimation (Jang et al., 1997), online
boosting and bagging (Oza & Russell, 2001) etc. Additionally, for non-stationary data, it
becomes important to not only select a training set of sufficient size but also one which
is relevant to the current data. This is often achieved by a moving window (Widmer &
Kubat, 1996; Klinkenberg, 2004; Zliobaite & Kuncheva, 2010) or decay approaches (Joe
Qin, 1998; Klinkenberg & Joachims, 2000).

The structure of a predictive model is a graph with the set of its components and the
connections therein. Some common examples are hierarchical models (e.g. decision trees)
or more complex graphs (e.g. Bayesian or neural networks). Here, the structure is not nec-
essarily limited to the topological context—number of rules in rule based systems or num-
ber of experts in an ensemble could be considered part of the model’s structure. Adapta-
tion can be achieved by updating this structure, for example in decision and model trees
(Domingos & Hulten, 2000; Hulten et al., 2001; Ikonomovska et al., 2010), neuro-fuzzy
approaches (Gabrys & Bargiela, 1999; Gabrys, 2004; Sahel et al., 2007), neural networks
(Carpenter et al., 1991; Vakil-Baghmisheh & Pavešić, 2003; Ba & Frey, 2013), Bayes-
ian networks (Friedman & Goldszmidt, 1997; Alcobé, 2004; Castillo & Gama, 2006) and
ensemble methods (Stanley, 2002; Gabrys & Ruta, 2006; Kolter & Maloof, 2007; Hazan
& Seshadhri, 2009; Lemke et al., 2009; Ruta et al., 2011; Gomes Soares & Araújo, 2015;
Bakirov et al., 2017).

The final layer of adaptation is changing the models’ parameters, e.g. experts’ com-
bination weights in ensemble methods. These weights are often recalculated or updated
throughout a models’ runtime (Littlestone & Warmuth, 1994; Kolter & Maloof, 2007;
Elwell & Polikar, 2011; Kadlec & Gabrys, 2011; Bakirov et al., 2017). Another group of
techniques belonging to this family are methods using meta-learning for model adaptation
(Nguyen et al., 2012; Rossi et al., 2014; van Rijn et al., 2015; Lemke & Gabrys, 2010).
These methods generally include training a meta-model using meta-features. The meta-
model is then used to select one or more predictors to calculate the final prediction. The
change of the meta-model can then be seen as the change in parameters of the predictive
model.

In this work we consider the possibility of using multiple different adaptive mechanisms,
most often at different levels of the hierarchy. Many modern machine learning algorithms
for streaming data explicitly include this possibility. A prominent example are the adap-
tive ensemble methods (Wang et al., 2003; Kolter & Maloof, 2007; Scholz & Klinkenberg,
2007; Bifet et al., 2009; Kadlec & Gabrys, 2010; Elwell & Polikar, 2011; Alippi et al.,
2012; Souza & Araújo, 2014; Gomes Soares & Araújo, 2015; Bakirov et al., 2017) which
often feature AMs from all three levels of hierarchy—online update of experts, changing
experts’ combination weights and modification of experts’ set. Machine learning methods
with multiple AMs are not limited to ensembles, but can also include Bayesian networks
(Castillo & Gama, 2006), decision trees (Hulten et al., 2001), model trees (Ikonomovska
et al., 2010), champion-challenger schemes (Bach & Maloof, 2010) etc.

2.3 Automating design of algorithms with multiple AMs

Existence of multiple AMs raises questions w.r.t. how they should be deployed. This
includes defining the order of deployment and adaptation parameters (e.g. decay factors,

1434 Machine Learning (2021) 110:1429–1462

1 3

expert weight decrease factors, etc.). It should be noted that all of the aforementioned algo-
rithms use custom adaptive strategies, meaning that they deploy AMs in a manner specific
to each of them. It follows that designing adaptive machine learning methods is a complex
enterprise and is an obstacle to the automation of machine learning model’s design. Kadlec
and Gabrys (2009) present a plug and play architecture for pre-processing, adaptation and
prediction which foresees the possibility of using different adaptation methods in a modu-
lar fashion, but does not address the method of AM selection. Bakirov et al. (2015, 2016)
have presented several such methods for AM selection for their adaptive algorithm, which
are discussed in detail in Sect. 3.2. These methods can be seen as automated adaptive
strategies, which are applicable to all adaptive machine learning methods with multiple
AMs. This allows simply using the described strategies for model adaptation, once having
defined the available AMs.

3 Formulation

As adaptation mechanisms can affect several elements of a model and can depend on per-
formance several time steps back, it is necessary to clarify the concepts via a framework to
avoid confusion. We assume that the data is generated by an unknown time varying data
generating process which can be formulated as:

where � is the unknown function, �� a noise term, x� ∈ R
M is an input data instance, and

y� is the observed output at time � . Then we consider the predictive method at a time � as a
function:

where ŷ𝜏 is the prediction, f� is an approximation (i.e. the model) of �(x, �) , and �f is the
associated parameter set. Our estimate, f� , evolves via adaptation as each batch of data
arrives as is now explained.

3.1 Adaptation

In the batch streaming scenario considered in this paper, data arrives in batches with
� ∈ {�k ⋯ �k+1 − 1} , where �k is the start time of the kth batch. If nk is the size of the kth
batch, �k+1 = �k + nk . It then becomes more convenient to index the model by the batch
number k, denoting the inputs as Xk = x�k ,⋯ , x�k+1−1 and the outputs as yk = y�k ,⋯ , y�k+1−1 .
We examine the case where the prediction function fk is static within a kth batch.2

We denote the a priori predictive function at batch k as f −
k

 , and the a posteriori pre-
dictive function, i.e. the adapted function given the observed output, as f +

k
 . An adaptive

mechanism, g(⋅) , may thus formally be defined as an operator which generates an updated
prediction function based on the batch Vk = {Xk, yk} and other optional inputs. This can be
written as:

(1)y� = �(x� , �) + �� ,

(2)ŷ𝜏 = f𝜏 (x𝜏 ,𝛩f),

2 A batch typically represents a meaningful real-world segmentation of the data, for example a plant run
and so our adaptation attempts to track run to run changes in the process.

1435Machine Learning (2021) 110:1429–1462

1 3

or alternatively as f +
k
= f −

k
◦gk for conciseness. Note f −

k
 and ŷk are optional arguments and

�g is the set of parameters of g. The function is propagated into the next batch as f −
k+1

= f +
k

and predictions themselves are always made using the a priori function f −

k
.

We examine a situation when a choice of multiple, different AMs,
{�, g1, ..., gH} = G , is available. Any AM ghk ⊂ G can be deployed on each batch, where

hk denotes the AM deployed at batch k. As the history of all adaptations up to the cur-
rent batch, k, have in essence created f −

k
 , we call that sequence gh1 , ..., ghk an adaptation

sequence. Note that we also include the option of applying no adaptation denoted by ∅ . In
this formulation, only one element of G is applied for each batch of data. Deploying multi-
ple adaptation mechanisms on the same batch are accounted for with their own symbol in
G. Figure 2a illustrates our initial formulation of adaptation.

3.2 Automated adaptation strategies

In this section we present different generic automated adaptive strategies offering flexible
deployment of AMs, which can be applied to any adaptive algorithm.

At every batch k, an AM ghk must be chosen to deploy on the current batch of data. To
obtain a benchmark performance, an adaptation strategy which minimizes the error over
the incoming data batch Xk+1, yk+1:

where ⟨⟩ denotes the chosen error measure, can be used. Since Xk+1, yk+1 are not yet
obtained, this strategy is not applicable in practice. Also note that this may not be the over-
all optimal strategy which minimizes the error over the whole dataset. We refer to this
strategy as Oracle.

Given the inability to conduct the Oracle strategy, below we list some alternatives. The
simplest adaptation strategy is applying the same AM to every batch. The scheme of this
strategy is given in Fig. 3a. Note that this scheme fits the “Adaptation” box in Fig. 2a. A
more common practice (see Sect. 2) is applying multiple or all available adaptive mecha-
nisms. The scheme of this strategy is given in Fig. 3b which again fits the “Adaptation” box
in Fig. 2a.

(3)gk(Xk, yk,𝛩g, f
−
k
, ŷk) ∶ f −

k
→ f +

k
.

(4)f −
k+1

= f −
k
◦ghk , hk = argmin

hk∈1⋯H

⟨(f −
k
◦ghk)(Xk+1), yk+1⟩

Fig. 2 a Adaptation scheme. b Adaptation scheme with retrospective correction. Here 1 ≤ l ≤ k and f �−
k

 rep-
resents the result of retrospective correction. Depending on the algorithm, inputs can be optional.

1436 Machine Learning (2021) 110:1429–1462

1 3

As introduced in Bakirov et al. (2015), it is also possible to use Vk for the choice of ghk .
Given observations, the a posteriori prediction error Vk is ⟨(f −

k
◦ghk)(Xk), yk⟩ . However, this

is effectively an in-sample error as ghk is a function of {Xk, yk}.3 To obtain a generalised
estimate of the prediction error we apply q-fold4 cross validation. The cross-validatory
adaptation strategy (denoted as XVSelect) uses a subset (fold), S , of {Xk, yk} to adapt; i.e.
f +
k
= f −

k
◦ghk ({Xk, yk}∈S) and the remainder, S , is used to evaluate, i.e. find

〈f+
k (Xk)∈�S ∈�S

,yk 〉. This is repeated q times resulting in q different error values and the
AM, ghk ∈ G , with the lowest average error measure is chosen. If more than one AM has
the same lowest average error, a selection among them is made randomly or utilising prior
knowledge. In summary:

where ⟨⟩× denotes the cross validated error. The scheme of XVSelect for is given in Fig. 3c.
The next strategy can be used in combination with any of the above strategies as it

focuses on the history of the adaptation sequence and retrospectively adapts two steps
back. This is called the retrospective model correction (Bakirov et al., 2016). Specifically,
we set the current model to the output of the AM at batch k − 1 which would have produced
the best estimate in block k:

(5)f −
k+1

= f −
k
◦ghk , hk = argmin

hk∈1⋯H

⟨(f −
k
◦ghk)(Xk), yk⟩×

Fig. 3 Automated adaptation strategies

3 As a solid example consider the case where f +
k

 is f −
k

 retrained using {Xk, yk} . In this case yk are part of
the training set and so we risk overfitting the model if we also evaluate the goodness of fit on yk.
4 In subsequent experiments, q = 10

1437Machine Learning (2021) 110:1429–1462

1 3

The potential draws can be again resolved randomly or using prior knowledge. Using the
cross-validated error measure in Eq. 6 is not necessary, because ghk−1 is independent of yk .
Also note the presence of ghk ; retrospective correction does not in itself produce a fk+1 and
so cannot be used for prediction unless it is combined with another strategy (ghk). This
strategy can be extended to consider the sequence of r AMs while choosing the optimal
state for the current batch, which we call r-step retrospective correction:

The scheme for retrospective correction is given in Fig. 3d. Since the retrospective correc-
tion can be deployed alongside any adaptation scheme, we modify the general adaptation
scheme (Fig. 2a) accordingly, resulting in Fig. 2b, where Fig. 3d fits in the box “Correc-
tion”. Notice that when using this approach, the prediction function fk(x) , which is used to
generate predictions, can be different from the propagation function f �

k
(x) which is used as

input for adaptation.
An important technical detail for both cross-validatory selection and retrospective cor-

rection is the resolution of draws, when two or more AMs show the same predictive per-
formance. The draws appear frequently for classification scenarios with lower batch sizes.
In these cases, a prior knowledge on AMs’ predictive performance can be used to make
a selection.5 If no such knowledge exists, a random AM, or the AM which minimises the
runtime can be chosen.

We next examine the prediction algorithms with respective adaptive mechanisms (the
set G) used in this research.

4 Algorithms

For our experiments we have chosen the following algorithms:

• Simple Adaptive Batch Local Ensemble (SABLE) (Bakirov et al., 2015),
• Dynamic Weighted Majority (DWM) (Kolter & Maloof, 2007),
• Paired Learner (PL) (Bach & Maloof, 2010),
• Leveraged Bagging (LB) (Bifet et al., 2010b),
• BLAST (van Rijn et al., 2015).

SABLE is used to address regression problem while the other algorithms address the clas-
sification problem. We have developed batch versions of these classification algorithms,
which are used in experiments. Our selection of algorithms allows to explore different
types of online learning methods and different adaptive mechanisms, and demonstrate that
the adaptive strategies described in this paper are in fact generic and can be applied to

(6)f −
k+1

= f −
k−1

◦ghk−1◦ghk , hk−1 = argmin
hk−1∈1⋯H

⟨(f −
k−1

◦ghk−1)(Xk), yk⟩

(7)
f −
k+1

= f −
k−r

◦ghk−r◦⋯◦ghk−1◦ghk , {hk−r ⋯ hk−1}

= argmin
hk−r⋯hk−1∈1⋯H

⟨(f −
k−r

◦ghk−r◦⋯◦ghk−1)(Xk), yk⟩

5 This option is used in our experiments.

1438 Machine Learning (2021) 110:1429–1462

1 3

various adaptive algorithms with multiple AMs. Below the details of model adaptation
with each algorithm are presented.

4.1 Simple Adaptive Batch Local Ensemble (SABLE) adaptation

SABLE (Bakirov et al., 2015) uses an ensemble of experts each implemented using a linear
model formed through Recursive Partial Least Squares (RPLS) (Joe Qin, 1998). To get
the final prediction, the predictions of base learners are combined using input/output space
dependent weights (i.e. local learning), which are reflected in the descriptor of each expert.
SABLE is designed for batch streaming scenario. It supports the creation and merger of
base learners.

The SABLE algorithm allows the use of five different adaptive mechanisms (including
the possibility of no adaptation). AMs are deployed as soon as the true values for the batch
are available and before predicting on the next batch. The six SABLE AMs are described
below.6 It should be noted, that as SABLE was conceived as an experimentation vehicle for
AM sequences effects exploration, it does not provide a default custom adaptation strategy.

• SAM0 (No adaptation). No changes are applied to the predictive model, corresponding
to ∅.

• SAM1 (Batch learning). The simplest AM augments existing data with the data from
the new batch and retrains the model. Given predictions of each expert fi ∈ F on V ,
{ŷ1, ..., ŷI} and measurements of the actual values, y , V is partitioned into subsets in the
following fashion:

 for every instance [xj, yj] ∈ V . This creates subsets Vi, i = 1… I such that ∪I
i=1

Vi = V .
Then each expert is updated using the respective dataset Vi . This process updates
experts only with the instances where they achieve the most accurate predictions, thus
encouraging the specialisation of experts and ensuring that a single data instance is not
used in the training data of multiple experts.

• SAM2 (Batch learning with forgetting). This AM is similar to one above but uses decay
which reduces the weight of the experts historical training data, making the most recent
data more important. It is realised via RPLS update with forgetting factor � . � is a
hyper-parameter of SABLE.

• SAM3 (Descriptors update / weights change). This AM recalculates the local descrip-
tors using the new batch. This amounts to the change of weights of the experts.

• SAM4 (Creation of new experts). New expert snew is created from Vk . Then it is
checked whether the newly created expert is similar to any existing experts, in which
case the older expert is removed and their descriptors are merged. Finally the descrip-
tors of all resulting experts are updated.

• SAM5. SAM2 (Batch learning with forgetting) followed by SAM4 (Creation of New
Experts).

(8)z = argmin
i∈1⋯I

⟨fi(xj), yj⟩ → [xj, yj] ∈ Vz

6 See Bakirov et al. (2017) for a full description.

1439Machine Learning (2021) 110:1429–1462

1 3

4.2 Batch Dynamic Weighted Majority (bDWM) adaptation

bDWM is an extension of DWM (Kolter & Maloof, 2007) designed to operate on batches
of data instead of on single instances as in the original algorithm. bDWM is a global
experts ensemble. Assume a set of I experts S = {si, ..., sI} which produce predictions
ŷ = {ŷ1, ..., ŷI} where ŷi = si(x) with input x and a set of all possible labels C = {c1, ..., cJ} .
Then for all i = 1⋯ I and j = 1⋯ J the matrix A with following elements can be
calculated:

Assuming weights vector w = {w1, ...,wI} for respective predictors in S, the sum of the
weights of predictors which voted for label cj is zj =

∑I

i=1
wiai,j . The final prediction is7:

An adaptive model based on bDWM starts with a single expert and can be adapted using
an arbitrary sequence of 8 possible AMs (including no adaptation) given below.

• DAM0 (No adaptation). No changes are applied to the predictive model, corresponding
to ∅.

• DAM1 (Batch learning). After the arrival of the batch Vt at time t each expert is
updated with it.

• DAM2 (Weights update and experts pruning). Weights of experts are updated using
following rule:

where wt
i
 is the weight of the ith expert at time t, and ut

i
 is its accuracy on the batch

Vt . The weights of all experts in ensemble are then normalized and the experts with a
weight less than a defined threshold � are removed. It should be noted that the choice
of factor euti is inspired by Herbster and Warmuth (1998), although due to different
algorithm settings, the theory developed there is not readily applicable to our scenario.
Weights update is different to the original DWM, which uses an arbitrary factor 𝛽 < 1
to decrease the weights of misclassifying experts.

• DAM3 (Creation of a new expert). New expert is created from the batch Vt and is given
a weight of 1.

• DAM4. DAM2 (Weights update and experts pruning) followed by DAM1 (Batch learn-
ing).

• DAM5. DAM1 (Batch learning) followed by DAM3 (Creation of a new expert).
• DAM6. DAM2 (Weights Update and Experts Pruning) followed by DAM3 (Creation of

a new expert).
• DAM7. DAM2 (Weights update and experts pruning) followed by DAM1 (Batch learn-

ing) followed by DAM3 (Creation of a new expert).

(9)ai,j =

{
1 if si(x) = cj
0 otherwise

(10)ŷ = argmax
cj

(zj).

(11)wt+1
i

= wt
i
∗ eu

t
i .

7 This definition is adapted from Kuncheva (2004).

1440 Machine Learning (2021) 110:1429–1462

1 3

bDWM (custom adaptive strategy8). Having presented the separate adaptive mecha-
nisms, we now describe the bDWM, a batch version of the original DWM. It starts with
a single expert with a weight of one. At time t, after an arrival of new batch Vt , experts
makes predictions and overall prediction is calculated as shown earlier in this section.
After the arrival of true labels all experts learn on the batch Vt (invoking DAM1), update
their weights (DAM2) and ensemble’s accuracy ut is calculated. If ut accuracy is less than
the accuracy of the naive majority classifier (based on all the batches of data seen up to this
point) on the last batch, a new expert is created (DAM3). The schematics of this strategy is
shown in Fig. 4a. This scheme fits in “Adaptation” boxes in Fig. 2a, b.

Fig. 4 bDWM and bPL custom adaptation strategies

8 To reiterate, we refer to the specific way the AMs are used in original algorithms as “custom adaptive
strategy”. As the custom adaptive strategy actually defines the algorithm, we will use this term with the
name of algorithm (i.e. bDWM) interchangeably.

1441Machine Learning (2021) 110:1429–1462

1 3

4.3 Batch Paired Learner (bPL) adaptation

bPL is an extension of PL (Bach & Maloof, 2010) designed to operate on batches of data
instead of on single instances as in the original algorithm. bPL maintains two learners—a
stable learner which is updated with all of incoming data and which is used to make pre-
dictions, and a reactive learner, which is trained only on the two most recent batches. For
this method, three adaptive mechanisms are available, which are described below.

• PAM0 (No adaptation). No changes are applied to the predictive model, corresponding
to ∅.

• PAM1 (Updating stable learner). After the arrival of the batch Vt at time t, stable
learner is updated with it.

• PAM2 (Switching to reactive learner). Current stable learner is discarded and replaced
by reactive learner.

bPL (custom adaptive strategy). Having presented the separate adaptive mechanisms, we
now describe the bPL, a batch version of the original PL. Its adaptive strategy revolves
around comparing the accuracy values of stable (ut

s
) and reactive (ut

r
) learners on each

batch of data. Every time when ut
s
< ut

r
 a change counter is incremented. If the counter

is higher than a defined threshold � , an existing stable learner is discarded and replaced
by the reactive learner, while the counter is set to 0. As before, a new reactive learner is
trained from each subsequent batch. The schematics of this strategy are shown in Fig. 4b.
This scheme fits in “Adaptation” boxes in Fig. 2a, b.

4.4 Batch Leveraged Bagging (bLB) adaptation

bLB is an extension of LB (Bifet et al., 2010b) designed to operate on batches of data
instead of on single instances as in the original algorithm. Leveraged Bagging is based
on Online Bagging (Oza & Russell, 2001) algorithm, but includes the improvements such
as the removal of experts and addition of new ones based on ADWIN (Bifet & Gavaldà,
2007) change detector, randomization at the ensemble output using output code etc. For
this method, four adaptive mechanisms (including no change) are available, which are
described below.

• LAM0 (No adaptation). No changes are applied to the predictive model, corresponding
to ∅.

• LAM1 (Batch learning). After the arrival of the batch Vt at time t each expert is
updated with it.

• LAM2 (Removing an existing expert and adding a new one). The expert with the low-
est accuracy on the previously seen data is removed, and a new one trained from the
most recent batch is added.

• LAM3. LAM1 (Batch learning) followed by LAM2 (Removing an existing expert and
adding a new one).

bLB (custom adaptive strategy). Having presented the separate adaptive mechanisms, we
now describe the bLB, a batch version of the original LB. Its strategy invokes batch learn-
ing (LAM1) after the arrival of each batch of data. If ADWIN change detector detects a

1442 Machine Learning (2021) 110:1429–1462

1 3

change, the expert with the lowest accuracy on the previously seen data is removed, and a
new one trained from the most recent batch is added (LAM2). The schematics of this strat-
egy is shown in Fig. 5a. This scheme fits in “Adaptation” boxes in Fig. 2a, b.

4.5 Batch BLAST (bBLAST) adaptation

bBLAST is an extension of BLAST (van Rijn et al., 2015) designed to operate on batches
of data instead of on single instances as in the original algorithm. BLAST is an ensemble
method using different types of base learners (as opposed to the ones mentioned above)
with Online Performance Estimation for the weighting. For this method, three adaptive
mechanisms (including no change) are available, which are described below.

• BAM0 (No adaptation). No changes are applied to the predictive model, corresponding
to ∅.

• BAM1 (Batch learning). After the arrival of the batch Vt at time t each expert is
updated with it.

• BAM2 (Reweighing the experts). For every instance [x, y] ∈ Vt experts are reweighed
according to Online Performance Estimation.

bBLAST (custom adaptive strategy). Having presented the separate adaptive mecha-
nisms, we now describe the bBLAST, a batch version of the original BLAST. bBLAST
invokes the combination of the BAM1 (Batch learning) followed by BAM2 (Reweighing

Fig. 5 bLB and bBLAST custom adaptation strategies

1443Machine Learning (2021) 110:1429–1462

1 3

the experts) after the arrival of each batch of data. The schematics of this strategy is shown
in Fig. 5b. This scheme fits in “Adaptation” boxes in Fig. 2a, b.

5 Experimental results

In the following sub-sections we describe the empirical validation of the proposed
approaches. We start by describing the experimental methodology, including experiment
settings, specification of datasets, evaluation strategy, libraries and base learners used. We
then follow with the comparative analysis of regression and classification results of the
proposed and custom adaptive strategies.

5.1 Methodology

The purpose of the experiments9 in this section was to evaluate the usefulness of the pro-
posed strategies. For this purpose we have performed the empirical comparison of auto-
mated adaptation strategies proposed in Sect. 3.2 with custom adaptive strategies and with
strategies involving repeated deployment of a single AM. The goal of the automated adap-
tive strategies is to obtain performance comparable to what one would obtain using a (usu-
ally protracted) manually optimised adaptive strategy (including hyper-parameter selec-
tion). Therefore, if the proposed strategies attain comparable, or not significantly worse
accuracy levels than the custom strategies, this shall be deemed a success. This section
discusses the results in order of introduced algorithms. For all of the algorithms we com-
pare the MAE/accuracy of strategies listed in Table 1.

For SABLE, the experimentation uses five real world regression datasets listed in
Table 5 in “Appendix”. It has been shown, e.g. in Bakirov et al. (2017) and Martin Salva-
dor et al. (2019) that these datasets present different levels of volatility and noise. For the

Table 1 Evaluated adaptive strategies

Result Description

BeStaM For all of the AMs (e.g. from DAM0 to DAM7 for the bDWM adaptation) we repeatedly
deploy the same AM on all of the batches. We then select the best result among all of
the runs. Note that this is a post-hoc strategy used for benchmark purposes, as the AM
delivering the best result varies from dataset to dataset and is not known in advance

BeStaM+rc The same as BeStaM while additionally using retrospective correction after every batch.
Note that the best AM here may be different to the one from BeStaM

XVSelect Select AM (i.e. one of AMs from DAM0 to DAM7 for the bDWM adaptation) based on
the current data batch using the cross-validatory approach described in Sect. 3.2

XVSelect+rc The same as XVSelect while additionally using retrospective correction after every batch
cuStOM Using custom adaptive strategy
cuStOM+rc The same as cuStOM while additionally using retrospective correction after every batch

9 All of the code except the SABLE algorithm, as well as all the datasets except Oxidizer and Drier can be
found on https:// github. com/ Rashi dBaki rov/ multi ple- adapt ive- mecha nisms. SABLE and the specified two
datasets could not be shared because of confidentiality reasons.

https://github.com/RashidBakirov/multiple-adaptive-mechanisms

1444 Machine Learning (2021) 110:1429–1462

1 3

classification algorithms, we use five real world datasets listed in Table 6 and 26 synthetic
datasets listed in Table 7 and visualised in Fig. 13 in “Appendix”.

For the real world datasets we use prequential evaluation (Dawid, 1984) which is a
standard evaluation technique for data streams. For the batch scenario it works as follows;
at time t we receive the data batch Xt , and predict the values/labels ŷt . Then the true val-
ues/labels yt are made available, and we calculate the error/accuracy of our predictions.
Subsequently {Xt, yt} are used for adaptation. Thus, the predictions are always made on
unseen data, which is not included in the training data in any form. For synthetic datasets
we generate an additional 100 test data instances for each single instance in training data
using the same distribution. The predictive accuracy on the batch is then measured on test
data relevant to that batch. This test data is not used for training or adapting models.

For the classification algorithms, the statistical significance of differences between the
results is assessed using the Friedman test with post-hoc Nemenyi test, which are widely
used to compare multiple classifiers (Demšar, 2006). The Friedman test checks for statisti-
cal difference between the compared classifiers; if so, the Nemenyi test is used to identify
which classifiers are significantly better than others. We report the results of the Nemenyi

Table 2 SABLE results

The best performance in each row is indicated with bold font. The AM which was found to deliver the best
for performance for BestAM and BestAM+RC is indicated in respective columns. Upwards arrow denotes
the cases when either XVSelect or XVSelect+RC performs better that BestAM, and downwards arrow
denotes the opposite cases. Double lined arrows indicate a significant difference according to Wilcoxon
signed-rank test (The Wilcoxon signed-rank test assumes the null distribution is symmetric. This assump-
tion mostly holds for our data) (Wilcoxon, 1945) with p = 0.05

BeStaM BeStaM+rc XVSelect XVSelect+rc

n = 50

 Catalyst ⇑ 0.023 (SAM2) 0.028 (SAM5) 0.021 0.023
 Oxidiser ⇑ 0.490 (SAM2) 0.501 (SAM4) 0.485 0.519

 Drier ⇑ 8.98×10−6 (SAM1) 9.78×10−6 (SAM0) 9.27×10−6 6.95×10−�

 Debutaniser ↓ 0.117 (SAM1) 0.121 (SAM4) 0.122 0.122
 Sulfur ⇓ 0.030 (SAM1) 0.051 (SAM3) 0.060 0.050
n = 100

 Catalyst ⇑ 0.031 (SAM2) 0.031 (SAM4) 0.030 0.029
 Oxidiser ⇓ 0.542 (SAM4) 0.559 (SAM4) 0.569 0.566
 Drier ⇓ 8.09×10−� (SAM1) 8.97×10−6 (SAM1) 1.20×10−5 1.12×10−5

 Debutaniser ⇑ 0.117 (SAM1) 0.116 (SAM4) 0.145 0.112
 Sulfur ⇓ 0.031 (SAM1) 0.058 (SAM2) 0.060 0.054
n = 200

 Catalyst ⇑ 0.0495 (SAM4) 0.0519 (SAM5) 0.0492 0.0495
 Oxidiser ↓ 0.612 (SAM4) 0.611 (SAM5) 0.631 0.676
 Drier ⇑ 5.01×10−5 (SAM4) 5.01×10−5 (SAM5) 4.67×10−� 4.67×10−�

 Debutaniser ↑ 0.106 (SAM1) 0.105 (SAM4) 0.104 0.108
 Sulfur ⇓ 0.033 (SAM1) 0.039 (SAM1) 0.049 0.040

1445Machine Learning (2021) 110:1429–1462

1 3

tests as Nemenyi plots.10 They plot the average rank of all methods and the critical differ-
ence per batch/base learner. Classifiers that are statistically equivalent are connected by a
line.

For bDWM, bPL and bLB, Naive Bayes (NB) and Hoeffding Trees (HT) (Domingos &
Hulten, 2000) were used as base learners. Open source libraries Prtools (Duin et al., 2007),
Weka (Hall et al., 2009), MOA (Bifet et al., 2010a) and scikit-multiflow (Montiel et al.,
2018) were employed. As there is not any randomness involved in the evaluation of data-
sets, a single run was used to compute the MAE (for regression) and accuracy (for classifi-
cation) values, except for bLB, where 100 runs were used for each strategy.

5.2 Simple Adaptive Batch Local Ensemble (SABLE) results

Three different batch sizes for each dataset are examined in the simulations together using
hyperparameters as tabulated in Table 8 in “Appendix”. These parameter combinations
were empirically identified using grid search, optimising the performance of the Oracle
strategy (Eq. 4).

Best AM

bDWM

Best AM+RC

XVSelect

XVSelectRC

bDWM+RC

1 2 3 4 5 6

CD

Friedman p = 8.6009e-13

Base learner: NB, n = 10

BestAM

BestAM+RC

XVSelect

bDWM+RC

bDWM

XVSelect+RC

1 2 3 4 5 6

CD

Friedman p = 9.327e-06

Base learner: HT, n = 10

Best AM

Best AM+RC

XVSelect

XVSelectRC

bDWM+RC

bDWM

1 2 3 4 5 6

CD

Friedman p = 2.67e-08

Base learner: NB, n = 20

BestAM

BestAM+RC

XVSelect

bDWM

XVSelect+RC

bDWM+RC

1 2 3 4 5 6

CD

Friedman p = 1.0864e-10

Base learner: HT, n = 20

Best AM

XVSelect

Best AM+RC

bDWM

XVSelectRC

bDWM+RC

1 2 3 4 5 6

CD

Base learner: NB, n = 50

BestAM

BestAM+RC

XVSelect

bDWM

bDWM+RC

XVSelect+RC

1 2 3 4 5 6

CD

Friedman p = 1.1781e-11

Base learner: HT, n = 50

(a) (b)

(c) (d)

(e) (f)

Fig. 6 bDWM adaptation: Nemenyi plots (lower is better) of BeStaM, BeStaM+rc, XVSelect,
XVSelect+rc, cuStOM (bDWM), cuStOM+rc (bDWM+RC) strategies for different batch sizes n with
NB and HT base learners

10 Freely available code from drawNemenyi (2019) and Cardillo (2009) were used to make these plots.

1446 Machine Learning (2021) 110:1429–1462

1 3

The results of the experiments using SABLE for batch sizes n = 50, 100, 200 are given
in Table 2. These results suggest that most of the times XVSelect and XVSelect+rc
perform better or comparable to BeStaM and BeStaM+rc. Overall XVSelect or
XVSelect+rc had the lowest MAE with significant difference in 7 experiments out of
15. XVSelect or XVSelect+rc showed comparable (not worse with significant dif-
ference) performance to BeStaM in 11 experiments. The cases where XVSelect and
XVSelect+rc perform noticeably worse are Drier dataset with batch size of 100 and Sul-
fur dataset with all batch sizes. We relate this to the stability of these datasets. Indeed, the
BeStaM in all these cases is the slow adapting sequence of SAM1, without any forgetting
of the old information. Difference in batch sizes is important for some datasets. This can
be related to the frequency of changes and whether they happen within a batch, which can
have a negative impact on XVSelect and XVSelect+rc. Retrospective correction (RC)
has improved the performance of XVSelect for some cases. For the deployment of single
AM, as seen in BeStaM and BeStaM+rc results, RC is more useful for the larger batch
sizes, presumably because more training data prevents overfitting.

5.3 Batch Dynamic Weighted Majority (bDWM) results

The results of the Nemenyi test are shown in Fig. 6.11 For four experiments out of six,
excluding NB base learner with batch sizes of 10 and 20, XVSelect and XVSelect+rc
are both ranked higher than the bDWM (cuStOM strategy), in some cases significantly so.
For batch size 10 with NB as base learner, bDWM performs better than both proposed
approaches and for batch size 20, better than XVSelect+rc. The addition of retrospective
correction does not seem to bring obvious benefit to adaptive strategies; while improving
the results in some experiments, in most of the cases it decreases the accuracy. In terms
of batch sizes, increasing n seems to improve the performance of XVSelect with NB
base learner. In general, BeStaM provides the best results across all experiments, while
BeStaM+rc performs slightly worse. It may be worth to reiterate that, for all of the clas-
sification experiments, the BeStaM and BeStaM+rc repeatedly deploy the single AM
which delivers the best results specific for particular settings (dataset, batch size, base
learner). This AM is not known in advance, so this strategy is not attainable in practice and
is used for benchmark purposes.

5.4 Batch Paired Learner (bPL) results

For bPL and bPL+RC (cuStOM and cuStOM+rc strategies) we have used the threshold
of � = 1 for all the experiments. This value was chosen as it was experimentally estab-
lished that the lower threshold values tend to provide better results than the higher ones.
At the same time, keeping 𝜃 > 0 makes use of the change counter mechanism, a char-
acteristic feature of bPL (� = 0 provided similar results). We present the Nemenyi plots
for both base learners on all three batch sizes in Fig. 7. Also for this algorithm, XVS-
elect and XVSelect+rc show good performance and are ranked higher than the bPL
for all batch sizes and base learner combinations. For bPL adaptation, the BeStaM+rc
performs well for all of the settings, however the performance of BeStaM is poor for

11 The full results tables with accuracy values of each approach on each dataset are accessible from https://
github. com/ Rashi dBaki rov/ multi ple- adapt ive- mecha nisms/ tree/ master/ resul ts.

https://github.com/RashidBakirov/multiple-adaptive-mechanisms/tree/master/results
https://github.com/RashidBakirov/multiple-adaptive-mechanisms/tree/master/results

1447Machine Learning (2021) 110:1429–1462

1 3

the low batch sizes. Retrospective correction appears to be useful for bPL adaptation,
providing improvements for BeStaM and XVSelect for most settings.

5.5 Batch Leveraged Bagging (bLB) results

bLB adaptation was implemented modifying the existing code from scikit-multiflow.
The default hyper-parameters were kept. We present the Nemenyi plots of the average
accuracy values of 100 runs for each adaptive strategy for both base learners on all three
batch sizes in Fig. 8. The performance of the proposed XVSelect is consistently better
than the bLB (cuStOM strategy) for all of the settings, mostly significantly so. This is
even more apparent for higher batch sizes. Behaviour of RC in this case is noteworthy;
XVSelect+rc performs consistently worse than XVSelect although still beats the bLB
in all of the settings bar one. On the other hand, bLB with RC (cuStOM+rc strategy) is
always better than the bLB. It is possible that for Leveraged Bagging, combining XVS-
elect and RC makes the adaptation overfit to the last batch, thus reducing the accuracy.
For bLB adaptation, the BeStaM outperforms the proposed approaches in most of the
settings, however there are no significant differences to the performance of XVSelect.

BestAM+RC

XVSelect+RC

XVSelect

BestAM

bPL+RC

bPL

1 2 3 4 5 6

CD

Friedman p = 8.4833e-08

Base learner: NB, n = 10

BestAM+RC

XVSelect+RC

XVSelect

BestAM

bPL

bPL+RC

1 2 3 4 5 6

CD

Friedman p = 1.0641e-10

Base learner: HT, n = 10

XVSelect

bPL+RC

bPL

BestAM

1 2 3 4 5 6

CD

Friedman p = 6.4461e-08

Base learner: NB, n = 20

BestAM+RC

XVSelect+RC

BestAM

bPL+RC

bPL

XVSelect

1 2 3 4 5 6

CD

Friedman p = 7.0736e-11

Base learner: HT, n = 20

BestAM+RC

BestAM

XVSelect

bPL

bPL+RC

XVSelect+RC

1 2 3 4 5 6

CD

Friedman p = 0

Base learner: NB, n = 50

BestAM+RC

BestAM

XVSelect

bPL

bPL+RC

XVSelect+RC

1 2 3 4 5 6

CD

Friedman p = 0

Base learner: HT, n = 50

(a) (b)

(c) (d)

(e) (f)

Fig. 7 bPL adaptation: Nemenyi plots (lower is better) of BeStaM, BeStaM+rc, XVSelect,
XVSelect+rc, cuStOM (bPL), cuStOM+rc (bPL+RC) strategies for different batch sizes n with NB and
HT base learners

1448 Machine Learning (2021) 110:1429–1462

1 3

5.6 Batch BLAST (bBLAST) results

bBLAST adaptation was implemented modifying the existing MOA code. In contrast
to the algorithms in the previous sections, bBLAST uses not single but multiple base
learning algorithms; Hoeffding Tree, Naive Bayes, Perceptron, Stochastic Gradient
Descent, and k Nearest Neighbour. All of the parameters of the bBLAST, as well as
those of base experts are kept at defaults of MOA. We present the Nemenyi plots of the
average the accuracy values of the selected adaptive strategies for all three batch sizes
in Fig. 9. The performance of the bBLAST (cuStOM strategy) is consistently better than
the proposed adaptive strategies for all of the settings, though not significantly different
than XVSelect+rc for batch sizes n = 10 and n = 20 . The RC effect here is the mir-
ror opposite to the bLB; bBLAST with RC (cuStOM+rc) always performs worse than
bBLAST, however XVSelect+rc always performs better than XVSelect. Performance
of BeStaM and BeStaM+rc strategies for this algorithm is markedly worse than for
others as they are often outperformed by XVSelect and XVSelect+rc.

BestAM

XVSelect

bLB

XVSelect+RC

bLB+RC

1 2 3 4 5 6

CD

Friedman p = 5.6621e-14

Base learner: NB, n = 10

BestAM+RC

XVSelect

BestAM

bLB

bLB+RC

XVSelect+RC

1 2 3 4 5 6

CD

Friedman p = 1.9232e-09

Base learner: HT, n = 10

BestAM

XVSelect

BestAM+RC

bLB

bLB+RC

XVSelect+RC

1 2 3 4 5 6

CD

Friedman p = 0

Base learner: NB, n = 20

BestAM

BestAM+RC

XVSelect

bLB

bLB+RC

1 2 3 4 5 6

CD

Friedman p = 1.1102e-16

Base learner: HT, n = 20

XVSelect

BestAM

BestAM+RC

bLB

bLB+RC

XVSelect+RC

1 2 3 4 5 6
CD

Friedman p = 0

Base learner: NB, n = 50

BestAM

XVSelect

BestAM+RC

bLB

bLB+RC

XVSelect+RC

1 2 3 4 5 6
CD

Friedman p = 3.3307e-16

Base learner: HT, n = 50

(a) (b)

(c) (d)

(e) (f)

Fig. 8 bLB adaptation: Nemenyi plots (lower is better) of BeStaM, BeStaM+rc, XVSelect,
XVSelect+rc, cuStOM (bLB), cuStOM+rc (bLB+RC) strategies for different batch sizes n with NB and
HT base learners

1449Machine Learning (2021) 110:1429–1462

1 3

bBlast

XVSelect+RC

bBlast+RC

BestAM

XVSelect

BestAM+RC

1 2 3 4 5 6

CD

Friedman p = 1.5068e-05

n = 10

bBlast

XVSelect+RC

bBlast+RC

BestAM

XVSelect

BestAM+RC

1 2 3 4 5 6

CD

Friedman p = 5.2903e-07

n = 20

bBlast

BestAM

XVSelect+RC

BestAM+RC

XVSelect

bBlast+RC

1 2 3 4 5 6

CD

Friedman p = 5.8904e-08

n = 50

(a) (b)

(c)

Fig. 9 bBLAST adaptation: Nemenyi plots (lower is better) of BeStaM, BeStaM+rc, XVSelect,
XVSelect+rc, cuStOM (bBLAST), cuStOM+rc (bBLAST+RC) adaptive strategies for different batch
sizes n

Table 3 Comparisons of different approaches

Comparison Better (signifi-
cant)

Better Worse Worse
(signifi-
cant)

XVSelect versus cuStOM 11 6 1 3
XVSelect+rc versus cuStOM 10 6 3 2
XVSelect versus BeStaM 2 5 9 5
XVSelect+rc versus BeStaM 4 2 3 12
XVSelect+rc versus XVSelect 1 8 11 1
cuStOM+rc versus cuStOM 3 9 8 1
BeStaM+rc versus BeStaM 4 5.5 8.5 3

BestAM

BestAM+RC

XVSelect+RC

Custom

XVSelect

Custom+RC

1 2 3 4 5 6

CD

Friedman p = 8.9721e-06

Real data

BestAM

BestAM+RC

XVSelect+RC

Custom

Custom+RC

XVSelect

1 2 3 4 5 6

CD

Friedman p = 0

Synthetic data(a) (b)

Fig. 10 Nemenyi plots (lower is better) of BeStaM, BeStaM+rc, XVSelect, XVSelect+rc, cuStOM,
cuStOM+rc strategies for real and synthetic datasets

1450 Machine Learning (2021) 110:1429–1462

1 3

5.7 Summary of classification results

The conducted experiments give insight on several questions. Firstly, we are interested
whether the proposed adaptation strategies XVSelect and XVSelect+rc provide compa-
rable results to the custom strategies or to the best results achieved by a repeated deploy-
ment of any AM. Secondly, we would like to know whether the retrospective correction has
really a positive effect on the accuracy of the predictions, and if so for which approaches.
Finally, we would like to compare the performance of the adaptive strategies on the syn-
thetic data to this on real-world datasets. To answer the first two questions we compare the
results from Sects. 5.3–5.6 in Table 3, summing up the number of cases one approach was
better and worse than the other across all of the algorithms, batch sizes and base learners
(equal performance is represented by 0.5 in both “Better” and “Worse” columns).

In comparison to cuStOM, XVSelect and XVSelect+rc has better accuracy for most
experiments, often with significant difference. For these comparisons XVSelect and
XVSelect+rc show similar results. Both XVSelect or XVSelect+rc perform in average
worse than BeStaM, however, for XVSelect, the performance is comparable (not signifi-
cantly worse in majority of cases).

Furthermore, we consider the effects of RC separately for each approach, as it has been
shown that they could be different. For XVSelect, deploying RC seems to not have a criti-
cal effect. The positive effect of RC is more apparent on cuStOM strategy. For the BeStaM
it should be noted that the best AM can be different depending on dataset and even for the
same dataset it is not necessarily the case that BeStaM and BeStaM+rc will be based on
the same AM. However, we can still say if the best performing AM is known, the deploy-
ment of RC is likely to have a negative effect on the accuracy.

Finally, to evaluate the performance of XVSelect and XVSelect+rc on the synthetic
vs. real world data, we have compared the results on these datasets separately, across all of
the algorithms and settings using Nemenyi plots on Fig. 10. It is possible to observe that
the results of the proposed approaches is closer to the BeStaM on the real world data, with
XVSelect, XVSelect+rc and cuStOM+rc showing comparable performance. This may
be related to the more complicated nature of these datasets, where there may not exist a
single AM that markedly optimises the performance, an observation in line with our earlier
findings from Bakirov et al. (2015). The performance of XVSelect and XVSelect+rc
is comparatively worse on synthetic data, which may be simple enough for a single AM

Table 4 Relative and absolute (seconds, in brackets) single-core average batch runtimes of XVSelect,
XVSelect+rc, cuStOM, cuStOM+rc strategies on classification dataset #28 (Power Italy) for different
classification algorithms with n = 50 and NB base learner

Adaptive Strategy bPL bBLAST bLB bDWM

cuStOM 1 (0.036) 1 (0.004) 1 (0.179) 1 (0.056)
XVSelect (2 folds) 2.687 (0.098) 7.67 (0.033) 3.594 (0.644) 112.232 (6.246)
XVSelect (5 folds) 4.896 (0.178) 11.678 (0.05) 8.901 (1.595) 232.83 (12.957)
XVSelect (10 folds) 8.797 (0.32) 17.2 (0.074) 17.622 (3.158) 455.76 (25.363)
cuStOM+rc 1.003 (0.036) 6.692 (0.029) 3.008 (0.539) 35.105 (1.954)
XVSelect+rc (2 folds) 2.676 (0.097) 13.205 (0.057) 6.062 (1.086) 110.728 (6.162)
XVSelect+rc (5 folds) 5.078 (0.184) 14.912 (0.064) 11.348 (2.033) 224.421 (12.489)
XVSelect+rc (10 folds) 9.047 (0.329) 17.961 (0.077) 20.16 (3.613) 432.138 (24.049)

1451Machine Learning (2021) 110:1429–1462

1 3

based adaptive strategy to deliver good results. Even for this case, these two approaches
outperform cuStOM with a significant difference.

5.8 Runtime analysis

We proceed with the analysis of the runtime performance of our approaches. First, we note
that with the assumption that the processing time for every batch, including the predic-
tion, adaptation, and accuracy/error calculation is bounded by some constant, which is the
case for all of the algorithms we consider, the runtime complexity of any custom adaptive
algorithm is O(n) , where n is the number of batches. In this case, the runtime complexity
of XVSelect is O(|G|qn) where |G| is the number of available AMs and q is the num-
ber of cross-validation fold, as for every batch every AM with q-fold cross-validation is
used. Retrospective correction has the complexity of O(|G|n) , as for every batch every AM
is used once. Thus, XVSelect+rc has the complexity of O(|G|2qn) . Since |G| and q are
constants, it follows that O(|G|n) ∼ O(|G|qn) ∼ O(|G|2qn) ∼ O(n) , hence all the proposed
methods are in the same order of runtime complexity as the custom strategies.

For empirical runtime evaluation, we compare the performance of XVSelect,
XVSelect+rc, cuStOM, cuStOM+rc strategies on classification dataset #28 (Power Italy)
for different classification algorithms with n = 50 and NB base learner in Table 4,12 ini-
tially without using any parallel processing. This dataset was chosen as it is a relatively
large sized real-world dataset. The results show that the performance of our methods vary
greatly depending on algorithm; e.g. for XVSelect+rc with 2-fold cross-validation,
bPL adaptation has fastest relative average batch processing time (only 2.69 times higher
than cuStOM), whereas bDWM adaptation has the slowest time (110.73 times higher than
cuStOM).

The differences in performances are explainable by the internal characteristics of the
algorithms. Batch processing time for XVSelect and XVSelect+rc is proportional to

Fig. 11 Average batch runt-
imes for bDWM Lite and Zero,
XVSelect+rc strategy on
classification dataset #28 (Power
Italy) with n = 50 and NB base
learner

oreZetiL
0

0.2

0.4

0.6

0.8

1

1.2

A
ve

ra
ge

 b
at

ch
 r

un
tim

e
(s

)

Custom
No parallelisation
XV parallelisation
Full parallelisation

12 The results in this section are achieved on quad-core Intel Core i7-7700HQ CPU with core frequency of
2.8 GHz. All adaptive strategies were run 10 times and the average results are reported.

1452 Machine Learning (2021) 110:1429–1462

1 3

the batch runtimes with single AMs (e.g. when using cuStOM strategy). The longer batch
runtimes are further extended by the cross-validation and retrospective correction. There-
fore, XVSelect and XVSelect+rc for bDWM which has 8 AMs and can have about 20
active experts at the same time, has much higher relative batch runtime than bPL, which
has only three AMs and two experts. Other interesting observation is that the RC does not
always increase the batch processing time as seen in the example of bPL, which inher-
ently deploys all of the AMs even without RC. This is also the case for bDWM XVSelect
and XVSelect+rc, where this may be attributed to the AMs deployed by XVSelect+rc
strategy (e.g. less creation of new experts AMs, which notably slow the model down).

Batch processing runtime can be improved by applying parallel processing as both
cross-validatory selection and retrospective correction are embarrassingly parallel opera-
tions. Fully parallelising the adaptive strategy however requires available |G|q threads
which can be prohibitive. Even the fully parallel implementation may not be as efficient as
the custom strategy, because the choice of the AM can have an effect on the performance
for the subsequent batches. This can be again seen on an example of expert creation AMs.

To illustrate these points a further experiment is undertaken, where two modifications
of bDWM are proposed. The first one, bDWM_Lite starts with two experts and includes
only two AMs, DAM4 (weights update, experts pruning and batch learning) and DAM7
(weights update, experts pruning, batch learning and expert creation) instead of the orig-
inal 8, which still allows to run the cuStOM strategy. bDWM_Lite allows us to test the
fully parallel implementation as it requires only 4 threads for this. The second modifica-
tion, bDWM_Zero, mimics bDWM_Lite, and in addition limits the ensemble to only
two experts. This prevents the performance degradation caused by expert creation. We

0 10 20 30 40 50 60 70 80 90

Batch

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

A
ve

ra
ge

 r
un

tim
e

(s
)

Lite

Zero

Lite with XV parallelisation

Zero with XV parallelisation

Lite with full parallelisation

Zero with full parallelisation

Fig. 12 Average batch runtimes for bDWM Lite and Zero, XVSelect+rc strategy on classification dataset
#28 (Power Italy) with n = 50 and NB base learner

1453Machine Learning (2021) 110:1429–1462

1 3

experiment with XVSelect+rc with 2-fold cross-validation and two parallelisation13
choices, cross-validation (XV) parallelisation where parallel processing is applied to the
cross-validation only, and full parallelisation, where in addition to cross-validation, the
retrospective correction is also run in parallel. Figure 11 shows the average batch runt-
imes over the whole dataset. Even without parallelisation, simply reducing the number of
AMs from 8 to 2 (bDWM_Lite), results in performance increase by the factor of 6, while
parallelisation increases it even further. Limiting the number of experts further reduces
the average batch runtime to only 3 times more than the cuStOM. Note that for bDWM_
Zero the parallelisation does not decrease the runtimes by much and that the full paral-
lelisation doesn’t outperform XV only parallelisation. This can be attributed to the already
reduced runtime due to limited number of experts and the parallel processing overhead
which negates increase in performance. Further insights are given in Fig. 12. It can be seen
that for bDWM_Lite, average runtime per batch increases as batches come in, due to the
increase in experts, however gradually flattens as the number of experts stabilizes around
20. Conversely, for bDWM_Zero, the runtime per batch is stable from the start.

6 Discussion and conclusions

The core aim of this paper was to explore the issue of automating the adaptation of predic-
tive algorithms, which was found to be a rather overlooked direction in otherwise popular
area of automated machine learning. In our research, we have addressed this by utilising a
simple, yet powerful adaptation framework, which separates adaptation from prediction,
defines adaptive mechanisms and adaptive strategies, as well as allows the use of retrospec-
tive model correction. This adaptation framework enables the development of generic auto-
mated adaptation strategies, which can be deployed on any set of adaptive mechanisms,
thus facilitating the automation of predictive algorithms’ adaptation.

We have used several automated adaptation strategies, based on cross-validation on the
current batch and retrospectively reverting the model to the oracle state after obtaining the
most recent batch of data. We postulate that the recently seen data is likely to be more
related to the incoming data, therefore these strategies tend to steer the adaptation of the
predictive model to achieve better results on the most recent available data.

To confirm our assumptions, we have empirically investigated the merit of automated
adaptation strategies XVSelect and XVSelect+rc. For this purpose we have conducted
experiments on 10 real and 26 synthetic datasets, exhibiting various levels of adaptation
need.

The results are promising, as for the majority of these datasets, the proposed automated
approaches were able to demonstrate comparable or better performance to those of spe-
cifically designed custom algorithms and the repeated deployment of any single adaptive
mechanism. However, it is not the goal of this paper to replace existing custom strategies
with the proposed ones. We rather see the benefit of the proposed strategies in their appli-
cability to all algorithms with multiple adaptive mechanisms, so that the designer of the
algorithm does not need to spend time and effort to develop a custom adaptive strategy.
We have analysed the cases where proposed strategies performed relatively poorly. It is
postulated that the reasons for these cases were: (a) lack of change/need for adaptation; (b)

13 Parallelisation is realised using Matlab Parallel toolbox.

1454 Machine Learning (2021) 110:1429–1462

1 3

insufficient data in a batch; and (c) relatively simple datasets, all of which have trivial solu-
tions. We have also identified that the choice of algorithm and base learner can affect the
performance of proposed strategies.

A benefit of the proposed generic automated adaptation strategies is that they can help
designers of machine learning solutions save time by not having to devise a custom adap-
tive strategy. XVSelect and XVSelect+rc are generally parameter-free, except for the
number of cross validation folds, choosing which is trivial.

Naturally, the described strategies come at some cost in performance. This cost varies
between different algorithms and is dependent on the number of AMs and other factors,
such as number of experts. The runtimes can be reduced by the parallelisation of cross-val-
idatory selection and retrospective correction. It is also conceivable for throughput require-
ments to be lower for batch learning scenario, as the data is passed to the model only after
the whole batch is accumulated.

7 Future work

This research has focused on batch scenario. Adapting the introduced automated adaptive
strategies for incremental learning scenario remains a future research question. In that case
a lack of batches would for example pose a question of data selection for cross validation.
This could be addressed using data windows of static or dynamically changing size. Using
an alternative to cross validation can be another solution. Another useful scope of research
is focusing on a semi-supervised scenario, where true values or labels are not always avail-
able. This is relevant for many applications, amongst them in the process industry.

A dimension which may require more attention is further improvement of the runtime
performance of the proposed approaches. An obvious first step in this direction is discard-
ing the less useful, such as “do nothing”, AMs.

Further research directions include theoretical analysis of this direction of research,
where relevant expert/bandit strategies may be useful, as well as the experiments with other
ML tasks such as time series prediction, clustering and recommender systems. Finally, as
we have observed some discrepancies in performance of the proposed approaches across
algorithms/datasets/base learners, a natural research direction is to investigate the rea-
sons for these discrepancies. This would also include experimentation with different base
learners.

In general, there is a rising tendency of modular systems for construction of machine
learning solutions, where adaptive mechanisms are considered as separate entities, along
with pre-processing and predictive techniques. One of the features of such systems is easy,
and often automated plug-and-play machine learning (Kadlec and Gabrys, 2009; Kedziora
et al., 2020). Generic automated adaptive strategies introduced in this paper further con-
tribute towards this automation.

Appendix

See Tables 5, 6, 7, 8 and Fig. 13.

1455Machine Learning (2021) 110:1429–1462

1 3

Ta
bl

e
5

 R
eg

re
ss

io
n

da
ta

se
ts

 w
ith

 N
 in

st
an

ce
s a

nd
 M

 fe
at

ur
es

#
N

am
e

N
M

D
es

cr
ip

tio
n

1
C

at
al

ys
t a

ct
iv

at
io

n
58

67
12

H
ig

hl
y

vo
la

til
e

si
m

ul
at

io
n

(r
ea

l c
on

di
tio

ns
 b

as
ed

) o
f c

at
al

ys
t a

ct
iv

at
io

n
in

 a
 m

ul
ti-

tu
be

 re
ac

to
r.

Ta
sk

 is
 th

e
pr

ed
ic

tio
n

of
 c

at
al

ys
t a

ct
iv

ity
 w

hi
le

 in
pu

ts
 a

re
 fl

ow
s,

co
nc

en
tra

tio
ns

 a
nd

 te
m

pe
ra

tu
re

s (
St

ra
ck

el
ja

n,
 2

00
6)

2
Th

er
m

al
 o

xi
di

se
r

28
20

36
Pr

ed
ic

tio
n

of
 N
O

x
 e

xh
au

st
ga

s c
on

ce
nt

ra
tio

n
du

rin
g

an
 in

du
str

ia
l p

ro
ce

ss
, m

od
er

at
el

y
vo

la
til

e.
 In

pu
t f

ea
tu

re
s

in
cl

ud
e

co
nc

en
tra

tio
ns

, fl
ow

s,
pr

es
su

re
s a

nd
 te

m
pe

ra
tu

re
s (

K
ad

le
c

an
d

G
ab

ry
s,

20
09

)
3

In
du

str
ia

l d
rie

r
12

19
16

Pr
ed

ic
tio

n
of

 re
si

du
al

 h
um

id
ity

 o
f t

he
 p

ro
ce

ss
 p

ro
du

ct
, r

el
at

iv
el

y
st

ab
le

. I
np

ut
 fe

at
ur

es
 in

cl
ud

e
te

m
pe

ra
tu

re
s,

pr
es

su
re

s a
nd

 h
um

id
iti

es
 (K

ad
le

c
an

d
G

ab
ry

s,
20

09
)

4
D

eb
ut

an
is

er
 c

ol
um

n
23

94
7

Pr
ed

ic
tio

n
of

 b
ut

an
e

co
nc

en
tra

tio
n

at
 th

e
ou

tp
ut

 o
f t

he
 c

ol
um

n.
 In

pu
t f

ea
tu

re
s a

re
 te

m
pe

ra
tu

re
s,

pr
es

su
re

s
an

d
flo

w
s (

Fo
rtu

na
 e

t a
l.,

 2
00

5)
5

Su
lfu

r r
ec

ov
er

y
10

,0
81

6
Pr

ed
ic

tio
n

of
 S
O

2
 in

 th
e

ou
tp

ut
 o

f s
ul

fu
r r

ec
ov

er
y

un
it.

 In
pu

t f
ea

tu
re

s a
re

 g
as

 a
nd

 a
ir

flo
w

 m
ea

su
re

m
en

ts

(F
or

tu
na

 e
t a

l.,
 2

00
3)

1456 Machine Learning (2021) 110:1429–1462

1 3

Ta
bl

e
6

 R
ea

l w
or

ld
 c

la
ss

ifi
ca

tio
n

da
ta

se
ts

 w
ith

 N
 in

st
an

ce
s,
M

 fe
at

ur
es

 a
nd

 C
 c

la
ss

es

#
N

am
e

N
M

C
B

rie
f d

es
cr

ip
tio

n

27
A

us
tra

lia
n

el
ec

tri
ci

ty

pr
ic

es
 (E

le
c2

)
27

,8
87

6
2

W
id

el
y

us
ed

 c
on

ce
pt

 d
rif

t b
en

ch
m

ar
k

da
ta

se
t t

ho
ug

ht
 to

 h
av

e
se

as
on

al
 a

nd
 o

th
er

 c
ha

ng
es

 a
s w

el
l a

s n
oi

se
.

Ta
sk

 is
 th

e
pr

ed
ic

tio
n

of
 w

he
th

er
 e

le
ct

ric
ity

 p
ric

e
ris

es
 o

r f
al

ls
 w

hi
le

 in
pu

ts
 a

re
 d

ay
s o

f t
he

 w
ee

k,
 ti

m
es

 o
f

th
e

da
y

an
d

el
ec

tri
ci

ty
 d

em
an

ds
 (H

ar
rie

s,
19

99
)

28
Po

w
er

 It
al

y
44

89
2

4
Th

e
ta

sk
 is

 p
re

di
ct

io
n

of
 h

ou
r o

f t
he

 d
ay

 (0
3:

00
, 1

0:
00

, 1
7:

00
 a

nd
 2

1:
00

) b
as

ed
 o

n
su

pp
lie

d
an

d
tra

ns
fe

rr
ed

po

w
er

 m
ea

su
re

d
in

 It
al

y
(Z

hu
, 2

01
0;

 C
he

n
et

 a
l.,

 2
01

5)
29

C
on

tra
ce

pt
iv

e
44

19
9

3
C

on
tra

ce
pt

iv
e

da
ta

se
t f

ro
m

 U
C

I r
ep

os
ito

ry
 (N

ew
m

an
 e

t a
l.,

 1
99

8)
 w

ith
 a

rti
fic

ia
lly

 a
dd

ed
 d

rif
t (

M
in

ku
 e

t a
l.,

20

10
)

30
Ir

is
45

0
4

4
Ir

is
 d

at
as

et
 (A

nd
er

so
n,

 1
93

6;
 F

is
he

r,
19

36
) w

ith
 a

rti
fic

ia
lly

 a
dd

ed
 d

rif
t (

M
in

ku
 e

t a
l.,

 2
01

0)
31

Ye
as

t
59

28
8

10
C

on
tra

ce
pt

iv
e

da
ta

se
t f

ro
m

 U
C

I r
ep

os
ito

ry
 (N

ew
m

an
 e

t a
l.,

 1
99

8)
 w

ith
 a

rti
fic

ia
lly

 a
dd

ed
 d

rif
t (

M
in

ku
 e

t a
l.,

20

10
)

1457Machine Learning (2021) 110:1429–1462

1 3

Table 7 Synthetic classification datasets used in experiments, with N instances and C classes, from Bakirov
and Gabrys (2013)

Column “Drift” specifies number of drifts/changes in data, the percentage of change in the decision bound-
ary and its type. All datasets have 2 input features

Data type N C Drift Noise/overlap

1 Hyperplane 600 2 2 × 50% rotation None
2 Hyperplane 600 2 2 × 50% rotation 10% uniform noise
3 Hyperplane 600 2 9 × 11.11% rotation None
4 Hyperplane 600 2 9 × 11.11% rotation 10% uniform noise
5 Hyperplane 640 2 15 × 6.67% rotation None
6 Hyperplane 640 2 15 × 6.67% rotation 10% uniform noise
7 Hyperplane 1500 4 2 × 50% rotation None
8 Hyperplane 1500 4 2 × 50% rotation 10% uniform noise
9 Gaussian 1155 2 4 × 50% switching 0–50% overlap
10 Gaussian 1155 2 10 × 20% switching 0–50% overlap
11 Gaussian 1155 2 20 × 10% switching 0–50% overlap
12 Gaussian 2805 2 4 × 49.87% passing 0.21–49.97% overlap
13 Gaussian 2805 2 6 × 27.34% passing 0.21–49.97% overlap
14 Gaussian 2805 2 32 × 9.87% passing 0.21–49.97% overlap
15 Gaussian 945 2 4 × 52.05% move 0.04% overlap
16 Gaussian 945 2 4 × 52.05% move 10.39% overlap
17 Gaussian 945 2 8 × 27.63% move 0.04% overlap
18 Gaussian 945 2 8 × 27.63% move 10.39% overlap
19 Gaussian 945 2 20 × 11.25% move 0.04% overlap
20 Gaussian 945 2 20 × 11.25% move 10.39% overlap
21 Gaussian 1890 4 4 × 52.05% move 0.013% overlap
22 Gaussian 1890 4 4 × 52.05% move 10.24% overlap
23 Gaussian 1890 4 8 × 27.63% move 0.013% overlap
24 Gaussian 1890 4 8 × 27.63% move 10.24% overlap
25 Gaussian 1890 4 20 × 11.25% move 0.013% overlap
26 Gaussian 1890 4 20 × 11.25% move 10.24% overlap

1458 Machine Learning (2021) 110:1429–1462

1 3

−0.5 0 0.5
−0.5

0

0.5

−0.5 0 0.5
−0.5

0

0.5

−0.5 0 0.5
−0.5

0

0.5

−10 0 10
−20

0

20

−10 0 10
−20

0

20

−10 0 10
−20

0

20

0 5 10 15
−2
0
2
4
6

0 5 10 15
−2
0
2
4
6

0 5 10 15
−2
0
2
4
6

−4 −2 0 2 4 6 8
−4
−2
0
2
4
6
8

−4 −2 0 2 4 6 8
−4
−2
0
2
4
6
8

−4 −2 0 2 4 6 8
−4
−2
0
2
4
6
8

Rota�ng
Hyperplane

Switching
Gaussian

Passing
Gaussian

Moving
Gaussian

Fig. 13 Synthetic datasets visualisation (Bakirov and Gabrys, 2013)

Table 8 SABLE hyperparameters
for different datasets with
batch size n, update weights
of descriptors �

0
, �

1
 , RPLS

forgetting factor � , kernel width
for descriptor construction � ,
L RPLS latent variables and K
batches

Dataset n K �
0
, �

1
� � L

Catalyst 50 117 0, 1 0.5 1 12
Catalyst 100 59 0, 1 0.25 1 12
Catalyst 200 30 0, 1 0.5 1 12
Oxidizer 50 47 0.25, 0.75 0.5 1 3
Oxidizer 100 29 0, 1 0.25 0.01 3
Oxidizer 200 15 0, 1 0.25 0.01 3
Drier 50 25 0, 1 0.25 0.01 16
Drier 100 13 0, 1 0.5 0.1 16
Drier 200 7 0, 1 0.25 0.01 16
Debutaniser 50 47 0.25, 0.75 0.5 1 6
Debutaniser 100 23 0.25, 0.75 0.25 1 6
Debutaniser 200 11 0, 1 0.5 1 6
Sulfur 50 201 0.25, 0.75 0.5 1 7
Sulfur 100 100 0, 1 0.5 0.1 7
Sulfur 200 50 0, 1 0.5 0.1 7

Acknowledgements We are grateful to anonymous reviewers for their valuable input. We also would like
to thank Evonik Industries AG for the provided datasets. Part of the used Matlab code originates from Petr
Kadlec and Ratko Grbić. Tomasz Maszczyk has provided helpful coding advice. Thanks to Róman Arango
for sharing his statistical wisdom.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

1459Machine Learning (2021) 110:1429–1462

1 3

material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Alcobé, J. R. (2004). Incremental Hill-Climbing Search Applied to Bayesian Network Structure Learning.
In Proceedings of the 18th European conference on principles and practice of knowledge discovery in
databases, Volume 3202 of Lecture notes in computer science. Springer.

Alippi, C., Boracchi, G., & Roveri, M. (2012). Just-in-time ensemble of classifiers. In The 2012 interna-
tional joint conference on neural networks (IJCNN) (pp 1–8). IEEE.

Anderson, E. (1936). The species problem in iris. Annals of the Missouri Botanical Garden, 23(3), 457.
Ba, J., & Frey, B. (2013). Adaptive dropout for training deep neural networks. In NIPS’13 Proceedings of

the 26th international conference on neural information processing systems (pp. 3084–3092).
Bach, S., & Maloof, M. (2010). A Bayesian approach to concept drift. In Advances in neural information

(pp. 127–135).
Bakirov, R. (2017). Multiple adaptive mechanisms for predictive models on streaming data. Ph.D. thesis,

Bournemouth University
Bakirov, R., & Gabrys, B. (2013). Investigation of expert addition criteria for dynamically changing online

ensemble classifiers with multiple adaptive mechanisms. In H. Papadopoulos, A. Andreou, L. Iliadis,
& I. Maglogiannis (Eds.), Artificial Intelligence Applications and Innovations (Vol. 412, pp. 646–656).
Berlin: Springer.

Bakirov, R., Gabrys, B., & Fay, D. (2015). On sequences of different adaptive mechanisms in non-stationary
regression problems. In 2015 international joint conference on neural networks (IJCNN) (pp. 1–8).

Bakirov, R., Gabrys, B., & Fay, D. (2016). Augmenting adaptation with retrospective model correction
for non-stationary regression problems. In 2016 international joint conference on neural networks
(IJCNN) (pp. 771–779). IEEE.

Bakirov, R., Gabrys, B., & Fay, D. (2017). Multiple adaptive mechanisms for data-driven soft sensors. Com-
puters & Chemical Engineering, 96, 42–54.

Bifet, A., & Gavaldà, R. (2007). Learning from time-changing data with adaptive windowing. SIAM Inter-
national Conference on Data Mining, 7, 443–448.

Bifet, A., Holmes, G., Gavaldà, R., Pfahringer, B., & Kirkby, R. (2009). New ensemble methods for evolv-
ing data streams. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining—KDD ’09 (pp. 139–147).

Bifet, A., Holmes, G., Kirkby, R., & Pfahringer, B. (2010a). MOA: Massive online analysis. Journal of
Machine Learning Research, 11(52), 1601–1604.

Bifet, A., Holmes, G., & Pfahringer, B. (2010b). Leveraging bagging for evolving data streams. In Lecture
notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes
in bioinformatics), vol 6321 LNAI (pp. 135–150).

Cardillo, G. (2009). MYFRIEDMAN: Friedman test for non parametric two way ANalysis Of VAriance.
Retrieved April 24, 2019, from https:// www. mathw orks. com/ matla bcent ral/ filee xchan ge/ 25882- myfri
edman

Carnein, M., Trautmann, H., Bifet, A., & Pfahringer, B. (2020). Towards automated configuration of stream
clustering algorithms. In Communications in computer and information science, vol 1167 CCIS (pp.
137–143). Springer.

Carpenter, G., Grossberg, S., & Reynolds, J. (1991). ARTMAP: Supervised real-time learning and classifi-
cation of nonstationary data by a self-organizing neural network. Neural Networks, 4, 565–588.

Castillo, G., & Gama, J. (2006). An Adaptive prequential learning framework for Bayesian network classi-
fiers. In J. Fürnkranz, T. Scheffer, M. Spiliopoulou (Eds.) Knowledge Discovery in Databases: PKDD
2006. Springer, Berlin, Heidelberg, Lecture Notes in Computer Science (Vol. 4213, pp. 67–78).

Celik, B., & Vanschoren, J. (2021). Adaptation strategies for automated machine learning on evolving data.
Transactions on Pattern Analysis and Machine Intelligence. https:// doi. org/ 10. 1109/ TPAMI. 2021.
30629 00

Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A., & Batista, G. (2015). The UCR time series
classification archive.

Cinar, A., Parulekar, S. J., Undey, C., & Birol, G. (2003). Batch fermentation: Modeling: Monitoring, and
control. Boca Raton: CRC Press.

http://creativecommons.org/licenses/by/4.0/
https://www.mathworks.com/matlabcentral/fileexchange/25882-myfriedman
https://www.mathworks.com/matlabcentral/fileexchange/25882-myfriedman
https://doi.org/10.1109/TPAMI.2021.3062900
https://doi.org/10.1109/TPAMI.2021.3062900

1460 Machine Learning (2021) 110:1429–1462

1 3

Dawid, A. P. (1984). Present position and potential developments: some personal views: Statistical theory:
The prequential approach. Journal of the Royal Statistical Society Series A (General), 147(2), 278.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learn-
ing Research, 7, 1–30.

Domingos, P., & Hulten, G. (2000). Mining high-speed data streams. In Proceedings of the sixth ACM SIG-
KDD international conference on Knowledge discovery and data mining—KDD ’00 (pp. 71–80).

drawNemenyi. (2019). Retrieved April 24, 2019, from https:// github. com/ sepeh rband/ drawN emenyi
Duin, R. P. W., Juszczak, P., Paclik, P., Pekalska, E., de Ridder, D., Tax, D. M. J., & Verzakov, S. (2007).

PRTools4.1, A Matlab toolbox for pattern recognition.
Elwell, R., & Polikar, R. (2011). Incremental learning of concept drift in nonstationary environments.

IEEE Transactions on Neural Networks/A Publication of the IEEE Neural Networks Council, 22(10),
1517–31.

Fern, A., & Givan, R. (2000). Dynamic feature selection for hardware prediction. Technical report, Purdue
University.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., & Hutter, F. (2015). Efficient and
robust automated machine learning. In Advances in neural information processing systems 28 (NIPS
2015) (pp. 2962–2970).

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2),
179–188.

Fortuna, L., Rizzo, A., Sinatra, M., & Xibilia, M. (2003). Soft analyzers for a sulfur recovery unit. Con-
trol Engineering Practice, 11(12), 1491–1500.

Fortuna, L., Graziani, S., & Xibilia, M. (2005). Soft sensors for product quality monitoring in debutan-
izer distillation columns. Control Engineering Practice, 13(4), 499–508.

Friedman, N., & Goldszmidt, M. (1997). Sequential update of Bayesian network structure. In Proceed-
ings of the Thirteenth conference on Uncertainty in artificial intelligence (pp. 165–174).

Gabrys, B. (2004). Learning hybrid neuro-fuzzy classifier models from data: To combine or not to com-
bine? Fuzzy Sets and Systems, 147(1), 39–56.

Gabrys, B., & Bargiela, A. (1999). Neural networks based decision support in presence of uncertainties.
Journal of Water Resources Planning and Management, 125(5), 272–280.

Gabrys, B., & Ruta, D. (2006). Genetic algorithms in classifier fusion. Applied Soft Computing, 6(4),
337–347.

Gomes Soares, S., & Araújo, R. (2015). An on-line weighted ensemble of regressor models to handle
concept drifts. Engineering Applications of Artificial Intelligence, 37, 392–406.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data
mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1), 10.

Harries, M. (1999). Splice-2 comparative evaluation: Electricity pricing. Technical report. The Univer-
sity of South Wales.

Hazan, E., & Seshadhri, C. (2009). Efficient learning algorithms for changing environments. In ICML’09
Proceedings of the 26th annual international conference on machine learning (pp. 393–400).

Herbster, M., & Warmuth, M. (1998). Tracking the best expert. Machine Learning, 29, 1–29.
Hulten, G., Spencer, L., & Domingos, P. (2001). Mining time-changing data streams. In Proceedings of

the seventh ACM SIGKDD international conference on Knowledge discovery and data mining—
KDD ’01 (pp. 97–106). ACM Press.

Hutter, F,. Hoos, H. H., & Leyton-Brown, K. (2011). Sequential model-based optimization for general
algorithm configuration. In LION’05 Proceedings of the 5th international conference on Learning
and Intelligent Optimization (pp. 507–523). Springer.

Ikonomovska, E., Gama, J., & Džeroski, S. (2010). Learning model trees from evolving data streams.
Data Mining and Knowledge Discovery, 23(1), 128–168.

Jang, J. S. R., Sun, C. T., & Mizutani, E. (1997). Neuro-fuzzy and soft computing: A computational
approach to learning and machine intelligence. Upper Saddle River: Prentice Hall.

Joe Qin, S. (1998). Recursive PLS algorithms for adaptive data modeling. Computers & Chemical Engi-
neering, 22(4–5), 503–514.

Kadlec, P., & Gabrys, B. (2009). Architecture for development of adaptive on-line prediction models.
Memetic Computing, 1(4), 241–269.

Kadlec, P., & Gabrys, B. (2010). Adaptive on-line prediction soft sensing without historical data. In The
2010 international joint conference on neural networks (IJCNN) (pp. 1–8). IEEE.

Kadlec, P., & Gabrys, B. (2011). Local learning-based adaptive soft sensor for catalyst activation predic-
tion. AIChE Journal, 57(5), 1288–1301.

Kedziora, D. J., Musial, K., & Gabrys, B. (2012). Autonoml: Towards an integrated framework for
autonomous machine learning. 2020.12600.

https://github.com/sepehrband/drawNemenyi

1461Machine Learning (2021) 110:1429–1462

1 3

Klinkenberg, R. (2004). Learning drifting concepts: Example selection vs. example weighting. Intelli-
gent Data Analysis, 8(3), 281–300.

Klinkenberg, R., & Joachims, T. (2000). Detecting concept drift with support vector machines. In Pro-
ceedings of the 7th international conference on machine learning (ICML) (pp. 487–494).

Kolter, J. Z., & Maloof, M. A. (2007). Dynamic weighted majority: An ensemble method for drifting
concepts. The Journal of Machine Learning Research, 8, 2755–2790.

Kotthoff, L., Thornton, C., Hoos, H. H., Hutter, F., & Leyton-Brown, K. (2017). Auto-WEKA 2.0: Auto-
matic model selection and hyperparameter optimization in WEKA. Journal of Machine Learning
Research, 18(25), 1–5.

Kuncheva, L. I. (2004). Combining pattern classifiers: Methods and algorithms. New York:
Wiley-Blackwell.

Lemke, C., & Gabrys, B. (2010). Meta-learning for time series forecasting and forecast combination.
Neurocomputing, 73(10), 2006–2016.

Lemke, C., Riedel, S., & Gabrys, B. (2009). Dynamic combination of forecasts generated by diversifica-
tion procedures applied to forecasting of airline cancellations. In 2009 IEEE symposium on compu-
tational intelligence for financial engineering (pp. 85–91). IEEE.

Littlestone, N., & Warmuth, M. (1994). The weighted majority algorithm. Information and Computa-
tion, 108(2), 212–261.

Lloyd, J. R., Duvenaud, D., Grosse, R., Tenenbaum, J. B., & Ghahramani, Z. (2014). Automatic con-
struction and natural-language description of nonparametric regression models. In Proceedings of
the 28th AAAI conference on artificial intelligence (pp. 1242–1250). AAAI Press.

Madrid, J. G., Escalante, H. J., Morales, E. F., Tu, W. W., Yu, Y., Sun-Hosoya, L., Guyon, I., & Sebag,
M. (2019). Towards AutoML in the presence of Drift: first results. 1907.10772

Martín Salvador, M., Budka, M., & Gabrys, B. (2016). Adapting multicomponent predictive systems
using hybrid adaptation strategies with Auto-WEKA in process industry. In AutoML at ICML 2016,
2011 (pp. 1–8).

Martin Salvador, M., Budka, M., & Gabrys, B. (2019). Automatic composition and optimization of mul-
ticomponent predictive systems with an extended auto-WEKA. IEEE Transactions on Automation
Science and Engineering, 16(2), 946–959.

Minku, L., White, A., & Yao, Xin. (2010). The impact of diversity on online ensemble learning in the
presence of concept drift. IEEE Transactions on Knowledge and Data Engineering, 22(5), 730–742.

Mohr, F., Wever, M., & Hüllermeier, E. (2018). ML-Plan: Automated machine learning via hierarchical
planning. Machine Learning, 107(8–10), 1495–1515.

Montiel, J., Read, J., Bifet, A., & Kegl, B. (2018). Scikit-Multiflow: A multi-output streaming frame-
work. Journal of Machine Learning Research, 19(72), 1–5.

Newman, D., Hettich, S., Blake, C., & Merz, C. (1998). UCI repository of machine learning databases.
Nguyen, H., Woon, Y., Ng, W., & Wan, L. (2012). Heterogeneous ensemble for feature drifts in data

streams. In Advances in knowledge discovery and data mining (pp. 1–12). Springer.
Nguyen, T. D., Maszczyk, T., Musial, K., Zöller, M. A., & Gabrys, B. (2020). Avatar—Machine learn-

ing pipeline evaluation using surrogate model. In M. R. Berthold, A. Feelders, & G. Krempl
(Eds.), Advances in Intelligent Data Analysis XVIII (pp. 352–365). Cham: Springer International
Publishing.

Olson, R. S., & Moore, J. H. (2019). TPOT: A tree-based pipeline optimization tool for automating
machine learning (pp. 151–160). Cham: Springer.

Oza, N. C., & Russell, S. (2001). Online bagging and boosting. Artificial Intelligence and Statistics,
2001, 105–112.

van Rijn, J. N., Holmes, G., Pfahringer, B., & Vanschoren, J. (2015). Having a blast: Meta-learning and
heterogeneous ensembles for data streams. In: 2015 IEEE international conference on data mining
(ICDM) (pp. 1003–1008). IEEE.

Rossi, A. L. D., de Leon Ferreira, A. C. P., Soares, C., & De Souza, B. F. (2014). MetaStream: A meta-
learning based method for periodic algorithm selection in time-changing data. Neurocomputing,
127, 52–64.

Ruta, D., Gabrys, B., & Lemke, C. (2011). A Generic Multilevel Architecture for Time Series Predic-
tion. IEEE Transactions on Knowledge and Data Engineering, 23(3), 350–359.

Sahel, Z., Bouchachia, A., Gabrys, B., & Rogers, P. (2007). Adaptive mechanisms for classification
problems with drifting data. In Proceeding of the 11th international conference on knowledge-
based intelligent engineering systems (KES’2007) (pp. 419–426). Springer.

Schlimmer, J. C., & Granger, R. H. (1986). Beyond incremental processing: Tracking Concept Drift. In
AAAI-86 Proceedings (pp. 502–507).

1462 Machine Learning (2021) 110:1429–1462

1 3

Schmidt, M., & Lipson, H. (2007). Learning noise. In Proceedings of the 9th annual conference on
Genetic and evolutionary computation—GECCO ’07 (pp. 1680–1685).

Scholz, M., & Klinkenberg, R. (2007). Boosting classifiers for drifting concepts. Intelligent Data Analy-
sis, 11(1), 1–40.

Souza, F., & Araújo, R. (2014). Online mixture of univariate linear regression models for adaptive soft
sensors. IEEE Transactions on Industrial Informatics, 10, 937–945.

Stanley, K. O. (2002). Evolving neural networks through augmenting topologies. Evolutionary Compu-
tation, 10(2), 99–127.

Strackeljan, J. (2006). NiSIS Competition 2006-Soft Sensor for the adaptive Catalyst Monitoring of a
Multi-Tube Reactor. Technical report, Universität Magdeburg.

Street, W. N., & Kim, Y. S. (2001). A streaming ensemble algorithm (SEA) for large-scale classification.
In Proceedings of the 7th ACM SIGKDD international conference on Knowledge discovery and
data mining (pp. 377–382).

Vakil-Baghmisheh, M. T., & Pavešić, N. (2003). A fast simplified fuzzy ARTMAP network. Neural Pro-
cessing Letters, 17(3), 273–316.

Veloso, B., Gama, J., & Malheiro, B. (2018). Self hyper-parameter tuning for data streams. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). vol 11198 LNAI (pp. 241–255). Springer.

Wang, H., Fan, W., Yu, P. S., & Han, J. (2003). Mining concept-drifting data streams using ensemble classi-
fiers. In Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and
data mining—KDD ’03 (pp. 226–235). ACM Press.

Wasserman, L. (2000). Bayesian model selection and model averaging. Journal of Mathematical Psychol-
ogy, 44(1), 92–107.

Widmer, G., & Kubat, M. (1996). Learning in the presence of concept drift and hidden contexts. Machine
Learning, 23(1), 69–101.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80. https:// doi.
org/ 10. 2307/ 30019 68.

Zhu, X. (2010). Stream Data Mining Repository. Retrieved April 19, 2013, from http:// www. cse. fau. edu/
~xqzhu/ stream. html

Zliobaite, I. (2011). Combining similarity in time and space for training set formation under concept drift.
Intelligent Data Analysis, 15(4), 589–611.

Zliobaite, I., & Kuncheva, L. I. (2010). Theoretical window size for classification in the presence of sudden
concept drift. Technical report, CS-TR-001-2010, Bangor University, UK.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.2307/3001968
https://doi.org/10.2307/3001968
http://www.cse.fau.edu/%7exqzhu/stream.html
http://www.cse.fau.edu/%7exqzhu/stream.html

	Automated adaptation strategies for stream learning
	Abstract
	1 Introduction
	2 Related work
	2.1 Automated machine learning for streaming data
	2.2 Adaptive mechanisms
	2.3 Automating design of algorithms with multiple AMs

	3 Formulation
	3.1 Adaptation
	3.2 Automated adaptation strategies

	4 Algorithms
	4.1 Simple Adaptive Batch Local Ensemble (SABLE) adaptation
	4.2 Batch Dynamic Weighted Majority (bDWM) adaptation
	4.3 Batch Paired Learner (bPL) adaptation
	4.4 Batch Leveraged Bagging (bLB) adaptation
	4.5 Batch BLAST (bBLAST) adaptation

	5 Experimental results
	5.1 Methodology
	5.2 Simple Adaptive Batch Local Ensemble (SABLE) results
	5.3 Batch Dynamic Weighted Majority (bDWM) results
	5.4 Batch Paired Learner (bPL) results
	5.5 Batch Leveraged Bagging (bLB) results
	5.6 Batch BLAST (bBLAST) results
	5.7 Summary of classification results
	5.8 Runtime analysis

	6 Discussion and conclusions
	7 Future work
	Acknowledgements
	References

