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Abstract
With the emerging of massive short texts, e.g., social media posts and question titles from 
Q&A systems, discovering valuable information from them is increasingly significant for 
many real-world applications of content analysis. The family of topic modeling can effec-
tively explore the hidden structures of documents through the assumptions of latent topics. 
However, due to the sparseness of short texts, the existing topic models, e.g., latent Dirichlet 
allocation, lose effectiveness on them. To this end, an effective solution, namely Dirichlet 
multinomial mixture (DMM), supposing that each short text is only associated with a single 
topic, indirectly enriches document-level word co-occurrences. However, DMM is sensitive 
to noisy words, where it often learns inaccurate topic representations at the document level. 
To address this problem, we extend DMM to a novel Laplacian Dirichlet Multinomial Mix-
ture (LapDMM) topic model for short texts. The basic idea of LapDMM is to preserve local 
neighborhood structures of short texts, enabling to spread topical signals among neighbor-
ing documents, so as to modify the inaccurate topic representations. This is achieved by 
incorporating the variational manifold regularization into the variational objective of DMM, 
constraining the close short texts with similar variational topic representations. To find near-
est neighbors of short texts, before model inference, we construct an offline document graph, 
where the distances of short texts can be computed by the word mover’s distance. We fur-
ther develop an online version of LapDMM, namely Online LapDMM, to achieve inference 
speedup on massive short texts. Carrying this implications, we exploit the spirit of stochas-
tic optimization with mini-batches and an up-to-date document graph that can efficiently 
find approximate nearest neighbors instead. To evaluate our models, we compare against 
the state-of-the-art short text topic models on several traditional tasks, i.e., topic quality, 
document clustering and classification. The empirical results demonstrate that our models 
achieve very significant performance gains over the baseline models.
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1 Introduction

Nowadays, the emerging social media platforms and Q&A systems produce millions of 
text documents available everyday on the Internet, such as Twitter posts, question titles 
and text advertisements etc.  Due to the big volume of those text data, discovering valu-
able information and knowledge from them is a hot research topic in the machine learning 
and data mining communities, and even many real-world applications of content analysis 
(Liang et al. 2017a, b; Wang et al. 2015b, 2017). However, such texts, formally referred to 
as short texts, are often extremely short, noisy and ambiguous.

Example 1 As shown in Fig. 1, after a removal of the standard stopwords, some question 
title samples of Tweets contain only less than 10 word tokens, and simultaneously mix with 
many noisy words, e.g., “estimmate” and “rebuiilt”; worst of all, the average text length of 
Tweets is only about 4.9, and many other collections of short texts, e.g., StackOverFlow 
and BaiduQA, also averagely contain only less than 5 word tokens (i.e., more details of 
datasets are presented in Table 3).

Therefore, each short text always involves quite limited valuable information, resulting in 
the so-called sparsity problem. Generally, the topic modeling methods (Blei 2012; Li et al. 
2018a; Zhao et al. 2018), such as probabilistic latent semantic indexing (PLSI) (Hofmann 

Fig. 1  We illustrate several short text examples of Tweets. After removing the standard stopwords, we show 
the left words in shadow. Such texts are extremely short, and contain many noisy words (denoted by Italics), 
including misspelled words, e.g., “estimmate” and “rebuiilt”, and domain-specific stopwords, e.g., “error” 
and “file”. When using DMM to learn topics from these short texts, it is sensitive to the noisy words, result-
ing in the so called sensitivity problem: The inferred topics (manually denoted by different colors) of doc-
uments are mainly depending on the product of topic weights (i.e., histograms) of observable words. There-
fore, for short texts with very few words, it is highly affected by every word. However, the misspelled words 
refer to meaningless topic weights and the domain-specific stopwords often approach uniform weights of 
topics. With such noisy words, DMM tends to produce less accurate topic estimations of documents. Best 
viewed in color
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1999) and latent Dirichlet allocation (LDA) (Blei et al. 2003), are the mainstream method-
ologies for discovering and analyzing collections of massive text documents. Basically, they 
are built on the assumption that there are latent topics beyond the observable word tokens, 
where each document is a mixture of topics, and each topic is represented by the distribu-
tions of words. With topic inference by statistical methods, e.g., variational inference (Blei 
et  al. 2003; Teh et  al. 2006) and Gibbs sampling (Griffiths and Steyvers 2004), one can 
rely on the inferred topics to leverage the latent structure of text documents, and then apply 
them to the tasks of text discovery and analysis. The existing topic models can effectively 
learn the topics of normal long text documents (Blei 2012), however, their performance is 
deteriorated by a large margin when handling short texts due to the aforementioned spar-
sity problem. The underlying philosophy is that, with statistical methods, the topic inference 
is mainly depending on the document-level word co-occurrence information (Wang and 
McCallum 2006) that the short texts lack. This makes the inferred topics much less accurate, 
hence raising up a significant challenge to topic modeling over short texts.

Many topic modeling efforts have been made to handle the sparsity problem of short 
texts. Borrowing the taxonomic hierarchy from multi-label learning (Zhang and Zhou 
2014), we can organize the existing works on topic modeling of short texts into two cat-
egories, i.e., problem transformation (PT) method and algorithm adaptation (AA) method.

The PT methods (Hong and Davison 2010; Weng et  al. 2010; Mehrotra et  al. 2013; 
Quan et al. 2015; Zuo et al. 2016a; Li et al. 2018c) tackle the problem by aggregating short 
texts into long pseudo-documents and then applying a well-established topic model, e.g., 
LDA. Specifically, the short texts can be aggregated using side information, e.g., user ID 
(Mehrotra et al. 2013), or adaptive paradigms (Quan et al. 2015; Zuo et al. 2016a; Li et al. 
2018c). However, they suffer from two common drawbacks: (1) Any long pseudo-docu-
ment may consist of many irrelevant short texts, making the topic inference less effective; 
(2) their adaptive aggregation steps are computationally expensive, especially for collec-
tions of massive short texts.

Unlike the PT methods, the AA methods (Nigam et al. 2000; Yan et al. 2013; Cheng 
et al. 2014; Sridhar 2015; Zuo et al. 2016b; Xin et al. 2011; Wang et al. 2015a, c, 2016a, b, 
2018; Yin and Wang 2014; Li et al. 2016a, 2017, 2018e, 2019a; Lu et al. 2017) have been 
paid more attention due to their superior performance. They directly modify traditional 
topic models by enriching word co-occurrences, so as to remedy the sparsity problem. 
First, a straightforward methodology is proposed to model the global word co-occurrences 
at the corpus level (Yan et al. 2013; Cheng et al. 2014; Sridhar 2015; Zuo et al. 2016b). For 
example, the biterm topic model (BTM) (Yan et al. 2013; Cheng et al. 2014) learns top-
ics by modeling word co-occurrence pairs over the entire corpus; the word network topic 
model (WNTM) (Zuo et al. 2016b) refers to each word type as a pseudo-document follow-
ing a global word co-occurrence network. These models can alleviate the sparsity problem 
to some extent. However, they may create many meaningless word co-occurrences without 
any word pair filtering process, and more importantly they lose document-specific topic 
structures. Second, another methodology is to indirectly enrich document-level word co-
occurrences by supposing that each short text covers a small subset of topics. A representa-
tive method is the Dirichlet multinomial mixture (DMM) (Nigam et  al. 2000; Xin et  al. 
2011; Yin and Wang 2014) following the assumption that each short text is only associated 
with a single topic. Recently, two extensions of DMM (Li et al. 2016a, 2017), namely gen-
eralized Pólya urn DMM (GPU-DMM) and generalized Pólya urn Poisson-based DMM 
(GPU-PDMM), incorporate auxiliary word embeddings (Mikolov et al. 2013) to enhance 
the topic inference of Gibbs sampling, enabling to attract similar words in the same topics. 
Therefore, they can empirically generate more coherent topic representations.
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Orthogonal to BTM and WNTM, the family of DMM can maintain document-specific 
topic structures, and it has empirically shown very superior performance in many task of 
short texts (Li et al. 2016a, 2017). However, DMM is sensitive to noisy words, therefore 
the topic representations of documents can be easily miscalculated. We refer to this as the 
sensitivity problem. That is, if the majority of words in short texts are without any topic-
inclination (e.g., domain-specific stopwords) or even errors (e.g., misspelled words), the 
inferred topics must be dominated by those noisy words, so as to be probably miscalcu-
lated. For ease of understanding, we illustrate some examples in Fig. 1. Besides, the recent 
models of GPU-DMM and GPU-PDMM also suffer from the sensitivity problem, since 
they focus on leveraging similar words in the same topics, rather than handling noisy ones.

Our contributions: Our goal is to alleviate the sensitivity problem of DMM. To this 
end, we develop a novel Laplacian Dirichlt Multinomial Mixture (LapDMM) topic model 
for short texts. The basic idea is to extend DMM by preserving local neighborhood struc-
ture of short texts using manifold regularization of Laplacian Eigenmap, which has been 
successfully used for topic models (Mei et al. 2008; Cai et al. 2008, 2009; Huh and Fien-
berg 2010, 2012; Du et al. 2015; Hu et al. 2017; Li 2018d). The manifold regularization 
implies that the learned manifolds should be smooth, which here constrains nearby docu-
ment pairs have similar latent topic representations. This can indirectly spread topical sig-
nals among neighboring documents, enabling to modify the miscalculated topic represen-
tations, so as to remedy the sensitivity problem of DMM.

We kindly remind that the manifold regularization cannot be directly applied to DMM, 
since it supposes that each document is only associated with a single topic. To address this, 
we train LapDMM following the spirit of collapsed variational inference (Teh et al. 2006), 
a more accurate inference method for topic models (Chi et al. 2018) than Gibbs sampling 
used in GPU-DMM and GPU-PDMM (Li et al. 2016a, 2017). We then incorporate a mani-
fold regularizer with respect to variational distributions, referring to as variational mani-
fold regularization, into the original variational objective of DMM, such that the close 
short texts tend to have similar variational topic representations. LapDMM is optimized 
by maximizing the regularized variational objective. Besides, the variational manifold 
regularization is built on the offline document graph, indicating the nearest neighbors of 
all short texts, before training LapDMM. To better capture distances between short texts, 
we employ the word mover’s distance (WMD) (Kusner et  al. 2015) with word embed-
dings (Mikolov et  al. 2013), which describes document distances at the semantic level. 
We employ a regularized version of WMD with an entropic regularizer (Cuturi 2013) for 
efficient computations.

Furthermore, we propose two ideas to achieve inference speedup when facing mas-
sive short texts. First, inspired by Hoffman et  al. (2010, 2013), Foulds et  al. (2013), we 
exploit the spirit of stochastic optimization with mini-batches. That is, at each iteration, we 
only exploit a small mini-batch of short texts to update variational parameters of interest, 
instead of the whole corpus, so as to accelerate the inference procedure. Second, since the 
time cost of the document graph construction is quadratic with the number of short texts, 
the step becomes much expensive given massive instances. Motivated by this, we aim to 
efficiently find approximate nearest neighbors, and therefore construct an up-to-date docu-
ment graph with mini-batches of short texts instead. Upon these two ideas, we develop an 
online version of LapDMM, namely Online LapDMM (OLapDMM).

Empirically, we evaluate LapDMM and OLapDMM on various datasets of short texts 
across various tasks, i.e., topic quality, document clustering and classification. Experimen-
tal results indicate that our models significantly outperform the state-of-the-art baseline 
topic models of short texts.
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In a nutshell, the major contributions of this paper are listed below:

– We develop a novel topic model for short texts, namely LapDMM, which handles the 
sensitivity problem of DMM by preserving local neighborhood structure of texts using 
manifold regularization of Laplacian Eigenmap. We train LapDMM following the spirit 
of collapsed variational inference, and then leverage a variational manifold regulariza-
tion that refers to an offline document graph, indicating the nearest neighbors of all 
short texts. Therefore, we achieve a regularized variational objective of LapDMM. and 
optimize it using generalized expectation maximization.

– We develop an online version of LapDMM, namely OLapDMM, for inference speedup 
with even massive short texts. OLapDMM is built on the spirit of stochastic optimiza-
tion with mini-batches. Besides, we develop an up-to-date document graph with mini-
batches of short texts, enabling to efficiently find approximate nearest neighbors.

– We conduct a number of experiments on several benchmark datasets of short texts. 
Empirical results demonstrate that our models significantly performs better than the 
state-of-the-art baselines on topic quality, clustering and classification tasks. Specifi-
cally, the performance gain achieves even above 160% in many cases.

We kindly remind that this article is an extension of our previous conference paper of 
Li et al. (2019b). The extended works include: (1) We propose an online version of Lap-
DMM, namely OLapDMM; (2) we develop an up-to-date document graph for efficiently 
finding approximate nearest neighbors; (3) we discuss the time complexities of LapDMM 
and OLapDMM; (4) more experimental results are presented to validate the effectiveness 
of LapDMM and OLapDMM.

The rest of this article is organized as follows: Some recent related works are introduced 
in Sect. 2. In Sect. 3, we describe LapDMM and OLapDMM in detail. In Sect. 4, we pre-
sent and discuss the empirical results. The conclusions are given in Sect. 5.

2  Related work

We review some recent related works on topic models for short texts and topic modeling 
with manifold regularization.

2.1  Topic models for short texts

Conventional topic models, such as PLSI and LDA, suffer from the sparsity problem of 
short texts, because they are lacking of word co-occurrences at the document level. To 
effectively extract topics from short texts, many topic modeling attempts have been 
recently proposed, and they can be roughly divided into two categories, i.e., problem trans-
formation (PT) method (Hong and Davison 2010; Weng et al. 2010; Mehrotra et al. 2013; 
Quan et al. 2015; Zuo et al. 2016a; Li et al. 2018c) and algorithm adaptation (AA) method 
(Nigam et al. 2000; Cheng et al. 2014; Sridhar 2015; Zuo et al. 2016b; Xin et al. 2011; Yin 
and Wang 2014; Li et al. 2016a, 2017, 2018e, 2019a; Lu et al. 2017).

The idea of PT methods is to aggregate the short texts into long pseudo-documents 
and then applying a well-established topic model, e.g., LDA. For example, some models 
attempt to aggregate Twitter posts using the user information (Hong and Davison 2010), 
shared words (Weng et  al. 2010) and combinations of various side messages (Mehrotra 
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et al. 2013). However, they are highly data-dependent, and cannot be applied to short texts 
without any side information. For more practical models, some recent works (Quan et al. 
2015; Zuo et al. 2016a; Li et al. 2018c) propose to adaptively aggregate short texts. For 
example, the self-aggregation based topic model (SATM) (Quan et  al. 2015) integrates 
topic modeling with clustering; the latent topic model (LTM) (Li et al. 2018c) supposes 
that the long pseudo-documents are composed of short texts, and then alternatively draws 
the topic assignments for short texts and word tokens using Gibbs sampling. Roughly this 
kind of adaptively aggregated models is equivalent to an EM-like iteration procedure, i.e., 
clustering short texts (E-step) and LDA optimization (M-step). In some sense, our Lap-
DMM is also aggregating short texts by linking neighboring ones. In contrast to them, Lap-
DMM is much safer since it learns topics with the help of the neighboring document graph, 
rather than short text clusters, i.e., long pseudo-documents, that may consist of many irrel-
evant short texts. Besides, these adaptively aggregated models are sensitive to the number 
of long pseudo-documents, and become computationally expensive for collections of mas-
sive short texts, since more long pseudo-documents are often required given more short 
texts.

Unlike the PT methods, the AA methods directly modify traditional topic models by 
enriching word co-occurrences. The models of BTM (Yan et al. 2013; Cheng et al. 2014) 
and Gaussian mixture topic model (Sridhar 2015) consider a corpus as a single big docu-
ment, and they then model all word co-occurrence patterns extracted from documents and 
word embeddings of observable word tokens, respectively. Another representative WNTM 
(Zuo et al. 2016b) is built on the word type pseudo-documents, which are constructed by 
word co-occurrences over the whole corpus. Besides these models, which may mix with 
many noisy word co-occurrence patterns, DMM directly handles the sparsity problem by 
assuming that each short text is drawn from a single topic. Given the sparse content of 
short texts, this assumption is more reasonable, making DMM more effective than tradi-
tional topic models (Xin et al. 2011). Recently, two extensions of DMM, i.e., GPU-DMM 
and GPU-PDMM (Li et al. 2016a, 2017), incorporate a generalized Pólya urn process into 
the topic inference process, so that similar words measured by word embeddings should be 
clustered in the same topics. In contrast to GPU-DMM and GPU-PDMM, our LapDMM 
not only captures the semantic information of word embeddings, but also further preserves 
the neighborhood structure of short texts by manifold constraints.

Besides, there are some other short text topic models (Yan et al. 2013; Shi et al. 2018; 
Li et al. 2020), built on non-negative matrix factorization (NMF) (Lee and Seung 1999). 
For example, the recent semantics-assisted NMF model (Shi et  al. 2018) alleviates the 
sparsity problem by referring to the word contexts of short texts as auxiliary pseudo-texts.

2.2  Topic modeling with manifold regularization

The manifold regularization has been successfully used for topic modeling (Mei et  al. 
2008; Cai et al. 2008, 2009; Huh and Fienberg 2010, 2012; Du et al. 2015; Hu et al. 2017; 
Li 2018d). The prior works mainly investigate various ways to implement the manifold 
constraint between documents. For example, Cai et al. (2008) incorporate manifold struc-
ture information, i.e., a manifold regularizer with the Euclidean distance, into the log-like-
lihood objective of PLSI (Hofmann 1999). The locally-consistent topic model (Cai et al. 
2009) relies on a manifold regularizer with Kullback-Leibler divergence by replacing the 
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Euclidean distance. Besides, the discriminative topic model (Huh and Fienberg 2010) 
develops a manifold regularizer, which not only pulls neighboring document pairs closer 
together, but also separates non-neighboring document pairs from each other. Additionally, 
several recent works develop manifold-based topic models in specific learning scenarios, 
e.g., semi-supervised learning (Hu et al. 2017) and weakly supervised learning with seed 
words (Li 2018d). However, those models are mainly designed for modeling normal long 
texts, therefore they are not applicable to short texts, due to the sparsity problem.

Discussion We discuss several differences between prior topic models with manifold 
regularization and our LapDMM. First, the prior models mainly extend the traditional 
topic models, e.g., PLSI and LDA, directly incorporating the manifold constraint on the 
K-dimensional topic representations of documents. However, the manifold regularization 
cannot be directly applied to DMM when modeling short texts, because DMM supposes 
that each document is only associated with a single topic. Instead, in LapDMM we lever-
age a manifold regularizer with respect to variational distributions under the framework 
of collapsed variational inference. Besides, LapDMM further utilizes the recent WMD to 
measure document distances at the semantic level. Second, to our knowledge, these prior 
manifold-based topic models are all built on pre-computed offline document graph, which 
is computationally expensive given massive short texts. In contrast, we develop an online 
version of LapDMM, i.e., OLapDMM, with an up-to-date document graph for finding 
approximate neighbors, instead of exact ones, enabling to be applicable for larger collec-
tions of short texts.

3  Model

Before shedding light on our method, we first give a brief introduction to Dirichlet multi-
nomial mixture (DMM) (Nigam et al. 2000; Yin and Wang 2014), which paves the way to 
our Laplician Dirichlet Multinomial Mixture (LapDMM) topic model for short texts. For 
clarity, we outline some important notations in Table 1.

Table 1  A summary of important 
notations

Notation Description

D Number of short texts
V Number of words
K Number of topics
� Topic distributions over words
� Dirichlet prior of �
� Corpus-level distribution over topics
� Dirichlet prior of �
z Topic indicator of documents
� Variational parameter
W Edge weight of the document graph
R Number of nearest neighbors in the 

document graph
M Mini-batch size in OLapDMM
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3.1  Dirichlet multinomial mixture

DMM is a generative topic model with the assumption that each document covers only a 
single topic. Actually, this assumption can indirectly enrich word co-occurrences at the 
document level, making the model more effective for short texts than LDA and its variants.

Formally, DMM consists of (1) K topic distributions � over the vocabulary of V words, 
drawn from a Dirichlet prior � and (2) a corpus-level distribution � over topics, drawn from 
a Dirichlet prior � . For each document d, DMM first draws a topic indicator zd from � , and 
subsequently draws each word token wdn from the selected topic �

zd
 . Its generative process 

of D short texts can be described as follows: 

1. Draw a distribution over topics: � ∼ ���(�)

2. For each topic k

a. Draw a topic distribution over words �k ∼ ���(�)

3. For each document d

a. Draw a topic : zd ∼ �����������(�)

b. For each of the Nd words wdn

i. Draw a word token: wdn ∼ �����������
(
�
zd

)

3.2  LapDMM with variational manifold regularization

The basic idea of LapDMM is to extend DMM by preserving local neighborhood struc-
ture of short texts, enabling to spread topical signals among neighboring documents, so as 
to remedy the sensitivity problem. This is achieved by using the manifold regularization 
methodology. We now describe the manifold regularization in topic modeling, and then the 
objective of LapDMM.

Manifold regularization In the context of topic modeling, the manifold regularization 
constrains that the latent topic representations of document pairs should be similar to each 
other if they are nearest neighbors in the document manifold.

Formally, consider a directed document graph with D vertices, where each vertex cor-
responds to a document in the corpus. Each component of the edge weight matrix W is 
defined by:

where �(d) is a document set containing R nearest neighbors of document d. Specifically, 
let �d denote a latent K-dimensional topic representation of document d. We can define a 
least square manifold regularization term as follows:

(1)Wij =

{
1 if di ∈ �(dj) or dj ∈ �(di)

0 otherwise
,

(2)R(�) =
1

2

K∑
k=1

D∑
i,j=1

(
�ik − �jk

)2
Wij
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Regularized variational objective of LapDMM Note that we can not directly incorporate 
the manifold regularization term of Eq.  2 into DMM inference. Because in DMM each 
document is only associated with a single topic, there are no explicit K-dimensional topic 
representations � for documents.

To break this limitation, we resort to the collapsed variational inference optimization 
(Teh et al. 2006), and propose a manifold regularizer with respect to the variational distri-
bution instead.

Thanks to the conjugate Dirichlet-multinomial design in DMM, the two distributions � 
and � can be directly marginalized out. We then define a mean-field variational distribution 
with respect to the topic assignment z of documents,

where each q(zd|�d) is a multinomial distribution with a K-dimensional variational param-
eter vector �d , i.e., 

∑K

k=1
�dk = 1 . Given a short text collection S, we train DMM by maxi-

mizing the following variational objective with respect to �:

Since each document-specific variational distribution q(zd|�d) is used as an approximation 
to the latent topic representation of the current document, we can define a manifold regu-
larizer with respect to q(z) , i.e., referring to as variational manifold regularization, to 
achieve manifold constraints. That is, we re-write the manifold regularization of Eq. 2 by 
replacing � with the K-dimensional variational parameter � as follows:

By combining Eqs. 4 and 5, we reach the final regularized variational objective of Lap-
DMM with respect to �:

where � ∈ [0, 1] is a regularization parameter.
Discussion We now discuss the manifold formulation of LapDMM, described by 

Euclidean distance between variational parameters, i.e., Eq. 5. Prior works suggest some 
other manifold formulations, e.g., the manifold term with Kullback-Leibler divergence 
(Cai et al. 2009) and the one considering neighboring and non-neighboring document pairs 
simultaneously (Huh and Fienberg 2010). Actually, we have examined those popular mani-
fold formulations in our early experiments. We found that all of them performed very simi-
lar performance in the scenario of modeling short texts, but the manifold term with Euclid-
ean distance is more tractable to compute than other ones. Therefore, this formulation of 
Eq. 5 is leveraged in LapDMM.

3.3  Optimization

We use a double-loop optimization procedure (Cai et al. 2008) to maximize the objective 
of LapDMM L̂(�) (i.e., Eq. 6). In the outer iteration, we optimize � by maximizing the first 

(3)q(z|�) =

D∏
d=1

q
(
zd|�d

)
,

(4)L(�) = �q(z|�)

[
log p(S, z|�, �) − log q(z|�)

]

(5)R(�) =
1

2

K∑
k=1

D∑
i,j=1

(
�ik − �jk

)2
Wij

(6)L̂(�) =
1

D
L(�) − �R(�),
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term of Eq. 6, i.e., the original variational objective of DMM; in the inner iteration, we use 
the Newton-Raphson method to update � by minimizing the second term of Eq. 6, i.e., the 
variational manifold regularization, until the value of L̂(�) decreases. We now describe the 
optimization details.

Outer iteration Actually, the outer update is a standard step of collapsed variational 
inference for training DMM. Following Bishop (2006), for each document d, the opti-
mum of �d , holding all other variational distributions fixed, can be computed by (deriva-
tion details are shown in the “Appendix”):

where Ndv is the number of times word v occurring in document d; N̂k is the number of 
documents assigned to topic k; Nkv and Nk are the number of word v assigned to topic k 
and total number of words assigned to topic k, respectively; the superscript “ ¬d ” means the 
corresponding variables and counts with document d excluded.

We can efficiently compute an approximation of Eq. 7 by using the first-order Taylor 
expansion (Asuncion et al. 2009; Sato and Nakagawa 2012) at the expectation values of 
number counts in Eq. 7:

where for example the expectation of N̂¬d
k

 is 
∑D

i≠d �ik , and the other two expected number 
counts are similar.

Inner iteration In the inner iteration, we focus on minimizing the variational mani-
fold regularization R(�) . We continue updating � using Newton-Raphson iterations until 
the value of the overall objective L̂(�) decreases (Cai et al. 2008). The update equation 
is as follows:

where � ∈ [0, 1] is the learning rate. Note that this update equation guarantees 
∑K

k=1
�dk = 1 

for any document d.
Remark The learning rate � can be roughly considered as a tuning parameter used to 

balance the two terms in Eq. 9. When � = 0 , LapDMM is downgraded to the standard 
DMM without manifold constraints.

(7)

�dk ∝ exp
(
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[
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,
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+ �

�
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n=1

�
�q¬d(z|�)

�
N¬d
kv

�
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(9)

�dk ← �dk − �
R

�(�dk)

R
��(�dk)

← (1 − �)�dk + �

∑D

i=1
�ikWdi∑D

i=1
Wdi

,
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Estimations of topic distributions  Given the optimum of � , the point estimates of � and 
� can be computed by:

where for example the expectation of N̂k is 
∑D

d=1
�ik , and the other two expected number 

counts in Eqs. 10 and 11 are similar.

3.3.1  Document graph construction

To achieve manifold constraints, we need to construct an offline document graph before 
LapDMM inference, i.e., finding R nearest neighbours for all short texts (ref. Eq. 1). In this 
article, we exploit two ways to measure distances between document pairs detailed below.

Measuring document distances in the original term space: Straightforwardly, we 
employ the popular cosine distance of documents’ term frequency vectors.

Measuring document distances in a latent semantic space with word embeddings: In the 
sparse short text context, semantically related documents may not contain any same word, 
so that they are far away in the term space. To alleviate this, we employ the Word Mov-
er’s Distance (WMD) (Kusner et al. 2015) to measure document distances at the semantic 
level. The formulation of WMD of a document pair (di, dj) with an entropic regularization 
term (Cuturi 2013) is given by:

where di denotes the normalized term frequency vector of document i that can be consid-
ered as a multinomial distribution; �(di, dj) is the set of the joint distributions of di and dj ; 
H(⋅) denotes the entropy; �′ is a regularization parameter1; and C is the cost matrix meas-
ured by the cosine distances of word embedding pairs (i.e., semantic distances between 
words measured by the corresponding word embeddings). In summary, the WMD actually 
measures the optimal (i.e., cheapest) transport from one document to any other in a seman-
tic space with word embeddings. We can use the method proposed in Cuturi (2013) to effi-
ciently optimize Eq. 12 and then obtain the WMD values. 

3.3.2  Summary of LapDMM optimization

For clarity, the full optimization process of LapDMM can be summarized as follows: (1) 
After initializing the parameters of LapDMM, i.e., R, � and � , we construct the document 
graph by computing the distances of all short text pairs; (2) we iteratively optimize the 
variational parameter � by performing the outer and inner iterations.

In summary, we outline the optimization of LapDMM in Algorithm 1.

(10)�kv =
�q(z|�)[Nkv] + �

�q(z|�))[Nk] + V�
,

(11)�k =
�q(z|�)[N̂k] + �

D + K�
,

(12)Wc

�
di, dj

�
= inf

P∈�(di,dj)
⟨P,C⟩ − 1

��
H(P)

1 Following previous studies, in this work we set �′ to 10.
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3.3.3  Time complexity of LapDMM

In this subsection, we mainly discuss the time complexities of collapsed variational infer-
ence for DMM and LapDMM.

For clarity, we again declare that D and K denote the numbers of short texts and top-
ics, respectively. Besides, let N denote the average document length of a corpus, T and T̂  
denote the numbers of outer iteration and inner iteration in LapDMM, respectively.

First, for the outer iteration of LapDMM, i.e., the DMM optimization, the main time 
cost is the update of the variational parameter � . Referring to Eq. 8, for each short text this 
step requires O(KN) time. Therefore the time complexity of the outer iteration of LapDMM 
is O(TDKN) in total and so does DMM. Second, the inner iteration of LapDMM refers to 
the Newton-Raphson update of � . For each short text d, its corresponding �d is iteratively 
updated using the moving average of its R nearest neighbors’ �i such that Wdi = 1 . We thus 
present the time complexity of the inner iteration of LapDMM by O(TT̂DKR) . Finally, 
before LapDMM inference we need to construct an offline document graph, which stores 
the distances of all short text pairs. Naturally, this step requires O(D2) time by considering 
the distance operation is a constant.

In summary, we conclude that the overall time complexity of LapDMM is 
O(TDKN + TT̂DKR + D2) by summing the time costs of the three steps discussed above. 
We outline the time complexities of DMM and LapDMM in Table 2.

Additionally, we briefly compare the time complexity of LapDMM with two traditional 
topic models, i.e., GPU-DMM and BTM, optimized by Gibbs sampling. First, the per-itera-
tion time cost of GPU-DMM contains the topic assignment sampling for documents with 
O(DKN) time and sample enrichment by the GPU model requiring O(DNl) time, where l 
denotes the average number of similar words stored in the GPU model. Therefore, the overall 
time complexity of GPU-DMM is about given by O(TDKN + TDNl) (Li et al. 2016a). Sec-
ond, in the context of BTM, it generates word co-occurrence patterns from each document, 
and draws topic assignments from K topics for them. Roughly, each document can totally gen-
erate C2

N
 word co-occurrence patterns, thus the overall time complexity of BTM can be 

directly measured by O(TDKC2

N
) (Cheng et  al. 2014). Obviously, the time cost of BTM is 
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affected by the average length of documents, and it becomes less efficient with relatively 
longer documents. Comparing with GPU-DMM and BTM, our LapDMM is less efficient 
mainly due to its inner iteration. Fortunately, empirical results indicate that LapDMM can 
achieve competitive performance with very few inner iterations, e.g., T̂ = 5 , in our experi-
ments. In this sense, LapDMM is practical in real applications. More details of empirical effi-
ciency evaluation are presented in Sect. 4.3.3.

3.4  Online Optimization of LapDMM

Following the time complexity analysis above, LapDMM becomes computationally expen-
sive as the number of short texts (i.e., D) increases, and worse of all, it involves a more 
expensive step of document graph construction, requiring even O(D2) time. For infer-
ence speedup, we propose an online version of LapDMM, namely Online LapDMM 
(OLapDMM).

Our OLapDMM simultaneously exploits the spirit of stochastic optimization with mini-
batches (Hoffman et al. 2010, 2013; Foulds et al. 2013; Li et al. 2016b) and an up-to-date 
document graph that can efficiently find approximate nearest neighbors instead. We now 
describe them one by one.

3.4.1  Stochastic optimization

Reviewing the LapDMM optimization (i.e., Algorithm 1), at each outer iteration we need 
to update the expected number counts with the current � of all short texts. Specifically, 
we define some new notations to denote those expected number counts of interest for 
convenience:

This batch optimization is inefficient for big corpora of massive short texts. Inspired by 
Hoffman et al. (2010, 2013), Foulds et al. (2013), Li et al. (2016b), we refer to {ℕ�

k
,ℕ

�

kv
,ℕ

�

k
} 

(13)ℕ
�
k

�
= 𝔼q(z|�)

[
N̂k

]
=
∑D

d=1
�dk

(14)ℕ
�

kv

�
= 𝔼q(z|�)

[
Nkv

]
=
∑D

d=1

∑
v∈d

Ndv�dk

(15)ℕ
�

k

�
= 𝔼q(z|�)

[
Nk

]
=
∑D

d=1
Nd�dk

Table 2  Summary of time 
complexities

T: outer iteration number; T̂  : inner iteration number of LapDMM and 
OLapDMM; N : the average document length: M: the mini-batch size; 
M̂ is equivalent to M(R + 1)

Model Time complexity

DMM O(TDKN)

LapDMM O(TDKN + TT̂DKR + D
2)

OLapDMM O(TM̂KN + TT̂M̂KR + T(MBER +MR
2))
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as the global variables of LapDMM, and then update them using an online update manner 
with mini-batches of short texts.

At each outer iteration t, in OLapDMM we randomly draw a mini-batch (i.e., denoted by 
�t ) of M short texts, and only update the variational parameters of �t and its nearest neigh-
boring short texts. Then, following Foulds et al. (2013), update {ℕ�

k
,ℕ

�

kv
,ℕ

�

k
} by using an 

online average of their current values and expected values as below:

where �̂t is the learning rate; and �̂t denotes the set of �t and its nearest neighboring 
short texts. Since the size of �̂t is always much less than that of the whole corpus, the 
{ℕ�

k
,ℕ

�

kv
,ℕ

�

k
} updates of OLapDMM are much faster than those of batch LapDMM, espe-

cially for big corpora of massive short texts.

3.4.2  Up‑to‑date document graph construction

In OLapDMM, we replace the expensive offline document graph with a much efficient up-
to-date alternative.

The pre-computed offline document graph stores the exact R nearest neighbors of all 
short texts, so as to achieve the variational manifold constraints. In some sense, the goal 
of variational manifold regularization in LapDMM is to spread topical signals among 
similar short texts, but not limited to the most similar pairs. Therefore, we can utilize the 
variational manifold regularization with approximate nearest neighbors to replace the one 
with the exact nearest neighbors. Following this idea, we develop an up-to-date document 
graph that can efficiently find approximate R nearest neighbors of short texts. Formally, it 
involves the following key steps:

– Initialization At the first iteration of OLapDMM, we initialize a document graph �1 , 
which stores the exact R nearest neighbors of the first selected mini-batch �1.

– Search At each iteration t ≥ 2 , we search the approximate R nearest neighbors of the 
current mini-batch �t using the graph nearest neighbor search (GNNS) algorithm 
(Hajebi et al. 2011) based on the document graph �t−1

– Update Incorporate2 the mini-batch �t with its approximate R nearest neighbors into 
the document graph �t−1 . Besides, continue to update �t−1 by referring to the recent 
obtained neighbor pairs. We finally achieve an updated document graph �t

(16)ℕ
�
k
← (1 − �̂t)ℕ

�
k
+ �̂t

D

|�̂t|
∑

d∈�̂t

�dk,

(17)ℕ
�

kv
← (1 − �̂t)ℕ

�

kv
+ �̂t

D

|�̂t|
∑

d∈�̂t

∑
v∈d

Ndv�dk,

(18)ℕ
�

k
← (1 − �̂t)ℕ

�

k
+ �̂t

D

|�̂t|
∑

d∈�̂t

Nd�dk,

2 Note that if OLapDMM has swept the whole corpus, the document graph size will no longer increase.
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The implementation details of the Search and Update steps are presented below.
Search details: For a short text being absent in the document graph �t−1 , we can 

employ the GNNS algorithm (Hajebi et al. 2011) to efficiently find its approximate R near-
est neighbors. The GNNS algorithm is built on the spirit of hill-climbing, starting from a 
random sampled node of short text stored in �t−1 . Formally, given a query short text s, the 
GNNS algorithm repeats the following steps B times for collecting its candidate neighbor 
set ℂ:

– Step 1: Randomly select a node of short text ŝ0 stored in �t−1.
– Step 2: At each iteration t̂ ≥ 1 , scan all R neighbors of ŝ̂t−1 stored in �t−1 (i.e., denoted 

by �t−1 (̂ŝt−1) ). Then, return the closest short text of the query s (i.e., denoted by 
ŝ̂t = �t−1(s, ŝ̂t−1) ) as the next node, and merge �t−1 (̂ŝt−1) into the candidate neighbor set 
ℂ . i.e., ℂ = ℂ

⋃
𝕌t−1 (̂ŝt−1).

– Step 3: Repeat the Step 2 E times.

After obtaining ℂ , we can find the approximate R nearest neighbors (i.e., denoted by ℂ(s) ) 
of the query short text s from it. The parameters of GNNS are empirically set as follows: 
B = 5 and E = 5.

Besides, in OLapDMM we note that after sweeping the whole corpus, the document 
graph �t−1 involves neighbors of all short texts. We use the notation ∃s�t−1 to denote that 
�t−1 stores R neighbors of short text s. In this situation, we not only use the candidate 
neighbor set ℂ obtained by the above loops, but also refer to its approximate R nearest 
neighbors stored in �t−1 , i.e., �t−1(s) , as candidates, i.e., ℂ = ℂ

⋃
𝕌t−1(s) . Then, we search 

its approximate R nearest neighbors, i.e., ℂ(s) , from the aggregated ℂ.
For clarity, the full Search step of OLapDMM is outlined in Algorithm 2. 
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Update details of �t−1 : After the Search step, we obtain the approximate R nearest 
neighbors of all short texts in the mini-batch �t , i.e., 

⋃
s∈�t

ℂ(s) . Then, we update �t−1 as 
follows: (1) For any short text s ∈ �t , if the document graph �t−1 does not store its R neigh-
bors, we incrementally add ℂ(s) into �t−1 , i.e., 𝕌t−1 = 𝕌t−1

⋃
ℂ(s) ; otherwise we replace 

its current neighbors �t−1(s) with the new ones ℂ(s) , i.e., 𝕌t−1(s) ← ℂ(s) . (2) for any neigh-
bor of the mini-batch �t , update its neighbors stored in �t−1 if more closer queries to it are 
observed. For example, considering a short text s� ∈ ℂ(s), s ∈ �t . if the distance between 
s′ and s is smaller than an existing neighbor of s′ stored in �t−1 , replace it with the query s. 
After the above updates, we finally achieve a new document graph �t

For clarity, the full Update step of OLapDMM is outlined in Algorithm 3. 
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3.4.3  Summary of OLapDMM optimization

For clarity, the full optimization process of OLapDMM can be summarized as follows: (1) 
Simultaneously initialize the parameters, i.e., R, � , � , �̂  , B and E, and the document graph 
�1 of the first selected mini-batch �1 ; (2) at each outer iteration t,3 draw a new mini-batch 
�t , and find the approximate R nearest neighbors of �t using Algorithm 2; (3) update the 
document graph �t−1 using Algorithm 3, leading to a new one �t ; (4) update the variational 
parameters � of �t and all its approximate neighbors, i.e., �̂t ; (5) update the expected num-
ber counts {ℕ�

k
,ℕ

�

kv
,ℕ

�

k
} using Eqs. 16, 17 and 18.

In summary, we outline the optimization of LapDMM in Algorithm 4.

3.4.4  Time complexity of OLapDMM

In this subsection, we discuss the time complexity of OLapDMM. To this end, we divide 
the OLapDMM optimization into two key parts, i.e., the update of the variational param-
eter � and the search and update of the document graph � . We now analyze them one by 
one.

Time complexity of � update: At each outer iteration of OLapDMM, the � update of 
a short text requires O(KN) time (ref. Eq. 8). After drawing a mini-batch of M short texts, 
we need to update the � of both them and their R neighbors, requiring at most O(M̂KN) 
time,4 where we define M̂ = M(R + 1) for convenience. At each inner iteration, each short 
text performs the Newton-Raphson update for its corresponding � , spending O(T̂KR) times. 
Therefore, the inner iteration totally requires O(T̂M̂KR) time. In summary, the total time 
complexity of � update is O(TM̂KN + TT̂M̂KR).

Time complexity of search and � update: Reviewing Algorithm 2, given a query short 
text it actually restarts an E-stepsize nearest neighbor expansion (NN-expansion) B times 
for collecting candidate neighbors ℂ , and then select approximate R nearest neighbors from 
ℂ . The time costs of NN-expansion and neighbor selection are both proportional to the size 
of ℂ(s) . Therefore, for each short text the total time cost of neighbor search is O(BER), and 
further the time complexity of a mini-batch is O(MBER). Reviewing Algorithm 3, its main 
cost is to update the current mini-batch neighbors’ neighbors stored in � . Obviously, this 
needs O(MR2) time. In summary, the total time complexity of the search and update of � is 
O(T(MBER +MR2)).

Summary and discussion: Following the above analysis, we present that the overall 
time complexity of OLapDMM is O(TM̂KN + TT̂M̂KR + T(MBER +MR2)) , outlined in 
Table 2. Naturally, the time cost of OLapDMM is much less than that of batch LapDMM. 
First, at each outer iteration, OLapDMM only updates the variational parameters of M̂ 
short texts, instead of the whole corpus of D ones, i.e., �M ≪ D . Second, in OLapDMM, 
the time cost of neighbor search is totally O(T(MBER +MR2)) , where the parameters of B, 
E and R are often very small numbers. Therefore, this step of OLapDMM is much efficient 
than that of batch LapDMM, requiring expensive O(D2) time.

Overall, we suggest that OLapDMM can achieve much faster inference than batch Lap-
DMM, and it is practical to learn topics over even massive short texts.

3 At the first iteration, we can directly obtain R neighbors of �
1
 from �

1
.

4 Some of the neighbors may be the same.
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4  Experiment

In this section, we present the empirical results on various tasks.

4.1  Experimental setup

Datasets: For evaluations, we employed five datasets, including four small datasets and 
one large dataset. Their descriptions are outlined below.

– Trec5 The Trec question dataset involves 6 question types of {Abbreviation, Entity, 
Description, Human, Location, Numeric}. It contains 5952 questions with a vocabulary 
of 8392 words.

– Snippets6 The Snippets dataset was selected from the results of web search transac-
tion using predefined phrases of 8 different domains (Phan et  al. 2008), i.e., {Busi-
ness, Computers, Health, Education, Culture, Engineering, Sports, Politics}. It contains 
12,340 research results with a vocabulary of 30,445 words.

– StackOverFlow7 (SOF) The original SOF dataset was published in Kaggle.com, which 
collects 3 millions question titles from July 31st, 2012 to August 14, 2012. In our 
experiments, we use a subset of 20,000 samples from 20 different tags (Xu et al. 2017), 
i.e., {svn, oracle, bash, apache, excel, matlab, cocoa, visual-studio, osx, wordpress, 
spring, hibernate, scala, sharepoint, ajax, drupal, qt, haskell, linq, magento}. This sub-
set involves a vocabulary of 17,996 words.

– BaiduQA8 This dataset was collected by Cheng et al. (2014), crawling 189,080 question 
samples from a popular Chinese Q&A website. The question samples are classified into 
35 categories.

– Tweets The Tweets dataset consists of 10 million Twitter posts crawled from the Inter-
net. It involves a vocabulary of 109.345 words.

After removals of stopwords, the statistics of datasets are summarized in Table 3.

Table 3  Summary of the datasets

D: the number of documents. V: the number of unique words. N : the 
average document length. L: the number of categories

Dataset D V N L

Trec 5952 8392 4.94 6
Snipptes 12,340 30,445 17.5 8
StackOverFlow (SOF) 20,000 17,996 4.93 20
BaiduQA 189,080 26,565 3.94 35
Tweets 10 million 109.345 4.87 −

5 http:// cogco mp. cs. illin ois. edu/ Data/ QA/ QC/.
6 http:// jwebp ro. sourc eforge. net/ data- web- snipp ets. tar. gz.
7 https:// github. com/ jacoxu/ STC2.
8 http:// zhidao. baidu. com.

http://cogcomp.cs.illinois.edu/Data/QA/QC/
http://jwebpro.sourceforge.net/data-web-snippets.tar.gz
https://github.com/jacoxu/STC2
http://zhidao.baidu.com
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Baseline models We selected five state-of-the-art topic models of short texts as baseline 
methods. Descriptions and model-specific settings are outlined below.

– DMM Nigam et al. (2000), Yin and Wang (2014): This is the ancestor method of our 
models. In the experiment, it is inferred using collapsed variational inference.

– GPU-DMM Li et al. (2016a, 2017): This is an extension of DMM with word embed-
dings. We use the Gibbs sampling code provided by its authors.9

– GPU-PDMM Li et al. (2017): This model is an extension of GPU-DMM, which allows 
each short text to be associated with multiple topics using a Poisson prior.

– BTM Yan et al. (2013), Cheng et al. (2014): The model directly exploits biterms over 
the whole corpus. We use the Gibbs sampling code provided by its authors.10

– Latent topic model (LTM) Li et al. (2018c): This is a LDA-based topic model by adap-
tively aggregating short texts. The Gibbs sampling is also used to infer it.

For all models, the Dirichlet priors � and � are set to 0.1 and 0.01, respectively. The param-
eters of baseline models are tuned following the suggestions discussed in their original 
papers. The basic parameters of LapDMM and OLapDMM are empirically set as: T̂ = 5 , 
R = 9 , � = 0.1 and � = 0.1.

Besides, GPU-DMM, GPU-PDMM and our models require word embeddings. For 
the English datasets, we employ the pre-trained 100-dimensional GloVe11 word embed-
dings (i.e., the ones trained on Wikipedia + Gigaword), and for the Chinese dataset, i.e., 
BaiduQA, we employ the pre-trained 300-dimensional Chinese word embeddings12 trained 
on Baidu Encyclopedia (Li et al. 2018b).

4.2  Evaluation of LapDMM

We first compare LapDMM with baseline models on four small datasets, i.e., Trec, Snip-
pets, SOF and BaiduQA, across a qualitative document topic visualization task and three 
quantitative tasks, i.e., topic quality, document clustering and classification.

For clarity, the versions of LapDMM with document graph measured by term frequency 
and WMD are referred to as LapDMMT and LapDMMW , respectively.

4.2.1  Document topic visualization

We empirically evaluate whether LapDMM can estimate more accurate topic representa-
tions for documents, i.e., alleviating the sensitivity problem of DMM mentioned in the 
introduction section. To this end, we illustrate some example inferred topics of documents 
learnt by DMM and LapDMMW across StackOverFlow (i.e., when K = 20).

Specifically, the inferred topics (i.e., the topics with the largest variational parameter) of 
five example neighboring documents are presented in Table 4. Intuitively, those documents 
are more likely talking about the topic of “linq”. However, DMM produces that three of 
them are dominated by other topics, i.e., “excel”, “oracle” and “matlab”. In these cases, 

9 https:// github. com/ Nobod yWHU/ GPUDMM.
10 http:// code. google. com/p/ btm/.
11 https:// nlp. stanf ord. edu/ proje cts/ glove/.
12 https:// github. com/ Embed ding/ Chine se- Word- Vecto rs.

https://github.com/NobodyWHU/GPUDMM
http://code.google.com/p/btm/
https://nlp.stanford.edu/projects/glove/
https://github.com/Embedding/Chinese-Word-Vectors
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that maybe caused by some less discriminative words, e.g., return, setup and column, 
which are associated with less weights for the topic of “linq”, but they equally contribute 
to the final inferred topics of documents compared with the discriminative word linq. In 
contrast to DMM, the inferred topics by LapDMMW are more consistent with the ground-
truth topic of “linq” in 4/5 documents. The observation indicates that the manifold regu-
larization can alleviate the sensitivity problem of DMM to some extent. According to the 
update equation of LapDMM, i.e., Eq. 9, the variational parameters of neighboring docu-
ments are jointly updated, therefore the larger topics shared by neighboring documents are 
strengthened by each other. However, a failure case, i.e., the fifth document, also happens, 
where DMM beats LapDMMW by achieving the ground-truth topic. The reason is that the 
inferred topic of each document maybe also affected by inaccurate topic estimations from 
neighboring documents. We examine all neighbors of the fifth document, and found that 
about one-third neighbors produce inaccurate topic proportions, so as to validate our analy-
sis. (PS: Note that although those five documents are neighbors each other, they may not 
share all same neighbors.)

4.2.2  Evaluation by topic quality

We present the empirical results on the task of topic quality. We quantitatively measure 
the quality of topics using the Topic Coherence (TC) score, which is computed by count-
ing co-occurrences of their top words (Newman et al. 2010a, b). The intuition is that for 
any topic, more co-occurrences between its top words, more semantically coherent it is. 
Towards reproducible evaluations, we compute the TC scores using the public TC project13 
developed by Roder et al. (2015). We use the setting of “ CV ”. Specifically, for the English 
datasets, the topical top word co-occurrences are counted on the default reference corpus, 
and for the Chinese dataset, i.e., BaiduQA, the co-occurrences are counted on an extra ref-
erence corpus of 2 millions documents crawled from Baidu Encyclopedia.

We present the average TC scores of top-10 words of all models in Table  5. Several 
observations are made below.

Table 4  We illustrate several inferred topics of example neighboring documents, where the stopwords are 
denoted by Italics

For each document, the topic with largest variational parameter (in brackets) is presented

Document Inferred topic

DMM LapDMM
W

How do I fill a dataset from a linq query resultset? linq (0.32) linq (0.57)
Return typed datatable from linq query excel (0.33) linq (0.35)
Updating columns with the primary key using linq oracle (0.22) linq (0.31)
Help required to optimize linq query matlab (0.19) linq (0.41)
How do i get the min from a linq to dataset query linq (0.31) oracle (0.29)

13 https:// github. com/ AKSW/ Palme tto/ wiki/ Coher ences.

https://github.com/AKSW/Palmetto/wiki/Coherences
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• LapDMMW performs the best among all models, where it ranks the first in most 
(i.e., 6/8) settings, indicating that LapDMMW enables to learn more coherent topics 
from short texts. For example, the TC scores of LapDMMW are about 0.01∼0.04(2∼
9%) higher than those of GPU-DMM.

• LapDMMT performs quite competitive with GPU-DMM, BTM and LTM, especially 
the significant gain on Trec compared with BTM. This implies that LapDMMT is 
also capable of outputting coherent topics.

• We observe that both LapDMMT and LapDMMW significantly performs better than 
DMM, e.g., achieving about 0.01∼0.03 and 0.03∼0.04 (2∼ 7% and 7 ∼9%) higher 
TC scores on Snippets and BaiduQA, respectively. Those results raise the fact that 
the variational manifold regularization can effectively improve the quality of topics 
learnt from English as well as Chinese short texts.

Specifically, since the TC scores measure the topic quality of top topical words, we can 
discuss the effect of word embeddings that are associated with the semantic information 
of words. Observations and discussions are given below.

• The three DMM variants with word embeddings, i.e., GPU-DMM, GPU-PDMM and 
LapDMMW , can perform higher TC scores than DMM in most settings. For exam-
ple, the performance gains of GPU-PDMM and LapDMMW are about 0.01∼0.02 (2∼
5%) and 0.02∼0.04 (5∼9%), respectively. The results directly indicate that the word 
embeddings can effectively improve the quality of topics extracted from short texts. 
Naturally, the observation is reasonable since the word embeddings are capable of 
capturing similar words, so as to improve coherent topics.

Table 5  Results of topic coherence scores (mean±std)

Best results are highlighted in bold
“‡ ” means that the gains of both versions of LapDMM are statistically significant simultaneously (paired 
sample t-test at 0.01 level)

Model Topic Trec Snippets SOF BaiduQA

DMM K=25 0.44±0.07‡ 0.43±0.07‡ 0.37±0.08‡ 0.45±0.06‡

K=50 0.46±0.07‡ 0.43±0.09‡ 0.34±0.08‡ 0.44±0.05‡

GPU-DMM K=25 0.47±0.07 0.43±0.06‡ 0.38±0.07 0.45±0.06‡

K=50 0.47±0.07 0.43±0.08‡ 0.35±0.06‡ 0.45±0.09‡

GPU-PDMM K=25 0.46±0.09 0.44±0.06‡ 0.37±0.07 0.46±0.07
K=50 0.47±0.08 0.45±0.07‡ 0.35±0.08‡ 0.45±0.07‡

BTM K=25 0.35±0.04‡ 0.43±0.06‡ 0.40±0.07 0.47±0.09
K=50 0.36±0.06‡ 0.45±0.06‡ 0.36±0.07 0.46±0.07

LTM K=25 0.48±0.07 0.47±0.07 0.36±0.08‡ 0.47±0.07‡

K=50 0.48±0.07 0.45±0.08 0.35±0.07‡ 0.45±0.08‡

LapDMM
T

K=25 0.46±0.08 0.45±0.07 0.37±0.07 0.46±0.08
K=50 0.47±0.08 0.45±0.09 0.36±0.09 0.47±0.08

LapDMM
W

K=25 0.48±0.06 0.46±0.08 0.39±0.09 0.48±0.07
K=50 0.49±0.08 0.47±0.08 0.37±0.08 0.47±0.06
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• LapDMMW consistently outperforms LapDMMT . This further indicates the effec-
tiveness of incorporating word embeddings, since LapDMMW employs the word 
embeddings-based WMD, which can better capture similarities between short texts 
at the semantic level.

• The version of LapDMM without word embeddings, i.e., LapDMMT , performs com-
petitive with GPU-DMM and GPU-PDMM, while consistently outperforms DMM. 
Based on this observation, we consider that the manifold regularization is also effective 
for improving the topic quality. The reason is that the manifold regularization enables 
to enrich word co-occurrences from nearest neighboring documents to some extent.

4.2.3  Evaluation by clustering

We evaluate our models by the task of document clustering. To apply topic models for 
clustering, we refer to each topic as a cluster, and set the number of topics to the true cat-
egory number of datasets. For models trained by Gibbs sampling, i.e., GPU-DMM, GPU-
PDMM, BTM and LTM, each document is assigned to the topic with the largest probabil-
ity of topic sampling after burn-in iterations; for models trained by collapsed variational 
inference, i.e., DMM and our LapDMM, each document is assigned to the topic with larg-
est variational parameter.

We employ two popular clustering metrics, i.e., ACCuracy (ACC) and Normalized 
Mutual Information (NMI). Let � and � be the true category set and the prediction cluster 
set of a given dataset, respectively. Then, the NMI score can be computed by:

where MI(�,�) denotes the mutual information of � and � ; and H(⋅) denotes the entropy. 
Besides, for any document d, let yd and cd denote the true category and prediction cluster, 
respectively. Then, the ACC  score can be computed by:

where I(⋅) denotes the indicator function; and map
(
cd
)
 is the mapping function between cd 

and yd , computed by the Hungarian algorithm. Higher values of NMI and ACC  imply better 
performance.

We independently run each model 10 times, and report the average scores in Table 6. 
We observe the following comparisons.

• Surprisingly, both LapDMMT and LapDMMW significantly outperform all baseline 
models on datasets of Trec, Snippets and SOF, which contain relatively less short texts, 
i.e., less than 20,000. For example, the performance gains of NMI achieve about 0.15∼
0.17 (120∼168%) across Trec and those of ACC  are even about 0.23∼0.2 (46∼54%) 
across SOF. The possible reason is that with small numbers of short texts, the baseline 
models can be by no means sufficiently trained to discover accurate topical structures 
of corpora. In this situation, the variational manifold regularization enables to effec-
tively enhance the topic structure discovery by preserving local neighborhood struc-
ture of short texts, i.e., linking neighboring ones. We conclude that LapDMM is a very 
competitive candidate given smaller datasets of short texts.

(19)NMI(�,�) =
MI(�,�)√
H(�)H(�)

,

(20)ACC =

∑D

d=1
I
�
yd,map

�
cd
��

D
,
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• Our LapDMMT and LapDMMW also consistently perform better than all baseline mod-
els on BaiduQA, which contains relatively more short texts, i.e., 189,080. This further 
indicates the variational manifold regularization is beneficial for short text clustering. 
However, we found that the performance gain on BaiduQA is less than those on other 
smaller datasets. For example, the NMI and ACC scores of LapDMMW are only about 
0.01(2% ) and 0.04(9% ) higher than those of DMM, respectively. This may imply the 
affect of manifold regularization gets smaller as the number of short texts increases.

• Unlike the results of topic coherence evaluation, we observe that LapDMMT is com-
petitive with LapDMMW on the task of clustering. This is an interpretable observa-
tion: Note that the TC score measures the topic coherence by counting topical top 
word co-occurrences on big extra reference corpora. while the WMD depends on word 
embeddings that are trained by exploring the word context information (including word 
co-occurrences) of extra reference corpora. Therefore the WMD is beneficial for TC 
scores, leading to superior performance for LapDMMW . In contrast, the variational 
manifold regularization can directly enhance the clustering by linking neighboring 
short texts, but is insensitive to the types of neighbors.

In summary, we consider that both versions of LapDMM are capable of achieving superior 
performance for short text clustering, especially for the datasets with relatively small num-
bers of short texts. Our empirical results are consistent with the previous study of Cai et al. 
(2008), where it has shown that the manifold regularization methodology significantly 
improved the clustering performance of PLSI.

Table 6  Clustering results of NMI and ACC (mean±std)

Best results are highlighted in bold
“‡ ” means that the gains of both versions of LapDMM are statistically significant simultaneously (paired 
sample t-test at 0.01 level)

Model Metric Trec Snippets SOF BaiduQA

DMM NMI 0.125±0.06‡ 0.526±0.05‡ 0.457±0.05‡ 0.472±0.04‡

ACC 0.355±0.05‡ 0.698±0.04‡ 0.494±0.03‡ 0.419±0.03‡

GPU-DMM NMI 0.127±0.04‡ 0.544±0.02‡ 0.439±0.01‡ 0.464±0.02‡

ACC 0.352±0.03‡ 0.723±0.02‡ 0.482±0.03‡ 0.407±0.04‡

GPU-PDMM NMI 0.133±0.02‡ 0.527±0.03‡ 0.442±0.02‡ 0.469±0.02‡

ACC 0.362±0.04‡ 0.711±0.04‡ 0.489±0.03‡ 0.411±0.02‡

BTM NMI 0.109±0.05‡ 0.521±0.02‡ 0.429±0.02‡ 0.445±0.01‡

ACC 0.337±0.04‡ 0.683±0.04‡ 0.472±0.01‡ 0.412±0.03‡

LTM NMI 0.114±0.06‡ 0.539±0.02‡ 0.442±0.01‡ 0.456±0.02‡

ACC 0.348±0.05‡ 0.705±0.05‡ 0.498±0.02‡ 0.418±0.01‡

LapDMM
T

NMI 0.292±0.02 0.634±0.04 0.641±0.01 0.482±0.01
ACC 0.499±0.05 0.761±0.06 0.728±0.02 0.461±0.01

LapDMM
W

NMI 0.288±0.04 0.653±0.01 0.645±0.02 0.486±0.01
ACC 0.484±0.05 0.793±0.03 0.710±0.05 0.457±0.03
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4.2.4  Evaluation by classification

We further evaluate our models by the task of document classification. For each model, we 
train it on the datasets, and exploit the SW representation described in Li et al. (2016a) as 
the feature vectors of short texts. Then, we feed those feature vectors into SVMs14 to train 
text classifiers. The ACcuracy (AC) and Macro-F1 (MaF1) are used to measure the classifi-
cation performance. Higher values of AC and MaF1 imply better performance.

For each dataset, we conduct a 5-fold cross validation evaluation. The average AC and 
MaF1 scores of 10 independent runs are shown in Fig. 2. The observations are described 
below.

• First, our LapDMMT and LapDMMW significantly outperform all baseline models 
across the datasets of Trec and SOF, where the improvements are higher than 0.17 
( 25% ) and 0.09 ( 13% ), respectively. That is, our models can output more discriminative 
topical representations for short texts, being beneficial for improving classification per-
formance.

• We also observe significant improvements of our models on the datasets of Snippets 
and BaiduQA, where their AC and MaF1 scores are about 0.04 ( 5% ) and 0.02 ( 4% ) than 
those of baseline models, respectively. Those results provide further evidences that the 
topical representation learnt by our models are more discriminative.

• Besides, we can see that for all models, the AC and MaF1 scores of K = 60, 80 , and 
80 are higher than those of K = 40 in most cases. The possible reason is that using 
more topics can discover more accurate document-level structures to some extent. This 

Fig. 2  Classification results of AC and MaF1 with different topic numbers (i.e., K=40, 60, 80, 100) across 
the datasets of a, e Trec, b, f Snippets, c, g SOF and d, f BaiduQA

14 http:// scikit- learn. org/.

http://scikit-learn.org/
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empirical result is consistent with the previous study of Li et al. (2016a), where it has 
also reported better classification scores with more topics.

4.2.5  Parameter analysis of R and �

We now empirically evaluate two crucial parameters, including the nearest neighbor 
number R and learning rate � in the inner Newton-Raphson iteration. Towards this goal, 
we examine the clustering (i.e., NMI and ACC ) and classification (i.e., AC) results of 
LapDMMW by varying the two parameters’ values. In terms of classification, we fix K 
to 60.

• We first evaluate the impact of different R values over the set {1, 2,⋯ , 10} . The empiri-
cal results are shown in Fig. 3. Roughly speaking, the overall trend is that the perfor-
mance becomes better as the value of R increases, e.g., the AC scores of classification 
across Trec. The best scores are achieved at R = 8 and 9 in most cases. The ACC  scores 
of clustering seem a bit unsmooth, but LapDMMW also achieves higher ACC  values 
when R = 8 and 9. Those results empirically tell us that using more nearest neighbors 
in the variational manifolds may be helpful. Therefore, we fix R = 9 in our experi-
ments, and suggest to set a relatively larger value of R in practical applications.

• Then, we examine the impact of � with different values over the set {0.1, 0.2,⋯ , 0.9} . 
The experimental results are shown in Fig. 4. Overall speaking, we can observe that the 
performance gap between different � values are unobvious. Therefore, we argue that our 

Fig. 3  Evaluation results of different R values

Fig. 4  Evaluation results of different � values
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models are insensitive to � . That is, many efforts on refining � are not required, making 
our models more practical. Besides, we can see that smaller values of � perform a little 
better. In some sense, the learning rate � describes the importance degree of the vari-
ational manifold regularizer during model training. A smaller value of � is safer when 
we cannot accurately find the nearest neighbors of short texts. We thus suggest � = 0.1 
as the default setting.

4.3  Evaluation of OLapDMM

In this section, we evaluate OLapDMM. For clarity, the versions of OLapDMM with docu-
ment graph measured by term frequency and WMD are referred to as OLapDMMT and 
OLapDMMW , respectively.

4.3.1  Comparison with online versions of baseline models

We compare OLapDMM on the large dataset of Tweets, which contains 10 million short 
texts. For fairness, we compare OLapDMM against online versions of baseline models 
with the optimization spirit of mini-batches, and refer to them as ODMM, OGPU-DMM, 
OGPU-PDMM, OBTM and OLTM, respectively. In terms of ODMM, it directly follows 
the optimization of stochastic collapsed variational inference (Foulds et al. 2013). In terms 
of other baselines using Gibbs sampling, their online versions follow the efficient inference 
methodology proposed in Yao et al. (2009). For all online versions of models, the mini-
batch size M is set to 210.

Since the Tweets dataset is without any category label, we only evaluate OLapDMM 
across the topic quality task. The TC scores with K = {50, 100, 150, 200} are shown in 
Table 7. Overall, we can see that our models perform the best in all cases, indicating the 
effectiveness of OLapDMM on collections of massive short texts. Several observations are 
made below.

• Both OLapDMMT and OLapDMMW consistently outperform ODMM on different 
topic numbers. The performance gains over ODMM tell us that the up-to-date docu-

Table 7  Topic coherence scores 
of online models across the 
Tweets dataset (mean±std)

Best results are highlighted in bold
 “ ‡ ” means that the gains of both versions of OLapDMM are statisti-
cally significant simultaneously (paired sample t-test at 0.01 level)

Model K=50 K=100 K=150 K=200

ODMM 0.39±0.09‡ 0.41±0.07‡ 0.39±0.08‡ 0.41±0.06‡

OGPU-DMM 0.39±0.07 0.40±0.08‡ 0.37±0.07‡ 0.39±0.06‡

OGPU-PDMM 0.40±0.09‡ 0.39±0.07‡ 0.37±0.06‡ 0.41±0.06‡

OBTM 0.38±0.06‡ 0.40±0.06‡ 0.39±0.08 0.40±0.07‡

OLTM 0.40±0.08 0.40±0.07‡ 0.37±0.08‡ 0.41±0.06‡

OLapDMM
T

0.41±0.07 0.42±0.06 0.41±0.07 0.42±0.06
OLapDMM

W
0.42±0.04 0.43±0.07 0.40±0.07 0.44±0.06
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ment graph can find high-quality approximate nearest neighbors for short texts, ena-
bling to maintain the effectiveness of the variational manifold regularization.

• The TC scores of ODMM are higher than those of other baseline models, i.e., OGPU-
DMM, OGPU-PDMM, OBTM and OLTM, in most cases. The possible reason is that 
ODMM is inferred by stochastic collapsed variational inference (Foulds et  al. 2013) 
that may be more stable than the fast Gibbs sampling (Yao et al. 2009) used in other 
baseline models.

• OLapDMMW can still learn more coherent topics, as well as achieving higher TC 
scores, than OLapDMMT . This further indicates that the document graph measured 
by the WMD can enhance the topic coherence, since it involves the semantic dis-
tances of short texts in some sense.

Fig. 5  Comparisons between OLapDMM and LapDMM across the topic coherence scores: a Trec, b Snip-
pets, c SOF and d BaiduQA. Here, M = ∞ denotes LapDMM 
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4.3.2  Comparison with batch LapDMM

We compare OLapDMM with the batch LapDMM on four small datasets, i.e., Trec, 
Snippets, SOF and BaiduQA, by topic coherence, clustering and classification tasks. 
For OLapDMM, we vary different values of M (i.e., the mini-batch size) over the set 
{27, 28, 29, 210, 211,∞} . Specially, we notice that M = ∞ denotes LapDMM.

The results of TC ( K = 50 ), clustering NMI and classification AC scores ( K = 60 ) are 
plotted in Figs. 5, 6 and 7, respectively. Details of observations are outlined below.

• For clustering and classification tasks, the performance gap between OLapDMM 
and LapDMM is significant when the mini-batch size M is relatively small. For 
example, in terms of the Trec and BaiduQA datasets, the AC scores of LapDMMW 
are about 0.1 (50%) higher than those of OLapDMMW when M = 27 and 28 . The 
reported results indicate that the discriminative power of document-level topical fea-

Fig. 6  Comparisons between OLapDMM and LapDMM across the clustering NMI scores: a Trec, b Snip-
pets, c SOF and d BaiduQA. Here, M = ∞ denotes LapDMM 
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tures is relatively sensitive to small mini-batch sizes. On the other hand, we observe 
that the performance trend of TC scores is stable even with small values of M. That 
implies OLapDMM enables to efficiently output coherent topics.

• The NMI and AC scores of OLapDMM consistently become higher as the size of 
mini-batch M increases. The result is reasonable since using larger values of M can 

Fig. 7  Comparisons between OLapDMM and LapDMM across the classification AC scores: a Trec, b Snip-
pets, c SOF and d BaiduQA. Here, M = ∞ denotes LapDMM 

Table 8  Average per-iteration (i.e., outer iteration for LapDMM and OLapDMM) runtime (second) evalua-
tion of OlapDMM and LapDMM across SOF (top section) and BaiduQA (bottom section)

Here, M = ∞ denotes LapDMM

Model M = 2
7

M = 2
8

M = 2
9

M = 2
10

M = 2
11 M = ∞

OLapDMM
T

0.031 0.085 0.209 0.460 1.024 0.985
OLapDMM

W
0.041 0.112 0.253 0.518 1.112 0.985

OLapDMM
T

0.024 0.068 0.150 0.414 0.953 8.233
OLapDMM

W
0.031 0.081 0.185 0.450 0.996 8.233
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accurately update the global variable, and simultaneously find more precise nearest 
neighbors, being beneficial for the variational manifold regularization.

• OLapDMM becomes even competitive with LapDMM given larger mini-batches. 
For example, we can observe that the NMI scores of OLapDMM are very close to 
those of LapDMM when M = 210 and 211 . Therefore, we argue that OLapDMM can 
be a promising candidate to LapDMM for real-world applications, where fast infer-
ence is required.

4.3.3  Efficiency evaluation

In this subsection, we compare the runtime between OLapDMM, batch LapDMM and 
online versions of baseline methods. We run each method until 10000 (outer) iterations 
when K = 20 , and present the average per-iteration (i.e., outer iteration for LapDMM and 
OLapDMM) runtime (in seconds).

• As shown in Table 8, we present the runtimes of OLapDMM and LapDMM15 on two 
smaller datasets of SOF and BaiduQA. In contrast to LapDMM, as expected we observe 
that OLapDMM performs more efficient when the mini-batch size (i.e., M) is relatively 
small. On the dataset of BaiduQA, OLapDMM is about 20 and 10 faster than LapDMM 
when M = 210 and 211 , while achieving very competitive performance on clustering and 
classification tasks as the results shown in Sect. 4.3.2. On the dataset of SOF, the runt-
ime of OLapDMM is a bit higher than that of LapDMM, since in LapDMM we directly 
utilize the pre-computed document graph. Additionally, we can observe that OLap-
DMMW is always less efficient than OLapDMMT . That is because computing WMD 
between short texts is more computationally expensive.

• Then, we compare OLapDMM with online versions of baselines on Tweets, where 
results are presented in Table 9. Overall speaking, we can observe that all those online 
versions are computationally efficient; our OLapDMMs spend more runtimes for each 
iteration but they are still practical in real applications. Again, we observe that OLap-
DMMW is less efficient than OLapDMMT because of the computationally expensive 
WMD in approximate nearest neighbor search and document graph update.

Table 9  Average per-iteration (i.e., outer iteration for OLapDMM) runtime (s) comparisons between OLap-
DMM and online versions of baseline methods across Tweets

Model M = 2
7

M = 2
8

M = 2
9

M = 2
10

M = 2
11

M = 2
12

ODMM 0.002 0.003 0.006 0.013 0.022 0.045
OGPU-DMM 0.004 0.009 0.013 0.021 0.039 0.071
OGPU-PDMM 0.013 0.024 0.041 0.075 0.139 0.255
OBTM 0.006 0.013 0.028 0.055 0.101 0.193
OLTM 0.039 0.080 0.174 0.339 0.653 1.369
OLapDMM

T
0.032 0.078 0.212 0.446 1.014 2.084

OLapDMM
W

0.052 0.127 0.273 0.535 1.091 2.313

15 For the versions of LapDMM, we don’t consider the runtime of the offline document graph construction.
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4.3.4  Parameter analysis of B and E

In addition, we empirically evaluate the two parameters of B and E in the up-to-date docu-
ment graph construction of OLapDMM. We also examine them using clustering NMI and 
classification AC scores (i.e., when K = 60 ) across four small datasets, i.e., Trec, Snippets, 
SOF and BaiduQA. In this evaluation, the mini-batch size M is fixed to 210 . Since the per-
formance trends of different versions of OLapDMM are similar, we only present the results 
of OLapDMMW.

For each of the two parameters, we vary its value over the set {1, 2,… , 9} by fixing the 
other one as 5. The experimental results are plotted in Figs. 8 and 9, respectively. Broadly 
speaking, we can observe that the performance trends of B and E are similar, and simulta-
neously straightforward to understand. Reviewing Algorithm 2, the parameters control the 
repeated number as well as iterative number for searching approximate nearest neighbors, 
therefore larger values naturally tend to achieve more accurate search results, being benefit for 

Fig. 8  Evaluation results of different B values of OLapDMM
W

Fig. 9  Evaluation results of different E values of OLapDMM
W
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OLapDMMW . The observable result is consistent with the analysis, where on all the datasets, 
the NMI and AC scores of OLapDMMW roughly become higher as the values of B and E 
increase. In contrast, the parameter E is more sensitive to smaller values, e.g., the performance 
deteriorates when E = 1, 2 . The possible reason is that given a random initialization, it is 
intractable to compute accurate approximate nearest neighbors with fewer iteration numbers, 
i.e., search steps, from the current document graph. Since the performance tends to be stable 
when B,E ≥ 5 , we fix them to 5 in our experiments.

5  Conclusion and future work

In this article, we investigate how to effectively learn topics from short texts that are extremely 
sparse. To this end, we extend DMM by incorporating the variational manifold regularization 
into its variational objective, leading to a novel topic model, namely LapDMM. The manifold 
constraints can link nearest short texts, so as to spread topical signals among them. We exploit 
term frequency and WMD to construct the document graph that stores the nearest neighbors 
of short texts, where the WMD can measure the semantic distances between short texts. To 
handle collections of massive short texts, we develop an online version of LapDMM, namely 
OLapDMM, with the spirit of stochastic optimization with mini-batches. Carrying this impli-
cations, we exploit an up-to-date document graph, which can efficiently find approximate 
nearest neighbors of short texts. Extensive experiments are conducted to evaluate LapDMM 
and OLapDMM on real-world datasets, which demonstrate that LapDMM significantly out-
performs the state-of-the-art baselines on the tasks of topic quality, document clustering and 
classification across small datasets, and OLapDMM works well on collections of massive 
short texts.

In real-world applications, the huge volume of short texts as well as short text streams, e.g., 
social media posts, is still a primary problem for knowledge mining from short texts using 
topic modeling or any other methodology. Our OLapDMM can be applied as an alternative 
solution for efficiently modeling massive short texts or even stream data, however, it is still 
a “basic” model without touching the rich available side information, e.g., time stamp, rates 
with item comments, citation relationships of paper titles, etc.  For example, in social media, 
emerging bursty topics related to some important events or issues often appear by certain time 
slices (Diao et al. 2012; Yan et al. 2015); texts, such as research papers (i.e., paper titles), refer 
to citation relationships, giving text document networks (Chang and Blei 2009; Zhang et al. 
2013). In the future works, we are going to pay more attention on investigations with side 
information of short texts as well as further problems and topics caused by them.

Appendix

In this “Appendix”, we derive the optimal form of variational distribution q(z|�) , i.e., Eq. 7, in 
detail. Toward this goal, we first describe the joint distribution of a short text collection S and 
topic assignments z with Dirichlet priors � and �:
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where � (⋅) denotes the Gamma function; N̂k is the number of documents assigned to topic 
k; Nkv and Nk are the number of word v assigned to topic k and total number of words 
assigned to topic k, respectively.

The Optimum of Variational Distribution q(z|�) : Since a mean-filed form of q(z|�) (ref. 
Eq. 3) is used, we can independently optimize the variational distribution of each docu-
ment d, i.e., q(zd|�d) . Following Bishop (2006), its optimum q(zd|�d) , holding all other 
variational distributions fixed, can be presented by:

where the superscript “ ¬d ” means the corresponding variables and counts with docu-
ment d excluded. Additionally, the second line of Eq. 22 holds, because the expectation 
�q¬d(z|�)

[
log p(S¬d, z¬d|�, �)] is a constant by fixing q¬d(z|�) . This is inspired by collapsed 

Gibbs sampling (Griffiths and Steyvers 2004), enabling to simplify the computation.
By combing Eq. 21 with Eq. 22, we reach the optimal variational probability of docu-

ment d assigned to topic k (i.e., �dk):

(21)

p(S, z��, �) = ∫ ∫ p(S, z,�,���, �)d�d�

= ∫ ∫ ���(���)
K�
k=1

���
�
�k��

� D�
d=1

p
�
zd��

� Nd�
n=1

�
zdwdn

d�d�

= ∫ ∫ ���(���)
K�
k=1

�
N̂k

k

K�
k=1

���
�
�k��

� V�
v=1

�
Nkv

kv
d�d�

=

⎛⎜⎜⎜⎝

∏K

k=1
�
�
N̂k + �

�

� (D + K�)

� (K�)∏K

k=1
� (�)

⎞⎟⎟⎟⎠

�
K�
k=1

∏V

v=1
�
�
Nkv + �

�

�
�
Nk + V�

� � (V�)∏V

v=1
� (�)

�

∝

⎛
⎜⎜⎜⎝

∏K

k=1
�
�
N̂k + �

�

� (D + K�)

⎞⎟⎟⎟⎠

�
K�
k=1

∏V

v=1
�
�
Nkv + �

�

�
�
Nk + V�

�
�

× �����,

(22)

q(zd|�d) ∝ exp
(
�q¬d(z|�)

[
log p(S, z|�, �)])

∝ exp
(
�q¬d(z|�)

[
log p(S, z|�, �) − log p(S¬d, z¬d|�, �)])

∝ exp

(
�q¬d(z|�)

[
log

p(S, z|�, �)
p(S¬d, z¬d|�, �)

])
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where Ndv is the number of times word v occurring in document d. The third line of Eq. 23 
follows the fact ( m > n):
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