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Abstract
A Bayesian inference framework for supervised Gaussian process latent variable models is 
introduced. The framework overcomes the high correlations between latent variables and 
hyperparameters by collapsing the statistical model through approximate integration of the 
latent variables. Using an unbiased pseudo estimate for the marginal likelihood, the exact 
hyperparameter posterior can then be explored using collapsed Gibbs sampling and, con‑
ditional on these samples, the exact latent posterior can be explored through elliptical slice 
sampling. The framework is tested on both simulated and real examples. When compared 
with the standard approach based on variational inference, this approach leads to signifi‑
cant improvements in the predictive accuracy and quantification of uncertainty, as well as a 
deeper insight into the challenges of performing inference in this class of models.

Keywords Gaussian process · Latent variable model · Approximate inference · 
Variational · Collapsed Gibbs sampling

1 Introduction

Statistical Bayesian approaches to regression can be used to model nonlinear functions 
between inputs and outputs in a simple, flexible, nonparametric and probabilistic manner. 
In Gaussian process (GP) model approaches, the latent function is assumed to be a realisa‑
tion of a Gaussian stochastic process. A GP is a family of random variables (with a com‑
mon underlying probability space) ranging over an index set, such that any finite subset of 
the random variables has a joint Gaussian distribution with consistent parameters. A reali‑
sation of the GP is a deterministic function of the index variable. A GP is fully specified 
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by a mean function and a symmetric positive‑definite covariance (kernel) function, which 
encapsulate any a-priori knowledge and/or assumptions in relation to the target function. 
The freedom to choose from a range of possible kernel functions introduces a degree of 
flexibility in the assumed complexity and smoothness of this underlying target function.

The Gaussian process latent variable model (GPLVM) introduced in Lawrence (2004) is a 
hierarchical model originally used to extend GPs to the (unsupervised) learning task of non‑
linear dimension reduction, in which the inputs are unobserved latent variables. The model 
places independent GP priors over the mappings from the latent space to each component 
in the observed output space. In Lawrence (2005), a Gaussian prior is placed over the latent 
variables, which are optimized according to their maximum a‑posteriori (MAP) estimates 
(equivalent to the maximum likelihood estimates with L2 regularisation). To capture uncer‑
tainty in the latent variables, Titsias and Lawrence (2010) developed a variational method for 
GPLVMs.

In this paper we consider the supervised version (sGPLVM) of the GPLVM, in which a GP 
prior is placed over latent variables indexed by known and observable inputs. This model was 
studied in a dynamical setting in Damianou et al. (2011), in which the only input is time, using 
a variational expectation maximization (VEM) approach to determine point estimates of the 
hyperparameters. Our contribution is a novel framework for robust, fully Bayesian inference 
for the sGPLVM. Towards this end, it is natural to explore the posterior distribution of the 
hyperparameters and latent variables with Markov Chain Monte Carlo (MCMC), but strong 
correlations between the hyperparameters and latent variables leads to low efficiency and 
poor mixing (Betancourt and Girolami 2015). A method that can break these correlations is 
required, which we obtain by using a pseudo-marginal scheme that approximately integrates 
out the latent variables. A major motivation for developing this method is the need to quantify 
hyperparameter uncertainty, and more accurately quantify latent uncertainty.

Indeed, variational methods make strong assumptions of independence, on the forms of 
distributions and, dependent on the choice of divergence, they necessarily under‑ or over‑esti‑
mate the variance (Blei et al. 2017). When correlations between the latent variables (within 
variational factorisations) are large, and when these factors are over a non‑trivial number of 
dimensions, this variational approximation becomes increasingly poor. Moreover, in the vari‑
ational expectation‑maximization (VEM) setting, crucial hyperparameters determining the 
noise level and smoothness of the latent functions are fixed to approximate maximum mar‑
ginal likelihood (ML) estimates, obtained by optimizing the variational lower bound to the 
marginal likelihood. In this paper, the effects and performance of the variational approxima‑
tion are studied in illustrative examples based on simulated and real data. These examples 
also demonstrate the benefits of a fully Bayesian inference on predictive performance when 
compared with VEM using the projected process approximation. Moreover, they shed light on 
the types of problems in which approximate ML estimates are poor.

The rest of this paper is structured as follows. Section 2 introduces the model. The state‑of‑
the‑art variational inference for the model is discussed in Sect. 3. A pseudo‑marginal Monte 
Carlo scheme for fully Bayesian inference is then proposed in Sect. 4. In Sect. 4.2, an ellipti‑
cal slice sampling scheme for the latent variables is described. This scheme is necessary to 
compute the predictions in Sect. 4.3. Section 5 demonstrates the advantages of the proposed 
inference framework over the variational method through a simulated and a real example. A 
discussion of the numerical computational cost is given in Sect. 6 and concluding remarks are 
provided in Sect. 7.
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2  Statistical (supervised) model

Consider a set of N inputs, given by the rows of � ∶= [�1 … �N]
T ∈ ℝ

N×kx , and correspond‑
ing known outputs, given by the rows of � ∶= [�1 … �N]

T ∈ ℝ
N×ky . Let, yn,d , d = 1,… , ky , 

denote the d‑th coordinate (feature) of the output �n , n = 1,…N , and let yd denote the d‑
th coordinate of the general output � , corresponding to the general input � . Further, let �∶,d 
denote the d‑th column of � , i.e., the vector with components given by the d‑th feature of 
each of the N samples. This compact matrix notation is used throughout. Consider also a set 
of unknown latent variable representations � ∶= [�1 … �N]

T ∈ ℝ
N×kz of the outputs �n , with 

kz ≪ ky.
The assumed model is yd = fd(�) + �d , in which the noise terms �d are independent and 

(identically) normally distributed across d as �d
iid
∼ N(�d|0, �−1) . We could also write the 

model as � = � (�) + � , where � (�) ∶= (f1, (�),… , fky (�))
T is a latent (vector) function and 

� = (�1,… , �ky )
T . Independent GP priors (indexed by � ) are placed over the functions fd(�) , 

namely fd(�) ∼ GP(0, kf (�, �
�;�)) , where kf (�, ��;�) is the common covariance/kernel func‑

tion, with hyperparameters � . The notation GP(⋅, ⋅) in which the first argument is the mean 
function and the second is the covariance function is used throughout. The latent function val‑
ues can be collected as the rows in a matrix � ∈ ℝ

N×ky , with columns �∶,d = (f1,d,… , fN,d)
T , in 

which we use the notation fn,d = fd(�n) . By the independence assumption:

and by the properties of GPs, we have p(�∶,d|�,�) = N(�∶,d|�,�f ) , in which �f  
is the N by N kernel (covariance) matrix with n, n′‑th entry kf (�n, �n� ;�) . From 
p(�,�|�, �,�) = p(�|�, �)p(�|�,�) we obtain the marginal likelihood:

in which p(�∶,d|�∶,d, �) = N(�∶,d|�∶,d, �−1�N) by virtue of the noise model. The model 
for the latent function coordinates zj(�) comes in the form of independent GP priors 
zj(�) ∼ GP(0, kz(�, �

�;�)) , j = 1,… , kz , with common covariance function kz(�, ��;�) and 
kernel hyperparameters � . As a consequence:

where �z is the N by N the kernel matrix, with n, n′‑th entry equal to kz(�n, �n� ;�) . The joint 
density for the observed data and latent variables is:

p(�|�,�) =
ky∏

d=1

p(�∶,d|�,�),

(1)

p(�|�,�, �) = ∫ p(�|�, �)p(�|�,�)d�

= ∫
ky∏

d=1

N∏

n=1

p(yn,d|fn,d, �)p(�∶,d|�,�)d�

=

ky∏

d=1

N(�∶,d|�,�f + �−1�N),

(2)p(�|�,�) =
kz∏

j=1

p(�∶,j|�,�) =
kz∏

j=1

N(�∶,j|�,�z),

p(�,�|�,�,�, �) = p(�|�,�, �)p(�|�,�).
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The Bayesian model is completed by a prior on the precision � and both sets of kernel 
hyperparameters � and � . The prior is assumed to factorize as follows:

This model was studied in this supervised (dynamic) setting in Damianou et al. (2011). It 
can further be viewed as a deep GP model (Damianou and Lawrence 2013) with a single 
hidden layer.

3  Variational marginalization of the latent variables

In many Bayesian models, including GP‑based models such as the GPLVM, posterior 
inference is sensitive to the choice of hyperparameters. There are generally two approaches 
to ameliorate this sensitivity (in the absence of strong prior knowledge): hierarchical 
Bayes, with a hyperprior assigned to account for uncertainty in the hyperparameters, and 
empirical Bayes, in which plug‑in estimates of the hyperparameters are used. In empirical 
Bayes, these estimates are typically based on maximizing the marginal likelihood. For the 
GPLVM, however, computing the marginal likelihood requires integration with respect to 
the latent variables, which is analytically intractable since they appear nonlinearly in the 
kernel matrix. A major advance was made in Titsias and Lawrence (2010) by using a VEM 
approach, assuming a Gaussian variational posterior and utilising sparse GPs to obtain a 
closed form lower bound to the marginal likelihood. In an EM fashion, this lower bound 
can then be optimized with respect to the hyperparameters to obtain approximate type II 
maximum marginal likelihood estimates. This procedure can be generalised to the super‑
vised case and is described fully in “Appendix A”.

Considering the E‑step of the VEM algorithm in isolation, the basic approach consists 
of using a proxy variational distribution over the latent variables in order to approximate 
the posterior distribution. The variational parameters of this distribution are chosen to min‑
imise the Kullback‑Leibler (KL) divergence between the proxy distribution and the pos‑
terior. When performing the expectation step in isolation (by optimizing the variational 
parameters conditional on the model hyperparameters), a latent variable posterior approxi‑
mation is obtained with the following factorised Gaussian form:

where �j is a diagonal N × N covariance matrix. Conditional dependence on the data 
and hyperparameters (�,�, �) enters through optimization of the variational parameters 
�j ∈ ℝ

N and �j ∈ ℝ
N×N according to the evidence lower bound on the marginal likelihood, 

which is derived in “Appendix A”. This evidence lower bound can then be used to perform 
the M‑step to obtain new hyperparameter point‑estimates, with the process repeating until 
convergence. However, this particular approach of inference by optimization comes with a 
number of caveats, as previously discussed.

p(�,�,�) = p(�)
∏

i

p(�i)
∏

i}

p(�i}).

(3)p(�|�,�, �, �, �) ≈ q(�) =

kz∏

j=1

N
(
�∶,j|�j, �j

)
,
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4  Pseudo‑marginal Monte Carlo for the GPLVM

This section introduces a novel framework for fully Bayesian inference of the supervised 
GPLVM. Model hyperparameters defining the covariance function have important implica‑
tions for smoothness, complexity, and relevance of the inputs. It is common to obtain these 
parameters by optimizing an approximate ML (type II ML estimate), using gradient‑based 
optimization. However, the likelihood as a function of these parameters is non‑convex, and 
consequently practitioners often find that the optimization is highly dependent on initialisa‑
tion, with no guarantee of a satisfactory local optimum (Bitzer and Williams 2010). This is 
particularly profound when the data set is small or has a low signal‑to‑noise ratio.

Moreover, it must be emphasised that the hyperparameter estimates in Sect.  3 do not 
optimize the marginal likelihood, but instead optimize a lower bound to the marginal like‑
lihood. The consequences of this in simple examples was shown in  Turner and Sahani 
(2011). Specifically, they found that it is not important for the lower bound to be as tight as 
possible to the marginal likelihood, but that it is equally tight everywhere. If this is not the 
case, the effect is to push estimates away from peaks in the likelihood and towards regions 
where the bound is tighter. Another interesting conclusion is that biases in the hyperparam‑
eter estimates increase considerably as the number of hyperparameters increases.

Additionally, while variational methods can substantially reduce computational time, 
this comes at the cost of strong assumptions and considerable bias. Assumptions are often 
made regarding the forms of distributions (e.g., they can be factorised), and/or highly 
simplified approximations of true posterior distributions are employed. Dependent upon 
the choice of divergence, variational methods also under‑ or over‑estimate variance (Blei 
et al. 2017). This is particularly true when the posterior is highly correlated but the proxy 
distribution has a factorised form, or when the posterior is a mixture of Gaussians with 
well separated modes and the proxy is a single Gaussian. The reverse, however, may also 
be true. For example, when approximating a mixture of Gaussians with poorly separated 
modes with a single Gaussian (see Turner and Sahani 2011 for more details). In the case of 
the GPLVM, the quality of this approximation can easily be verified by sampling the true 
latent variable posterior (conditioned on the hyperparameters) with elliptical slice sam‑
pling. This is later discussed in more detail.

The above considerations motivate a fully Bayesian framework for inference with the 
sGPLVM. This Bayesian approach naturally regularises against overfitting by penalising 
unnecessary model complexity. Moreover, quantification of the hyperparameter uncer‑
tainty yields a more informative quantification of the uncertainty in the predictions (by 
integrating over the hyperparameters). The proposed framework overcomes the high cor‑
relations between latent variables and hyperparameters by using an unbiased pseudo esti‑
mate for the marginal likelihood that approximately integrates over the latent variables in a 
collapsed Gibbs sampler. This is used to construct a Markov Chain to explore the posterior 
of the hyperparameters; these samples can then be used alongside ESS to sample the latent 
variables. This overcomes issues associated with optimization of the hyperparameters, and 
avoids the strong assumptions of variational methods.

This framework is referred to as PM (Pseudo‑Marginal) throughout this article. It is 
demonstrated on both simulated and real examples, which reveal improved accuracy and 
improved uncertainty quantification in predictions when compared with those obtained 
using the VEM approach. Another important contribution is to shed light upon situations 
in which the variational scheme works well and, conversely, when it does not, by consider‑
ing simulated scenarios that are increasingly misspecified by the sGPLVM.
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4.1  Collapsed pseudo‑marginal Gibbs sampling

The natural choice to explore the posterior of the latent variables and hyperparameters is 
a Gibbs sampling algorithm, which alternates between sampling and fixing the latent var‑
iables and hyperparameters. In the GPLVM family of models the latent parameters and 
hyperparameters are strongly coupled, leading to sharp peaks in the posterior when latent 
variables are fixed. This results in poor MCMC mixing and slow convergence rates (Filip‑
pone and Girolami 2014). A method that can break these correlations is required.

Although analytical integration of the latent variables � is intractable, since they 
appear nonlinearly in the kernel matrix �� , the correlation between the latent variables 
and hyperparameters can be broken by approximately integrating over the latent variables 
via a pseudo‑marginal Monte Carlo scheme. The results of Andrieu and Roberts (2009) 
and Beaumont (2003) reveal that an unbiased estimate of the marginal likelihood can be 
used to sample from the correct hyperparameter posterior distribution.

Here importance sampling is used to obtain the unbiased approximation to the mar‑
ginal likelihood based on the approximate distribution q(�|�,�, �) ≈ p(�|�,�,�,�, �) , 
which in this context is known as the proposal, biased or sampling distribution. Drawing Q 
importance samples, the unbiased estimate of the marginal is:

where �(q) iid
∼ q(�|�,�, �) , and p(�|�(q),�, �) and p(�(q)|�,�) are the GP models given 

by (1) and (2) respectively. For the proposal distribution q(�|�,�, �) , the approximate var‑
iational posterior of Sect.  3 is utilised. In this setting, the hyperparameters (�,�, �) are 
fixed at the required sample and only the E‑step of the variational scheme is performed, 
to optimize the lower bound with respect to the variational parameters. Importantly this 
avoids constraints on the tightness of the lower bound required to obtain good hyperparam‑
eter estimates. This pseudo‑marginal can now be used to sample from the posterior of the 
hyperparameters in a Metropolis‑Hastings (MH) algorithm.

To improve mixing, the set of hyperparameters ��� = (�,�, �) are split into R disjoint sub‑
sets, ���r , r = 1,… ,R . Each block of parameters can then be sampled from the its full con‑
ditional in a Metropolis‑Hastings within the Gibbs algorithm. Specifically, the block ���r is 
updated with a random walk based on a transformation �r = tr(���r) to ensure full support on 
the real space of appropriate dimension, and a multivariate normal proposal distribution is 
used for the transformed parameter: �(��

r
|�r) ∼ N(�r,�r) . This gives the proposal distribu‑

tion �(����
r
|���r) = |�tr∕����r(����r)|�(��r|�r) in the original parameter space. The acceptance prob‑

ability for a move from ���r to ���′
r
 is therefore:

where ���′ denotes the set of hyperparameters with the rth block updated to ���′
r
.

In addition, we employ a variant of the adaptive random walk algorithm of Haario 
et  al. (2001), in which the proposal covariance matrix �r is adapted to approximate the 
target distribution’s covariance matrix multiplied by a constant sdr . Following Haario et al. 
(2001), this constant is chosen to be sdr = 2.382∕dr where dr is the dimension of the block. 
The algorithm then begins with an initial proposal covariance matrix for each block, and 

(4)p̃(�|�,�,�, 𝛽) ≃ 1

Q

Q∑

q=1

p(�|�(q),�, 𝛽)p(�(q) ∣ �,�)

q(�(q)|�,�, 𝛽)
,

(5)�̃�(𝜉𝜉𝜉r,𝜉𝜉𝜉
�
r
) = min

[
1,

p̃(�|�,𝜉𝜉𝜉�)p(𝜉𝜉𝜉�
r
)

p̃(�|�,𝜉𝜉𝜉)p(𝜉𝜉𝜉r)
|𝜕tr∕𝜕𝜉𝜉𝜉r(𝜉𝜉𝜉r)|
|𝜕tr∕𝜕𝜉𝜉𝜉r(𝜉𝜉𝜉�r)|

]
,
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after g0 iterations this matrix is updated by the sample covariance, with a small positive 
constant along the diagonal. The full procedure is outlined in Algorithm 1.

Note that when computing the acceptance probability of a move from ���r to ���′
r
 in (5), 

the pseudo‑marginal p̃(�|�,𝜉𝜉𝜉) must be recycled from the previous step to ensure conver‑
gence to the posterior (Andrieu and Roberts 2009). In general, this may result in the chain 
becoming stuck if the pseudo‑marginal has high variance and overestimates the marginal 
likelihood. In order to confirm that this is not the case, multiple chains are run in parallel.

4.2  Uncollapsing with elliptical slice sampling

Given the hyperparameter posterior samples that are obtained as described in the previ‑
ous section, samples of the latent variable posterior can be obtained using the ESS algo‑
rithm of Murray et al. (2010). These samples are required for the prediction procedure 
in Sect. 4.3. The target distribution for the sampler is the full conditional of the latent 
variables:

and the proposal distribution is given by:

p(�|�,�,���) ∝ p(�|�,�, �)p(�|�,�)

∝

ky∏

d=1

N
(
�∶,d|�,�� (�,�;�) + �−1�N

) kz∏

d=1

N
(
�∶,d|0,��(�,�;�)

)
,

�� = � sin � + � cos �, �∶,d

iid
∼ N

(
0,��

)
, d = 1,… , kz.
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This defines a full ellipse passing through the previous state � and a prior sample 
� ∈ ℝ

N×kz , with columns �∶,d , as � varies. This proposal depends on a tuning param‑
eter � which would be chosen a priori under a normal Metropolis‑Hastings scheme. The 
algorithm of Murray et  al. (2010) adaptively chooses this tuning parameter using slice 
sampling. The procedure for sampling � using the elliptical slice sampler is given in 
Algorithm 2.

4.3  Predictions using MCMC

Predictions can now be made by marginalizing over the posterior samples, without the 
need for distributional assumptions or point estimates. The marginalized predictive den‑
sity for a test point �∗ is:

The second term inside the integral of (6) is the predictive density of the latent variable �∗ 
given the latent variables, hyperparameters and data, which is given by the noise‑free GP 
predictive density:

(6)p
(
�∗|�∗,�,�

)
= ∫ p

(
�∗|�∗,�,�,�, �

)
p
(
�∗|�∗,�,�,�

)
p(�,���|�,�)d�∗d�d���.
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with s∗ = kz(�∗, �∗;�) −�T
�∗
�−1

�
��∗ . Here ��∗ is the cross‑covariance at the training inputs 

� and the test input �∗ . Similarly, the first term inside the integral of (6) is the predictive 
density of the test output �∗ given �∗ , the latent variables, hyperparameters and data, which 
is given by the GP predictive density:

where � = �T
�∗
(�� + �−1�N)

−1 and � = kf (�∗, �∗;�) −�T
�∗
(�� + �−1�N)

−1��∗ . Here ��∗ 
corresponds to cross‑covariance between latent function evaluations at � and �∗.

The MCMC samples can be used to obtain an approximation to the marginalized predic‑
tive density in (6), with asymptotic guarantees as the number of MCMC samples increases. 
However, the latent variable �∗ cannot be marginalized analytically. Thus, given each sam‑
ple of the chain (���(g),�(g)) , we sample the latent variable �(g)∗  based on its predictive distri‑
bution in (7). The predictive density estimate is:

Similarly, the posterior mean function can be estimated from:

5  Examples

In this section we present two examples that demonstrate both the improved predictive 
accuracy and uncertainty quantification of the pseudo‑marginal inference framework in 
comparison to VEM. In Sect. 5.1, a simulated example is presented for three increasingly 
misspecified cases. In Sect. 5.2, we consider experimental data consisting of measurements 
of air quality over time.

For all models (in both examples) a squared exponential kernel is chosen to measure 
correlations in the input and latent spaces, with the addition of white noise for numerical 
stability:

where � is a small positive constant and �(⋅, ⋅) is the kronecker‑delta function. To ensure 
identifiability, the magnitude �S is fixed to unity throughout. Additionally, in all mod‑
els, a Gamma prior is placed over all hyperparameters (shown in Table  1) and a log 

(7)p
(
�∗|�∗,�,�,�

)
=

kz∏

d=1

N
(
z∗d|�T

�∗
�−1

�
�∶,d, s∗

)
,

p
(
�∗|�∗,�,�,�, �

)
=

ky∏

d=1

N
(
y∗d|��∶,d, � + �−1

)
,

(8)p
(
�∗|�∗,�,�

)
≈

1

G

G∑

g=1

p
(
�∗|�(g)∗

,�(g),�,�(g), �(g)
)
.

�
[
�∗|�∗,�,�

]
≈

1

G

G∑

g=1

�
(g) T

�∗
(�

(g)

�
+ �(g) −1�N)�.

(9)

kz
(
x, x�;�

)
= �S exp

(
−
1

2
�1(x − x�)2

)
+ ��

(
x, x�

)
,

kf (�, �
�;�) = �S exp

(
−
1

2

kz∑

d=1

�d(zd − z�
d
)2

)
,
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transformation in the random walk proposals is used. Each experiment was repeated for dif‑
ferent prior parameterisations and it was found that predictive accuracy was not sensitive to 
the choice of prior. Four chains were run in parallel for 5000 iterations each, adapting after 
g0 = 200 iterations, and discarding the first n0 = 1000 as burn‑in. Each chain was started 
at the approximate maximum marginal likelihood point‑estimates with a small amount of 
noise added. The collapsed blocked Gibbs sampler uses two blocks, ���1 = {{�i}

kx
i=1

, {�i}
kz
i=1

} 
and ���2 = {�S, �

−1} , using Algorithm 1. The parameters of the variational distribution are 
re‑optimized at each Gibbs step, with hyperparameters fixed at the proposed values. opti‑
mization was performed until convergence, or until a maximum of 1000 scaled conjugate 
gradient iterations had been reached.

The variational distribution necessarily underestimates variance due to the choice of 
divergence, which can lead to a higher variance in the pseudo‑marginal estimator. It is 
therefore necessary to qualify its use as a proposal distribution in the importance sampler. 
Following Doucet et al. (2015), in theory the variance of the log pseudo‑marginal estimator 
should be less than 2. In both examples the summary statistics of the log pseudo‑marginal 
(as a function of the number of importance samples and conditional on a single state of the 
Gibbs chain) are shown across 5000 approximations. That is, the accuracy of the estimator 
is demonstrated through summary statistics across the set:

in which each pseudo‑marginal estimator is based on Q = 1000 importance samples. In 
order to show convergence the running values of these estimators are plotted for an increas‑
ing number of samples q = 1,… ,Q.

5.1  Simulated: sinusoidal data

In this section, a comparison between the variational and pseudo‑marginal inference 
approaches is presented using a data set obtained from known trigonometric functions with 
artificially added noise. By simulating data in this way, each approach can be accurately 
compared to the truth. The data set is obtained by evaluating the data generating function:

(10)
{
p̃r(�|�, �(i))

}5000

r=1
,

(11)fn,d
(
�n
)
=

{
�d cos(Fd�n) if d = 1, 2, 3

�d sin(Fd�n) if d = 4, 5, 6
,

Table 1  The hyperprior distributions, where Ga is a Gamma distribution

Example �
1

�
2

�
1

�
2

�S �

Sinusoidal: case 1 Ga(2, 8) – Ga(1.25, 5) Ga(1.25, 5) Ga(1.5, 5) Ga(3, 800)

Sinusoidal: case 2 Ga(1.5, 16) – Ga(2, 0.1) Ga(2, 0.1) Ga(2, 3) Ga(3, 800)

Sinusoidal: case 3 Ga(1.5, 16) – Ga(2, 0.1) Ga(2, 0.1) Ga(2, 3) Ga(3, 800)

Air quality Ga(2, 8) Ga(3, 3) Ga(1.25, 5) – Ga(3, 2) Ga(2, 8)
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at set of uniformly spaced inputs between 0 and 4� , where �n ∈ ℝ denotes the n‑th sam‑
ple, and Fd is a periodicity factor. Amplitudes are uniformly sampled from �d ∼ U(0, 1) 
and kept consistent across examples. The noise corrupted responses are obtained from 
yn,d = fn,d + �d , where �d

iid
∼ N

(
0, 0.052

)
 . The data sets are generated under multiple param‑

eterisations, given in Table 2.
In each case, two latent dimensions kz = 2 are considered with N = 30 samples. For 

comparison, the variational framework under two additional settings is also considered. In 
the first, the model is augmented with kz = 6 latent dimensions (referred to as VEMkz=6

 ) 
to demonstrate that two latent dimensions are sufficient for the first case,1 and that making 
the model well‑specified in the second two cases does not change the conclusions of the 
comparison. The second setting has N = 60 samples (this is referred to as VEMN=60 ) to 
demonstrate that the advantages of PM are retained when optimization is performed with a 
larger sample.

In the first case, in which the periods are constant, it is expected that each inference 
approach will be able to make adequate predictions. In the two additional cases where Fd is 
sampled from increasing uniform intervals, it is expected that point estimates of the hyper‑
parameters will give an inadequate predictive distribution in the poorly specified cases. 
These examples are also designed to demonstrate the ability of PM to capture multimodal, 
but connected, posteriors. The improved uncertainty quantification and accuracy of predic‑
tions using PM is then demonstrated.

Trace and autocorrelation plots for all cases are shown in Figs. 11 and 12 in “Appen‑
dix B”, respectively, for each hyperparameter and across each chain. These plots demon‑
strate good mixing. If necessary, mixing can be further improved by splitting the hyper‑
parameters into smaller blocks. The bivariate marginal posterior histograms, for different 
pairs of hyperparameters, are shown in Fig. 1, where the rows correspond to the three data 
generating cases. Specifically, the pairs include: the input lengthscale and model noise 
( �1, �−1 ); latent lengthscales ( �1, �2 ); and the signal variance and model noise ( �S, �−1 ). 
This shows multimodal posteriors for the poorly‑specified cases, underlining the inap‑
propriateness of point estimates and difficulties in optimization of the hyperparameters. 
When the maximum marginal likelihood value lies within the axis it is marked with a dot, 
showing the tendency for the point‑estimates of the variational expectation‑maximization 
approach to under‑fit.

Bivariate marginal latent posterior distributions conditioned on the set of maximum 
marginal likelihood hyperparameters, �(ML) , obtained from jointly optimizing over latent 
variables and hyperparameters, are shown for two pairs of samples in Fig. 2. This figure 
compare the quality of the variational approximation used in VEM to the true posterior 
used for predictions with the proposed PM inference scheme. Due to the high‑dimensional 
nature of these spaces, only the bivariate contours corresponding to the splice of two 

Table 2  The data‑generating specifications. Here, Unif(⋅, ⋅) is the uniform distribution

Fd distribution F
1

F
2

F
3

F
4

F
5

F
6

Well‑specified case 1 Constant 1 1 1 1 1 1
Poorly‑specified case 2 Unif(0.8, 1, 2) 1.03 0.92 1.11 0.99 0.87 1.02
Poorly‑specified case 3 Unif(0.7, 1, 3) 1.04 0.88 1.15 0.99 0.80 1.03

1 Through automatic relevance determination the model should theoretically prune unnecessary dimen‑
sions.
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training samples, can be visualised at a time. Even close to the ML, the approximation is 
poor and the correlation between hyperparameters and latent variables is high.

Similarly, the latent posterior distribution conditioned on the hyperparameters at ran‑
domly selected state 820 ( p

(
�|�,�,���(820)

)
 ) of the collapsed Gibbs sampler is shown in 

Fig.  3, alongside the variational approximation at this state in red. These plots demon‑
strates the extreme coupling between hyperparameters and latent variables, which makes 
iterative optimization extremely difficult. The joint optimization is also not trivial.

In Figs. 13 and 14 of “Appendix B”, the full marginal latent posterior distributions for 
each sample are plotted, given ���(820) and ���(ML) , respectively. These figures demonstrate a 
clear tendency for the variational approximation to underestimate the variance and approx‑
imate local modes due to the KL divergence, as expected. The true posterior of the latent 
variables is highly correlated and in many cases non‑Gaussian, and the quality of varia‑
tional approximation appears particularly poor with significant underestimation of the var‑
iance, especially as the model becomes increasingly misspecified. It is noted that while 
identifiability issues with latent variables may exaggerate the poor quality of the variational 
approximation in the second two cases, the issue is present in the first well‑specified case.

The summary statistics of the log pseudo‑marginal estimator (4) for increasing 
Q ≤ 1000 (number of importance samples) conditioned on the hyperparameters of Gibbs 
state 820 of the respective chain are shown in Fig. 4. As can be observed from this figure, 
the variance is close to one for all cases. This was found to be consistent across each chain 
and is within the limits suggested by Doucet et al. (2015).

The accuracy of the predictive densities under the VEM and pseudo‑marginal frame‑
works are compared in Table  3, in which the mean absolute error is reported. This is 

Fig. 1  The hyperparameter joint posterior distributions for different pairs. Row 1: Data generating case 1. 
Row 2: Data generating case 2. Row 3: Data generating case 3
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Fig. 2  Simulated example. Bivariate marginal latent posterior distributions for sample pairs (6,  16) and 
(1,  11), conditional on hyper‑parameter posterior sample �(ML) . The exact posterior (in blue) is obtained 
using kernel density estimation on 100, 000 elliptical slice samples, and the variational approximation (in 
red) is known analytically. The three columns correspond to the three data generating cases. The first row 
in each pair corresponds to the first latent dimension, while the second row corresponds to the second latent 
dimension
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Fig. 3  PM inference scheme. Bivariate marginal latent posterior distributions for sample pairs (1, 11) (top 
two rows) and (6, 16) (bottom two rows), conditional on hyper‑parameter posterior sample �(820) . The exact 
posterior (in blue) is obtained using kernel density estimation on 100, 000 elliptical slice samples, and the 
variational approximation (in red) is known analytically. The three columns correspond to the three data 
generating cases. The first and third rows correspond to the first latent dimension, while the second and 
fourth rows correspond to the second latent dimension (Color figure online)
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defined between samples of the true data generating distribution and predictive distribution 
of each framework. For an output d, this is defined as:

Fig. 4  Convergence plots for the log pseudo‑marginal estimator, conditioned on the hyperparameters of 
Gibbs state 820 of the respective chain. Shown are summary statistics of the pseudo‑marginal estimates. 
The mean±2 standard deviations is shown in black, while the median, 10th and 90th percentile are shown in 
red (Color figure online)

Fig. 5  Case 3 predictive densities for the first feature. The mean of the data generating function is given as a 
solid line, while scatter points depict the training data

Table 3  The mean absolute error 
between test samples of the true 
data generating distribution and 
the predictive distribution for 
each scheme and each case

Bold  values are the lowest errors across all methods

y
1

y
2

y
3

y
4

y
5

y
6

Case 1 PM �.��� �.��� �.��� �.��� �.��� �.���

VEM 0.070 0.069 0.082 0.067 0.087 0.069
VEMkz=6

0.115 0.093 0.110 0.106 0.126 0.105
VEMN=60 0.071 0.068 0.081 0.069 0.079 0.074

Case 2 PM �.��� �.��� �.��� �.��� �.��� �.���

VEM 0.111 0.131 0.168 0.112 0.165 0.128
VEMkz=6

0.107 0.097 0.108 0.087 0.110 0.098
VEMN=60 0.077 0.080 0.092 0.074 0.088 0.075

Case 3 PM �.��� �.��� �.��� �.��� �.��� �.���

VEM 0.181 0.204 0.173 0.138 0.164 0.178
VEMkz=6

0.101 0.088 0.107 0.082 0.095 0.089
VEMN=60 0.119 0.119 0.124 0.101 0.117 0.107
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in which �i are linearly spaced between 0 and 4� , and ỹ∗
i,d

 are samples of the predictive dis‑
tributions in (19) and (8) at �i , for the variational and pseudo‑marginal frameworks respec‑
tively. The predictive densities for the first feature of case three are shown in Fig. 5, while 
all features of each case are shown in Figs. 15, 16, 17 of “Appendix B”.

In addition, errors for the VEM with an increased latent dimension and with twice as 
many training samples are also reported. For the first case, increasing the latent dimension 
increases the error. Consequently, this appears to demonstrate that the VEM framework 
was unable to automatically prune unnecessary dimensions, despite the use of an automatic 
relevance determination kernel. Additionally, it shows that increasing the number of latent 
dimensions does not improve predictive performance in this example, perhaps due to the 
consequent optimizer search space dimension increase. For the later two cases, increasing 
the latent dimension allows for a well specified model. Despite this, the VEM approach on 
this model is still out performed by the PM approach on the misspecified model.

The variational approximation clearly leads to a model that overestimates the uncer‑
tainty by underfitting. We observe that PM gives a marked increase in accuracy across all 
features, particularly for the poorly specified examples. However, it must be noted that the 
VEM optimization is non‑convex and may not reflect a global optimum despite conver‑
gence, particularly given that the optimum is very sensitive to initialisation, and, moreover, 
pertains to a lower bound on the marginal likelihood. This further illustrates the necessity 
for posterior sampling in many cases.

5.2  Experimental: New York air quality

Having compared the two methods on a simulated data set, a comparison is now presented 
using experimental data from the ‘New York Air Quality Measurements’ data set. This 
example will serve to demonstrate that the drawbacks of the variational scheme, particu‑
larly the underestimation of the latent variance and overestimation of the noise level, per‑
sist in real data. The air quality data was measured daily from May to September 1973 and 
is publicly available using the R datasets package Team R.C. contributors (2013). The two 
features include the log mean ozone in parts per billion (at Roosevelt Island) and the maxi‑
mum daily temperature in degrees Fahrenheit (at La Guardia Airport). Two covariates are 
considered: the day since May 1st 1973, when the study began, and the month in which the 
sample was taken. Both variables are taken as integer values. The data set consists of 154 
samples, of which the 116 with no missing values were used.

A single latent dimension is considered, with kz = 1 , and the kernels of the previous 
example are used (9). It is noted that the VEM model with kz = 2 drastically over‑ or under‑
fitted in the experiments for most initialisations. This is likely to be due to the decreased 
signal to noise ratio of this data set. As before, Gamma priors were assigned on the hyperpa‑
rameters, also shown in Table 1, and a log transformation in the random walk proposal was 
used. Four chains were run in parallel for 5000 iterations, adapting after g0 = 200 iterations, 
and the first 1000 were discarded (burn‑in). Again, each chain was started at the approxi‑
mate maximum marginal likelihood point estimates with addition of a small noise term.

The collapsed Gibbs sampler used two blocks, ���1 =
(
�1, �2, �1

)
 and ���2 =

(
�S, �

−1
)
 , re‑

optimizing the variational distribution at each Gibbs step. optimization was performed until 

(12)𝜖d =
1

1000

1000∑

i=1

|y∗
i,d

− ỹ∗
i,d
|, y∗

i,d
∼ N

(
fi,d

(
�i
)
, 0.052

)
,
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convergence, up to a maximum of 1000 scaled conjugate gradient iterations. Trace and auto‑
correlation plots demonstrate good mixing, as seen in Fig. 18 of “Appendix C”. The bivari‑
ate marginal hyperposterior histograms, for different pairs of hyperparameters, are shown in 
Fig. 6. In this figure, the pairs include the input lengthscales ( �1, �2 ); latent lengthscales and 
model noise ( �1, �−1 ); and the signal variance and model noise ( �S, �−1 ). When the maxi‑
mum marginal likelihood value lies within the axis, it is again marked with a dot. In this 
example the point‑estimates of the variational expectation‑maximization approach slightly 
underfit, over‑estimating the model noise and poorly estimating the lengthscales.

A comparison of the variational approximation to the posterior of the latent variables 
conditioned on hyperparameters is made (using ESS to obtain samples of the latent vari‑
ables from the posterior) is first made. In Fig. 19 of “Appendix C”, the true and variational 
posteriors (given ���(820) ) for pairs of latent variables corresponding to different samples are 
shown, while Fig. 20 shows the full marginal latent posterior distributions for each sample, 
again given ���(820) . Although the true posterior is still clearly non‑Gaussian, these figures 
reveal that the latent variables are less correlated and better approximated by a Gaussian 
distribution, and therefore the quality of variational approximation is better.

The predictive latent density (obtained using standard Gaussian process prediction) is 
shown for both frameworks in Fig. 7. These plots are composed of segments, where each 
segment is conditioned on the relevant month in which the ‘days since study began’ covari‑
ate belongs, and each segment is clearly separated by a vertical black line. Full plots are 
shown in Figs. 21 and 22, for PM and VEM, respectively. For example, the second seg‑
ment (which encompasses the 50th day) is the predictive density of the latent variable as 
the ‘day since study began’ varies, but conditioned on the month of June. A reflection at 
� = 0 can clearly be seen in the PM predictive density as a consequence of symmetry in 
the latent kernel of the Gaussian process latent variable model; the variational approach 

Fig. 6  (Air quality example) The hyperparameter bivariate posterior histograms for different pairs. Approx‑
imate ML estimates are marked with a dot

Fig. 7  (Air quality) The predictive latent density using the pseudo‑marginal (PM) scheme and VEM 
scheme in each row, respectively
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instead approximates this bimodal density with a single Gaussian. It can also be seen that 
at the start and end of June the predictive uncertainty increases. This is a consequence of 
missing data. Finally, the VEM predictive density lies within that obtained using PM, dem‑
onstrating that the manifold obtained using the approximate maximum marginal likelihood 
is contained within that of the sampled states.

In Fig. 8 the predictive output densities are shown for each feature for both approaches. 
Similarly, full plots are shown in Figs. 23, 24 for the PMMC approach, and Figs. 25, 26 for 
VEM. These are obtained as outlined in Sect. 4.3 and using Eq. 19, respectively. The VEM 
predictions are overly smooth functions, with longer correlations between time points when 
compared to the PM approach. In addition to this we can compare the uncertainty in these 
predictions. This comparison is best observed by inspecting the credible intervals, which are 
given by the width of the predictive density at a given input. We can see that the credible 
intervals of the VEM approximation are unnecessarily wide, while the PM approach results in 
a reduced credible interval. This is achieved without sacrificing empirical coverage, meaning 
that the predictions are both precise and accurate.

To further explore this over‑smoothing, and the improved efficacy of the PMMC approach 
over VEM posterior predictive checks (PPC) were performed, in which the posterior predic‑
tive distribution of PMMC is used to sample replications of the training data set. Such checks 
then compare properties of the replicated data set with the training set, with the hope that 

Fig. 8  (Air quality) The predictive output density using the pseudo‑marginal (PM) scheme and VEM 
scheme in each row, respectively
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the model accurately captures these statistical properties. In this case, they are performed as 
a form of model validation. Towards this end, yrep feature replicates were sampled from the 
joint predictive posterior distribution of PMMC, given each of the training inputs. We consid‑
ered two checks: (1) the autocovariance of each feature and (2) the cross covariance between 

(a) PMMC autocovariance, feature 1. (b) PMMC autocovariance, feature 2.

(c) VEM autocovariance, feature 1. (d) VEM autocovariance, feature 2.

Fig. 9  Posterior predictive checks for New York Air Quality. Autocovariance of each feature. Replicate fea‑
tures are sampled under each model (red) and compared to the training data (black) (Color figure online)

(a) PMMC cross covariance PPC. (b) VEM cross covariance PPC.

Fig. 10  Posterior predictive checks for New York Air Quality. Cross covariance between each feature. Rep‑
licate features are sampled under each model (red) and compared to the training data (black) (Color figure 
online)



1124 Machine Learning (2021) 110:1105–1143

1 3

features. For the PMMC approach we sampled a set of replicates given thinned Gibbs samples 
and elliptical slice samples. For each replicated data set we then calculated each function and 
compared it with the truth. PPC results for (1) are given in Fig. 9, whilst PPC results for (2) are 
given in Fig. 10. We observe a clear difference between the two approaches, with VEM failing 
to accurately replicate either of the properties.

6  Numerical computation

The asymptotic convergence guarantees of the pseudo‑marginal scheme come at the cost 
of an additional computational burden, requiring repeated variational approximations to 
the marginal likelihood at each Gibbs step. This cost can be reduced by using stochastic 
gradients, fewer optimizer iterations, more intelligent initialisation, or performing opti‑
mization with respect to certain variational parameters (e.g., the inducing locations) less 
frequently. However, for some examples these changes may also slow the convergence 
and mixing of the Markov chain.

Alternatively, the algorithm introduced in Sect.  4 may also be accelerated using the 
algorithm of Drovandi et al. (2018), in which a Gaussian process is used to approximate 
the marginal log likelihood. When the predictive variance is within a threshold, the Gauss‑
ian process can then be used to replace the variational approximation, avoiding an optimi‑
zation procedure. Whilst this sacrifices the asymptotic convergence guarantees of the algo‑
rithm, the approach will still benefit by avoiding the strong distributional assumptions of 
the variational framework and performing full posterior inference for the hyperparameters.

Additionally, the MCMC scheme can be parallelised trivially, leading to a significant 
decrease in computational time. To scale to larger samples sizes, the proposed pseudo‑mar‑
ginal scheme can be combined with ideas from Hensman et al. (2015) and the approximate 
variational distribution used as a proposal in importance sampling can be replaced with 
the doubly stochastic variational scheme for deep Gaussian processes, recently proposed 
in  Salimbeni and Deisenroth (2017). However, it is noted that this comes at the cost of 
approximations to the sGPLVM in the pseudo‑marginal framework, in order to scale to 
larger data sets.

7  Discussion

In models with strong correlations between parameters, Gibbs sampling is known to per‑
form poorly (Lawrence et  al. 2009). Strong correlations between variables can result in 
inefficient mixing and slow convergence, and dependence in hierarchical models can lead 
to local behaviour of the tuning parameters, which cannot be adapted without breaking 
detailed balance.

Through the use of a pseudo‑marginal scheme, the high correlations between latent var‑
iables and hyperparameters are broken. Simulated and experimental examples have dem‑
onstrated the significant improvements that can be obtained through the pseudo‑marginal 
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inference scheme, particularly in the poorly‑specified examples, in which point estimates of 
hyperparameters are inappropriate. In all experiments, the approximate ML value overesti‑
mates the model noise, due to underestimation of the latent variance; by removing the dis‑
tribution assumptions on the posterior of the latent variables, the pseudo‑marginal scheme 
is able to overcome this problem.

The underestimation of the posterior variance of the latent variables does not directly 
affect the pseudo‑marginal algorithm, which has MCMC convergence guarantees. The 
closer the pseudo‑marginal approximation is to the true marginal, the faster the chain con‑
verges, with fewer importance samples required, and therefore a reduced computational 
cost. Similarly, the predictions are unaffected since latent variables are sampled using ESS, 
after taking advantage of pseudo‑marginalization to collapse the sampling algorithm.

Although not observed in this article, high variability in the pseudo‑marginal estimates 
can induce ‘stickiness’ in the Markov chain, in which randomly estimating a larger pseudo‑
marginal leads to a state from which it can be improbable to transition. In this case, the 
variance of the pseudo‑marginal estimates can be reduced using Pareto smoothed impor‑
tance sampling (Vehtari et al. 2015), or annealed importance sampling (Filippone 2013). 
Alternatively, the pseudo‑marginals can be re‑estimated on each state transition, particu‑
larly in the initial burn in phase.

In recent years, deep learning has become a popular area of research. Many deep learn‑
ing models, such as deep Gaussian processes, rely on variational approximations, both 
for scaling to large data sets and for analytic tractability. Notably a recent non‑variational 
approach was developed (Havasi et al. 2018) but as with other approaches this method also 
relies on a point estimate of the hyperparameters. Although the methodology proposed 
here should readily extend to many such models, when the parameter space is of a higher 
dimension we would suggest the use of a pseudo Hamiltonian Monte Carlo scheme on the 
collapsed probability model for improved mixing (Lindsten and Doucet 2016).

Appendix A: Variational marginalization of latent variables

It is first noted that standard mean‑field variational methodologies (as previously used in 
probabilistic principal component analysis and factor analysis models (Bishop 1999; Jor‑
dan et al. 1999) do not lead to an analytically tractable algorithm. Instead, the variational 
distribution is restricted to lie within a class. Specifically, consider a variational distribu‑
tion q(�) , which is taken to have the following factorised Gaussian form:

where �j is a diagonal N × N covariance matrix and conditional dependence on � and 
hyperparameters (�,�, �) enters through optimization of the variational parameters 
�j ∈ ℝ

N and �j ∈ ℝ
N×N . Using Jensen’s inequality the evidence lower bound (ELBO) can 

be derived as:

(13)q(�) =

kz∏

j=1

N
(
�∶,j|�j, �j

)
,
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The second term is the negative Kullback‑Leibler (KL) divergence between two Gaussian 
distributions and can, therefore, be evaluated with ease. Given that the data {�i}Ni=1 is inde‑
pendent across features, the first term can be expanded as follows:

The term F̃d(q(�),�, 𝛽) is still analytically intractable since � remains inside the kernel.
In order to formulate a tractable problem, the variational sparse GP approach of Titsias 

(2009) is applied. In this approach the probability model p(�,�|�, �,�) is augmented with M 
additional data points (inducing points), which are samples from the prior distribution placed 
over the latent function � (⋅) , evaluated at a set of M pseudo or inducing inputs (independent of 
the training inputs). The inducing points are collected as the rows in a matrix � , with columns 
denoted �∶,d ∈ ℝ

M , while the pseudo inputs form the rows of a matrix �� ∈ ℝ
M×kz . With the 

inducing variables �∶,d , the augmented probability model is as follows:

The joint GP prior over the inducing and latent variables is factorized in the above equa‑
tion, and the Gaussian prior over the latent variables conditioned on the inducing variables 
is given by:

in which �� is the covariance matrix corresponding to the inducing variables, ��� = �T
��

 is 
the cross‑covariance between the inducing and the latent variables, and ���d = ����

−1
�
�∶,d . 

The marginal Gaussian prior over the inducing variables is p
(
�∶,d|��,�

)
= N

(
�∶,d|�,��

)
 . 

By marginalizing out �∶,d and �∶,d , the likelihood p
(
�∶,d|�,�, �

)
 can then be recovered. 

This is true for any set of inducing points �� and, consequently, they are considered vari‑
ational parameters.

From this point onwards, the notation is simplified by suppressing the dependence on �� 
in all expressions. Variational inference is now applied a second time to approximate the true 
posterior p

(
�∶,d, �∶,d|�∶,d,�,�, �

)
= p

(
�∶,d|�∶,d, �∶,d,�,�, �

)
p
(
�∶,d|�∶,d,�,�, �

)
 , using the 

following sparse variational distribution:

(14)

log p(�|�,�,�, 𝛽) = log

[

� p(�|�,�, 𝛽)p(�|�,�)d�
]

= log

[

� p(�|�,�, 𝛽)p(�|�,�)
q(�)

q(�)d�

]

≥ � q(�) log p(�|�,�, 𝛽)d� − � q(�)log
q(�)

p(�|�,�)d�

∶= F̃(q(�),�, 𝛽) − KL(q(�)||p(�|�,�)).

(15)F̃(q(�),�, 𝛽) =

ky∑

d=1
∫ q(�) log p

(
�∶,d|�,�, 𝛽

)
d� ∶=

ky∑

d=1

F̃d(q(�),�, 𝛽).

p
(
�∶,d, �∶,d, �∶,d|�,��,�, �

)
= p

(
�∶,d|�∶,d, �

)
p
(
�∶,d|�∶,d,�,��,�

)
p
(
�∶,d|��,�

)
,

(16)p
(
�∶,d|�∶,d,��,�,�

)
= N

(
�∶,d|���d,�� −����

−1
�
���

)
,

q
(
�∶,d, �∶,d

)
= p

(
�∶,d|�∶,d,�,�

)
�
(
�∶,d

)
,
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where p
(
�∶,d|�∶,d,�,�

)
 is the conditional GP prior given in  (16) and �

(
�∶,d

)
 is the vari‑

ational distribution over inducing variables. The lower bound of the log likelihood term in 
the integrand of F̃d in (15) is given by:

since:

In contrast to  Titsias (2009), it is necessary to force independence of the distribution 
�
(
�∶,d

)
 from � . Combining the lower bound above with (15) gives:

using the standard properties of the trace of a matrix. Under the factorisation assumption, 
�
(
�∶,d

)
 does not depend on � and so the integrations can be interchanged:

where ⟨⋅⟩q(�) denotes an expectation under q(�) . Now the lower bound under the distribu‑
tion �

(
�∶,d

)
 can be maximized analytically. The optimal setting of this distribution is:

(17)

log p
(
�∶,d|�,�, �

)

≥� �
(
�∶,d

)
[

� p
(
�∶,d|�∶,d,�,�

)
log

p
(
�∶,d|�∶,d, �

)
p
(
�∶,d|�

)

�
(
�∶,d

) d�∶,d

]
d�∶,d

=� �
(
�∶,d

)
[

� p
(
�∶,d|�∶,d,�,�

)
log p

(
�∶,d|�∶,d, �

)
d�∶,d + log

p
(
�∶,d|�

)

�
(
�∶,d
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and the lower bound that incorporates such an optimal setting is obtained by inserting 
�
(
�∶,d

)
 into the lower bound expression:

For a number of kernels this can now be computed in closed form. optimization may be 
performed on the tractable variational lower bound according to (18), with respect to the 
variational parameters ({�j, �j}

kz
j=1

,��) , in the expectation step, and model hyperparameters 
(�,�, �) to obtain approximate ML estimates in the maximization step.

Following  Damianou (2015), in this paper the variational parameters ({�j, �j}
kz
j=1

,��) 
are treated as free parameters, and optimized directly with scaled conjugate gradients 
(jointly with model hyperparameters where relevant), using a reparameterisation. While 
this approach mitigates against local optima, it does not guarantee a globally optimal solu‑
tion or aid against other problems associated with optimization of hyperparameters. This is 
implemented using Sheffield (2017).

The analytic computations can be found in Titsias and Lawrence (2010) and the gradi‑
ent derivations can be found in Damianou (2015), alongside derivations for the predictive 
density:

where q
(
�∗

)
 is obtained using standard GP regression, and q

(
�∗|�∗

)
 is expressed as a 

product of terms with the same form as the projected process approximation. This inte‑
gral is a non‑Gaussian multivariate density that cannot be computed. Consequently, the 
variational scheme instead computes the first and second moments which are available in 
closed‑form. However, in order to sample and evaluate the predictive distribution this is 
assumed to be a multivariate Gaussian with corresponding first and second moments.

Appendix B: Additional results for example 1

See Figs. 11, 12, 13, 14, 15, 16, and 17.
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Fig. 11  Trace plots for the collapsed Gibbs hyperparameter posterior samples (with no thinning applied). 
The three columns correspond to the three data generating cases, while each row corresponds to a different 
hyperparameter
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Fig. 12  Auto‑correlation lag plots of the collapsed Gibbs hyperparameter posterior samples after a thinning 
factor 10 is applied. The three columns correspond to the three data generating cases, while each row cor‑
responds to a different hyperparameter
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Fig. 13  PM inference scheme. Marginal latent posterior distributions for all samples, conditional on hyper‑
parameter posterior sample �(820) . The exact posterior (first and third row) is obtained using Kernel Density 
Estimation on the ESS samples, and the variational approximation (second and fourth row) is known ana‑
lytically. The three columns correspond to the three data generating cases. The first two rows corresponds to 
the first latent dimension, whilst the last two rows refer to the second latent dimension
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Fig. 14  VEM inference scheme. Marginal latent posterior distributions for all samples, conditional on the 
approximate maximum marginal likelihood hyper‑parameters �(ML) . The exact posterior (first and third row) 
is obtained using Kernel Density Estimation on the ESS samples, and the variational approximation (sec‑
ond and fourth row) is known analytically. The three columns correspond to the three data generating cases. 
The first two rows corresponds to the first latent dimension, whilst the last two rows refer to the second 
latent dimension
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Fig. 15  Case 1 predictive densities. Each row corresponds to a different output dimension. The first column 
is the true density, the second is the PM approximation and the last is the VEM approximation
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Fig. 16  Case 2 predictive densities. Each row corresponds to a different output dimension. The first column 
is the true density, the second is the PM approximation and the last is the VEM approximation
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Fig. 17  Case 3 predictive densities. Each row corresponds to a different output dimension. The first column 
is the true density, the second is the PM approximation and the last is the VEM approximation
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Appendix C: Additional results for example 2

See Figs. 18, 19, 20, 21, 22, 23, 24, 25, and 26.
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Fig. 18  (Air quality)Trace and auto‑correlation lag plots of the collapsed Gibbs hyper‑parameter posterior 
samples from each chain after a thinning factor 10 is applied. The two columns correspond to trace and 
autocorrelation plots, respectively, while each row corresponds to a different hyper‑parameter
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Fig. 19  (Air quality) PM inference scheme. Bivariate marginal latent posterior distributions for sample 
pairs (1,  11) (left) and (6,  16) (right), conditional on hyper‑parameter posterior sample �(820) . The exact 
posterior (in blue) is obtained using kernel density estimation on 100, 000 elliptical slice samples, and the 
variational approximation (in red) is known analytically (Color figure online)

Fig. 20  (Air quality) PM inference scheme. Marginal latent posterior distributions for all samples, condi‑
tional on hyper‑parameter posterior sample �(820) . The exact posterior (left) is obtained using Kernel Den‑
sity Estimation on the ESS samples, and the variational approximation (right) is known analytically
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Fig. 21  (Air quality) The latent predictive densities for the pseudo‑marginal (PM) scheme

Fig. 22  (Air quality) The predictive densities for the variational expectation‑maximization (VEM) scheme
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Fig. 23  (Air quality) The predictive density of the first feature using the pseudo‑marginal (PM) scheme

Fig. 24  (Air quality) The predictive density of the second feature using the pseudo‑marginal (PM) scheme
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Fig. 25  The predictive density of the first feature using the variational expectation‑maximization (VEM) scheme

Fig. 26  The predictive density of the second feature using the variational expectation‑maximization (VEM) 
scheme
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