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Abstract
In this paper, we study the problem of estimating latent variable models with arbitrarily 
corrupted samples in high dimensional space (i.e., d ≫ n ) where the underlying parameter 
is assumed to be sparse. Specifically, we propose a method called Trimmed (Gradient) 
Expectation Maximization which adds a trimming gradients step and a hard thresholding 
step to the Expectation step (E-step) and the Maximization step (M-step), respectively. We 
show that under some mild assumptions and with an appropriate initialization, the algo-
rithm is corruption-proofing and converges to the (near) optimal statistical rate geometri-

cally when the fraction of the corrupted samples � is bounded by Õ
�

1
√

n

�

 . Moreover, we 

apply our general framework to three canonical models: mixture of Gaussians, mixture of 
regressions and linear regression with missing covariates. Our theory is supported by thor-
ough numerical results.
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1  Introduction

As one of the most popular techniques for estimating the maximum likelihood of mixture 
models or incomplete data problems, Expectation Maximization (EM) algorithm has been 
widely applied to many areas such as genomics (Laird 2010), finance (Faria and Gonçalves 
2013), and crowdsourcing (Dawid and Skene 1979). Although EM algorithm is well-
known to converge to an empirically good local estimator (Wu et  al. 1983), finite sam-
ple statistical guarantees for its performance have not been established until recent studies 
(Balakrishnan et al. 2017b; Zhu et al. 2017; Wang et al. 2015; Yi and Caramanis 2015). 
Specifically, the first local convergence theory and finite sample statistical rate of conver-
gence for the classical EM and its gradient ascent variant (gradient EM) were established 
in Balakrishnan et  al. (2017b). Later, Wang et  al. (2015) extended the classical EM and 
gradient EM algorithms to the high dimensional sparse setting, and the key idea in their 
methods is an additional truncation step after the M-step, which can exploit the intrinsic 
sparse structure of the high dimensional latent variable models. Later on, Yi and Carama-
nis (2015) also studied the high dimensional sparse EM algorithm and proposed a method 
which uses a regularized M-estimator in the M-step. Recently, Zhu et al. (2017) considered 
the computational issue of the previous methods of the problem in high dimensional sparse 
case. They proposed a method called VRSGEM (Variance Reduced Stochastic Gradient 
EM) which combines the idea of SVRG (Stochastic Variance Reduced Gradient) (Johnson 
and Zhang 2013) and the high dimensional gradient EM algorithm. Their method has less 
gradient complexity while also can achieve almost the same statistical estimation errors as 
the previous ones.

Although the above methods could achieve (near) optimal minimax rate for some statis-
tical models such as Gaussian mixture model, mixture of regressions and linear regression 
with missing covariates (see Sect. 3 for details), all of these results need to assume that 
the data samples have no corruptions and also should satisfy some statistical assumptions, 
such as sub-Gaussian. This means that some arbitrary corruptions among the data samples 
may cause the dataset violate these statistical assumptions which are required for conver-
gence of the above methods, or they will even make the above methods achieve unaccepta-
ble statistical estimation errors (see Fig. 1 for experimental studies). Thus, the classical EM 
algorithm and its variants are sensitive to these corruptions. Although statistical estimation 
with arbitrary corruptions has long been a focus in robust statistics (Huber 2011), it is still 
unknown that whether there exist some variant of (gradient) EM algorithm which is 
robust to arbitrary corruptions while also has finite sample statistical guarantees as 
in the non-corrupted case.

To address the aforementioned issue, in this paper, we study the problem of statisti-
cal estimation of latent variable models with arbitrarily corrupted samples in high dimen-
sional space1 (i.e., d ≫ n ) where the underlying parameter is assumed to be sparse. Specifi-
cally, we propose a new algorithm called Trimmed (Gradient) Expectation Maximization, 
which attaches a trimming gradient and hard thresholding step to the E-step and M-step in 
each iteration, respectively. We show that under certain conditions, our algorithm is robust 
against corruption and converges with a statistical estimation error which is (near) statisti-
cally optimal. Below is a summary of our main contributions. 

1  Since high dimensional sparse case is much more harder than the low dimension case, our algorithm can 
be easily extended to the low dimension case by using the results in Balakrishnan et al. (2017b). Due to the 
space limit, we omit it in the paper.
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1.	 We show that, given an appropriate initialization � init , i.e., ‖� init − �
∗
‖ ≤ �‖�

∗
‖2 for 

some constant � ∈ (0, 1) , if the model satisfies some additional assumptions, the iterative 
s o l u t i o n  s e q u e n c e  �

t  o f  o u r  a l g o r i t h m  s a t i s f i e s 

‖𝛽
t − 𝛽

∗
‖2 ≤ Õ

�

c1𝜌
t +

√

s∗c2(𝜖 log(nd) +
�

log d

n
)

�

 with high probability, where 

� ∈ (0, 1) , c1, c2 are some constants dependent on the model, � is the fraction of the 
perturbed samples, and s∗ is the sparsity parameter of the underlying parameter �∗ . 
Particularly, when c2 is a constant and � ≤ O

�

1
√

n log(nd)

�

 , the above estimation error 

geometrically converges to O
(

√

s∗ log d

n

)

 , which is statistically optimal. This means that 

(a)

(b)

(c)

Fig. 1   Estimation error of classical high dimensional gradient EM algorithm in Wang et  al. (2015) w.r.t 
sample size, iteration and dimension
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our algorithm is corruption-proofing for a certain level of corruption that is only depend-
ent on the sample size, which is quite useful in the high dimensional setting.

2.	 We implement our algorithm on three canonical models: mixture of Gaussians, mixture 
of regressions and linear regression with missing covariates. Experimental results on 
these models support our theoretical analysis.

Some background, lemmas and all the proofs are included in the “Appendix”.

2 � Related work

There are mainly two perspectives on the study of EM algorithm. The first one focuses 
on its statistical guarantees (Balakrishnan et al. 2017b; Zhu et al. 2017; Wang et al. 2015; 
Yi and Caramanis 2015). However, there are many differences compared with our results. 
Firstly, as we mentioned above, although in this paper we study the same statistical set-
ting as these previous work, our method is corruption-proofing while the performance of 
their algorithms is heavily affected by outliers. Secondly, in our paper we use a robust ver-
sion of the gradient instead of the original gradient, this make the proof of our theoretical 
result different with the above previous papers. Another direction focus on the practical 
performance, and there are many robust variants of the EM algorithm such as Aitkin and 
Wilson (1980); Yang et al. (2012). However, we note that these methods are incomparable 
with ours. Firstly, in this paper we mainly focus on statistical setting and the statistical 
guarantees while there is no any theoretical guarantees of these methods. Secondly, pre-
vious methods can only be used in the low dimension case while we focus on the high 
dimensional sparse case. Thus, to our best knowledge, there is no previous work on the 
variants of the EM algorithm that is both robust to some corruptions and also has statistical 
guarantees. Thus, in the following we will only compare with some other methods that are 
close to ours.

Diakonikolas et  al. (2016, 2017, 2018), Chen et  al. (2013) studied the problem of 
robustly estimating the mixture of distributions. However, some of them are not compu-
tationally practical as they rely on the rather time-consuming ellipsoid method. Moreover, 
these methods in general cannot be extended to the distributed or Byzantine setting (Chen 
et al. 2017), while ours can be easily extended to such scenarios.

Du et al. (2017), Balakrishnan et al. (2017a), Li (2017), Suggala et al. (2019), Dalalyan 
and Thompson (2019), Thompson and Dalalyan (2018) studied the robust high dimen-
sional sparse estimation problem for some specified tasks, such as GLM, linear regression, 
mean and covariance matrix estimation. However, none of them considered estimating the 
latent variable models and thus is quite different from ours.

Recently, several robust methods have been proposed based on (stochastic) gradient 
descent, such as Alistarh et al. (2018), Chen et al. (2017), Yin et al. (2018), Prasad et al. 
(2018), Holland (2018). However, none of them studies the latent variable models and all 
of them consider only the low dimensional case.

We have to note that the most closed work to ours is given by Liu et  al. (2019). 
Specifically, Liu et al. (2019) recently investigated the robust high dimensional sparse 
M-estimation problem (such as linear regression and logistic regression) by combining 
hard thresholding with trimming steps. However, their results are incomparable with 
ours. Particularly, their method can only be used in the M-estimation, and they only 
consider the case where the loss function is convex while ours focuses on the latent 
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variable model and the EM algorithm, and the loss function (Q-function) is non-convex. 
Thus, we cannot use their proofs directly to get our theoretical results.

3 � Preliminaries

Let Y and Z be two random variables taking values in the sample spaces Y and Z , 
respectively. Suppose that the pair (Y, Z) has a joint density function f

�∗
 that belongs to 

some parameterized family {f
�∗
|�

∗ ∈ �} . Rather than considering the whole pair of 
(Y, Z), we observe only component Y. Thus, component Z can be viewed as the missing 
or latent structure. We assume that the term h

�
(y) is the marginal distribution over the 

latent variable Z, i.e., h
�
(y) = ∫

Z
f
�
(y, z)dz. Let k

�
(z|y) be the density of Z conditional on 

the observed variable Y = y , that is, k
�
(z|y) =

f
�
(y,z)

h
�
(y)

.

Given n observations y1, y2,… , yn of Y, the EM algorithm is to maximize the log-
likelihood max

�∈� �n(�) =
∑n

i=1
log h

�
(yi). Due to the unobserved latent variable Z, it is 

often difficult to directly evaluate �n(�) . Thus, we consider the lower bound of �n(�) . 
By Jensen’s inequality, we have

Let Qn(�;�
�) =

1

n

∑n

i=1
qi(�;�

�) , where

Also, it is convenient to let Q(�;��) denote the expectation of Qn(�;�
�) w.r.t {yi}ni=1 , that is,

We can see that the second term on the right hand side of (1) is not dependent on � . Thus, 
given some fixed �′ , we can maximize the lower bound function Qn(�;�

�) over � to obtain 
sufficiently large �n(�) − �n(�

�) . Thus, in the t-th iteration of the standard EM algorithm, 
we can evaluate Qn(⋅;�

t) at the E-step and then perform the operation of max
�∈� Qn(�;�

t) 
at the M-step. See McLachlan and Krishnan (2007) for more details.

In addition to the exact maximization implementation of the M-step, we add a gradi-
ent ascent implementation of the M-step, which performs an approximate maximization 
via a gradient descent step.

Gradient EM Procedure (Balakrishnan et al. 2017b) When Qn(⋅;�
t) is differentiable, 

the update of � t to � t+1 consists of the following two steps.

–	 E-step: Evaluate the functions in (2) to compute Qn(⋅;�
t).

–	 M-step: Update � t+1 = �
t + �∇Qn(�

t;� t) , where ∇ is the derivative of Qn w.r.t the first 
component and � is the step size.

(1)

1

n
[�n(�) − �n(�

�)] ≥1

n

n
∑

i=1
�Z

k
��
(z|yi) log f�(yi, z)dz

−
1

n

n
∑

i=1
�Z

k
��
(z|yi) log f�� (yi, z)dz.

(2)qi(�;�
�) = ∫Z

k
��
(z|yi) log f�(yi, z)dz.

(3)Q(�;��) = �y∼h
�∗ ∫Z

k
��
(z|y) log f

�
(y, z)dz.
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Next, we give some examples that use the gradient EM algorithm. Note that they are the 
typical examples for studying the statistical property of EM algorithm (Wang et al. 2015; 
Balakrishnan et al. 2017b; Yi and Caramanis 2015; Zhu et al. 2017).

Gaussian Mixture Model Let y1,… , yn be n i.i.d. samples from Y ∈ ℝ
d with

where Z is a Rademacher random variable (i.e., ℙ(Z = +1) = ℙ(Z = −1) =
1

2
 ), and 

V ∼ N(0, �2Id) is independent of Z for some known standard deviation � . In our high 
dimensional setting, we assume that ‖�∗‖0 = s∗ is sparse.2

For Gaussian Mixture Model, we have

where w
�
(y) =

1

1+exp(−⟨�,y⟩∕�2)
.

Mixture of (Linear) Regressions Model Let n samples (x1, y1) , (x2, y2) , … , (xn, yn) 
i.i.d.. sampled from Y ∈ ℝ and X ∈ ℝ

d with

where X ∼ N(0, Id) , V ∼ N(0, �2),3 Z is a Rademacher random variable, and X, V, Z are 
independent. In the high dimensional case, we assume that ‖�∗‖0 = s∗ is sparse.

In this case, we have

where w
�
(xi, yi) =

1

1+exp(−y⟨�,x⟩∕�2)
.

Linear Regression with Missing Covariates We assume that Y ∈ ℝ and X ∈ ℝ
d 

satisfy

where X ∼ N(0, Id) and V ∼ N(0, �2) are independent. In our high dimensional setting, we 
assume that ‖�∗‖0 = s∗ is sparse. Let x1, x2,… , xn be n observations of X with each coordi-
nate of xi missing (unobserved) independently with probability pm ∈ [0, 1).

In this case, we have

where the functions m
�
(xobs

i
, yi) ∈ ℝ

d and K
�
(xobs

i
, yi) ∈ ℝ

d×d are defined as:

and

(4)Y = Z ⋅ �
∗ + V ,

(5)∇qi(�;�) = [2w
�
(yi) − 1] ⋅ yi − �,

(6)Y = Z⟨�∗,X⟩ + V ,

(7)∇qi(�;�) = (2w
�
(xi, yi) − 1) ⋅ yi ⋅ xi − xix

T
i
⋅ �,

(8)Y = ⟨X, �∗⟩ + V ,

(9)∇qi(�;�) = yi ⋅ m�
(xobs

i
, yi) − K

�
(xobs

i
, yi)�,

(10)m
𝛽
(xobs

i
, yi) = zi ⊙ xi +

yi − ⟨𝛽, zi ⊙ xi⟩

𝜎2 + ‖(1 − zi)⊙ 𝛽‖
2
2

(1 − zi)⊙ 𝛽

2  For a vector v ∈ ℝ
d , ‖v‖0 represents the number of entries in v that are non-zero.

3  ⟨⋅, ⋅⟩ represents the inner product of two vectors.
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where vector zi ∈ ℝ
d is defined as zi,j = 1 if xi,j is observed and zi,j = 0 is xi,j is missing, and 

⊙ denotes the Hadamard product of matrices.
Next, we provide several definitions on the required properties of functions Qn(⋅;⋅) 

and Q(⋅;⋅) . Note that some of them have been used in the previous studies on EM (Bal-
akrishnan et al. 2017b; Wang et al. 2015; Zhu et al. 2017).

Definition 1  Function Q(⋅;�∗) is self-consistent if �∗ = argmax
�∈� Q(�;�∗). That is, �∗ 

maximizes the lower bound of the log likelihood function.

Definition 2  Q(⋅;⋅) is called Lipschitz–Gradient-2(� ,B ), if for the underlying parameter �∗ 
and any � ∈ B for some set B , the following holds

We note that there are some differences between the definition of Lipschitz–Gradi-
ent-2 and the Lipschitz continuity condition in the convex optimization literature (Nes-
terov 2013). Firstly, in (12), the gradient is w.r.t the second component, while the Lip-
schitz continuity is w.r.t the first component. Secondly, the property holds only for fixed 
�
∗ and any � , while the Lipschitz continuity is for all �, �� ∈ B.

Definition 3  (�-smooth) Q(⋅;�∗) is �-smooth, that is if for any �, �� ∈ B , 
Q(�;�∗) ≥ Q(��;�∗) + (� − �

�)T∇Q(��;�∗) −
�

2
‖�

� − �‖
2
2
.

Definition 4  (�-strongly concave) Q(⋅;�∗) is �-strongly concave, that is if for any �, �� ∈ B , 
Q(�;�∗) ≤ Q(��;�∗) + (� − �

�)T∇Q(��;�∗) −
�

2
‖�

� − �‖
2
2
.

Next, we assume that each coordinate of ∇q(�;�) in (2) is sub-exponential for every 
� ∈ B , where ∇ is the derivative of q w.r.t the first component.

Definition 5  A random variable X with mean �(X) is �-sub-exponential for 𝜉 > 0 if for all 

|t| <
1

𝜉
 , �{exp

(

t[X − �(X)]

)

} ≤ exp(
�
2t2

2
).

Assumption 1  We assume that Q(⋅;⋅) in (3) is self-consistent, Lipschitz–Gradient-2(� ,B ), 
�-smooth and �-strongly convex for some B . Moreover, we assume that for any fixed � ∈ B 
with ‖�‖0 ≤ s (where the value of s will be specified later) and ∀j ∈ [d] , the j-th coordinate 
of ∇q(�;�) (i.e., [∇q(�;�)]j ) is �-sub-exponential and for each i ∈ [n] , [∇qi(�, �)]j is inde-
pendent with others.

We note that the sub-exponential assumption on each coordinate is stronger than the 
assumption of Statistical-Error in Wang et al. (2015); Balakrishnan et al. (2017b). How-
ever, since the model considered in this paper could have arbitrarily corrupted samples, 
we will see later that this assumption is necessary.

Finally, we give the definition of the corruption model studied in the paper.

(11)
K
𝛽
(xobs

i
, yi) =diag(1 − zi) + m

𝛽
(xobs

i
, yi) ⋅ [m𝛽

(xobs
i

, yi)]
T

− [(1 − zi)⊙ m
𝛽
(xobs

i
, yi)] ⋅ [(1 − zi)⊙ m

𝛽
(xobs

i
, yi)]

T ,

(12)‖∇Q(�;�∗) − ∇Q(�;�)‖2 ≤ �‖� − �
∗
‖2.
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Definition 6  (�-corrupted samples) Let {y1, y2,… , yn} be n i.i.d. observations with distri-
bution P. We say that a collection of samples {z1, z2,… , zn} is �-corrupted if an adversary 
chooses an arbitrary �-fraction of the samples in {yi}ni=1 and modifies them with arbitrary 
values.

We note that this is a quite common model in robust estimation or robust statistics. 
Equivalently, it means that there are �-fraction of samples in the dataset are outliers (or 
they are corrupted arbitrarily).

4 � Trimmed expectation maximization algorithm

To obtain a robust estimator for the high dimensional model with �-corrupted samples, we 
propose a trimmed EM algorithm, which is based on the gradient EM algorithm. See Algo-
rithm 1 for details.

Note that compared with the previous gradient EM algorithm, Trimmed EM algorithm 
has two additional steps in each iteration, i.e., the trimming gradient and hard thresholding 
step. For the trimming gradient step 4 in Algorithm 1, we use the dimensional �-trimmed 
estimator (i.e., D-Trim

�
 ) on the gradients {∇qi(� t;� t)}ni=1 . We note that while this operator 

has also been studied in Liu et al. (2019); Yin et al. (2018) for the M-estimators, we use it 
for the EM algorithm. Here is the definition of the function D-Trim

�
(⋅).

Definition 7  (Dimensional �-trimmed estimator) Given a set of �-corrupted samples in 
the form of d-dimensional vectors {zi}ni=1 , the D-Trim operator D-Trim

�
({zi}

n
i=1

) ∈ ℝ
d per-

forms as follows. For each dimension j ∈ [d] , it first removes the largest and the smallest 
� fraction of elements in the j-th coordinate of {zi}ni=1 , i.e., {zi,j}ni=1 , and then calculates the 
mean of the remaining terms, where � = c0� and � ≤ 1

2
− c1 for some constant c0 ≥ 1 and a 

small constant c1.

The rationale behind the use of the dimensional trimmed estimator is that due to the 
existence of � fraction of corrupted samples, directly calculating the the mean of the gradi-
ent could introduce a large error to the population gradient ∇Q(� t;� t) in (3). Also, it can be 
shown that if each coordinate of ∇qi(� t;� t) is sub-exponential, it will be robust against the �
-corruption for some small � . This motivates us to use the dimensional trimmed operation.



2291Machine Learning (2020) 109:2283–2311	

1 3

To ensure the sparsity of our estimator, after getting � t+0.5 , we need to use the hard 
thresholding operation (Blumensath and Davies 2009). More specifically, we first 
find the set Ŝ

t+0.5
⊆ [d] of indices j corresponding to the top s largest |� t+0.5

j
| (we 

denote Ŝ
t+0.5

= supp(𝛽 t+0.5, s)4), and make the value of the remaining entries � t+0.5
j

 for 
j ∈ [d]�Ŝ

t+0.5
 be 0 (we denote 𝛽 t+1 = trunc(𝛽 t+0.5, Ŝ

t+0.5
)5). The sparsity level s controls the 

sparsity of the estimator and the estimation error.
The following main theorem shows that under Assumption 1 and with some proper ini-

tial vector � init , the estimator �T converges to the underlying �∗ at a geometric rate with 
high probability.

Theorem  1  Let B = {� ∶ ‖� − �
∗
‖2 ≤ R} be a set with R = k‖�∗‖2 for some k ∈ (0, 1) . 

Assume that Assumption  1 holds for parameters B, � ,�, �, � satisfying the condition of 
1 − 2

�−�

�+�
∈ (0, 1) and the sparsity parameter s is chosen to be

where C is some absolute constant. Also, assume that ‖� init − �
∗
‖2 ≤ R

2
 and there exist 

some absolute constants C1 and C2 satisfying the condition of

Then, if taking � =
2

�+�
 in Algorithm 1, the following holds for t = 1,… , T  with probability 

at least 1 − Td−3

(13)s =

⌈

Cmax

{

16

{1∕[1 − 2(� − �)∕(� + �)] − 1}2
,
4(1 + k)2

(1 − k)2

}

s∗
⌉

,

(14)

1

� + �
C2

�

√

s +
C1

√

s∗

√

1 − k

�

�

�

� log(nd) +

�

log d

n

�

≤ min
�

⎛

⎜

⎜

⎝

1 −

�

1 −
2(� − �)

� + �

⎞

⎟

⎟

⎠

2

R,
(1 − k)2

2(1 + k)
‖�

∗
‖2

�

.

4  In general, given a vector v ∈ ℝ
d and an integer s, function supp(v, s) returns a set of s number ofis indices 

corresponding to the top s largest value among {|vj|, j ∈ [d]}.
5  In general, given a vector v ∈ ℝ

d and a set of indices S ⊆ [d] , function trunc(v,S) ∈ ℝ
d , where 

[trunc(v,S)]j = vj if j ∈ S and [trunc(v,S)]j = 0 otherwise.
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In the above theorem, assumption (13) indicates that the sparsity level s in Algorithm 1 
should be sufficiently large but still in the same order as the underlying sparsity s∗ . 
Although s seems quite complex, in the experiments, we can see that it is suffcient to set 
s = s∗ . Assumption (14) suggests that in order to ensure an upper bound in the hard thresh-
olding step, we need 

√

s∗�(� log(nd) +
�

log d

n
) ≤ O(‖�∗‖2) , which means that n should be 

sufficiently large and the fraction of corruption � cannot be too large. In the error bound of 
(15), there are three types of errors. The first one is caused by optimization, which 
decreases to zero at a geometric rate of convergence. The second one is the term related to 
� [i.e., O(�

√

s∗� log(nd)) ], which is caused by estimating the population gradient via the 
trimming step due the �-corrupted samples. In the special case of no corrupted samples 

(i.e., � = 0 ), the bound will be zero. The third one is the term O
(

�

√

s∗ log d

n

)

 , which corre-

sponds to the statistical error. It is independent of both � and t and only dependent on the 
model itself. Even though Theorem  1 requires that the initial estimator be close enough to 
the optimal one, our experiments show that the algorithm actually performs quite well for 
any random initialization.

From Theorem 1, we can also see that when the fraction of corruption � is sufficiently 

small such that � ≤ O

�

1
√

n log(nd)

�

 and the iteration number is sufficiently large, the error 

bound in (15) becomes O
(

�

√

s∗ log d

n

)

 , which is the same as the optimal rate of estimating 

a high dimensional sparse vector when � is some constant. This means that our method has 
the same rate as the non-corrupted ones in Wang et al. (2015). This rate of corruption also 
has been appeared in the corrupted sparse linear regression (Dalalyan and Thompson 2019; 
Liu et al. 2019). Also, we can see that when � = 0 , our algorithm will be reduced to the 
high dimensional gradient EM algorithm in Wang et al. (2015).

5 � Implications for some specific models

In this section, we apply our framework (i.e., Algorithm  1) to the models mentioned in 
Sect.  3. To obtain results for these models, we only need to find the corresponding 
B, � , k,R, �,�, � to ensure that Assumption 1 and assumptions in Theorem 1 hold.

5.1 � Corrupted Gaussian mixture model

The following lemma, which was given in Balakrishnan et al. (2017b), ensures the proper-
ties of Lipschitz–Gradient-2(� ,B ), smoothness and strongly concave for model (4). It is 
easy to show that the model is self-consistent (Yi and Caramanis 2015).

Lemma 1  (Balakrishnan et al. 2017b; Yi and Caramanis 2015) If ‖�
∗
‖2

�
≥ r , where r is a 

sufficiently large constant denoting the minimum signal-to-noise ratio (SNR), then there 

(15)
‖�

t − �
∗
‖2 ≤

�

1 − 2
� − �

� + �

�
t

2

R

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Optimization Error

+
2C2�(� log(nd) +

�

log d

n
)

� + �

√

s +
C1

√

1−k

√

s∗

1 −
�

1 − 2
�−�

�+�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Statistical and Corruption Error

.
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exists an absolute constant C > 0 such that the properties of self-consistent, Lipschitz–
Gradient-2(� ,B) , �-smoothness and �-strongly concave hold for function Q(⋅;⋅) with 
� = exp(−Cr2),� = � = 1,R = k‖�∗‖2, k =

1

4
, and B = {� ∶ ‖� − �

∗
‖2 ≤ R}.

Lemma 2  With the same notations as in Lemma 1, for each � ∈ B with ‖�‖0 ≤ s , the j-th 
coordinate of ∇qi(�;�) is �-sub-exponential with

where C1 is some absolute constant. Also, each [∇qi(�;�)]j , where i ∈ [n] , is independent of 
others for any fixed j ∈ [d].

Theorem 2  In an �-corrupted high dimensional Gaussian Mixture Model with � satisfying 
the condition of

if ‖�
∗
‖2

�
≥ r for some sufficiently large constant r denoting the minimum SNR and the initial 

estimator � init satisfies the inequality of ‖� init − �
∗
‖2 ≤ 1

8
‖�

∗
‖2, then the output �T of Algo-

rithm 1 after choosing s = O(s∗) and � = O(1) satisfies the following with probability at 
least 1 − Td−3

where C is some absolute constant.

From Theorem 2, we can see that when 𝜖 ≤ Õ
�

1
√

n

�

 and T = O
(

log
n

s∗ log d

)

 , the output 

achieves an estimation error of O
(

√

s∗ log d

n

)

 , which matches the best-known error bound 

of the no-outlier case (Yi and Caramanis 2015; Wang et al. 2015). Also, we assume that 
the SNR is large, which is reasonable since it has been shown that for Gaussian Mixture 
Model with low SNR, the variance of noise makes it harder for the algorithm to converge 
(Ma et al. 2000).

5.2 � Corrupted mixture of regressions model

The following lemma, which was given in Balakrishnan et al. (2017b); Yi and Caramanis 
(2015), shows the properties of Lipschitz–Gradient-2(� ,B ), smoothness and strongly con-
cave for model (6).

Lemma 3  (Balakrishnan et  al. 2017b; Yi and Caramanis 2015) If ‖�
∗
‖2

�
≥ r , where r 

is a sufficiently large constant denoting the required minimal signal-to-noise ratio 

(16)� = C1

�

‖�∗‖2
∞
+ �2,

(17)
�

(‖�∗‖2
∞
+ �2)

√

s∗

�

� log(nd) +

�

log d

n

�

≤ O(‖�‖∗
2
),

(18)

‖�
T − �

∗
‖2 ≤ exp(−CTr2)‖�∗‖2

+ O

�

�

(‖�∗‖2
∞
+ �2)

√

s∗

�

� log(nd) +

�

log d

n

��

,
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(SNR), then function Q(⋅;⋅) of the Mixture of Regressions Model has the proper-
ties of self-consistent, Lipschitz–Gradient-2(� ,B) , �-smoothness, and �-strongly with 
� ∈ (0,

1

4
),� = � = 1,B = {� ∶ ‖� − �

∗
‖2 ≤ R},R = k‖�∗‖2 , and k = 1

32
.

Lemma 4  With the same notations as in Lemma 3, for each � ∈ B and ‖�‖0 = s , the j-th 
coordinate of ∇qi(�;�) is �-sub-exponential with

where C > 0 is some absolute constant. Also, each [∇qi(�;�)]j , where i ∈ [n] , is independ-
ent of others for any fixed j ∈ [d].

Theorem 3  In an �-corrupted high dimensional Mixture of Regressions Model with � satis-
fying the condition of

if ‖�
∗
‖2

�
≥ r for some sufficiently large constant r denoting the minimum SNR and the ini-

tial estimator � init satisfies the inequality of ‖� init − �
∗
‖2 ≤ 1

64
‖�

∗
‖2, then the output �T of 

Algorithm 1 after choosing s = O(s∗) and � = O(1) satisfies the following with probability 
at least 1 − Td−3

where � ∈ (0,
1

4
) is a constant.

Note that in the above theorem, when 𝜖 ≤ Õ
�

1
√

n

�

 and T = O
�

log

√

n
√

log ds∗

�

 , the esti-

mation error becomes O
(

s∗
√

log d

n

)

 , which differs from the O
(

√

s∗ log d

n

)

 minimax 

lower bound by only a factor of 
√

s∗ . We leave it as an open problem for further 
improvement. Recently, Chen et al. (2018) shows that in the no-outlier and low dimen-
sional setting, an assumption of SNR ≥ � for some constant � is necessary for achieving 

the optimal rate �
(

√

d

n

)

.

5.3 � Corrupted linear regression with missing covariates

Lemma 5  (Balakrishnan et  al. 2017b; Yi and Caramanis 2015) If ‖�
∗
‖2

�
≤ r and 

pm <
1

1+2b+2b2
 , where r is a constant denoting the required maximum signal-to-noise ratio 

(SNR) and b = r2(1 + k)2 for some constant k ∈ (0, 1) , then function Q(⋅;⋅) of the linear 

(19)� = Cmax{‖�∗‖2
2
+ �

2, 1,
√

s‖�∗‖2},

(20)max{‖�∗‖2 + �
2, 1,

√

s∗‖�∗‖2}
√

s∗

�

� log(nd) +

�

log d

n

�

≤ O(‖�‖∗
2
),

(21)

‖�
T − �

∗
‖2 ≤ �

T

2
‖�

∗
‖2 + O

�

max
�

‖�
∗
‖2 + �

2, 1,
√

s∗‖�∗‖2

�

×
√

s∗

�

� log(nd) +

�

log d

n

��

,
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regression with missing covariates has the properties of self-consistent, Lipschitz–Gradi-
ent-2(� ,B) , �-smoothness and �-strongly with

Lemma 6  With the same assumptions as in Lemma  5, for each � ∈ B with ‖�‖0 = s , 
[∇qi(�;�)]j is �-sub-exponential with

for some constant C > 0 . Also, each [∇qi(�;�)]j , where i ∈ [n] , is independent of others for 
any fixed j ∈ [d].

Theorem 4  In an �-corrupted high dimensional linear regression with missing covariates 
model with � satisfying the condition of

for some k ∈ (0, 1) , if ‖� init − �
∗
‖2 ≤ k‖�∗‖2

2

2
 and the assumptions in Lemma 5 hold, then, the 

output �T of Algorithm 1 after taking s = O(s∗) and � = O(1) satisfies the following with 
probability at least 1 − Td−3

where the Big-O term hides the terms of k and r.

Note that similar to the mixture of regressions model, when 𝜖 ≤ Õ
�

1
√

n

�

 , the estimation 

error is O
(

s∗
√

log d

n

)

 , which is only a factor of 
√

s∗ away from the optimal. However, 

unlike the previous two models, we assume here that SNR is upper bounded by some con-
stant which is unavoidable as pointed out in Loh and Wainwright (2011).

6 � Experiments

In this section, we empirically study the performance of Algorithm 1 on the three models 
mentioned in the previous section. Since in the paper we mainly focus on the statistical set-
ting and its theoretical behaviors, thus, we will only perform our algorithm on the synthetic 
data. It is notable that previous papers on the statistical guarantees of EM algorithm all 
perform their algorithms on synthetic data only such as Balakrishnan et al. (2017b), Wang 
et al. (2015), Yi and Caramanis (2015). Thus, performing experiments on synthetic data 
only is enough for the paper.

(22)
𝛾 =

b + pm(1 + 2b + 2b2)

1 + b
< 1,𝜇 = 𝜐 = 1,

B = {𝛽 ∶ ‖𝛽 − 𝛽
∗
‖2 ≤ R}, where R = k‖𝛽∗‖2.

(23)� = C[(1 + k)(1 + kr)2
√

s‖�∗‖2 +max{(1 + kr)2, �2 + ‖�
∗
‖

2
2
}]

�

(1 + k)(1 + kr)2
√

s‖�∗‖2 +max
�

(1 + kr)2, �2 + ‖�
∗
‖

2
2

�

�
√

s∗

�

� log(nd) +

�

log d

n

�

≤ O(‖�∗‖2)

(24)

‖�
T − �

∗
‖2 ≤ �

t

2
‖�

∗
‖2 + O

�

max{‖�∗‖2
2
+ �

2, 1,
√

s∗‖�∗‖2}

×
√

s∗

�

� log(nd) +

�

log d

n

��

,
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For each of these models, we generate synthesized datasets according to the underly-
ing distribution. We will use ‖� − �

∗
‖2 to measure the estimation error, and test how it 

is affected by different parameter settings from two aspects. Firstly, we examine how the 
underlying sparsity parameter s∗ of the model affects the estimation error and whether it 
is consistent with our theoretical results. Secondly, we test how the corruption fraction � 

(a) (b) (c)

Fig. 2   Estimation error versus 
√

n∕(s∗ log d)

(a) (b) (c)

Fig. 3   Estimation error versus iterations t under different corruption rate �

(a) (b) (c)

Fig. 4   Estimation error versus iterations t under different dimensionality d 
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of the data and the dimensionality d affect the convergence rate, as well as the estimation 
error. For each experiment, the data is corrupted as follows: We first randomly choose � 
fraction of the input data, then we add a Gaussian noise for each of these data samples. The 
noise is sampled from a multivariate Gaussian distribution N(0, 50‖X‖∞Id) . All experi-
ments are repeated for 20 runs and the average results are reported.

Parameter setting  Throughout the experiments we will follow the setting of the previ-
ous related works on high dimensional EM algorithms which have statistical guarantees but 
are not corruption-proofing (Zhu et al. 2017; Wang et al. 2015; Yi and Caramanis 2015). 
We fix the dataset size n to be 2000, because using a larger n does not exhibit significant 
difference. For each model, the experiment is divided into three parts as mentioned previ-
ously: The first one (Fig. 2) measures ‖� − �

∗
‖2 versus 

√

n∕(s∗ log d) by varying s∗ from 
3 to 15, with d fixed to be 100, which follows the previous works (Wang et al. 2015; Zhu 
et al. 2017); The second one (Fig. 3) examines the convergence behavior under different 
corruption rate � which varies from 0 to 0.2; The last one (Fig. 4) shows the convergence 
behavior under different data dimensionality d which ranges from 80 to 240, with fixed 
� = 0.2.

For each experiment, instead of choosing the initial vectors which are close to the opti-
mal ones, we use random initialization. We will set s = s∗ in our algorithm, which is also 
used in the previous methods. Besides the parameter s, there are also two other parameters 
of the algorithm that need to be specified: the D-Trim parameter � and the step size � . We 
are also required to set the “noise level” for each of the three models, which is quantified 
by � in their definitions. It is notable that the choices of these parameters are quite flexible.

GMM: Corrupted Gaussian Mixture Model (4). We fix � to 0.5, � to 0.2 and � to 0.1.
MRM Corrupted Mixture of Regressions Model (6). We fix � to 0.2, � to 0.2 and � to 
0.1.
RMC Corrupted Linear Regression with Missing Covariates Model  (8). We set 
� = 0.1 , � = 0.3 , and the missing probability pm = 0.1 , but use three different step sizes 
� = 0.05, 0.1, 0.08 for the three parts of the experiment, respectively.

Results  Firstly, we will mainly show that the classical high dimensional gradient EM algo-
rithm in Wang et al. (2015) is not robust against to the corruptions. Here we conduct the 
algorithm on the three models. For each experiment, we tune the parameters to be optimal 
as showed in Wang et al. (2015). We test the algorithm w.r.t to 

√

n∕(s∗ log d) , iteration and 
different dimensions d.

As we can see from Fig. 1. In all the three models, the algorithm performs quite well if 
there is no corruptions ( � = 0 ) which also has been showed in the previous papers (Wang 
et  al. 2015; Zhu et  al. 2017). However, when there are � = 0.05 fraction of the samples 
are corrupted, the classical high dimensional EM algorithm will achieve a large estimation 
error. These results motivate us to design some robust high dimensional EM algorithms 
while also have provable statistical guarantees.

Next, we show the performance of our Algorithm 1. For the first part (Fig. 2), we can 
see that when � is small, the final estimation error in each of the three models decreases 
when the term 

√

n∕(s∗ log d) increases, as predicted by Theorem 2. But when � is relatively 
large, the trend becomes less obvious for the Gaussian Mixture Model and the Mixture of 
Regressions model, because now the factor � log(nd) comes into play.

Figure 3 shows that our algorithm achieves linear convergence on all three models and 
all values of � , but the final converged error is heavily affected by � , and especially for 
the Gaussian Mixture and Linear Regression with Missing Covariates Models. Moreover, 
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when � is small, the estimation errors are comparable to or even the same as the non-
corrupted ones, this is actually reasonable since it is corruption-proofing when � is small 
theoretically. In the third part of the experiments (Fig. 4), varying d seems not affect the 
convergence behavior much, which is reasonable as the error bound depends on d only 
logarithmically and changes fairly slow. Thus, these results support Theorem 1.

All the results show that our algorithm is robust against to some level of corruption 
while also could achieve an estimation error that is comparable to the non-corrupted ones.

7 � Conclusion

In this paper we study the problem of estimating latent variable models with arbitrar-
ily corrupted samples in the high dimensional sparse case and propose a method called 
Trimmed Gradient Expectation Maximization. Specifically, we show that our algorithm is 
corruption-proofing and could achieve the (near) optimal statistical rate for some statistical 
models under some levels of corruption. Experimental results support our theoretical anal-
ysis and also show that our algorithm is indeed robust against to some corrupted samples.

There are still many open problems. Firstly, in this paper, all of our theoretical guar-
antees need the initial parameter be close enough to the underlying parameter, which is 
quite strong. So how do we relax this assumption? Second, the three specific models we 
considered in the paper are quite simple, can we generalize to more models such as multi-
component Gaussian Mixture Model or Mixture of Linear Regressions Model? Thirdly, in 
this paper we assume that the sparsity of the underlying parameter is known, how to deal 
with the case where it is unknown?  

Funding  The funding was provided by National Science Foundation (Grant Nos. IIS-1910492, 
CCF-1716400). 

Auxiliary lemmas

In this section, we introduce prerequisite knowledge and technical lemmas in order to 
prove the main results.

In order to analyze the Dimensional �-trimmed estimator, we first give some results for 
1-dimensional samples and denote it as trmean

�
(⋅).

Definition 8  Given a set of �-corrupted samples {zi}ni=1 ⊆ ℝ , the trimmed mean estimator 
trmean

�
({zi}

n
i=1

) ∈ ℝ removes the largest and smallest � fraction of elements in {zi}ni=1 and 
calculate the mean of the remaining terms. We choose � = c0� , for some constant c0 ≥ 1 . 
We also require that � ≤ 1

2
− c1 for some small constant c1 > 0.

For the 1-dimensional trimmed mean estimator, we have the following upper bound on 
the error w.r.t the population mean.

Lemma 7  [Lemma A.2 in Liu et  al. (2019)] Let {zi}ni=1 ⊂ ℝ
d be n = �(log d) �-cor-

rupted samples. If the j-th coordinate, for each j ∈ [d] , of the samples {zi,j}ni=1 are i.i.d. �
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-exponential with mean �j , then after using the dimensional �-trimmed mean estimator, the 
following upper bound of error holds with probability at least 1 − d−3 , for every j ∈ [d]

where C2 is some constant dependent on c1.

Next, we provide some symmetrization results of random variables, which will be 
used in our proofs. See Boucheron et al. (2013) for details.

Lemma 8  Let y1, y2,… , yn be the n independent realizations of the random vector Y ∈ Y , 
and F  be a function class defined on Y . For any increasing convex function �(⋅) , the fol-
lowing holds

where �1,… , �n are i.i.d. Rademacher random variables that are independent of y1,… , yn.

Lemma 9  Let y1,… , yn be n independent realization of the random vector Z ∈ Z and F  be 
a function class defined on Z . If Lipschitz functions {�i(⋅)}

n
i=1

 satisfy the following for all 
v, v� ∈ ℝ

and �i(0) = 0 , then for any increasing convex function �(⋅) , the following holds

where �1,… , �n are i.i.d. Rademacher random variables that are independent of y1,… , yn.

Finally we recall some definitions and lemmas on the sub-exponential and sub-
Gaussian random variables. See Vershynin (2010) for details.

Definition 9  For a sub-exponential random vector X, its sub-exponential norm ‖X‖
�1

 is 
defined as

Lemma 10  Let X be a zero-mean sub-exponential random variable, then there are absolute 
constants C, c > 0 , such that when �t� ≤ c

‖X‖
�1

 ,

Lemma 11  (Bernstein’s inequality) Let X1,… ,Xn be n i.i.d. realizations of �-sub-exponen-
tial random variable X with mean � . Then,

(25)|trmean
�
({zi,j}

n
i=1

) − �
j
| ≤ C2�

(

� log(nd) +

√

log d

n

)

,

�

{

�

[

sup
f∈F

|

n
∑

i=1

f (yi) − �(f (Y))|

]}

≤ �{�[sup
f∈F

|

n
∑

i=1

�if (yi)|]},

|�i(v) − �i(v
�)| ≤ L|v − v�|

�

{

�

[

| sup
f∈F

n
∑

i=1

�i�i(f (yi))|

]}

≤ �

{

�

[

2|L sup
f∈F

n
∑

i=1

�if (yi)|

]}

,

‖X‖
�1

= sup
p≥1

p−1(��X�p)
1

p .

�[exp(tX)] ≤ exp(Ct2‖X‖2
�1
).
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Definition 10  A random variable X is sub-Gaussian with variance �2 if for all t > 0 , the 
following holds

Definition 11  For a sub-Gaussian random variable X, its sub-Gaussian norm ‖X‖
�2

 is 
defined as

Lemma 12  If X is sub-Gaussian or sub-exponential, then ‖X − �X‖
�2

≤ 2‖X‖
�2

 or 
‖X − �X‖

�1
≤ 2‖X‖

�1
 holds, respectively.

Lemma 13  For two sub-Gaussian random variables X1,X2 , X1 ⋅ X2 is a sub-exponential 
random variable with

Lemma 14  Let X1,X2,… ,Xk be k independent zero-mean sub-Gaussian random variables, 
and X =

∑k

j=1
Xj . Then, X is sub-Gaussian with ‖X‖2

�2
≤ C

∑k

j=1
‖Xj‖

2
�2

 for some absolute 
constant C > 0.

Omitted proofs

Proof of Theorem 1

By Lemma 7 and our assumption on the �-sub-exponential property of each coordinate, we 
have the following in the t-th iteration with probability at least 1 − d−3 for some constant 
C2 > 0

For convenience, we let � = C2�(� log(nd) +
√

log d

n
) , and assume that for all iterations 

t ∈ [T − 1] , event (26) holds (then all events hold with probability at least 1 − Tp−3).
In the t-th iteration, we define

and

Pr

(

|

1

n

n
∑

i=1

Xi − �| ≥ t

)

≤ 2 exp

(

−nmin

(

−
t2

�2
,
t

2�

))

.

Pr(|X − �X| ≥ t) ≤ 2 exp(−
t2

2�2
).

‖X‖
�2

=
�

p≥1
p
−

1

2 (��X�p)
1

p .

‖X1 ⋅ X2‖�1
≤ Cmax{‖X1‖

2
�2
, ‖X2‖

2
�2
}.

(26)‖∇Q̃n(𝛽
t;𝛽 t) − ∇Q(𝛽 t;𝛽 t)‖∞ ≤ C2𝜉

�

𝜖 log(nd) +

�

log d

n

�

.

(27)𝛽
t+0.5 = 𝛽

t + 𝜂∇Q(𝛽 t;𝛽 t)

(28)𝛽
t+1 = trunc(𝛽 t+0.5, Ŝ

t+0.5
).
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That is, 𝛽 t+0.5 is the gradient update of � t w.r.t the non-corrupted population gradient of 
Qn(�

t;� t) , and 𝛽 t+1 is the estimation after truncating 𝛽 t+0.5 w.r.t set Ŝ
t+0.5

 , which is the set of 
the s-largest coordinates of � t+0.5.

By the definition, we have the following inequalities

For the term A, we have

Thus, if � t ∈ B , i.e., ‖� t − �
∗
‖ ≤ k‖�∗‖2 ) and ‖� t‖0 = s , then by the assumption and (26), 

we have

Next, we will bound the term B. To do this, we need the following lemma, which follows 
(Wang et al. 2015).

Lemma 15  If

for some k ∈ (0, 1) and

then, the following holds

Proof of Lemma 15  By assumption (32), we have

We then denote

and the sets I1, I2 and I3 as the follows

(29)

‖𝛽
t+1 − 𝛽

∗
‖2 = ‖trunc(𝛽 t+0.5, Ŝ

t+0.5
) − 𝛽

∗
‖2

≤ ‖trunc(𝛽 t+0.5, Ŝ
t+0.5

) − trunc(𝛽 t+0.5, Ŝ
t+0.5

)‖2 + ‖trunc(𝛽 t+0.5, Ŝ
t+0.5

) − 𝛽
∗
‖2

= ‖trunc(𝛽 t+0.5, Ŝ
t+0.5

) − trunc(𝛽 t+0.5, Ŝ
t+0.5

)‖2 + ‖𝛽
t+1 − 𝛽

∗
‖2

≤ ‖(𝛽 t+0.5 − 𝛽
t+0.5)

Ŝ
t+0.5‖2

�������������������������������

A

+ ‖𝛽
t+1 − 𝛽

∗
‖2

�������������

B

.

(30)
‖(𝛽 t+0.5 − 𝛽

t+0.5)
Ŝ
t+0.5‖2 ≤ √

s‖𝛽 t+0.5 − 𝛽
t+0.5

‖∞

= 𝜂

√

s‖∇Q̃n(𝛽
t;𝛽 t) − ∇Q(𝛽 t;𝛽 t)‖∞.

(31)A ≤ �

√

s�.

(32)‖𝛽
t+0.5 − 𝛽

∗
‖2 ≤ k‖𝛽∗‖2

(33)s ≥ 4(1 + k)2

(1 − k)2
s∗ and

√

s‖𝛽 t+0.5 − 𝛽
t+0.5

‖∞ ≤ (1 − k)2

2(1 + k)
‖𝛽

∗
‖2,

(34)‖𝛽
t+1 − 𝛽

∗
‖2 ≤ C

√

s∗
√

1 − k
‖𝛽

t+0.5 − 𝛽
t+0.5

‖∞ + (1 + 4

�

s∗

s
)1∕2‖𝛽 t+0.5 − 𝛽

∗
‖2.

(35)(1 − k)‖𝛽∗‖2 ≤ ‖𝛽
t+0.5

‖2 ≤ (1 + k)‖𝛽∗‖2.

(36)𝜃̄ =
𝛽
t+0.5

‖𝛽 t+0.5‖2

, 𝜃 =
𝛽
t+0.5

‖𝛽 t+0.5‖2

, and 𝜃∗ =
𝛽
∗

‖𝛽∗‖2
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where S∗ = supp(�∗) . Let si = |Ii| for i = 1, 2, 3 , respectively. Also, we define 𝛥 = ⟨𝜃̄, 𝜃∗⟩ . 
Note that

By Cauchy–Schwartz inequality, we have

Since I3 ⊆ Ŝ
t+0.5

 and I1
⋂

Ŝ
t+0.5

= � , we have

We let 𝜖 = 2‖𝜃̄ − 𝜃‖∞ = 2
‖𝛽

t+0.5−𝛽 t+0.5‖∞
‖𝛽 t+0.5‖2

 . Note that we have

which implies that

where inequality (a) is due to (40). Plugging (42) into (39), we have

Solving ‖𝜃̄I1‖2 in (43), we get

The final inequality is due to the inequality s1

s3
≤ s1+s2

s3+s2
=

s∗

s
 , which follows from 

s∗

s
≤ (1−k)2

4(1+k)2
≤ 1 and s3 ≥ s − s∗ ≥ s∗ ≥ s1.

In the following, we will prove that the right hand side of (44) is upper bounded by � . 
To achieve this, it is sufficient to show that

(37)I1 = S∗�Ŝ
t+0.5

, I2 = S∗
⋂

Ŝ
t+0.5

, and I3 = Ŝ
t+0.5

�S∗,

(38)𝛥 = ⟨𝜃̄, 𝜃∗⟩ =
�

j∈S∗

𝜃̄j𝜃
∗
j
=
�

j∈I1

𝜃̄j𝜃
∗
j
+
�

j∈I2

𝜃̄j𝜃
∗
j
≤ ‖𝜃̄I1

‖2‖𝜃
∗
I1
‖2 + ‖𝜃̄I2

‖2‖𝜃
∗
I2
‖2.

(39)

𝛥
2 ≤ (‖𝜃̄I1‖2‖𝜃

∗
I1
‖2 + ‖𝜃̄I2

‖2‖𝜃
∗
I2
‖2)

2

≤ (‖𝜃̄I1‖
2
2
+ ‖𝜃̄I2

‖

2
2
)(‖𝜃∗

I1
‖

2
2
+ ‖𝜃

∗
I2
‖

2
2
)

= (1 − ‖𝜃̄I3
‖

2
2
)(1 − ‖𝜃

∗
I3
‖

2
2
) ≤ 1 − ‖𝜃̄I3

‖

2
2
.

(40)
‖�

t+0.5
I3

‖

2
2

‖�
t+0.5
I1

‖

2
2

≥ s3

s1
, i.e.,

‖�I3
‖2

√

s3
≥ ‖�I1

‖2
√

s1
.

(41)
max

�

‖𝜃I3
− 𝜃̄I3

‖2
√

s3
,
‖𝜃I1

− 𝜃̄I1
‖2

√

s1

�

≤ max
�

‖𝜃I3
− 𝜃̄I3

‖∞, ‖𝜃I1 − 𝜃̄I1
‖∞

�

≤ ‖𝜃̄ − 𝜃‖∞ =
𝜖

2
,

(42)

‖𝜃̄I3
‖2

√

s3
≥ ‖𝜃I3

‖2
√

s3
−

‖𝜃I3
− 𝜃̄I3

‖2
√

s3
≥
(a)

‖𝜃I1
‖2

√

s1
−

‖𝜃I3
− 𝜃̄I3

‖2
√

s3

≥ ‖𝜃̄I1
‖2

√

s1
−

‖𝜃I3
− 𝜃̄I3

‖2
√

s3
−

‖𝜃I1
− 𝜃̄I1

‖2
√

s1
≥ ‖𝜃̄I1

‖2
√

s1
− 𝜖,

(43)𝛥
2 ≤ 1 − ‖𝜃̄I3

‖

2
2
≤ 1 − (

�

s3

s1
‖𝜃̄I1

‖2 −
√

s3𝜖)
2.

(44)‖𝜃̄I1
‖2 ≤

�

s1

s3

√

1 − 𝛥2 +
√

s1𝜖 ≤
�

s∗

s

√

1 − 𝛥2 +
√

s∗𝜖.
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To prove (45), we first note that 
√

s∗𝜖 ≤ 𝛥 , which is due to

where the second inequality is due to assumption (33) and the final inequality is due to

where inequality (a) is due to Assumption (32).
Now, we show that (45) holds. By (46), we have

which implies that 𝜖 ≤
√

s∗+s

s
.

For the right hand side of (45), we have

Thus, in total, by (44) we can get

From (39), we can see that

that is,

Solving the above inequality, we get

(45)

𝛥 ≥
√

s∗𝜖 + [s∗𝜖2 − (s∗∕s + 1)(s∗
̃

𝜖2 − s∗∕s)]
1

2

s∗∕s + 1
=

√

s∗𝜖 + [−(s∗𝜖)2∕s + (s∗∕s + 1)s∗∕s]
1

2

s∗∕s + 1
.

(46)
√

s∗𝜖 ≤ √

s𝜖 =
2
√

s‖𝛽 t+0.5 − 𝛽
t+0.5

‖∞

‖𝛽∗‖2

≤ 1 − k

1 + k
≤ 𝛥,

𝛥 =⟨𝜃̄, 𝜃∗⟩ =
⟨𝛽

t+0.5, 𝛽∗⟩

‖𝛽 t+0.5‖2‖𝛽
∗
‖2

(a)≥ ‖𝛽
t+0.5

‖

2
2
+ ‖𝛽

∗
‖

2
2
− k2‖𝛽∗‖2

2

2‖𝛽 t+0.5‖2‖𝛽
∗
‖2

≥ (1 − k)2 + 1 − k2

2(1 + k)
=

1 − k

1 + k
,

(47)
√

s𝜖 ≤ 1 − k

1 + k
< 1 <

�

s∗ + s

s
,

(48)
√

s∗𝜖 + [−(s∗𝜖)2∕s + (s∗∕s + 1)s∗∕s]
1

2

s∗∕s + 1
≤

√

s∗𝜖 + [(s∗∕s + 1)s∗∕s]
1

2

s∗∕s + 1

(49)≤ 2

√

s∗

s∗ + s
≤ 2

√

1

1 + 4(1 + k)2∕(1 − k)2

(50)≤ 1 − k

1 + k
≤ �.

(51)‖𝜃̄I1
‖2 ≤ 𝛥.

𝛥 ≤ ‖𝜃̄I1
‖2‖𝜃

∗
I1
‖2 + ‖𝜃̄I2

‖2‖𝜃
∗
I2
‖2 ≤ ‖𝜃̄I1

‖2‖𝜃
∗
I1
‖2 +

�

(1 − ‖𝜃̄I1
‖

2
2
)
�

(1 − 𝜃
∗
I1
‖

2
2
),

(𝛥 − ‖𝜃̄I1
‖2‖𝜃

∗
I1
‖2)

2 ≤ (1 − ‖𝜃̄I1
‖

2
2
)(1 − 𝜃

∗
I1
‖

2
2
).
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where the final inequality is due to (44). Combining this with (44) and (52), we have

Now, by the definition of 𝜃̄ , we have

Therefore, we get

Let 𝜒 = ‖𝛽
t+0.5

‖2‖𝛽
∗
‖2 . Then, by (55) and (53) we have

For the term 
√

�(1 − �2) , we have

For the term 
√

𝜒𝜖 , we have

Plugging (57) and (58) into (56), we get

(52)
‖𝜃

∗
I1
‖2 ≤‖𝜃̄I1‖2𝛥 +

�

1 − ‖𝜃̄I1
‖

2
2

√

1 − 𝛥2 ≤ ‖𝜃̄I1
‖2 +

√

1 − 𝛥2

≤
�

s∗

s

√

1 − 𝛥2 +
√

s∗𝜖 +
√

1 − 𝛥2,

(53)‖𝜃
∗
I1
‖2‖𝜃̄I1

‖2 ≤ [

�

s∗

s

√

1 − 𝛥2 +
√

s∗𝜖 +
√

1 − 𝛥2] ⋅ [

�

s∗

s

√

1 − 𝛥2 +
√

s∗𝜖].

(54)𝛽
t+1 = trunc(𝛽 t+0.5, Ŝ

t+0.5
) = trunc(𝜃̄, Ŝ

t+0.5
)‖𝛽 t+0.5‖2.

(55)

�

𝛽
t+1

‖𝛽 t+0.5‖2

,
𝛽
∗

‖𝛽∗‖2

�

= ⟨trunc(𝜃̄, Ŝ
t+0.5

), 𝜃∗⟩ = ⟨𝜃̄I2
, 𝜃∗

I2
⟩ ≥ ⟨𝜃̄, 𝜃∗⟩ − ‖𝜃̄I1

‖2‖𝜃
∗
I1
‖2.

(56)

⟨𝛽
t+1, 𝛽∗⟩

≥ ⟨𝛽
t+0.5, 𝛽∗⟩ −

��

�

s∗

s
+ 1

�

√

𝜒(1 − 𝛥2) +
√

s∗
√

𝜒𝜖

�

⋅

�

�

s∗

s

√

𝜒(1 − 𝛥2) +
√

s∗
√

𝜒𝜖

�

= ⟨𝛽
t+0.5, 𝛽∗⟩ −

�

�

s∗

s
+

s∗

s

�

𝜒(1 − 𝛥
2)

−

�

1 + 2

�

s∗

s

�

√

𝜒(1 − 𝛥2)
√

s∗
√

𝜒𝜖 − (
√

s∗
√

𝜒𝜖)2.

(57)

√

𝜒(1 − 𝛥2) ≤ √

2𝜒(1 − 𝛥) ≤
�

2‖𝛽 t+0.5‖2‖𝛽
∗
‖2 − 2⟨𝛽 t+0.5, 𝛽∗⟩ ≤ ‖𝛽

t+0.5 − 𝛽
∗
‖2.

(58)
√

𝜒𝜖 = 2

�

‖𝛽 t+0.5‖2‖𝛽
∗
‖2

‖𝛽
t+0.5 − 𝛽

t+0.5
‖∞

‖𝛽 t+0.5‖2

≤ 2
√

1 − k
‖𝛽

t+0.5 − 𝛽
t+0.5

‖∞.
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Also, since ‖𝛽 t+1‖2
2
+ ‖𝛽

∗
‖

2
2
≤ ‖𝛽

t+0.5 + ‖𝛽
∗
‖

2
2
 , subtracting (59), we obtain

Thus, we have

This completes the proof of Lemma 15. 	�  ◻

Next, we bound the term ‖𝛽 t+0.5 − 𝛽
∗
‖2 in (34).

Lemma 16  Under the assumptions in Theorem  1, the following inequality holds

Proof of  Lemma 16  We first note that the self-consistent property in McLachlan and 
Krishnan (2007) implies that

which means that �∗ is a maximizer of Q(�;�∗) . Thus, the proof follows from the conver-
gence rate of the strongly convex and smooth functions Q(�;�∗) in Nesterov (2013). For the 
step size � =

2

�+�
 , we have

Thus, we get

(59)

⟨𝛽
t+1, 𝛽∗⟩ ≥ ⟨𝛽

t+0.5, 𝛽∗⟩ − (

�

s∗

s
+

s∗

s
)‖𝛽 t+0.5 − 𝛽

∗
‖

2
2
−

(1 + 2

�

s∗

s
)‖𝛽 t+0.5 − 𝛽

∗
‖2

2
√

s∗

√

1 − k
‖𝛽

t+0.5 − 𝛽
t+0.5

‖∞ −
4s∗

1 − k
‖𝛽

t+0.5 − 𝛽
t+0.5

‖

2
∞
.

(60)

‖𝛽
t+1 − 𝛽

∗
‖

2
2
≤ (1 +

�

s∗

s
+

s∗

s
)‖𝛽 t+0.5 − 𝛽

∗
‖

2
2
+

8s∗

1 − k
‖𝛽

t+0.5 − 𝛽
t+0.5

‖

2
∞

+ (1 + 2

�

s∗

s
)‖𝛽 t+0.5 − 𝛽

∗
‖2

4
√

s∗

√

1 − k
‖𝛽

t+0.5 − 𝛽
t+0.5

‖∞

≤ (1 + 2

�

s∗

s
+ 2

s∗

s
)[‖𝛽 t+0.5 − 𝛽

∗
‖2 +

2
√

s∗
√

1 − k
‖𝛽

t+0.5 − 𝛽
t+0.5

‖∞]
2

+
8s∗

1 − k
‖𝛽

t+0.5 − 𝛽
t+0.5

‖

2
∞
.

(61)
‖𝛽

t+1 − 𝛽
∗
‖2 ≤

�

1 + 4

�

s∗

s

�
1

2

‖𝛽
t+0.5 − 𝛽

∗
‖2 +

2
√

2
√

s∗
√

1 − k
‖𝛽

t+0.5 − 𝛽
t+0.5

‖∞.

(62)‖𝛽
t+0.5 − 𝛽

∗
‖2 ≤ (1 − 2

𝜐 − 𝛾

𝜐 + 𝜇
)‖𝛽 t − 𝛽

∗
‖2.

(63)�
∗ = argmax

�

Q(�;�∗),

(64)‖�
t + �∇Q(� t;�∗) − �

∗
‖2 ≤ (

� − �

� + �
)‖�T − �

∗
‖2.

(65)‖𝛽
t+0.5 − 𝛽

∗
‖2 = ‖𝛽

t + 𝜂∇Q(𝛽 t;𝛽 t) − 𝛽
∗
‖2
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Taking � =
2

�+�
 , we complete the proof. 	�  ◻

Combining Lemmas 15, 16, and Eq. (31), we have the following lemma.

Lemma 17  If

for some k ∈ (0, 1) and further assuming that

then it holds with probability at least 1 − d−3 that

where � = C2�(� log(nd) +
√

log d

n
).

We now prove Theorem  1.

Proof of Theorem 1  By Lemma 17, we know that it is sufficient to prove (68), which can 
be shown by mathematical induction.

We first prove �0 ∈ B . By assumption, we have ‖� init − �
∗
‖2 ≤ R

2
 . By the same proof of 

Lemma  15, we can get 
‖�

0 − �
∗
‖2 ≤ (1 + 4

�

s∗

s
)
1

2
‖�

init − �
∗
‖2 ≤ (1 + 4

�

1

4
)
1

2
R

2
≤ R = k‖�∗‖2 . Thus, by 

Lemma 16, we can see that (68) holds for t = 0.
Now suppose that (68) holds for all t ≤ k . Then, we have

by assumption we can see that 
(

1 + 4

√

s∗

s

)

1

2
(

1 − 2
�−�

�+�

) ≤ √

1 − 2
�−�

�+�
 . Thus, we have

(66)= ‖�
t + �∇Q(� t;�∗) − �

∗
‖2 + �‖∇Q(� t;�∗) − ∇Q(� t;� t)‖2

(67)≤ (
� − �

� + �
)‖�T − �

∗
‖2 + ��‖�

t − �
∗
‖2.

(68)‖𝛽
t+0.5 − 𝛽

∗
‖2 ≤ k‖𝛽∗‖2

(69)
s ≥4(1 + k)2

(1 − k)2
s∗ and

√

s�

≤ (1 − k)2

2(1 + k)
‖�

∗
‖2,

(70)

‖�
t+1 − �

∗
‖2 ≤ 2

� + �

√

s�

+
1

� + �

4
√

2
√

s∗
√

1 − k
� +

�

1 + 4

�

s∗

s

�
1

2�

1 − 2
� − �

� + �

�

‖�
t − �

∗
‖2,

(71)

‖�
k+1 − �

∗
‖2 ≤ 2

� + �

√

s� +
1

� + �

4
√

2
√

s∗
√

1 − k
�

+

�

1 + 4

�

s∗

s

�
1

2�

1 − 2
� − �

� + �

�

‖�
k − �

∗
‖2,
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By the assumption of 1

�+�

(2
√

s+4
√

2
√

s∗∕
√

1−k)�

1−
√

1−2
�−�

�+�

≤ �

1 −
�

1 − 2
�−�

�+�

�

R , we have

Hence, by Lemma 16, we obtain (68) for the case of t = k + 1 . This completes the proof. 	
� ◻

Proof of Lemma 2

From (5) it is oblivious that [∇qi(�, �))]j is independent of other i ∈ [n] for fixed j ∈ [d] . 
Next, we prove the property of sub-exponential for each coordinate.

Note that

and

For convenience, we let ∇qi,j denote [∇qi(�, �))]j and ∇qj denote �[∇qi(�, �))]j.
By the symmetrization lemma in Lemma 8, we have the following for any t > 0

where � is a Rademacher random variable.
Next, we use Lemma  9 with f (yi,j) = yi,j , F = {f } , �i(v) = [2w

�
(yi) − 1]v and 

�(v) = exp(u ⋅ v) . It is easy to see that �i is 1-Lipschitz. Thus, by Lemma 9 we have

By the formulation of the model, we have yi,j = zi�
∗
j
+ vi,j , where zi is a Rademacher ran-

dom variable and vi,j ∼ N(0, �2) . It is easy to see that yi,j is sub-Gaussian and

for some absolute constants C,C′ , where the last inequality is due to the facts that 
‖zj�

∗
j
‖

�2
≤ ��

∗
j
� and ‖vi,j‖�2

≤ C′′
�
2 for some C′′

> 0.
Since |�yi,j| = |yi,j| , ‖�yi,j‖�2

= ‖yi,j‖�2
 and �(�yi,j) = 0 , by Lemma 5.5 in Vershynin 

(2010) we have that for any u′ there exists a constant C(4)
> 0 such that

Thus, for any t > 0 we get

(72)‖�
k+1 − �

∗
‖2 ≤ 1

� + �

�

2
√

s + 4
√

2
√

s∗∕
√

1 − k
�

�

1 −
�

1 − 2
�−�

�+�

+

��

1 − 2
� − �

� + �

�k

R.

(73)‖�
k+1 − �

∗
‖2 ≤

�

1 −

�

1 − 2
� − �

� + �

�

R +

�

1 − 2
� − �

� + �
R = R.

[∇qi(�, �))]j = [2w
�
(yi) − 1]yi,j − �j,

�[∇qi(�, �))]j = �(2w
�
(Y)Yj − Yj) − �j.

(74)�{exp(t|[∇qi,j − ∇qj]|)} ≤ �{exp(t|�[2w
�
(yi) − 1]yi,j|)},

(75)�{exp(t|�[2w
�
(yi) − 1]yi,j|)} ≤ �{exp[2t|�yi,j|]}.

(76)‖yi,j‖�2
= ‖zi ⋅ �

∗
j
+ vi,j‖�2

≤ C ⋅

�

‖zi ⋅ �j‖
2
�2

+ ‖vi,j‖
2
�2

≤ C�
�

��
∗
j
�

2 + �2,

(77)�{exp(u� ⋅ � ⋅ yi,j)} ≤ exp(u�2 ⋅ C(4)
⋅ (|�|2

j
+ �

2)).
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for some constant C(5) . Therefore, in total we have the following for some constant C(6)
> 0

Combining this with Lemma 10 and the definition, we know that ∇qi,j is O(
�

‖�∗‖2
∞
+ �2)

-sub-exponential.

Proof of Lemma 4

From (7) it is oblivious that [∇qi(�, �))]j is independent of other i ∈ [n] for any fixed 
j ∈ [d] . Next, we prove the property of sub-exponential.

Note that �∇qi,j = �2w
�
(x, y)y ⋅ xj − �j . Thus, we have

For term A and any t > 0 , we have

Using Lemma 9 on f (yixi,j) = yixi,j , F = f  , �i(v) = 2w
�
(x, y)v and �(v) = exp(uv) , we have

Note that since yi = zi⟨�
∗, xi⟩ + vi and ‖zi⟨�

∗, xi⟩‖�2
= ‖⟨�

∗, xi⟩‖�2
≤ C‖�∗‖2 and 

‖vi‖�2
≤ C′

� for some constants C,C′
> 0 , by Lemma 14 we know that there exists a con-

stant C′′
> 0 such that

Thus, by Lemma 13 we have

For term B, we have

where xj, xk ∼ N(0, 1) . Now, by Lemma  13 we have ‖xjxk�k‖�1
≤ ��k�C

(5) for some con-
stant C(5)

> 0 . Thus, we get ‖
∑d

k=1
xjxk�k‖�1

≤ C(5)
‖�‖1.

Also, we know that ‖�‖1 ≤ √

s‖�‖2 , since by assumption ‖�‖0 = s . Furthermore, we 
have ‖�‖2 ≤ ‖�

∗
‖2 + ‖�

∗ − �‖2 ≤ (1 +
1

32
)‖�∗‖2 , since � ∈ B (by assumption). From 

Lemma 12, we get ‖B‖
�1

≤ C(6)
√

s‖�∗‖2 with some constant C(6)
> 0.

Thus, we know that there exist some constants C(7)
> 0 and C(8)

> 0 such that

(78)�{exp(2t ⋅ |� ⋅ yi,j|)} ≤ 2 exp(t2 ⋅ C(5)
⋅ (|�|2

j
+ �

2))

(79)
�{exp(t|[∇qi,j − ∇qj]|)} ≤ exp(t2 ⋅ C(6)

⋅ (|�|2
j
+ �

2))

≤ exp(t2 ⋅ C(6)
⋅ (|�∗|2

∞
+ �

2)).

(80)
∇qi,j − ∇qj = 2w

�
(xi, yi)yixi,j − �[]2w

�
(x, y)yxj]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

A

+ [xix
T
i
� − �]j

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

B

− yixi,j
⏟⏟⏟

C

.

(81)�{exp(t|A|)} ≤ �{exp[t|2�w
�
(xi, yi)yixi,j|]}.

(82)�{exp[t|2�w
�
(xi, yi)yixi,j|] ≤ �{exp[4t|�yixi,j|]}.

(83)‖yi‖�2
≤ C��

�

‖�∗‖
2
2
+ �2.

(84)‖yixi,j‖�1
≤ max{C��2(‖�∗‖2

2
+ �

2),C���} ≤ C4 max{‖�∗‖2
2
+ �

2, 1}.

(85)�{exp[t|B|]} = �{exp[t|

d
∑

k=1

xjxk�k − �j|]},
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This means that ∇qi,j is O(max{‖�∗‖2
2
+ �

2, 1,
√

s‖�∗‖2}) sub-exponential.

Proof of Lemma 6

For simplicity, we use notations m̄i = m
𝛽
(xobs

i
, yi) , m̄ = 𝛽(xobs, y) , K̄i = K

𝛽
(xobs

i
, yi) , and 

K̄ = K
𝛽
(xobs, y) . Then, we have

For the j-th coordinate of A, we have

We note that m̄j is a zero-mean sub-Gaussian random variable with ‖m̄j‖𝜓2
≤ C(1 + kr) 

(see Lemma B.3 in Wang et al. (2015))

Lemma 18  Under the assumption of Lemma 6, for each j ∈ [d] , m̄j is sub-Gaussian with 
mean zero and ‖m̄j‖𝜓2

≤ C(1 + kr).

Thus, by Lemma 13 we have

where the last inequality is due to the fact that y = ⟨�
∗, x⟩ + v . Thus, 

‖y‖2
�2

≤ C3(‖⟨�
∗, x⟩‖2

�2
+ ‖v‖2

�2
) for some C3.

For term B, we have

For term C, we have the following [by Example 5.8 in Vershynin (2010)]

For term D, by Lemma 18 and 13 we have

Since � ∈ B , we get ‖�‖1 ≤ √

s‖�‖2 ≤ (1 + k)
√

s‖�∗‖2 . Thus, we have

‖∇qi,j − ∇qj‖�1
≤ C(7) max{‖�∗‖2

2
+ �

2, 1} + C(8)
√

s‖�∗‖2

≤ C(9) max{‖�∗‖2
2
+ �

2, 1,
√

s‖�∗‖2}.

(86)∇qi − ∇q = m
�
(xobs

i
, yi)yi − �[m

�
(xobs

i
, yi)yi]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

A

+

B

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(

K
�
(xobs

i
, yi) − �K

�
(xobs

i
, yi)

)

� .

(87)Aj = m̄i
j
yi − �[m̄jy].

(88)‖m̄jyi‖𝜓1
≤ Cmax{‖m̄j‖

2
𝜓2
, ‖y‖2

𝜓2
} ≤ C� max{(1 + kr)2, 𝜎2 + ‖𝛽

∗
‖

2
2
},

(89)
K̄i
j
= (1 − zi,j)𝛽j
�������

C

+

d
∑

k=1

m̄i
j
m̄i

k
𝛽k

���������

D

−

d
∑

k=1

[(1 − zi,j)m̄
i
j
][(1 − zi,k)m̄

i
k
]𝛽k

�������������������������������������������

E

.

(90)‖(1 − zi,j)�j‖�2
≤ ��j� ≤ ‖�‖∞ ≤ (1 + k)

√

s‖�∗‖2.

(91)‖

d
�

k=1

m̄i
j
m̄i

k
𝛽k‖𝜓1

≤
d
�

k=1

�𝛽k�‖m̄
i
j
m̄i

k
‖

𝜓1
≤

d
�

k=1

�𝛽k�C
2(1 + kr)2 ≤ C4(1 + kr)2‖𝛽‖1.
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For term E, since 1 − zi ∈ [0, 1] , we have ‖(1 − zi,j)m̄
i
j
‖

𝜓2
≤ ‖m̄i

j
‖

𝜓2
≤ C(1 + kr) . Hence, by 

Lemma 13 we get

This gives us

By Lemma 12, we get
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