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Abstract
This work serves as a review of our experience applying off-policy techniques to train and 
evaluate a contextual bandit model powering a troubleshooting notification in a chatbot. 
First, we demonstrate the effectiveness of off-policy evaluation when data volume is orders 
of magnitude less than typically found in the literature. We present our reward function and 
choices behind its design, as well as how we construct our logging policy to balance explo-
ration and performance on key metrics. Next, we present a guided framework to update a 
model post-training called Post-Hoc Reward Distribution Hacking, which we employed to 
improve model performance and correct deficiencies in trained models stemming from the 
existence of a null action and a noisy reward signal. Throughout the work, we include dis-
cussions of various practical pitfalls encountered while using off-policy methods in hopes 
to expedite other applications of these techniques.

Keywords Contextual bandits · Off-policy training · Off-policy evaluation · Limited data · 
Small data

1 Introduction

In this paper, we present our experience developing a contextual bandit model to dis-
play notifications, known as predictive cards, in a customer support application. When 
the customer logs into the application, they can be presented with a notification card 
for troubleshooting either their internet or television service with the goal of streamlin-
ing the troubleshooting process. Our training data consists of logs from the production 
system, and our methodology is taken from the off-policy learning and evaluation lit-
erature. We successfully used off-policy methods to continually develop models which 
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improved upon our key business metrics tracking customer engagement; however, while 
applying off-policy methods, we encountered two major practical problems that were 
not fully covered in the existing literature. Therefore, in this work we aim to provide 
case studies of our empirical findings. In particular, we aim to 

(a) demonstrate how the choice of logging policy affects standard off-policy estimates 
while highlighting insights we found to not be immediately accessible in the literature 
and

(b) present a series of practical tricks and hacks that we employed post-training to improve 
bandit model performance when there exists a null action and a noisy reward signal.

To motivate our first goal, we pose the following question: when data resources are lim-
ited, what kind of logging policy should one use for accurate off-policy estimates? This 
is of key practical concern when applying off-policy evaluation. Although there is a rich 
literature discussing off-policy methods (Strehl et al. 2010; Vlassis et al. 2019; Joachims 
and Swaminathan 2016; Li et al. 2015; Swaminathan and Joachims 2015; Jeunen et al. 
2019; Swaminathan and Joachims 2015), most practical examples in the literature 
involve applications to search engines (Li et al. 2015; Swaminathan et al. 2016; Chen 
et al. 2018), advertising (Bottou et al. 2013), or news recommendation (Li et al. 2012, 
2010, 2011), where millions of examples are generated per day with hundreds to thou-
sands of bandit arms to suggest. In examples of contextual bandit problems for customer 
support applications such as Karampatziakis et  al. (2019), a policy returns a slate of 
help options selected from a large action space, which is starkly different than the use 
case herein. When compared to the existing literature, this work is differentiated by an 
atypically small data regime and action space size.

In the nascent phase of the project, there were only 30,000 data points per month and 
three bandit arms available. Within a year, our system generated approximately 200,000 
data points per month, and after two years, the project generated over 1,000,000 unique 
data points per month. Given the smaller volume of data, one must be strategic about 
which policies to deploy in production, considering the policy with the highest business 
value may not generate useful data for offline evaluation and training. In Sect.  3.2, we 
present a series of experiments comparing the accuracy of different off-policy estima-
tors when using different logging policies. We also demonstrate empirically the con-
vergence and variance of these estimators. Our results underscore the importance of 
carefully selecting a logging policy tailored to a given use case in order to balance off-
policy estimation accuracy and business value in a practical setting.

We further submit that several insights from our study which we present in this work 
are not thoroughly discussed in the literature from the perspective of practical applica-
tions. For example:

• the empirical observation of the importance of stochasticity in the logging function 
(Sect. 3.5.1),

• best practices for the choice of train/test splits with multiple logging policies and 
limited data for off-policy evaluation (Sect. 3.5.2), and

• detailed examples of and strategies for constructing an exploration policy 
(Sect. 3.1.1).



2579Machine Learning (2021) 110:2577–2602 

1 3

These topics are of practical concern and required the authors to complete multiple A/B 
tests over the course of several months to converge on a working off-policy system. We 
document the case studies and discussions in this work to help streamline more applica-
tions of off-policy methods.

Our second case study was born of practical necessity. Our goal for the notification 
system is to decrease the rate at which customers abandon the application before typing 
an utterance or clicking a notification; however, as there could be many reasons driving 
a customer not to interact with the bot, the “abandon rate” of customers proved to be a 
noisy reward for training models. Causally, a model could influence the abandon rate by 
displaying a notification and the customer clicking on it, or an incorrect notification could 
increase the abandon rate. On the other hand, customers use the chatbot for more than trou-
bleshooting, which implies there are other factors that could influence the abandon rate 
beyond the scope of our model. These external factors add noise to the reward signal, and 
thus, crafting a reward function solely based on the abandon rate led to practical problems 
during training. Many candidate reward functions tested led to models which virtually only 
recommended the null action of “no card”. Furthermore, nontrivial candidate models failed 
to improve upon our business metrics during testing. In order to correct for these apparent 
issues, we applied a series of practical hacks and procedures, the collection of which we 
call Post-Hoc Reward Distribution Hacking (PRDH) and describe in Sect. 4. PRDH cre-
ates a one parameter family of models from a single trained model by shifting the reward 
value for the null action and moreover gives a visual framework for evaluating this family’s 
performance on key business metrics. Our approach can be considered a form of reward 
hacking, as it can be interpreted as adjusting the posterior reward distribution of a trained 
model. We note that this approach is not a novel theoretical framework for model selec-
tion but rather a novel procedure for updating a model post-training as a form of model 
selection, which to the best of our knowledge is not well-represented in the literature but 
relevant for practical applications.

1.1  Problem setting

For Comcast customers, there is an automated chatbot called the Xfinity Assistant which 
offers a self-service customer support experience. The core dialogue component is han-
dled through a natural language processing system, but the user interface also contains a 
predictive troubleshooting module. In this module, we use telemetry coming from devices 
(e.g., a modem or television box) to identify customers who may be experiencing issues 
and prompt the customer with a notification to troubleshoot their device. This notification 
component is the focus of this work. When a customer opens the app, we may opt to show 
the customer a troubleshooting predictive card from a set of eligible cards. These cards are 
eligible based on business rules related to the customer account. We also have the option 
to not show a card, which is called the “null action” in this work. In Fig. 1, we provide a 
screen shot of the Xfinity Assistant showing an early version of the internet troubleshoot-
ing card available to the production policy.

As discussed in the introduction, our goal is to reduce the customer abandon rate. An 
“abandon” occurs if a customer exits the application before clicking a notification or entering 
a question (called an “utterance”) for the chatbot. To understand the success of our interven-
tions, we also tracked two metrics with a stronger causal relationship to our bandit arms: the 
click-through rate (CTR) and the percent of sessions that are shown a card (%S). To decrease 
the abandon rate, we train a contextual bandit model to decide which card, if any, to show to 
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a customer. A reward function (detailed in Sect. 2.2) was designed to serve as a proxy for the 
abandon rate using the click-through rate of troubleshooting notifications and to balance com-
peting concerns: to show as many notifications as possible without showing incorrect notifi-
cations. Showing no notification has a neutral, if not slightly negative, effect. Namely, if the 
customer did need troubleshooting, then it is a missed opportunity. Because of this trade-off, 
we consider CTR and %S as analogues to precision and recall in the classification setting, and 
we demonstrate in Sect. 4 how we use these metrics in a similar fashion to precision and recall 
during model selection for contextual bandit applications with a null action.

1.2  Notation

We will now formalize the problem described above in a more abstract setting. The following 
definitions are informed by the approaches of Swaminathan and Joachims (2015), Strehl et al. 
(2010), Swaminathan and Joachims (2015), and in particular, our notation and naming con-
ventions follow (Swaminathan and Joachims 2015; Joachims and Swaminathan 2016) closely.

We denote our customer’s telemetry data x ∈ X  which are sampled i.i.d. from a distribu-
tion Pr(X) . Our logging policy is denoted h0 , and actions a are sampled conditional on x, 
a ∼ h0(⋅|x) , which we will write a ∼ h0(x) in an abuse of notation. For a given policy h, we 
will write h(x, a) to be the propensity score assigned to x by h for the action a. When the action 
is undefined (like in an expectation), we will denote this h(⋅|x) . For the rest of the work, we 
reserve h to represent a policy and h0 will always represent the logging policy which has gen-
erated the data for training and evaluation. We assume we have a reward function r ∶= r(x, a) 
which is deterministic and defined concretely in a later section, and we will suppress the x 
and a for convenience. Our data takes the form of triplets (xi, ai, ri) ∼ D where D implicitly 
depends on the logging policy h0 with |D| = n.

In order to correct the data dependence on h0 , the standard inverse propensity score is 
applied, and the (offline) empirical reward estimate of a policy h is given via

It has been shown that (1) is an unbiased estimate of the true reward of h,

(1)VOP(h) ∶=
∑

(x,a,r)∈D

[
r(x, a)

h(x, a)

h0(x, a)

]
.

(2)V(h) ∶= Ex∼Pr(X)Ea∼h(⋅|x)r(x, a)

Fig. 1  Demonstration of the 
“internet” predictive card in the 
Xfinity Assistant
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and has been used in practice in a variety of applications (Li et al. 2010; Strehl et al. 2010; 
Chen et al. 2018; Li et al. 2015).

The formula we use for the inverse propensity score (IPS) estimate of the reward, also 
called importance weighting, is

Although it is an unbiased estimator, the IPS estimator can have unbounded variance (Swa-
minathan and Joachims 2015), and so VIPS can be improved via variance reduction tech-
niques to form a biased but strongly consistent estimator called the self-normalized esti-
mator (snIPS). We use the definition of snIPS from Eq. 7 of Sect. 5 in Swaminathan and 
Joachims (2015),

We note that Eq. 4 is also called weighted importance sampling in the literature. In this 
work, we will use both estimators in the results section to demonstrate the utility of each 
estimate on our problem.

Finally, it is common to define the effective sample size (as opposed to the sample size, 
n) for our data (xi, ai, ri) ∈ D via

One important note is as follows: in the experiments of later sections, we calculate the 
sample size and effective sample size using only data points with non-null actions. As our 
metric of interest requires a card to be shown (e.g., the click-through rate), sample sizes 
and effective sample sizes calculated including null actions are misleading. Finally, we will 
also refer to the relative difference (abbreviated “% diff”) between two quantities x and y 
defined as

where the denominator is a “true” or non-estimated value.

2  Data and modeling

In this section, we present an overview of the data and the specifics of our modeling 
approach. The features engineered to solve this problem are detailed in Sect. 2.1 along with 
references to our production serving architecture. Our reward function and model architec-
ture are found in Sects. 2.2 and 2.3 respectively.

(3)VIPS(h) ∶=
1

n

n∑
i=1

ri
h(xi, ai)

h0(xi, ai)
.

(4)VsnIPS(h) ∶=

∑n

i=1
ri

h(xi,ai)

h0(xi ,ai)∑n

i=1

h(xi,ai)

h0(xi,ai)

.

(5)ne ∶=
(
∑n

i=1
wi)

2

∑n

i=1
w2
i

where wi =
h(xi, ai)

h0(xi, ai)
.

(6)100 ⋅
x − y

y
,
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2.1  Features and action spaces

In addition to the null action, there are two notifications available in the notification com-
ponent: troubleshoot internet and troubleshoot TV. Thus, the bandit arms we refer to are 
“internet card”, “TV card”, and “no card”. The “no card” action corresponds to the null 
action. Because of this, our features are based on telemetry related to a customer’s internet 
and TV connections.

The features x are a mix of continuous, discrete, and binary signals from devices. A 
majority of features come from telemetry data, specifically application logs from internet 
gateways and television boxes themselves. Our gateways and television boxes are powered 
by an open source framework called Reference Design Kit (RDK). These logs are sent in 
near realtime back to our monitoring systems, which we then consume to create features. 
We also have features pertaining to the customer’s subscriptions, as well as what applica-
tion the customer is using to access the Xfinity Assistant, which we refer to as the “chan-
nel”. Possible channels include mobile, web, and Facebook chat.

RDK logs a variety of internet-related errors and system messages which are aggregated 
and sent every 15 minutes. (On some older firmwares, this aggregation is every hour.) 
These error and system codes have varying degrees of importance: some relate to Linux 
processes restarting while others catalog connectivity timeouts and gateway reboots. From 
these events, we extract unique messages and errors to use as “words” for a term-frequency 
inverse document-frequency embedding that is passed to the model as a feature. Rather 
than using individual events as inputs to the model, we roll up the counts to a larger time 
window of either 3 or 24 hours. Today, we utilize approximately 750 error keys in our pro-
duction policy.

RDK also provides in-home wireless network (WiFi) related messages summarizing 
telemetry markers from the gateway. Those messages include measures between con-
nected client devices and the gateway like data transmission rates and WiFi signal strength 
(relative signal strength, RSSI). Overall measures on the gateway itself are also reported, 
including a channel utilization score indicating the extent of WiFi channel congestion. 
These measures have been used to reliably estimate in-home wireless experience (Patro 
et al. 2013). To generate features for our model, we use a rolling window of several hours 
(e.g., 6 hours) to collect these WiFi related messages and derive approximately 80 aggre-
gate features such as the minimum, maximum, mean, and standard deviation of each WiFi 
measure.

For television, the Xfinity X1 application surfaces a number of errors to the customer on 
their TV screen. We capture these errors and use them as a signal to the model. As opposed 
to errors from the gateway, these TV errors indicate a variety of service disruptions; how-
ever, these events are also rare. During the initial launch and when our experiments were 
conducted, such errors were our sole source of features for the television domain, causing 
the “TV card” to appear much less frequently than the internet card.

In-depth technical details of our production feature store and model deployment archi-
tecture are available in Pinckernell and Rome (2020). Up-to-date features were stored in a 
cache, and the most recent values of the features were collected and passed to our produc-
tion policies when a customer accessed the Xfinity Assistant.
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2.2  Reward function and quasi‑advantage

As discussed in the introduction, the abandon rate is impacted by external factors and thus 
not completely controlled by our possible bandit arms, leading to a noisy reward signal. 
Instead, we chose to model our reward function to closely track the click-through rate. We 
found that using the click-through rate directly also led to poor results as the model had no 
incentive to choose the null action. Instead, we used the following reward which utilized a 
blend of the click-through rate and the abandon rate:

where �, � ∈ [0, 1] are configurable hyperparameters. The logic behind the reward is to 
encourage the model to show a card to anyone who needs to perform a troubleshooting 
action. Because the application has other purposes, we do not expect to show a card to 
every customer. The parameter � is one lever used to control the trade-off between higher 
click-through rates and a higher occurrence of cards in the application. The parameter � 
is meant to encourage the model to intervene with customers who would otherwise aban-
don the application. For our experiments we set � = .9 and � = .25, and these values were 
determined by trial and error throughout our model development.

We observed an improvement in performance when we took steps to normalize the 
reward during training. In particular, let ra represent the average reward for all cases of 
action a in our training set. During training, we replaced ri with r̂i,

where we subtract the average reward from the training set for the action corresponding to 
ri . We call this approach quasi-advantage because it is a quick, rough version of traditional 
advantage terms in reinforcement learning. Our deployed production policy consisted of 
the individual reward predictors and an argmax was used to select the action. Therefore, we 
would store ra for each action and add each respective average reward to the output of the 
model at runtime to maintain the original reward distributions.

2.3  Model architecture

Here, we will detail the model architecture for our original reward predictor model. In pro-
duction, we used a linear model (Fig. 2) implemented in Keras (Chollet et al. 2015) where 
each troubleshooting card’s features were independent, but all features were used for the 
“no card” arm. One outcome of this design was it allowed easy addition of new features 
which only affect a specific arm. For example, there is a single input layer for our gateway 
telemetry features. We then pass those features through a dense layer with a linear activa-
tion to an output of size 1. Similarly, there is a single input layer for our TV-related fea-
tures, and we again pass them through a dense layer with linear activation to an output of 
size 1. For “no card”, we concatenate all inputs and pass them through a dense layer with 
a linear activation of output size 1. As each output corresponds to a single arm, we can 
concatenate the three outputs and pass them through a tanh activation to use as our reward 

(7)

r�,�(x) = − � if the customer abandoned the session on the launch page,

otherwise

⎧⎪⎨⎪⎩

1 card shown and was clicked

−� card shown and was not clicked

−1 no card and troubleshooting action initiated

0 no card and no troubleshooting action initiated

(8)r̂i ∶= ri − ra,
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predictor’s output. Later in Sect. 5.3, we describe how we updated this architecture when 
adding the channel feature to the model.

3  On the choice of logging policies for off‑policy evaluation

In order to calculate accurate off-policy estimates while maintaining performance, we 
tested a variety of candidate exploration policies. In addition to our production policy, we 
used two main logging policies for training and evaluation: a uniformly random policy and 
a simplified exploration policy. The uniformly random policy would sample from available 
actions uniformly, and the simplified exploration policy was designed to have a better expe-
rience for the user while still producing accurate off-policy estimates. We also tested an �
-greedy version of our production policy which we present in Sect. 3.3.1.

Our final production setup split traffic between three policies, typically giving a small 
portion of traffic to the uniformly random policy, a moderate amount of traffic to the sim-
plified exploration policy, and the remainder of traffic to our production model. These pol-
icy choices were settled upon after many iterations of trial and error where we aimed to 
balance performance on the key metrics and exploration.

In this section, we will describe the design of the simplified exploration policy and pro-
vide experimental results for the accuracy of different off-policy estimators using differ-
ent logging policies. For the experiments, we present the relative difference between the 
off-policy estimate of the click-through rate and the true performance of the policy in pro-
duction for business privacy purposes. Moreover, we include an experiment detailing the 
convergence of these estimators with respect to the sample size and effective sample size 
plus an estimate of their variance. Lastly, we present a brief investigation of the business 
performance of the different logging policies.

We note that in all cases of stochastic policies herein a seed was set based on the cus-
tomer’s account number when sampling from the distribution of actions. Similarly, when 
multiple policies were deployed, the logging policy was selected uniformly at random 
using a seed also based on the customer’s account number.

internet_features: InputLayer
input:

output:

(None, 750)

(None, 750)

internet_and_tv_features: Concatenate
input:

output:

[(None, 750), (None, 30)]

(None, 780)

internet_hidden_layer: Dense
input:

output:

(None, 750)

(None, 1)

tv_features: InputLayer
input:

output:

(None, 30)

(None, 30)

tv_hidden_layer: Dense
input:

output:

(None, 30)

(None, 1)

no_card_hidden_layer: Dense
input:

output:

(None, 780)

(None, 1)

merged_outputs: Concatenate
input:

output:

[(None, 1), (None, 1), (None, 1)]

(None, 3)

tanh_activation: Activation
input:

output:

(None, 3)

(None, 3)

Fig. 2  A graphviz representation of the model architecture for our original production policy using the 
Keras model_to_dot function



2585Machine Learning (2021) 110:2577–2602 

1 3

3.1  Designing a logging policy

Our first inclination was not to design any additional logging policies. We initially tested 
a deterministic version of our production policy as the logging policy. This led to exceed-
ingly biased and inaccurate off-policy estimates. Our experiment in Sect. 3.2.1 and results in 
Table 1 demonstrate this bias. We then deployed a stochastic modification of our production 
policy using an �-greedy scheme, but that approach also did not lead to accurate estimates 
either, which we present in Sect. 3.3.1. In Joachims and Swaminathan (2016), the off-policy 
estimates were not accurate until the data volume was orders of magnitude larger than ours, 
and so we decided to take special care to reduce the variance of our off-policy estimator.

Our approach is based on the idea of stratified sampling: we segment the feature space to 
well understood segments on which we can reduce the variance of future off-policy estimates. 
To accomplish this, Sect. 3.2 of Li et al. (2015) suggests that if a new policy h is “near” the 
logging policy h0 , the variance of off-policy estimates will be reduced. Thereby to reduce the 
overall variance, we craft meaningful segments with action distributions that are directionally 
in line with future trained policies. We note that because our experiments with an �-greedy 
modification of production yielded poor estimates, we did not test other candidates for policies 
“near” our production policies, e.g., a softmax version of our argmax-based production policy. 
We also did not investigate optimization schemes for constructing logging policies such as 
Hanna et al. (2017). We instead opted to use organic user behavior data from the application 
and the variance reduction strategy described below to create a new logging policy.

Let {Xi}
m
i=1

 be a partition of x ∈ X  with Xi ∩ Xj = {} for all i, j = 1,… ,m with i ≠ j . Let Di 
be the data points of D where x ∈ Xi and ni = |Di| . For each x ∈ D , we will also write xjk to 
denote the k-th sample in Dj . We will also add D into the notation of VIPS from (4), VIPS(h,D) , 
to clarify the summation domain. Then, we can decompose the offline estimator VIPS into

(9)VIPS(h,D) =
1

n

n∑
i=1

r(xi, ai)
h(xi, ai)

h0(xi, ai)

(10)=

m∑
j=1

nj

n

1

nj

nj∑
k=1

r(xjk, ajk)
h(xjk, ajk)

h0(xjk, ajk)

Table 1  Table of relative difference (% Diff) between the offline estimate of performance calculated on data 
generated before the A/B test and the model’s performance in an A/B test

Sample size (n) and effective sample size (ne) are listed

Estimates using data generated prior to the test

Model Logging policy VIPS % Diff. (%) VsnIPS % Diff. (%) n ne

A Random  − 91.1  − 0.890 65,582 1996
A SCX  − 41.8 1.48 40,992 1013
A Production  − 54.6 4.15 8486 3694
B Random  − 80.1 0.320 65,582 4345
B SCX  − 45.3 3.20 40,922 1596
B Production  − 50.3 15.0 8486 3662
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where the second line is done by rearranging terms and multiplying by nj∕nj = 1 and the 
final line follows from the definition of VIPS . From this formula, reducing the variance on 
each segment Di is sufficient to reduce the overall variance.

3.1.1  Our simplified exploration policy

In defining our exploration policy, we aimed to create meaningful segments of data 
where we could assign action distributions which would be in line with future policies. 
The resulting policy we refer to as the simplified exploration policy (SCX). To form 
our segments, we trained a collection of binary classification models using subsets of 
the features outlined in Sect.2.1 on alternative tasks. Labels were generated by organic 
customer interactions with the chatbot. We concatenated the outputs from these models 
as an identifier for each example and manually assigned an action distribution to each 
combination.

The motivation behind the approach is as follows: if we could classify customers as 
seeking internet or television troubleshooting using only telemetry data, then the out-
put of those models may be sufficient to form segments. Additionally, by knowing the 
customer’s predicted intent for interacting with the chatbot, we could select an appro-
priate exploratory action distribution for that customer. The natural choice for labels 
was to use annotated customer interactions with the chatbot, and we used the natural 
language processing system powering the Xfinity Assistant as our annotator.

The NLP system classifies every utterance input by the customer into one of approx-
imately 200 relevant classes referred to as “customer intents”. The system is trained 
on patterns of previous queries and their known intents. Any new query that follows a 
known pattern is recognized via a syntactic parser (Earley 1970). Queries that do not 
match to a known pattern are run through a neural model to predict one of the intents 
with high confidence. The model encodes words as vectors using a multilingual word 
embedding (Lample et  al. 2018) trained on in-domain text. The vectors are fed into 
an ensemble of encoder layers: a fully bidirectional LSTM model and a pre-trained 
universal sentence encoder (Cer et  al. 2018). The output of the encoder finally goes 
through a softmax layer to return a probability distribution over the intent classes.

We constructed labels by selecting the first utterance of every session and mapping 
the customer intent from the NLP system to a new label for training. In particular, 
our labels were “relating to internet troubleshooting”, “relating to television trouble-
shooting” or “other”. If a customer entered the chatbot and stated “my internet is not 
working”, then this interaction would be classified by the NLP system as “internet.
troubleshooting”, which we would then label as “relating to internet troubleshooting”. 
(Note, the data for the SCX component models were taken from production before the 
introduction of model-driven notifications.)

Our training regiment was inspired by a “one-vs-all” scheme for multiclass classifi-
cation tasks (Aly 2005). We trained models to distinguish a single label from the other 
labels using a subset of features, and we enforced that a feature could only be used 
in at most one model. The original SCX consisted of three models. Using the RDK 
telemetry features, we trained a model to predict the label “relating to internet trouble-
shooting”. A separate model was trained using WiFi features for the internet-related 

(11)=

m∑
j=1

nj

n
VIPS(h,Dj)
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label, and we trained the last model using the X1 errors to predict “relating to televi-
sion troubleshooting”. The binary outputs of these models were combined in an array, 
forming a bucket in which to bin examples. We then manually defined a fixed probabil-
ity distribution over the arms for each bucket. At runtime, SCX called each model to 
determine the proper bin and then sampled from the specified probability distribution.

3.2  Comparison of multiple off‑policy estimators using different logging policies

This section contains three experiments to demonstrate the performance of different 
logging policies for off-policy evaluations. Each experiment was run on live production 
traffic during October 2019. In the first experiment, we compare the off-policy estimates 
calculated on data before the A/B test with the true performance during the A/B test. As 
a second experiment, we compare off-policy estimates with the A/B test results from 
logging policy data on the days which constituted the A/B test. The third experiment 
creates a fair comparison by fixing the sample sizes of each logging policy via boot-
strapping. In all cases, we observed the IPS estimate VIPS defined in (3) to have high 
variance across tests and logging policies which led us to only use the VsnIPS from (4) in 
practice. Moreover, we saw larger bias and variance from deterministic policies which 
led us to only use stochastic policies in our off-policy estimates, and we discuss this 
phenomenon further in Sect. 3.5.1.

We include experiments using data generated before and during the A/B test because 
there can be variation in the estimates due to the use of different days when calculating 
the estimate (see Tables 1, 2). Our data contains non-stationary trends in user behavior 
(e.g., seasonal effects), feature distribution shifts from frequent firmware rollouts, and 
rare daily events such as outages or promotions. Because of this, the off-policy estimates 
can be influenced by how recently the logging policy data are generated and if data con-
ditions are similar. Moreover, we note that the experiment in Sect. 3.2.1 provides a typi-
cal example of the data available to us when determining which models to release into 
A/B tests, and thus, we are interested in if the off-policy estimates are robust to practical 
data drift experienced in our setting.

In all experiments, we compare the performance of different off-policy estimators 
and logging policies against the online performance for two models. Each model was 
run in an A/B test concurrently for two weeks, and the metric used for the comparison is 

Table 2  Table of relative difference (% Diff) between the offline estimate of performance calculated on data 
generated during the A/B test and the model’s performance in an A/B test

Sample size (n) and effective sample size (ne) are calculated for non-null actions only

Estimates using data generated during the test

Model Logging policy VIPS % Diff. (%) VsnIPS % Diff. (%) n ne

A Random  − 90.2 4.75 54,033 1693
A SCX  − 42.1  − 0.297 35,475 886
A Model B  − 59.9 4.15 21,934 8456
B Random  − 79.5 1.60 54,033 3651
B SCX  − 25.6 0.641 35,475 1372
B Model A  − 3.50 12.8 14,941 12,764
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the click-through rate. For this test, we use the off-policy estimators VIPS and VsnIPS . The 
relative difference was calculated as the difference from the true online performance, 
i.e., via Eq. 6 with the denominator y equal to the online CTR of the model.

3.2.1  Experiment 1: using logging data generated before the A/B test

In this test, we compared performance estimates of the two candidate models using data 
from three logging policies generated prior to the A/B test. In practice, this is the type of 
test that a researcher would use to choose a model to deploy. The three logging policies for 
this experiment were a deterministic production policy (“Production”), a uniformly ran-
dom policy (“Random”), and the stochastic simplified exploration policy (“SCX”) from 
Sect. 3.1.1, and the models used for the comparisons are denoted “A” and “B”. In this case, 
we saw the uniformly random policy produce better results than the simplified context pol-
icy. However, both logging policies were able to give a useful prediction when using the 
snIPS estimator (4) as can be seen in Table 1. It is clear that the VIPS estimator was not use-
ful for our data regime, and we relied on the VsnIPS for decisions on which model to release 
into an A/B test.

It is worth noting that the effective sample size ne is on the order of 103 . Of course, as 
shown in the table, the sample sizes n and effective sample sizes ne are different for every 
model, and that is an issue one sometimes deals with in practice. As our metric in question 
is the click-through rate, n and ne are only calculated on non-null actions, i.e., examples 
where we show a card.

3.2.2  Experiment 2: using logging data generated during the A/B test

In this experiment, data generated during an A/B test is used to produce offline estimates of 
model performance using different logging policies and then the estimates are compared to 
the observed performance during the A/B test. During this A/B test, we generated logging 
data from Model A, Model B, a uniformly random policy (“Random”) and our simplified 
exploration policy (“SCX”). Model A and B were deterministic while SCX and the random 
policy are stochastic. From Table 2, the uniformly random policy and the simplified explo-
ration policy with the VsnIPS estimator perform the most consistently. It is interesting to note 
that in this case the simplified exploration policy provides a better estimate, whereas in 
Experiment 1 the uniformly random logging policy performs better.

Figure 3 plots daily off-policy estimates for the two models during the A/B test. Each 
plot point only uses data from a single day. We also note that the variances appear high at 
first glance, but there is an explanation: the effective sample sizes for each day are small, so 
one expects higher variances. We also highlight that the VIPS estimator has a much higher 
bias when being used to estimate Model A’s performance for all logging policies.

3.2.3  Experiment 3: fair comparison using bootstrapping and fixed sample sizes

Finally, we aim to provide a fair comparison between the different logging policies 
by fixing the sample sizes. The previous experiments used the exact data available to 
us when performing off-policy evaluations, but it is also of interest to observe which 
logging policy is most performant under a fixed sample size. In order to do this, we 
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bootstrapped on the data from the previous two experiments with a sample size of 
n = 10, 000 and m = 1000 bootstrap iterations. For each metric, the mean of the metric 
over the bootstrap iterations is reported as the “bootstrap metric”. To denote that these 
estimates were bootstrap estimates, we append the superscript B. The bootstrapped fair 
versions of Experiment 1 and 2 are contained in Tables 3 and 4 respectively. One strik-
ing result is that the VsnIPS estimator performs relatively well even with a small effective 

Fig. 3  Plot of daily off-policy estimates for model A and B using various logging policies. Each point rep-
resents an off-policy estimate using a single day of data

Table 3  Results of the bootstrapped relative difference (% Diff) between the offline estimate of performance 
calculated on data generated before the A/B test and the model’s performance in an A/B test

Sample size (n) and the bootstrap estimate of the effective sample size (ne) are listed

Estimates using data generated prior to the test

Model Logging policy VIPS % Diff.B (%) VsnIPS % Diff.B (%) n ne
B

A Random  − 91.0  − 0.62 10,000 304
A SCX  − 42.0 1.62 10,000 248
A Production  − 54.7 4.14 10,000 4352
B Random  − 80.0 0.519 10,000 664
B SCX 30.8 3.39 10,000 390
B Production  − 50.4 14.9 10,000 4317
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sample size ( < 1000 ). It is interesting to note that the results do not change significantly 
from the previous experiments.

3.3  Empirical investigation of the convergence and variance of the off‑policy 
estimators

3.3.1  Convergence

Now, we fix a trained model and examine the convergence of offline estimators with respect 
to the sample size and logging policy. We compare the offline estimates to ground truth 
performance obtained from a production deployment. The policies are a uniformly random 
logging policy, a simplified exploration exploration policy as defined in Sect. 3.1.1, and a 
prior production policy with �−greedy exploration added. We note that the model tested 
was trained using data from a previous period, and its training set consisted solely of data 
from the �-greedy modification of the production policy. We suspect that the overestimate 
observed in the figure while using the �-greedy exploration policy is related to the training 
set composition. In particular, our hypothesis is that using an �-greedy exploration policy 
to calculate the off-policy estimate, even when using data from a different period, is similar 
to estimating performance of a model using the training set rather than a held-out test set.

In Fig. 4, we plot the snIPS estimator VsnIPS(h) defined in (4) using different choices of 
D , i.e., using different logging policies and various sample sizes. It is clear that using the 
�-greedy version of the production policy for off-policy estimates led to a severe overesti-
mate of performance. This agrees with findings of other studies which recommend avoid-
ing logging policies that utilize �-greedy exploration (Karampatziakis et  al. 2019). The 
uniformly random policy tended to underestimate the online result: the error converges to 
approximately 10%. The simplified exploration policy estimated the online result the most 
accurately: the error is below 5% for larger sample sizes. The three logging policies col-
lected data at different time periods due to our continuous model deployment process as 
well as different online traffic volumes allocated to each model. However, it is unlikely 
that the difference in performance of the estimators is due to different effective sample 
sizes. For example, when the effective sample size is around 1000, both of the estimates 
for the uniformly random and the simplified exploration policies have already stabilized, 

Table 4  Results of the bootstrapped relative difference (% Diff) between the offline estimate of performance 
calculated on data generated during the A/B test and the model’s performance in an A/B test

Sample size (n) and the bootstrap estimate of the effective sample size (ne) are calculated for non-null 
actions only

Estimates using data generated during the test

Model Logging policy VIPS % Diff.B (%) VsnIPS % Diff.B (%) n ne
B

A Random  − 90.2 4.75 10,000 312
A SCX  − 42.0 0.14 10,000 250
A Model B  − 59.9 4.06 10,000 3856
B Random  − 79.5 1.25 10,000 676
B SCX  − 25.0 0.109 10,000 386
B Model A  − 3.69 12.76 10,000 8541
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apparently converging to their corresponding estimate calculated with higher effective 
sample sizes, whereas the convergence of the �-greedy policy is ambiguous.

One surprising observation from Fig. 4 is that the �-greedy policy and uniformly random 
policy do not converge to the online value. This is surprising because the literature suggests 
they should. However, there are some practical reasons why that is not the case. For the �
-greedy policy, we “clip” the IPS weights (Ionides 2008) during evaluation via the standard 
formula min{M, h∕h0} , which can add bias to the estimate. However, this clipping would 
not explain the uniformly random policy’s estimation error as propensities were 1/3 for each 
action. There are two likely factors impacting the uniformly random policy’s convergence. 
First, the application’s business logic overrides the predictions in some scenarios, and the pro-
pensity weights are therefore affected in a way that we do not account for. Second, in order 
to get enough data for the uniformly random policy, we were forced to use a larger time win-
dow containing older dates compared to the simplified exploration model and �-greedy policy, 
which generated more data in production. All estimates were compared to the performance of 
a single model while it was running in an A/B test, and so the older data could have also added 
a bias to the estimate.

3.3.2  Variance

For our last investigation, we provide empirical variance estimates for the IPS and snIPS esti-
mators calculated on our data. In order to create the best estimate, we use data from both of 
our stochastic policies (Random and SCX) to create a dataset of size n = 20, 519 containing 
non-null actions only. (The model used for the evaluation was our production policy.) This 
data constitutes an approximately two month period in 2019 and is compiled into Table 5. 
We used bootstrapping to calculate the variance of the IPS and snIPS estimates of the click-
through rate for a fixed model. We performed m = 10, 000 iterations for the calculation and 

Fig. 4  Off-policy evaluation convergence comparison between three logging policies at various 
sample sizes and effective sample sizes for non-null actions only. The plotted percent is given via 
V
snIPS

∕(Online CTR)
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provide both the standard deviation � and variance �2 , plus the mean effective sample size ne , 
for the experiment.

3.4  Comparison of the production performance of various logging policies

Our last result of the study is a comparison of the relative performance of the various log-
ging policies on our key business metric: the abandon rate. As discussed, the abandon rate 
depends on both CTR and %S and is the best reflection of a model’s impact to the business. 
For business privacy purposes, we will compare each policy to the baseline performance 
of the production policy and calculate the relative difference (6) with the production policy 
performance as the denominator. This data set is an aggregation of production logs over a 
two week span near the end of 2019. During this period, the approximate breakdowns are 
as follows: the random policy served 5% of traffic, the SCX model served 10% of traffic, �
-greedy version of the production model ( � = .05 ) served 25%, and the production model 
served 60% of traffic. The allocation of the logging policy for each user was sticky during 
the period and the application saw approximately 700,000 users. The results are compiled 
in Table 6. As expected, the performance of the �-greedy model is the closest to produc-
tion, followed by the SCX model, and the uniformly random model performed the worst on 
the business metric.

3.5  Considerations and conclusions

In this section, we collect our conclusions from the previous case study. From the experi-
ments, it is clear that the SCX logging policy is the best choice to balance accurate off-
policy estimates with business value. Another clear takeaway is the value of A/B tests in 
validating an off-policy methodology. In all cases, we recommend running an experiment 
to determine if a logging policy and the data volume is sufficient: estimate the performance 
of the current production model via your proposed logging policy. If the estimates were to 
agree over the same period, one should be more confident in the offline estimates for new 
models using that logging policy. Over the course of the project, we began to use the VsnIPS 
estimator exclusively as it was the most reliable, which was also demonstrated in the study.

3.5.1  The importance stochasticity

In practice, there is a question when using off-policy methods whether it is more important 
to have more data or more stochasticity. We show empirically in Table 1 that a determin-
istic policy yielded a severely inconsistent and biased estimate when using both VsnIPS and 
VIPS across multiple tests. We also note that by using a deterministic logging policy during 

Table 5  Bootstrap estimates of the standard deviation and variance of V
IPS

 and V
snIPS

 rounded to two signifi-
cant digits. The number of bootstrap iterations was m = 10, 000 and the base dataset contained n = 20, 519 
examples

V
IPS

� V
IPS

�2 V
snIPS

� V
snIPS

�2 n
e

0.027 0.00072 0.011 0.00012 1295
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training with an inverse propensity score-based loss (Eq. 14 in Sect. 4.1), one would be 
introducing that bias into the new model. Thus, we do not use deterministic data in the 
evaluation or learning phases. Moreover, in the convergence experiment of Sect. 3.3.1, we 
show that an �-greedy scheme to randomize our production policy was not sufficient for 
off-policy estimates, which is unfortunate as that exploration policy maximized business 
value of the policies tested (Table 6). On the other hand, we found generally in our experi-
ence and have shown in the experiments herein that sufficiently stochastic logging policies 
can yield more reliable estimates, providing unique business value by aiding in the devel-
opment of new production policies.

In the past, we attempted to train models using estimated propensities that arise from 
multiple deterministic logging policies which were sampled randomly at runtime to add 
stochasticity. We employed the “Balanced IPS Estimator” (Definition 5.1 in Agarwal et al. 
(2017)) as our off-policy estimator. The initial off-policy estimates calculated via this 
method were not as accurate as the off-policy estimates obtained using a single stochastic 
policy, so we quickly abandoned this approach. In light of this discussion, our hypothesis 
to explain the poor performance is that there were an insufficient number of deterministic 
policies to make the aggregation of those policies sufficiently stochastic for accurate esti-
mates; however, it could also be that the Balanced IPS Estimator is a multiple logger ana-
logue to VIPS , which also performed poorly on our data compared to our expectation from 
the literature.

3.5.2  Train/test split and our choice of policies

We typically had two explorations policies deployed into production: the uniformly random 
policy and the simple exploration model defined in Sect. 3.1.1. Both of these models con-
stituted a small portion of traffic, and because of this, we had to decide how best to utilize 
the data for training and testing.

Typically, we trained on the simplified exploration policy data and evaluated on the uni-
formly random policy data. The off-policy estimator using the uniformly random policy 
was sufficient for our offline evaluations, but the addition of data from the uniformly ran-
dom policy to the training set did not improve model performance. We suspect the low 
prevalence of troubleshooting led to insufficient signal for learning when using the uni-
formly random policy data. To maximize our data volume, we would allow the train and 
test set to overlap in time, but we split the sets by policy as mentioned above. This approach 
had the added benefit of also splitting the data by customer because user assignment to a 
policy was sticky over the data collection period. When data were particularly scarce, we 
would include the deterministic production policy as part of the training set, but as the sto-
chastic data volume grew, we saw performance gains by removing the deterministic policy 
data from training.

4  Model selection through post‑hoc reward distribution hacking

Post-Hoc Reward Distribution Hacking (PRDH) provides a guided framework to update a 
model post-training. In practice, this approach can be useful when direct optimization of a 
business metric may be impossible due to a weak causal link between the model and the 
metric. The weak link can manifest itself in a seemingly noisy reward signal where models 
optimized to maximize the expected reward fail to improve the true business metric. One 
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situation this can occur is when the metric can be impacted by various external factors. We 
found that such noisy rewards could still be used to train models which improve the busi-
ness metric in question by modifying the trained model’s reward output. We have codified 
our approach in the PRDH procedure which creates a visualization of possible business 
outcomes from a parametrized modification of a trained bandit model and was inspired by 
the model selection process in supervised learning using precision-recall curves. PRDH 
had two significant impacts on our training pipeline and model performance: 

(a) PRDH allowed us to adjust model performance on key business metrics in an attempt to 
correct for noise in the reward signal without retraining or editing the reward function, 
and

(b) when some loss functions caused a model to favor the null action at the expense of per-
formance, we could increase the propensity of the model to perform non-null actions.

At a high level, the central idea of PRDH is to add a constant vector to the reward out-
put of a contextual bandit model to adjust for model shortcomings without retraining. We 
internally referred to the vector added to the reward output as the “fudge factor” because 
we were “fudging” the output to make the model perform better. We create a sequence of 
candidate models with different “fudge factors”, calculate the business metrics for each 
“fudge”, and graph them in order to identify possible outcomes in production for various 
versions. This procedure purposely mirrors the process to construct a precision-recall curve 
as one can see in the formalized steps below. We then perform an approximate grid search 
near the optimal “fudge” to identify the best model to release to production.

We will now formally document the steps of PRDH as follows: 

1. Train a contextual bandit model, denoted f.
2. For the null action denoted an , we define a family of functions f� parametrized by 

� ∈ (−�, �) to be 

3. Choose the two most important business metrics, m1 and m2 . For each � , calculate the 
off-policy estimate of the business metrics using the reward output from f� . Denote their 
values m1(�) and m2(�).

4. Construct the parametrized curve (m1(𝛾),m2(𝛾)) ⊂ ℝ
2 and visually identify the optimal 

� which satisfies the best business value for m1(�) and m2(�) , denoted �∗.
5. Perform a grid search, possibly by inspection or heuristics, to find the optimal model 

defined via f�∗ + y where y is in an y ∈ (−𝜖, 𝜖)n ⊂ ℝ
n such that f ∗ ∶= f�∗ + y maximizes 

the potential business value.

We note that this approach was only necessary as models trained using the noisy reward 
signal did not generalize well or produce reasonable action distributions. Using this proce-
dure, we were able to consistently train new versions of the contextual bandit model while 
improving on the abandon rate of the application; however, without the manual steps of 
PRDH, our training regiment frequently would have resulted in models with unacceptable 
performance, which we illustrate in Sect. 4.1.

Next, we outline the concrete details of how we applied this approach. Recall VsnIPS 
is defined in (4). We further define %S(f ) to be the estimated percentage of sessions in 

(12)f� (x, a) ∶=

{
f (x, a) a ≠ an
f (x, a) + � a = an



2596 Machine Learning (2021) 110:2577–2602

1 3

which f will display a card. When we graph the curve in Step 4, we let m1(�) ∶= %S(f� ) 
and m2(�) ∶= VsnIPS(f� ) . This generates a curve similar to a precision/recall curve with 
percent of sessions (%S) on the x-axis and estimated click-through rate (CTR) on the y. 
(When training on insufficient data, either in size or in stochasticity, we observed that this 
curve would be jagged, but in the presence of enough data and stochasticity, we observed 
a smooth curve resulting from the algorithm.) As stated, our ultimate goal was to improve 
the abandon rate, and we viewed the off-policy estimate of CTR and %S as our levers to 
adjust how our notifications drove business value. This curve allowed us to identify an opti-
mal trade-off between the two metrics. Once an optimal point was selected, we performed 
a grid search around this point to find the “fudge” that gave the optimal local abandon rate.

4.1  Experiment: performance of training regiments before and after PRDH

In this experiment, we will detail model performance before and after PRDH for various 
popular loss functions for this setting. We used the architecture defined in Sect.  2.3 for 
all tests. For the policy gradient case, we made the appropriate adjustment by swapping 
the final tanh activation of the reward predictor f(x,  a) in Fig.  2 for a softmax, leading 
to the output defined as h(x, a). Each candidate model was trained on approximately 105 
data points from our simplified exploration policy defined in Sect. 3.1.1 and tested on 104 
data points from the uniformly random logging policy. All performance estimates were 
calculated using VsnIPS defined in (4) using the click-through rate as the reward. The final 
estimate displayed below is the relative percent difference (Eq. 6) over the logging policy’s 
click-through rate r∗ : 100 ⋅ (VsnIPS − r∗)∕r∗.

For our experiment, we train with three typical loss functions found in the off-policy 
literature: the direct method (DM), the inverse propensity score loss (IPS), and the policy 
gradient loss (PG). Recall, our data D depends on the choice of a logging policy h0 . We 
now define the direct method loss function (DM) to be

and the inverse propensity score loss (IPS) from Swaminathan and Joachims (2015), Bot-
tou et al. (2013) via

Lastly, for our policy gradient implementation (PG), we follow (Chen et  al. 2018) and 
define the off-policy corrected gradient update as

using the softmax output h(x, a) rather than the reward prediction f(x, a). We note, that in 
practice, it is common to “clip” the propensity weights by replacing the term h∕h0 with 
min{M, h∕h0} for M ≥ 1 . We utilized this clipping for all loss functions.

As one can see in Table 7, there are not many performant choices among the models 
tested. The policy gradient model effectively showed no cards in the experiment, although 
it had the highest click-through rate (which may be suspect due to the extremely low 

(13)�DM(h) ∶=
1

n

n∑
i=1

(ri − f (xi, ai))
2,

(14)�IPS(h) ∶=
1

n

n∑
i=1

(ri − f (xi, ai))
2

h0(xi, ai)
.

(15)∇h�PG(h) ∶=
∑
i

h(xi, ai)

h0(xi, ai)
ri∇hlog(h(xi, ai)),
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effective sample size). As we would not release a model that shows so few cards, we are left 
with two choices: a slightly higher percent of sessions models with half the click-through 
rate (IPS) or the higher CTR but lower percent of sessions model (DM). The abandon rates 
are withheld for business privacy.

On the other hand, from Fig. 5, the application of the PRDH procedure shows that 
the families constructed from the DM and PG models greatly outperform the IPS fam-
ily for all practical purposes. At higher values of percent of sessions, the PG and DM 
families performed similarly, but at lower percent of sessions, PG or DM may be more 
appropriate depending on other considerations. Regardless, it is clear that the PRDH 
method expands the possible options for a final model and makes the model trained by 
policy gradient viable in production, whereas before PRDH the model did not show 
many cards as seen in Table 7.

4.2  Conclusions

In our practice, we found the employment of PRDH to be one of the most beneficial 
components of our training pipeline. It allowed us to easily release new iterations of 
our production policy while keeping performance consistently improving on all metrics. 
Before we developing PRDH, we experienced wild swings in performance from pol-
icy to policy with no levers to control the trade-offs discussed above. Many algorithms 
we initially avoided (like policy gradient) became performant when the proper � was 
selected.

Table 7  Table of relative difference (% Diff in CTR) between the offline estimate of the CTR and the log-
ging policy’s CTR 

 (The true CTR is obscured for business privacy.) The percent of sessions (%S) for the internet and TV card 
plus the effective sample size ( n

e
 ) are listed for each model. For all models, the off-policy logging data has 

size n = 8, 320 . Note, the sample size n and effective sample size n
e
 represent only data points with non-

null actions

Loss function % Diff. in CTR (%) Internet card %S 
(%)

TV card %S (%) n
e

DM 100.82 2.36 3.07 667
IPS 59.63 11.12 2.71 555
PG 71.96 0.394 0 14

Fig. 5  Plot of curve detailed in 
step 4 of PRDH to visualize the 
performance of each family of 
models. Note, we set m1 = %S 
and m2 = % Diff between V

snIPS
 

and the logging policy’s CTR. 
For each � , we calculated V

snIPS
 

using the argmax of its output, as 
we required our non-exploration 
production policies to be deter-
ministic. The formula for m2 can 
be found in Eq. 6
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5  Lessons

In the previous sections, we have identified multiple lessons which were validated empiri-
cally through our experiments. We observed the importance of stochasticity in the log-
ging function (Sect. 3.5.1), discussed our approach to train/test splitting when using mul-
tiple logging policies (Sect.  3.5.2), and explained how we constructed a logging policy 
(Sect. 3.1.1). Our experiments in Sect. 3.2 demonstrated the value of the snIPS estimator 
when data are limited. Moreover, we identified a post-training model updating procedure 
in Sect. 4 which has practical business value. On the other hand, some of our learnings are 
not tied to any one experiment. In this section, we collect a series of anecdotes from our 
experience applying off-policy techniques to the notification component of a chatbot. We 
identify a few practical steps a practitioner can take around model definition and valida-
tion, and in addition, we discuss when to apply these learnings.

5.1  Importance of cannel awareness

An important variable we identified to control for is the channel that the customer is using. 
Our customers can access the Xfinity Assistant through a variety of channels including the 
web, multiple phone applications, SMS, or by using their television box. Our data show 
that each channel has different priors in regards to the likelihood to accept a notification. 
Without controlling for which channel the customer used, we struggled to improve our 
models. We found that troubleshooting was rare in certain channels, but due to the use of 
channel-agnostic exploration policies, these rare, negative cases were over-represented in 
our training data. By controlling for the channel, we were able to adjust the prior distribu-
tion for each action, leading to improvements in model performance.

In Fig. 6, we demonstrate how we added the channel feature to the model. The basic 
approach is similar to a fixed effects model from statistics where each population has its 
own bias term in a regression formula. The channel information was input into the model 
via a one-hot encoded vector. The vector is passed through a linear layer to add a channel-
related term to each of the three outputs in order to control for the behavior of different 
populations. Here is a quantitative example of its impact: We observed a higher number of 
internet troubleshooting instances through our web-based chat than other channels. Thus, 

internet_features: InputLayer
input:

output:

(None, 650)

(None, 650)

internet_and_tv_features: Concatenate
input:

output:

[(None, 650), (None, 30)]

(None, 680)

internet_hidden_layer: Dense
input:

output:

(None, 650)

(None, 1)

tv_features: InputLayer
input:

output:

(None, 30)

(None, 30)

tv_hidden_layer: Dense
input:

output:

(None, 30)

(None, 1)

no_card_hidden_layer: Dense
input:

output:

(None, 680)

(None, 1)

merged_outputs: Concatenate
input:

output:

[(None, 1), (None, 1), (None, 1)]

(None, 3)

channel_indicator: InputLayer
input:

output:

(None, 5)

(None, 5)

channel_hidden_layer: Dense
input:

output:

(None, 5)

(None, 3)

all_features_outputs: Add
input:

output:

[(None, 3), (None, 3)]

(None, 3)

tanh_activation: Activation
input:

output:

(None, 3)

(None, 3)

Fig. 6  A plot of the model architecture after adding the channel feature
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the term associated with the web-based chat for the internet troubleshooting action had a 
positive value, whereas other channels with a lower prior rate of internet troubleshooting 
had negative values.

5.2  Data gathering validation

Ad-hoc sanity checks are important for validating the overall validity of the data gathering 
mechanism. Section 3.3 of Li et al. (2015) outlines statistical tests for identifying errors in 
propensity scores, but in our case, we ran into more obvious propensity score errors long 
before we performed statistical tests. For example, upon release of our uniformly random 
action policy, we found that one action occurred at three times the rate of the other actions. 
This was clearly wrong, and it identified an error in the logging of customer sessions. Later, 
we noticed a smaller but still obvious discrepancy: in select cases the application was over-
riding predictions from the production policy, and those records were ultimately excluded 
from our data processing for training.

We note that sanity checks surrounding the randomization and expected proportions of 
actions are not sufficient. There was a nontrivial number of instances when our notifica-
tions were combined with other notifications, which was not immediately apparent from 
our existing logging pipeline. (In fact, these dual notifications were only discovered when a 
researcher accessed the Xfinity Assistant while troubleshooting their service.) Data points 
with multiple notifications disrupted our off-policy estimates and had to be excluded from 
training and evaluation until proper features were available to control for this situation.

5.3  How we added new features to the production policy

Much of the literature is focused on contextual bandit models in larger action spaces and 
approaches to add new bandit arms to existing policies (i.e., news recommendation). In 
our case, we consider improving the results of a policy on a small action space by adding 
new features while the action space remains fixed. For models which output probabilities, 
it is common to train a new policy close to the existing policy, and varying techniques are 
used to enforce this constraint (Schulman et  al. 2015, 2017) when iterating on a model. 
Approaches to keep the result of retraining a reward predictor model “close” to an existing 
model are less common, and so we present ours here.

Anecdotally, we found our results varied widely when training on different data sets, 
likely due to the small size of our training data. Another complication was that data sets 
varied in terms of feature inclusion as well as size. When new features were added, their 
data were missing on older, historical examples. Thus, new models trained only on data 
with all features were at a disadvantage. To remedy this, we chose to keep our new can-
didate policy close to the existing production policy through a combination of freezing 
model weights for longstanding features and strong regularization of new features. This 
approach implicitly utilizes continuity to keep the two models’ outputs “close” by limiting 
how far new features could alter the output of the new model.

The architecture we have defined in Sect. 2.3 is flexible in order to add a new action or a 
new source of features while still maintaining the old weights or freezing the other feature 
weights during training. One of the first features we added was a channel indicator feature. 
When doing so, we froze other feature weights and trained the channel weights to improve 
performance. The channel feature should impact all actions, and so its output is of size 3 
and added to the last step before the activation. This can be seen in Fig. 6.
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A key strength of our strategy is that it easily fits into most training procedures for 
neural networks without significant additional development. Other approaches to keep a 
reward predictor-style model “close” to another could require solving optimization prob-
lems or enforcing constraints during model updates, which are more complicated to imple-
ment and scale poorly as the data size grows.

6  Summary

When it comes to practical examples in the off-policy evaluation literature, the action space 
in a typical contextual bandit application is large (Li et al. 2010; Chen et al. 2018; Li et al. 
2011, 2015). Many papers have written about news recommendation and search engine 
personalization. In such use cases, a contextual bandit model always returns a recommen-
dation. That is to say, there is no benefit or option for the model to return a null operation. 
A major difference between this work and previous works is that our use case has a null 
action and a limited number of bandit arms. When combined with our noisy reward sig-
nal, these two aspects of our problem led to unique challenges during training, particularly 
trained models which only select the null action or generalize poorly. We have made sev-
eral modifications to our model selection procedure to address the issues observed while 
training bandit models on our data. In this work, we detailed the PRDH procedure which 
modifies a contextual bandit model post-training in order to optimize performance. To our 
knowledge, we have not seen such an approach employed before to mitigate these specific 
complications.

Moreover, we have presented a detailed case study of using different logging policies 
for off-policy evaluation on our use case. We found propensity weights and off-policy tech-
niques broadly to be useful for both model optimization and evaluation, but only when the 
stochasticity is properly incorporated. Our experiments utilized two off-policy estimators: 
both the IPS estimator of Strehl et al. (2010), Swaminathan and Joachims (2015) and snIPS 
estimator found in Swaminathan and Joachims (2015). In theory, both estimate the true 
reward for a policy, but unfortunately, we found the variance of the IPS estimator to be too 
high to be useful in our data regime. On the other hand, snIPS would generalize to pro-
duction even if there was not a large effective sample size. Our results also show that our 
approach to defining a simplified exploration policy can be utilized for accurate off-policy 
estimates while improving the performance of the logging policy on key business metrics.
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