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Abstract
Spatial autocorrelation is inherent to remotely sensed data. Nearby pixels are more simi-
lar than distant ones. This property can help to improve the classification performance, by 
adding spatial or contextual features into the model. However, it can also lead to overesti-
mation of generalisation capabilities, if the spatial dependence between training and test 
sets is ignored. In this paper, we review existing approaches that deal with spatial auto-
correlation for image classification in remote sensing and demonstrate the importance of 
bias in accuracy metrics when spatial independence between the training and test sets is 
not respected. We compare three spatial and non-spatial cross-validation strategies at pixel 
and object levels and study how performances vary at different sample sizes. Experiments 
based on Sentinel-2 data for mapping two simple forest classes show that spatial leave-one-
out cross-validation is the better strategy to provide unbiased estimates of predictive error. 
Its performance metrics are consistent with the real quality of the resulting map contrary to 
traditional non-spatial cross-validation that overestimates accuracy. This highlight the need 
to change practices in classification accuracy assessment. To encourage it we developped 
Museo ToolBox, an open-source python library that makes spatial cross-validation possible.

Keywords Spatial autocorrelation · Cross-validation · Accuracy assessment · Overfitting · 
Remote sensing

1 Introduction

The evaluation of classification accuracy has always been considered as an important issue 
in the remote sensing community (Congalton 1991; Foody 2002, 2008; Ye et  al. 2018). 
There is a large body of literature on this subject with precise recommendations for design-
ing and implementing robust accuracy assessments based on reference data (Olofsson et al. 
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2014; Stehman and Foody 2019). Significant advances have been made in defining pro-
tocols that match the objective of the quality assessment. This may concern the sampling 
design (stratified or not, systematic or random) (Congalton 1998; Stehman 2009; Ramezan 
et al. 2019), the size of the sample (Foody 2009; Chen and Wei 2009), the spatial unit of 
reference samples (pixel, blocks, objects) (Stehman and Wickham 2011), or the accuracy 
parameters (with their pitfalls) to compute from error matrix (Stehman and Foody 2019; 
Liu et al. 2007; Pontius and Millones 2011; Foody 2020). Some authors also explored how 
to account for and represent the spatial distribution of classification errors in order to high-
light its non-uniformity and provide additional insights for map users (McIver and Friedl 
2001; Foody 2005; Comber et al. 2012; Khatami et al. 2017).

The standard approach used to assess the classification accuracy is to split the reference 
data into two subsets. The first set is used to train the classification model (learning step). 
The second set is used to test the model and estimate the prediction errors (validation step). 
The test set is never used to build the model. This ensures independence between the train-
ing and test sets and provides a generally accepted estimate of the predictive power of the 
model.

Most often, data-splitting is based on simple, possibly stratified, random selection. This 
selection is sometimes repeated (resampling by bootstrapping) to compute the sampling 
variability of the accuracy metrics (Lyons et al. 2018). A common alternative to this tradi-
tional hold-out validation is assessing the classification accuracy by cross-validation (CV). 
In this approach, reference data are also split into subsets but the number of subsets can 
vary (k-fold). The model is trained iteratively on k − 1 subset(s) and tested on the remain-
ing set. A accuracy is then measured by averaging the performance values computed on 
each subset (k models). Leave-one-out (LOO) distribution is a special case of cross-vali-
dation where k = n (n being the size of the reference data set). In this case, each test set is 
equal to 1 and the model is trained n times.

Despite the importance attached to the accuracy assessment protocol, a gap, some-
times a serious one, is often found between the performance metrics of a model and the 
real quality of the resulting map. This tends to reduce the confidence placed in accuracy 
statistics and to discredit the true capacity of remote sensing in the opnion of the t end-
users. Among the factors involved in this optimistic bias (Stehman and Foody 2019; Foody 
2020), an important one is the spatial dependence between the training and test sets. The 
spatial context is often ignored in the evaluation even tought it compromises the required 
independence of the data. Because of spatial autocorrelation, spectral values of close pixels 
are often more similar than those of distant ones, producing falsely high accuracy metrics 
if the sampling design is not used for testing (Roberts et  al. 2017; Schratz et  al. 2019; 
Meyer et al. 2019). This dependence exists in both the spectral features (i.e. the predictor 
variables) and the class to predict (i.e. the response variable). A good illustration of this 
spatial dependence, reported by Inglada (2018), was found in the TiSeLaC land cover clas-
sification contest held during the 2017 ECML/PKDD conference. The winner proposed a 
very simple classification approach to predict the nine most important land cover classes 
from time-series images. No individual spectral features were used to train the model, but 
only the pixel geographical coordinates, leading to weighted F-scores ranging from 0.90 to 
0.98. The classification was based on k-NN and the validation was carried out by cross-val-
idation Sergey (2017). The runner-up also exploit implicitly exploited the spatial autocor-
relation through convolutional neural networks. The accuracy of predictions was estimated 
at 0.99 of the F-score (Di Mauro et al. 2017).

The existence of spatial autocorrelation is well-known in the remote sensing commu-
nity (Wulder and Boots 1998). Twenty years ago, Congalton already analysed the pattern 
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of errors found in land-cover classifications and recommended correcting the sampling 
scheme in the case of non-random distribution (Congalton 1998). However, despite collec-
tive awareness, spatial dependence is often ignored in classification accuracy assessment 
even though a number of approaches have been proposed to prevent it. This leads to sys-
tematic overestimation of generalisation capabilities due to spatial overfitting.

The objectives of this paper are thus to (i) review existing approaches that deal with 
spatial autocorrelation for image classification in remote sensing, (ii) evaluate the impact 
of spatial autocorrelation between training and test sets on classification performances and 
(iii) investigate how performances vary with to the data-splitting strategy used for refer-
ence samples. The main contribution of this paper is demonstrating the importance of bias 
in accuracy metrics when spatial independence between the training and test sets is not 
respected, and hence the need to change accuracy assessment practices. We compare three 
spatial and non-spatial strategies at pixel and object levels using different sized training 
samples. The experiments are conducted using a large number of reference samples com-
posed of millions of pixels. Generalization capabilities of the models are evaluated through 
cross-validation at one site and hold-out validation at two other sites. Our assumption is 
that predictive power is inflated when the test set is used in the spatial domain of the train-
ing set.

2  Related works

One of the challenges of analysing spatial data is dealing with the interdependence between 
location and the value of the processes to be investigated (Anselin 1989). Spatial processes 
are distance-related, thus leading to spatial structures in the autocorrelated data. From a 
statistical point of view, two problems can arise with spatial autocorrelation: (1) spatial 
non-independence of the classification errors (or model residuals) and (2) spatial non-inde-
pendence of the training and test sets used for accuracy assessment.

2.1  Spatial autocorrelation in model residuals

The first problem arises when the predictor variables are not able to perfectly account for 
the effect of the spatial structure to estimate the response variable (Roberts et al. 2017). 
This is a major concern in certain disciplines like ecology, particularly in biogeographi-
cal analyses and species distribution modeling (Roberts et al. 2017; Dormann et al. 2007; 
Miller et al. 2007; Kühn and Dormann 2012). If parametric models are used to make infer-
ences, the spatial autocorrelation of the prediction errors may lead to erroneous conclu-
sions (Dormann 2007; Kühn 2007). Models are built not only to predict, like in remote 
sensing, but also to explain the respective effect of each variable. Therefore, if the inde-
pendence of the residuals (as assumed in standard regression techniques) is violated, esti-
mation of the model parameters may be biased and the type-I error rate (i.e. incorrect rejec-
tion of the null hypothesis) may increase (Dormann et al. 2007; Kühn and Dormann 2012). 
This explains why in spatial ecology, testing spatial independence of residuals is becoming 
a standard practice.

Several approaches have been proposed to address this issue (Dormann et  al. 2007; 
Miller et  al. 2007; Beale et  al. 2010). The simplest is incorporating additional predictor 
variables to improve the model specification. If the spatial pattern of the response variable 
is fully reflected by the extra autocorrelated predictors, the residuals should not be spatially 
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autocorrelated and a non-spatial model can be used (Kühn and Dormann 2012). Otherwise, 
spatial models are required. In this case, the spatial dependence is explicitly incorporated 
in the model, from the response variable itself or from the residuals, like in autocovari-
ate or autoregressive models (Anselin 1988). Spatial eigenvector mapping is an alterna-
tive (Dray et al. 2006) like kriging and other geostatistical techniques (see (Dormann et al. 
2007; Miller et al. 2007; Beale et al. 2010) for more details).

Spatial models have also been introduced in remote sensing. A widespread approach 
is the Markov random field (MRF) model that incorporates local information (the neigh-
bors class labels) in the classification process (Solberg et  al. 1996; Shekhar et  al. 2002; 
Magnussen et al. 2004). Spatial autologistic regression models have also been considered 
(Shekhar et al. 2002; Koutsias 2003; Mallinis and Koutsias 2008). However, the most com-
mon approach in the field remains the use of non-spatial models. The spatial information 
is incorporated in contextual classifiers through additional predictors (Wang et  al. 2016; 
Ghamisi et  al. 2018). A variety of techniques exist are available including morphologi-
cal image analysis (Fauvel et  al. 2013) and textural analysis (Franklin et  al. 2000; Puis-
sant et  al. 2005; Sheeren et  al. 2009), sometimes based on variograms (Atkinson and 
Lewis 2000; Berberoglu et al. 2007) or on a local version of principal component analysis 
(Comber et al. 2016). The adaptation of classifiers has also been proposed using the spatial 
locations of the training samples (Atkinson 2004) or local spatial patterns (Bai et al. 2020) 
to estimate class probabilities. Other authors suggest using local spatial statistics (Myint 
et al. 2007; Ghimire et al. 2010) or interpolated spectral values and their degree of similar-
ity with actual values to improve the classification (Johnson et al. 2012). Today, deep learn-
ing has become the most powerful alternative way to incorporate spectral-spatial features 
for classification (Ghamisi et al. 2018; Zhao and Du 2016). A non-exhaustive summary of 
these representative approaches is provided in Table 1.

Despite the wide range of technical options, the primary objective of these image pro-
cessing methods is not to deal with spatial autocorrelation but improve the classification 
performance. Spatial autocorrelation is considered as an opportunity. However, the effect is 
the same: the spatial dependence of classification errors is reduced since the model speci-
fication is improved. Only a few works have specifically aim to control the spatial depend-
ence between observations in the modeling process (Rocha et al. 2019).

2.2  Spatial autocorrelation between training and test sets

The second issue, which is the focus of this paper, is spatial dependence between the train-
ing and test sets. If the classification model is calibrated using training data that are spa-
tially correlated with the data used for testing, predictions based on testing data will be 
unrealistically high and will not reflect the true predictive power of the model because of 
spatial overfitting (Roberts et al. 2017; Schratz et al. 2019; Meyer et al. 2019). When the 
model is intended to classify new sites (assuming stationarity in the relationship between 
predictor and response variables across space), spatially independent data are required for 
the estimation of unbiased predictive performance and to test generalization capabilities 
within the image. While optimistic biases in the predictive power have already been dis-
cussed (Chen and Wei 2009; Meyer et al. 2019; Geiß et al. 2017; Hammond and Verbyla 
1996; Millard and Richardson 2015), this effect is often disregarded when image classifica-
tion is evaluated, probably for the sake of simplicty (Ramezan et al. 2019) and because of 
its importance is underestimated.
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One possible way to address this issue is to spatially segregate the training and test sets 
during the data-splitting procedure. This can be done by imposing a spatial stratification 
to select the samples, either by objects (Cánovas-García et al. 2017; Inglada et al. 2017), 
blocks (Lyons et al. 2018; Roberts et al. 2017; Meyer et al. 2019; Valavi et al. 2019), or 
clusters (Schratz et al. 2019; Brenning 2012) (Table 1). Blocks can be defined arbitrarily 
(e.g. grid of space) or based on predefined similar characteristics. Clusters can be regular 

Table 1  Non exhaustive list of representative references

*Blocks are defined arbitrarily (e.g. grid of space) or based on thematic characteristics or clusters with reg-
ular/irregular shape and regular/irregular spacing.
**A distance-based buffer is defined around hold-out testing sample. The distance (related to the degree of 
dependency) is fixed arbitrarily or measured on a correlogram or variogram.

Issue 1: spatial dependence of prediction errors (model residuals)

Cause: the effect of the spatial dependent structure on the response variable is not perfectly explained by 
the predictor variables.

Consequence: violation of the assumption of independence of error terms in regression models, inflation 
of the probability of type-I error in hypotheses tests, bias in parameter estimation, limited predictive 
performance with salt and pepper noise.

Methodological solution: use spatial models that incorporates spatial dependence in classification/pre-
diction models; includes additional spatial-related predictors in non-spatial models.

Existing approaches References
◦ Markov random field model Solberg et al. (1996), Shekhar et al. (2002), Magnus-

sen et al. (2004)
◦ Spatial autoregressive model Shekhar et al. (2002), Koutsias (2003), Mallinis and 

Koutsias (2008)
◦ Spatially weighted classification Atkinson (2004), Johnson et al. (2012)
◦ Spatially adapted PCA Comber et al. (2016)
◦ Spectro-spatial classification based on:
◦ Textural features Franklin et al. (2000), Puissant et al. (2005), Atkin-

son and Lewis (2000)
◦ Morphological filtering Ghamisi et al. (2018), Fauvel et al. (2013)
◦ Local spatial statistics Myint et al. (2007), Ghimire et al. (2010)
◦ Deep learning Ghamisi et al. (2018), Zhao and Du (2016)

Issue 2: spatial dependence between training and test sets

Cause: nearby reference samples are correlated.
Consequence: spatial overfitting leading to falsely inflated accuracy assessment, inconsistent with the 

true predictive power of the model.
Methodological solution: use spatial data-splitting technique to make training and test sets spatially 

independent
Existing approaches References
◦ Spatial k-fold/leave-one-out cross-validation:
◦ Object-based partitioning Cánovas-García et al. (2017), Inglada et al. (2017)
◦ Block*-based partitioning Lyons et al. (2018), Roberts et al. (2017), Meyer et al. 

(2019), Valavi et al. (2019)
◦ Cluster-based partitioning Schratz et al. (2019); Brenning (2012)
◦ Buffer**-based partitioning Valavi et al. (2019), Le Rest et al. (2014), Geiß et al. 

(2017), Pohjankukka et al. (2017)
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or irregular in shape (depending on the clustering techniques) and can be contiguous or 
disjointed, with regular or irregular spacing. Another strategy is to define distance-based 
buffers around the hold-out samples to be sure the learning model is only based on spatially 
independent data (Le Rest et  al. 2014) and disjointed spectral and spatial features (Geiß 
et al. 2017). The distance (related to the degree of dependency) is often fixed arbitrarily but 
can also be defined using the correlogram or semivariogram based on the response variable 
or on the predictors (Valavi et al. 2019; Pohjankukka et al. 2017). The advantage of the 
latter approach over the other spatial partitioning methods is that the spatial autocorrela-
tion is explicitly quantified. In the other cases, the spatial dependence between training and 
test sets is assumed to have been removed but this is not checked, meaning residual spatial 
dependence may persist.

In this paper, we use a distance-based buffer approach that relies on Moran’s I statistics 
to segregate spatially referenced samples and to explicitly estimate their degree of depend-
ence. To our knowledge, this robust approach based on correlogram has not yet been evalu-
ated on remotely sensed data using a large reference dataset. In a previous work, we applied 
this buffering strategy to classify tree species in satellite image time series (Karasiak et al. 
2019). However, because the reference dataset was small, we were unable to disentangle 
the effects of spatial autocorrelation and training set size on classification performances.

3  Experimental protocol

3.1  Spatial and non‑spatial data‑splitting strategies

To assess the impact of spatial autocorrelation between the training and test sets, we 
defined a supervised classification protocol with three cross-validation (CV) sampling 
strategies for performance evaluation: (1) a k-fold cross-validation (k-fold-CV) based on 
random splitting, (2) a non-spatial leave-one-out cross-validation (LOO CV) and (3) a spa-
tial leave-one-out cross-validation (SLOO CV) using a distance-based buffer relying on 
Moran’s I statistics.

We chose 2 folds (50/50; k = 2 ) for the k-fold-CV sampling. For the LOO CV and 
SLOO CV, we systematically selected one sample from each class to test at each iteration 
(i.e. n−1 per class for training) in contrast to the conventional approach that selects only 
one sample for testing whatever the class (i.e. no stratification per class). The number of 
folds is equal to nmin , the size of the class with the fewest samples.

Data splitting was performed at both pixel and object levels (Fig. 1). However, at the 
pixel level, sampling was stratified. We imposed the object as spatial stratum to sample 
pixels. Thus, for the pixel-based k-fold-CV strategy, after random selection of a fixed num-
ber of objects, 50% of pixels belonging to the objects were used for training and the rest 
for testing (Fig.  1a). Pixels were sampled randomly within the selected objects, with no 
constraints on the sample size per object. In the object-based k-fold-CV strategy (Fig. 1d), 
all the pixels belonging to the objects were used for training or testing. This object-based 
sampling can be viewed as a first option to account for spatial autocorrelation, without 
quantify it. Test samples are forced to be more spatially distant than training ones. For the 
remaining LOO CV and SLOO CV strategies, only one pixel (Fig. 1b–c) or object with 
all its related pixels (Fig. 1e–f) was used to estimate prediction error at each iteration. In 
SLOO CV, pixels spatially correlated with the single test sample were removed from the 
training set (Fig. 1c–f). The spatial dependence between nearby pixels was estimated using 
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Moran’s Index (Moran’s I) defined as the ratio of the covariance between neighboring pix-
els and the variance of all pixels in the image:

where, xi is the pixel value of x (a spectral band of the image) at location i, xj is the pixel 
value of x at location j (a nearby pixel of i), x is the average value of x, n is the number of 
pixels in the image, wi,j is the weight equals to 1 if pixel j is within distance of d of pixel i, 
otherwise wi,j = 0 , and S0 the sum of all wi,j’s:

(1)I(d) =
n

S0

n
∑

i=1

n
∑

j=1

wi,j(xi − x)(xj − x)

n
∑

i=1

(xi − x)2

(2)S0 =

n
∑

i=1

n
∑

j=1

wi,j

(a) pixel-based k-fold CV (b) pixel-based LOO CV (c) pixel-based SLOO CV

(d) object-based k-fold CV (e) object-based LOO CV (f) object-based SLOO CV

Fig. 1  Spatial and non-spatial CV strategies to investigate the effect of spatial autocorrelation between 
training and test sets. Clusters of points represent objects with their related pixels. At the pixel level (a–
c), data-splitting is stratified using the object as a spatial stratum. At the object level (d–f), all the pixels 
belonging to the objects are either used for training or for testing. Pixels and objects are sampled randomly. 
For the k-fold CV strategies, k = 2 (i.e. split of 50/50%). In the SLOO CV (c, f), a distance-based buffer 
related to the degree of spatial dependency is defined around the test sample(s). Pixels thar are spatially cor-
related with the test sample(s) are removed from the training set
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More simply, Moran’s I expresses the correlation between the pixel value at one location 
and its close observations. The index ranges from -1 to +1. For positive values, the nearby 
pixels covary together (positive spatial autocorrelation). For negative values, the nearby 
pixels covary in the opposite direction (negative spatial autocorrelation). Values close to 0 
indicate the absence of spatial autocorrelation (random spatial distribution).

Moran’s I was computed for each spectral band available in the images we used, from 
the reference pixels, and for neighborhoods containing from 1 to 2700 pixels. Then, based 
on correlogram (a plot of Moran’s  I as a function of distance), we identified the thresh-
old distance beyond which the spatial dependence between pixels is insignificant. Finally, 
this threshold was used to define the buffer radius in the SLOO CV strategy. At the pixel 
level, all the reference samples located in the buffer area centered on the test sample were 
excluded from the training set (Fig. 1c). At the object level, the exclusion of nearby pixels 
depends on the position of the centroids of the related objects (Fig. 1f).

Because the effect of spatial autocorrelation may vary with the size of the sample (Chen 
and Wei 2009), we increased the number of labeled objects (with its related pixels) pro-
gressively in the learning experiments, as follows:

– from 3 to 10 labeled objects: incrementation per 1 object.
– from 10 to 100 labeled objects: incrementation per 10 objects.
– from 100 to 1000 labeled objects: incrementation per 100 objects.

The data-splitting procedure was repeated 10 times for all the strategies because we used 
random undersampling to investigate multiple training set sizes.

3.2  Classification algorithm

We used the nonparametric random forest (RF) learning algorithm to train the models 
(Breiman 2001). The ability of this algorithm to distinguish land cover classes at large 
scale despite the limited sensitivity of the parameter values in the classification perfor-
mances has already been widely demonstrated (Rodriguez-Galiano et  al. 2012; Pelletier 
et al. 2016). RF is also known to be robust to outliers and faster than other classifiers such 
as the support vector machine algorithm.

In our experiments, we set the number of trees was at 200. The number of variables used 
to split a node was kept at the default value ( m =

√

p with p, the total number of features), 
as well as the stopping criteria for tree building (nodes are expanded until all leaves are 
pure or contain less than 2 samples). To mitigate the effect of the imbalanced distribution 
of the classes, we modified class weights in order to prevent bias due to the dominant class. 
By default, all classes have a weight equal to one. Here, weights were adjusted inversely to 
the proportion of the class frequency. All the models were fitted with the same hyperpa-
rameters. Spectral features were also standardized (i.e. centering and scaling to unit vari-
ance) prior to training.

To evaluate the classification performances, we deliberately abandoned the kappa 
index (Foody 2020). We focused our attention on producer’s accuracy per class (also 
known as specificity and sensitivity with two classes), in addition to overall accuracy 
(OA). User’s accuracy was not considered since the classifications were not intended to 
be used. We only report the OA as accuracy estimator in the results section. However, to 
control for a possible interpretation bias of OA, which is prevalence-dependent (i.e. the 
most prevalent class dominates the indicator value), the class-specific performances are 
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also provided in the appendix. The average value based on 10 repetitions was computed 
with standard deviation as confidence interval.

We used the scikit-learn python library for implementation (Pedregosa et al. 2011). 
The spatial and non-spatial sampling strategies were performed using Museo ToolBox, a 
python library we developed to make this research reproducible (Karasiak 2020).

3.3  Image dataset

We used Sentinel-2 (S2) optical images to test the experimental protocol and in particu-
lar, the 31TDJ S2 tile (100 km x 100 km in extent). This tile is located in the South of 
France and partially covers four French administrative departments, and includes the 
city of Albi (Fig. 2). In practice, only three of departments were classified: Herault-34, 
Tarn-81 and Aveyron-12. The effect of spatial autocorrelation was investigated by map-
ping two simple forest classes (coniferous and broadleaf) that can include different tree 
species.

The dataset includes four S2 images acquired on July 17, August 8, September 5 and 
October 15, 2016. We did not select images covering all four seasons, but gave priority 
to images with less than 5% cloud covers. The image acquisition dates are not ideal to 
distinguish coniferous and broadleaf stands. However, we focused on the relative differ-
ences in accuracy between the data-splitting strategies rather than on the ability to properly 
distinguish the two forest classes. The S2 data were downloaded from the French national 
THEIA platform at level 2A (i.e. top-of-canopy reflectances corrected for atmospheric and 
topographic effects (Hagolle et al. 2015)). We only used a subset of the available spectral 
bands: Blue (B2 - 490nm), Green (B3 - 560nm), Red (B4 - 665nm) and Near Infra-Red 
(B8 - 842nm) at 10-m spatial resolution. The cloudy pixels in the dataset were corrected 
using a gap-filling approach (linear interpolation) and a mask of clouds produced using the 
MAJA pre-processing chain of the S2 time series (Baetens et al. 2019).

Fig. 2  Location of the 31TDJ Sentinel-2 tile in the south of France (100 km × 100 km in extent). The 
experiments were conducted on data originating from the three administrative departments (Herault 34, 
Tarn 81, Aveyron 12)
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3.4  Reference dataset

The reference dataset (labeled pixels) for the two classes of forest was derived from 
the French National Forest Inventory spatial database (IGN  BDForet®, v.2). This source 
provides a vector map of forest stands with a minimum area of 0.5 hectares. The com-
position of each stand is obtained from aerial stereo-image interpretation completed 
by field surveys. A stand is considered as pure if the proportion of the area covered 
by one species equals or exceeds 75% of the total area, otherwise, it is defined as a 
mixed stand. Here, we selected pure stands of coniferous and broadleaf species for the 
experiments. All mixed stands were excluded. Because of a temporal gap between the 
S2 images (2016) and the reference forest maps (dating from 2006 to 2015 depending 
on the department), we updated the forest maps to eliminate forest stands whose land 
cover had changed. This was done by masking S2 pixels with NDVI values lower than 
0.4 using the image of July 17. We also eroded the vector forest layer with an inside 
buffer of 20 m to avoid selecting pixels of mixed classes at the boundaries of the masks. 
Finally, forest stands covering less than one hectare were removed to insure we kept a 
dense reference dataset that would enable us to explore different sampling strategies. 
The total number of forest stands and related pixels are given in Table  2. The forest 
stand is the spatial stratum used to sample pixels in pixel-based strategies and was the 
sample unit for the object-based ones.

3.5  Experimental setup

The six cross-validation strategies with different sample sizes were applied to the depart-
ment of Herault-34. The maximum sample size was set at 1,972 labeled objects corre-
sponding to the number of coniferous stands in this site. However, it was not possible to 
investigate all the sample sizes for the pixel-based LOO CV and SLOO CV strategies. The 
maximum number of sampled objects was limited to 10 (i.e. ≈ 32,000 pixels for broadleaf 
spp and 5,476 for conifer sp, on average) due to long computation time. Because the num-
ber of iterations increases with the sample size in cross-validation, the time required to 
compute the distance matrix among pixels in Moran’s I rapidly becomes prohibitive.

We used reference samples in the neighboring departments, Tarn-81 and Aveyron-12, 
as additional independent datasets to validate the full model of Herault (i.e. the model with 
the maximum training set size of 1972 objects per class). This extra validation on spatially 
distant sites was carried performed after removing all reference samples in Tarn-81 and 
Aveyron-12 that were spatially correlated with the Herault-34 ones. We also removed some 
reference samples from the over-represented class of broadleaf spp through random under-
sampling (30 repetitions). In this way, the accuracy metrics in the extra validation were 
computed with the same number of samples per class (369,164 pixels) in both departments 
Tarn-81 and Aveyron-12.

Combining the three CV strategies at both pixel and object levels for the different sized 
samples, means a total of 1240 classifications were trained and tested on Herault-34 depart-
ment (i.e. 27 sets of samples from 3 to 1972 stands x 2 level of analysis x 3 CV strategies 
x 10 repetitions, including exceptions in sample size for the pixel-based LOO and SLOO 
CV). Full spatial independence between the training and test sets was ensured in two con-
figurations of the protocol: using the SLOO CV strategy on Herault-34, and during valida-
tion on Tarn-81 and Aveyron-12. The pixel-based k-fold and LOO CV are the sampling 
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strategies that should be most affected by spatial dependence. The object-based k-fold and 
LOO CV are in an intermediate position.

4  Results

4.1  Prediction errors according to wether spatial/non‑spatial cross‑validation 
strategies we used

The classification performances obtained by cross-validation on Herault-34 are given in 
Fig. 3. Overall, the results show that ignoring dependence between training and test sets 
leads to very high accuracy metrics whatever the sample size. This is particularly clear at 
the pixel level but also at the object level with large samples. Compared to sampling strate-
gies that account for spatial autocorrelation, the accuracy metrics are overestimated.

At the pixel level (see dotted lines with a cross in Fig. 3), the performances of k-fold CV 
and LOO CV sampling strategies (green and blue lines respectively) were close with very 
high average OA values, regardless of the size of the training set (e.g. OA of 97.86 ± 0.96% 
and 95.81 ± 3.71% respectively for 10 forest stands). We observed a gradual decrease in 
OA for k-fold CV with the increasing number of forest stands. With the pixel-based SLOO 
CV approach (orange line), the prediction errors were much higher than other pixel-based 
methods. Concerning the group-based SLOO CV the OA started with very low values 
(average OA of 68.72  ±  11.03%) and then increased to reach relatively stable accuracy 
from 50 forest stands on (average OA of 86.08 ± 5.73%).

Fig. 3  Average overall accuracy based on the RF classifier for each cross-validation strategy (k-fold CV, 
LOO CV, SLOO CV) at pixel and object levels. Models were fitted with reference samples of Herault-34 
and repeated 10 times (i.e. the y-axis provides the average OA value ± standard deviation). The premature 
stopping of the pixel-based LOO and SLOO CV approaches was due to excessive computational time
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At the object level, the general pattern of errors differed from the non-spatial pixel-based 
strategies (see dashed lines with the dots in Fig. 3). Starting with a very weak performance, 
an improvement of OA began with the increase if the size of the training set size. The accu-
racy of k-fold CV and LOO CV sampling strategies (green and blue lines respectively) fol-
lowed the same trend. The SLOO CV approach showed a similar pattern but differed in the 
magnitude and variability of prediction errors. In addition, the average OA remained rela-
tively stable from 50 forest stands on, suggesting that the maximum performance has been 
reached for this sied training set. In contrast, the average OA of the object-based k-fold CV 
and LOO CV approaches continued to grow with the increase in the size of the training set, 
revealing the effect of spatial dependence with large datasets (with closer objects). With 
the maximum sample size (1,972 forest stands), the difference in OA between SLOO CV 
and LOO CV was substantial (from 82.08% to 90.76% respectively) indicating an optmistic 
bias in the non-spatial LOO CV as well as in the k-fold CV (OA = 93.73 ± 0.13%). The 
differences in performance between the object-based SLOO CV and the k-fold CV and 
LOO CV strategies were minimal between 50 and 100 forest stands.

Compared to pixel-based CV, the performance accuracy of the object-based CV was 
less affected by spatial dependence (overestimation is reduced) and revealed the expected 
pattern with an increase in the training set. In the case of the SLOO strategy, both pixel and 
object levels follow the same pattern with higher OA values for the pixel-based strategy.

Object-based sampling was found to be particularly impacted by the size of the sample. 
Model performance was very poor when the models were trained with only a few forest 
stands. A higher number of pixels for training can be obtained by increasing the number 
of forest objects, with increased representativeness of the coniferous and broadleaf classes 
composed of variety of species (by reducing the sample selection bias). Since forest stands 
have varying extents (and are consequently composed of a diffeent number of pixels due to 
their irregular shapes), different training sets that are similar in size may lead to variable 

Fig. 4  Variability in accuracy depending on the sample size defined in pixels. For each prediction (i.e. each 
point), the number of forest stands related to the number of samples is given by the color variable (Color 
figure online)
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prediction performances, as illustrated in Fig. 4. Further, between two training sets com-
posed of the same number of pixels, the one based on more forest stands provides higher 
prediction accuracy. In other words, performances increase with sample size if the number 
of objects also increases (together with the number of pixels). Variability is particularly 
apparent with sample from 103 to 104 pixels (Fig. 4). Beyond 50 forest stands (i.e. >104 
pixels), the variability gradually disappears with the k-fold CV and LOO CV strategies and 
to a lesser extent, with the SLOO CV approach.

An analysis was conducted of the number of species included in the coniferous and 
broadleaf classes according to the number of forest stands. The maximum number of domi-
nant broadleavf species existing in Herault-34 (i.e. existing in pure forest stands as defined 
in the IGN  BDForet® reference database) was systematically reached with 30 forest stands. 
Five dominant tree species were found in this class. For conifers, more forest stands of pure 
species exist with a less even distribution both in membership and space. Ten dominant 
conifer tree species were found. Eight of them were systematically sampled in 50 forest 
stands. Beyond 50, the number of average sampled species oscillated continuously between 
8 and 10 up to 1000 forest stands. Thus, because of larger number and unequal frequency 
of species composing the conifer class, and the lower number of available conifer samples 
compared to broadleaf samples, the error rate for conifers was higher (see producer’s accu-
racy metric in Fig. 12). This was particularly clear when accuracy was assessed with the 
SLOO CV approach but less apparent when non-spatial strategies were used.

For the spatial CV, the distance threshold with a negligible spatial dependence between 
all the reference data was estimated at 19.74  km based on Moran’s  I correlogram (see 
Fig. 9). This threshold value was used in the pixel and object SLOO CV strategies.

4.2  Prediction errors on other spatially independent and distant sites

Prediction errors were also estimated for the neighboring departments (Tarn-81 and Avey-
ron-12) from the Herault-34 full model, i.e. the model fitted using all the available training 
data (1972 forest stands with related pixels). We assumed there was no change in the data-
set between Herault-34 and the neighboring departments since the dominant composition 
of species in the coniferous and broadleaf classes of Tarn-81 and Aveyron-12 is included 
in Herault-34, according to the IGN  BDForet® reference database (and confirmed by the 
relative frequency distribution of NDVI values of each class; see Appendices 10 and 11).

Interestingly, we found OA performed similarly in predictions for Tarn-81 
(80.4 ± 0.03%), Aveyron-12 (82.2 ± 0.01%) and the comparable object-based SLOO CV 
strategy of Herault-34 based on 1972 forest stands (82.1 ± : 0.03%). Whether by cross-val-
idation or by validation based on distant sites, predictions made outside the spatial domain 
of training set produced equivalent error rates (Fig. 5) The confusion matrices are provided 
in the Appendices 13.

When spatial dependence between training and test sets is ignored using standard CV, 
it tends to overestimate the accuracy (from +8% to +14% of OA according to the strategy 
compared to the OA values of distant sites).

Additional predictions were estimated for distant sites, based on Herault-34 full models 
with different sized training sets. We compared the OA values of these models evaluated 
using the spatial and non-spatial cross-validation strategies with the OA values based on pre-
dictions made with these models in Tarn-81 (Fig. 6) and Aveyron-12 (Fig. 7). These results 
show that the OA values are consistent among themselves. For an OA value estimated for a 
distant site, we observed a marked variability in OA estimated by cross-validation, with an 
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Fig. 5  Comparison between the average predictive performances obtained with spatial and non-spatial 
cross-validation from the Herault-34 full model fitted with the maximum training set of 1972 forest stands 
(on the right) and the average predictive performances obtained with the same model applied to test sets 
from Tarn-81 and Aveyron-12 (in black, on the left). The number of test samples in Tarn-81 and Avey-
ron-12 is exactly the same with balanced class distributions. Pixel-based LOO CV and SLOO CV are not 
shown because of the excessive computation time required for this big training set

Fig. 6  Comparison of OA estimated by cross-validation in Herault-34 using the six spatial and non spatial 
data-splitting strategies for different sized training sets and OA estimated with the same Herault-34 model 
on test sets in Tarn-81. The number of training set sizes is given by the number of forest stands represented 
by the graphical color variable. Results for pixel-based LOO CV and SLOO CV are not shown for more 
than 10 forest stands because of excessive computation time (Color figure online)
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optimistic bias with the non-spatial CV strategy. On average, the OA estimated from SLOO 
CV matches the OA estimated from spatially distant sites better, especially for large samples 
size (more than 50 stands). The true predictive performances of the Herault-34 full models 
of each strategy do not differ fundamentally, for a given training set size. Apparent differ-
ences in performance are only due to differences in the way they are assessed using CV 
strategies. This explains why, with large training sets size (more than 500 forest stands), the 
predictive performance for distant sites are all equivalent (see the x-axis values of the purple 
dots in Figs. 6 and 7; OA is approximately to 80% with 1,972 stands).

5  Discussion

Our results revealed notable underestimation of generalization errors when traditional non-
spatial approaches were used to assess the accuracy. Pixel-based samplings were the most 
affected. Object-based strategies mitigate the effect of spatial dependence since the pixels 
used for training and testing never belong to the same forest stands. Nonetheless, non-spa-
tial data-splitting at the object level also leads to overestimation of predictive performance.

Three distinct performance trends were observed with the increase in the size of the 
training set: (1) a slight gradual decrease in the non-spatial pixel-based CV, (2) a marked 
and continuous increase in the non-spatial object-based CV, and (3) a marked increase up 
to an optimal training set size in SLOO CV with no improvement beyond. To our knowl-
edge, these contrasting patterns have never previously been demonstrated.

Learning curves can help interpret these trends. The curves describe how the model’s 
error rates on training and test sets vary as the training set size increases. This makes it 

Fig. 7  Comparison of OA estimated by cross-validation in Herault-34 from the six spatial and non spatial 
data-splitting strategies for different sized training sets and OA estimated using the same Herault-34 model 
on test sets in Aveyron-12. The number of training set sizes is given by the number of forest stands repre-
sented through the graphical color variable. Results for pixel-based LOO CV and SLOO CV are not shown 
for more than 10 forest stands because of excessive computation time (Color figure online)
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possible to diagnose model bias and variance. Theoretically, with only a few training sam-
ples, the model error rate on the training set would be expected to be very low (if not zero). 
The model can fit the training samples perfectly but does not have the ability to generalize 
new data. Thus, the model error rate on the test set is expected to be high. With larger data-
sets, the error on the training set should increase because of less overfitting. Conversely, 
the model should perform better on the test set. The generalization capabilities should be 
improved, reducing the error rate on the test set with more data but keeping an irreducible 
error. This analysis was conducted using three contrasted CV strategies: the pixel-based 
k-fold CV, the object-based LOO CV, and the object-based SLOO CV.

However, the expected behavior of learning curves was not observed with the pixel-
based k-fold CV most affected by spatial autocorrelation. With both small and large train-
ing sets, the error rate in training set was zero with a convergence of the learning curve 
on the test set from the first sample sizes onwards (Fig. 8). The narrow gap between the 
two curves falsely suggests a model with low variance irrespective of the size of the train-
ing set. As it also shows limited bias, the model appears to be perfect with no difficulty 
expected with generalization. This unrealistic behavior is mainly due to spatial depend-
ence. The pixels in the test sets belong to the same forest stands as those in the training 
sets. The model consequently overfits the training samples but overfitting is masked by the 
overly optimistic estimates of accuracy using similar and correlated test sets. The generali-
zation capabilities of the model are better with large samples. The spatial autocorrelation 
between training and test sets does not change, but the model slightly reduces overfitting on 
test sets, thereby increasing the error rate.

A more realistic pattern of errors was found with the object-based SLOO CV that 
was not affected by spatial autocorrelation. Notable model variance was observed when 
the training set size was small but variance tended to be reduced by adding more training 

Fig. 8  Learning curves calculated each from each fold according to the different cross-validation strategies 
applied. The training score was the same regardless the methods. Pixel-based SLOO CV and pixel-based 
LOO CV are not shown as they stop at 10 forest stands due to excessive computation time
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samples, as expected (Fig. 8). The learning curves of the training and test converged from 
50 forest stands on, suggesting that adding more samples beyond this threshold is not nec-
essary, but there is no substantial improvement. This sample size is to be related to the 
number of species sampled in the coniferous class which affect the classification accuracy, 
as previously mentionned (see Sect.  4.1). Beyond 50 forest stands, eight out of the ten 
dominant coniferous species are sampled systematically, reducing confusion with broad-
leaf species.

The behavior of the non-spatial object-based LOO CV is a blend of the two previous 
trends. When the training sets are small, accuracy is less affected by spatial autocorrela-
tion. Compared to pixel-based CV, the spatial dependence between training and test sets 
is lower because of object-based sampling. In addition, the generalization capabilities of 
the model are limited because of the high variability of species composition between the 
training and test sets. This leads to considerable model variance. With the addition of new 
samples, the model performs better on test sets but with progressive overestimation of per-
formance. The increase in performance is not due to the improvement of generalization 
capabilities of the model. With reference to the SLOO CV, the predictive power of the 
model might be reached beyond approximately 50 forest stands. Large sample sizes tend to 
reduce the distance between forest stands thereby increasing the effect of spatial depend-
ence between training and test sets and hence, estimated accuracy. This explains why the 
error rates between non-spatial pixel-based and object-based CV are similar with large 
samples.

With all these strategies, whatever the sample size, the average zero error rate in the 
training set was unexpected, suggesting constant model overfitting with a reduction in the 
error rate in the test sets (in particular, in object-based CVs). Since, to avoid overfitting, we 
included a large number of trees in the RF algorithm, we attribute this deceptive behavior 
to spatial autocorrelation too but in this case, between the samples used in the training set. 
And this is another fundamental point that should be taken into consideration. All spa-
tial and non-spatial CV strategies guarantee spatial independence among training samples. 
Spatial data splitting removed autocorrelation between the training and test sets but this 
autocorrelation persisted in the training set. Thus, learning curves need to be interpreted 
with caution.

Our findings support evidence from previous studies that spatial CV is required to esti-
mate unbiased predictive error (Schratz et  al. 2019; Meyer et  al. 2019). Our results also 
show that the non-spatial object-based sampling is less affected by spatial autocorrelation 
than pixel-based sampling, in line with Cánovas-García et  al. (2017). When an optimal 
sample size is used for training (i.e. with no undersampling or oversampling) this strategy 
is a possible alternative to the SLOO CV if spatial dependence is ignored in the accuracy 
assessment. However, this non-spatial strategy only mitigates overfitting, it does not pre-
vent it. Thus, we recommend to choosing a spatial CV whenever possible.
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We used a distance-based buffer approach for spatial CV (Le Rest et al. 2014) instead 
of block or cluster-based partitioning (Roberts et al. 2017; Schratz et al. 2019; Meyer 
et al. 2019). Data-splitting with blocks also produces better estimates of predictive per-
formances than random sampling. However, with no explicit quantification and no con-
trol of the degree of dependence, residual correlation may exist between training and 
test sets when the spatial block approach is used (i.e. where blocks consist of geographi-
cal units). Objects belonging to contiguous blocks and located close to borders may be 
very almost identical. Finding the ideal block size does not solve the problem, but the 
distance-based buffer approach avoids it. Systematic quantification of the spatial auto-
correlation range should also be performed using Moran’s I or empirical variogram.

6  Conclusion

The take-home message of this paper is that we need to change practices in classifica-
tion accuracy assessment using spatial imagery. A data splitting design ensuring spatial 
independence between the training and test sets should be the standard approach for val-
idation. Non-spatial LOO or k-fold CV at the object level (i.e. cross-validation leaving 
all the pixels belonging to one object for testing and the rest for training) is a absolute 
minimum required to mitigate overfitting. Spatial LOO CV is a better way to provide 
unbiased estimates of predictive error and to reduce the gap between the accuracy statis-
tics given to users and the real quality of the maps produced.

To facilitate this change, we assembled the Museo ToolBox, an open-source python 
library that makes it possible to validate classification results with a range of spatial and 
non-spatial CV approaches (https:// museo toolb ox. readt hedocs. io/). We hope this library 
will help the community leave its traditional approach behind to instead to routinely use 
spatial CV. We also expect the library to open the way for new prospects on this topic.

https://museotoolbox.readthedocs.io/
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Moran’s I correlogram on Sentinel‑2 data

See Fig. 9. 

Relative frequency distribution of NDVI values per class

See Figs. 10, 11.

Fig. 9  Moran’s I correlograms of each Sentinel-2 spectral band, for pixels representing forests. Each curve 
represents one spectral band at one date in the dataset. For a Moran’s I threshold value of 0.05, spatial inde-
pendence between nearby pixels was assumed. This threshold was reached at 1,964 pixels (i.e. 19.64 km) 
on average. The grey dashed line represents the mean distance value (in x) where Moran’s I = 0.05 (in y)
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Fig. 10  Relative frequency distribution (in %) of NDVI values for broadleaf class

Fig. 11  Relative frequency distribution (in %) of NDVI values for coniferous class
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Class‑specific performances and class prevalence

See Fig. 12. 

Fig. 12  Average accuracy metrics and prevalence in the test set for broadleaf and coniferous classes (in %)
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Confusion matrices

See Fig. 13.
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