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Abstract
The discrete empirical interpolation method (DEIM) has been shown to be a viable index-
selection technique for identifying representative subsets in data. Having gained some 
popularity in reducing dimensionality of physical models involving differential equations, 
its use in subset-/pattern-identification tasks is not yet broadly known within the machine 
learning community. While it has much to offer as is, the DEIM algorithm is limited in that 
the number of selected indices cannot exceed the rank of the corresponding data matrix. 
Although this is not an issue for many data sets, there are cases in which the number of 
classes represented in a given data set is greater than the rank of the data matrix; in such 
cases, it is impossible for the standard DEIM algorithm to identify all classes. To overcome 
this issue, we present a novel extension of DEIM, called E-DEIM. With the proposed algo-
rithm, we also provide some theoretical results for using extensions of DEIM to form the 
CUR matrix factorization in identifying both rows and columns to approximate the original 
data matrix. Results from applying variations of E-DEIM to two different data sets indicate 
that the presented extension can indeed allow for the identification of additional classes 
along with those selected by standard DEIM. In addition, comparing these results to those 
of some more familiar methods demonstrates that the proposed deterministic E-DEIM 
approach including coherence performs comparably to or better than the other evaluated 
methods and should be considered in future class-identification tasks.

Keywords  Subset selection · Class identification · Discrete empirical interpolation 
method · Low rank data

1  Introduction

Dimension reduction techniques often play an important role in the analysis of large data 
sets. There are a number of different dimension reduction techniques that can be applied to 
a given problem, but often these reduced data sets consist of derived features that are no 
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longer interpretable in their original context. For instance, in using a method such as prin-
cipal components analysis (PCA) on medical data, it would likely be difficult for physicians 
to apply their expert training to interpret the clinical meaning of each individual principal 
component at face value. Hence, in some settings, it is necessary to identify a dimension 
reduction technique that preserves the original structure of the data so as not to lose its 
interpretability, selecting a meaningful subset of observations or features prior to conduct-
ing further analysis. This task of identifying class/group representatives in an unsupervised 
manner can prove challenging as there may be little, or no, prior knowledge about the num-
ber of classes present in data set.

As demonstrated in a recent paper by Hendryx et al. (2018), one such way to reduce the 
data dimension while preserving data interpretability is to use the discrete empirical inter-
polation method (DEIM) index-selection algorithm. Presented as part of a CUR matrix fac-
torization for identifying important rows and columns of a given data matrix, DEIM index 
selection is the underlying means for selecting said rows and columns (Hendryx et  al., 
2018). This index-selection method makes use of the underlying linear-algebraic structure 
of the data to determine some of the most influential rows and columns defining the space 
in which the data lives.

While previous works demonstrate the utility of DEIM, the algorithm does have its limi-
tations. In this work, we address the scenario in which DEIM is unable to identify all of 
the classes in the data merely due to the rank of the corresponding data matrix of interest; 
the number of DEIM-selected rows or columns inherently cannot exceed the matrix rank. 
In practice, however, there are some cases in which the number of classes in the data is 
expected to exceed the rank of the matrix. For instance, if the number of derived features or 
samples in time, in the case of time series observations is small for a data set representing a 
greater number of classes, DEIM can at best only detect as many classes as the number of 
features/time samples per observation. As data sets are getting larger and larger, the likeli-
hood that the number of observations vastly exceeds the number of features/samples per 
observation is increasing. One such example of particular interest to the authors [see the 
dissertation by Hendryx (2018)] is class identification in the scenario in which hundreds of 
millions, if not billions, of ECG tracings of cardiac cycles have been recorded in a clinical 
setting across a diverse patient population; where the length of each beat observation may 
be limited to a few hundred samples per beat, it is not unreasonable to expect the presence 
of a far greater number of distinct beat morphologies. Another specific example of a case in 
which the number of classes is expected to exceed the data matrix rank is presented in the 
Letter Recognition Data Set (Frey & Slate, 1991; Dua & Taniskidou, 2017), described and 
analyzed further below. In this work, we present extensions of DEIM designed to accom-
modate subset selection in such data sets. Subset selection/class identification in this type 
of data can play an important role in providing a summary of the data, either for real-time 
interpretation or for the further development of predictive models.

We also note that since DEIM relies on an approximation to the singular value decom-
position (SVD) of a matrix, the proposed approach may also find use in the setting in 
which a rank-k SVD approximation is prohibitively expensive to compute even for moder-
ately-small k. In this setting, our extension of DEIM allows for the selection of additional 
indices without the need to compute the full rank-k approximation, leveraging a lower-
rank approximation instead. Hence, this notion of extending DEIM can be applied in a 
number of contexts. With index oversampling having been explored more in the model 
reduction community [for example, see works by Zhou (2012), Zimmermann and Will-
cox (2016), and Peherstorfer et  al. (2018), to name a few], future studies comparing the 
proposed extensions of DEIM via oversampling in both the machine learning and model 
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reduction applications are necessary. For the scope of this work, however, we primarily 
focus on our method’s performance in class identification. We also briefly discuss theoreti-
cal implications of using such an extension in computing the CUR matrix factorization to 
approximate the original data matrix, with further theoretical studies suggested as a topic 
for future work.

Following a brief review of the standard DEIM implementation presented by Chatu-
rantabut and Sorensen (2010) and Sorensen and Embree (2016), we describe our proposed 
DEIM extension. After further discussion regarding the reasoning behind the algorithm 
design, we then present some theoretical results that follow from extending DEIM to the 
CUR factorization context. Finally, we provide results from comparing extended DEIM 
to two other more commonly known selection methods applied to two different data sets, 
demonstrating the effectiveness of extended DEIM methods in detecting additional classes.

Notation In the sections that follow, for a matrix � ∈ ℝ
m×n , we use �j = �(∶, j) to indi-

cate the jth column of � and �� = �(∶, �) to represent the columns of � corresponding to 
the indices held in the vector � ∈ ℕ

� for 1 ≤ � ≤ n.
The algorithms in this work are presented using MATLAB notation. Of particular note 

is that “ [⋅, ⋅] = max(⋅) ” takes as input a vector and outputs the maximum entry of the vec-
tor followed by the index of said maximal entry. In addition, the operation “ . ∗ ” performs 
element-wise vector multiplication.

2 � Background

The discrete empirical interpolation method (DEIM) was initially introduced by Chaturant-
abut and Sorensen (2010) within the context of performing model reduction. In particular, 
the method is presented with the goal of reducing the order of systems of ordinary differ-
ential equations containing nonlinearities. DEIM is extended to the formation of the CUR 
matrix factorization in a recent work by Sorensen and Embree (2016). Hendryx, Rivière, 
Sorensen, and Rusin apply this DEIM-CUR matrix factorization to the medical domain 
for the identification of representative electrocardiogram (ECG) beat morphologies (2018); 
the DEIM-selected beats are shown to be representative of the larger data set, providing a 
means of summarizing the data for additional analyses. In particular, the beats selected in 
this manner can be used in the classification of the remaining, unselected beats in the data 
set for the development of clinical decision support tools.

Given the promising results seen in previous work, we build off of the DIEM algorithm 
to select additional indices. Before presenting our extension of DEIM, however, we first 
turn to a description of the construction and implementation of the original, “standard” 
DEIM algorithm.

2.1 � Standard DEIM

The DEIM algorithm provides a means of approximating an m × n matrix � in a space of 
dimension k ≤ rank(�) in such a way that k of the original matrix rows are preserved exactly. 
In particular, this k-dimensional space is chosen to be that spanned by the left singular vec-
tors resulting from the rank-k SVD approximation to � . The rank-k SVD of � is given by 
� ≈ ���T , where � ∈ ℝ

m×k and � ∈ ℝ
n×k have orthonormal columns, and � is a diagonal 

matrix containing the singular values 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎k > 0 . It is well understood that the 
SVD yields the optimal rank-k approximation to � with respect to the induced matrix 2-norm. 
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For the purposes of DEIM, then, the columns of the matrix �—that is {�1, �2,… , �k}—form 
a basis for the space in which we approximate the matrix � . Then,

where � ∈ ℝ
k×n is the coefficient matrix to be defined such that this approximation 

preserves k rows of � exactly. Suppose the index vector � ∈ ℕ
k is such that it contains 

non-repeating row indices p1 , p2 , ..., pk corresponding to the rows to be preserved with 
1 ≤ pj ≤ m for 1 ≤ j ≤ k . Then we set � = [�p1 , �p2 ,… , �pk ] = �(∶, �), where �j is defined as 
the vector of length m containing all zeros except for a 1 in the jth entry (or the jth column 
of the m × m identity matrix, � , denoted as �(∶, pj) ). To maintain the rows of interest in the 
matrix approximation, we require that

Then for invertible �T� , solving for the coefficient matrix � yields

Hence, we arrive at the approximation

where

is DEIM’s interpolatory projector. (Note that if we want to preserve columns of � instead 
of rows, we can use a similar process to form a different interpolatory projector using the 
right singular vectors held in �.)

With the approximation space selected to be the span of the left singular vectors, the 
remaining question, then, is how to select the indices in forming � . While subsequent works 
have proposed alternative approaches to selecting these indices [for example, see the QDEIM 
algorithm proposed by Drmač and Gugercin (2016)], we focus only on the original DEIM 
algorithm proposed by Chaturantabut and Sorensen (2010). The extension of other such 
index-selection procedures for class-identification purposes is not included here, but it is a 
topic of interest for future studies.

2.1.1 � Construction of p in standard DEIM

To select the indices held in � , each column of � is considered in turn, with 
�(1) = argmax

i

|�(i, 1)| . The subsequent index in �(j + 1) , denoted as pj+1 , is determined by 

subtracting from �j+1 the interpolatory projection of �j+1 onto the range of �j = �(∶, 1 ∶ j) , 
defining �(j + 1) to be the index corresponding to the largest element of this difference in 
absolute value. That is, for � = �j+1 − Pj�j+1 , pj+1 is selected such that �(pj+1) = ‖�‖∞ , where 
Pj = �j(�j�j)

−1�T
j
 and �j = �(∶, �j) for �j containing the first j indices in � . Notice that the 

interpolatory nature of Pj ensures that �(pi) = 0 for all i < (j + 1) since

Hence, the indices selected by DEIM are guaranteed to be unique. In addition, this 
approach to selecting the k indices in � ensures that that �T� is indeed invertible for DEIM; 

� ≈ ��,

�T� = �T (��).

� = (�T�)−1�T�.

� ≈ �(�T�)−1�T� = P�,

P = �(�T�)−1�T

�(�j) = �T
j
� = �T

j
(�j+1 − Pj�j+1) = �T

j
�j+1 − �T

j
�j(�

T
j
�j)

−1�T
j
�j+1 = �.
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a proof of this is provided in Lemma 3.2 from Sorensen’s and Embree’s (2016) paper. The 
full procedure for selecting the DEIM indices given � ∈ ℝ

m×k is outlined in more precise 
detail in Algorithm 1.

Algorithm 1 DEIM Point Selection (Adapted from work by Sorensen and Embree
(2016))

Input: V, a matrix in R
m×k with m > k

Output: p, a vector in N
k containing integral values from {1, ..,m}

1: v = v1
2: [∼, p1] = max(|v|)
3: p = p1
4: for j = 2 : k do
5: v = vj

6: c = V(p, 1 : j − 1)−1v(p)
7: r = v −V(:, 1 : j − 1)c
8: [∼, pj ] = max(|r|)
9: p = [p; pj ]
10: end for

In the model reduction context, the DEIM indices selected in Algorithm 1 were origi-
nally selected to “limit growth of an error bound”—specifically the approximation error 
determined by ‖� − P�‖2 for an arbitrary vector � ∈ ℝ

m approximated in the k-dimensional 
space spanned by the set of orthonormal vectors {�1, �2,… , �k} with k ≤ m [see Lemma 
3.2 by Chaturantabut and Sorensen (2010)]. While this type of error bound is important 
in many contexts, the role of such a bound in class identification is not necessarily clear at 
this point. However, we make two observations about this algorithm in application to class-
identification tasks: (1) the use of the left singular vectors in forming the approximation 
space is very closely related to the popular unsupervised learning method, PCA, leverag-
ing the properties afforded by an optimal lower-rank approximation to the space in which 
the data lives, and (2) the selection of indices from the residual vector, � , essentially boils 
down to identifying rows that contribute the most new information in the construction of 
the interpolatory projector, a projector constructed specifically to preserve particular rows. 
It is this intuition regarding the workings of the standard DEIM approach that we hold on 
to and build off of in extending this algorithm to select additional indices.

3 � Proposed method: extended DEIM (E‑DEIM)

Suppose, now, that we want to select k̂ separate rows from � ∈ ℝ
m×n , using the columns of 

the full rank matrix � ∈ ℝ
m×k to span the approximation space, and construct � ∈ ℕ

k̂ via 
a DEIM-type approach, where k ≤ k̂ ≤ m . Then letting � = �(∶, �) in ℝm×k̂ , �T� in ℝk̂×k is 
not invertible (given k̂ ≠ k ), and we use a pseudoinverse of �T� to define P as

where here we use the left Moore–Penrose pseudoinverse

(1)P = �(�T�)†�T ,

(�T�)† = [(�T�)T (�T�)]−1(�T�)T ,



626	 Machine Learning (2021) 110:621–650

1 3

assuming �T� has full column rank.1
Note that

indicating that P is indeed still a projection.
Also notice that by increasing the length of � and choosing the left inverse of �T� to 

form the projector, we lose the interpolatory nature for general � ∈ ℝ
m while maintaining 

the interpolatory nature of P for vectors in the range of �,R(�) . Suppose, for example, 
� ∈ R(�) . Then there exists � ∈ ℝ

k such that � = �� and

3.1 � Construction of p for extended DEIM

A question for the case in which k̂ > k is: How should �(k + 1 ∶ k̂) be selected? For exam-
ple, one could simply select a random subset of an additional k̂ − k indices beyond those 
selected by standard DEIM, or the additional indices could be selected by looking at the 
next largest residuals held in � in the final iteration of the for loop in Algorithm 1. In the 
model reduction literature, some ideas have included identifying indices that reduce the 
projection error through additional SVD computations (Zimmermann and Willcox, 2016; 
Peherstorfer et  al., 2018) and leveraging nonlinear variables from the model of interest 
(Zhou, 2012). In a recent work, Manohar et al. (2018) use a pivoted QR factorization to 
identify additional indices in the setting of sensor placement selection in control theory, 
an application task similar to the machine learning tasks of subset/feature selection dis-
cussed herein. In our approach, the starting objective is simply to select �(k + 1 ∶ k̂) such 
that �(�(k + 1 ∶ k̂), ∶) is guaranteed to have full row rank (requiring that k̂ ≤ 2k for a sin-
gle application of a DEIM variant); then the selected sub-matrix �(�, ∶) will contain two 
blocks of linearly independent rows, and we can make further use of some of the linear-
algebraic properties of the data if needed.

To select a second set of k̂ − k linearly independent rows of � , our approach per-
forms standard DEIM to select the first k indices and then applies a modified a version of 
DEIM—referred to as “restarted DEIM” below—to a submatrix of � to find the additional 
k̂ − k indices. This submatrix, �̂ , is initially taken to contain all of the rows of � not in 
�(�, ∶) ; that is, �̂ = �(�c, ∶) , where �c ∈ ℕ

m−k contains those indices from 1 to m not con-
tained in �.

In selecting the additional indices using �̂ , we consider two residuals, �1 and �2 , in 
restarted DEIM. The formation of these residuals is discussed below, with variations on the 
use of �1 and �2 studied in the results section.

P
2 = �(�T�)†�T�(�T�)†�

= �(�T�)†�T

= P,

(P�)(�) = �TP�� = �T�(�T�)†�T��

= �T�� = �(�).

1  Given that the extended DEIM approach presented here first makes use of the standard-DEIM-selected 
indices, this assumption on the rank of �T� holds for the work herein.
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3.1.1 � Forming �
1

Similar to the formation of � in standard DEIM, �1 contains the residual from a comple-
mentary projection computed in constructing � . However, since removing rows of � to 
form �̂ means that �̂ is no longer guaranteed to have full column rank, at the ith iteration 
of restarted DEIM, the residual produced by (� − Pj−1)�̂i is checked, where Pj−1 is the pro-
jector to be described further below. If the magnitude of the largest residual entry is too 
small, then �̂i lies too close to the range of the previously considered columns of �̂ and 
should be removed from future consideration.

3.1.2 � Forming �
2

If a given row of �̂ is too similar to the rows of �(�, ∶) , then that row should not be selected 
for inclusion in � . The role of the �2 residual, then, is to help maintain a form of “memory” 
of the previously selected rows from the first (standard) DEIM implementation. However, 
this requires that we identify a notion of “too similar” for this context. We consider a few 
different ideas here. Note that unlike �1 , in each of the approaches presented, the residual in 
�2 is computed only prior to restarting DEIM.

One way that we compare �̂ and �(�, ∶) is to compute the �1 distance between each row 
of �̂ and the rows of �(�, ∶) , defining �2 such that

Depending on the data set, we may want to replace the �1 distance with another measure 
of distance, for example dynamic time warping. This residual vector is then normalized by 
its maximum entry so that it contains values between 0 and 1 with values closer to 0 cor-
responding to rows that are most similar to those already selected in standard DEIM.

We can also compare �̂ and �(�, ∶) by looking at the angles between their rows. This 
idea stems from the notion of the coherence (or mutual coherence) of a matrix � ∈ ℝ

m×n 
defined in the information theoretic and signal recovery literature—see, for example, works 
by Donoho and Huo (2001) and Candes et al. (2011)—as

Notice that �(�) is bounded between 0 and 1 and simply corresponds to the cosine of the 
smallest angle between the columns of � ; smaller values of �(�) indicate that the columns 
of � are relatively spread out in ℝm , where a larger coherence indicates that there are at 
least two columns in � that lie close to each other. In the signal recovery context, there is 
often a need for the data observations to be “spread out”, or incoherent, in order to recover 
the “true” data. Here, we want to encourage selection of additional rows from �̂ that are 
“spread out” from those already selected in �(�, ∶).

Using this notion, we normalize the rows of �̂ and �(�, ∶) via the �2-norm to get V̂ and 
V(�, ∶) , respectively, and define �2 as

where the maximum is taken in a row-wise fashion. The subtraction of the second term 
from 1 forces larger entries in �2 to correspond to those rows of �̂ that are most different 

�2(i) = min
j∈�

‖�(j, ∶) − �̂(i, ∶)‖1.

�(�) = max
i≠j

��T
i
�j�

‖�i‖2‖�j‖2 .

�2(i) = 1 −max
j
(|V̂(i, ∶)V(pj, ∶)T |),
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from the previous DEIM-selected rows. The need for this will become more apparent as we 
discuss combining the information held in �1 and �2 below.

3.1.3 � Combining �
1
 and �

2

To take into account the indices selected in the standard DEIM step as well as the proxim-
ity of �̂i to the previously considered columns in restarted DEIM, the different information 
carried by �1 and �2 is combined into a single vector, taking the element-wise product of the 
two vectors:

This particular means of combining the two residuals is chosen because it allows each 
residual to simultaneously influence the selection of an index while still guaranteeing that 
the restarted DEIM projection is well-defined (discussed more rigorously below). While 
the inclusion of �2 can be considered optional, as suggested by the experiments presented 
later in this work, the information in �1 is critical for theoretical guarantees. Hence, rather 
than forming the composite residual �̂ by adding �1 and �2 , we scale �� by the entries in �2 , 
where �2 is specifically constructed such that 0 ≤ �2(i) ≤ 1 for 1 ≤ i ≤ (m − k) to ensure the 
magnitude of �̂ cannot exceed that of �1.

With that in mind, if the maximum entry of �̂ in absolute value is below a user-defined 
tolerance, � , then it is likely that no new information is contributed by �̂i for index selec-
tion. Otherwise, this residual is used to select the next index to be included in �̂—the vector 
of indices formed from �̂—and �̂i is included in forming the projector for the next iteration.

In initializing restarted DEIM, �̂ is computed as �̂ = �̂1. ∗ �2 , and the first entry in �̂ is 
determined by the maximum entry (in absolute value) of �̂ if it exceeds the given tolerance, 
� ; if ‖�̂‖∞ is less than � , then �̂ is recomputed using the next column of �̂ , repeating the 
process until the tolerance is surpassed. If the tolerance is never exceeded, then the algo-
rithm terminates having only performed standard DEIM. Otherwise, the algorithm then 
proceeds to find the rest of the restarted DEIM indices starting with the next column of �̂ . 
With this approach, the projector at iteration j + 1 is given by

where �̂j = �(∶, �̂j) for �̂j = �̂(1 ∶ j) , and �j contains the indices of those columns of �̂ that 
have met the residual tolerance criterion in the previous iterations. Notice that by carefully 
constructing �j through our treatment of �̂ , we have ensured that (�̂T

j
�̂�j

)−1 exists at each 
iteration. This claim is restated below in Lemma 1; the presented proof of this lemma uses 
induction and closely follows the structure of the proof of a similar claim in Lemma 3.2 
from the work by Sorensen and Embree (2016).

Lemma 1  Suppose �̂ = [�̂1,… , �̂k] in ℝm×k has rank �.

Let �̂j = [�p̂1 , �p̂2 ,… , �p̂j ] and let �̂�j
= �̂(∶, �j) for 1 ≤ j ≤ � , where �j ∈ ℕ

j contains non-
repeating values in {1,… , k} . If the entries in �j are selected via the proposed DEIM exten-
sion, then �̂T

j
�̂�j

 is nonsingular for 1 ≤ j ≤ �.

Proof  First, note that �̂T
1
�̂�1

= �T
p̂1
�̂�1

 is nonzero by construction in the initialization of the 
restarted portion of the proposed DEIM extension.

(2)�̂ = �1. ∗ �2.

P̂j = �̂�j
(�̂T

j
�̂�j

)−1�̂T
j
,
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Now, suppose that �̂T
j−1

�̂�j−1
 is nonsingular, and let

for � = max(�j−1) + 1 . Notice that if ‖�1‖∞ = 0, then ‖�̂‖∞ = 0 for �̂ given by Eq. (2). In 
this case, �̂j−1 and �j−1 are not updated.

Suppose, then, that ‖�̂‖∞ > 0 . Then

and �j and �̂j are updated so that �j = [�j−1;�] and �̂j = [�̂j−1;p̂j]. Factoring, we see that

where 𝜈j = �T
p̂j
�̂
�
− �T

p̂j
�̂�j−1

(�̂T
j−1

�̂�j−1
)−1�̂T

j−1
�̂
�
≠ 0 by Eq. (3).

Notice, then, that �̂T
j
�̂�j

 is the product of two nonsingular matrices. Hence, �̂T
j
�̂�j

 is itself 
nonsingular.� □

For the purposes of demonstration, we are only considering the case where � has a 
length of up to 2k in this work, where the extent to which the length of � can extend beyond 
k elements is dependent upon the rank of �̂ in restarting DEIM one time. However, it is 
possible to restart DEIM multiple times in effort to select even more indices, still taking 
into account the rank of each subsequent matrix after the previously selected rows have 
been removed. To account for the selection of even more indices, we present a generalized 
algorithm of our extended DEIM approach in Algorithm 2 for a non-specific formulation 
of �2 with an added user-defined parameter, � , corresponding to the maximum number of 
indices to select. Note that the intended purpose in the presentation of Algorithm 2 is to 
convey the ideas behind the described extended DEIM approach; as written, Algorithm 2 is 
not very practical for implementation.

�1 = �̂
�
− �̂�j−1

(�̂T
j−1

�̂�j−1
)−1�̂T

j−1
�̂
�

(3)
0 < ‖�1‖∞ = ��1(p̂j)� = ��T

p̂j
���

= ��T
p̂j
�̂
�
− �T

p̂j
�̂�j−1
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Algorithm 2 Extended DEIM (E-DEIM)

Input: V, a full rank matrix in R
m×k with m > k

τ , a positive real number for determining if an index should be added to p
β, an integer such that k ≤ β ≤ m indicating the maximum number of indices to

include in p

Output: p, a vector in N
k̂ containing integral values from {1, ...,m} with k ≤ k̂ ≤ β

% Perform standard DEIM
1: v = v1
2: [∼, p1] = max(|v|)
3: p = p1
4: for j = 2 : k do
5: v = vj

6: c = V(p, 1 : j − 1)−1v(p)
7: r = v −V(:, 1 : j − 1)c
8: [∼, pj ] = max(|r|)
9: p = [p; pj ]
10: end for

% Form the residual vector, r2, based on V(p, :) and restart DEIM while p has < β
entries

11: while length(p) < β do
12: b = pc

13: V̂ = V(b, :)
14: Compute r2 using chosen method

% Initialize the DEIM restart
15: ρ = 0
16: i = 1
17: while ρ ≤ τ and i ≤ m do
18: v̂ = v̂i

19: = max(|v̂. ∗ r2|)
20: i = i+ 1
21: end while

22: if ρ ≤ τ and i == m+ 1 then
23: break % No rows contribute enough information to add more indices
24: else
25: p̂ = p̂1
26: t = i− 1

% Search for additional DEIM indices
27: while i ≤ k and length(t) < (β − length(p)) do
28: v̂ = v̂i

29: ĉ = V̂(p̂, t)−1v̂(p̂)
30: r1 = v̂ − V̂tĉ
31: r̂ = r1. ∗ r2
32: [ρ, p̂i] = max(|r̂|)

% Update p̂ and t only if v̂i and row p̂i both contribute enough new information
33: if ρ > τ then
34: p̂ = [p̂; p̂i]
35: t = [t; i]
36: end if
37: i = i+ 1
38: end while
39: end if

40: p = [p;b(p̂)]

41: end while

p̂[ρ, [

3.2 � Further discussion of method

Before evaluating the performance of E-DEIM on data, we more thoroughly discuss 
the presented extension approach, focusing on the scenario with k̂ ≤ 2k requiring only 
one restart of DEIM (although the discussed ideas can be adapted to apply to additional 
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restarts, as well). While there are a number of ways to select the additional indices 
included in extending � , the approach shown in Algorithm  2 selects additional rows 
that span all of ℝk̂−k (as opposed to a subspace of ℝk̂−k ). Despite the fact that we lose 
the orthonormality, and perhaps even linear independence, of the columns in the origi-
nal � when forming �̂ ∈ ℝ

(m−k)×k , ensuring that the �1 residual computed in line 30 of 
Algorithm 2 is large enough guarantees that the columns of �̂(∶, �) are at least linearly 
independent.

While having a more broadly spanning subset of rows is desirable, we would also like to 
make sure that the newly selected subset is different enough from the first subset selected 
with standard DEIM. The incorporation of the “memory” residual held in �2 adds extra 
computational cost, but serves as a bridge between the standard and restarted DEIM steps 
as well as a bridge between any subsequent DEIM restarts.

For the �1 formulation of �2 , the computation of each entry in the �2 vector is O(k2) : 
computing the �1-norm of the difference between the p

�
 th row of � and row � of �̂ is an 

O(k) operation, then performing this for all k rows of �(�, ∶) results in the O(k2) computa-
tional cost. Since the minimization is linear in k, then we can focus on higher order terms 
to approximate that performing this operation m − k times (for each row in �̂ ) makes the 
computation of �2 with the �1 norm an O(mk2 − k3) operation.

For the coherence-form of �2 , once the rows of �̂ and �(�, ∶) are normalized (with 
complexity O(mk) and O(k2) , respectively), the matrix–matrix multiplication to form �2 
is O(mk2) . Then, including normalization, computing �2 with the notion of coherence is 
O(mk2 + mk + k2) . (Note that the allowance of multiple restarts will increase these �2 com-
putational costs according to the achieved increase in the length of � beyond k entries prior 
to each restart.)

Despite the added cost of both approaches to �2 presented above, the inclusion of this 
residual serves an important role in reducing the redundancy in class selection and, in the 
case where k < k̂ ≤ n , is cheaper than re-computing a rank-k̂ SVD of �—an O(mnk̂) opera-
tion. In addition, the ability to use different distance measures in computing �2 allows for 
flexibility in analyzing different data types; where we have discussed the use of the �1 dis-
tance on the rows of � , other measures of distance may be more appropriate for some data 
sets (although calculating these distances may increase computational complexity). Here, 
we have chosen to compute �2 using rows of � as these rows may be shorter than those of 
� while still allowing us to leverage some of the underlying structure in the data. However, 
it is possible that there are settings in which it might be beneficial to instead compute �2 
using the rows of the original data matrix � with other distance measures (such as dynamic 
time warping); this is a topic of future interest.

In theory, requiring the product of �1 and the normalized �� to be above a certain tol-
erance forces the newly selected rows to be simultaneously linearly independent among 
themselves and different from the previously selected set. Hence, for the presented algo-
rithm, we would expect to find that the additional rows selected via extended DEIM con-
tain a subset of data points even more broadly representative than those selected via stand-
ard DEIM alone.

With this understanding of our approach, we briefly turn now to the application of 
an extended DEIM algorithm to the CUR factorization. Additional theoretical results in 
extending DIEM follow naturally from related works and are presented in “Appendix 1”; 
these results include a general bound on the extended DEIM projection error ‖� − P�‖2 . 
Again, while such bounds are clearly valuable in many contexts, the practical implications 
of such a bound in the class-identification setting is unclear and is an area of further inter-
est. Nevertheless, we include these theoretical results for completeness.
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3.3 � Application to the CUR matrix factorization

As mentioned above, one of the uses of DEIM demonstrated in the existing literature is in 
constructing a CUR matrix factorization of the matrix � , allowing for the identification 
of both representative rows and representative columns of a given data matrix while also 
forming an approximation to the original matrix with reduced dimensionality. In contrast to 
PCA, for instance, where the interpretability of the matrix factors is lost with respect to the 
original context, the matrices resulting from the CUR factorization contain rows/columns 
that maintain the original data structure and interpretation. Hence, the CUR factorization 
may be of interest in the scenario that both representative observations and representative 
features are desired from a large data set.

More specifically, a CUR matrix factorization is such that � ≈ ��� with � = �(∶, �) 
and � = �(�, ∶) for index vectors �, � ∈ ℕ

k , and � is defined such that the approximation 
holds—for example, we can set � = �†��† for �† and �† equal to the left and right pseu-
doinverses of � and � , respectively. More details regarding the formation of such factoriza-
tions can be found in a number of papers such as those by Stewart (1999), Goreinov et al. 
(1997), Drineas et al. (2008), and Sorensen and Embree (2016), with our approach aligning 
closely with the DEIM-induced factorization described by Sorensen and Embree (2016). 
Where standard DEIM has been used to form � and � in the past, here we use E-DEIM to 
identify � ∈ ℕ

k̂ and � ∈ ℕ
k̂ . Once again, in this context, using E-DEIM allows us to select 

more indices than allowed by the rank of the SVD, identifying larger row and/or column 
subsets that might be more informative given the application at hand. In the case where 
computing the SVD is prohibitively expensive, our method allows additional indices to be 
selected using only a low-rank SVD approximation without computing the SVD approxi-
mation for larger k.

Let

and

where �̃ and �̃ are those indices selected via standard DEIM and �̂ and �̂ are the additional 
indices selected through the presented extension of DEIM.

Using the subscript notation presented in Lemma 1, we use the fact that �̂T
j
�̂�j

 is inverti-
ble for each 1 ≤ j ≤ (k̂ − k) to conclude that �̂T�̂ has full row rank. Then we can also con-
clude that our selection of an additional k̂ − k linearly independent rows from � yields a 
submatrix �(�(k + 1 ∶ k̂), ∶) that has full row rank. In a similar manner, we can select an 
additional set of linearly independent columns �(∶,�(k + 1 ∶ k̂)).

For simplicity—and for its relevance to the observation subset selection from a matrix 
containing observations arranged in a column-wise manner—for now, we consider only the 
case with � ∈ ℕ

k̂ and keep � ∈ ℕ
k . Using extended DEIM to select columns and standard 

DEIM to select rows of the rank-r matrix � ∈ ℝ
m×n via its rank-k SVD, we can still obtain 

a CUR decomposition of the form � ≈ ��� where we now have � ∈ ℝ
m×k̂ , � ∈ ℝ

k̂×k , and 
� ∈ ℝ

k×n . Suppose � has rank � for k ≤ 𝜅 ≤ min{k̂, r} . Without loss of generality, suppose 
that the first � columns of � are linearly independent with the first k columns selected via 
standard DEIM and the next (� − k) columns selected via an extension, and suppose the 
remaining (k̂ − 𝜅) columns lie in the span of the first � columns. Then we can write

Q = I(∶, [q̃; q̂]) =
[
Q̃ Q̂

]

P = I(∶, [ p̃; p̂]) =
[
P̃ P̂

]
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where �1 ∈ ℝ
m×� and �2 ∈ ℝ

m×(k̂−𝜅) both have full column rank but 
Range(�2) ⊂ Range(�1) , and �1 ∈ ℝ

�×k and �2 ∈ ℝ
(k̂−𝜅)×k.

If the E-DEIM-selected columns of �2 are unknown, we can set

and �2 = � . This is the same structure of � that can be used for 𝜅 = k < min{k̂, r} ; we can 
take �1 = �

†

1
��† and define �2 = � . With this choice of � , we can then find an approxi-

mation error bound for

where ‖ ⋅ ‖ is the induced matrix 2-norm. Since �1 and � simply contain the standard-
DEIM-selected indices, the CUR error bound follows directly from Theorem  4.1 by 
Sorensen and Embree (2016). With �1 = ��(∶, 1 ∶ k) , this proof only requires use of the 
first k columns of � , denoted as �̃ above, with �T�̃ invertible.

Suppose, however, that 𝜅 > k and the E-DEIM-selected columns are known so that 
we may define �1 = �

†

1
��† , which is not a square matrix, and �2 = � . With more 

detail provided in “Appendix 1”, and with Q1 = I(:,q1) such that AQ1 = C1, we state the 
following approximation error bound for CUR with an extension of DEIM, paralleling 
Theorem 4.1 presented by Sorensen and Embree (2016).

Theorem  1  Suppose � ∈ ℝ
m×n and k ≤ rank(A) with 1 ≤ k < 𝜅 ≤ min{m, n} . Let 

�1 = �(∶, �1) ∈ ℝ
m×� , � = �(�, ∶) ∈ ℝ

k×n and �1 = �
†

1
��† . Then

In the case where the CUR factorization is defined as in Eq. (4) with �2 = � , the 
bound in (5) is the same for ‖� − ���‖ . We also note that where this result is pre-
sented for the case where only � contains E-DEIM-selected columns that might con-
tribute additional information regarding the column space of � , very similar results 
can be obtained for the cases in which E-DEIM is used to form both � and � or only �
.

These results presented in this section suggest that extensions of DEIM that mini-
mize ‖(�T�1)

†‖ and ‖(�T�)−1‖ are more theoretically desirable. While we do not cur-
rently have a bound on such quantities for our methods, this is a topic of future interest. 
Zimmermann and Willcox (2016) and Peherstorfer et al. (2018) present oversampling 
techniques designed to reduce these errors. Although this may be preferred in some 
settings, the methods in these other works have the potential to be more computation-
ally expensive than those developed here (depending on the matrix properties and the 
choice in computing �2 ). In addition, while discussed here for a broader picture regard-
ing the incorporation of DEIM extensions in CUR, improved error bounds may not 
translate as well to some machine learning tasks since successful class identification in 
relation to these bounds is not yet well understood.

(4)� ≈ ��� =
[
�1 �2

] [�1

�2

]
�,

�� =

[
�1(∶, 1 ∶ k)†��†

�

]

‖� − ���‖ = ‖� − �1�1�‖,

(5)‖A − C1U1R‖ ≤ (‖(PTV)−1‖ + ‖(WTQ1)
†‖)�k+1.
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4 � Description of data experiments

We next evaluate the performance of extended DEIM (E-DEIM) with one restart in the 
context of subset selection. For comparison with the use of standard DEIM in the ECG 
analysis setting (Hendryx et  al., 2018), we apply E-DEIM to the MIT-BIH Arrhyth-
mia Database (Moody & Mark, 2001) available in PhysioNet (Goldberger et  al., 2000). 
To highlight the role of E-DEIM in identifying more classes than allowed by the rank of 
the corresponding data matrix, we also apply our approach to the Letter Recognition Data 
Set (Frey & Slate, 1991) from the UCI Machine Learning Repository (Dua & Taniskidou, 
2017). For each data set, we compare the performance of DEIM and E-DEIM with results 
from applying k-medoids clustering and statistical leverage scores in identifying represent-
ative subsets. Our implementations of these more commonly used techniques are described 
further below.

4.1 � MIT‑BIH Arrhythmia Database

The MIT-BIH Arrhythmia Database consists of 48 files containing 30-min two-lead elec-
trocardiogram (ECG) recordings from 47 different patients (Moody & Mark, 2001). Each 
waveform is presented in mV in PhysioNet (Goldberger et al., 2000)) with three digits of 
accuracy. Although ways for including additional leads in subset selection are suggested 
by Hendryx et al. (2018), we only consider one lead in our analyses; the MLII lead is pro-
cessed when available, with the V5 lead analyzed in cases without access to the MLII lead. 
These MIT-BIH recordings contain whole-beat annotations that serve as a reference here 
for determining whether or not all of the different expected beat classes are detected. As 
is done in a number of works in the literature (for example, De Chazal et al., 2004), the 
files containing paced beats are removed from consideration and the remaining data set 
is divided into a training set and a test set—called DS1 and DS2, respectively—each with 
22 files. (The specific DS1/DS2 data split used by De Chazal et al. (2004) is included in 
“Appendix 2” for reference.) In constructing the data matrix for each file, the waveform is 
first preprocessed via a zero-phase first order high pass Butterworth filter with a 5 × 10−3� 
radians-per-second cutoff frequency in effort to reduce baseline wandering. A conserva-
tive 5% of the full signal length is removed from each end of the waveform to eliminate 
edge effects from filtering. This filtered and trimmed data is then divided into individual 
RR-intervals using the RR-interval data provided with the waveforms in PhysioNet (Gold-
berger et al., 2000)). Each RR-interval is interpolated to contain 150 time samples and then 
normalized to have a mean of zero and standard deviation of one. These beats defined from 
R-peak to R-peak are used to construct a data matrix with each column corresponding to 
the amplitudes of an individual beat.

Each beat (or column) in the file data matrix is also assigned a label corresponding to 
the physician-given annotation included with the data set at the RR-interval onset. Given 
the provided labels, we consider the following annotation classes within the data: nor-
mal beat (N), left bundle branch block beat (L), right bundle branch block beat (R), atrial 
premature beat (A), aberrated atrial premature beat (a), nodal (junctional) premature beat 
(J), supraventricular premature or ectopic beat (S), premature ventricular contraction (V), 
fusion of ventricular and normal (F), atrial escape beat (e), nodal (junctional) escape beat 
(j), ventricular escape beat (E), and unclassifiable beat (Q) (Goldberger et al., 2000). Of 
note is that the beats with labels E, e, and S only appear in the training set as they each 
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only appear in one file allocated to the DS1 data subset; hence, the training and test sets 
do not have the same expected number of classes to detect. The distribution of the classes 
in the DS2 test set is shown in Fig. 1. Form this figure, we can see that the classes are not 
uniformly distributed, and some annotations only appear a few times in the data set. As is 
done by Hendryx et al. (2018), we also include results for evaluating our methods in ignor-
ing class detection (or lack thereof) within a file when fewer than three beats are present 
with the corresponding label; in this way, we can also see how each of the evaluated meth-
ods perform when the detection of those extremely rare-occurring beats is of low priority.

Examples of individual beats stored in the training data matrix for patient file numbers 
101 and 124 are shown in Fig. 2 along with their corresponding beat labels. Notice that 
while some annotations are repeated, the morphologies corresponding to such annotations 
may vary within the given class; for example, notice that the third beat in the top row in 
Fig. 2 carries an annotation of “N” even though it is notably different from the other RR-
intervals labeled with “N” (normal beat). Such within-class variability holds potential for 
multiple representatives to be selected from a given class in an unsupervised learning task, 
as we will observe in Sect. 5. Depending on the application at hand, this higher-resolution 
class identification in the machine learning context may be a desirable outcome.

4.2 � Letter Recognition Data Set

The Letter Recognition Data Set consists of 20, 000 observations of 16 features derived 
from perturbed images of letters from the English alphabet in a variety of fonts. Each image 
feature has been scaled to take on integer values from 0 to 15 (Frey & Slate, 1991); since 
the data is already scaled to have values within a fixed range, we do not normalize this data 
prior to analysis. Each of the 26 classes is well-represented in the data set; by “well-repre-
sented,” we mean that each of the 26 classes has > 700 observations. Splitting the data ran-
domly into training and test sets of equal sizes, each of the corresponding 16 × 10,000 data 
matrices are prime candidates for class detection through column selection with an exten-
sion of DEIM. Where we would hope to identify representatives for each of the 26 letters 

Fig. 1   The distribution of class labels among the beats in the DS2 subset of the MIT-BIH Arrhythmia Data-
base tested here
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in the English alphabet, the fact that each of the corresponding data matrices has a rank of 
at most 16 makes it impossible for standard DEIM to detect all 26 classes in both training 
and test sets. Therefore, the only way to identify all 26 classes with a DEIM-like method is 
to make use of extension/oversampling methods such as those presented here.

4.3 � Evaluated methods

Subset selection is performed on both of the data sets described above using seven different 
approaches: five approaches stem from the DEIM index-selection scheme, one approach 
makes use of the k-medoid clustering algorithm, and the seventh approach uses leverage 
scores. Each approach is described further below.2

Fig. 2   Examples of beat observations in the data matrices constructed from the MIT-BIH Arrhythmia Data-
base files corresponding to patient file numbers 101 and 124

2  Initial work comparing standard DEIM with additional methods and including application to different 
data sets can be found in the dissertation by Hendryx (2018) as work completed with Nabil Chaabane.



637Machine Learning (2021) 110:621–650	

1 3

4.3.1 � Variations on E‑DEIM

To better understand the role of the different pieces of the proposed E-DEIM algo-
rithm discussed above, we use DEIM to select a representative subset in each of these 
data sets with five different DEIM-type implementations: standard DEIM by itself, 
standard DEIM with additional indices randomly selected, E-DEIM considering only 
�1 and no “memory” residual (i.e. �̂ = �1 ), E-DEIM with the �1 distance in comput-
ing �2 , and E-DEIM with �2 capturing a sense of coherence. In the results below, these 
will be denoted as ‘DEIMS ’, ‘DEIMrand ’, ‘E-DEIM�1

 ’, ‘E-DEIM
�1

 ’, and ‘E-DEIMcoh ’, 
respectively.

In generating results for DEIMrand , the additional indices are randomly selected with-
out replacement from a uniform distribution using MATLAB’s default random number 
generator, and the number of indices selected is chosen to match the number of indi-
ces selected by the other extension methods. The DEIMrand experiment is repeated 100 
times, and it is the average of these results that is reported.
DEIM/E-DEIM parameter selection

With standard DEIM and the three E-DEIM approaches applied to each training set, 
parameter selection is performed for the SVD truncation tolerance, � , to determine the 
rank, k, of the SVD approximation. The value of k corresponding to each �-value is such 
that k is the smallest index with 𝜎k∕𝜎1 > 𝜃 for singular values �1 ≥ �2 ≥ ⋯ ≥ �k ≥ �n . 
Parameter selection is performed from the �-values of � = 0.5 , 0.1 , 5 × 10−2 , 10−2 , 
5 × 10−3 , 10−3 , 5 × 10−4 , 10−4 , 5 × 10−5 , and 10−5.

For the extended DEIM approaches, the extension tolerance within the restarted por-
tion of DEIM, denoted as � above, is also selected on the respective training sets from 
among the parameter values of � = 10−4 , 10−5 , 10−6 , 10−7 , 10−8 , 10−9 , and 10−10 . While 
it is not really necessary to tune this parameter if the goal is solely to avoid a nearly 
singular matrix, larger �-values can also potentially play a role in the number of indices 
added to � in each restart. The tested values here are chosen more for the sake of avoid-
ing a nearly singular matrix without accounting for the digits of accuracy in the original 
data sets; in future applications, parameter selection should also consider the accuracy 
of the data sets of interest and explore the potential role of � in defining a stopping crite-
ria for the number of DEIM restarts to perform.

As there are at most two hyperparameters to select in applying E-DEIM with one 
restart (fixing � = 2k ), and we are not otherwise fitting additional model parameters for 
class identification, we perform model selection by assessing the performance of each 
(�, �) parameter pair on the training set without cross-validation or a separate validation 
set. For both � and � , the final parameter selection for the MIT-BIH data set is given 
by the largest parameter values obtaining the maximum amount of annotation detection 
across all files and all annotations in the training set, DS1; that is, the parameter pair is 
chosen to achieve the highest detection rates in answering the following question: Of 
all individual labels to be detected on a file-by-file basis, how many of those labels are 
selected via the given DEIM/E-DEIM implementation? Similarly, for the Letter Recog-
nition Data Set, the final parameter combination of � and � is chosen to minimize the 
number of missed classes in the training set. For both data sets, the chosen parameter 
pair is selected to simultaneously maximize performance for DEIM and all of the tested 
E-DEIM extensions, resulting in the same rank-k SVD approximation for all experi-
ments that require the use of the singular vectors. After applying DEIM and E-DEIM to 
the test data sets with the selected parameters, we can then compare the test set results 
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with those produced from applying DEIMrand along with k-medoids clustering and lev-
erage score row/column selection (described below) under the same amount of dimen-
sion reduction.

4.3.2 � k‑medoids clustering

Similar to the more prominent k-means algorithm, k-medoids clustering is a well-known unsu-
pervised learning technique that partitions the data into k groups, each group centered around 
a particular point in the data set (or “medoid”). We can consider these medoids to be data class 
representatives, and therefore, we can use the medoids to select a subset of the data. It is worth 
noting, however, that there is usually some form of randomness in selecting the algorithm’s 
starting points. Hence, this clustering approach does not necessarily produce the same results 
each time it is applied to a data set.

For our experiments, we use the implementation of k-medoids available in MATLAB_
R2020a. In particular, the underlying selected algorithm is based on that proposed by Park 
and Jun (2009) and is implemented without calling for the optional online update phase that 
carries out an extra iteration similar to the classic PAM (Partitioning Around Medoids) algo-
rithm. While the inclusion of a PAM-like iteration holds the potential to improve the clus-
tering results (MATLAB, 2020), PAM has an O(k(m − k)2) computational cost compared to 
the cheaper O(mk) cost of running Park’s and Jun’s algorithm by itself (Park and Jun, 2009); 
while the MATLAB documentation states that the “PAM-like” update iteration is typically 
computationally cheaper than an actual PAM iteration (MATLAB, 2020), we choose to carry 
out clustering without this update phase. We average the results across ten different kme-
doids function calls, where each individual function call also outputs the clustering result 
from selecting ten different sets of initial medoids via MATLAB’s k-means++ algorithm. 
The selected distance measure is the default squared Euclidean distance, and we fix the num-
ber of selected medoids, k, to match the number of indices selected via standard DEIM and 
E-DEIM for comparable dimension reduction. We denote the k-medoid results with k match-
ing the number of DEIM-selected indices as ‘k-MedD ’, and we use ‘k-MedE ’ to denote the 
results for k matching the number of E-DEIM-selected indices.

4.3.3 � Leverage scores

In addition to k-medoids clustering, we also compare DEIM and the extensions proposed 
herein to the commonly known column selection technique using statistical leverage scores. 
Also used to select columns and rows in constructing a CUR decomposition of � [see the 
works by Drineas et al. (2008) and Mahoney and Drineas (2009)], the leverage score approach 
uses a probability distribution from which to select indices. This distribution for row selection, 
for example, is formed by computing the normalized leverage scores based on the squared �2

-norms of each row in the matrix containing the singular vectors of � . More specifically, the 
leverage score corresponding to the ith row of � is computed as

where � is the matrix of the first k left singular vectors from the SVD of � . We then define 
the index vector � to contain the indices of the rows with the k largest leverage scores. 
Some implementations automatically oversample the leverage scores to find more than 

�i =
1

k

k∑
j=1

�(i, j)2,
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k indices; we simply use the same rank-k SVD to select the same number of indices as 
selected by DEIM and E-DEIM for comparison. In the results reported below, we refer to 
the leverage score results with the number of selected indices matching that of DEIM as 
‘LevD ’ and the leverage score results with the number of selected indices matching that of 
E-DEIM as ‘LevE’.

5 � Results and discussion

With the data sets and parameter values discussed above, we now present the results from 
applying the different extensions of DEIM described herein along with the results of apply-
ing DEIMrand , k-medoids clustering, and leverage score index selection.

5.1 � MIT‑BIH Arrhythmia Database results

To test the extended DEIM methods on the MIT-BIH data set, we conduct trials similar to 
those carried out in our previous work using standard DEIM (Hendryx et al., 2018), but we 
directly compute the rank-k SVD of the data matrix as opposed to finding an approxima-
tion using an incremental QR approach. To select the SVD truncation tolerance, � , and the 
extension tolerance, � , we consider the percent detection among all present labels across all 
files in DS1. In computing this percentage of label detection, the annotations in each DS1 
file are considered independently; for example, if two out of three annotations are detected 
in one file and four out of five annotations are detected in another file, the detection sum-
mary for the two files would be six out of eight annotations, or 75%, even if some annota-
tions are present in both files. These summary results on the training set are are shown 
in Fig. 3 for the different �-values used. Interestingly, in all relevant cases, the detection 

Fig. 3   Percent detection of all labels present among all files in the DS1 MIT-BIH Arrhythmia Database 
training set for the DEIM variations DEIM

S
 , E-DEIM�

1

 , E-DEIM
�
1

 , and E-DEIM
coh

 and each of the ten 
tested SVD truncation tolerances. These results show, of all annotations to be detected on a file-by-file 
basis, how many of those individual annotations are detected through a particular variation of DEIM
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results are insensitive to the choice of � used in the restarted DEIM portion of the algo-
rithm; hence the training detection results shown in Fig. 3 are only for the truncation toler-
ances of the SVD. The reason for this insensitivity to � is likely that the remaining columns 
of �̂ are still linearly independent for the matrices associated with this data set, resulting in 
residual vectors that have entries greater than � = 10−4.

From the results in Fig.  3, we see improved performance for standard DEIM and 
each of the proposed DEIM extensions as the SVD truncation tolerance decreases to 
� = 10−3 . At this value of � , the resulting k-value is often close to the number of sam-
ples per beat (suggesting the corresponding file data matrices are nearly full rank), and 
the detection percentages for DEIMS , E-DEIM�1

 , E-DEIM
�1

 , and E-DEIMcoh are 85.33%, 
90.67%, 92%, and 92%, respectively. Fixing � = 10−4 , we select a truncation tolerance 
of � = 10−3 in applying each of the DEIM implementations to the test set, DS2. Given 
the resulting matrix rank from using the selected SVD truncation tolerance, the remain-
ing methods (DEIMrand , k-medoids, and leverage scores) are also applied to have the 
same number of indices selected as those in both DEIM (k) and E-DEIM (2k). The cor-
responding results are shown in Table 1. Here we present the detection summary results 
across all annotations and files for both the full data (with rare-occurring annotations) 
and the case in which the detection (or lack of detection) in annotations occurring few 
than three times is ignored in a given file. The left half of Table 1 contains the results 

Table 1   Percent detection of all annotations to be detected on a file-by-file basis for the DS2 subset of the 
MIT-BIH Arrhythmia Database with � = 10

−3 and, in the extended methods, � = 10
−4

The left column holds results for � having length k, and the right column holds results for � having length 
2k

Standard Full data ≥ 3 beats/label Extended Full data ≥ 3 beats/label

DEIM
S

90 94.55 DEIM
rand

91.84 95.96
k-Med

D
86.14 95.45 E-DEIM�

1

92.86 98.18
Lev

D
90 94.55 E-DEIM

�
1

92.86 98.18
E-DEIM

coh
94.29 100

k-Med
E

92.57 98
Lev

E
92.86 98.18

Table 2   The annotation detection results for the full DS2 subset of the MIT-BIH Arrhythmia Database with 
� = 10

−3 and � = 10
−4

DS2 N A V Q L a F R J j

DEIM
S

100 84.62 100 100 100 100 57.14 100 50 50
k-Med

D
100 70.77 96.88 70 100 97.5 55.71 100 60 60

Lev
D

100 84.62 100 100 100 100 57.14 100 50 50
DEIM

rand
100 87.62 100 100 100 100 67.43 100 51.5 57.5

E-DEIM�
1

100 100 100 100 100 100 57.14 100 50 50
E-DEIM

�
1

100 92.31 100 100 100 100 71.43 100 50 50
E-DEIM

coh
100 100 100 100 100 100 71.43 100 50 50

k-Med
E

100 81.54 98.13 100 100 97.5 85.71 100 70 60
Lev

E
100 92.31 100 100 100 100 71.43 100 50 50
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for the tested methods having the same number of k selected indices, and the right half 
contains the results for all of the evaluated extensions with 2k selected indices.

An annotation-by-annotation breakdown of the results on the full DS2 data set is 
shown in Table  2, and the corresponding results focused solely on detection in files 
with annotations represented by three or more beats are shown in Table 3. In all three 
results tables, Tables  1, 2, and 3, we see that simply extending the method to restart 
DEIM improves the detection results. While this is perhaps not very surprising given 
that all of the presented DEIM extensions (including the addition of randomly selected 
indices) simply add to the standard DEIM results, it confirms that selecting additional 
indices does allow for even more classes to be identified—not just re-selection from 
those classes previously identified. Although the overall improvement over stand-
ard DEIM shown in Table 1 is the same for both E-DEIM�1

 and E-DEIM
�1

 , Tables 2, 
and 3 demonstrate that the improvement is spread out across two classes (A and F) in 
E-DEIM

�1
 as opposed to the single class (F) with improved results for E-DEIM�1

 . The 
greatest improvement seen in class detection over DEIMS , however, is in the applica-
tion of E-DEIMcoh in which not only is DEIM restarted, but the “memory” residual, �2 , 
is computed using a measure of coherence. Hence, we see that the incorporation of �2 
in the extension of DEIM can add value to the overall algorithm performance in class 
detection.

In comparison to DEIMS and the proposed E-DEIM approaches, Table 1 shows that 
k-MedD performs worse than DEIMS when applied to the full data set but slightly better 
than DEIMS when the rare-occurring labels are ignored; k-MedE performs worse than all 
of the investigated extensions with the exception of DEIMrand , performing only slightly 
worse than E-DEIM�1

 and E-DEIM
�1

 . Tables 2 and 3 show the more detailed k-medoids 
results, showing that k-medoids clustering can lead to improved detection results over 
DEIM/E-DEIM in some specific classes, but worse detection results in others.

The leverage score approach, on the other hand, produces percentages that match the 
performance of DEIMS for the smaller index set and percentages that match the perfor-
mance of E-DEIM

�1
 for the larger index set. The results are even matched on the class-by-

class breakdown of the results in both Tables 2 and 3. The inclusion of randomly selected 
indices in DEIMrand , however, appears the least beneficial in this setting. While we do see 
improvement over DEIMS by just selecting additional representatives, this improvement is 
lacking in comparison to the more structured extension approaches, especially E-DEIMcoh.

Table 3   The annotation detection results for annotations appearing ≥ 3 times in a file for the DS2 subset of 
the MIT-BIH Arrhythmia Database with � = 10

−3 and � = 10
−4

DS2 N A V Q L a F R J j

DEIM
S

100 77.78 100 100 100 100 66.67 100 100 100
k-Med

D
100 78.89 100 90 100 97.5 86.67 100 100 100

Lev
D

100 77.78 100 100 100 100 66.67 100 100 100
DEIM

rand
100 82.11 100 100 100 100 79.67 100 100 100

E-DEIM�
1

100 100 100 100 100 100 66.67 100 100 100
E-DEIM

�
1

100 88.89 100 100 100 100 100 100 100 100
E-DEIM

coh
100 100 100 100 100 100 100 100 100 100

k-Med
E

100 88.89 100 100 100 97.5 100 100 100 100
Lev

E
100 88.89 100 100 100 100 100 100 100 100
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With these improved results, it is of little surprise that the amount of dimension reduc-
tion decreases through extending DEIM. Where standard DEIM sees a dimension reduc-
tion of 92.99% from the original 44,664 beats, each of the extensions yields a reduction 
by 85.98% on the DS2 data set. This, however, is a direct result of constructing the algo-
rithm to detect up to 2k class representatives rather than stopping at k. While some classes 
are over-represented in our selected subsets, as pointed out in looking at the sample beats 
in Fig. 2, the distinctions made between different morphologies within a given clinically-
defined class may be of benefit in developing clinical decision support tools such as auto-
mated cardiac event prediction algorithms.

5.2 � Letter Recognition Data Set results

Because the initial motivation in extending DEIM was to be able to handle class detection 
in the case where the number of classes is likely to exceed the rank of the matrix, we also 
test the performance of extended DEIM on the Letter Recognition Data Set described by 
Frey and Slate (1991) and available through the UCI Machine Learning Repository (Dua & 
Taniskidou, 2017). Again, since there are only 16 derived features for each letter image, the 
rank of the corresponding data matrix must be no greater than 16, making it necessary for 
the use of an extension if a DIEM-type approach is going to have a chance of identifying a 
set of representative features from all 26 classes (or letters). As with the MIT-BIH Arrhyth-
mia Database, we perform parameter selection on the training half of this letter recogni-
tion data. The class detection results are shown in Fig. 4, displaying how many of the 26 
letter classes are missed in the application of DEIM and each E-DEIM variation. Because 
these E-DEIM results are also insensitive to the choices of � tested (the largest values in �̂ 
remain greater than the tested extension thresholds), we again only present the results for 
the corresponding SVD truncation tolerances. We see from these results that the number of 

Fig. 4   Number of missed classes out of the 26 classes present in the Letter Recognition Data Set for each 
of the four DEIM variations, DEIM

S
 , E-DEIM�

1

 , E-DEIM
�
1

 , E-DEIM
coh

 and each of the ten tested SVD 
truncation tolerances
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missed classes across all four evaluated methods generally decreases as � decreases to 10−2 , 
where DEIMS misses 17 classes, DEIM�1

 misses 12 classes, DEIM
�1

 misses ten classes, 
and DEIMcoh misses seven classes. Notice that for � = 0.5 , DEIMcoh performs just as well 
as standard DEIM. It is worth noting here that for this truncation tolerance, the resulting 
low-rank SVD approximation has rank one; hence, any attempt to compute the coherence 
between the rows of � ∈ ℝ

m×1 and �̂ ∈ ℝ
(m−1)×1 will preclude the selection of an addi-

tional index in the restarted DEIM step due to the fact that elements of ℝ1 are collinear.
Given the results from Fig. 4, we fix � = 10−2 and � = 10−4 in applying the different 

DEIM implementations to the letter recognition test set and obtain the results in Table 4. 
This table shows the number of missed classes for each tested method along with its cor-
responding dimension reduction. As with the MIT-BIH results in Table 1, the results on 
the left in Table  4 correspond to methods selecting only k indices and methods on the 
right correspond to the methods selecting 2k indices, where, for � = 10−2 , the resulting 
k-value is 16. From this table, we again see E-DEIM methods outperform standard DEIM 
in class detection. The role of the “memory” residual appears to be more important for 
class detection in this data set, with both E-DEIM

�1
 and E-DEIMcoh missing fewer classes 

than E-DEIM�1
.

In comparing DEIM and E-DEIM to the other methods discussed here, the results in 
Table 4 show that the use of leverage scores is ill-suited for this data set as the only classes 
identified for k = 16 correspond to the letters J, M, N, Y, and Z, and extending the method 
to allow for the selection of 2k = 32 representatives yields only the added representation 
of the letter Q. k-medoids, on the other hand, performs slightly better (on average) than 
DEIMS and E-DEIMcoh , with DEIMrand producing average results that are between those 
of k-MedE and E-DEIMcoh . It is important to note, however, that all classes in this data set 
are well-represented; hence, the randomness in both the initialization of k-medoids and 
the selection of indices for DEIMrand might actually help in class detection in this setting 
where it did not appear to help as much in analyzing the unevenly distributed ECG data. 
While we are able to compute the average number of missed classes for both of these tech-
niques in generating the results for Table 4, a question that might follow from applying 
these repeated experiments in a truly unsupervised setting without knowledge of any labels 
is: How do we know which experiment’s indices should be trusted? It is this question along 
with the k-MedE and DEIMrand improved detection of no more than 0.2 classes (on aver-
age) that make the deterministic E-DEIMcoh an appealing alternative in this scenario.

The classes missed by E-DEIMcoh correspond to images of the letters B, C, D, I, O, R, 
and V; while it is unclear why these particular classes are missed, it is possible that not all 

Table 4   Class detection and dimension reduction results for the test portion of the Letter Recognition Data 
Set

The left column holds results for � having length k, and the right column holds results for � having length 
2k

Standard Missed classes Dim. red. (%) Extended Missed classes Dim. red. (%)

DEIM
S

13 99.84 DEIM
rand

6.91 99.68
k-Med

D
12.70 99.84 E-DEIM�

1

11 99.68
Lev

D
21 99.84 E-DEIM

�
1

8 99.68
E-DEIM

coh
7 99.68

k-Med
E

6.80 99.68
Lev

E
20 99.68
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classes are detected due to the influence of the image perturbations and the effects they 
may have on making two images of the same letter appear as two separate classes. Like the 
MIT-BIH data set, we again expect to see the smaller amounts of dimension reduction for 
the E-DEIM implementations. For this particular data set, however, the extension of DEIM 
is clearly needed as there is no way for standard DEIM to identify all 26 classes in the data 
set from 10, 000 observations, even with the maximum amount of data reduction allowed.

With the ability to restart DEIM multiple times in E-DEIM, a topic of interest for future 
studies on this data set is the implementation of extended DEIM with the selection of more 
than 2k observations; seeing as we are able to identify 19 of the 26 classes in selecting 
only 32 observations with DEIMcoh , the question remains as to how many observations 
should be selected in order to detect all 26 classes. Without relying on a user-defined maxi-
mum number of indices, � , a subsequent question arises: What is an appropriate criteria to 
determine how many restarted DEIM iterations should be implemented to detect all of the 
relevant classes in the data set? The answer to this question remains an important area of 
interest for future work.

5.3 � Discussion

In both the MIT-BIH Arrhythmia and Letter Recognition Sets, we see that the extension of 
DEIM with the inclusion of the coherence-computed �2 residual consistently outperforms 
standard DEIM for rank-k SVD approximations with k > 1 . Even without the coherence 
means of maintaining “memory” of the previously selected indices, the extended versions 
of DEIM are indeed able to detect additional classes within the data upon restarting. Our 
experiments also indicate that DEIMS performs comparably to (or outperforms) k-medoid 
clustering and leverage scores in the selection of the same number of indices. In allow-
ing for the selection of additional indices, E-DEIMcoh consistently performs better than 
leverage scores, and is at least similar in performance, if not better, when compared to 
k-medoids and DEIMrand , where the average performance of k-medoids and DEIMrand 
potentially depends on the uniformity of the class distributions throughout the data.

In carrying out these particular experiments, we are leveraging a labeled portion of the 
data set to select our parameters in DEIM and E-DEIM. While this may be recommended 
when such labels are available simply to gain a sense of some of the general data proper-
ties, we are not necessarily assuming that the same classes are present in both training and 
test sets; in fact, in our experiment set up, we know that there are actually more clinically-
defined classes in the training set than in the test set for the MIT-BIH Arrhythmia data. 
Hence, even in tuning these parameters, we do not assume a fixed number of classes since 
a certain ratio of singular value decay may be achieved by different values of k. That being 
said, when labeled data is not available to identify a �-value that maximizes class detection 
in the training set, there are a variety of ways to select k (or � ). For example, one option is 
to look for a “knee” in the plot of data matrix singular values (as is sometimes done with 
PCA). In the presence of computational constraints, another option is to simply select a 
feasible rank for the SVD. Or, if it is known that the number of classes likely exceeds the 
data matrix rank—the very scenario that inspired the development of this method (as in 
the letter data set)—one can simply take the full SVD of the data matrix and forgo select-
ing � altogether. For both experiments conducted here, the selected values of � result in 
rank-k SVD approximations with k often near or equal to the number time samples/fea-
tures. The k-values are typically just shy of the number of samples per beat for the MIT-
BIH Arrhythmia ECG data, allowing the number of selected beats to certainly exceed the 
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number of expected clinically-defined classes; perhaps as expected, k is equal to the num-
ber of features for the Letter Recognition Data Set with the selection of 2k observations 
only exceeding the number of expected classes by six observations. In addition to the pre-
viously described scenarios, even if the number of classes is known a priori in a labeled 
data set, an objective of applying E-DEIM can still be to identify a representative member 
(or members) of each known class, just as one could do in clustering the data until it is pos-
sible to identify representatives of each class.

As noted previously, careful tuning of � is not really of great significance in our experi-
ments as its primary role at this point is simply to avoid a singular �̂T

j
�̂tj

 in forming the jth 
projection in extending DEIM. However, the incorporation of � holds potential in defining 
stopping criteria for restarting DEIM multiple times because, if large enough, it can have 
an influence over which columns of �̂ are or are not included in forming the projection, P̂ , 
during restarted DEIM; this is an area for future work.

Along with the development of stopping criteria for restarting DEIM in carrying out an 
extension, the theoretical implications of selecting additional indices through the E-DEIM 
methods presented here need additional attention. While we have presented slight generali-
zations of previous theoretical results in the application of E-DEIM to the CUR decompo-
sition, the impact of selecting additional rows/columns through the inclusion of the “mem-
ory” residual, �2—in particular using coherence as opposed to the �1 distance—is not yet 
well understood despite observing positive results in practice. In addition, we reiterate that 
the error bounds discussed here certainly have their place in evaluating matrix approxima-
tions via subset selection, but the direct translation of these bounds to performance in the 
class identification setting is not obvious and remains a topic for future investigation.

We also note that while E-DEIM adds some computational cost to the standard DEIM 
algorithm, all of the DEIM/E-DEIM methods presented here, along with index selection 
through leverage scores, have a computational cost that is dominated by the formation of 
the SVD (O(mnk)). This is in comparison to the lower cost of the particular k-medoids 
algorithm implemented here (O(mk)), where a typical PAM implementation ( O(k(m − k)2) ) 
would be more cost prohibitive than computing the SVD. However, the use of k-medoids 
leads to nondeterministic results with lingering questions about identifying an appropriate 
representative subset if the clustering is to be performed multiple times and in a truly unsu-
pervised manner.

Having evaluated the performance of DEIM and E-DEIM in comparison with other 
methods applied to labeled data sets, we are able to observe that extending DEIM in a 
deterministic way is indeed a viable option in class-identification tasks—especially when 
the rank of the data matrix is not great enough for the detection of all classes. In par-
ticular, our results from the two different experiments discussed here support the use of 
E-DEIMcoh in selecting additional indices. With room for further developing and under-
standing E-DEIM-type methods, the encouraging results presented here still suggest that 
the inclusion of such methods in completing machine learning tasks merits consideration.

6 � Conclusion

In this work, we have presented a novel extension of the DEIM index-selection algorithm 
with the primary purpose of identifying additional data points of interest in the scenario 
that the number of classes present in the data set exceeds the matrix rank. As presented 
here, we are also able to study some of the implications of using E-DEIM to construct 
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the CUR matrix decomposition. In applying this algorithm to real data sets, we see that 
the extension does indeed allow for the identification of additional classes not detected 
with standard DEIM alone; the greatest improvement over standard DEIM is seen in the 
extension of DEIM with a “memory” residual defined in terms of the coherence between 
those rows/columns selected and those rows/columns left unselected via standard DEIM. 
The use of E-DEIM in class identification is further supported through the comparison 
of the proposed approach(es) with the more familiar k-medoids clustering algorithm and 
subset selection through statistical leverage scores. In our experiments, the deterministic 
E-DEIMcoh outperforms or is at least comparable to the other methods in identifying class 
representatives.

With questions remaining regarding the number of extensions—or DEIM restarts—to 
include in the general algorithm presented here, this is an area of interest for future study 
along with a more theoretical analysis of E-DEIM in the class-identification setting. We 
also note that extensions of DEIM or DEIM-related algorithms can take on many forms, 
some arising in different fields and some yet to be developed. Given the success of our 
proposed E-DEIM algorithm in the experiments presented here, we plan to pursue this 
research area further for the purposes of class detection.

Appendix 1: Theoretical implications

While the measure of accuracy may be different in the theoretical and class-detection set-
tings, we include these more theoretical results for completeness as extensions of DEIM 
may find use in other settings.

In extending DEIM to select k̂ as opposed to k indices, we can also extend the related 
theoretical results. Where the results presented by Sorensen and Embree (2016) make use 
of the invertibility of �T� in standard DEIM, as mentioned above, we now only have that, 
for our extended DEIM construction of � ∈ ℝ

m×k̂ , �T� has full column rank. In the sub-
sections that follow, we present the theoretical results for bounding the extended DEIM 
projection error and the subsequent results relating to the extended CUR factorization.

Extended DEIM projection error bound

The proof of the extended DEIM projection error for P defined as in Eq. (1) closely follows 
that presented by Sorensen and Embree (2016).

Lemma 2  Let � be any matrix in ℝm×n , and let � ∈ ℝ
m×k be such that �T� = � . For 

� = �(∶, �) ∈ ℝ
m×k̂ , assume �T� has full column rank. Let P = �(�T�)†�T , where 

(�T�)† = [(�T�)T (�T�)]−1(�T�)T . Then, with ‖ ⋅ ‖ denoting the induced matrix 2-norm,

Furthermore, suppose � contains the first k left singular vectors of � ; that is, � satisfies 
the rank-k approximation � ≈ ���T , where �T� = �T� = � . Then

Proof  Notice that

(6)‖� − P�‖ ≤ ‖(�T�)†‖‖(� − ��T )�‖.

(7)‖� − P�‖ ≤ ‖(�T�)†‖�k+1.
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which implies (� − P)� = 0. Then

Using the fact that ‖� − P‖ = ‖P‖ = ‖(�T�)†‖ for P ≠ � or � , the first result given by Eq. 
(6) holds. As suggested by Sorensen and Embree (2016), for proof that ‖� − P‖ = ‖P‖ , see 
the work by Szyld (2006). The second equality, ‖P‖ = ‖(�T�)†‖ , holds with ‖ ⋅ ‖ being the 
induced matrix 2-norm given that � and � both have orthonormal columns. If � contains 
the first k singular vectors of � , then

Hence, the second result given by Eq. 7 holds.� □

Having proved Lemma  2 for the row-selecting projector, P , we note that a simi-
lar result holds for the column-selecting projector Q = �(�T�)†�T , where 
(�T�)† = (�T�)T [(�T�)(�T�)T ]−1 . Specifically, for � ∈ ℝ

n×k containing the first k 
right singular vectors of � , and for � = �(∶, �) ∈ ℝ

n×k̂ such that �T� has full rank, we 
have the following projection error bound:

Theoretical implications for the CUR factorization

To prove an error bound for the CUR factorization with 𝜅 > k , �1 = �
†

1
��† , and �2 = � 

as described in Sect. 3.3, we will make use of the E-DEIM projection error that follows 
from Lemma  2 for the projection Q1 = �1(�

T�1)
†�T , where �1 = �(∶, �1) is such 

that ��1 = �1 . Before proving this result, for completeness we first prove a slight gen-
eralization of Sorensen’s and Embree’s Lemma 4.2 (2016), closely following their proof 
technique.

Lemma 3  Let � ≈ ���T be the rank-k SVD of � with k < min{m, n}.

Suppose that for k̂ ≥ k , � ∈ ℝ
k̂ and � ∈ ℝ

k̂ are such that � = �(∶, �) = �� and 
� = �(�, ∶) = �T� , and ‖(�T�)†‖ and ‖(�T�)†‖ are finite. Then

Proof  With �† = (��)−1�T and � = �� , we see that

Setting � = �(�T�T��)−1�T�T� , it follows that ��†� = �� and

P� = �[(�T�)T (�T�)]−1(�T�)T�T� = �,

��� − P��� = ��(� − P)���
= ��(� − P)(� − ��T )���
≤ ‖� − P‖‖(� − ��T )�‖.

‖� − P�‖ ≤ ‖(�T�)†‖‖(� − ��T )�‖
= ‖(�T�)†‖‖� − ���T‖
= ‖(�T�)†‖�k+1.

‖� − �Q‖ ≤ ‖(�T�)†‖�k+1.

(8)‖(� − ��†)�‖ ≤ ‖(�T�)†‖�k+1 and ‖�(� − �†�)‖ ≤ ‖(�T�)†‖�k+1.

��†� = (��)(�T�T��)−1�T�T�.
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Notice that since � is a projection onto the range of � , �� = � and

Then

so that (� − ��†)� = (� − ��†)�(� −Q) . It follows, then that

by Lemma 2 with k < min{n,m} and using the fact that � − ��† is an orthogonal projector 
with ‖� − ��†‖ = 1 . Hence the first inequality in (8) holds.

The proof of the second inequality in (8) follows a similar pattern. Defining 
� = ��T�((�T�)(�T�)T )−1�T , we see that

where we recall that P = �(�T�)†�T . Then, it follows that

� □

This result allows us to prove a bound on the CUR approximation error � ≈ �1�1� 
with �1 ∈ ℝ

m×� , �1 ∈ ℝ
�×k , and � ∈ ℝ

k×n for 𝜅 > k as described above. We first restate 
Theorem 1, and once again, we closely follow the technique presented by Sorensen and 
Embree (2016), which closely follows a technique by Mahoney and Drineas (2009).

Theorem  1  Suppose � ∈ ℝ
m×n and k ≤ rank(A) with 1 ≤ k < 𝜅 ≤ min{m, n} . Let 

�1 = �(∶, �1) ∈ ℝ
m×� , � = �(�, ∶) ∈ ℝ

k×n and �1 = �
†

1
��† . Then

Proof  Since �1 = �
†

1
��†,

Then

(� − ��†)� = �(� −�).

�Q = ��(�T�)†�T = �(�T�)†�T = Q.

�(� −�) = �(� −�)(� −Q) = (� − ��†)�(� −Q)

‖(� − ��†)�‖ = ‖(� − ��†)�(� −Q)‖
≤ ‖� − ��†‖‖�(� −Q)‖
≤ ‖(�T�)†‖�k+1

�(� − �†�) = � − ��T�((�T�)(�T�)T )−1�T�

= � − ��

= (� − � )�

= (� − P)(� − � )�

= (� − P)�(� − �†�),

‖�(� − �†�)‖ = ‖(� − P)�(� − �†�)‖
≤ ‖(� − P)�‖‖(� − �†�)‖
≤ ‖(�T�)†‖�k+1.

(9)‖A − C1U1R‖ ≤ (‖(PTV)−1‖ + ‖(WTQ1)
†‖)�k+1.

� − �1�1� = � − �1�
†

1
��†� = (� − �1�

†

1
)� + �1�

†

1
�(� − �†�)
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This last line follows from Lemma 3 above and the related standard-DEIM result presented 
in Lemma 4.2 by Sorensen and Embree (2016). Hence we see the result in (9) holds.□

Appendix 2: MIT‑BIH Arrhythmia Data Set training/test split

As described by De Chazal et al. (2004) in splitting the MIT-BIH Arrhythmia ECG data, 
the training set “DS1” contains files 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 
124, 201, 203, 205, 207, 208, 209, 215, 220, 223, 230.

The test set “DS2” contains files 100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 
212, 213, 214, 219, 221, 222, 228, 231, 232, 233, 234. Note that the four files containing 
paced beats (102, 104, 107, and 217) are not included in the training or test sets (De Chazal 
et al., 2004).
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