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Abstract
This work belongs to the strand of literature that combines machine learning, optimization, 
and econometrics. The aim is to optimize the data collection process in a specific statistical 
model, commonly used in econometrics, employing an optimization criterion inspired by 
machine learning, namely, the generalization error conditioned on the training input data. 
More specifically, the paper is focused on the analysis of the conditional generalization 
error of the Fixed Effects Generalized Least Squares (FEGLS) panel data model, i.e., a 
linear regression model with applications in several fields, able to represent unobserved 
heterogeneity in the data associated with different units, for which distinct observations 
related to the same unit are corrupted by correlated measurement errors. The framework 
considered in this work differs from the classical FEGLS model for the additional pos-
sibility of controlling the conditional variance of the output variable given the associated 
unit and input variables, by changing the cost per supervision of each training example. 
Assuming an upper bound on the total supervision cost, i.e., the cost associated with the 
whole training set, the trade-off between the training set size and the precision of supervi-
sion (i.e., the reciprocal of the conditional variance of the output variable) is analyzed and 
optimized. This is achieved by formulating and solving in closed form suitable optimiza-
tion problems, based on large-sample approximations of the generalization error associated 
with the FEGLS estimates of the model parameters, conditioned on the training input data. 
The results of the analysis extend to the FEGLS case and to various large-sample approxi-
mations of its conditional generalization error the ones obtained by the authors in recent 
works for simpler linear regression models. They highlight the importance of how the pre-
cision of supervision scales with respect to the cost per training example in determining 
the optimal trade-off between training set size and precision. Numerical results confirm the 
validity of the theoretical findings.
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1  Introduction

In various applications in economics, engineering, medicine, physics, and several other 
fields, one has often the need of approximating a function, based on a finite set of input/
output noisy examples. This belongs to the typical class of problems investigated by super-
vised machine learning (Hastie et al. 2009; Vapnik 1998). In some cases, the noise vari-
ance of the output variable can be decreased, at least to some extent, by making the cost of 
each supervision larger. As an example, observations could be acquired by using more pre-
cise measurement devices (then, likely, having also larger acquisition cost). Similarly, each 
supervision could be made by an expert (also in this case, a larger cost would be expected 
by increasing the level of expertise). In all these situations, it can be useful to optimize the 
trade-off between the training set size and the precision of supervision. In the conference 
work Gnecco and Nutarelli (2019), this kind of analysis was conducted by proposing a 
modification of the classical linear regression model, in which one has the additional pos-
sibility to control the conditional variance of the output variable given the associated input 
variables, by changing the time (hence, the cost) dedicated to provide a label to each train-
ing input example, and fixing an upper bound on the time available for the supervision of 
the whole training set. Based on a large-sample approximation of the output of the ordinary 
least squares regression algorithm, it was shown in that work that the optimal choice of the 
supervision time per example highly depends on how the precision of supervision scales 
with respect to the cost per training example. The analysis was refined in Gnecco and Nuta-
relli (2019), where a related optimization problem, based on the analysis of the output 
produced by a different regression algorithm (namely, weighted least squares) was consid-
ered, obtaining similar results at optimality, for a model in which distinct training examples 
are possibly associated with different supervision times. Finally, in the conference work 
Gnecco and Nutarelli (2020), the analysis of the optimal trade-off between training set size 
and precision of supervision was extended to a more general linear model of the input/
output relationship, namely, the fixed effects panel data model. In this model, observations 
associated with different units (individuals) depend also on additional constants, one for 
each unit, which make it possible to include, in the input/output relationship, unobserved 
heterogeneity in the data. Moreover, each unit is observed along another dimension, which 
is typically time. This kind of model (and its variations) is commonly applied in the analy-
sis of data in both microeconomics and macroeconomics (Arellano 2004; Cameron and 
Trivedi 2005; Wooldridge 2002), where each unit may represent, for instance, a firm, or a 
country. It is also applied in biostatistics (Härdle et al. 2007) and sociology (Frees 2004). 
An important engineering application of the model (and of its variations) is in the calibra-
tion of sensors (Reeve 1988, Sect. 4.1).

In order to increase the applicability of the analysis carried out in our previous confer-
ence work (Gnecco and Nutarelli 2020), in this paper we extend it thoroughly in the fol-
lowing directions. First, Gnecco and Nutarelli (2020) investigated only the case in which 
the measurements errors of observations associated with the same unit are mutually inde-
pendent. In this paper, we extend such analysis to the case of dependent measurement 
errors. Moreover, differently from Gnecco and Nutarelli (2020), we confirm the validity 
of the obtained theoretical results numerically. Further, in Gnecco and Nutarelli (2020), 
the optimal trade-off between training set size and precision of supervision was analyzed 
only for a fixed number of units, assuming that the number of observations associated with 
the same unit is large enough to justify a large-sample approximation with respect to the 
number of observations. In the last part of this work, we consider additionally the cases of 
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a large-sample approximation with respect to the number of units, and of a large-sample 
approximation with respect to both the number of units and the number of observations per 
unit.

In line with the results of the theoretical analyses made in (Gnecco and Nutarelli 2019, 
2019, 2020) for simpler linear regression models, we show that, also for the more applica-
ble fixed effects generalized least squares panel data model, the following holds in general: 
when the precision of each supervision (i.e., the reciprocal of the conditional variance of 
the output variable, given the associated unit and input variables) increases less than pro-
portionally versus an increase of the supervision cost per training example, the minimum 
(large-sample approximation of the) generalization error (conditioned on the training input 
data) is obtained in correspondence of the smallest supervision cost per example (hence, 
of the largest number of examples); when that precision increases more than proportion-
ally versus an increase of the supervision cost per example, the optimal supervision cost 
per example is the largest one (which corresponds to the smallest number of examples). 
Differently from (Gnecco and Nutarelli 2019, 2019, 2020), in the analysis made in the pre-
sent work, the number of training examples can be varied either by increasing the number 
of observations per unit, or the number of units, or both. In summary, the results of the 
analyses made in (Gnecco and Nutarelli 2019, 2019, 2020) and, for a different and more 
complex regression model, in this paper, highlight that increasing the training set size is 
not always beneficial, if a smaller number of more reliable data can be collected. Hence, 
not only the quantity of data, but of course, also their quality matters. This looks particu-
larly relevant when the data collection process can be designed before data are actually 
collected.

The paper is structured as follows. Section 2 provides a background on the fixed effects 
generalized least squares panel data model. Section 3 presents the analysis of its condi-
tional generalization error, and of the large-sample approximation of the latter with respect 
to time. Section 4 formulates and solves an optimization problem we propose in order to 
provide an optimal trade-off between training set size and precision of supervision for the 
fixed effects generalized least squares panel data model, using the large-sample approxi-
mation above. Section  5 presents some numerical results, which validate the theoretical 
ones. Finally, Sect. 6 discusses some possible applications and extensions of the theoretical 
results obtained in the work. Some technical proofs and remarks about the extension of the 
analysis made in the paper to other large-sample settings are reported in the Appendices.

2 � Background

In this section, we recall some basic facts about the following Fixed Effects Generalized 
Least Squares (FEGLS) panel data model (see, e.g., Wooldridge 2002, Chapter 10). Spe-
cifically, we refer to the following model:

where the outputs yn,t ∈ ℝ are scalars, whereas the inputs x
n,t

 ( n = 1,… ,N, t = 1,… , T ) 
are column vectors in ℝp , and are modeled as random vectors. The superscript ′ denotes 
transposition. The parameters of the model are the individual constants �n ( n = 1,… ,N) , 
one for each unit, and the column vector � ∈ ℝ

p . The constants �n are also called fixed 
effects. Eq. (1) represents a balanced panel data model, in which each unit n is associated 
with the same number T of outputs, each one at a different time t. The model represents the 

(1)yn,t ∶= �n + ��x
n,t
, for n = 1,… ,N, t = 1,… , T ,
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case in which the input/output relationship is linear, and different units, which are observed 
at the times t = 1,… , T  , are associated with possibly different constants.

Note that the outputs yn,t are actually unavailable; only their noisy measurements zn,t can 
be obtained, which are assumed to be generated according to the following additive noise 
model:

where, for any n, the �n,t are identically distributed and possibly dependent random vari-
ables, having mean 0, and are further independent from all the x

n,t
 . For any two units n ≠ m 

and any two time instants t1, t2 ∈ {1,… , T} , �n,t1 and �m,t2 are assumed to be independent. 
Hence, only the possibility of temporal dependence for the measurement errors associated 
with the same unit is considered in the following, in line with several works in the literature 
(see, e.g., Bhargava et al. (1982) and (Wooldridge 2002, Section 10.5.5)).

For each unit n, let Xn ∈ ℝ
T×p be the matrix whose rows are the transposes of the x

n,t
 ; 

further, let z
n
∈ ℝ

T be the column vector which collects the noisy measurements zn,t , and 
�
n
∈ ℝ

T the column vector which collects the measurement noises �n,t . The input/corrupted 
output pairs (x

n,t
, z

n,t
) , for n = 1,… ,N , t = 1,… , T  , are used to train the FEGLS model, 

i.e., to estimate its parameters.
The following first-order serial covariance form is assumed (see, e.g., Bhargava et al. 

(1982) and Wooldridge (2002, Section 10.5.5)) for the (unconditional) covariance matrix 
of the vector of measurement noises associated with the n-th unit1, where 𝜎 > 0 and 
� ∈ (−1, 1) hold (here, � denotes the expectation operator):

which is a symmetric and positive-definite matrix. In other words, the measurement 
noise is assumed to be generated by a first-order autoregressive (AR(1)) process (Ruud 
2000, Section 25.2). In the particular case of uncorrelated ( � = 0 ) and independent meas-
urement noises, one obtains the model considered in Gnecco and Nutarelli (2020).

Let the matrix QT ∈ ℝ
T×T be defined as

where IT ∈ ℝ
T×T is the identity matrix, and 1

T
∈ ℝ

T a column vector whose elements 
are all equal to 1. One can check that QT is a symmetric and idempotent matrix (i.e., 
Q�

T
= QT = Q2

T
 ), and its eigenvalues are 0 with multiplicity 1, and 1 with multiplicity 

T − 1 . Hence, for each unit n, one can define

(2)zn,t ∶= yn,t + �n,t , for n = 1,… ,N, t = 1,… , T ,

(3)� ∶= �2� ∶= Var
�
�
n

�
= 𝔼{�

n
��
n
} =�2

⎡⎢⎢⎢⎢⎣

1 � �2 ⋯ �T−2 �T−1

� 1 � �2 ⋯ �T−2

�2 � 1 � ⋯ �T−3

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

�T−1 �T−2 ⋯ �2 � 1

⎤⎥⎥⎥⎥⎦
∈ ℝ

T×T ,

(4)QT ∶= IT −
1

T
1
T
1�
T
,

1  An important implication of first-order serial covariance in noise terms is the unreliability of classical 
test statistics, based on the assumption of uncorrelated noises (see, e.g., Im et al. (1999)). To deal with this 
issue, the usual approach adopted in the literature consists in explicitly taking into account the form (3) for 
the covariance matrix of the zero-mean vector of measurement noises associated with each unit.
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and

which represent, respectively, the matrix of time de-meaned training inputs, the vector of 
time de-meaned corrupted training outputs, and the vector of time de-meaned measure-
ments noises. The goal of time de-meaning is to obtain a derived dataset where the fixed 
effects are removed, making it possible to estimate first the vector � , then - turning back to 
the original dataset - the fixed effects �n . The covariance matrix �{𝜀̈

n
𝜀̈�
n
} has the expression

which is symmetric and positive semi-definite, and has rank T − 1 < T  (Wooldridge 2002). 
Although this deficient rank prevents the application of the most usual approach to Gener-
alized Least Squares (GLS) estimation, based on the inversion of the covariance matrix � 
(which in this case cannot be inverted), one can still apply GLS by projecting Eqs. (1) and 
(2) onto the orthogonal complement L of the vector 1

T
 by using QT , then solving a standard 

GLS problem on L (Aitken 1936). This is formally obtained by replacing the inverse of 
the covariance matrix with its Moore-Penrose pseudoinverse2 (denoted by �+ ), as made in 
the context of FEGLS estimation in Kiefer (1980, Im et al. (1999). More precisely, assum-
ing the invertibility of the matrix 

∑N

n=1
Ẍ�
n
𝛺+Ẍn (see Remark 3.1 for a justification of this 

assumption), the FEGLS estimate of � is

(5)Ẍn ∶=QTXn =

⎡⎢⎢⎢⎢⎣

x
n,1

−
1

T

∑T

t=1
x
n,t

x
n,2

−
1

T

∑T

t=1
x
n,t

⋯

x
n,T

−
1

T

∑T

t=1
x
n,t

⎤⎥⎥⎥⎥⎦
,

(6)z̈
n
∶=QTzn

=

⎡⎢⎢⎢⎢⎣

zn,1 −
1

T

∑T

t=1
zn,t

zn,2 −
1

T

∑T

t=1
zn,t

⋯

zn,T −
1

T

∑T

t=1
zn,t

⎤⎥⎥⎥⎥⎦
,

(7)𝜀̈
n
∶= QT𝜀n =

⎡⎢⎢⎢⎢⎣

𝜀n,1 −
1

T

∑T

t=1
𝜀n,t

𝜀n,2 −
1

T

∑T

t=1
𝜀n,t

⋯

𝜀n,T −
1

T

∑T

t=1
𝜀n,t

⎤⎥⎥⎥⎥⎦
,

(8)𝛺 ∶= 𝜎2𝛷 ∶= Var
(
𝜀̈
n
𝜀̈�
n

)
= �{𝜀̈

n
𝜀̈�
n
} = QT�{𝜀n𝜀

�
n
}Q�

T
= QT𝛬Q

�
T
= 𝜎2QT𝛹Q�

T
,

2  It is recalled here from Strang (1993) that the Moore-Penrose pseudoinverse M+ of a matrix M ∈ ℝ
T×T 

inverts a special restriction of the linear application represented by the matrix M, whose domain and codo-
main are restricted, respectively, to the row space of M and to the column space of M (which coincide in 
the case of a symmetric matrix). For a matrix M ∈ ℝ

T×T with singular value decomposition M = U�V � 
(where U,V ∈ ℝ

T×T are orthogonal matrices, and � ∈ ℝ
T×T is a diagonal matrix whose non-zero entries 

are the singular values of M), the singular value decomposition of its Moore-Penrose pseudoinverse is 
M+ = U�+V � (where �+ ∈ ℝ

T×T is a diagonal matrix whose non-zero entries are the reciprocals of the 
singular values of M). Finally, in the particular case in which M is symmetric and positive semi-definite 
(e.g., when it is a covariance matrix), its singular values coincide with its positive eigenvalues, U ∈ ℝ

T×T 
is an orthogonal matrix whose columns are its eigenvectors, V � = U−1 , and M+ is symmetric and positive 
semi-definite. The concept of Moore-Penrose pseudoinversion can be extended to the cases of rectangular 
matrices and matrices with complex entries, but such extensions are not needed in this work.
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The estimate 𝛽
FEGLS

 in (9) can be interpreted as the GLS estimate of � obtained by replac-
ing the original input/corrupted output training data with their de-meaned versions reported 
above. It is worth observing that the training input/corrupted output pairs 

(
x
n,t
, zn,t

)
 

( n = 1,… ,N, t = 1,… , T ) are all used to estimate �.

Remark 2.1  Another commonly used approach to deal with the issue above is to drop 
one of the time periods from the analysis, in order to get an invertible covariance matrix. 
It can be rigorously proved (see, e.g. (Im et  al. 1999,  Theorem  4.3)) that this second 
approach is equivalent to the one based on the Moore-Penrose pseudoinverse (produc-
ing exactly the same FEGLS estimate), and that it does not matter which time period is 
dropped, as the resulting GLS estimator has always the same form. Therefore, dropping 
the last row of QT , one gets the matrix Q̃T ∈ ℝ

(T−1)×T , from which one obtains the matrix 
̃̈Xn ∶= Q̃TXn ∈ ℝ

(T−1)×p , the column vector ̃̈z
n
∶= Q̃Tzn

∈ ℝ
T−1 , and the column vector 

̃̈𝜀
n
∶= Q̃T𝜀n ∈ ℝ

T−1 . Moreover, denoting by X̃n ∈ ℝ
(T−1)×p , z̃

n
∈ ℝ

T−1 , and 𝜀̃
n
∈ ℝ

T−1 the 
matrix and the vectors obtained by removing the last row, respectively, from Xn , zn , and �

n
 , 

one gets

which is, differently from � , an invertible matrix, with inverse 𝛺̃−1 = (Q̃T𝛬Q̃
�
T
)−1 . The 

resulting FEGLS estimate is

(see, e.g., Wooldridge (2002)). The FEGLS estimate 𝛽
FEGLS

 and the alternative one 𝛽alt
FEGLS

 
are actually identical (Im et  al. 1999,  Theorem  4.3). This equivalence is obtained by 
expressing such estimates in terms of the original variables before de-meaning, then 
exploiting the proof of (Im et  al. 1999,  Theorem  4.3), which shows that 
Q�

T
𝛺+QT = Q̃�

T
𝛺̃−1Q̃T (this still holds if an observation different from the last one is 

dropped, and Q̃T is redefined accordingly).

The FEGLS estimates of the �n (also called fixed effects residuals (Wooldridge 2002)) are

They are obtained by subtracting the estimate 𝛽′
FEGLS

x
n,t

 of �′x
n,t

 from each corrupted out-
put zn,t , then performing an empirical average, limiting to training data associated with the 
unit n. The FEGLS estimates reported in Eq. (12) are motivated by the fact that the �n are 
constants, whereas the �n,t have mean 0.

By taking expectations, it readily follows from their definitions that the estimates (9) 
and (12) are conditionally unbiased with respect to the training input data {x

n,t
}t=1,…,T

n=1,…,N
 , i.e., 

that

(9)𝛽
FEGLS

=

(
N∑
n=1

Ẍ�
n
𝛺+Ẍn

)−1( N∑
n=1

Ẍ�
n
𝛺+z̈

n

)
.

(10)𝛺̃ ∶= �{ ̃̈𝜀
n
̃̈𝜀�
n
} = Q̃T�{𝜀n𝜀

�
n
}Q̃�

T
= Q̃T𝛬Q̃

�
T
,

(11)𝛽
alt

FEGLS
=

(
N∑
n=1

̃̈X�
n
𝛺̃−1 ̃̈Xn

)−1( N∑
n=1

̃̈X�
n
𝛺̃−1 ̃̈zn

)
.

(12)𝜂̂n,FEGLS ∶=
1

T

T∑
t=1

(
zn,t − 𝛽

�

FEGLS
x
n,t

)
.
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where 0
p
∈ ℝ

p is a column vector whose elements are all equal to 0, and, for any 
i = 1,… ,N,

Finally, the covariance matrix of 𝛽
FEGLS

 , conditioned on the training input data, is

3 � Conditional generalization error and its large‑sample approximation

The goal of this section is to analyze the generalization error associated with the FEGLS 
estimates (9) and (12), conditioned on the training input data, by providing its large-sample 
approximation. Then, in Sect. 4, the resulting expression is optimized, after choosing suita-
ble models for the standard deviation � of the measurement noise and for the time horizon, 
which is chosen in such a way it satisfies a suitable budget constraint.

First, we express the generalization error or expected risk for the i-th unit ( i = 1,… ,N ), 
conditioned on the training input data, by

where xtest
i

∈ ℝ
p is independent from the training data. It is the expected mean squared 

error of the prediction of the output associated with a test input, conditioned on the training 
input data.

As shown in Appendix 1, we can express the conditional generalization error (16) as 
follows, highlighting its dependence on �2:

where some computations (reported in Appendix 1) show that

(13)�

{(
𝛽
FEGLS

− 𝛽

)
|{x

n,t
}t=1,…,T

n=1,…,N

}
= 0

p
,

(14)�

{(
𝜂̂i,FEGLS − 𝜂i

)|{x
n,t
}t=1,…,T

n=1,…,N

}
= 0 .

(15)Var
(
𝛽
FEGLS

|{x
n,t
}t=1,…,T

n=1,…,N

)
=

(
N∑
n=1

Ẍ�
n
𝛺+Ẍn

)−1

.

(16)Ri

(
{x

n,t
}t=1,…,T

n=1,…,N

)
∶=�

{(
𝜂̂i,FEGLS + 𝛽

�

FEGLS
xtest
i

− 𝜂i − 𝛽�xtest
i

)2||{xn,t}t=1,…,T

n=1,…,N

}
,

(17)

Ri

(
{x

n,t
}t=1,…,T

n=1,…,N

)

=
𝜎2

T2
1
�
T
Xi

(
N∑
n=1

Ẍ�
n
𝛷+Ẍn

)−1

X�
i
1
T
+

𝜎2

T2
1
�
T
𝛹1

T

−
2𝜎2

T2
1
�
T
Xi

(
N∑
n=1

Ẍ�
n
𝛷+Ẍn

)−1

Ẍ�
i
𝛷+QT𝛹1

T
+ 𝜎2�

{(
xtest
i

)�
(

N∑
n=1

Ẍ�
n
𝛷+Ẍn

)−1

xtest
i

||{xn,t}t=1,…,T

n=1,…,N

}

−
2𝜎2

T
1
�
T
Xi

(
N∑
n=1

Ẍ�
n
𝛷+Ẍn

)−1

�
{
xtest
i

}
+

2𝜎2

T

(
QT𝛹1

T

)�
𝛷+Ẍi

(
N∑
n=1

Ẍ�
n
𝛷+Ẍn

)−1

�
{
xtest
i

}
,
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and

Next, we obtain a large-sample approximation of the conditional generalization error (17) 
with respect to T, for a fixed number of units N. Such an approximation is useful, e.g., in 
the application of the model to macroeconomics data, for which it is common to investigate 
the case of a large horizon T.

Under mild conditions (e.g., if for the unit i the x
i,t

 are mutually independent, identi-
cally distributed, and have finite moments up to the order 4), the following convergences in 
probability3 hold (their proofs are reported in Appendix 2):

Similarly, if for each fixed unit n the x
n,t

 are mutually independent, identically distrib-
uted4, and have finite moments up to the order 4, and one makes the additional assumption 
(whose validity is discussed extensively in Appendix 2) that

(where, for a symmetric matrix M ∈ ℝ
T×T , ‖M‖2 = max

t=1,…,T
��t(M)� denotes its spectral 

norm), then also the following convergence in probability holds:

(18)

1�
T
�1

T
= T + 2T

(
1 − �T

1 − �
− 1

)
−

2�

1 − �

(
− (T − 1)�T−1 + �T−2 + �T−3 +⋯ + 1

)
,

(19)

v
T
∶=QT�1

T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

̸1 + � + �2 + �3 + �4 +⋯ + �T−1
�

−1 − 2
1−�T

1−�
+ 2 +

2�[−(T−1)�T−1+�T−2+�T−3+⋯+1]

T(1−�)

�+ ̸1 + � + �2 + �3 +⋯ + �T−2
�

−1 − 2
1−�T

1−�
+ 2 +

2�[−(T−1)�T−1+�T−2+�T−3+⋯+1]

T(1−�)

�2 + �+ ̸1 + � + �2 +⋯ + �T−3
�

−1 − 2
1−�T

1−�
+ 2 +

2�[−(T−1)�T−1+�T−2+�T−3+⋯+1]

T(1−�)

⋯ ⋯ ⋯

�T−3 + �T−4 +⋯ + �+ ̸1 + � + �2
�

−1 − 2
1−�T

1−�
+ 2 +

2�[−(T−1)�T−1+�T−2+�T−3+⋯+1]

T(1−�)

�T−2 + �T−3 +⋯ + �2 + �+ ̸1 + �
�

−1 − 2
1−�T

1−�
+ 2 +

2�[−(T−1)�T−1+�T−2+�T−3+⋯+1]

T(1−�)

�T−1 + �T−2 +⋯ + �3 + �2 + � + ̸1
�

−1 − 2
1−�T

1−�
+ 2 +

2�[−(T−1)�T−1+�T−2+�T−3+⋯+1]

T(1−�)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(20)plim
T→+∞

1

T
1�
T
Xi =

(
�

{
x
i,1

})�

,

(21)plim
T→+∞

1

T
Ẍ�
i
𝛷+QT𝛹1

T
= 0

p
.

(22)lim
T→∞

‖�+ − QT�
−1Q�

T
‖2 = 0

(23)plim
T→+∞

1

T

N∑
n=1

Ẍ�
n
𝛷+Ẍn = AN ,

3  We recall that a sequence of random real matrices MT , T = 1, 2,… , converges in probability to the real 
matrix M if, for every 𝜀 > 0 , Prob

(‖‖MT −M‖‖ > 𝜀
)
 (where ‖ ⋅ ‖ is an arbitrary matrix norm) tends to 0 as T 

tends to +∞ . In this case, we write plim
T→+∞

MT = M.
4  This does not exclude the possibility for the x

n,t
 and x

m,t
 associated with different units n and m to be 

dependent/not identically distributed.
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where

is a symmetric and positive semi-definite matrix. In the following, its positive definiteness 
(hence, its invertibility) is also assumed.

Remark 3.1  The existence of the probability limit (23) and the assumed positive definite-
ness of the matrix AN guarantee that the invertibility of the matrix 

∑N

n=1
Ẍ�
n
𝛷+Ẍn (see the 

invertibility assumption before Eq. (9)) holds with probability near 1 for large T.

When (20), (21), and (23) hold, inserting such probability limits in Eq. (17), one gets 
the following large-sample approximation of the conditional generalization error (17) with 
respect to T:

where, for a vector v ∈ ℝ
p , ‖v‖2 denotes its l2 (Euclidean) norm, and A

−
1

2

N
 is the principal 

square root (i.e., the symmetric and positive definite square root) of the symmetric and 
positive definite matrix A−1

N
 . Eq. (25) is obtained taking into account that, as a consequence 

of the Continuous Mapping Theorem (Florescu 2015, Theorem 7.33), the probability limit 
of the product of two random variables equals the product of their probability limits, when 
the latter two exist. By doing this, the third and sixth terms of Eq. (17) cancel out due to 
Eq. (21), whereas the second term is computed using Eq. (18).

Interestingly, the large-sample approximation (25) has the form �
2

T
Ki , where

is a positive constant (possibly, a different constant for each unit i). This simplifies the 
analysis of the trade-off between training set size and precision of supervision performed in 
the next section, since one does not need to compute the exact expression of Ki to find the 
optimal trade-off.

In Appendix 3, an extension of the analysis made above is presented, by considering, 
respectively, the case of large N, and the one in which both N and T are large.

(24)AN = A�
N
∶=

1 + �2

1 − �2

N∑
n=1

�

{(
x
n,1

− �

{
x
n,1

})(
x
n,1

− �

{
x
n,1

})�
}

(25)

(17) ≃
�2

T

(
�

{
x
i,1

})�

A−1
N
�

{
x
i,1

}
+

�2

T

1 + �

1 − �

+
�2

T
�

{(
xtest
i

)�
A−1
N
xtest
i

}
− 2

�2

T

(
�

{
x
i,1

})�

A−1
N
�
{
xtest
i

}

=
�2

T

(
1 + �

1 − �
+ �

{‖‖‖‖A
−

1

2

N

(
�

{
x
i,1

}
− xtest

i

)‖‖‖‖
2

2

})
,

(26)Ki ∶=

(
1 + �

1 − �
+ �

{‖‖‖‖A
−

1

2

N

(
�

{
x
i,1

}
− xtest

i

)‖‖‖‖
2

2

})
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4 � Optimal trade‑off between training set size and precision 
of supervision for the fixed effects generalized least squares panel 
data model under the large‑sample approximation

In this section, we are interested in optimizing the large-sample approximation (25) of the 
conditional generalization error when the variance �2 is modeled as a decreasing function 
of the supervision cost per example c, and there is an upper bound C on the total supervi-
sion cost NTc associated with the whole training set. In the analysis, N is fixed, and T is 
chosen as 

⌊
C

Nc

⌋
 . Moreover, the supervision cost per example c is allowed to take values on 

the interval [cmin, cmax] , where 0 < cmin < cmax , so that the resulting T belongs to {⌊
C

Ncmax

⌋
,… ,

⌊
C

Ncmin

⌋}
 . In the following, C is supposed to be sufficiently large, so that the 

large-sample approximation (25) can be assumed to hold for every c ∈ [cmin, cmax].
Consistently with (Gnecco and Nutarelli 2019, 2019, 2020), we adopt the following 

model for the variance �2 , as a function of the supervision cost per example c:

where k, 𝛼 > 0 . For 0 < 𝛼 < 1 , the precision of each supervision is characterized by 
“decreasing returns of scale” with respect to its cost because, if one doubles the supervi-
sion cost per example c, then the precision 1∕�2(c) becomes less than two times its initial 
value (or equivalently, the variance �2(c) becomes more than one half its initial value). 
Conversely, for 𝛼 > 1 , there are “increasing returns of scale” because, if one doubles the 
supervision cost per example c, then the precision 1∕�2(c) becomes more than two times 
its initial value (or equivalently, the variance �2(c) becomes less than one half its initial 
value). The case � = 1 is intermediate and refers to “constant returns of scale”. In all the 
cases above, the precision of each supervision increases by increasing the supervision cost 
per example c. Finally, it is worth observing that, according to the model (3) for the covari-
ance matrix of the vector of measurement noises, the correlation coefficient between suc-
cessive measurement noises does not depend on c.

Concluding, under the assumptions above, the optimal trade-off between the training set 
size and the precision of supervision for the fixed effects generalized least squares panel 
data model is modeled by the following optimization problem:

By a similar argument as in the proof of Gnecco and Nutarelli (2019,  Proposition 3.2), 
when C is sufficiently large, the objective function CKik

c−�⌊
C

Nc

⌋
−1

 of the optimization problem 

(28), rescaled by the multiplicative factor C, can be approximated, with a negligible error 
in the maximum norm on [cmin, cmax] , by NKikc

1−� . In order to illustrate this issue, Fig. 1 
shows the behavior of the rescaled objective functions CKik

c−�⌊
C

Nc

⌋
−1

 and NKikc
1−� for the 

three cases 0 < 𝛼 = 0.5 < 1 , 𝛼 = 1.5 > 1 , and � = 1 (the values of the other parameters are 
k = 0.5 , Ki = 2 , N = 10 , C = 200 , cmin = 0.4 , and cmax = 0.8 ). The additional approxima-
tion CNKik

c1−�

C−Nc
 (which differs negligibly from NKikc

1−� for large C) is also reported in the 
figure.

Concluding, under the approximation above, one can replace the optimization problem 
(28) with

(27)�2(c) = kc−� ,

(28)
minimize
c∈[cmin,cmax]

Kik
c−�⌊

C

Nc

⌋
− 1

.
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Fig. 1   Plots of the rescaled 
objective functions CKik

c−�⌊
C

Nc

⌋
−1

 , 

CNKikc
1−� , CNKik

c1−�

C−Nc
 , for 

� = 0.5 (a), � = 1.5 (b), and 
� = 1 (c). The values of the other 
parameters are reported in the 
text

(a)

(b)

(c)
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whose optimal solutions c◦ have the following expressions: 

1.	 if 0 < 𝛼 < 1 (“decreasing returns of scale”): c◦ = cmin;
2.	 if 𝛼 > 1 (“increasing returns of scale”): c◦ = cmax;
3.	 if � = 1 (“constant returns of scale”): c◦ = any cost c in the interval [cmin, cmax].

In summary, the results of the analysis show that, in the case of “decreasing returns of 
scale”, “many but bad” examples are associated with a smaller conditional generaliza-
tion error than “few but good” ones. The opposite occurs for “increasing returns of scale”, 
whereas the case of “constant returns of scale” is intermediate. These results are quali-
tatively in line with the ones obtained in (Gnecco and Nutarelli 2019, 2019, 2020) for 
simpler linear regression problems, to which different regression algorithms were applied 
(respectively, ordinary least squares, weighted least squares, and fixed effects ordinary least 
squares). This depends on the fact that, in all these cases, the large-sample approximation 
of the conditional generalization error has the same functional form �

2

T
Ki (although differ-

ent positive constants Ki are involved in the various cases).
One can observe that, in order to discriminate among the three cases of the analysis 

reported above, one does not need to know the exact values of the constants � , k, Ki , and 
N. Moreover, to discriminate between the first two cases, it is not necessary to know the 
exact value of the positive constant � (indeed, it suffices to know if � belongs, respectively, 
to the interval (0, 1) or the one (1,+∞) ). Interestingly, no precise knowledge of the prob-
ability distributions of the input examples (one for each unit) is needed. In particular, dif-
ferent probability distributions may be associated with different units, without affecting the 
results of the analysis. Finally, the same conclusions as above are reached if the objective 
function in (29) is replaced by the summation of the large-sample approximation of the 
conditional generalization error over all the N units. In that case, the constant Ki in (29) is 
replaced by K ∶=

∑N

i=1
Ki.

5 � Numerical results

In this section, the theoretical results obtained in the paper are tested through simulations. 
For each c, the following empirical approximation of the summation of the generalization 
error over all the units, conditioned on the training input data, is adopted. It is based on Ntr 
training sets and Ntest

i
 test examples for each unit i ( i = 1,… ,N ), hence on a total number 

Ntest =
∑N

i=1
Ntest
i

 of test examples:

In Eq. (30), (xtest
i,h

, ytest
i,h

) is the h-th generated test example for the unit i, and 𝛽 j
FEGLS

 is the 
estimate of the vector � obtained using the j-th generated training set. Similarly, 𝜂̂j

i,FEGLS
 is 

the estimate of the individual constant �i obtained using the j-th generated training set. For 

(29)minimize
c∈[cmin,cmax]

NKikc
1−� ,

(30)

N∑
i=1

�

{(
𝜂̂i,FEGLS + 𝛽

�

FEGLS
xtest
i

− 𝜂i − 𝛽�xtest
i

)2||{xn,t}t=1,…,T

n=1,…,N

}

≃
1

Ntest

N∑
i=1

Ntest
i∑

h=1

1

N
tr

N
tr∑

j=1

(
𝜂̂
j

i,FEGLS
+
(
𝛽
j

FEGLS

)�

xtest
i,h

− 𝜂i − 𝛽�xtest
i,h

)2

.
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each choice of c, all the Ntr generated training sets share the same training input data 
matrices Xn , but differ in the random choice of the measurement noise. The number of 
rows in each matrix Xn is increased when c is reduced from cmax to cmin , by increasing the 
number of observations T. For a fair comparison, when doing this, the rows already present 
in each matrix Xn are kept fixed. Finally, the same test examples (generated independently 
from the training sets) are used to assess the performance of the fixed effects generalized 
least squares estimates for different costs per example c.

For the simulations, we choose N = 20 for the number of units, p = 5 for the num-
ber of features, cmin = 2 , cmax = 4 , Ntr = 100 for the number of training sets, Ntest

i
= 50 

for the number of test examples per unit (hence the total number of test examples is 
Ntest = 1000 ). The number of training examples per unit is T = 50 for c = cmin , and 
T = 25 for c = cmax . In this way, the (upper bound on the) total supervision cost is 
C = 2000 for both cases. Without loss of generality, the constant k in the model (27) of 
the variance of the supervision cost is assumed to be equal to 1. The components of the 
parameter vector �  are generated randomly and independently according to a uniform 
distribution on [−1, 1] , obtaining

Similarly, the fixed effects �n (for n = 1,… ,N ) are generated randomly and independently 
according to a uniform distribution on [−1, 1] , obtaining the vector

For both training and test sets, the input data associated with each unit are generated as 
realizations of a multivariate Gaussian distribution with mean 0 and covariance matrix

which is symmetric and positive definite. This covariance matrix has been generated by 
setting Var

(
x
n,t

)
= Var

(
xtest
i

)
= AxA

�
x
 , where the elements of Ax ∈ ℝ

p×p have been ran-
domly and independently generated according to a uniform probability density on the inter-
val [0,1]. The parameter � in the covariance matrix (3) of the zero-mean vector of measure-
ment noises (modeled in the simulations by a multivariate Gaussian distribution) is chosen 
to be equal to 0.3. As a robustness check, the whole procedure is repeated 100 times.

The results of the analysis are displayed in Tables 1 (for � = 0.5 ), 2 (for � = 1.5 ), and 
3 (for � = 1 ). Each table reports the results obtained in each repetition for c = cmin and 
c = cmax . The total simulation time (for a MATLAB 9.4 implementation of the proce-
dure) is of about 501 sec on a notebook with a 2.30 GHz Intel(R) Core(TM) i5-4200U 
CPU and 6 GB of RAM. A statistical analysis of the elements of the tables leads to the 
following conclusions: 

(31)� = [−0.8562, 0.6837, 0.2640,−0.0038,−0.0598]� .

(32)

� =

[
− 0.2330,−0.2779,−0.0434,−0.9707, 0.6848, 0.0720,−0.2033,−0.6877, 0.5967,−0.7895,

0.6500, 0.9717, 0.9673,−0.1443,−0.4211, 0.3109, 0.5189, 0.4709, 0.4414,−0.8382

]�
∈ ℝ

N
.

(33)Var
�
x
n,t

�
= Var

�
xtest
i

�
=

⎡
⎢⎢⎢⎢⎣

1.4016 0.8086 1.2594 0.9866 0.6206

0.8086 0.9988 0.9518 1.2044 0.5003

1.2594 0.9518 1.9087 1.5945 0.7120

0.9866 1.2044 1.5945 1.9089 0.8294

0.6206 0.5003 0.7120 0.8294 0.4776

⎤
⎥⎥⎥⎥⎦
,
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1.	 for � = 0.5 (Table 1), the application of a one-sided Wilcoxon matched-pairs signed-rank 
test (Barlow 1989, Sect. 9.2.3) rejects the null hypothesis that the difference between 
the approximated performance index from Eq. (30) for c = cmax and the one for c = cmin 
has a symmetric distribution around its median and that median is smaller than or equal 
to 0 (p-value=1.9780 ⋅ 10−18 , significance level set to 0.05);

2.	 for � = 1.5 (Table 2), the application of a one-sided Wilcoxon matched-pairs signed-
rank test rejects the null hypothesis that the same difference as above has a sym-
metric distribution around its median and that median is larger than or equal to 0 
(p-value=1.9780 ⋅ 10−18 , significance level set to 0.05);

3.	 for � = 1 (Table 3), the application of a two-sided Wilcoxon matched-pairs signed-rank 
test fails to reject the null hypothesis that the same difference as above has a symmetric 
distribution around its median and that median is equal to 0 (p-value=0.4453, signifi-
cance level set to 0.05).

Concluding, the tables show that the simulation results are in perfect agreement with the 
theoretical ones, leading to the same conclusions. Interestingly, this holds even though rel-
atively small values for T have been chosen for the simulations.

6 � Discussion and possible extensions

Up to the authors’ knowledge, the analysis and the optimization, made in the present arti-
cle, of the conditional generalization error in regression as a trade-off between training 
set size and precision of supervision, has been carried out only rarely in the literature. In 
particular, the authors believe that it was never addressed for the fixed effects general-
ized least squares panel data model. Nevertheless, the methodology used in the present 
article is similar to the one exploited in the context of the optimization of sample survey 
design, in which some parameters of the design are optimized to minimize, e.g., the sam-
pling variance (see, for instance, the classical solution provided by Neyman allocation for 
optimal stratified sampling design, in case the dataset has a fixed size (Groves et al. 2004). 
It also shares some similarity to the approach used in Nguyen et al. (2009) - in a context, 
however, in which linear regression is marginally involved, since only arithmetic averages 
of measurement results are considered - for the optimal design of measurement devices. 
Finally, the present article can also be related to some recent works which, according to an 
emerging trend in the literature, combine methods from machine learning, optimization, 
and econometrics (Athey and Imbens 2016; Bargagli Stoffi and Gnecco 2018, 2020; Varian 
2014) (e.g., the generalization error - which is typically considered in machine learning, 
and optimized by solving suitable optimization problems - is not investigated in the clas-
sical analysis of the fixed effects generalized least squares panel data model (Wooldridge 
2002, Chapter 10)). In this way, the interaction between machine learning and optimiza-
tion—which appears commonly in the literature (Bennett and Parrado-Hernández 2006; 
Bianchini et al. 1998; Gnecco et al. 2013; Gori 2017; Özöğür-Akyüz et al. 2011; Sra et al. 
2011)—is extended to the econometrics field.

For what concerns practical applications, the theoretical results obtained in the analysis 
made in this work could be applied to the acquisition design of fixed effects panel data in 
both microeconometrics and macroeconometrics (Greene 2003, Chapter 13). A semi-arti-
ficial validation on existing datasets could also be performed by inserting artificial noise 
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Table 1   For � = 0.5 : values of the approximated performance index from Eq. (30) for the 100 repetitions of 
the simulation procedure

(Repetition number) Approximated performance index from Eq. (30)

c = c
min (1) 5.461 ⋅ 10−4 (2) 6.127 ⋅ 10−4 (3) 5.710 ⋅ 10−4 (4) 5.638 ⋅ 10−4 (5) 5.792 ⋅ 10−4

(6) 5.535 ⋅ 10−4 (7) 6.084 ⋅ 10−4 (8) 5.756 ⋅ 10−4 (9) 5.976 ⋅ 10−4 (10) 5.669 ⋅ 10−4

(11) 5.496 ⋅ 10−4 (12) 5.562 ⋅ 10−4 (13) 6.043 ⋅ 10−4 (14) 5.762 ⋅ 10−4 (15) 6.391 ⋅ 10−4

(16) 6.071 ⋅ 10−4 (17) 6.007 ⋅ 10−4 (18) 5.925 ⋅ 10−4 (19) 5.600 ⋅ 10−4 (20) 6.244 ⋅ 10−4

(21) 5.791 ⋅ 10−4 (22) 5.590 ⋅ 10−4 (23) 5.230 ⋅ 10−4 (24) 5.339 ⋅ 10−4 (25) 5.342 ⋅ 10−4

(26) 5.713 ⋅ 10−4 (27) 5.824 ⋅ 10−4 (28) 5.941 ⋅ 10−4 (29) 5.727 ⋅ 10−4 (30) 5.798 ⋅ 10−4

(31) 5.954 ⋅ 10−4 (32) 5.819 ⋅ 10−4 (33) 5.640 ⋅ 10−4 (34) 5.779 ⋅ 10−4 (35) 5.824 ⋅ 10−4

(36) 5.608 ⋅ 10−4 (37) 5.565 ⋅ 10−4 (38) 5.527 ⋅ 10−4 (39) 5.981 ⋅ 10−4 (40) 5.395 ⋅ 10−4

(41) 5.944 ⋅ 10−4 (42) 6.110 ⋅ 10−4 (43) 5.540 ⋅ 10−4 (44) 5.490 ⋅ 10−4 (45) 5.771 ⋅ 10−4

(46) 6.150 ⋅ 10−4 (47) 5.492 ⋅ 10−4 (48) 5.921 ⋅ 10−4 (49) 5.552 ⋅ 10−4 (50) 5.810 ⋅ 10−4

(51) 5.731 ⋅ 10−4 (52) 6.018 ⋅ 10−4 (53) 6.140 ⋅ 10−4 (54) 5.836 ⋅ 10−4 (55) 5.530 ⋅ 10−4

(56) 5.866 ⋅ 10−4 (57) 5.661 ⋅ 10−4 (58) 5.938 ⋅ 10−4 (59) 5.795 ⋅ 10−4 (60) 5.979 ⋅ 10−4

(61) 5.966 ⋅ 10−4 (62) 5.882 ⋅ 10−4 (63) 5.687 ⋅ 10−4 (64) 5.718 ⋅ 10−4 (65) 6.014 ⋅ 10−4

(66) 5.774 ⋅ 10−4 (67) 5.872 ⋅ 10−4 (68) 5.566 ⋅ 10−4 (69) 5.678 ⋅ 10−4 (70) 5.845 ⋅ 10−4

(71) 5.531 ⋅ 10−4 (72) 5.446 ⋅ 10−4 (73) 5.700 ⋅ 10−4 (74) 6.055 ⋅ 10−4 (75) 5.727 ⋅ 10−4

(76) 6.240 ⋅ 10−4 (77) 5.616 ⋅ 10−4 (78) 5.876 ⋅ 10−4 (79) 6.031 ⋅ 10−4 (80) 5.869 ⋅ 10−4

(81) 6.142 ⋅ 10−4 (82) 5.764 ⋅ 10−4 (83) 5.530 ⋅ 10−4 (84) 5.901 ⋅ 10−4 (85) 5.795 ⋅ 10−4

(86) 5.794 ⋅ 10−4 (87) 5.818 ⋅ 10−4 (88) 5.674 ⋅ 10−4 (89) 5.512 ⋅ 10−4 (90) 5.887 ⋅ 10−4

(91) 5.716 ⋅ 10−4 (92) 6.050 ⋅ 10−4 (93) 5.423 ⋅ 10−4 (94) 5.883 ⋅ 10−4 (95) 5.705 ⋅ 10−4

(96) 5.665 ⋅ 10−4 (97) 5.732 ⋅ 10−4 (98) 5.462 ⋅ 10−4 (99) 5.896 ⋅ 10−4 (100) 5.875 ⋅ 10−4

c = c
max (1) 8.347 ⋅ 10−4 (2) 8.193 ⋅ 10−4 (3) 7.994 ⋅ 10−4 (4) 8.132 ⋅ 10−4 (5) 8.198 ⋅ 10−4

(6) 8.281 ⋅ 10−4 (7) 7.627 ⋅ 10−4 (8) 7.891 ⋅ 10−4 (9) 8.281 ⋅ 10−4 (10) 8.268 ⋅ 10−4

(11) 8.277 ⋅ 10−4 (12) 8.097 ⋅ 10−4 (13) 8.396 ⋅ 10−4 (14) 8.187 ⋅ 10−4 (15) 8.614 ⋅ 10−4

(16) 8.461 ⋅ 10−4 (17) 8.299 ⋅ 10−4 (18) 8.477 ⋅ 10−4 (19) 8.171 ⋅ 10−4 (20) 8.422 ⋅ 10−4

(21) 7.651 ⋅ 10−4 (22) 8.068 ⋅ 10−4 (23) 7.859 ⋅ 10−4 (24) 8.034 ⋅ 10−4 (25) 8.479 ⋅ 10−4

(26) 7.741 ⋅ 10−4 (27) 7.839 ⋅ 10−4 (28) 8.243 ⋅ 10−4 (29) 7.620 ⋅ 10−4 (30) 7.543 ⋅ 10−4

(31) 8.296 ⋅ 10−4 (32) 8.280 ⋅ 10−4 (33) 8.299 ⋅ 10−4 (34) 8.115 ⋅ 10−4 (35) 8.372 ⋅ 10−4

(36) 8.085 ⋅ 10−4 (37) 8.362 ⋅ 10−4 (38) 8.357 ⋅ 10−4 (39) 8.585 ⋅ 10−4 (40) 7.864 ⋅ 10−4

(41) 8.572 ⋅ 10−4 (42) 8.098 ⋅ 10−4 (43) 7.839 ⋅ 10−4 (44) 7.941 ⋅ 10−4 (45) 7.923 ⋅ 10−4

(46) 8.157 ⋅ 10−4 (47) 8.743 ⋅ 10−4 (48) 8.239 ⋅ 10−4 (49) 8.181 ⋅ 10−4 (50) 8.134 ⋅ 10−4

(51) 8.727 ⋅ 10−4 (52) 8.600 ⋅ 10−4 (53) 7.804 ⋅ 10−4 (54) 8.078 ⋅ 10−4 (55) 7.901 ⋅ 10−4

(56) 7.954 ⋅ 10−4 (57) 7.811 ⋅ 10−4 (58) 8.182 ⋅ 10−4 (59) 8.339 ⋅ 10−4 (60) 8.384 ⋅ 10−4

(61) 8.143 ⋅ 10−4 (62) 8.129 ⋅ 10−4 (63) 8.210 ⋅ 10−4 (64) 8.319 ⋅ 10−4 (65) 8.468 ⋅ 10−4

(66) 7.811 ⋅ 10−4 (67) 8.211 ⋅ 10−4 (68) 7.470 ⋅ 10−4 (69) 8.128 ⋅ 10−4 (70) 8.399 ⋅ 10−4

(71) 8.600 ⋅ 10−4 (72) 8.537 ⋅ 10−4 (73) 8.524 ⋅ 10−4 (74) 8.117 ⋅ 10−4 (75) 8.372 ⋅ 10−4

(76) 7.895 ⋅ 10−4 (77) 8.114 ⋅ 10−4 (78) 8.161 ⋅ 10−4 (79) 8.537 ⋅ 10−4 (80) 8.159 ⋅ 10−4

(81) 7.802 ⋅ 10−4 (82) 8.178 ⋅ 10−4 (83) 7.546 ⋅ 10−4 (84) 7.922 ⋅ 10−4 (85) 8.380 ⋅ 10−4

(86) 8.011 ⋅ 10−4 (87) 8.541 ⋅ 10−4 (88) 7.823 ⋅ 10−4 (89) 8.026 ⋅ 10−4 (90) 7.652 ⋅ 10−4

(91) 7.600 ⋅ 10−4 (92) 7.859 ⋅ 10−4 (93) 8.102 ⋅ 10−4 (94) 8.599 ⋅ 10−4 (95) 8.773 ⋅ 10−4

(96) 8.397 ⋅ 10−4 (97) 8.105 ⋅ 10−4 (98) 7.885 ⋅ 10−4 (99) 8.061 ⋅ 10−4 (100) 8.208 ⋅ 10−4
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Table 2   For � = 1.5 : values of the approximated performance index from Eq. (30) for the 100 repetitions of 
the simulation procedure

(Repetition number) Approximated performance index from Eq. (30)

c = c
min (1) 2.966 ⋅ 10−4 (2) 3.008 ⋅ 10−4 (3) 2.901 ⋅ 10−4 (4) 2.950 ⋅ 10−4 (5) 3.152 ⋅ 10−4

(6) 3.021 ⋅ 10−4 (7) 2.611 ⋅ 10−4 (8) 2.922 ⋅ 10−4 (9) 2.814 ⋅ 10−4 (10) 3.028 ⋅ 10−4

(11) 2.881 ⋅ 10−4 (12) 2.937 ⋅ 10−4 (13) 3.060 ⋅ 10−4 (14) 3.077 ⋅ 10−4 (15) 2.853 ⋅ 10−4

(16) 3.060 ⋅ 10−4 (17) 2.952 ⋅ 10−4 (18) 3.100 ⋅ 10−4 (19) 2.876 ⋅ 10−4 (20) 2.881 ⋅ 10−4

(21) 2.888 ⋅ 10−4 (22) 3.084 ⋅ 10−4 (23) 2.902 ⋅ 10−4 (24) 2.902 ⋅ 10−4 (25) 2.866 ⋅ 10−4

(26) 3.024 ⋅ 10−4 (27) 2.866 ⋅ 10−4 (28) 3.019 ⋅ 10−4 (29) 2.921 ⋅ 10−4 (30) 2.817 ⋅ 10−4

(31) 2.862 ⋅ 10−4 (32) 2.828 ⋅ 10−4 (33) 2.891 ⋅ 10−4 (34) 2.842 ⋅ 10−4 (35) 3.034 ⋅ 10−4

(36) 2.991 ⋅ 10−4 (37) 2.870 ⋅ 10−4 (38) 2.848 ⋅ 10−4 (39) 2.837 ⋅ 10−4 (40) 2.974 ⋅ 10−4

(41) 2.864 ⋅ 10−4 (42) 2.724 ⋅ 10−4 (43) 2.921 ⋅ 10−4 (44) 2.991 ⋅ 10−4 (45) 2.861 ⋅ 10−4

(46) 2.857 ⋅ 10−4 (47) 2.887 ⋅ 10−4 (48) 2.958 ⋅ 10−4 (49) 2.985 ⋅ 10−4 (50) 2.858 ⋅ 10−4

(51) 2.923 ⋅ 10−4 (52) 2.698 ⋅ 10−4 (53) 2.881 ⋅ 10−4 (54) 3.008 ⋅ 10−4 (55) 3.043 ⋅ 10−4

(56) 2.842 ⋅ 10−4 (57) 2.781 ⋅ 10−4 (58) 2.746 ⋅ 10−4 (59) 2.819 ⋅ 10−4 (60) 2.848 ⋅ 10−4

(61) 2.753 ⋅ 10−4 (62) 3.010 ⋅ 10−4 (63) 3.004 ⋅ 10−4 (64) 2.805 ⋅ 10−4 (65) 2.921 ⋅ 10−4

(66) 2.919 ⋅ 10−4 (67) 2.947 ⋅ 10−4 (68) 2.944 ⋅ 10−4 (69) 2.960 ⋅ 10−4 (70) 2.964 ⋅ 10−4

(71) 2.808 ⋅ 10−4 (72) 2.940 ⋅ 10−4 (73) 2.874 ⋅ 10−4 (74) 2.851 ⋅ 10−4 (75) 2.796 ⋅ 10−4

(76) 3.049 ⋅ 10−4 (77) 2.885 ⋅ 10−4 (78) 2.849 ⋅ 10−4 (79) 2.711 ⋅ 10−4 (80) 3.004 ⋅ 10−4

(81) 2.872 ⋅ 10−4 (82) 2.908 ⋅ 10−4 (83) 2.835 ⋅ 10−4 (84) 2.779 ⋅ 10−4 (85) 2.812 ⋅ 10−4

(86) 3.044 ⋅ 10−4 (87) 2.736 ⋅ 10−4 (88) 2.848 ⋅ 10−4 (89) 2.815 ⋅ 10−4 (90) 2.931 ⋅ 10−4

(91) 2.824 ⋅ 10−4 (92) 2.923 ⋅ 10−4 (93) 2.897 ⋅ 10−4 (94) 2.872 ⋅ 10−4 (95) 3.016 ⋅ 10−4

(96) 2.714 ⋅ 10−4 (97) 2.807 ⋅ 10−4 (98) 2.887 ⋅ 10−4 (99) 2.838 ⋅ 10−4 (100) 2.903 ⋅ 10−4

c = c
max (1) 2.040 ⋅ 10−4 (2) 2.029 ⋅ 10−4 (3) 2.038 ⋅ 10−4 (4) 2.021 ⋅ 10−4 (5) 2.012 ⋅ 10−4

(6) 2.110 ⋅ 10−4 (7) 2.030 ⋅ 10−4 (8) 2.063 ⋅ 10−4 (9) 2.064 ⋅ 10−4 (10) 1.967 ⋅ 10−4

(11) 2.159 ⋅ 10−4 (12) 2.019 ⋅ 10−4 (13) 2.146 ⋅ 10−4 (14) 2.027 ⋅ 10−4 (15) 2.007 ⋅ 10−4

(16) 2.088 ⋅ 10−4 (17) 1.979 ⋅ 10−4 (18) 1.950 ⋅ 10−4 (19) 2.023 ⋅ 10−4 (20) 2.055 ⋅ 10−4

(21) 1.983 ⋅ 10−4 (22) 2.081 ⋅ 10−4 (23) 1.954 ⋅ 10−4 (24) 2.213 ⋅ 10−4 (25) 2.053 ⋅ 10−4

(26) 1.971 ⋅ 10−4 (27) 2.031 ⋅ 10−4 (28) 2.037 ⋅ 10−4 (29) 1.976 ⋅ 10−4 (30) 2.057 ⋅ 10−4

(31) 2.140 ⋅ 10−4 (32) 2.043 ⋅ 10−4 (33) 2.086 ⋅ 10−4 (34) 2.087 ⋅ 10−4 (35) 2.006 ⋅ 10−4

(36) 2.044 ⋅ 10−4 (37) 1.967 ⋅ 10−4 (38) 2.063 ⋅ 10−4 (39) 1.953 ⋅ 10−4 (40) 2.143 ⋅ 10−4

(41) 2.108 ⋅ 10−4 (42) 2.105 ⋅ 10−4 (43) 2.010 ⋅ 10−4 (44) 1.970 ⋅ 10−4 (45) 2.009 ⋅ 10−4

(46) 2.050 ⋅ 10−4 (47) 1.948 ⋅ 10−4 (48) 1.946 ⋅ 10−4 (49) 2.093 ⋅ 10−4 (50) 2.043 ⋅ 10−4

(51) 2.093 ⋅ 10−4 (52) 2.036 ⋅ 10−4 (53) 2.183 ⋅ 10−4 (54) 2.022 ⋅ 10−4 (55) 2.127 ⋅ 10−4

(56) 2.028 ⋅ 10−4 (57) 2.020 ⋅ 10−4 (58) 2.015 ⋅ 10−4 (59) 2.028 ⋅ 10−4 (60) 1.989 ⋅ 10−4

(61) 2.079 ⋅ 10−4 (62) 2.199 ⋅ 10−4 (63) 2.053 ⋅ 10−4 (64) 2.127 ⋅ 10−4 (65) 1.990 ⋅ 10−4

(66) 2.061 ⋅ 10−4 (67) 1.983 ⋅ 10−4 (68) 2.156 ⋅ 10−4 (69) 2.073 ⋅ 10−4 (70) 2.074 ⋅ 10−4

(71) 2.100 ⋅ 10−4 (72) 2.024 ⋅ 10−4 (73) 2.021 ⋅ 10−4 (74) 1.989 ⋅ 10−4 (75) 1.912 ⋅ 10−4

(76) 2.109 ⋅ 10−4 (77) 2.043 ⋅ 10−4 (78) 2.112 ⋅ 10−4 (79) 2.015 ⋅ 10−4 (80) 2.096 ⋅ 10−4

(81) 1.924 ⋅ 10−4 (82) 2.071 ⋅ 10−4 (83) 2.197 ⋅ 10−4 (84) 2.173 ⋅ 10−4 (85) 1.996 ⋅ 10−4

(86) 2.125 ⋅ 10−4 (87) 1.978 ⋅ 10−4 (88) 2.088 ⋅ 10−4 (89) 2.011 ⋅ 10−4 (90) 1.946 ⋅ 10−4

(91) 2.006 ⋅ 10−4 (92) 2.156 ⋅ 10−4 (93) 2.069 ⋅ 10−4 (94) 2.018 ⋅ 10−4 (95) 2.015 ⋅ 10−4

(96) 1.904 ⋅ 10−4 (97) 1.983 ⋅ 10−4 (98) 2.132 ⋅ 10−4 (99) 1.933 ⋅ 10−4 (100) 2.050 ⋅ 10−4
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Table 3   For � = 1 : values of the approximated performance index from Eq. (30) for the 100 repetitions of 
the simulation procedure

(Repetition number) Approximated performance index from Eq. (30)

c = c
min (1) 4.251 ⋅ 10−4 (2) 4.155 ⋅ 10−4 (3) 4.141 ⋅ 10−4 (4) 4.162 ⋅ 10−4 (5) 4.243 ⋅ 10−4

(6) 4.104 ⋅ 10−4 (7) 4.018 ⋅ 10−4 (8) 4.273 ⋅ 10−4 (9) 4.224 ⋅ 10−4 (10) 3.956 ⋅ 10−4

(11) 3.973 ⋅ 10−4 (12) 4.068 ⋅ 10−4 (13) 4.238 ⋅ 10−4 (14) 4.102 ⋅ 10−4 (15) 4.283 ⋅ 10−4

(16) 4.567 ⋅ 10−4 (17) 4.224 ⋅ 10−4 (18) 4.123 ⋅ 10−4 (19) 4.362 ⋅ 10−4 (20) 3.970 ⋅ 10−4

(21) 4.310 ⋅ 10−4 (22) 4.298 ⋅ 10−4 (23) 4.240 ⋅ 10−4 (24) 4.399 ⋅ 10−4 (25) 3.957 ⋅ 10−4

(26) 4.226 ⋅ 10−4 (27) 4.144 ⋅ 10−4 (28) 4.060 ⋅ 10−4 (29) 4.025 ⋅ 10−4 (30) 4.106 ⋅ 10−4

(31) 4.057 ⋅ 10−4 (32) 4.060 ⋅ 10−4 (33) 4.056 ⋅ 10−4 (34) 4.183 ⋅ 10−4 (35) 4.200 ⋅ 10−4

(36) 4.170 ⋅ 10−4 (37) 3.990 ⋅ 10−4 (38) 3.959 ⋅ 10−4 (39) 4.103 ⋅ 10−4 (40) 3.995 ⋅ 10−4

(41) 3.829 ⋅ 10−4 (42) 4.041 ⋅ 10−4 (43) 4.009 ⋅ 10−4 (44) 3.815 ⋅ 10−4 (45) 4.128 ⋅ 10−4

(46) 3.976 ⋅ 10−4 (47) 4.249 ⋅ 10−4 (48) 4.076 ⋅ 10−4 (49) 4.253 ⋅ 10−4 (50) 4.222 ⋅ 10−4

(51) 4.130 ⋅ 10−4 (52) 4.011 ⋅ 10−4 (53) 3.998 ⋅ 10−4 (54) 4.047 ⋅ 10−4 (55) 3.960 ⋅ 10−4

(56) 4.235 ⋅ 10−4 (57) 4.157 ⋅ 10−4 (58) 3.909 ⋅ 10−4 (59) 4.221 ⋅ 10−4 (60) 4.455 ⋅ 10−4

(61) 4.051 ⋅ 10−4 (62) 4.077 ⋅ 10−4 (63) 4.405 ⋅ 10−4 (64) 4.106 ⋅ 10−4 (65) 4.192 ⋅ 10−4

(66) 4.111 ⋅ 10−4 (67) 4.183 ⋅ 10−4 (68) 4.279 ⋅ 10−4 (69) 4.099 ⋅ 10−4 (70) 4.367 ⋅ 10−4

(71) 4.060 ⋅ 10−4 (72) 4.016 ⋅ 10−4 (73) 4.279 ⋅ 10−4 (74) 4.080 ⋅ 10−4 (75) 4.153 ⋅ 10−4

(76) 4.172 ⋅ 10−4 (77) 4.084 ⋅ 10−4 (78) 4.060 ⋅ 10−4 (79) 4.187 ⋅ 10−4 (80) 3.963 ⋅ 10−4

(81) 4.148 ⋅ 10−4 (82) 4.097 ⋅ 10−4 (83) 4.233 ⋅ 10−4 (84) 3.991 ⋅ 10−4 (85) 4.167 ⋅ 10−4

(86) 4.090 ⋅ 10−4 (87) 4.176 ⋅ 10−4 (88) 3.991 ⋅ 10−4 (89) 4.027 ⋅ 10−4 (90) 3.870 ⋅ 10−4

(91) 4.060 ⋅ 10−4 (92) 4.177 ⋅ 10−4 (93) 4.061 ⋅ 10−4 (94) 4.133 ⋅ 10−4 (95) 4.022 ⋅ 10−4

(96) 4.105 ⋅ 10−4 (97) 3.803 ⋅ 10−4 (98) 4.141 ⋅ 10−4 (99) 4.171 ⋅ 10−4 (100) 4.176 ⋅ 10−4

c = c
max (1) 3.911 ⋅ 10−4 (2) 4.069 ⋅ 10−4 (3) 4.036 ⋅ 10−4 (4) 4.297 ⋅ 10−4 (5) 4.113 ⋅ 10−4

(6) 4.192 ⋅ 10−4 (7) 4.082 ⋅ 10−4 (8) 3.914 ⋅ 10−4 (9) 4.029 ⋅ 10−4 (10) 4.308 ⋅ 10−4

(11) 3.915 ⋅ 10−4 (12) 3.739 ⋅ 10−4 (13) 4.075 ⋅ 10−4 (14) 4.111 ⋅ 10−4 (15) 4.265 ⋅ 10−4

(16) 4.352 ⋅ 10−4 (17) 3.934 ⋅ 10−4 (18) 4.044 ⋅ 10−4 (19) 4.112 ⋅ 10−4 (20) 4.258 ⋅ 10−4

(21) 4.306 ⋅ 10−4 (22) 4.179 ⋅ 10−4 (23) 4.095 ⋅ 10−4 (24) 4.189 ⋅ 10−4 (25) 4.228 ⋅ 10−4

(26) 4.413 ⋅ 10−4 (27) 3.976 ⋅ 10−4 (28) 4.134 ⋅ 10−4 (29) 4.166 ⋅ 10−4 (30) 4.121 ⋅ 10−4

(31) 3.866 ⋅ 10−4 (32) 4.440 ⋅ 10−4 (33) 4.050 ⋅ 10−4 (34) 4.129 ⋅ 10−4 (35) 3.934 ⋅ 10−4

(36) 3.944 ⋅ 10−4 (37) 4.066 ⋅ 10−4 (38) 4.045 ⋅ 10−4 (39) 4.115 ⋅ 10−4 (40) 3.973 ⋅ 10−4

(41) 4.002 ⋅ 10−4 (42) 4.248 ⋅ 10−4 (43) 4.134 ⋅ 10−4 (44) 4.302 ⋅ 10−4 (45) 4.222 ⋅ 10−4

(46) 4.121 ⋅ 10−4 (47) 3.946 ⋅ 10−4 (48) 4.139 ⋅ 10−4 (49) 4.183 ⋅ 10−4 (50) 4.245 ⋅ 10−4

(51) 3.962 ⋅ 10−4 (52) 4.204 ⋅ 10−4 (53) 4.183 ⋅ 10−4 (54) 3.930 ⋅ 10−4 (55) 4.206 ⋅ 10−4

(56) 4.044 ⋅ 10−4 (57) 3.754 ⋅ 10−4 (58) 4.247 ⋅ 10−4 (59) 4.185 ⋅ 10−4 (60) 4.007 ⋅ 10−4

(61) 4.564 ⋅ 10−4 (62) 4.174 ⋅ 10−4 (63) 4.094 ⋅ 10−4 (64) 3.944 ⋅ 10−4 (65) 4.266 ⋅ 10−4

(66) 4.352 ⋅ 10−4 (67) 4.042 ⋅ 10−4 (68) 4.281 ⋅ 10−4 (69) 4.168 ⋅ 10−4 (70) 3.093 ⋅ 10−4

(71) 4.074 ⋅ 10−4 (72) 4.007 ⋅ 10−4 (73) 4.096 ⋅ 10−4 (74) 3.968 ⋅ 10−4 (75) 3.932 ⋅ 10−4

(76) 4.066 ⋅ 10−4 (77) 4.213 ⋅ 10−4 (78) 4.040 ⋅ 10−4 (79) 4.300 ⋅ 10−4 (80) 4.091 ⋅ 10−4

(81) 3.901 ⋅ 10−4 (82) 4.161 ⋅ 10−4 (83) 4.812 ⋅ 10−4 (84) 4.039 ⋅ 10−4 (85) 3.857 ⋅ 10−4

(86) 4.078 ⋅ 10−4 (87) 4.267 ⋅ 10−4 (88) 4.233 ⋅ 10−4 (89) 3.985 ⋅ 10−4 (90) 3.902 ⋅ 10−4

(91) 4.110 ⋅ 10−4 (92) 4.045 ⋅ 10−4 (93) 3.997 ⋅ 10−4 (94) 4.170 ⋅ 10−4 (95) 4.249 ⋅ 10−4

(96) 4.005 ⋅ 10−4 (97) 3.942 ⋅ 10−4 (98) 4.254 ⋅ 10−4 (99) 4.215 ⋅ 10−4 (100) 4.193 ⋅ 10−4
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with variance expressed as in Eq. (27), possibly with the inclusion of an additional constant 
term in that variance, to model the case of the original dataset before the insertion of the 
artificial noise. As a possible extension, one could investigate and optimize the trade-off 
between training set size and precision of supervision for the unbalanced FEGLS case (in 
which different units are associated with possibly different numbers of observations)5, for 
the situation in which some parameters of the noise model have to be estimated either from 
the data or from a subset of the data, and for the case of a non-zero correlation of measure-
ment errors for the observations associated with different units. Such developments could 
open the way to the application of the proposed framework to real-world problems, e.g., in 
econometrics. Another possible extension concerns the replacement in the investigation of 
the fixed effects panel data model with the random effects one (Greene 2003, Chapter 13), 
which is also commonly applied to deal with the analysis of economic data, and differs 
from the fixed effects panel data model in that its parameters are random variables6. In 
the present analysis, however, a possible advantage of the fixed effects panel data model is 
that it also makes it possible to get estimates of the individual constants �n (see Eq. (12)), 
which appear in the expression (16) of the conditional generalization error. Finally, another 
possible extension involves the case of dynamic panel data models (Cameron and Trivedi 
2005, Chapter 21).

Appendix 1: proofs of Eqs. (17), (18), and (19)

To simplify the notation, here and in the next appendices, QT will be often replaced by the 
shorthand Q. Also the dependence of � and � and other matrices/vectors on T will be typi-
cally omitted in the notation, apart from a few cases (e.g., in part of Appendix 2).

Proof of Eq. (17)  For n = 1,… ,N , let �
n
∈ ℝ

T be the column vector whose elements are all 
equal to �n . Using the expressions (1), (2), (6), and (9) respectively of yn,t , zn,t , z̈n , and 
𝛽
FEGLS

 , and

one can write the term 𝛽
FEGLS

− 𝛽 as follows:

(A.1)Q�
n
= 0

T
,

5  The unbalanced case in which all the measurement errors are uncorrelated - therefore, the FEGLS model 
is replaced in the analysis by the simpler Fixed Effects (FE) model - is the subject of our recent work 
Gnecco et al. (2020).
6  If the additional assumptions of the random effects model hold, then both the fixed and the random 
effects estimates are consistent, but the latter is more efficient than the former. However, if they do not hold, 
then the random effects model provides inconsistent estimates (Greene 2003, Chapter 13).
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In the following, to simplify the notation, we set B ∶=
�∑N

n=1
Ẍ�
n
𝛺+Ẍn

�−1

 and 
b ∶=

∑N

n=1
Ẍ�
n
𝛺+𝜀̈

n
.

Now, we expand the conditional generalization error (16) as follows:

Exploiting the conditional unbiasedness of 𝜂̂i,FEGLS , and the expressions (1) of yn,t , (2) of 
zn,t , and (12) of 𝜂̂i,FEGLS (with the index n replaced by the index i), one gets

Then, taking into account (A.2) and (A.4), one gets

Expanding the square in the first term in the expression above, and splitting its last term in 
two parts, one obtains

(A.2)

𝛽
FEGLS

− 𝛽 =

(
N∑
n=1

Ẍ�
n
𝛺+Ẍn

)−1( N∑
n=1

Ẍ�
n
𝛺+z̈

n

)
− 𝛽

=

(
N∑
n=1

Ẍ�
n
𝛺+Ẍn

)−1( N∑
n=1

Ẍ�
n
𝛺+Q

(
𝜂
n
+ Xn𝛽 + 𝜀

n

))
− 𝛽

=

(
N∑
n=1

Ẍ�
n
𝛺+Ẍn

)−1 N∑
n=1

Ẍ�
n
𝛺+𝜀̈

n
.

(A.3)

Ri

(
{x

n,t
}t=1,…,T

n=1,…,N

)
= �

{(
𝜂̂i,FEGLS + 𝛽

�

FEGLS
xtest
i

− 𝜂i − 𝛽�xtest
i

)2||{xn,t}t=1,…,T

n=1,…,N

}

= �

{
(𝜂̂i,FEGLS − 𝜂i)

2|{x
n,t
}t=1,…,T

n=1,…,N

}
+ �

{((
𝛽
FEGLS

− 𝛽

)�

xtest
i

)2

||{xn,t}t=1,…,T

n=1,…,N

}

+ 2�

{(
𝜂̂i,FEGLS − 𝜂i

)(
𝛽
FEGLS

− 𝛽

)�

xtest
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n=1,…,N

}
.

(A.4)

�

�
(𝜂̂i,FEGLS − 𝜂i)

2�{x
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n=1,…,N

�
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��
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��2
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(A.5) =�
{

1

T2
1�
T
XiBbb

�B�X�
i
1
T
||{xn,t}t=1,…,T

n=1,…,N

}
+ �

{
1

T2
1�
T
�
i
��
i
1
T
||{xn,t}t=1,…,T

n=1,…,N

}

− 2�
{

1

T2
1�
T
XiBb�

�
i
1
T
||{xn,t}t=1,…,T

n=1,…,N

}
+ �

{(
xtest
i

)�
Bbb�B�xtest

i
||{xn,t}t=1,…,T

n=1,…,N

}

− 2�
{
1

T
1�
T
XiBbb

�B�xtest
i

||{xn,t}t=1,…,T

n=1,…,N

}
+ 2�

{
1

T
1�
T
�
i
b�B�xtest

i
||{xn,t}t=1,…,T

n=1,…,N

}
.
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In order to simplify the expressions above, one exploits the following properties:

for n ≠ m (being 0
T×T

∈ ℝ
T×T the matrix whose elements are all equal to 0), and

Then, expanding b and exploiting also the facts that �+��+ = � , B = B� , the matrix �+ 
is symmetric and deterministic, and all the Ẍn are known once all the x

n,t
 are given, one 

gets

Finally, inserting (A.9) in (A.6), expanding the expressions of B and b , and recalling that 
�
{
�
i
��
i

}
= �2� , one obtains Eq. (17). 	�  ◻

Proof of Eq. (18)  The expression 1′
T
�1

T
 in Eq. (18) is the summation of all the elements 

of the matrix � . Now, the element �0 = 1 appears in that summation T times, whereas the 
generic element �t (for t = 1,… , T − 1) appears 2(T − t) times. Hence,

Then, Eq. (18) is obtained from (A.10) by exploiting the following well-known expressions 
for the partial sums of the geometric series, and of its derivative:

and

where the right-hand side in Eq. (A.12) has been obtained by simplifying common factors 
in the numerator and the denominator. 	�  ◻

Proof of Eq. (19)  We compute Q�1
T
 , as follows:

(A.7)�
{
𝜀̈
n
𝜀̈�
m

}
= 0

T×T

(A.8)�
{
𝜀̈
n
𝜀̈�
n

}
= 𝛺 = 𝜎2𝛷 .

(A.9)

�

{
Bbb�B�||{xn,t}t=1,…,T

n=1,…,N

}
=�

{
B

(
N∑
n=1

Ẍ�
n
𝛺+𝜀̈

n

N∑
m=1

𝜀̈�
m
𝛺+Ẍm

)
B�||{xn,t}t=1,…,T

n=1,…,N

}

=B

(
N∑
n=1

Ẍ�
n
𝛺+𝛺𝛺+Ẍn

)
B�

=BB−1B
�

=𝜎2

(
N∑
n=1

Ẍ�
n
𝛷+Ẍn

)−1

.

(A.10)1�
T
�1

T
=

(
T +

T−1∑
t=1

2(T − t)�t

)
=

(
T + 2T

T−1∑
t=1

�t − 2

T−1∑
t=1

t�t

)
.

(A.11)
T−1∑
t=1

�t =
1 − �T

1 − �
− 1 ,

(A.12)
T−1�
t=1

t�t = �

d
�∑T−1

t=1
�t
�

d�
=

�

1 − �
(−(T − 1)�T−1 + �T−2 + �T−3 +…+ 1) ,
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where the expression above of (1�
T
�1

T
)1

T
 comes from Eq. (18). Finally, Eq. (19) is 

obtained from Eq. (A.13) by expanding the elements of �1
T
 , then simplifying the resulting 

expressions. 	�  ◻

Appendix 2: proofs of the probability limits in Section 3

In the following, Eqs. (20) and (21) are derived under the common assumption that, for the 
unit i, the x

i,t
 are mutually independent, identically distributed, and have finite moments up 

to the order 4. To derive Eq. (23), one makes the similar assumption that, for each fixed 
unit n, the x

n,t
 are mutually independent, identically distributed, and have finite moments 

up to the order 4, together with the additional assumption lim
T→∞

‖�+ − Q�−1Q�‖2 = 0 
reported in Eq. (22). The validity of this last assumption is discussed extensively at the end 
of this appendix. Eqs. (20), (21), and (23) could be derived under more general conditions, 
but such possible extension is out of the scope of the paper.

Proof of Eq. (20)  Eq. (20) simply replaces the empirical average of the transposes of the x
n,t

 
(which is 1

T
1′
T
Xi ) with their common expected value 

(
�

{
x
i,1

})′

 , and follows from Cheby-
schev’s weak law of large numbers (Ruud 2000, Sect. 13.4.2). 	�  ◻

Proof of Eq. (21)  In order to prove Eq. (21), it is convenient to introduce (recalling the defi-
nition of u

T
 provided in Eq. (19)) the vector

since the argument of the probability limit in Eq. (21) can be written as follows:

In other words, the T elements of each row of X′
i
 are summed with (different and deter-

ministic) weights vT ,t (the components of v
T
) , for t = 1,… , T  , then their weighted sum is 

divided by T. This suggests the application of a suitable form of the law of large numbers, 
which holds in this case: specifically, the one provided in (Bai et al. 1997, Theorem 2.1)). 
In view of the next application of that theorem, first we investigate the following properties 
of the various terms involved in Eqs. (A.14) and (A.15).

	 (i)	 The Euclidean norm of the vector u
T
 is bounded from above as follows, for Ku > 0 

independent from T: 

(A.13)

Q�1
T
=
(
I
T
−

1

T
1
T
1
T

�
)
�1

T

=�1
T
−

1

T
(1�

T
�1

T
)1

T

=�1
T
−

[
1 + 2

(
1 − �T

1 − �
− 1

)
−

2�

T(1 − �)

(
− (T − 1)�T−1 + �T−2 + �T−3 +⋯ + 1

)]
1
T
,

(A.14)v
T
∶= Q��+Q�1

T
= Q��+u

T
,

(A.15)
1

T
Ẍ�
i
𝛷+Q𝛹1

T
=

1

T
X�
i
Q�𝛷+Q𝛹1

T
=

1

T
X�
i
v
T
.
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 This follows from the fact that the absolute values of all the components of the 
vector u

T
 , whose expression is reported in Eq. (19), are bounded from above by a 

sufficiently large Ku > 0 , which is independent from T.
	 (ii)	 All the eigenvalues of the matrix � belong to the interval 

[
1−𝜌2

1+𝜌2+2𝜌
,

1−𝜌2

1+𝜌2−2𝜌

]
⊂ (0,+∞) . 

This result follows by observing that � is a symmetric Toeplitz matrix7 (Gray 2006). 
Then, by (Gray 2006, Lemma 4.1), all the eigenvalues of �  belong to the interval 
[mf ,Mf ] , where mf  and Mf  are respectively the minimum and the maximum of the 
function 

 on the interval [0, 2�] , and � is the imaginary unit. By inverting the Fourier series 
above as in (Gilgen 2006, Eqs. (7.77–7.79)), one gets 

 from which one gets mf =
1−𝜌2

1+𝜌2+2𝜌
> 0 and Mf =

1−𝜌2

1+𝜌2−2𝜌
< +∞ since � ∈ (−1, 1) , 

which concludes the proof of item ii).
	 (iii)	 The matrix � has 0 as eigenvalue with multiplicity 1, and an associated eigenvector 

is 1
T
.

This result follows from the characterization of the eigenvalues of a symmetric matrix 
M ∈ ℝ

T×T as the stationary values of its Rayleigh quotient x
′Mx

x′x
 (with x ∈ ℝ

T and x ≠ 0
T
 ) 

(Parlett 1998, Chapter 1), the invertibility of the matrix � , and the fact that Q has eigen-
value 0 with multiplicity 1, and associated eigenvector 1

T
 . Hence, for x ≠ 0

T
 , x

�Mx

x�x
= 0 if 

and only x is proportional to 1
T
 . 

	 (iv)	 All the other eigenvalues of � belong to the interval 
[

1−𝜌2

1+𝜌2+2𝜌
,

1−𝜌2

1+𝜌2−2𝜌

]
⊂ (0,+∞).

This follows again from the characterization of the eigenvalues of a symmetric matrix 
as the stationary values of its Rayleigh quotient, and also from Courant-Fisher’s 
maxmin theorem (Parlett 1998,  Theorem  10.2.1) and from item ii). Indeed, by order-
ing the (real) eigenvalues of �  and � respectively as �1(� ) ≤ �2(� ) ≤ … �T (� ) and 
�1(�) ≤ �2(�) ≤ … �T (�) , and recalling that x��x = x�Q�Q�x = x��x for any x ∈ ℝ

T 
orthogonal to 1

T
 , one gets

(A.16)‖u
T
‖2 ≤ Ku

√
T .

(A.19)f (�) ∶=

+∞∑
k=−∞

�|k|e�k�

(A.20)f (�) =
1 − �2

1 + �2 − 2� cos(�)
,

7  We recall that a matrix M ∈ ℝ
T×T is a symmetric Toeplitz matrix if it has the form

where m0,m1,… ,mT−1 ∈ ℝ.

(A.18)M =

⎡⎢⎢⎢⎢⎣

m0 m1 m2 ⋯ mT−2 mT−1

m1 m0 m1 m2 ⋯ mT−2

m2 m1 m0 m1 ⋯ mT−3

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

mT−1 mT−2 ⋯ m2 m1 m0

⎤⎥⎥⎥⎥⎦
,
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from Courant-Fisher’s maxmin theorem, whereas

is obtained by expressing Q′x by using a basis of orthonormal eigenvectors e
t
 of � , associ-

ated with the respective eigenvalues �t(� ) , t = 1,… , T  . Indeed, for some coefficients �t , 
t = 1,… , T  (depending on x ), one has

hence

whereas

Then, one gets

for any x ≠ 0
T
 . 

	 (v)	 All the non-zero eigenvalues of the matrix �+ belong to the interval [
1+𝜌2−2𝜌

1−𝜌2
,
1+𝜌2+2𝜌

1−𝜌2

]
⊂ (0,+∞).

		    This follows from items iii) and iv) and the relation between the singular value 
decomposition of a symmetric positive semi-definite matrix and the singular value 
decomposition of its Moore-Penrose pseudoinverse, which has been reported in 
footnote 2.

	 (vi)	 The Euclidean norm of the vector v
T
 is bounded from above as follows, for Kv > 0 

independent from T: 

 This is obtained by combining the definition of v
T
 provided in Eq. (A.14) with 

items i) and v), and the fact that the eigenvalue with maximus modulus of Q = Q� is 
1. A possible expression for Kv is Kv =

1+�2+2�

1−�2
Ku.

	 (vii)	 The following holds:

(A.17)�1(� ) = min
x∈ℝT ,x≠0

T

x��x

x�x
≤ min

x∈ℝT ,x≠0
T
,x⟂1

T

x��x

x�x
= min

x∈ℝT ,x≠0
T
,x⟂1

T

x��x

x�x
= �2(�)

(A.21)�T (� ) = max
x∈ℝT ,x≠0

T

x��x

x�x
≥ max

x∈ℝT ,x≠0
T

x��x

x�x
= �T (�)

(A.22)Q�x =

T∑
t=1

�tet ,

(A.23)x��x = x�Q�Q�x =

T∑
t=1

�t(� )�2
t
,

(A.24)x�x ≥ x�QQ�x =

T∑
t=1

�2
t
.

(A.25)
x��x

x�x
≤ �T (� )

(A.26)‖v
T
‖2 ≤ Kv

√
T .
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 This is obtained immediately from item vi).
		    To conclude the proof of Eq. (21), we first consider the case in which, for the unit 

i, all the x
i,t

 have mean 0
p
 . Later, this additional assumption is removed.

	(viii)	 Proof of Eq. (21) when all the x
i,t

 have mean 0
p
.

		    Item vii) and the fact that all the elements of each row of X′
i
 have 0 mean, are 

independent, identically distributed, and their moments up to the order 4 are finite 
allow one to apply (Bai et al. 1997, Theorem 2.1), getting the following result, where, 
for r = 1,… , p , (X�

i
v
T
)r denotes the r-th component of X′

i
v
T
 : 

						      8

This, combined with the inequalities 

 and the fact that almost sure convergence implies convergence in probability (Rao 
1973), shows that, for all r = 1,… , p , one has 

 To conclude, one gets Eq. (21) from Eqs. (A.15) and (A.30), by exploiting the fact 
that, for a sequence of random matrices with fixed dimension, element-wise con-
vergence in probability implies convergence in probability of the whole sequence 
(Lee 2010).

	 (ix)	 Proof of Eq. (21) when all the x
i,t

 have the same mean m ∈ ℝ
p.

		    We set x̄
i,t
∶= x

i,t
− m , in such a way that the x̄

i,t
 have mean 0

p
 . Similarly, we set 

X̄i = Xi − 1
T
m� . Since Ẍi = QXi = Q(X̄i + 1

T
m�) = QX̄i =

̈̄Xi , one reduces the analy-
sis to the one made in item viii).

Remark 6.1  As a variation of item ii), a simpler argument (not based on the theory of Toe-
plitz matrices) can be used to prove that all the eigenvalues of the matrix � belong to the 
interval 

[
1 −

2�

1−�
, 1 +

2�

1−�

]
 . This result follows by seeing the matrix � as a perturbation of 

the identity matrix, then applying Gershgorin’s circle theorem (Gerschgorin 1931). Indeed, 
all the eigenvalues of � (which are non-negative since � is symmetric and positive semi-
definite) belong to the union of the T Gershgorin’s circles Ci ( i = 1,… , T  ) in the complex 
plane, which have the same center 1 and respective radii 

∑
j=1,…,T ,j≠i ��ij� . The latter radii 

can be bounded from above by 2�

1−�
 , which follows from a geometric series argument based 

on Eq. (A.11). We have preferred to use in the main text the argument based on Toeplitz 

(A.27)lim sup
T→∞

1√
T
‖v

T
‖2 ≤ Kv < +∞ .

(A.28)lim sup
T→∞

|(X�
i
v
T
)r|

T
3

4 (logT)
1

4

= 0 almost surely.

(A.29)0 ≤ lim inf
T→∞

|(X�
i
v
T
)r|

T
≤ lim sup

T→∞

|(X�
i
v
T
)r|

T
≤ lim sup

T→∞

|(X�
i
v
T
)r|

T
3

4 (logT)
1

4

(A.30)plim
T→+∞

1

T
(X�

i
v
T
)r = 0 .

8  We recall that a sequence of random real variables bT , T = 1, 2,… , converges almost surely to b ∈ ℝ if 
Prob( lim

T→+∞
bT = b) = 1
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matrices, since imposing 
[
1 −

2𝜌

1−𝜌
, 1 +

2𝜌

1−𝜌

]
⊂ (0,+∞) requires the additional assumption 

𝜌 <
1

3
 (instead, 

[
1−𝜌2

1+𝜌2+2𝜌
,

1−𝜌2

1+𝜌2−2𝜌

]
⊂ (0,+∞) holds for any � ∈ (−1, 1) ). Moreover, such 

argument produces an even better estimate (when 
∑

j=1,…,T ,j≠i ��ij� is replaced by its upper 
bound 2�

1−�
 ), since 1 −

2𝜌

1−𝜌
<

1−𝜌2

1+𝜌2+2𝜌
 and 1 +

2�

1−�
=

1−�2

1+�2−2�
 , hence [

1−𝜌2

1+𝜌2+2𝜌
,

1−𝜌2

1+𝜌2−2𝜌

]
⊂

[
1 −

2𝜌

1−𝜌
, 1 +

2𝜌

1−𝜌

]
.

Proof of Eq. (23)  To make the reading easier, the proof of Eq. (23) is divided into several 
steps. 

(i)	 The following holds:

 This is obtained as follows. First, since the matrix Q = Q� is idempotent, one gets 

 by (Maciejewski and Klein 1985, Appendix). Additionally, since Moore-Penrose 
pseudoinversion commutes with transposition (Barata and Hussein 2012), we get 

 where the last step follows again by (Maciejewski and Klein 1985, Appendix) and by 
the symmetry of � . Transposing Eq. (A.33) and combining it with the symmetry of 
�+ and with Eq. (A.32), we get Eq. (A.31).

(ii)	 The following decomposition holds: 

 This is obtained straightforwardly, by applying item i) to get the second equality.
(iii)	 Under the assumption lim

T→∞
‖�+ − Q�−1Q�‖2 = 0 stated in Eq. (22), the following prob-

ability limit holds:

 This is obtained as follows. Denoting by 𝜖 > 0 an upper bound on the spectral norm 
of the matrix �+ − Q�−1Q� and by c

n,h
 the h-th column of Xn , the absolute value 

of the element in position (h, k) of the matrix X�
n

[
�+ − Q�−1Q�

]
Xn can be bounded 

from above as follows: 

 where Cauchy-Schwarz inequality has been applied, together with the elementary 
inequality |a||b| ≤ a2+b2

2
 , for a, b ∈ ℝ . Since by the assumption 

lim
T→∞

‖�+ − Q�−1Q�‖2 = 0 stated in Eq. (22) one can make � tend to 0 as T tends to 
+∞ , and both ‖c

n,h
‖2
2
 and ‖c

n,k
‖2
2
 are summations of T independent and identically 

(A.31)Q��+Q = �+ .

(A.32)Q��+Q = �+Q

(A.33)
(
�+Q

)�
= Q�

(
�+

)�
= Q�

(
��

)+
= Q��+ = �+ ,

(A.34)Ẍ�
n
𝛷+Ẍn =X

�
n
Q�𝛷+QXn = X�

n
𝛷+Xn = X�

n

[
𝛷+ − Q𝛹−1Q�

]
Xn + X�

n
Q𝛹−1Q�Xn .

(A.35)plim
T→+∞

1

T
X�
n

[
�+ − Q�−1Q�

]
Xn = 0p×p .

(A.36)�(X�
n

�
�+ − Q�−1Q�

�
Xn)h,k� ≤ �‖c

n,h
‖2‖cn,k‖2 ≤ 1

2
�(‖c

n,h
‖2 + ‖c

n,k
‖2
2
) ,
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distributed random variables with finite mean and finite second order moments, by 
applying Chebyschev’s weak law of large numbers, one gets 

 Finally, one gets Eq. (A.35) from Eq. (A.37), since for a sequence of random matri-
ces with fixed dimension, element-wise convergence in probability implies conver-
gence in probability of the whole sequence (Lee 2010).

(iv)	 The following probability limit holds:

 This is obtained as follows. Exploiting the symmetry of Q and the following 
Cholesky factorization (see, e.g. (Ruud 2000, Sect. 19.2)) 

 where 

 one gets 

 Hence, from Eq. (A.41) one gets 

 Now, we compute the probability limit in the right-hand side of Eq. (A.42) by con-
sidering separately the following various terms. 

	 (iv.a)	 The following holds: 

 This is obtained by applying directly Chebyschev’s inequality (Ruud 
2000, Section D.2), since each element of the matrix ẍ

n,1
ẍ′
n,1

 has finite mean 
and finite second order moments.

(A.37)plim
T→+∞

1

T
|(X�

n

[
�+ − Q�−1Q�

]
Xn)h,k| = 0 .

(A.38)plim
T→+∞

1

T
X�
n
Q�−1Q�Xn =

1 + �2

1 − �2
�

{(
x
n,1

− �

{
x
n,1

})(
x
n,1

− �

{
x
n,1

})�
}

.

(A.39)�−1 =
(
C−1
Chol

)�
C−1
Chol

,

(A.40)C−1
Chol

=
1√

1 − �2

⎡
⎢⎢⎢⎢⎢⎣

√
1 − �2 0 0 ⋯ ⋯ 0

−� 1 0 0 ⋯ 0

0 − � 1 0 ⋯ 0

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

0 ⋯ ⋯ 0 − � 1

⎤
⎥⎥⎥⎥⎥⎦

,

(A.41)

X�
n
Q𝛹−1Q�Xn = X�

n
Q�𝛹−1QXn = ẍ

n,1
ẍ�
n,1

+

T�
t=2

�
1√

1 − 𝜌2
(ẍ

n,t
− 𝜌ẍ

n,t−1
)

��
1√

1 − 𝜌2
(ẍ

n,t
− 𝜌ẍ

n,t−1
)

��

.

(A.42)

plim
T→+∞

1

T

N�
n=1

X�
n
Q𝛹−1Q�Xn

= plim
T→+∞

1

T

�
ẍ
n,1
ẍ�
n,1

+

T�
t=2

�
1√

1 − 𝜌2
(ẍ

n,t
− 𝜌ẍ

n,t−1
)

��
1√

1 − 𝜌2
(ẍ

n,t
− 𝜌ẍ

n,t−1
)

���
.

(A.43)plim
T→+∞

1

T
ẍ
n,1
ẍ�
n,1

= 0p×p .
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	 (iv.b)	 Similarly, since the addition of a finite number of terms like the one reported 
in Eq. (A.43) does not change the probability limit, one gets 

 where the last equality is obtained by exploiting the eigendecomposition of 
Q′Q (which, combined with the assumptions on the x

n,t
 , shows that each ele-

ment in position (h, k) of the matrix X′
n
Q′QXn is the summation of T − 1 inde-

pendent random variables with mean (�{(x
n,1

− �{x
n,1
})(x

n,1
− �{x

n,1
})�})h,k 

and the same finite variance), then applying Chebyschev’s weak law of large 
numbers.

	 (iv.c)	 Moreover, 

 where the second-last equality comes from the fact that the probability limit 
of the product of two factors equals the product of the probability limits of the 
two factors, when the latter probability limits exist (this is a consequence of 
the Continuous Mapping Theorem (Florescu 2015, Theorem 7.33)), and from 
the assumptions on the x

n,t
.

	 (iv.d)	 Finally, Eq. (A.38) is obtained by combining items iv.a), iv.b), and iv.c), and 
taking into account the constant factors in Eq. (A.42).

(v)	 Final part of the proof of Eq. (23).
	   To conclude, one gets Eq. (23) by combining Eqs. (A.34), (A.35), and (A.38), then 

summing over N.

Discussion of the validity of the assumption lim
T→∞

‖�+ − Q�−1Q�‖2 = 0

(A.44)
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First, we prove a related result. In the following, for a matrix M ∈ ℝ
T×T , 

‖M‖HS =
�

1

T

∑T

i,j=1
M2

i,j
 denotes its Hilbert-Schmidt norm (Gray 2006, Eq. (2.17)), which 

is a scaled version of its Frobenius norm ‖M‖F =
�∑T

i,j=1
M2

i,j
.

The following holds:

Eq. (A.46) is derived by combining several steps, which are listed next, together with 
pointers to some theoretical results available in the literature that are directly applied for 
their proofs, and checks of the assumptions of such results in the context of our analysis. In 
the following, for a better clarity of exposition of this part, the dependence of � and other 
matrices on T is highlighted by including the subscript T in the notation. 

	 (i)	 lim
T→∞

‖�T − CT‖HS = 0 , where CT is a suitable symmetric and positive definite circu-
lant matrix9 approximation of the symmetric Toeplitz matrix �T (application of 
(Gray 2006, Lemma 4.6) to the circulant matrix approximation CT of �T coming 
from (Gray 2006, Eq. (4.32)), where CT is also symmetric and positive definite due 
to the symmetry and positive definiteness of the Toeplitz matrix �T ; the application 
itself of (Gray 2006, Lemma 4.6) is made possible in this case by the convergence 
of 1 + 2

∑+∞

k=1
���k).

	 (ii)	 lim
T→∞

‖�T − QTCTQ
�
T
‖HS = 0 (definition of �T as �T = QT�TQ

�
T
 ; combination of item 

i) with (Gray 2006, Lemma 2.3) and the fact that ‖QT‖2 = max
t=1,…,T

��t(QT )� = 1).
	 (iii)	 lim

T→∞
‖�+

T
− (QTCTQ

�
T
)+‖HS = 0 (combination of item ii) with (Wedin 1973, Theo-

rem 4.1), made possible by the fact that �T and QTCTQ
′
T
 have the same rank T − 1 , 

and the spectral norm of �+
T
 and the one of (QTCTQ

�
T
)+ are uniformly bounded with 

respect to T, due respectively to item iv) in the proof of Eq. (21) and to the charac-
terization of the eigenvalues of CT provided in (Gray 2006, Eq. (4.34)), combined 
with mf =

1−𝜌2

1+𝜌2+2𝜌
> 0.

	 (iv)	 lim
T→∞

‖�−1
T

− C−1
T
‖HS = 0 (application of (Gray 2006, Theorem 5.2 (b)) to the function 

f (�) reported in Eq. (A.19)).
	 (v)	 lim

T→∞
‖QT�

−1
T
Q�

T
− QTC

−1
T
Q�

T
‖HS = 0 (obtained likewise item ii)).

	 (vi)	 QTC
−1
T
Q�

T
= (QTCTQ

�
T
)+ (obtained by exploiting the following facts: since CT is a 

symmetric matrix, it has the factorization CT = UT�TU
�
T
 for an orthogonal matrix 

UT ∈ ℝ
T×T and a diagonal matrix �T ∈ ℝ

T×T containing its eigenvalues, which are 
positive; since CT is also a circular matrix, one can choose one column of UT to be 
proportional to 1

T
 , since this is an eigenvector of CT (Gray 2006, Theorem 3.1); QT 

represents the orthogonal projection of ℝT onto its subspace L orthogonal to 1
T
 ; as 

a consequence of the facts above, one can easily check that QTC
−1
T
Q�

T
 satisfies all the 

defining properties10 (Barata and Hussein 2012) of the Moore-Penrose pseudoinverse 

(A.46)lim
T→∞

‖�+ − Q�−1Q�‖HS = 0 .

10  For example, (QTCTQ
�
T
)(QTC

−1
T
Q�

T
)(QTCTQ

�
T
) = (QTCTQ

�
T
) is checked by using a com-

mon basis of eigenvectors e
i
∈ ℝ

T (for i = 1,… ,T  ) of QT and CT , i.e., by showing that 
(QTCTQ

�
T
)(QTC

−1
T
Q�

T
)(QTCTQ

�
T
)e

i
= (QTCTQ

�
T
)e

i
 for each such eigenvector.

9  We recall that a symmetric circulant matrix is a symmetric Toeplitz matrix (see footnote 7) with 
mt = mT−t , for t = 1,… ,T − 1 (Gray 2006).
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of QTCTQ
′
T
 , hence QTC

−1
T
Q�

T
= (QTCTQ

�
T
)+ by the uniqueness of the Moore-Penrose 

pseudoinverse (Barata and Hussein 2012).
	 (vii)	 Finally, Eq. (A.46) is obtained by combining items iii), v), and vi).

Remark 6.2  One can easily check (e.g., by a numerical study for selected values of T and of 
the parameter � in � ) that, in general, the stronger result �+ = Q�−1Q� does not hold. This 
depends on the fact that, given two matrices M1,M2 ∈ ℝ

T×T , typically (M1M2)
+ ≠ M+

2
M+

1
 , 

apart from particular cases (Dattorro 2019, Eq. (E.0.0.0.1)).

Eq. (22), i.e., lim
T→∞

‖�+ − Q�−1Q�‖2 = 0 , represents a stronger convergence requirement 
on �+ − Q�−1Q� with respect to the convergence result provided by Eq. (A.46), which has 
been proved above. This depends on the fact that, for any matrix M ∈ ℝ

T×T , one has 
‖M‖2 ≥ ‖M‖HS (Gray 2006, Eq. (2.19)). The validity of Eq. (22) has been assumed to com-
plete the proof of Eq. (23) - specifically, of part of item iii) therein - since a similar argu-
ment based on Eq. (A.46) would be not enough to complete that proof. Although we are 
currently unable to provide a formal proof of Eq. (22) - which is why it has been reported 
here as an assumption - its validity is strongly supported by the numerical results shown in 
Fig. 2, where the spectral norm error ‖�+ − Q�−1Q�‖2 is reported for several choices of T 
and � (similar results are obtained for a wider range of values of T and other values of � ). 
The difficulty in getting a proof of Eq. (22) depends on the fact that the vector 1

T
 is not an 

eigenvector of � (although it is an eigenvector of its circulant matrix approximation). 
Hence, there is no guarantee a priori that all the elements of an orthonormal basis of eigen-
vectors of � have nonzero orthogonal projections onto 1

T
 (indeed, it can be easily checked 

numerically - e.g., by finding a basis of eigenvectors of � for a few choices of T, then com-
puting such orthogonal projections - that they are typically nonzero)11. This suggests, as a 
possible way to proceed in the proof, to investigate theoretically if such orthogonal projec-
tions converge uniformly to 0 as T tends to +∞ . In any case, in this appendix we have 
reported Eq. (A.46) together with its proof, because such equation is obviously related to 
Eq. (22), and because a proof of the latter could be obtained by combining Eq. (A.46) with 
specific properties of the matrix � . It is also worth mentioning that such proof would be 
not necessarily based on the use of a circulant matrix approximation of � , then of �−1 (for 
which negative results on the spectral norm approximation error are known, unless a 
related but restricted notion of finite-term strong convergence is considered (Sun 
2003, Theorem 1)).

Appendix 3: other large‑sample approximations of the conditional 
generalization error, and associated optimization problems

In the following, we report some notes about how the analysis made in Sects. 3 and 4 can 
be modified if one considers, respectively, the case of large N (whose application is poten-
tially of interest in microeconometrics), and the one in which both N and T are large. For 
simplicity, we limit this extension of the analysis to the case � = 0 , for which one obtains 

11  Otherwise, if 1
T
 were an eigenvector of � , one could proceed likewise in item vi) of the proof of Eq. 

(A.46).
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the simplified expressions � = IT and � = Q�Q� = QQ� = IT −
1

T
1
T
1�
T
 . Then, one gets 

Q��+Q = �+ = QQ� = Q�Q by combining Eq. (A.31) and the relation between the sin-
gular value decomposition of a matrix and the singular value decomposition of its Moore-
Penrose pseudoinverse.

First, we consider the case in which N is large. Assuming stationarity and mutual inde-
pendence of different observations associated with the same unit, computations of the ele-
ments of the matrix

show that

(A.47)Ẍ�
n
𝛷+Ẍn = Ẍ�

n
Q�𝛷+QẌn = Ẍ�

n
Q�QẌn = Ẍ�

n
Ẍn

(a)

(b)

Fig. 2   Spectral norm error ‖�+ − Q�−1Q�‖2 as a function of T for a several choices of � ∈ (−1, 1) , and b 
other choices of � ∈ (−1, 1) near either −1 or 1
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Under mild technical conditions (e.g., under the additional assumption that mutual inde-
pendence extends to all the x

n,t
 , including those associated with different units, and that 

all the x
n,t

 are identically distributed12 and have finite moments up to the order 4), from 
Eq. (A.48) one gets, applying Chebyschev’s weak law of large numbers likewise in part of 
Appendix 2,

where

is a symmetric and positive semi-definite matrix. Likewise for what concerns AN in Sect. 3, 
the positive definiteness of A is also assumed in the following.

When (A.49) holds and � = 0 , using also Eqs. (18) and (19) and the property Q1
T
= 0

T
 , 

one gets the following large-sample approximation with respect to N for the conditional 
generalization error (17), where the dependence on N has been highlighted:

(A.48)
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Ẍ�
n
Ẍn
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(A.49)plim
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12  This assumption could be relaxed in order to apply in the analysis another suitable form of the weak law 
of large numbers, valid for the case of dependent/not identically distributed random variables.
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where A−
1

2 is the principal square root of the symmetric and positive definite matrix A−1.
Second, we consider the case in which both N and T are large. In this case, (A.49) is 

replaced by

for the same matrix A as above.
When (20) and (A.52) hold and � = 0 , the conditional generalization error (17) has the 

following large-sample approximation with respect to N and T:

Starting from the large-sample approximations (A.51) and (A.53) for the conditional gen-
eralization error, and adopting the model (27) for the variance �2 , two optimization prob-
lems similar to (28) can be stated and solved. For simplicity, in the following we make 
some approximations in the analysis of their optimal solutions.

In the first problem, one optimizes the corresponding large-sample approximation of 
the conditional generalization error with respect to N (or equivalently, with respect to c, as 
in (28)), whereas T is fixed. More precisely, for C sufficiently large (in such a way that the 
large-sample approximation (A.51) can be assumed to hold for every c ∈ [cmin, cmax] ) and 
under the approximation NTc ≃ C at optimality13, setting

the first optimization problem can be written as

(A.51)
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13  This follows from the fact that the large-sample approximation (A.51) of the conditional generalization 
error is a decreasing function of N, for each fixed choice of the measurement noise variance �2 , hence for 
each choice of c.
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whose optimal solution c◦ has the following expression: 

1.	 if 0 < 𝛼 < 1 (“decreasing returns of scale”) and 

(a)	 c⋆ ∶=
C(T−1)𝛼

K�
i
T2(1−𝛼)

∈ [cmin, cmax] : c◦ = c⋆;

(b)	 c⋆ < cmin : c◦ = cmin;
(c)	 c⋆ > cmax : c◦ = cmax;

2.	 if 𝛼 > 1 (“increasing returns of scale”): c◦ = cmax;
3.	 if � = 1 (“constant returns of scale”): c◦ = cmax.

The analysis of the second problem (whose optimization variables are c, N, and T, as the 
large-sample approximation of the conditional generalizarion error with respect to both N 
and T is optimized) is slightly more involved, since it is formulated in terms of a larger 
number of optimization variables. Nevertheless, solving such problem can be reduced to 
solving, for each c, an optimization subproblem in which the same objective function is 
minimized with respect to the pair (N, T). In this problem, admissible such pairs have to 
satisfy the constraint NTc ≤ C , and also two additional lower bounds N ≥ Nmin > 0 and on 
T ≥ Tmin > 0 , under which the large-sample approximation made in (A.53) can be assumed 
to hold. More precisely, for C sufficiently large and under the approximations T − 1 ≃ T  
and NTc ≃ C at optimality, setting

the second optimization problem can be written as

whose optimal solutions c◦ have the following expressions (the optimal T is T◦ ≃
C

Nminc
◦

 ): 

1.	 if 0 < 𝛼 < 1 (“decreasing returns of scale”): c◦ = cmin;
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2.	 if 𝛼 > 1 (“increasing returns of scale”): c◦ = cmax;
3.	 if � = 1 (“constant returns of scale”): c◦ = any cost c in the interval [cmin, cmax].
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