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Abstract
To emulate the interactivity of in-person math instruction, we developed MathBot, a rule-
based chatbot that explains math concepts, provides practice questions, and offers tailored 
feedback. We evaluated MathBot through three Amazon Mechanical Turk studies in which 
participants learned about arithmetic sequences. In the first study, we found that more than 
40% of our participants indicated a preference for learning with MathBot over videos and 
written tutorials from Khan Academy. The second study measured learning gains, and 
found that MathBot produced comparable gains to Khan Academy videos and tutorials. 
We solicited feedback from users in those two studies to emulate a real-world develop-
ment cycle, with some users finding the lesson too slow and others finding it too fast. We 
addressed these concerns in the third and main study by integrating a contextual bandit 
algorithm into MathBot to personalize the pace of the conversation, allowing the bandit 
to either insert extra practice problems or skip explanations. We randomized participants 
between two conditions in which actions were chosen uniformly at random (i.e., a rand-
omized A/B experiment) or by the contextual bandit. We found that the bandit learned a 
similarly effective pedagogical policy to that learned by the randomized A/B experiment 
while incurring a lower cost of experimentation. Our findings suggest that personalized 
conversational agents are promising tools to complement existing online resources for 
math education, and that data-driven approaches such as contextual bandits are valuable 
tools for learning effective personalization.
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1 Introduction

Math learners can now turn to a wide variety of freely available online resources, from 
Khan Academy to Massive Open Online Courses (MOOCs). However, many of these 
resources cannot completely reproduce features of in-person tutoring, like giving students 
the sense that they are engaged in a back-and-forth exchange with a tutor, tailored feed-
back, and guidance about how to allocate their attention between reading explanations and 
practicing problems. Existing online math platforms have recently moved towards these 
desiderata with features like personalized feedback and guidance. For example, online math 
homework tools like ASSISTments (Heffernan & Heffernan, 2014; Feng et al., 2009) give 
feedback on common wrong answers. Further, online resources like MathTutor (Aleven 
et al., 2009a) build on example-tracing tutors (Aleven et al., 2016), which model the pro-
gression of a lesson with a behavior graph that: (1) outlines potential student actions, such 
as providing common incorrect responses; and (2) specifies the feedback, explanation, or 
new problem that should follow those actions. That approach aims to reduce development 
time while achieving some of the benefits of intelligent tutoring systems for mathemat-
ics, like personalized selection of problems (Nye et al., 2018; Falmagne et al., 2013; Craig 
et al., 2013; Winkler et al., 2020).

One consequence of online math education shifting from static media to adaptive intel-
ligent tutoring systems is the dramatic increase in potential for personalization of the plat-
form. When developing interactive platforms, a content designer must choose an appro-
priate pedagogical strategy: for example, whether the topic should be conveyed through 
conceptual lessons or practice problems, and the degree to which feedback should be 
provided. To choose an optimal pedagogical strategy for every new piece of content, one 
could turn to cognitive and educational experts and draw from educational theory, such 
as aptitude treatment interaction (Snow, 1989). In practice, however, it can be difficult to 
operationalize such theories to create effective strategies (Zhou et al., 2017). Furthermore, 
the large number of avenues for personalization, some of which may not have been previ-
ously investigated in the literature, along with the data available in online platforms sug-
gests a more computational approach for learning personalized pedagogical policies.

The traditional method to compare the efficacy of various policies is to run a ran-
domized A/B experiment. However, running such an experiment may not be feasible or 
desirable in adaptive education platforms due to high exploration costs: many users may be 
assigned to a bad pedagogical policy before the experiment is over, leading to deleterious 
effects on their learning experience. An alternative to traditional randomized experiments 
is the contextual bandit, a popular technique from the reinforcement learning (RL) litera-
ture (Li et al., 2010). Compared to traditional A/B tests, bandit algorithms can often learn 
personalized strategies with substantially less experimentation, leading to improved user 
experiences.

Our paper builds upon the aforementioned intelligent tutoring systems, moving from 
adaptive platforms to an actual conversational interface that closely mimics some key fac-
ets of conversation with a human tutor. Specifically, we designed and evaluated a proto-
type chatbot system, which we call MathBot. To achieve conversational flow and mirror 
the experience of interacting with a human tutor, we paid close attention to the timing 
of prompts and also incorporated informal language and emoji. As with a human tutor, 
the MathBot system alternates between presenting material and gauging comprehension. 
MathBot also provides learners with personalized feedback and guidance in the form 
of explanations, hints, and clarifying sub-problems. Finally, we built into MathBot the 
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capability of learning personalized pedagogical policies via both contextual bandits and 
randomized experiments, allowing us to compare the two strategies in a live deployment.

To evaluate MathBot, we carried out three user studies on Amazon Mechanical Turk. 
The first study sought to determine whether users preferred to use MathBot over compa-
rable online resources and, through qualitative feedback from users, elucidate potential 
avenues for improving MathBot through personalization. At a high level, we found that 
users were polarized in their preferences, with about half preferring MathBot. Specifically, 
116 participants completed (in a randomized order) both an abridged lesson about arith-
metic sequences with MathBot and a video on Khan Academy covering similar content; 
these participants then rated their experiences. We found that 42% of users preferred learn-
ing with MathBot over the video, with 20% indicating a strong preference. An additional 
110 participants completed the same abridged lesson with MathBot along with a written 
tutorial from Khan Academy containing embedded practice problems. In this case, 47% 
of these users preferred learning with MathBot over the written tutorial, with 18% stating 
a strong preference. While MathBot was not preferred by the majority of our participants, 
our results point to potential demand for conversational agents among a substantial fraction 
of learners.

The second study sought to determine whether MathBot produced learning gains on 
par with comparable online resources. We randomized 369 participants to either complete 
a full-length conversation with MathBot about arithmetic sequences or complete a set of 
videos and written tutorials from Khan Academy covering similar content. To test their 
knowledge, each subject took an identical quiz before and after completing their assigned 
learning module. Under both conditions, participants exhibited comparable average learn-
ing gains and learning times: 65% improvement for MathBot, with a mean learning time 
of 28 min (SD = 20), and 60% improvement given Khan Academy material, with a mean 
learning time of 29 min (SD = 22); we note that the difference in learning gain was not 
statistically significant.

Given that a subset of users indeed preferred MathBot to conventional learning tools, 
we explored the potential of contextual bandits to learn personalized pedagogical policies 
for MathBot in the third and main study. For this experiment, we recruited 405 participants 
to complete a full-length conversation with MathBot about arithmetic sequences. Unlike 
the first two studies, in which the possible conversation paths were the same for each user, 
the third study leveraged a version of MathBot that could choose, for each user, whether 
or not to present certain conceptual lessons and also whether or not to provide certain sup-
plemental practice questions. We randomized participants between two experimentation 
strategies—one in which actions were chosen by a contextual bandit and another in which 
actions were randomly chosen (i.e., an A/B design)—with the ultimate goal of reducing 
learning time without reducing learning gains. This goal was motivated by feedback from 
users in the first two studies, some of whom commented that the pacing of the lesson was 
too slow and some too fast, suggesting that personalizing the speed of the lesson could be 
beneficial. We found that, during experimentation, users assigned to the contextual bandit 
condition took less time (mean difference of 149 seconds, with a 95% confidence inter-
val of [32, 266]) to complete the lesson and were less likely to drop out, despite scoring 
equivalently on the post-learning assessment as those assigned to the A/B design condi-
tion. Finally, we compared the quality of the learned post-experimentation policies using 
offline policy evaluation techniques, finding no statistically significant difference between 
the quality of the policies learned by the contextual bandit and the randomized experiment.

In summary, our contributions are threefold: (1) MathBot, a prototype system that adds 
conversational interaction to learning mathematics through solving problems and receiving 
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explanations; (2) a live deployment of a contextual bandit in a conversational educational 
system; (3) evidence that a contextual bandit can continuously personalize an educational 
conversational agent at a lower cost than a traditional A/B design.

2  Related work

We briefly review past work on building chatbots, conversational tutoring systems, exam-
ple-tracing tutors, and other intelligent tutoring systems (ITSs). We also survey the use of 
reinforcement learning algorithms in these systems.

2.1  Chatbots

Chatbots have been widely applied to various domains, such as customer service (Xu et al., 
2017), college management (Bala et  al., 2017), and purchase recommendation (Horzyk 
et al., 2009). One approach to building a chatbot is to construct rule-based input-to-output 
mappings (Al-Rfou et al., 2016; Yan et al., 2016). One can also embed chatbot dialogue 
into a higher-level structure (Bobrow & Winograd, 1977) to keep track of the current state 
of the conversation, move fluidly between topics, and collect context for later use (Walker 
& Whittaker, 1990; Seneff, 1992; Chu-Carroll & Brown, 1997). We envisioned MathBot 
as having an explicit, predefined goal of the conversation along with clear guidance and 
control of intermediate steps, so we took the approach of modeling the conversation as a 
finite-state machine (Raux & Eskenazi, 2009; Quarteroni & Manandhar, 2007; Andrews 
et al., 2006), where user responses update the conversation state according to a preset tran-
sition graph.

2.2  Conversational tutors in education

Conversational tutors in education often build complex dialogues. For example, one might 
ask students to write qualitative explanations of concepts (e.g., A battery is connected to a 
bulb by two wires. The bulb lights. Why?) and initiate discussions based on the responses 
(Graesser et  al., 2001). AutoTutor and its derivatives (Nye et  al., 2014; VanLehn et  al., 
2002; Graesser et al., 1999, 2004) arose from Graesser et al. (1995) investigation of human 
tutoring behaviors and modeled the common approach of helping students improve their 
answers by way of a conversation. These systems rely on natural language processing 
(NLP) techniques, such as regular expressions, templates, semantic composition (VanLehn 
et al., 2002), LSA (Graesser et al., 1999; Person, 2003), and other semantic analysis tools 
(Graesser et al., 2007). Nye et al. (2018) added conversational routines to the online math-
ematics ITS ALEKS by attaching mini-dialogues to individual problems but left navigation 
to be done via a website. MathBot aims to have the entire learning experience take place 
through a text conversation, giving the impression of a single tutor. More broadly, MathBot 
differs from past work on NLP-based conversational tutors in that it explores the possibil-
ity of reproducing part of the conversational experience without handling extensive open-
ended dialogue, potentially reducing development time.
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2.3  Intelligent tutoring systems and example‑tracing tutors

A wide range of intelligent tutoring systems in mathematics use precise models of stu-
dents’ mathematical knowledge and misunderstandings (Ritter et  al., 2007; VanLehn, 
1996; Aleven et al., 2009a, b; O’Rourke et al., 2015). To reduce the time and expertise 
needed to build ITSs, some researchers have proposed example-tracing tutors (Koed-
inger et al., 2004; Aleven et al., 2009b, 2016). Specifically, example-tracing tutors allow 
content designers to specify the feedback that should appear after students provide cer-
tain answers and then record those action-feedback pairs in a behavior graph (Aleven 
et al., 2016). Using the Cognitive Tutor Authoring Tools (CTAT), Aleven et al. (2009a, 
b) built MathTutor, a suite of example-tracing tutors for teaching 6th, 7th, and 8th grade 
math. Our work draws on insights from example-tracing tutors in that we build a graph 
which encodes rules that determine how MathBot responds to specific student answers, 
though our approach differs in that we display these responses in a conversational 
format.

2.4  Learning pedagogical strategies with bandits

To allow MathBot to personalize elements during live deployment, we incorporate a con-
textual multi-armed bandit algorithm (Lai & Robbins, 1985; Li et al., 2010), a tool from 
reinforcement learning for discovering which actions are effective in different situations 
(contexts). Other reinforcement learning approaches have been applied in education, typi-
cally for offline learning. Ruan et al. (2019) increase student performance by combining 
adaptive question sequencing with a NLP-based conversational tutor for teaching factual 
knowledge, but use a combination of random selection and a probabilistic model of learn-
ers’ knowledge of particular items to order questions. Lee et al. (2014) describe a frame-
work to learn personalized pedagogical policies for DragonBox Adaptive, a K–12 math 
puzzle platform, without the support of an expertly-designed cognitive model. Chi et al. 
(2011) use another popular technique from RL to learn an effective pedagogical strategy 
for making micro-decisions, such as eliciting the next step of the problem versus revealing 
it, in an NLP-based ITS teaching college-level physics. Lan and Baraniuk (2016) describe 
a contextual bandit framework to assign students to an educational format and optimize 
performance on an immediate follow-up assessment, but evaluate the performance of the 
framework offline and do not personalize the actual lessons. A key difference between 
these studies and MathBot is that it is rare to use these strategies online in a live educa-
tional deployment. Only a handful of studies have begun to explore live deployments for 
sequencing problems (Clement et al., 2015; Segal et al., 2018), and none that we are aware 
of do so to learn which actions to take in a conversation.

3  MathBot system design and development

MathBot allows users to learn math topics through conversation-style interaction, rather 
than simply browsing online resources like videos, written lessons, and problems. Below 
we give an illustrative example of a learner interacting with MathBot, describe MathBot’s 
front-end of an interactive chat, and outline its back-end of a conversation graph which 
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specifies the rules by which it progresses through concepts and chooses actions to take 
based on user responses.

3.1  Sample learner interaction with MathBot

Suppose a student, Alice, wants to learn about arithmetic sequences by interacting with 
MathBot. To start the interaction, MathBot greets Alice and asks her to extend the basic 
sequence “2, 4, 6, 8 … ”. Alice correctly answers “10”, so MathBot provides positive feed-
back (e.g., “Good work! ”) and begins a conceptual explanation of recognizing patterns 
in sequences. MathBot asks Alice if she is ready to complete a question to check her under-
standing, and Alice responds affirmatively. Alice progresses successfully through a series 
of additional explanations and questions.

Following an explanation of common differences, Alice is asked a new question: 
“What’s the common difference of 2, 8, 14, 20, …?”. Figure 1 displays the conversation 
rules that underlie Alice’s current question. When asked the new question, Alice con-
fuses the term “common difference” with “greatest common factor”, a topic she recently 
reviewed, so she answers “2”. MathBot recognizes that Alice has made a mistake and sub-
sequently checks that she knows how to identify terms in a sequence and subtract them, a 
prerequisite task for finding the common difference (Fig. 1ii). Alice answers correctly, so 
MathBot begins to ask her a series of additional sub-questions to further clarify the con-
cept of common differences (Fig. 1iii). Alice successfully completes these sub-questions, 
so MathBot directs her back to the original question. Alice remembers learning that the 
common difference is the difference between consecutive terms, though she mistakenly 
subtracts 8 from 2 and answers “I think it’s −6”. Rather than have Alice finish a redundant 
series of sub-questions, MathBot recognizes that Alice has made a common mistake, sub-
sequently provides specific feedback to address that mistake, and then allows Alice to retry 
the original question (Fig. 1iv). Alice answers the original question correctly and proceeds 
to a new question on identifying decreasing arithmetic sequences (Fig. 1v).

3.2  MathBot’s front‑end chat and back‑end conversation graph

The front-end of MathBot is a text chat window between MathBot and the student (Fig. 2a, 
b). Students type replies to MathBot to give answers to problems, providing responses like 
“I’m not sure”. Students can freely scroll through the chat history to review explanations or 
questions.

Drawing inspiration from example-tracing tutors (Koedinger et al., 2004; Aleven et al., 
2009b, 2016), the MathBot back-end consists of a conversation graph that specifies a set of 
if-then rules for how learner input (e.g., “I’m ready” or “The answer is 6”) leads to Math-
Bot’s next action (e.g., give a new problem or provide feedback). In this rule-based system, 
the state of the conversation is represented as a finite state machine (FSM). In this FSM, 
each state is a response provided by MathBot, and user responses route the user along dif-
ferent paths in the conversation graph. For example, the question asked at the top of Fig. 1 
is a state, and responses to that question (e.g., “I don’t know” or “6”) route users to a new 
state. MathBot uses fuzzy matching and basic string equivalence to parse responses and 
route users appropriately.
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4  Evaluating MathBot

We first validate MathBot in two studies comparing it to Khan Academy, a high-quality, 
free, and widely-used online resource for math tutorials and problems that delivers content 
in a non-conversational format. In the first study, we investigate user preferences between 
the two platforms and solicit qualitative feedback on what users liked and disliked about 
MathBot. In the second study, we compare the learning efficacy of the two platforms. In 
the third and main study, we leverage qualitative feedback from the first two studies to 
design personalized improvements to MathBot’s pedagogical policy.

[ All other answers (e.g., "I don't know" or "2") ]

[ 6 ]

 What's the common difference of 2, 8, 14, 20, ...?"

Go to a new question on identifying arithmetic sequences

 "Let's take a step back: what's the difference between the
1st term and the 2nd term in 2, 8, 14, 20, ...?"

[ 6 or -6 ]

[ If correct ]

[ -6 ] "Almost! The common difference will only be negative if
the terms in the sequence are always decreasing."

[ 26 ] "Make sure to re-read the question!"

[ If incorrect ]

Review a prior question on identifying terms of a sequence

[ All other answers ]

Review additional questions or concepts

. . . 

Additional sub-questions

. . . 

. . . 
( i )

( ii )

( iv )

( v )

( iii )

Fig. 1  Example section of MathBot’s conversation graph. Ellipses ( … ) denote excised sections of the full 
conversation graph. Marked blocks (i)–(v) denote actions taken by a hypothetical user, Alice, in Sect. 3.1
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4.1  Design of Study 1

In the first part of this within-subject study, we ask participants on Amazon Mechanical 
Turk to interact with MathBot and watch a 6-min Khan Academy video, and then solicit 
feedback on the two learning methods (Fig.  3). Despite their lack of interactivity, Khan 
Academy videos are competitive baselines, as they are carefully tailored by expert instruc-
tors and are demonstrably effective for teaching mathematical content (Weeraratne & Chin, 
2018).

We conduct the second part of the study identically, except we recruit new users and 
replace the video with a written tutorial from Khan Academy containing embedded prac-
tice problems (Fig. 4). This second comparison provides an additional layer of insight, as 
one might conjecture that any result favoring MathBot over video instruction may simply 
be the result of MathBot providing an interface to work through problems.

To limit the length of the study, we use an abridged version of our developed Math-
Bot content that covers only explicit formulas for arithmetic sequences, and pair that with 

Fig. 2  Example snippets of MathBot conversations

Prerequisite quiz
Pre-learning

assessment and
survey

One Khan Academy
video

Shortened MathBot
conversation

Post-learning survey

Randomized order

Fig. 3  Study design of the first part of Study 1, which measured preferences for video-based instruction 
versus instruction via MathBot
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either a Khan Academy video or a written tutorial that covers similar material. To avoid 
ordering effects—including anchoring bias and fatigue—we randomized the order in which 
participants saw MathBot and the Khan Academy video or written tutorial. Tables 2 and 
3 in the "Appendix" summarize user attrition and filtering, which were similar across 
conditions1. After accounting for user attrition and the filtering criteria, 116 participants 
remained in the first part of the study and 111 participants in the second part. Tables 4 and 
5 in the "Appendix" summarize the demographics of the filtered set of users. Our analysis 
is restricted to this filtered set of users.

4.2  Quantitative results

After study participants completed the MathBot and Khan Academy learning modules, 
we asked them a series of questions to quantify their experiences. In particular, we asked 
participants to answer the following question on a 7-point scale ranging from “strongly 
prefer” MathBot to “strongly prefer” the Khan Academy material: “If you had 60 min to 
learn more about arithmetic sequences and then take a quiz for a large bonus payment, 
which of these two scenarios would you prefer? 1. Interact with an expanded version of the 
conversational computer program, then take the quiz. 2. [Watch more videos / Complete 
more interactive tutorials] about arithmetic sequences, then take the quiz.” We note that 
the ordering of options 1 and 2 was randomized for each user.

The responses to this question for the first part of the study are presented in Fig. 5a. We 
found that 42% of participants stated at least a weak preference for MathBot, 53% stated 
at least a weak preference for Khan Academy videos, and 5% indicated a neutral prefer-
ence. The corresponding results for the second part of the study are displayed in Fig. 5b. In 

Prerequisite quiz
Pre-learning

assessment and
survey

One Khan Academy
written tutorial

Shortened MathBot
conversation

Post-learning survey

Randomized order

Fig. 4  Study design of the second part of Study 1, which measured preferences for instruction via written 
tutorial versus instruction via MathBot

29%

17%

6% 5% 9%
14%

20%

53% prefer videos 42% prefer MathBot

0
10
20
30
40
50

V++ V+ V ~ M M+ M++

N

(a) MathBot vs. Khan Academy Video

23%
14%

7% 9%
16% 13%

18%

44% prefer tutorials 47% prefer MathBot

0
10
20
30
40
50

T++ T+ T ~ M M+ M++

N
(b) MathBot vs. Khan Academy Written Tutorial

Fig. 5  Distributions of user preferences among the participants of Study 1. “M” denotes MathBot, “V” 
denotes video, and “T” denotes tutorial. Each “+” indicates a stronger preference, and “ ∼ ” indicates a neu-
tral choice. Preferences for MathBot and Khan Academy are highly polarized, suggesting that the needs of 
learners could be better met by offering both modes of instruction

1 Additional details on study design are listed in the appendix, including criteria for user filtering.
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that case, we found that 47% of the 110 participants who answered the question stated at 
least a weak preference for MathBot, 44% stated at least a weak preference for Khan Acad-
emy interactive tutorials, and 9% stated a neutral preference. Tables 6, 7, 8, and 9 in the 
"Appendix" summarize the experiential ratings and time-on-task of participants in Study 1.

Overall, more of our participants preferred Khan Academy materials to MathBot—a 
testament to the quality of Khan Academy. The highly polarized response distribution, 
however, also illustrates the promise of new forms of instruction to address heterogeneous 
learning preferences. Indeed, 20% of users in the first part of the study and 18% of users in 
the second part expressed a “strong preference” for MathBot over Khan Academy material.

4.3  Qualitative results

After each part of the study, we asked users to respond to the following prompt: “Please 
compare your experience with the conversational computer program and the [video / inter-
active tutorial]. In what scenarios could one learning method be more effective or less 
effective than the other?” We analyzed the resulting comments to identify themes and 
understand users’ perspectives on MathBot and the Khan Academy videos and written 
tutorials. One author conducted open coding to identify common themes addressed by each 
response. Another author verified the coded labels and resolved conflicts with discussion. 
We discuss the coded categories at length in the Appendix, but highlight one theme in 
particular, that of pacing, here. We found that different users expressed different sentiments 
about the pacing of the lessons. For example, one participant noted, “as it gets more com-
plicated, the lesson should slow down a bit,” while another indicated, “I felt like the teach-
ing went too slow for me.” We return to this feedback later on, seeking to address it via per-
sonalization, slowing down or speeding up the conversation for each learner as appropriate.

4.4  Design of Study 2

We next sought to evaluate whether MathBot produced comparable learning outcomes to 
Khan Academy material. To assess educational gains, we randomly assigned participants 
to learn about arithmetic sequences via: (1) a full-length MathBot conversation; or (2) a 
combination of Khan Academy videos and written tutorials covering the same content as 
the MathBot conversation. We assessed learning outcomes with a 12-question quiz, giving 
the same quiz before and after each participant completed the learning module2. Similar 
filtering criteria to Study 1 resulted in our analyzing 182 subjects assigned to MathBot and 
187 assigned to Khan Academy materials. Table 10 in the "Appendix" summarizes user 
attrition and filtering in Study 2, and Table 11 summarizes user demographics (Fig. 6).

4.5  Results

We start by computing the proportional learning gain (PLG) for each subject. To calculate 
PLG, we first determine the raw learning gain by subtracting the pre-learning quiz score 
from the post-learning quiz score. We divide this result by the maximum possible score 
increase, defined as the difference between the maximum possible post-learning score (12) 

2 Additional details on study design are listed in the appendix.
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and the user’s pre-learning score. Figure 7 shows the distribution of the PLG. We find the 
average PLG for MathBot users is 65%, with a 95% confidence interval of [58%, 72%]; 
the corresponding average PLG for Khan Academy users is 60%, with a 95% confidence 
interval of [53%, 67%]. The gains from MathBot are slightly higher than those from Khan 
Academy, but the difference is not statistically significant (two-mean t-test, p = 0.15, 95% 
CI: [-2%, 12%]). MathBot and Khan Academy users spent comparable time completing the 
learning modules—28 min on average for MathBot (SD = 20) and 29 min for the Khan 
Academy videos and written tutorials (SD = 22). Table 12 in the "Appendix" summarizes 
raw learning outcomes of participants in Study 2, and Table 13 in "Appendix" summarizes 
performance on individual questions in the pre- and post-learning assessments.

5  Learning a pedagogical policy

Here we return to feedback from users in Study 1 who expressed mixed sentiments about 
the pacing of MathBot and address their concerns by learning a personalized pedagogical 
policy for pacing. Given that the MathBot conversation is structured as a series of lessons, 
each consisting of a conceptual explanation followed by an assessment question, we could 
potentially adjust pacing of a lesson in one of four ways: (1) show the conceptual explana-
tion and show an isomorphic practice question before the assessment question (slowest); 
(2) show the conceptual explanation but skip the isomorphic practice question; (3) skip the 
conceptual explanation but show the isomorphic practice question; and (4) skip the con-
ceptual explanation and skip the isomorphic practice question (fastest). Figure 8 illustrates 
these four actions.

We took a data-driven approach to learning a personalized pedagogical strategy that 
selects between these four actions for each user and question. We specifically chose to use a 
contextual bandit, a tool from the reinforcement learning literature which balances explor-
ing actions whose payoffs are unclear with exploiting actions whose payoffs are believed 
to be high (Li et al., 2010). For each user and question, the bandit selects one of the four 
above actions based on the user’s pre-learning quiz score (the context). For example, the 
algorithm might learn to speed up the conversation for users with high pre-learning quiz 
scores and slow it down for those with low scores. We note that we had access to many 
more contextual features than the pre-learning quiz score, such as scores on individual quiz 

Prerequisite quiz
Pre-learning

assessment and
survey

7 Khan Academy
videos and 4 written

tutorials

MathBot 
conversation

Post-learning
assessment and

survey

Random assignment

Fig. 6  Experimental design of Study 2, which measured learning gains achieved by instruction via MathBot 
versus instruction via Khan Academy videos and written tutorials
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Fig. 7  Distributions of proportional learning gain (PLG) for users of MathBot and Khan Academy in Study 
2. The distributions are similar for users in both conditions

Conceptual
Explanation

Assessment
Question

Isomorphic Practice
Question

Prior
Lesson

Next
Lesson

Fig. 8  Potential actions taken by the contextual bandit before each assessment question. The bandit chooses 
whether or not to show a conceptual explanation and whether or not to show an isomorphic practice ques-
tion

Table 1  For Study 3, average expected reward per question with 95% confidence intervals for the final pol-
icy learned from the bandit and uniform random conditions

We also include policies which choose a constant action as baselines, including the original strategy used 
by MathBot in Studies 1 and 2 (concept only). The policies learned by both experimentation strategies out-
perform the four constant action policies

Policy Expected reward per question 95% Confidence interval

Bandit 46.3 [41.7, 51.0]
Uniform random 55.0 [46.3, 63.6]
Concept only (original) 35.9 [30.9, 40.8]
Concept + isomorph 1.0 [− 6.7, 8.7]
Isomorph only 14.4 [8.8, 20.1]
Skip concept, no isomorph 21.2 [15.0, 26.5]
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items and self-reported academic history of study participants. However, to best mimic 
a real-life learning scenario where a tutor has access to only a coarse measure of prior 
knowledge, such as a grade in a prior course, we choose to use the pre-learning quiz score 
as the sole context.

To train a contextual bandit, we must not only specify the actions but also the objective 
function (the reward) over which the algorithm will optimize.3 Recall that our motivation 
for improving our pedagogical strategy was to personalize the pacing of the lesson, with 
the goal of either slowing down the chat to boost comprehension or speeding it up without 
sacrificing learning. These dual desiderata suggest defining our reward as a linear combina-
tion of the total time spent on a lesson and an indicator of whether the user gets the assess-
ment question correct on their first try:

In other words, we assume it is worth 150 seconds of extra time spent on a lesson to turn a 
student who would have answered the assessment question incorrectly into a student who 
answered the question correctly. In particular, we expected the lesson to take around 30 
min for 12 concepts, giving 2.5 min (or 150 seconds), for each concept. It bears emphasis 
that the precise form of the reward function should be set by domain experts and depends 
on the situation. For example, in a setting where a chatbot was augmented by a human 
tutor, we might increase the relative worth of time compared to correctness to account for 
the opportunity cost of having the concept explained by the tutor. Finally, we note that our 
reward is defined at the level of an individual lesson: later, we consider whether the con-
textual bandit’s strategy is also optimizing a global reward defined at the level of the entire 
learning session.

5.1  Design of Study 3

Our goal is to assess the value of using a contextual bandit to learn a personalized peda-
gogical strategy for students. We benchmark the bandit to a common alternative: a regres-
sion fit on data from users who were randomly assigned to one of the four possible actions 
before each assessment question. That is, in the benchmark approach, we first conduct an 
exploration phase, in which we assign users to the four actions uniformly at random; then, 
we fit a regression on the collected data to learn a personalized policy. The bandit, in con-
trast, aims to better manage exploration by down-weighting actions that are learned to be 
ineffective.

To carry out this comparison, we first recruited 30 participants from Amazon Mechani-
cal Turk and assigned them to each of the four actions at random, independently for each 
question. Data from this pilot phase were used to provide the bandit a warm start. We then 
randomly assigned the remaining participants to either: (1) the contextual bandit condition; 
or (2) the uniform random condition (Fig. 9).

150 ⋅ �correct − seconds spent on lesson.

3 To train the bandit, we used a linear model with Thompson sampling, a technique known to have strong 
empirical performance and theoretical guarantees (Agrawal & Goyal, 2013). We model the reward using 
ordinary least squares (OLS) regression where the covariates are the contextual variables, the actions, and 
the two-way interaction terms between the contextual variables and the actions. Then, we simply choose 
action a with a probability proportional to its posterior likelihood of being the best action. See "Appendix" 
for more details.
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We use the same criteria as in Study 2 to filter participants before they interact with 
MathBot. These filtering criteria resulted in 228 subjects assigned to MathBot with a uni-
form random policy and 239 assigned to MathBot with a contextual bandit policy. We note 
that both groups include the 30 participants from the pilot phase: they are included in the 
uniform random group since their actions were given uniformly at random, and they are 
included in the bandit group as the bandit learned its initial policy from those individu-
als. Table  14 in the “Appendix” summarizes user dropout during experimentation, and 
Table 15 summarizes learning outcomes.

5.2  Results

We examine the behavior of the contextual bandit algorithm along three dimensions: (1) its 
degree of personalization; (2) the quality of the final learned pedagogical policy; and (3) 
the cost of exploration. We found that the bandit learned a personalized policy comparable 
in quality to the one learned on the uniform random data but, importantly, did so while 
imposing less burden on users.

5.2.1  Personalization

We begin by examining the pedagogical policy ultimately learned by the contextual bandit 
(i.e., the policy the bandit believed to be the best at the end of the experiment, after seeing 
239 participants). Averaged over all questions, the final, learned policy assigns approxi-
mately 30% of users to each of the concept-only, isomorph-only, and no-concept-no-iso-
morph conditions; the remaining 10% are assigned to the concept-plus-isomorph condi-
tion.4 In Fig. 10, we disaggregate the action distribution by question, showing the result 
for 4 representative questions out of the 11 total. The plot shows that the bandit is indeed 
learning a policy that differs substantially across users and questions. For only 3 of the 11 
questions does the bandit determine that it is best to use the same action for every user—
though even in these cases, each of the 3 questions have different selected actions.

Prerequisite quiz
Pre-learning

assessment and
survey

MathBot conversation
with actions chosen at

random

MathBot conversation
with actions chosen by

contextual bandit

Post-learning
assessment and

survey

Random assignment

Fig. 9  Experimental design of Study 3, which investigated whether a contextual bandit could learn a per-
sonalized pedagogical policy for MathBot at a lower cost than a randomized A/B design

4 These numbers do not represent the distribution of actions actually assigned during the experiment, but 
rather the distribution of actions under the policy the bandit ultimately learned.
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5.2.2  Quality of learned solution

Next, we compare the expected reward of the learned policy from the bandit to that of the 
learned policy from the uniform random condition.5 For the uniform random condition, we 
consider three different regression models: (1) a model with two-way interactions between 
actions and questions (effectively learning a constant policy per question); (2) a model with 
the same specification as the bandit, which is able to personalize based on pre-learning quiz 
score; and (3) a lasso regression that includes eight contextual covariates: pre-learning quiz 
score, accuracy on the previous question, time since starting the learning session, whether 
in the previous concept they were shown the conceptual explanation and/or isomorphic 
practice question, the time they spent on the previous concept, and the speed at which they 
set MathBot to send responses. Of these three models, the first performs the best.

We find that the bandit learned a policy which is comparable to the most successful 
policy learned from the uniform random condition, and further, that both the bandit and 

Identifying Terms Recursive Formulas

Equivalent Formulas Identifying Sequences

Concept

Concept and

Isomorph
Isomorph

Nothing
Concept

Concept and

Isomorph
Isomorph

Nothing

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%Fr
eq

ue
nc

y

Personalized Policy learned by Contextual Bandit

Fig. 10  For four representative assessment questions out of the eleven total, the proportion of users for 
which the final policy learned by the bandit would use each action. The policy chooses different actions 
based on each user’s pre-learning quiz score

5 We never observe the actual outcomes of implementing these policies, as that would require running 
another costly experiment. We instead make use of standard offline policy evaluation techniques to compare 
the pedagogical strategies learned by the bandit and the uniform random experiment (Li et al., 2012). The 
specific quantity we are interested in is the expected average reward for a random user drawn from the pop-
ulation distribution. To compute the expected average reward for this policy on question i, we evaluate the 
average reward on question i in our uniform random condition where the user was randomly assigned into 
the action our bandit policy would have chosen. We then average these rewards over all the questions and 
compute standard errors by bootstrapping the uniform random data. We perform a similar method for the 
policies trained on the uniform random data, except we choose an action for person p using a model trained 
on all the uniform random data except those of person p to avoid overfitting.
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Fig. 11  Average local (left) and global (right) rewards during the experiment for the bandit and uniform 
random conditions with 2 standard errors (1 SE solid, 2 SE dashed). In both cases, the contextual ban-
dit obtains higher rewards, suggesting that it provides improved user experience while learning an optimal 
pedagogical policy

Table 2  Dropout summary statistics for the first part of Study 1, which measured participant preferences for 
video-based instruction versus instruction via MathBot

Participants who spent less than 1 min on MathBot or the video were excluded from the analysis

Started 
modules

Finished 
modules

Module 
dropout (%)

Finished 
experiment

Post-module 
dropout (%)

Learning 
time > 1 min

Learning time 
≤ 1 min (%)

143 134 6.3 134 0 116 13.4

uniform random strategies learned a policy which outperformed the original policy from 
Studies 1 and 2 of always showing the concept without an isomorphic practice question. In 
Table 1, we display the average expected rewards of the two learned policies, along with 
the four policies which use the same action constantly. In particular, we find no statisti-
cally significant difference between the average reward obtained by the final bandit policy 
and the policy learned from the uniform random data. A 95% confidence interval for this 
difference in average rewards is [− 11, 28], slightly in favor of the policy learned in the uni-
form random condition. Finally, we note one additional advantage of the contextual bandit, 
which is that it can continually refine its learned solution given additional users, whereas 
traditionally the pedagogical policy would be fixed after concluding the uniform random 
experiment.

5.2.3  The cost of exploration

The above results indicate that one can indeed learn a personalized pedagogical policy 
using a contextual bandit that is on par with one learned from uniform random data. The 
primary value of a bandit, however, is that it incurs lower costs of exploration by quickly 
learning which actions are unlikely to be beneficial. We thus now directly compare the 
average rewards obtained under the bandit and uniform random conditions during the 
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model-learning period. Higher average reward during model-learning suggests users are 
having a better experience, as they receive sub-optimal actions less often.

We first compute the average reward for each lesson in both conditions, and then aver-
age that quantity over all the lessons for both conditions. This gives us the the average 
reward per lesson per user for both conditions. As shown in Fig. 11 (left panel), the aver-
age reward in the contextual bandit condition is substantially higher than in the uniform 
random condition. A 95% confidence interval on the difference is [9.6, 29.1].6 In Fig. 12 
in the "Appendix" we plot the cumulative average over the total local rewards per user as a 
function of the number of users in each condition, finding that the bandit quickly improves 
upon the uniform random policy in terms of average reward.

As another way to assess the cost of exploration, we compute the average value of a 
global reward function across users in our two conditions—bandit and uniform random. 
Analogous to the local reward function, the global reward is defined as:

In contrast to the local reward function, the global reward considers the total post-learning 
quiz score and total time spent on the entire MathBot conversation, rather than correctness 
and time spent during individual lessons.

Figure 11 (right panel) shows the average global rewards of participants between the 
two conditions. We find that the bandit obtains considerably higher average global rewards 
than the uniform random condition, with the difference being 171 (95% CI [18–324], p = 
0.029). We note further that the difference is mostly driven by users in the bandit condition 
taking far less time to finish the MathBot conversation. Table 15 breaks down the average 
learning gains and lesson times for users in the two conditions. The average difference in 
lesson times is 149 seconds (95% CI [32–266], p = 0.012), translating to the bandit sav-
ing around 12% of the uniform policy’s lesson time, while users in both conditions scored 
roughly the same on the post-learning quiz, with the difference being .2 questions (95% 
CI [-.53–.93], p = .59), slightly in favor of the bandit. The bandit was only designed to 
optimize for local rewards, so this result offers further evidence that the bandit is learning a 
generally effective policy.

As a final way to assess user satisfaction during exploration, we examine the difference 
in dropout rates between the two conditions. A user is said to “drop out” if they complete 
the first MathBot lesson but not the final lesson, either skipping to the post-learning quiz 
or leaving the experiment. Out of the participants in the bandit condition, 9% dropped out, 
compared to 15% of participants in the uniform random condition—a statistically signifi-
cant gap of 6 percentage points (two-proportion z-test, p < 0.05 ). This result again sug-
gests the bandit provides an improved user experience while learning a pedagogical policy.

150 ⋅ ���� − learningQuiz Score − seconds spent on MathBot.

6 We compute the standard errors for our uniform random condition through the bootstrap. The standard 
errors for the bandit condition are obtained by fitting a response surface model on the uniform random data 
and running simulations.
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6  Discussion

6.1  Limitations

One potential shortcoming of MathBot and similar conversational tutoring systems is the 
time needed to develop and test the underlying conversation graph. On the other hand, 
since MathBot does not require researchers to develop NLP algorithms and models for con-
versation, it has one of the strengths of example-tracing tutors: those without extensive 
machine-learning expertise, including high-school instructors, could feasibly participate in 
development. In addition, Study 3 demonstrated the successful use of contextual bandit 
algorithms to learn how to personalize elements of the conversation graph—specifically, 
when to skip conceptual explanations and when to give additional practice problems. This 
result provides one demonstration of how such components could be learned via a data-
driven process after deployment, further minimizing the development time.

It is worth discussing whether our success in using a contextual bandit to learn a peda-
gogical policy might generalize to other learning scenarios. One of the main theoretical 
concerns of using a contextual bandit in learning scenarios is that it may not be able to 
optimally handle long-term dependencies (e.g., skipping the first conceptual explanation 
hurts performance on the eighth concept). Much work has thus explored more compli-
cated strategies for learning personalized pedagogical strategies which require more data 
(Chi et al., 2011; Ruan et al., 2019). In particular, we point out two features of our setting 
which are actually encouraging in this respect: (1) the lesson contains many concepts, most 
of which build upon one another, and (2) our bandit, despite being designed with a local 
reward function, was still able to learn more effectively than a uniform random policy even 
when evaluated with a global reward function. These two points of evidence suggest that 
bandits, despite theoretical concerns, may still have value in learning pedagogical policies 
even in complex and path-dependent learning scenarios.

An important limitation of our study is that we evaluated MathBot using a convenience 
sample of adults from Amazon Mechanical Turk. While Mechanical Turk workers have 
been shown to exhibit similar video-watching behavior and quiz performance as MOOC 
learners (Davis et  al., 2018), it would be valuable to test our system with a population 
actively exposed to algebra instruction, such as high school students or remedial adult 
learners in college. Our study also does not address the implications of using MathBot as 
a major component of a full-length course. For example, we did not investigate knowledge 
retention, and we do not know whether students would enjoy using MathBot less or more 
if they used it to learn over the course of several weeks or months. One potential upside 
of using MathBot over a longer period of time is that if students changed in their aptitude, 
MathBot would automatically adjust its lessons to that student. Since MathBot’s applica-
bility to a classroom setting is yet to be explored, future work could consider how this 
approach would be received and used by teachers. For example, would MathBot be most 
useful as homework, as an optional supplementary resource, or as in-class practice?

Additionally, our system taught a single algebra topic, arithmetic sequences, with a con-
versation intended to last approximately 30 min (Studies 2 and 3) and could be less than 
10 min (Study 1). Furthermore, because Khan Academy is an independent platform, we 
were unable to deeply investigate video-watching and tutorial-completing behavior of par-
ticipants in Studies 1 and 2. Further investigation is necessary to understand exactly which 
of our insights might generalize to other learning scenarios, including longer interaction 



2407Machine Learning (2021) 110:2389–2418 

1 3

periods, different topics in mathematics, and different learning formats such as games (Lee 
et al., 2014).

6.2  Conclusion

In this work, we developed and studied the effect of an interactive math tutoring system: 
MathBot. Although the content of MathBot closely matched that of the Khan Academy 
materials, we found evidence of heterogeneous learning preferences. MathBot produced 
learning gains that were somewhat higher than those of Khan Academy, though the gap 
was not statistically significant. Finally, we found that a contextual bandit was able to effi-
ciently learn a personalized pedagogical policy for showing extra practice problems and 
skipping explanations to appropriately alter the pace of the MathBot conversation, outper-
forming a randomized experiment.

We note several directions for further work. We found that the bandit was able to learn 
as effective a policy as the randomized A/B experiment while requiring less time: how-
ever, we did not study what might happen in a setting where the time of the lesson was 
fixed and the bandit instead had to optimize learning gains given the fixed time allotted 
for the lesson. Additionally, given the challenge of fully exploring a substantial number 
of actions and a sizable context space with only a limited number of interactions with real 
users, the contextual bandit used in Study 3 had access to only four actions with one con-
textual variable. If a future iteration of MathBot were released to a larger audience, the 
bandit could explore additional actions, such as entirely skipping topics or providing more 
than one additional practice question, and could leverage additional contextual variables, 
such as users’ stated preferences for learning via conceptual explanations versus example 
problems, or individual pre-quiz answers. Furthermore, the choice of learning media itself 
could be personalized with either a contextual bandit or another technique from the rein-
forcement learning literature: one could certainly imagine specific students or concepts 
being better suited for conversation than video or vice-versa.

Several users in Study 1 noted the benefit of interacting with multiple learning mod-
ules, and past work has demonstrated that prompting users with relevant questions peri-
odically during a video may improve learning outcomes (Shin et al., 2018). Accordingly, 
one could explore integrating brief conversations with MathBot into educational videos 
or, conversely, video elements could be used in the MathBot conversation. Though Math-
Bot interactively guides learners through explanations and relevant questions, it does not 
provide a platform for extensive rote practice after finishing the conversation. An adaptive 
question sequencing model such as DASH [29] could be used to guide students through an 
optimized sequence of practice problems by accounting for student performance during the 
MathBot conversation. We hope that future work will investigate the potential of intelli-
gent tutoring systems that incorporate multiple modes of teaching and learn to personalize 
themselves to individual student needs.
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Appendix

Study design details

Study 1 Our study was conducted on Amazon Mechanical Turk and was restricted to adults 
in the United States. To qualify for the study, we required that participants pass two screen-
ing quizzes. The first was a brief, 5-question quiz to ensure participants had sufficient alge-
bra knowledge to understand sequences, but did not already have advanced knowledge 
of arithmetic sequences. The second screening quiz consisted of a more in-depth set of 
12 questions selected from a Khan Academy quiz on arithmetic sequences. We excluded 
participants who answered more than 50% of the questions correctly, reasoning that these 
individuals already had substantial knowledge of sequences. Users were paid a bonus pro-
portional to their score on a post-learning quiz. This performance-based payment scheme 
was disclosed to participants at the start of the study to incentivize active engagement 
with MathBot, attentive watching of the Khan Academy video, and dutiful completion of 
the written tutorial. Finally, we excluded participants who spent less than 1 min on either 
MathBot or the Khan Academy learning module, reasoning that these individuals did not 
seriously engage with the material.

Study 2 Users assigned to Khan Academy had access to seven videos and four written 
tutorials with embedded practice problems, and they were informed that completing either 
the videos or the tutorials would sufficiently prepare them for the post-learning quiz. Users 
were incentivized to complete the learning module to the best of their ability with a bonus 
payment proportional to their performance on the post-learning quiz.

Additional qualitative results, Study 1

Self-pacing versus guidance In the first part of the study, 8 out of 116 users noted the ben-
efits of freely navigating the video: “I can rewind them and fast forward if I already know 
the concept.” Similarly, 22 out of 111 users in the second part of the study indicated value 
in freely scrolling through the written tutorial. These users frequently indicated frustration 
with the inability to freely navigate the material in the MathBot conversation.

On the other hand, 6 users in the first part of the study preferred that MathBot adapted 
its speed to their progression through concepts and questions, unlike the video. Similar 
sentiments were echoed by 15 users in the second part of the study, who preferred that 
MathBot explicitly guided them through concepts, unlike the written tutorial. Furthermore, 
8 users in the first part of the study noted value in being able to scroll through earlier parts 
of the MathBot conversation to review concepts.

Human elements and interactivity In the first part of the study, 7 out of 116 users found 
MathBot to be more agentic than the video. However, 9 users reported the opposite: “Even 
though it was a video, it felt like a more personal experience because it was a human 
voice talking versus just reading on the screen.” In the second part of the study, 12 out of 
111 users indicated that MathBot provided a greater sense of interaction than the written 
tutorial.

Requiring users to evaluate their knowledge The video asked users to pause and think 
about problems; however, unlike MathBot, answering these questions correctly was not 
required. 22 out of 116 users in the first part of the study noted the value of MathBot hold-
ing them accountable for understanding concepts before progressing: “When watching 
the video, I wasn’t sure if I was actually understanding the concepts correctly.” Similarly, 
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although the Khan tutorial embedded problems between text, users could easily skip them, 
and 21 out of 111 users in the second part of the study found that being held accountable 
aided their learning. 10 learners also valued that MathBot provided more specific feedback 
on their answers than the tutorial.

Combining learning modules 42 users in the first part of the study and 57 users in the 
second part of the study suggested that both tools could be particularly valuable in specific 
learning scenarios. For example, 8 users in the first part of the study thought the video 
was superior for learning concepts, whereas MathBot was better for learning how to apply 
those concepts: “The best option for me would be to watch the video first, and then take 
part in the conversational computer program so that I could verify my understanding.” 
Similarly, 16 users indicated that, like the video, the written tutorial introduced concepts 
more effectively. 25 users in the first part of the study and 15 users in the second part of 
the study found that videos and written tutorials (respectively) were superior for learning 
concepts that required complex or detailed explanations.

Description of Thompson sampling

As described in the text, we use a linear model with Thompson sampling to train the con-
textual bandit. Every time we get a new data point from a user answering a question, we 
run a linear regression on all previously recorded contexts and rewards. The linear regres-
sion contains all of the interactions between the context (a question identifier denoted by 
the indicator 1j , which is 1 if the user is answering question j and 0 otherwise, and the pre-
quiz score p) and the actions (whether an isomorph was shown, denoted by the indicator 1i , 
and whether the explanation of the concept was skipped, denoted by the indicator 1s ). The 
reward is denoted by r.

Given the results of the regression, we have a posterior distribution over the coefficients, 
which is multivariate normal. This distribution is

We sample a random �t from this distribution. Then, we iterate over every possible action a 
and compute the action which would maximize the reward given �t:

where c are the contextual variables and x are the covariates, which are computed from the 
contextual variables and the action terms, as described previously. This action is then given 
to the learner, and the reward is recorded (see Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15; Fig. 12).            

r =�0 +

n
∑

j=1

�j1j + �pp + �i1i + �s1s +

n
∑

j=1

�j21j1i

+

n
∑

j=1

�j31j1s + �p2p1i + �p3p1s + �

N(𝛽, �̂�(XTX)−1)

argmax
a

�t ∗ x(a, c)
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Table 3  Dropout summary statistics for the second part of Study 1, which measured preferences for instruc-
tion via written tutorial versus instruction via MathBot

Participants who spent less than 1 min on MathBot or the tutorial were excluded from the analysis

Started 
modules

Finished 
modules

Module 
dropout (%)

Finished 
experiment

Post-module 
dropout (%)

Learning time 
> 1 min

Learning time ≤ 
1 min (%)

172 155 9.9 154 0.6 111 27.9

Table 4  Demographics of participants in the first part of Study 1, which measured preferences for video-
based instruction versus instruction via MathBot

N Female (%) Educ. > HS (%) Mean age (years) SD age (years)

116 69.6 81.9 35.4 10.5

Table 5  Demographics of participants in the second part of Study 1, which measured preferences for 
instruction via written tutorial versus instruction via MathBot

N Female (%) Educ. > HS (%) Mean age (years) SD age 
(years)

111 76.4 82 34.6 8.7

Table 6  Experiential ratings and learning times of participants in the first part of Study 1, which measured 
preferences for video-based instruction versus instruction via MathBot

Experiential ratings were measured on a 1–7 scale, with 4 as the neutral option

N Mean 
MathBot 
rating

SD 
MathBot 
rating

Mean 
video 
rating

SD video 
rating

Mean 
MathBot 
time 
(min)

SD Math-
Bot time 
(min)

Mean 
video 
time 
(min)

SD video 
time 
(min)

116 5.3 1.7 6.1 1.2 8.3 12.1 8.3 6.9

Table 7  Experiential ratings and learning times of participants in the second part of Study 1, which meas-
ured preferences for instruction via written tutorial versus instruction via MathBot

Experiential ratings were measured on a 1–7 scale, with 4 as the neutral option

N Mean Math-
Bot rating

SD MathBot 
rating

Mean tutorial 
rating

SD tutorial 
rating

Mean MathBot 
time (min)

SD MathBot 
time (min)

Mean tutorial 
time (min)

SD tutorial 
time (min)

111 5.8 1.3 5.9 1.2 7.3 4.1 10.7 13.6
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Table 10  Dropout summary statistics for Study 2, which measured learning gains achieved by instruction 
via MathBot versus instruction via Khan Academy videos and written tutorials

Participants who spent less than 2 min on their randomly-assigned learning module were excluded from the 
analysis

Condition Started 
module

Completed 
module

Module 
dropout 
(%)

Completed 
experiment

Post-mod-
ule dropout 
(%)

Learned > 
2 min.

Learned <= 
2 min. (%)

Khan 
Video

251 231 8.0 221 4.3 187 15.4

MathBot 237 221 6.8 213 3.6 182 14.6

Table 11  Demographics of participants in Study 2, which measured learning gains achieved by instruction 
via MathBot versus instruction via Khan Academy videos and written tutorials

Condition N Female (%) Educ. > HS (%) Mean age 
(years)

SD age (years)

Khan Video 187 58.8 85.0 33.6 9.7
MathBot 182 71.7 79.7 34.0 10.7

Table 12  Learning outcomes of participants in Study 2, which measured learning gains achieved by instruc-
tion via MathBot versus instruction via Khan Academy videos and written tutorials

The pre- and post-learning assessments were on a 12-point scale

ConditionN Mean 
time 
(min)

SD time 
(min)

Mean pre-
score

SD pre-
score

Mean 
post-score

SD post-
score

Mean 
gain

SD gain Mean 
PLG

SD PLG

Khan 
Video

187 28.9 21.6 2.3 1.7 8.1 3.7 5.7 3.6 0.6 0.4

MathBot 182 28.4 20.3 2.5 1.9 8.6 3.3 6.1 3.2 0.7 0.3
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Table 14  For Study 3, dropout rates for the two learning experimentation strategies, along with 95% confi-
dence intervals

Experimentation strategy Dropout Confidence interval

Bandit 0.087 [0.048, 0.125]
Uniform 0.152 [0.102, 0.201]

Table 15  For Study 3, average pre- and post-learning quiz scores, learning gains, and total time spent on the 
lesson for the two learning experimentation strategies, along with standard deviations

Experi-
mentation 
strategy

Mean 
pre-score

SD pre-
score

Mean 
post-
score

SD post-
score

Mean 
learning 
gains

SD learn-
ing gains

Mean les-
son time 
(min)

SD lesson 
time (min)

Bandit 3.87 2.47 12.2 3.82 8.29 4.00 18.4 9.7
Uniform 4.05 2.49 12.0 4.11 7.96 4.17 20.1 11.2

0
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Fig. 12  For Study 3, the cumulative average over total local rewards for users who completed MathBot for 
each experimentation strategy, following the warm start. We find that the bandit outperforms the uniform 
random policy for nearly the entire duration of the experiment.
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