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Abstract
Many real data sets contain numerical features (variables) whose distribution is far from 
normal (Gaussian). Instead, their distribution is often skewed. In order to handle such data 
it is customary to preprocess the variables to make them more normal. The Box–Cox and 
Yeo–Johnson transformations are well-known tools for this. However, the standard maxi-
mum likelihood estimator of their transformation parameter is highly sensitive to outliers, 
and will often try to move outliers inward at the expense of the normality of the central 
part of the data. We propose a modification of these transformations as well as an estima-
tor of the transformation parameter that is robust to outliers, so the transformed data can 
be approximately normal in the center and a few outliers may deviate from it. It compares 
favorably to existing techniques in an extensive simulation study and on real data.

Keywords Anomaly detection · Data preprocessing · Feature transformation · Outliers · 
Symmetrization

1 Introduction

In machine learning and statistics, some numerical data features may be very nonnormal 
(nonGaussian) and asymmetric (skewed) which often complicates the next steps of the 
analysis. Therefore it is customary to preprocess the data by transforming such features 
in order to bring them closer to normality, after which it typically becomes easier to fit a 
model or to make predictions. To be useful in practice, it must be possible to automate this 
preprocessing step.

In order to transform a positive variable to give it a more normal distribution one often 
resorts to a power transformation (see e.g. Tukey 1957). The most often used function is 
the Box–Cox (BC) power transform g� studied by Box and Cox (1964), given by
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Here x stands for the observed feature, which is transformed to g�(x) using a parameter � . 
A limitation of the family of BC transformations is that they are only applicable to positive 
data. To remedy this, Yeo and Johnson (2000) proposed an alternative family of transfor-
mations that can deal with both positive and negative data. These Yeo–Johnson (YJ) trans-
formations h� are given by

and are also characterized by a parameter � . Figure 1 shows both of these transformations 
for a range of � values. In both families � = 1 yields a linear relation. Transformations with 
𝜆 < 1 compress the right tail of the distribution while expanding the left tail, making them 
suitable for transforming right-skewed distributions towards symmetry. Similarly, transfor-
mations with 𝜆 > 1 are designed to make left-skewed distributions more symmetrical.

Estimating the parameter � for the BC or YJ transformation is typically done using max-
imum likelihood, under the assumption that the transformed variable follows a normal dis-
tribution. However, it is well known that maximum likelihood estimation is very sensitive 
to outliers in the data, to the extent that a single outlier can have an arbitrarily large effect 
on the estimate. In the setting of transformation to normality, outliers can yield transforma-
tions for which the bulk of the transformed data follows a very skewed distribution, so no 
normality is attained at all. In situations with outliers one would prefer to make the non-
outliers approximately normally distributed, while the outliers may stay outlying. So, our 
goal is to achieve central normality, where the transformed data look roughly normal in 
the center and a few outliers may deviate from it. Fitting such a transformation is not easy, 
because a point that is outlying in the original data may not be outlying in the transformed 

(1)g�(x) =

{
(x� − 1)∕� if � ≠ 0

log(x) if � = 0.

(2)h𝜆(x) =

⎧
⎪⎨⎪⎩

((1 + x)𝜆 − 1)∕𝜆 if 𝜆 ≠ 0 and x ≥ 0

log(1 + x) if 𝜆 = 0 and x ≥ 0

−((1 − x)2−𝜆 − 1)∕(2 − 𝜆) if 𝜆 ≠ 2 and x < 0

− log(1 − x) if 𝜆 = 2 and x < 0
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Fig. 1  The Box–Cox (left) and Yeo–Johnson (right) transformations for several parameters �
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data, and vice versa. The problem is that we do not know beforehand which points may 
turn out to be outliers in the optimally transformed data.

Some proposals exist in the literature to make the estimation of the parameter � in BC 
more robust against outliers, mainly in the context of transforming the response variable 
in a regression (Carroll 1980; Marazzi et  al. 2009; Riani 2008), but here we are not in 
that setting. For the YJ transformation very few robust methods are available. In (Van der 
Veeken 2010) a trimmed maximum likelihood approach was explored, in which the objec-
tive is a trimmed sum of log likelihoods in which the lowest terms are discarded. We will 
study this method in more detail later.

Note that both the BC and YJ transformations suffer from the complication that their 
range depends on the parameter � . In particular, for the BC transformation we have

whereas for the YJ transformation we have

So, for certain values of � the range of the transformation is a half line. This is not with-
out consequences. First, most well-known symmetric distributions are supported on the 
entire line, so a perfect match is impossible. More importantly, we argue that this can make 
outlier detection more difficult. Consider for instance the BC transformation with � = −1 
which has the range g−1(ℝ+

0
) = (−∞, 1) . Suppose we transform a data set (x1,… , xn) to 

(g−1(x1),… , g−1(xn)) . If we let xn → ∞ making it an extremely clear outlier in the original 
space, then g−1(xn) → 1 in the transformed space. So a transformed outlier can be much 
closer to the bulk of the transformed data than the original outlier was in the original data. 
This is undesirable, since the outlier will be much harder to detect this way. This effect is 
magnified if � is estimated by maximum likelihood, since this estimator will try to accom-
modate all observations, including the outliers.

We illustrate this point using the TopGear dataset (Alfons 2019) which contains infor-
mation on 297 cars, scraped from the website of the British television show Top Gear. 
We fit a Box–Cox transformation to the variable miles per gallon (MPG) which is 
strictly positive. The left panel of Fig. 2 shows the normal QQ-plot of the MPG variable 
before transformation. (That is, the horizontal axis contains as many quantiles from the 
standard normal distribution as there are sorted data values on the vertical axis.) In this 
plot the majority of the observations seem to roughly follow a normal distribution, that 
is, many points in the QQ-plot lie close to a straight line. There are also three far outliers 
at the top, which correspond to the Chevrolet Volt and Vauxhall Ampera (both with 235 
MPG) and the BMW i3 (with 470 MPG). These cars are unusual because they derive most 
of their power from a plug-in electric battery, whereas the majority of the cars in the data 
set are gas-powered. The right panel of Fig. 2 shows the Box–Cox transformed data using 
the maximum likelihood (ML) estimate �̂� = −0.11 , indicating that the BC transformation 
is fairly close to the log transform. We see that this transformation does not improve the 
normality of the MPG variable. Instead it tries to bring the three outliers into the fold, at 

(3)g𝜆(ℝ
+
0
) =

⎧
⎪⎨⎪⎩

(−1∕�𝜆�,∞) if 𝜆 > 0

ℝ if 𝜆 = 0

(−∞, 1∕�𝜆�) if 𝜆 < 0

(4)h𝜆(ℝ) =

⎧
⎪⎨⎪⎩

(−1∕�𝜆 − 2�,∞) if 𝜆 > 2

ℝ if 0 ≤ 𝜆 ≤ 2

(−∞, 1∕�𝜆�) if 𝜆 < 0.



 Machine Learning

1 3

the expense of causing skewness in the central part of the transformed data and creating an 
artificial outlier at the bottom.

The variable Weight shown in Fig. 3 illustrates a different effect. The original vari-
able has one extreme and 4 intermediate outliers at the bottom. The extreme outlier is the 
Peugeot 107, whose weight was erroneously listed as 210 kg, and the next outlier is the tiny 
Renault Twizy (410 kg). Unlike the MPG variable the central part of these data is not very 
normal, as those points in the QQ-plot do not line up so well. A transform that would make 
the central part more straight would expose the outliers at the bottom more. But instead the 
ML estimate is �̂� = 0.83 hence close to � = 1 which would correspond to not transforming 
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Fig. 2  Normal QQ-plot of the variable MPG in the Top Gear dataset (left) and the Box–Cox transformed 
variable using the maximum likelihood estimate of � (right). The ML estimate is heavily affected by the 
three outliers at the top, causing it to create skewness in the central part of the transformed data
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Fig. 3  Normal QQ-plot of the variable Weight in the Top Gear dataset (left) and the transformed variable 
using the ML estimate of � (right). The transformation does not make the five outliers at the bottom stand 
out
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the variable at all. Whereas the MPG variable should not be transformed much but is, the 
Weight variable should be transformed but almost isn’t.

In Sect. 2 we propose a new robust estimator for the parameter � , and compare its sen-
sitivity curve to those of other methods. Section 3 presents a simulation to study the per-
formance of several estimators on clean and contaminated data. Section 4 illustrates the 
proposed method on real data examples, and Sect. 6 concludes.

2  Methodology

2.1  Fitting a transformation by minimizing a robust criterion

The most popular way of estimating the � of the BC and YJ transformations is to use maxi-
mum likelihood (ML) under the assumption that the transformed variable follows a normal 
distribution, as will briefly be summarized in Sect. 2.3. However, it is well known that ML 
estimation is very sensitive to outliers in the data and other deviations from the assumed 
model. We therefore propose a different way of estimating the transformation parameter of 
a transformation.

Consider an ordered sample of univariate observations X = (x(1),… , x(n)) . Suppose we 
want to estimate the parameter � of a nonlinear function g� such that g�(x(1)),… , g�(x(n)) 
come close to quantiles from the standard normal cumulative distribution function � . We 
propose to estimate � as:

Here �̂�M is the Huber M-estimate of location of the g�(x(i)) , and �̂�M is their Huber M-esti-
mate of scale. Both are standard robust univariate estimators (see Huber 1981). The 
pi = (i − 1∕3)∕(n + 1∕3) are the usual equispaced probabilities that also yield the quantiles 
in the QQ-plot (see, e.g., page 225 in Hoaglin et al. (1983)). The function � needs to be 
positive, even and continuously differentiable. In least squares methods �(t) = t2 , but in 
our situation there can be large absolute residuals | g𝜆(x(i))−�̂�

�̂�
−𝛷−1(pi)| caused by outlying 

values of g�(x(i)) . In order to obtain a robust method we need a bounded � function. We 
propose to use the well-known Tukey bisquare �-function given by

The constant c is a tuning parameter, which we set to 0.5 by default here. See section A of 
the supplementary material for a motivation of this choice.

To calculate �̂� numerically, we use the R function optimize() which relies on a com-
bination of golden section search and successive parabolic interpolation to minimize the 
objective of (5).

2.2  Rectified Box–Cox and Yeo–Johnson transformations

In this section we propose a modification of the classical BC and YJ transformations, 
called the rectified BC and YJ transformations. They make a continuously differentiable 
switch to a linear transformation in the tails of the BC and YJ functions. The purpose of 

(5)�̂� = argmin
𝜆

n∑
i=1

𝜌

(
g𝜆(x(i)) − �̂�M

�̂�M
−𝛷−1(pi)

)
.

(6)𝜌bw(x) =

{
1 − (1 − (x∕c)2)3 if |x| ≤ c

1 if |x| > c.
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these modified transformations is to remedy two issues. First, the range of the classical BC 
and YJ transformations depends on � and is often only a half line. And second, as argued in 
the introduction, the classical transformations often push outliers closer to the majority of 
the data, which makes the outliers harder to detect. Instead the range of the proposed modi-
fied transformations is always the entire real line, and it becomes less likely that outliers 
are masked by the transformation.

For 𝜆 < 1 , the BC transformation is designed to make right-skewed distributions more 
symmetrical, and is bounded from above. In this case we define the rectified BC transfor-
mation as follows. Consider an upper constant Cu > 1 . The rectified BC transformation g̊𝜆 
is defined as

Similarly, for 𝜆 > 1 and a positive lower constant C
�
< 1 we put

For the YJ transformation we construct rectified counterparts in a similar fashion. For 
𝜆 < 1 and a value Cu > 0 we define the rectified YJ transformation h̊𝜆(x) as in (7) with g� 
replaced by h�:

Analogously, for 𝜆 > 1 and C
�
< 0 we define h̊𝜆(x) as in (8):

Figure 4 shows such rectified BC and YJ transformations.
What are good choices of C

�
 and Cu ? Since the original data is often asymmetric, we 

cannot just use a center (like the median) plus or minus a fixed number of (robust) stand-
ard deviations. Instead we set C

�
 equal to the first quartile of the original data, and for Cu 

we take the third quartile. Other choices could be used, but more extreme quantiles would 
yield a higher sensitivity to outliers.

2.3  Reweighted maximum likelihood

We now describe a reweighting scheme to increase the accuracy of the estimated �̂� while 
preserving its robustness. For a data set x1,… , xn the classical maximum likelihood estima-
tor for the Yeo–Johnson transformation parameter � is given by the � which maximizes the 
normal loglikelihood. After removing constant terms this can be written as:

where �̂�2
ML,𝜆

 is the maximum likelihood scale of the transformed data given by

(7)g̊𝜆(x) =

{
g𝜆(x) if x ≤ Cu

g𝜆(Cu) + (x − Cu)g
�
𝜆
(Cu) if x > Cu.

(8)g̊𝜆(x) =

{
g𝜆(C�

) + (x − C
�
)g�

𝜆
(C

�
) if x < C

�

g𝜆(x) if x ≥ C
�
.

(9)h̊𝜆(x) =

{
h𝜆(x) if x ≤ Cu

h𝜆(Cu) + (x − Cu)h
�
𝜆
(Cu) if x > Cu.

(10)h̊𝜆(x) =

{
h𝜆(C�

) + (x − C
�
)h�

𝜆
(C

�
) if x < C

�

h𝜆(x) if x ≥ C
�
.

(11)�̂�YJ
ML

= argmax
𝜆

n∑
i=1

−
1

2
log(�̂�2

ML,𝜆
) + (𝜆 − 1) sign (xi) log(|xi| + 1)
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The last term in (11) comes from the derivative of the YJ transformation. Criterion 
(11) is sensitive to outliers since it depends on a classical variance and the unbounded 
term log(1 + |xi|) . This can be remedied by using weights. Given a set of weights 
W = (w1,… ,wn) we define a weighted maximum likelihood (WML) estimator by

where �̂�2
W,𝜆

 now denotes the weighted variance of the transformed data:

If the weights appropriately downweight the outliers in the data, the WML criterion yields 
a more robust estimate of the transformation parameter.

For the BC transform the reasoning is analogous, the only change being the final term that 
comes from the derivative of the BC transform. This yields

In general, finding robust data weights is not an easy task. The problem is that the observed 
data X = (x1,… , xn) can have a (very) skewed distribution and there is no straightforward 
way to know which points will be outliers in the transformed data when � is unknown. But 
suppose that we have a rough initial estimate �0 of � . We can then transform the data with 
�0 yielding h�0 (X) = (h�0 (x1),… , h�0 (xn)) , which should be a lot more symmetric than the 

(12)�̂�2
ML,𝜆

=
1

n

n∑
i=1

(h𝜆(xi) − �̂�ML,𝜆)
2 where �̂�ML,𝜆 =

1

n

n∑
i=1

h𝜆(xi) .

(13)�̂�YJ
WML

= argmax
𝜆

n∑
i=1

wi

[
−
1

2
log(�̂�2

W,𝜆
) + (𝜆 − 1) sign (xi) log(1 + |xi|)

]

(14)�̂�2
W,𝜆

=

∑n

i=1
wi(h𝜆(xi) − �̂�W,𝜆)

2

∑n

i=1
wi

where �̂�W,𝜆 =

∑n

i=1
wi h𝜆(xi)∑n

i=1
wi

.

(15)�̂�BC
WML

= argmax
𝜆

n∑
i=1

wi

[
−
1

2
log(�̂�2

W,𝜆
) + (𝜆 − 1) log(xi)

]
.
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Fig. 4  The rectified Box–Cox (left) and Yeo–Johnson (right) transformations for a range of parameters � . 
They look quite similar to the original transformations in Fig. 1 but contract less on the right when 𝜆 < 1 , 
and contract less on the left when 𝜆 > 1
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original data. We can therefore compute weights on h�0 (X) using a classical weight func-
tion. Here we will use the “hard rejection rule” given by

with �̂� and �̂� as in (5). With these weights we can compute a reweighted estimate �̂�1 by the 
WML estimator in (13). Of course, the robustness of the reweighted estimator will depend 
strongly on the robustness of the initial estimate �0.

Note that the reweighting step can be iterated, yielding a multistep weighted ML estima-
tor. In simulation studies we found that more than 2 reweighting steps provided no further 
improvement in terms of accuracy (these results are not shown for brevity). We will always 
use two reweighting steps from here onward.

2.4  The proposed method

Combining the above ideas, our proposed reweighted maximum likelihood (RewML) 
method consists of the following steps:

• Step 1 Compute the initial estimate �0 by maximizing the robust criterion  (5). When 
fitting a Box–Cox transformation, plug in the rectified function g̊𝜆 . When fitting a Yeo–
Johnson transformation, use the rectified function h̊𝜆 . Note that the rectified transforms 
are only used in this first step.

• Step 2 Using �0 as starting value, compute the reweighted ML estimate from (15) when 
fitting the unrectified Box–Cox transform g� , and from (13) when fitting the unrectified 
Yeo–Johnson transform h�.

• Step 3 Repeat step 2 once and stop.

2.5  Other estimators of �

We will compare our proposal with two existing robust methods.
The first is the robustified ML estimator proposed by Carroll (1980). The idea was to 

replace the variance �̂�2
ML,𝜆

 in the ML formula (11) by a robust variance estimate of the 
transformed data. Carroll’s method was proposed for the BC transformation, but the idea 
can be extended naturally to the estimation of the parameter of the YJ transformation. The 
estimator is then given by

where �̂�M,𝜆 denotes the usual Huber M-estimate of scale (Huber 1981) of the transformed 
data set (h�(x1),… , h�(xn)).

The second method is the maximum trimmed likelihood (MTL) estimator of Van der 
Veeken (2010). Given a data set of size n, and a fixed number h that has to satisfy 
⌈ n

2
⌉ < h < n , this method looks for the parameter �̂� which produces a subset of h consecu-

tive observations which maximize the ML criterion (11).

(16)wi =

{
1 if |h𝜆0 (xi) − �̂�| ⩽ 𝛷−1(0.995) �̂�

0 if |h𝜆0 (xi) − �̂�| > 𝛷−1(0.995) �̂�

(17)�̂�Carroll = argmax
𝜆

n∑
i=1

−
1

2
log(�̂�2

M,𝜆
) + (𝜆 − 1) sign (xi) log(1 + |xi|)
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2.6  Sensitivity curves

In order to assess robustness against an outlier, stylized sensitivity curves were introduced on 
page 96 of Andrews et al. (1972). For a given estimator T and a cumulative distribution func-
tion F they are constructed as follows: 

1. Generate a stylized pseudo data set X0 of size n − 1 : 

 where the pi for i = 1,… , n − 1 are equispaced probabilities that are symmetric about 
1/2. We can for instance use pi = i∕n.

2. Add to this stylized data set a variable point z to obtain 

3. Calculate the sensitivity curve in z by 

 where z ranges over a grid chosen by the user. The purpose of the factor n is to put 
sensitivity curves with different values of n on a similar scale.

The top panel of Fig. 5 shows the sensitivity curves for several estimators of the parameter � 
of the YJ transformation. We chose F = � so the true transformation parameter � is 1, and 
n = 100 . The maximum likelihood estimator ML of (11) has an unbounded sensitivity curve, 
which is undesirable as it means that a single outlier can move �̂� arbitrarily far away. The esti-
mator of Carroll (17) has the same property, but is less affected in the sense that for a high |z| 
the value of | SCn(z)| is smaller than for the ML estimator. The RewML estimator that we pro-
posed in Sect. 2.4 has a sensitivity curve that lies close to that of the ML in the central region 
of z, and becomes exactly zero for more extreme values of |z|. Such a sensitivity curve is called 
redescending, meaning that it goes back to zero. Therefore a far outlier has little effect on 
the resulting estimate. We also show MTL95, the trimmed likelihood estimator described in 
Sect. 2.5 with h∕n = 95% . Its sensitivity curve is also redescending, but in the central region it 
is more erratic with several jumps.

The lower panel of Fig.  5 shows the sensitivity curves for the Box–Cox transformation 
when the true parameter is � = 0 , i.e. the clean data follows a lognormal distribution F. We 
now put log(z) on the horizontal axis, since this makes the plot more comparable to that for 
Yeo–Johnson in the top panel. Also here the ML and Carroll’s estimator have an unbounded 
sensitivity curve. Our RewML estimator has a redescending SC which again behaves similarly 
to the classical ML for small | log(z)| , whereas the sensitivity to an extreme outlier is zero. The 
maximal trimmed likelihood estimator MTL95 has large jumps reaching values over 40 in the 
central region. Those peaks are not shown because the other curves would be hard to distin-
guish on that scale.

X0 = (x1,… , xn−1) =
(
F−1(p1),… ,F−1(pn−1)

)

Xz = (x1,… , xn−1, z).

SCn(z) ∶= n
(
T(Xz) − T(X0)

)
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3  Simulation

3.1  Compared methods

For the Box–Cox as well as the Yeo–Johnson transformations we perform a simulation 
study to compare the performance of several methods, including our proposal. The esti-
mators under consideration are: 

1. ML the classical maximum likelihood estimator given by (11), or by (15) with all wi = 1.
2. Carroll the robustified maximum likelihood estimator of Carroll (1980) given by (17).
3. MTL the maximum trimmed likelihood estimator of Van der Veeken (2010). The nota-

tion MTL90 stands for the version with h∕n = 90%.
4. RewML the proposed reweighted maximum likelihood estimator described in Sect. 2.4.

Fig. 5  Sensitivity curves of esti-
mators of the parameter � in the 
Yeo–Johnson (top) and Box–Cox 
(bottom) transformations, with 
sample size n = 100
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5. RewMLnr a variation on RewML in which the first step of Sect. 2.4 applies (5) to the 
original Box–Cox or Yeo–Johnson transform instead of their rectified versions. This is 
not intended as a proposal, but included in order to show the advantage of rectification.

3.2  Data generation

We generate clean data sets as well as data with a fraction � of outliers. The clean data 
are produced by generating a sample of size n from the standard normal distribution, after 
which the inverse of the BC or YJ transformation with a given � is applied. For contami-
nated data we replace a percentage � of the standard normal data by outliers at a fixed posi-
tion before the inverse transformation is applied. For each such combination of � and � we 
generate m = 100 data sets.

To be more precise, the percentage � of contaminated points takes on the values 0, 0.05, 
0.1, and 0.15, where � = 0 corresponds to uncontaminated data. For the YJ transformation 
we take the true transformation parameter � equal to 0.5, 1.0, or 1.5. We chose these values 
because for � between 0 and 2 the range of YJ given by (4) is the entire real line, so the 
inverse of YJ is defined for all real numbers. For the BC transformation we take � = 0 for 
which the range (3) is also the real line. For a given combination of � and � the steps of the 
data generation are: 

1. Generate a sample Y = (y1,… , yn) from the standard normal distribution. Let k > 0 be 
a positive parameter. Then replace a fraction � of the points in Y by k itself when � ⩽ 1 , 
and by −k when 𝜆 > 1.

2. Apply the inverse BC transformation to Y, yielding the data set X  given 
byX = (g−1

�
(y1),… , g−1

�
(yn)) . For YJ we put X = (h−1

�
(y1),… , h−1

�
(yn)).

3. Estimate � from X using the methods described in Sect. 3.1.

The parameter k characterizing the position of the contamination is an integer that we let 
range from 0 to 10.

We then estimate the bias and mean squared error (MSE) of each method by

where j = 1,… ,m ranges over the generated data sets.

3.3  Results for the Yeo–Johnson transformation

We first consider the effect of an increasing percentage of contamination on the dif-
ferent estimators. In this setting we fix the position of the contamination by setting 
k = 10 . (The results for k = 6 are qualitatively similar, as can be seen in section B of 
the supplementary material.) Figure 6 shows the bias and MSE of the estimators for 
an increasing contamination percentage � on the horizontal axis. The results in the top 
row are for data generated with � = 0.5 , whereas the middle row was generated with 
� = 1 and the bottom row with � = 1.5 . In all rows the classical ML and the Carroll 
estimator have the largest bias and MSE, meaning they react strongly to far outliers, 
as suggested by their unbounded sensitivity curves in Fig. 5. In contrast with this both 

bias ∶= ave n
j=1

(�̂�j − 𝜆)

MSE ∶= ave n
j=1

(�̂�j − 𝜆)2
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Fig. 6  Bias (left) and MSE (right) of the estimated �̂� of the Yeo–Johnson transformation as a function of the 
percentage � of outliers, when the location of the outliers is determined by setting k = 10 . The true param-
eter � used to generate the data is 0.5 in the top row, 1.0 in the middle row, and 1.5 in the bottom row
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RewML and RewMLnr perform much better as their bias and MSE are closer to zero. 
Up to about 5% of outliers their curves are almost indistinguishable, but beyond that 
RewML outperforms RewMLnr by a widening margin. This indicates that using the 
rectified YJ transform in the first step of the estimator (see Sect.  2.4) is more robust 
than using the plain YJ in that step, even though the goal of the entire 3-step procedure 
RewML is to estimate the � of the plain YJ transform.

In the same Fig. 6 we see the behavior of the maximum trimmed likelihood estimators 
MTL95, MTL90 and MTL85. In the middle row � is 1, and we see that MTL95, which fits 
95% of the data, performs well when there are up to 5% of outliers and performs poorly 
when there are over 5% of outliers. Analogously MTL90 performs well as long as there 
are at most 10% of outliers, and so on. This is the intended behavior. But note that for � ≠ 1 
these estimators also have a substantial bias when the fraction of outliers is below what 
they aim for, as can be seen in the top and bottom panels of Fig. 6. For instance MTL85 
is biased when � is under 15% , even for � = 0% when there are no outliers at all. So over-
all the MTL estimators only performed well when the percentage of trimming was equal 
to 1 minus the percentage of outliers in the data. Since the true percentage of outliers is 
almost never known in advance, it is not recommended to use the MTL method for variable 
transformation.

Let us now investigate what happens if we keep the percentage of outliers fixed, say at 
� = 10% , but vary the position of the contamination by letting k = 0, 1,… , 10 . Figure 7 
shows the resulting bias and MSE, with again � = 0.5 in the top row, � = 1 in the mid-
dle row, and � = 1.5 in the bottom row. For k = 0 and k = 1 the ML, Carroll, RewML and 
RewMLnr methods give similar results, since the contamination is close to the center so it 
cannot be considered outlying. But as k increases the classical ML and the Carroll estima-
tor become heavily affected by the outliers. On the other hand RewML and RewMLnr per-
form much better, and again RewML outperforms RewMLnr. Note that the bias of RewML 
moves toward zero when k is large enough. We already noted this redescending behavior in 
its sensitivity curve in Fig. 5.

The behavior of the maximum trimmed likelihood methods depends on the value of � 
used to generate the data. First focus on the middle row of Fig. 7 where � = 1 so the clean 
data is generated from the standard normal distribution. In that situation both MTL90 and 
MTL85 behave well, whereas MTL95 can only withstand 5% of outliers and not the 10% gen-
erated here. One might expect the MTL method to work well as long as its h excludes at least 
the number of outliers in the data. But in fact MTL85 does not behave so well when � differs 
from 1, as seen in the top and bottom panels of Fig. 7, where the bias remains substantial 
even though the method expects 15% of outliers and there are only 10% of them. As in Fig. 6 
this suggests that one needs to know the actual percentage of outliers in the data in order to 
select the appropriate h for the MTL method, but that percentage is typically unknown.

3.4  Results for the Box–Cox transformation

When simulating data to apply the Box–Cox transformation to, the most natural choice of 
� is zero since this is the only value for which the range of BC is the entire real line. There-
fore we can carry out the inverse BC transformation on any data set generated from a nor-
mal distribution, so the clean data follows a log-normal distribution. The top panel of Fig. 8 
shows the bias and MSE for 10% of outliers with k = 1,… , 10 . We see that the classical 
ML and the estimator of Carroll are sensitive to outliers when k grows. Our reweighted 
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method RewML performs much better. The RewMLnr method only differs from RewML 
in that it uses the non-rectified BC transform in the first step, and does not do as well since 
its bias goes back to zero at a slower rate.
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Fig. 7  Bias (left) and MSE (right) of the estimated �̂� of the Yeo–Johnson transformation as a function of k 
which determines how far the outliers are. Here the percentage of outliers is fixed at 10% . The true param-
eter � used to generate the data is 0.5 in the top row, 1.0 in the middle row, and 1.5 in the bottom row
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The MTL estimators perform poorly here. The MTL95 version trims only 5% of the 
data points so it cannot discard the 10% of outliers, leading to a behavior resembling that 
of the classical ML. But also MTL90 and MTL85, which trim enough data points, obtain a 
large bias which goes in the opposite direction, accompanied by a high MSE. The MSE of 
MTL90 and MTL85 lie entirely above the plot area.

Finally, we consider a scenario with � = 1 . In that case the range of the Box–Cox trans-
formation given by (3) is only (−1,+∞) so the transformed data cannot be normally dis-
tributed (which is already an issue for the justification of the classical maximum likelihood 
method). But the transformed data can have a truncated normal distribution. In this special 
setting we generated data from the normal distribution with mean 1 and standard deviation 
1/3, and then truncated it to [0.01, 1.99] (keeping n = 100 points), so the clean data are 
strictly positive and have a symmetric distribution around 1. In the bottom panel of Fig. 8 
we see that the ML and Carroll estimators are not robust in this simulation setting. The 
trimmed likelihood estimators also fail to deliver reasonable results, with curves that often 
fall outside the plot area. On the other hand RewML still performs well, and again does 
better than RewMLnr.
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Fig. 8  Bias (left) and MSE (right) of the estimated �̂� of the Box–Cox transformation as a function of k 
which determines how far the outliers are. Here the percentage of outliers is fixed at 10% . The true � used to 
generate the data is 0 in the top row and 1 in the bottom row
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The simulation results for a fixed outlier position at k = 6 or k = 10 with contamina-
tion levels � from 0% to 15% can be found in section B of the supplementary material, 
and are qualitatively similar to those for the YJ transform.

4  Empirical examples

4.1  Car data

Let us revisit the positive variable MPG from the TopGear data shown in the left panel 
of Fig. 2. The majority of these data are already roughly normal, and three far outliers 
at the top deviate from this pattern. Before applying a Box–Cox transformation we first 
scale the variable so its median becomes 1. This makes the result invariant to the unit of 
measurement, whether it is miles per gallon or, say, kilometers per liter. The maximum 
likelihood estimator for Box–Cox tries to bring in the outliers and yields �̂� = −0.11 , 
which is close to � = 0 corresponding to a logarithmic transformation. The resulting 
transformed data in the left panel of Fig. 9 are quite skewed in the central part, so not 
normal at all, which defeats the purpose of the transformation. This result is in sharp 
contrast with our reweighted maximum likelihood (RewML) method which estimates 
the transformation parameter as �̂� = 0.84 . The resulting transformed data in the right 
panel does achieve central normality.

The variable Weight in the left panel of Fig. 3 is not very normal in its center and 
has some outliers at the bottom. The classical ML estimate is �̂� = 0.83 , close to � = 1 
which would not transform the data at all, as we can see in the resulting left panel of 
Fig. 10. In contrast, our RewML estimator obtains �̂� = 0.09 which substantially trans-
forms the data, yielding the right panel of Fig. 10. There the central part of the data is 
very close to normal, and the outliers at the bottom now stand out more, as they should.
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Fig. 9  Normal QQ-plot of the Box–Cox transformed variable MPG using the ML estimate of � (left) and 
using the RewML estimate (right). The ML is strongly affected by the 3 outliers at the top, thereby trans-
forming the central data away from normality. The RewML method achieves central normality and makes 
the outliers stand out more
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4.2  Glass data

For a multivariate example we turn to the glass data (Lemberge et  al. 2000; Rous-
seeuw and Van den Bossche 2018) from chemometrics, which has become something of 
a benchmark. The data consists of n = 180 archeological glass samples, which were ana-
lyzed by spectroscopy. Our variables are the intensities measured at 500 wavelengths. 
Many of these variables do not look normally distributed.

We first applied a Yeo–Johnson transformation to each variable with �̂� obtained from 
the nonrobust ML method of (11). For each variable we then standardized the trans-
formed data h�̂�(xi) to (h�̂�(xi) − �̂�ML,�̂�)∕�̂�ML,�̂� where �̂�ML,�̂� and �̂�ML,�̂� are given by (12). 
This yields a standardized transformed data set with again 180 rows and 500 col-
umns. In order to detect outliers in this matrix we compare each value to the interval 
[−2.57, 2.57] which has a probability of exactly 99% for standard normal data. The top 
panel of Fig. 11 is a heatmap of the standardized transformed data matrix where each 
value within [−2.57, 2.57] is shown as yellow, values above 2.57 are red, and values 
below −2.57 are blue. This heatmap is predominantly yellow because the ML method 
tends to transform the data in a way that masks outliers, so not much structure is visible.

Next, we transformed each variable by Yeo–Johnson with �̂� obtained by the 
robust RewML method. The transformed variables were standardized accordingly to 
(h�̂�(xi) − �̂�W,�̂�)∕�̂�W,�̂� where �̂�W,�̂� and �̂�W,�̂� are given by (14) using the final weights in 
(13). The resulting heatmap is in the bottom panel of Fig. 11. Here we see much more 
structure, with red regions corresponding to glass samples with unusually high spectral 
intensities at certain wavelengths. This is because the RewML method aims to make 
the central part of each variable as normal as possible, which allows outliers to devi-
ate from that central region. The resulting heatmap has a subject-matter interpretation 
since wavelengths correspond to chemical elements. It indicates that some of the glass 
samples (with row numbers between 22 and 30) have a higher concentration of phos-
phor, whereas rows 57–63 and 74–76 had an unusually high amount of calcium. The 
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Fig. 10  Normal QQ-plot of the Box–Cox transformed variable Weight using the ML estimate of � (left) 
and using the RewML estimate (right). The ML masks the five outliers at the bottom, whereas RewML 
accentuates them and achieves central normality
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red zones in the bottom part of the heatmap were caused by the fact that the measuring 
instrument was cleaned before recording the last 38 spectra.

4.3  DPOSS data

As a final example we consider data from the Digitized Palomar Sky Survey (DPOSS) 
described by Djorgovski et al. (1998). We work with the dataset of 20000 stars available 
as dposs in the R package cellWise (Raymaekers et  al. 2020). The data are meas-
urements in three color bands, but for the purpose of illustration we restrict attention to 
the color band with the fewest missing values. Selecting the completely observed rows 
then yields a dataset of 11478 observations with 7 variables. Variables MAper, MTot and 
MCore measure light intensity, and variables Area, IR2, csf and Ellip are measurements of 
the size and shape of the images.

In order to analyze the data we first apply the YJ-transformation to each variable, with 
the �̂� estimates obtained from RewML. We then perform cellwise robust PCA (Hubert 
et al. 2019). We retained k = 4 components, explaining 97% of the variance. Figure 12 is 
the pairs plot of the robust scores. We clearly see a large cluster of regular points with 
some outliers around it, and a smaller cluster of rather extreme outliers in red. The red 
points correspond to the stars with a high value of MAper. The blue points are somewhat in 

1 wavelengths 500

YJ transformed variables by ML

1 wavelengths 500

YJ transformed variables by RewML

Fig. 11  Heatmap of the glass data after transforming each variable (column) by a Yeo–Johnson transform 
with parameter � estimated by (top) the maximum likelihood method, and (bottom) the reweighted maxi-
mum likelihood method RewML. Yellow cells correspond to values in the central 99% range of the normal 
distribution. Red cells indicate unusually high values, and blue cells have unusually low values (Color fig-
ure online)
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between the main cluster and the smaller cluster of extreme outliers. The two orange points 
are celestial objects with an extreme value of Ellip.

The left panel of Fig. 13 contains the outlier map (Hubert et  al. 2005) of this robust 
PCA. Such an outlier map consists of two ingredients. The horizontal axis contains the 
score distance of each object �i . This is the robust Mahalanobis distance of the orthogonal 
projection of �i on the subspace spanned by the k principal components, and can be com-
puted as

where tij are the PCA scores and �j is the j-th largest eigenvalue. The vertical axis shows 
the orthogonal distance ODi of each point �i , which is the distance between �i and its 
projection on the k-dimensional subspace. We see that the red points form a large cluster 
with extreme SDi as well as ODi . The blue points are intermediate, and the two orange 
points are still unusual but less extreme. Interestingly, when applying robust PCA to the 

(18)SDi =

√√√√ k∑
j=1

t2
ij

�j
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Fig. 12  DPOSS data: pairs plot of the robust PCA scores after transforming the data with the robustly fitted 
YJ-transformation
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untransformed data we obtain the right panel of Fig. 13 which shows a very different pic-
ture in which the red, blue and orange points are not clearly distinguished from the remain-
der. This outlier map appears to indicate a number of black points as most outlying, but in 
fact they should not be considered outlying since they are characterized by high values of 
Area and IR2 which are very right-skewed. When transforming these variables to central 
normality, as in the left panel, the values that appeared to be outlying become part of the 
regular tails of a symmetric distribution.

5  Discussion

In this discussion we address and clarify a few aspects of (robust) variable transformation.
Outliers in skewed data The question of what is an outlier in a general skewed distribu-

tion is a rather difficult one. One could flag the values below a lower cutoff or above an 
upper cutoff, for instance given by quantiles of a distribution. But it is hard to robustly 
determine cutoffs for a general skewed dataset or distribution. Our viewpoint is this. If 
the data can be robustly transformed by BC or YJ towards a distribution that looks normal 
except in the tails, then it easy to obtain cutoffs for the transformed data, e.g. by taking 
their median plus or minus two median absolute deviations. And then, since the BC and 
YJ transforms are monotone, these cutoffs can be transformed back to the original skewed 
data or distribution. In this way we do not flag too many points. We have illustrated this for 
lognormal data in section C of the supplementary material.

How many outliers can we deal with? In addition to sensitivity curves, which charac-
terize the effect of a single outlier, it is interesting to find out how many adversely placed 
outliers it takes to make the estimators fail badly. For RewML this turns out to be around 
15% of the sample size, which is quite low compared to robust estimators of location or 
scale. But this is unavoidable, as asymmetry is tied to the tails of the distribution. Empiri-
cally, skewness does not manifest itself much in the central part of the distribution, say 
20% of mass above and below the median. On each side we have 30% of mass left, and if 
the adversary is allowed to replace half of either portion (that is, 15% of the total mass) and 
move it anywhere, they can modify the skewness a great deal.
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Fig. 13  DPOSS data: outlier map of robust PCA applied to the YJ-transformed variables (left), and applied 
to the raw variables (right). The colors are those of Fig. 12 (Color figure online)
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Prestandardization In practice, one would typically apply some form of prestandardi-
zation to the data before trying to fit a transformation. For the YJ transformation, we can 
simply prestandardize the dataset X = {x1,… , xn} by

where mad is the median absolute deviation from the median. This is what we did in the 
glass and DPOSS examples. An advantage of this prestandardization is that the relevant 
� will typically be in the same range (say, from −4 to 6) for all variables in the data set, 
which is convenient for the computation of �̂� . Before the BC transformation we cannot pre-
standardize by (19) since this would generate negative values. One option is to divide the 
original xi by their median so they remain positive and have median 1. But if the resulting 
data is tightly concentrated around 1, we may still require a huge positive or negative � to 
properly transform them by BC. Alternatively, we propose to prestandardize by

which performs a standardization on the log scale and then transforms back to the positive 
scale. This again has the advantage that the range of � can be kept fixed when computing �̂� , 
making it as easy as applying the YJ transform after (19). A disadvantage is that the trans-
formation parameter becomes harder to interpret, since e.g. a value of � = 1 no longer cor-
responds to a linear transformation, but � = 0 still corresponds to a logarithmic transform.

Tuning constants The proposed method has some tuning parameters, namely the con-
stant c in (6), the cutoff �−1(0.995) in the reweighting step, and the rectification points. 
The tuning of the constant c is addressed in section A of the supplementary material. 
The second parameter is the constant �−1(0.995) ≈ 2.57 in the weights (16). This weight 
function is commonly used in existing reweighting techniques in robust statistics. If the 
transformed data is normally distributed we flag approximately 1% of values with this 
cutoff, since P(|Z| > 𝛷−1(0.995)) = 0.01 if Z ∼ N(0, 1) . Choosing a higher cutoff results 
in a higher efficiency, but at the cost of lower robustness. Generally, the estimates do not 
depend too much on the choice of this cutoff as long as it is in a reasonably high range, say 
from �−1(0.975) to �−1(0.995) . A final choice in the proposal are the “rectification points” 
C
�
 and Cu for which we take the first and third quartiles of the data. Note that the con-

straints C
�
< 0 < Cu for YJ and C

�
< 1 < Cu for BC in (7)–(10) are satisfied automatically 

when prestandardizing the data as described in the previous paragraph. It is worth noting 
that these data-dependent choices of C

�
 and Cu do not create abrupt changes in the trans-

formed data when moving through the range of possible values for � because the rectified 
transformations are continuous in � by construction. For instance, passing from 𝜆 < 1 to 
𝜆 > 1 does not cause a jump in the transformed data because � = 1 corresponds to a linear 
transformation that is inherently rectified on both sides.

Models with transformed variables The ease or difficulty of interpreting a model in 
the transformed variables depends on the model under consideration. For nonparametric 
models it makes little difference. For parametric models the transformations can make the 
model harder to interpret in some cases and easier in others, for instance where there is a 
simple linear relation in the transformed variables instead of a model with higher-order 
terms in the original variables. Also, the notion of leverage point in linear regression is 
more easily interpretable with roughly normal regressors, as it is related to the (robust) 
Mahalanobis distance of a point in regressor space.

(19)x̃i =
xi − median (X)

mad (X)

(20)x̃i = exp

(
log(xi) − median (logX)

mad (logX)

)
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The effect of the sampling variability of � on the inference in the resulting model is 
also model dependent. We expect that it will typically lead to a somewhat higher vari-
ability in the estimation. However, as the BY and YJ transformations are continuous and 
differentiable in � and not very sensitive to small changes of � , the increase in variability is 
likely small. Moreover, if we apply BC or YJ transformations to predictor variables used in 
CART or Random Forest, the predictions and feature importance metrics stay exactly the 
same because the BC and YJ transformations are monotone.

6  Conclusion

In our view, a transformation to normality should fit the central part of the data well, and 
not be determined by any outliers that may be present. This is why we aim for central nor-
mality, where the transformed data is close to normal (Gaussian) with the possible excep-
tion of some outliers that can remain further out. Fitting such a transformation is not easy, 
because a point that appears to be outlying in the original data may not be outlying in the 
transformed data, and vice versa.

To address this problem we introduced a combination of three ideas: a highly robust 
objective function (5), the rectified Box–Cox and Yeo–Johnson transforms in Sect.  2.2 
which we use in our initial estimator only, and a reweighted maximum likelihood proce-
dure for transformations. This combination turns out to be a powerful tool for this difficult 
problem.

Preprocessing real data by this tool paves the way for applying subsequent methods, 
such as anomaly detection and well-established model fitting and predictive techniques.

Supplementary Information The online version contains supplementary material available at (https:// doi. 
org/ 10. 1007/ s10994- 021- 05960-5).
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